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Concerning the growth of a polynomial and its derivative, the following in-

equalities are well known as Bernstein Inequalities.

max
|z|=R

|p(z)| ≤ max
|z|=1

|p(z)|Rn, for R ≥ 1, (1)

max
|z|=1

|p′(z)| ≤ max
|z|=1

|p(z)|n, (2)

max
|z|=ρ

|p(z)| ≥ max
|z|=1

|p(z)|ρn, for 0 < ρ ≤ 1. (3)

All the above inequalities are best possible and are of great importance both from

a theoretical point of view and for applications.

The thesis consists of three chapters. In Chapter 1, we provide a brief history

of these inequalities and provide the proof of the known fact that all three inequal-

ities above are equivalent in the sense that they can be derived from each other.

v



Also, this chapter contains proof of inequality (1), some of its generalizations, and

its sharpening when the polynomial does not have a zero at z = 0.

In Chapter 2, we study inequality (1) for polynomials having no zeros in

{z : |z| < 1}, and then for polynomials having no zeros inside the circle

{z : |z| = K}, K > 0, by providing proofs of several results known in this direction.

If p(z) is a polynomial of degree n then, as can be easily verified, the function

f(z) = p(eiz) is an entire function of exponential type n, and thus the results for

entire functions of exponential type can be considered as generalizations of the

corresponding results for polynomials.

In Chapter 3 we study the generalizations for entire functions of exponential

type of inequality (1) and of some other inequalities studied in Chapter 2. Also in

this chapter, we provide a partially different proof of a well known result concerning

polynomials having no zeros inside the unit circle. Finally, the proof of a known

result that sharpens a well known result of R. P. Boas has been provided.
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Chapter 1

Introduction

We denote the set of real numbers by R and the field of complex numbers by

C. Any element of C can be thought of as a point in the complex plane. We define

the extended complex plane by Ĉ := C ∪ {∞}. Then for any z ∈ C, we denote a

polynomial by p(z) :=
n∑

v=0

avz
v for av ∈ C unless otherwise noted. The derivative

of p(z) is denoted by p′(z), and we let M(p; r) := max
|z|=r

|p(z)|.

If p is a polynomial of degree at most n, then the following inequalitites are

well known as Bernstein inequalities.

M(p;R) ≤ M(p; 1)Rn, for R ≥ 1 (1.1)

M(p′; 1) ≤ M(p; 1)n (1.2)

M(p; ρ) ≥ M(p; 1)ρn, for 0 < ρ ≤ 1. (1.3)

Each of the inequalities above is best possible, and each attains equality only

for polynomials of the form p(z) = M(p; 1)eiγzn, γ ∈ R. Clearly, if p(z) =

M(p; 1)eiγzn, γ ∈ R, then for R > 1,

M(p;R) = max
|z|=R

|M(p; 1)eiγzn|

= M(p; 1)|eiγ|Rn

= M(p; 1)Rn.
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Also,

M(p′; 1) = max
|z|=1

|p′(z)|

= max
|z|=1

|M(p; 1)eiγnzn−1|

= M(p; 1)n,

and finally, for 0 < ρ ≤ 1,

M(p; ρ) = max
|z|=ρ

|M(p; 1)eiγzn|

= M(p; 1)|eiγ|ρn

= M(p; 1)ρn.

The development of inequality (1.2), known as Bernstein’s inequality, actually

began with a question raised by the famous Russian chemist Mendeleev who was

studying the specific gravity of a solution as a function of the percentage of the

dissolved substance. There is some practical importance of this function. It is used

in testing beer and wine for alcoholic content, and it is also used in analyzing the

cooling system of an automobile for concentration of antifreeze. However, physical

chemists today do not seem to find it as interesting as Mendeleev did.

Mendeleev was able to approximate the curves which resulted from the func-

tions with successions of quadratic arcs, but the approximations contained corners

where the arcs joined. Naturally, he wished to know whether or not these corners

were caused by errors of measurement. For this he needed to know, for a quadratic
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polynomial P (x) = px2+qx+r where |P (x)| ≤ 1 for −1 ≤ x ≤ 1, how large |P ′(x)|

could be on −1 ≤ x ≤ 1. Mendeleev found that |P ′(x)| ≤ 4 and that this inequal-

ity is best possible since for P (x) = 1 − 2x2, we see that max
−1≤x≤1

|P (x)| = 1, and

|P ′(±1)| = |−4(±1)| = 4. Making use of this inequality, Mendeleev was convinced

that the corners did not occur due to errors of measurement, but were genuine.

As to how the bound for max |P ′(x)| for −1 ≤ x ≤ 1 in terms of max |P (x)| for

−1 ≤ x ≤ 1 helped Mendeleev to obtain an answer to this question about the

corners in the curve approximations, we refer the reader to the paper of R. P. Boas

[4, p. 165].

Mendeleev passed on his problem to the famous Russian mathematician A.

A. Markov who studied the problem for polynomials of degree n and proved the

following theorem, known as Markov’s theorem [12, p. 351].

Theorem 1.1. If p(x) :=
n∑

v=0

avx
v is a real polynomial of degree n and |p(x)| ≤ 1

on [−1, 1], then |p′(x)| ≤ n2 for −1 ≤ x ≤ 1. This inequality is best possible and

equality results at only x = ±1 when p(x) = Tn(x) where Tn(x) = cos (n arccos x)

is a Chebyshev polynomial of degree n.

The Chebyshev polynomials Tn(x) = cos (n arccos x) are actually algebraic

polynomials, a fact which is not obvious. This is explained by Rahman and

Schmeisser [20, p. 23-24]. Define Tn(x) := cosnθ on the interval [−1, 1] where

θ := arccosx. So, Tn(x) = cos (n arccos x), which gives T0(x) = cos (0) = 1, which

implies T0(x) = 1. Also, T1(x) = cos (arccosx) = x, which implies T1(x) = x.
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Next,

T2(x) = cos (2 arccos x)

= cos (2θ)

= 2 cos2 θ − 1

= 2 cos2(arccos x)− 1

= 2x2 − 1

which implies T2(x) = 2x2 − 1. Also,

T3(x) = cos (3 arccos x)

= cos (3θ)

= cos (2θ + θ)

= cos 2θ cos θ − sin 2θ sin θ

= (2 cos2 θ − 1) cos θ − 2 sin θ cos θ sin θ

= 2 cos3 θ − cos θ − 2 sin2 θ cos θ

= 2 cos3 θ − cos θ − 2(1− cos2 θ) cos θ

= 2 cos3 θ − cos θ − 2 cos θ + 2 cos3 θ

= 4 cos3 θ − 3 cos θ

= 4 cos3 (arccos x)− 3 cos (arccos x)

= 4x3 − 3x
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which implies T3(x) = 4x3 − 3x. Also, note that cosnθ = 2 cos θ cos (n− 1)θ −

cos (n− 2)θ. To verify this, consider

2 cos θ cos (n− 1)θ − cos (n− 2)θ = cos (θ + (n− 1)θ) + cos (θ − (n− 1)θ)

− cos (n− 2)θ

= cos (θ + nθ − θ) + cos (θ − nθ + θ)

− cos (n− 2)θ

= cos (nθ) + cos (2θ − nθ)− cos (n− 2)θ

= cos (nθ) + cos (−(n− 2)θ)− cos (n− 2)θ

= cos (nθ) + cos (n− 2)θ − cos (n− 2)θ

= cos (nθ).

Putting together the statements Tn(x) = cosnθ where θ = arccos x and cosnθ =

2 cos θ cos (n− 1)θ − cos (n− 2)θ, we get the recurrence relation

Tn(x) = 2xTn−1(x)− Tn−2(x), for n = 2, 3, . . .

from which follows the fact that Tn(x) = cosnθ where θ = arccos x are algebraic

polynomials of degree n. In fact, using the well known trigonometric identity

2 cosnθ = (2 cos θ)n − n(2 cos θ)n−2 +
n(n− 3)

1 · 2
(2 cos θ)n−4

−n(n− 4)(n− 5)

1 · 2 · 3
(2 cos θ)n−6 + . . . . . . (2)
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where the last term is (−1)
n−1

2 n(2 cos θ) or (−1)
n
2 ·2 according to whether n is odd

or even, respectively, one can easily express Tn(x) as an algebraic polynomial.

Around 1926, the Russian mathematician Serge Bernstein became interested

in the analogue of Markov’s Theorem for the unit disk in the complex plane instead

of the interval [−1, 1]. He wished to know the maximum value of |P ′(z)| for |z| ≤ 1

when P (z) is a polynomial of degree at most n with |P (z)| ≤ 1 for |z| ≤ 1. In

these connections the following inequality is known as Bernstein’s inequality.

Theorem 1.2. If p(z) =
n∑

v=0

avz
v is a polynomial of degree at most n, then

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. This result is best possible, and equality is attained

when p(z) = λzn, λ ∈ C.

Bernstein proved the above inequality with 2n in place of n. For more details

we refer to the paper of Govil and Mohapatra [12, p. 351-352].

For the proof of inequality (1.1) we will need the maximum modulus principle

for unbounded domains. First, we will list the necessary terminology and state the

maximum modulus principal for bounded domains, all of which can be found, for

example, in the book of Rahman and Schmeisser [20, p. 1-2].

A subset ε of a topological space is connected if it cannot be expressed as the

union of two non-empty, disjoint sets O1, O2, open in ε. A region is a non-empty,

open, connected subset of Ĉ. A region Ω is simply connected if either Ω = Ĉ or

Ĉ\Ω is connected.
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A set which is a region, or is obtained from a region Ω by subjoining some or

all of the boundary points of Ω, is a domain. A region and its closure are both

domains.

An arc γ in Ĉ is a continuous mapping of a closed, non-degenerate interval

[a, b] into Ĉ. The range of the mapping is a set of points which is called the trace

of γ. By a point on an arc we will mean a point on its trace, and by a function on

an arc we will mean a function on its trace. The arc γ is called a Jordan arc if the

mapping is one-to-one. If distinct points of [a, b) are mapped onto distinct points

of Ĉ and the image of b is the same as that of a, then γ is said to be a simple, closed

curve or a Jordan curve. In other words, a Jordan curve is a homeomorphism in

Ĉ of the unit circle. The Jordan curve theorem says that the complement of the

trace of a Jordan curve γ with respect to Ĉ has precisely two components. One

of these two components is bounded in the Euclidean metric if the trace of γ lies

in C. That component is called the inside of γ, while the other component is the

outside. A Jordan curve γ : [a, b] → C is said to be positively oriented if the inside

of the curve lies on the left of the moving point γ(t) as t increases from a to b.

An arc γ : [a, b] → C is said to be rectifiable if it has finite length. This means

that, for some finite number L,
n∑

ν=1

|γ(tν) − γ(tν − 1)| ≤ L for every partition

{a = t0 < t1 < · · · < tn = b}.

An arc γ : [a, b] → C is piecewise continuously differentiable if there exists a

partition {a = t0 < t1 < . . . < tn = b} such that, in each of the intervals [tv−1, tv] for
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v = 1, . . . , n the functions <γ and =γ are continuously differentiable, having one-

sided derivatives at the end points, where < indicates the real part and = indicates

the imaginary part. An arc γ : [a, b] → C is analytic if, about each point t0 ∈ (a, b),

the function γ can be expanded in a power series γ(t) = c0+c1(t−t0)+. . ., (c1 6= 0),

which converges in some interval | t− t0 |< δ.

Now that we have established the required terminology we will state the Max-

imum Modulus Principle [20, Theorem 1.6.11].

Theorem 1.3. Let f be analytic in a region Ω (not necessarily bounded). Then

| f(z) | cannot have a local maximum in Ω unless f is constant in Ω.

Rahman and Schmeisser also give another formulation of essentially the same

theorem which we state now.

Theorem 1.4. Let f be analytic in a bounded region Ω, and continuous in the

closure Ω. Suppose, in addition, that |f(z)| ≤ M for all z on the boundary of Ω.

Then the same inequality holds for all z ∈ Ω. Moreover, |f(z)| = M for some

z ∈ Ω, only if f is a constant.

This theorem can be extended for unbounded domains. We state it as follows,

and for the proof, we refer to Rahman and Schmeisser [20, Corollary 1.6.13].

Theorem 1.5. Let z = z(t), α ≤ t ≤ β define a Jordan curve Γ with its trace in

C, and denote the inside of Γ by Ω. Also, let ϕ be a function which is analytic in

C\{Γ∪Ω} and continuous on C\Ω such that | ϕ(z) |≤ 1 for all z ∈ Γ. Suppose, in

8



addition, that ϕ(z) tends to a finite limit l as z tends to infinity, and set ϕ(∞) = l.

Then |ϕ(z)| < 1 for all z in Ĉ\{Γ ∪ Ω} unless ϕ is a constant.

Let f(z) and g(z) be polynomials such that the degree of f(z) is n and the

degree of g(z) is m, where n ≤ m. Furthermore, suppose that g(z) has all its zeros

in the closure of the inside of a Jordan curve, γ, in C, and that |f(z)| ≤ |g(z)| on

γ. If we take ϕ(z) =
f(z)

g(z)
, then ϕ(z) is analytic in C\{the closure of the inside of

γ} and is continuous on C\{the inside of γ}. We can make the statement about

continuity because if g(z) has a zero at a point z0 on γ, then in view of the inequality

|f(z)| ≤ |g(z)|, f(z) also has a zero at z0. This means that the factors of f(z) and

g(z) that make g(z) equal to zero on γ will cancel, and ϕ(z) is thus continuous on

γ. Also, since |f(z)| ≤ |g(z)| on γ, we know that ϕ(z) =
|f(z)|
|g(z)|

≤ 1 on γ. Next

note that since the degree of f(z) is less than or equal to the degree of g(z), then

ϕ(z) =
f(z)

g(z)
tends to a finite limit l as z tends to infinity. We have now shown

that our assumptions satisfy the hypothesis of Theorem 1.5. Thus, we get that

|ϕ(z)| = |f(z)|
|g(z)|

< 1 for all z in C\{γ ∪ the inside of γ}, that is, |f(z)| < |g(z)| on

γ and the outside of γ. We will now state the preceeding information as a theorem

which is given in Rahman and Schmeisser [20, Theorem 1.3.6].

Theorem 1.6. Let f and g be polynomials with the degree of f less than or equal

to the degree of g, and let γ be a Jordan curve in C. Suppose that g has all of

its zeros in the closure of the inside of γ and that |f(z)| ≤ |g(z)| on γ. Then

|f(z)| ≤ |g(z)| on the outside of γ. Moreover, equality is attained at a point of the

outside of γ if and only if f(z) ≡ eiθg(z) for some θ ∈ R.

9



We will now give a proof for inequality (1.1). For this, let p(z) =
n∑

v=0

avz
v be

a polynomial of degree at most n. We will now apply Theorem 1.6, and for this

we take f(z) =
p(z)

M(p; 1)
, g(z) = zn, and for γ the circle |z| = 1. Then clearly, the

hypothesis of Theorem 1.6 is satisfied and therefore
|p(z)|
|z|n

≤ M(p; 1), for |z| ≥ 1,

that is,
|p(Reiθ)|
Rn

≤ M(p; 1), for R ≥ 1, 0 ≤ θ ≤ 2π implying that |p(Reiθ)| ≤

M(p; 1)Rn, for R ≥ 1, 0 ≤ θ ≤ 2π which is equivalent to max
|z|=R

|p(z)| ≤ M(p; 1)Rn,

for R ≥ 1, that is, M(p;R) ≤ M(p; 1)Rn, for R ≥ 1, and thus we have proved

inequality (1.1).

Note that, by inequality (1.1), if M(p; 1) = 1, then M(p;R) ≤ Rn with

equality only for p(z) = λzn, where |λ| = 1.

Now we prove that inequality (1.1) implies inequality (1.3), and for this we

consider the function P (z) = p(ρz), for 0 < ρ ≤ 1, which is a polynomial of degree

at most n. Let R =
1

ρ
≥ 1, and therefore we get

M(P ;R) = max
0≤θ<2π

|P (Reiθ)|

= max
0≤θ<2π

|p(ρReiθ)|

= max
0≤θ<2π

|p(eiθ)|

= max
|z|=1

|p(z)|

= M(p; 1),

10



which implies

M(p; 1) = M(P ;R)

≤ M(P ; 1)Rn, by inequality (1.1)

= max
0≤θ<2π

|P (eiθ)|
(

1

ρ

)n

= max
0≤θ<2π

|p(ρeiθ)| 1

ρn

= M(p; ρ)
1

ρn
,

and which clearly is equivalent to M(p; 1) ≤ M(p; ρ)
1

ρn
, that is, M(p; ρ) ≥

M(p; 1)ρn which is inequality (1.3).

In order to prove that inequality (1.3) implies inequality (1.1) we consider the

function P (z) = p(Rz) for R ≥ 1, and we let ρ =
1

R
which is clearly less than or

equal to one. Then,

M(P ; ρ) = max
0≤θ<2π

|P (ρeiθ)|

= max
0≤θ<2π

|p(ρReiθ)|

= max
0≤θ<2π

|p(eiθ)|

= max
|z|=1

|p(z)|

= M(p; 1).
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So,

M(p; 1) = M(P ; ρ)

≥ M(P ; 1)ρn by inequality (1.3)

= max
0≤θ<2π

|P (eiθ)| 1

Rn

= max
0≤θ<2π

|p(Reiθ)| 1

Rn

= M(p;R)
1

Rn

which implies M(p; 1) ≥ M(p;R)
1

Rn
, that is, M(p;R) ≤ M(p; 1)Rn which is

inequality (1.1).

Hence, we have proved that inequality (1.1) is equivalent to inequality (1.3).

Govil, Qazi, and Rahman [13, p. 453] mention that another proof for in-

equality (1.1) is equivalent to inequality (1.3) can be obtained by observing that

p is a polynomial of degree at most n if and only if q(z) := znp(1/z) is, and that

M(q; r) = rnM

(
p;

1

r

)
for 0 < r <∞.

It is well known that inequality (1.1) implies inequality (1.2). This fact was

observed by Bernstein [13, p. 453] himself. However, for the sake of completeness

we provide the proof.

Let λ ∈ C such that |λ| > 1. If |z| ≥ 1, then

|p(z)− λM(p; 1)zn| ≥ |λM(p; 1)zn| − |p(z)|

≥ |λ|M(p; 1)|zn| −M(p; 1)|zn| by inequality (1.1).
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= (|λ| − 1)M(p; 1)|zn|

which is clearly greater than zero, and so |p(z) − λM(p; 1)zn| > 0, for |z| ≥ 1,

implying that p(z) − λM(p; 1)zn has all its roots in |z| < 1. By the Gauss-Lucas

Theorem, p′(z) − λnM(p; 1)zn−1 also has all its roots in |z| < 1. So, if |λ| > 1,

then

p′(z)− λM(p; 1)nzn−1 6= 0, for|z| ≥ 1. (1.4)

So, |p′(z)| ≤M(p; 1)n|z|n−1 for |z| = R ≥ 1. To see this, suppose otherwise. Then

there would exist a point z0, |z0| ≥ 1, such that |p′(z0)| > M(p; 1)n|z0|n−1. Take

λ =
p′(z0)

M(p; 1)nzn−1
0

. Then we see that

p′(z0)− λM(p; 1)nzn−1
0 = p′(z0)−

p′(z0)

M(p; 1)nzn−1
0

M(p; 1)nzn−1
0

= p′(z0)− p′(z0)

= 0.

Thus, we have taken λ =
p′(z0)

M(p; 1)nzn−1
0

where |λ| > 1, and shown that the left

hand side of (1.4) vanishes at z0 where |z0| ≥ 1, which contradicts (1.4). Hence,

|p′(z)| ≤ M(p; 1)n|z|n−1, for|z| = R ≥ 1.

The inequality (1.2) is a special case of the above inequality when |z| = 1.

13



It is also true that inequality (1.2) implies inequality (1.1). Govil, Qazi, and

Rahman proved this [13, p. 453-454], and we give their proof below.

Let p(z) 6≡ M(p; 1)eiγzn, for all γ ∈ R. Consider M(p′; 1) for the polynomial

p(ρz), where 0 < ρ ≤ 1. Then we see that

M(p′; 1) = max
|z|=1

|p′(ρz)|

= max
|z|=1

|ρp′(ρz)| by the chain rule

≥ ρ|p′(ρz)|.

Note that

M(p; 1)n = max
|z|=1

|p(ρz)|n

= max
|z|=ρ

|p(z)|n

= M(p; ρ)n.

So, by inequality (1.2), M(p′; 1) ≤ M(p; 1)n, which implies ρ|p′(ρz)| ≤ M(p; ρ)n.

For any given R ≥ 1, let M(p;R) = |p(Reiφ)| where 0 ≤ φ < 2π. Then

M(p;R) = |p(eiφ) + p(Reiφ)− p(eiφ)|

=

∣∣∣∣p(eiφ) +

∫ R

1

p′(ρeiφ)dρ

∣∣∣∣
≤ M(p; 1) +

∫ R

1

n

ρ
M(p; ρ)dρ.

14



Now, let φ(R) = M(p; 1) +

∫ R

1

n

ρ
M(p; ρ)dρ. Then, by the Fundamental Theorem

of Calculus φ′(r) =
n

R
M(p;R), which implies that

R

n
φ′(R) = M(p;R)

≤ M(p; 1) +

∫ R

1

n

ρ
M(p; ρ)dρ

= φ(R).

Thus, we have that
R

n
φ′(R) ≤ φ(R), which is equivalent to φ′(R) − n

R
φ(R) ≤ 0.

So, we can now see that

d

dR
{R−nφ(R)} = R−nφ′(R)− nR−n−1φ(R)

= R−n
(
φ′(R)− n

R
φ(R)

)
≤ 0,

for R ≥ 1, and R−nφ(R) is a decreasing function of R for R ≥ 1. In particular,

M(p;R) ≤ φ(R) ≤ φ(1)Rn = M(p; 1)Rn, which implies M(p;R) ≤ M(p; 1)Rn.

Thus we have shown that inequality (1.2) implies inequality (1.1).

Hence, we have shown that inequality (1.1) and inequality (1.2) are equivalent,

and we now see that inequalities (1.1), (1.2), and (1.3) are all equivalent.

Since the equality in inequality (1.1) holds when the polynomial p(z) has all

its zeros at z = 0, if we exclude polynomials that have zeros at z = 0, we should
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be able to improve upon the bound in (1.1). This fact was observed by Frappier,

Rahman, and Ruscheweyh [8, p. 70], who proved

Theorem 1.7. Let p(z) be a polynomial of degree at most n, n ≥ 2, then for R ≥ 1

M(p;R) ≤ RnM(p; 1)− |p(0)|
(
Rn −Rn−2

)
.

The coefficient of |p(0)| is the best possible for each R.

Other similar inequalities are discussed in a paper by Frappier and Rahman

[7, p. 932, 934]. However, rather than looking at the maximum modulus of a

complex polynomial on a circle, they look at the maximum modulus on an elipse.

We will state some of the generalizations given by them but will not state the

proofs which can be found in their paper [7, p. 932, 934].

Let R > 1 and denote by ER the elipse{
z = x+ iy :

x2(
R+R−1

2

)2 +
y2(

R−R−1

2

)2 = 1

}
.

Theorem 1.8. If Pn is a polynomial of degree at most n such that

max
−1≤x≤1

|Pn(x)| ≤ 1, then max
z∈ER

|Pn(z)| ≤ Rn.

This inequality can be further refined as seen in the next theorem.

Theorem 1.9. If Pn is a polynomial of degree at most n such that

max
−1≤x≤1

|Pn(x)| ≤ 1, then max
z∈ER

|Pn(z)| ≤ 1

2
Rn +

5 +
√

17

4
Rn−2.

Again, this inequality can be improved.
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Theorem 1.10. If Pn is a polynomial of degree at most n such that

max
−1≤x≤1

|Pn(x)| ≤ 1, then max
z∈ER

|Pn(z)| < 1

2
(Rn +Rn−2) +

11

4
Rn−4.

The purpose of this thesis is to further study inequality (1.1) by looking at

its generalizations and extensions. We will first examine (1.1) under the condition

that the polynomial, p, has no zeros inside the unit circle, then under the condition

that p has no zeros inside a disk of prescribed radius, and finally we will look at

the generalization of (1.1) in terms of entire functions of exponential type.
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Chapter 2

Results Involving Polynomials with no Zeros Inside a Disk of

Prescribed Radius

Recall from Chapter 1 the following theorem.

Theorem 2.1. If p(z) is a polynomial of degree n such that M(p; 1) = 1, then

M(p;R) ≤ Rn, R > 1 with equality only for p(z) = λzn, where |λ| = 1.

Ankeny and Rivlin [1, p. 849] show that this upper bound can be made smaller

if we restrict ourselves to polynomials of degree n which have no zeros inside the

unit circle. They state and prove the following theorem.

Theorem 2.2. If p(z) is a polynomial of degree n such that M(p; 1) = 1 and p(z)

has no zeros inside the unit circle, then for R > 1, M(p;R) ≤ 1 +Rn

2
with equality

only for p(z) =
λ+ µzn

2
where |λ| = |µ| = 1.

To prove Theorem 2.2, Ankeny and Rivlin [1, p. 849] use the following con-

jecture of Erdös which was proved by Lax [16, p. 509-513].

Theorem 2.3. If p(z) is a polynomial of degree n such that M(p; 1) = 1 and p(z)

has no zeros inside the unit circle, then M(p′; 1) ≤ n

2
.

The proof that Ankeny and Rivlin give for Theorem 2.2 is stated below.

Suppose that p(z) is not of the form
λ+ µzn

2
. By Theorem 2.3, |p′(eiθ)| ≤ n

2
,

0 ≤ θ < 2π. Take P (z) =
p′(z)

n
2

. Then M(P ; 1) ≤ 1, and P (z) is clearly not of the
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form
λ+ µzn

2
. Hence, by Theorem 2.1 when applied to P (z) =

p′(z)
n
2

, which is of

degree n− 1, we get

M(P ; r) = max
0≤θ<2π

∣∣∣∣p′(reiθ)
n
2

∣∣∣∣ ≤ rn−1, for r > 1,

implying

|p′(reiθ)| <
n

2
rn−1, for r > 1, 0 ≤ θ < 2π.

Now,

∣∣p(Reiθ)− p(eiθ)
∣∣ =

∣∣∣∣∫ R

1

eiθp′(reiθ)dr

∣∣∣∣
≤

∫ R

1

|eiθp′(reiθ)|dr

<
n

2

∫ R

1

rn−1dr

=
Rn − 1

2
.

Hence,

|p(Reiθ)| <
Rn − 1

2
+ |p(eiθ)|

≤ Rn − 1

2
+ 1

=
Rn − 1 + 2

2

=
Rn + 1

2
.
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Finally, if p(z) =
λ+ µzn

2
, |λ| = |µ| = 1, then for R > 1,

M(p;R) = max
0≤θ<2π

∣∣∣∣λ+ µRneinθ

2

∣∣∣∣
=

1 +Rn

2
.

Another proof for Theorem 2.2, which does not depend on the conjecture of

Erdös, is given by K. K. Dewan [6, p. 291-293]. This proof is stated below.

Let p(z) be a polynomial of degree n such that M(p; 1) = 1, and let

q(z) = zn(p(1/z)). Then for |z| = 1,

|q(z)| = |eiθ||p(eiθ)|

= |p(eiθ)|

= |p(z)|.

So, |q(z)| = |p(z)| for |z| = 1. Since p(z) 6= 0 for |z| ≤ 1, then |q(z)| ≤ |p(z)|

for |z| < 1. If we replace z with
1

z
, we see that |p(z)| ≤ |q(z)| for |z| > 1. In

particular, |p(z)| ≤ |q(z)| for |z| = R > 1. Now, consider P (z) = p(z) − λ, for

λ ∈ C, |λ| > 1. Then P (z) 6= 0 for |z| < 1 and so

Q(z) = zn(P (1/z))

= zn(p(1/z)− λ)

= zn(p(1/z))− λzn
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= q(z)− λzn

has all its zeros in |z| ≤ 1. Since for |z| = 1,

|P (z)| = |p(z)− λ|

= |p(eiθ)− λ|

= |eiθ||p(eiθ)− λ|

= |einθ||p(eiθ)− λ|

= |einθp(eiθ)− λeinθ|

= |q(z)− λzn|

= |Q(z)|,

i.e., |P (z)| = |Q(z)| for |z| = 1, it follows that |P (z)| ≤ |Q(z)| for |z| > 1. In

particular, |P (z)| ≤ |Q(z)| for |z| = R > 1. This implies that

|P (z)| = |p(z)− λ|

≤ |Q(z)|

= |q(z)− λzn|

= |λzn − q(z)|, for |z| = R > 1.

This gives us

|p(z)| − |λ| ≤ |p(z)− λ| ≤ |λzn − q(z)|, for |z| = R > 1.
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Next, if we choose an argument of λ such that |λzn − q(z)| = |λ|Rn − |q(z)|,

|z| = R > 1, then we obtain

|p(z)| − |λ| ≤ |λ|Rn − |q(z)|, for |z| = R > 1,

which is equivalent to

|p(z)|+ |q(z)| ≤ |λ|(1 +Rn), for |z| = R > 1.

Now, if we take the limit as |λ| goes to one, we see that

|p(z)|+ |q(z)| ≤ 1 +Rn, for |z| = R > 1,

and if we combine this with |p(z)| ≤ |q(z)| for |z| = R > 1, we get

2|p(z)| ≤ 1 +Rn, for every z on |z| = R > 1,

that is

2 max
|z|=R

|p(z)| ≤ 1 +Rn, for R > 1,

implying

M(p;R) ≤ 1 +Rn

2
, for R > 1,

and that Theorem 2.2 is proved.
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Since the equality in Theorem 2.2 holds only for the polynomials p(z) =

λ+ µzn

2
, |λ| = |µ| = 1, that is for polynomials such that |coefficient of zn| =

M(p, 1)

2
, it should be possible to improve upon the bound in Theorem 2.2 if we

exclude this class of polynomials, and this was done by Govil [11, p. 80].

Theorem 2.4. If p(z) =
n∑

v=0

avz
v is a polynomial of degree n, having no zeros in

|z| < 1, then for R ≥ 1, we have

M(p;R) ≤
(
Rn + 1

2

)
‖ p ‖

−n(‖ p ‖2 −4|an|2)
2 ‖ p ‖

{
(R− 1) ‖ p ‖
‖ p ‖ +2|an|

− ln

(
1 +

(R− 1) ‖ p ‖
‖ p ‖ +2|an|

)}
,

where ‖ p ‖= max
|z|=1

|p(z)|. This inequality becomes equality for the polynomial

p(z) = (λ+ µzn), |λ| = |µ|.

Now, if we let x =
(R− 1)M(p; 1)

M(p; 1) + 2|an|
, then the expression in the curly brackets

is {x − ln(1 + x)} which is positive since ln(1 + x) < x for x > 0. Also, since it

is well known that |an| ≤
M(p; 1)

2
(for example see [10, p. 625]), Theorem 2.4 is

surely an improvement over Theorem 2.2 [11, p. 80].

Next, we will discuss polynomials which have no zeros in |z| < K, K ≥ 1. If

p(z) has no zeros in |z| < 1, then as stated in Theorems 2.2 and 2.3, we have

M(p : R) ≤ M(p; 1)
Rn + 1

2
, for R ≥ 1 (2.1)

M(p′; 1) ≤ M(p; 1)
n

2
. (2.2)
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In case 0 ≤ ρ < 1, then we have

M(p; ρ) ≥ M(p; 1)

(
1 + ρ

2

)n

. (2.3)

Inequality (2.3) was proved by Rivlin [13, p. 454], and it attains equality for

polynomials of the form p(z) = c(z + eiγ)n, c ∈ C, c 6= 0, γ ∈ R. To check the

equality, let p(z) = c(z + eiγ)n, c ∈ C, c 6= 0, γ ∈ R and consider

M(p; ρ) = max
|z|=ρ

|p(z)|

= max
|z|=ρ

|c(z + eiγ)n|

= max
0≤θ<2π

|c(ρeiθ + eiγ)n|

= |c|(ρ+ 1)n.

Also, consider the right hand side,

M(p; 1)

(
1 + ρ

2

)n

= max
|z|=1

|p(z)|
(

1 + ρ

2

)n

= max
|z|=1

|c(z + eiγ)n|
(

1 + ρ

2

)n

= max
0≤θ<2π

|c(eiθ + eiγ)n|
(

1 + ρ

2

)n

= |c(2)n|
(

1 + ρ

2

)n

= |c|(1 + ρ)n.

Thus, M(p; ρ) = M(p; 1)

(
1 + ρ

2

)n

when p(z) = c(z + eiγ)n, c ∈ C, c 6= 0, γ ∈ R.
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Also note that, unlike inequalities (1.1), (1.2), and (1.3), which have been

shown to be equivalent, the inequalities (2.1), (2.2), and (2.3) are not equivalent.

However, (2.1) can be obtained from (2.2).

R. P. Boas proposed the problem of finding inequalities similar to inequalities

(2.1) and (2.2) but for polynomials having no zeros in |z| < K, K > 0. It was not

possible for him to propose an extension of inequality (2.3) because it did not exist

at the time. This proposed problem has been studied extensively by many prople,

and we wish to present some results related to it in this chapter. Specifically, we

wish to present a result of Rahman and Schmeisser [10, p. 624] and some results

of Govil, Qazi, and Rahman [13, p. 456-458].

In this direction, we first state an extension of inequality (2.1) which is a

special case of a result of Govil and Rahman [15, Theorem 1] (also see Rahman

and Schmeisser [20, Theorem 4.23]).

Theorem 2.5. If p(z) is a polynomial of degree n having no zeros in |z| < K,

K ≥ 1, then for 1 ≤ R ≤ K2, M(p;R) ≤
(
R +K

1 +K

)n

M(p; 1).

This result is sharp, with equality holding for p(z) = (z + K)n. To see that

equality holds for the mentioned polynomial consider first the left hand side of the

inequality.

M(p;R) = max
|z|=R

|(z +K)n|

= max
0≤θ<2π

|(Reiθ +K)n|

= (R +K)n.
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Looking at the right hand side, we see that

(
R +K

1 +K

)n

M(p; 1) =

(
R +K

1 +K

)n

max
|z|=1

|(z +K)n|

=

(
R +K

1 +K

)n

max
0≤θ<2π

|(eiθ +K)n|

=

(
R +K

1 +K

)n

|(1 +K)n|

= (R +K)n.

Thus, we see that equality holds for p(z) = (z + K)n. However, this result holds

only in the range 1 ≤ R ≤ K2.

While working on extending this range to R > K2, Govil, Qazi, and Rahman

[13, p. 456] proved a similar theorem but with a sharper bound which we state

now.

Theorem 2.6. Let p(z) :=
n∑

ν=0

aνz
ν 6= 0 for |z| < K, where K ≥ 1, and let

λ = λ(K) :=
Ka1

na0

. Then M(p;R) ≤
(
R2 + 2|λ|RK +K2

1 + 2|λ|K +K2

)n/2

M(p; 1) for

1 ≤ R ≤ K2.

Before giving the proof of this theorem, we will show how it generalizes and

sharpens Theorem (2.5) due to Govil and Rahman [15, Theorem 1]. For this, we

show that in general

(
R2 + 2|λ|RK +K2

1 + 2|λ|K +K2

)n/2

≤
(
R +K

1 +K

)n

,
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which is equivalent to showing

(
R2 + 2|λ|RK +K2

1 + 2|λ|K +K2

)
≤

(
R +K

1 +K

)2

,

that is,

(R2 + 2|λ|RK +K2)(1 +K)2 ≤ (1 + 2|λ|K +K2)(R +K)2,

that is,

2R2K + 2|λ|RK + 2|λ|RK3 + 2K3 ≤ 2RK + 2|λ|R2K + 2|λ|K3 + 2RK3,

which is equivalent to

(|λ| − 1)(R− 1)(K2 −R) ≤ 0

which clearly holds if |λ| ≤ 1. Hence,

(
R2 + 2|λ|RK +K2

1 + 2|λ|K +K2

)n/2

≤
(
R +K

1 +K

)n

if

and only if |λ| ≤ 1. We now show that |λ| ≤ 1, and for this we use the following

theorem of Rahman and Stankiewicz [21, Theorem 2′, p. 180].

Theorem 2.7. Let pn(z) =
n∏

ν=1

(1− zνz) be a polynomial of degree n not vanishing

in |z| < 1 and let p′n(0) = p′′n(0) = . . . = p
(l)
n (0) = 0. If φ(z) = {pn(z)}ε =

∞∑
n=0

bk,εz
k, where ε = 1 or ε = −1, then |bk,ε| ≤

n

k
, (l + 1 ≤ k ≤ 2l + 1) and

|b2l+2,1| ≤
n

2(l + 1)2
(n+ l − 1), |b2l+2,−1| ≤

n

2(l + 1)2
(n+ l + 1).
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First, note that p(z) =
n∑

ν=0

aνz
ν 6= 0 for |z| < K, where K ≥ 1 is equivalent

to p(Kz) =
∑n

ν=0 aνK
νzν 6= 0 for |z| < 1. Also note that

p(Kz) =
n∑

ν=0

aνK
νzν = a0

n∑
ν=0

aν

a0

Kνzν .

Now consider
n∑

ν=0

aν

a0

Kνzν which is a polynomial of the desired form since

n∑
ν=0

aν

a0

Kνzν 6= 0 in |z| < 1. Then, by Theorem 2.7, if we take ε = 1 and l = 0, we

see k = 1 and |b1,1| =
∣∣∣∣a1K

a0

∣∣∣∣ ≤ n which implies
|a1|
|a0|

≤ n

K
. Hence, |λ| =

∣∣∣∣Ka1

na0

∣∣∣∣ ≤ 1.

Unfortunately, Theorem 2.6, although best possible, still only deals with the

case where 1 ≤ R ≤ K2 and says nothing where R > K2. However, now that we

have |λ| = K

∣∣∣∣ a1

na0

∣∣∣∣ ≤ 1, then from the inequality in Theorem 2.6 it follows that

M(p;K) ≤
(
K2 + 2|λ|K2 +K2

1 + 2|λ|K +K2

)n/2

M(p; 1)

= (K2)n/2

(
1 + 2|λ|+ 1

1 + 2|λ|K +K2

)n/2

M(p; 1)

= Kn

(
2 + 2|λ|

1 + 2|λ|K +K2

)n/2

M(p; 1)

= Kn

 2 + 2
(
K
∣∣∣ a1

na0

∣∣∣)
1 + 2

(
K
∣∣∣ a1

na0

∣∣∣)K +K2

n/2

M(p; 1)

= Kn

 2
(
1 +K

∣∣∣ a1

na0

∣∣∣)
1 + 2

∣∣∣ a1

na0

∣∣∣K2 +K2

n/2

M(p; 1)
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= Kn

 2
(
1 +K

∣∣∣ a1

na0

∣∣∣)
1 +K2

(
2
∣∣∣ a1

na0

∣∣∣+ 1
)
n/2

M(p; 1)

= Kn


√

2

√
1 +K

∣∣∣ a1

na0

∣∣∣√
1 +K2

(
2
∣∣∣ a1

na0

∣∣∣+ 1
)


n

M(p; 1)

=

 K
√

2

√
1 +K

∣∣∣ a1

na0

∣∣∣√
1 +

(
2
∣∣∣ a1

na0

∣∣∣+ 1
)
K2


n

M(p; 1)

≤

(
K
√

2
√

2√
1 + (2 +K)K

)n

M(p; 1)

=

(
2K

1 + 2K +K2

)n

M(p; 1)

=

(
2K

(1 +K)2

)n

M(p; 1)

≤
(

2K

K + 1

)n

M(p; 1).

This gives us

M(p;K) ≤
(

2K

K + 1

)n

M(p; 1). (2.4)

Now, let pK(z) := p(Kz). Then, pK(z) =
n∑

v=0

av(Kz)
v 6= 0 for |z| < 1, and

M(pK ; 1) = max
|z|=1

|p(Kz)| = max
0≤θ<2π

|p(Keiθ)|

= max
|z|=K

|p(z)|

= M(p;K).
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So, if R > K, then if we write R = SK where S :=
R

K
> 1, we may apply (2.1) to

pK , and using the previous estimate for M(p;K) we have

M(p;R) = max
0≤θ<2π

|p(Reiθ)|

= max
0≤θ<2π

∣∣∣∣p(K (RK
)
eiθ

)∣∣∣∣
= max

0≤θ<2π
|p(SKeiθ)|

= max
|z|=S

|p(Kz)|

= M(pk;S)

≤
(
Sn + 1

2

)
M(pk; 1), by (2.1)

=

(
Sn + 1

2

)
M(p;K)

≤
(
Sn + 1

2

)(
2K

K + 1

)n

M(p; 1), by (2.4)

= 2−1(Sn + 1)2n Kn

(K + 1)n
M(p; 1)

=
2n−1(Sn + 1)Kn

(1 +K)n
M(p; 1)

=
2n−1

((
R
K

)n
+ 1
)
Kn

(1 +K)n
M(p; 1), for R > K

=
2n−1(Rn +Kn)

(1 +K)n
M(p; 1),

which gives

M(p;R) ≤ 2n−1(Rn +Kn)

(1 +K)n
M(p; 1). (2.5)
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Hence, for any R > K, we get M(p;R) ≤ 2n−1R
n +Kn

(1 +K)n
M(p; 1), which reduces to

(2.1) when K = 1. Since for large values of K,

2n−1R
n +Kn

(1 +K)n
M(p; 1) ∼ 2n−1R

n +Kn

1 +Kn
M(p; 1) as K →∞,

the bound (2.5) does not give a very satisfactory bound because for large values of

n, the factor 2n−1 may become very large and thus, the factor 2n−1 in the previous

estimate is out of place [13, p. 456]. The following result of Govil, Qazi, and

Rahman [13, Theorem 2] provides an estimate which does not have a factor 2n−1.

Theorem 2.8. Let p(z) :=
n∑

v=0

avz
v 6= 0 for |z| < K, where K > 1. Then,

M(p;R) ≤ Rn

Kn

(
Kn

Kn + 1

)(R−K2)/(R+K2)

M(p; 1), for R ≥ K2.

We will prove Theorem 2.8 later. However, we can now note that for R = K2,

M(p;R) ≤ K2n

Kn

(
Kn

Kn + 1

)(K2−K2)/(K2+K2)

M(p; 1)

= K2n−2

(
Kn

Kn + 1

)0

M(p; 1)

= KnM(p; 1),

and likewise, by Theorem 2.6, for R = K2,

M(p;R) ≤
(
K4 + 2|λ|K3 +K2

1 + 2|λ|K +K2

)n/2

M(p; 1)
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= (K2)n/2

(
K2 + 2|λ|K + 1

1 + 2|λ|K +K2

)n/2

M(p; 1)

= KnM(p; 1).

Thus, for R = K2, Theorem 2.8 reduces to Theorem 2.6.

Note that for R > K2, the quantity

(
Kn

Kn + 1

)(R−K2)/(R+K2)

lies between 0

and 1, and so, for R > K2, the right hand side of the inequality in Theorem 2.8 is

strictly less than
Rn

Kn
M(p; 1).

In fact, Govil, Qazi, and Rahman [13, Remark 1] show that for R > K2, not

only

(
Kn

Kn + 1

)(R−K2)/(R+K2)

< 1

but

(
Kn

Kn + 1

)(R−K2)/(R+K2)

< 1−
(
R−K2

R +K2

)(
1

Kn + 1

)
.

This will in fact imply that for R > K2,

M(p;R) <

(
Rn +Kn

Kn + 1

)
M(p; 1) +

1

Kn + 1

{
2

Kn−2
· Rn

R +K2
−Kn

}
M(p; 1),

and to see this, note that by Theorem 2.8

M(p;R)

≤ Rn

Kn

(
Kn

Kn + 1

)(R−K2)/(R+K2)

M(p; 1), R ≥ K2
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<
Rn

Kn

(
1−

(
R−K2

R +K2

)
1

Kn + 1

)
M(p; 1), R > K2

=

(
Rn

Kn
− Rn

Kn(Kn + 1)
· R−K2

R +K2

)
M(p; 1)

=

[
Rn(Kn + 1)(R +K2)−Rn(R−K2)

Kn(Kn + 1)(R +K2)

]
M(p; 1)

=

[
(RnKn +Rn)(R +K2)−Rn+1 +RnK2

Kn(Kn + 1)(R +K2)

]
M(p; 1)

=

[
Rn+1Kn +RnKn+2 +Rn+1 +RnK2 −Rn+1 +RnK2

Kn(Kn + 1)(R +K2)

]
M(p; 1)

= K2

[
Rn+1Kn−2 +RnKn + 2Rn

Kn(Kn + 1)(R +K2)

]
M(p; 1)

=

[
Rn+1Kn−2 +RnKn + 2Rn

Kn−2(Kn + 1)(R +K2)

]
M(p; 1)

=

[
Rn+1Kn−2 +RnKn +RK2n−2 +K2n + 2Rn −RK2n−2 −K2n

(Kn + 1)(Kn−2)(R +K2)

]
M(p; 1)

=

[
(RnKn−2 +K2n−2)(R +K2) + 2Rn −K2n−2(R +K2)

(Kn + 1)(Kn−2)(R +K2)

]
M(p; 1)

=

[
(Rn +Kn)Kn−2(R +K2) + 2Rn −Kn(Kn−2)(R +K2)

(Kn + 1)(Kn−2)(R +K2)

]
M(p; 1)

=

[
Rn +Kn

Kn + 1
+

1

Kn + 1

{
2

Kn−2
· Rn

R +K2
−Kn

}]
M(p; 1).

Next, we state an extension of (2.3) to polynomials not vanishing in |z| < K,

for K > 1, due to Govil, Qazi, and Rahman [13, Theorem 3].

Theorem 2.9. Let p(z) :=
n∑

v=0

avz
v 6= 0 for |z| < K, where K ≥ 1, and let

λ = λ(K) :=
Ka1

na0

. Then M(p; ρ) ≥
(
K2 + 2K|λ|ρ+ ρ2

K2 + 2K|λ|+ 1

)n/2

M(p; 1), where

0 ≤ ρ ≤ 1.
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Note that the right hand side of the inequality in Theorem 2.9 is a decreasing

function of |λ|. To see this, take x = |λ| and consider

d

dx

(
K2 + 2Kρx+ ρ2

K2 + 2Kx+ 1

)
=

(K2 + 2Kx+ 1)(2Kρ)− (K2 + 2Kρx+ ρ2)(2K)

(K2 + 2Kx+ 1)2

=
2K(K2ρ+ 2Kρx+ ρ−K2 − 2Kρx− ρ2)

(K2 + 2Kx+ 1)2

=
2K(K2ρ+ ρ−K2 − ρ2)

(K2 + 2Kx+ 1)2

=
2K[K2(ρ− 1)− ρ(ρ− 1)]

(K2 + 2Kx+ 1)2

=
2K(ρ− 1)(K2 − ρ)

(K2 + 2Kx+ 1)2

which is less than or equal to zero sinceK > 0, ρ ≤ 1, ρ ≤ K2, and the denominator

is obviously greater than zero. Thus for any n,

(
K2 + 2K|λ|ρ+ ρ2

K2 + 2K|λ|+ 1

)n/2

≥
(
K + ρ

1 +K

)

and therefore, Theorem 2.9 is an improvement of the result that if p(z) is a

polynomial of degree n, p(z) 6= 0 for |z| < K, K ≥ 1, then for 0 ≤ ρ ≤ 1,

M(p, ρ) ≥
(
ρ+K

1 +K

)n

M(p; 1), where the bound is attained if p(z) := c(zeiβ +K)n,

c ∈ C, c 6= 0, β ∈ R. To see this, consider

M(p; ρ) = max
0≤θ<2π

|p(ρeiθ)|

= max
0≤θ<2π

|c(ρeiθeiβ +K)n|

= |c(ρ+K)n|
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=

(
ρ+K

K + 1

)n

|c|(K + 1)n

=

(
ρ+K

K + 1

)n

max
0≤β<2π

|c(K + eiβ)n|

=

(
ρ+K

K + 1

)n

M(p; 1), for c ∈ C, c 6= 0, β ∈ R.

Now, we will state a complement to Theorem 2.9 which is also proved by

Govil, Qazi, and Rahman [13, Theorem 4]. This theorem will be needed to prove

Theorem 2.6.

Theorem 2.10. Let p(z) :=
n∑

v=0

avz
n 6= 0 for |z| < K, where K ∈ (0, 1], and

let λ = λ(K) :=
Ka1

na0

. Then, M(p; ρ) ≥
(
K2 + 2|λ|Kρ+ ρ2

K2 + 2|λ|K + 1

)n/2

M(p; 1), for

0 ≤ ρ ≤ K2.

For any n, this inequality can be replaced by M(p; ρ) ≥
(
ρ+K

K + 1

)n

M(p; 1),

for 0 ≤ ρ ≤ K2, where the bound is attained if p(z) := c(zeiβ +K)n, c ∈ C, c 6= 0,

β ∈ R.

In order to prove theorems 2.6, 2.8, 2.9, and 2.10, we will need two additional

lemmas which we state now. Lemma 2.1 is an extension of (2.3) and is due to Qazi

[19, p. 340, Corollary 1] (also see [18, p. 444, Theorem 1.7.6]). Lemma 2.2 is due

to Govil, Qazi, and Rahman [13, p. 458].

Lemma 2.1. Let p(z) :=
n∑

v=0

avz
v 6= 0 in D(0; 1) := {z ∈ C : |z| < 1} and let λ :=

a1

na0

. Then we have M(p; ρ1) ≥
(

1 + 2|λ|ρ1 + ρ2
1

1 + 2|λ|ρ2 + ρ2
2

)n/2

M(p; ρ2), 0 ≤ ρ1 < ρ2 ≤ 1.
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Lemma 2.2. Let p be a polynomial of degree at most n such that p(z) 6= 0 in

D(0; `) := {z ∈ C : |z| < `} for some ` > 0. Then M(p; ρ) ≥
(
ρ+ `

1 + `

)n

M(p; 1),

0 ≤ ρ ≤ min{1, `2}.

This lemma is also an extension of (2.3). The proof, due to Govil, Qazi, and

Rahman [13, p. 458], we state below.

Let zv = rve
iθv and z = ρeiθ for 0 ≤ θν < 2π, 0 ≤ θ < 2π. Then,

∣∣∣∣ z − zv

eiθ − zv

∣∣∣∣2
=

(z − zv)(z − zv)

(eiθ − zv)(e−iθ − zv)

=
|z|2 + |zv|2 − 2<zzv

1 + |zv|2 − 2<eiθzv

=
|ρeiθ|2 + |rve

iθv |2 − 2<(ρeiθrve
−iθv)

1 + |rveiθv |2 − 2<(eiθrve−iθv)

=
ρ2 + r2

v − 2<[ρrv(cos θ + i sin θ)(cos θv − i sin θv)]

1 + r2
v − 2<[rv(cos θ + i sin θ)(cos θv − i sin θv)]

=
ρ2 + r2

v − 2<[ρrv(cos θ cos θv + sin θ sin θv + i(cos θv sin θ − cos θ sin θv))]

1 + r2
v − 2<[rv(cos θ cos θv + sin θ sin θv + i(cos θv sin θ − cos θ sin θv))]

=
ρ2 + r2

v − 2ρrv(cos θ cos θv + sin θ sin θv)

1 + r2
v − 2rv(cos θ cos θv + sin θ sin θv)

=
ρ2 + r2

v − 2ρrv cos (θ − θv)

1 + r2
v − 2rv cos (θ − θv)

=
ρ2 + 2ρrv + r2

v − 2ρrv − 2ρrv cos (θ − θv)

1 + 2rv + r2
v − 2rv − 2rv cos (θ − θv)

=
(ρ+ rv)

2 − 2ρrv(1 + cos (θ − θv))

(1 + rv)2 − 2rv(1 + cos (θ − θv))

≥
(
ρ+ rv

1 + rv

)2
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where the inequality holds only if (1 − ρ)(r2
v − ρ) ≥ 0. To see that the inequality

holds under this condition, consider

(ρ+ rv)
2 − 2ρrv(1 + cos (θ − θv))

(1 + rv)2 − 2rv(1 + cos (θ − θv))
≥

(
ρ+ rv

1 + rv

)2

,

which is equivalent to

(ρ+ rv)
2(1 + rv)

2 − 2ρrv(1 + cos (θ − θv))(1 + rv)
2

≥ (1 + rv)
2(ρ+ rv)

2 − 2rv(1 + cos (θ − θv))(ρ+ rv)
2.

This gives us

−ρ(1 + rv)
2 ≥ −(ρ+ rv)

2,

that is

−ρ(1 + rv)
2 + (ρ+ rv)

2 ≥ 0.

Thus, we have

r2
v − ρ− ρr2

v + ρ2 ≥ 0,

which we can rewrite as

(1− ρ)(r2
v − ρ) ≥ 0,
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since (1− ρ)(r2
v − ρ) = r2

v − ρ− ρr2
v + ρ2. Thus, if rv ≥ `, then

∣∣∣∣ z − zv

eiθ − zv

∣∣∣∣ ≥ ρ+ rv

1 + rv

≥ ρ+ `

1 + `
, if 0 ≤ ρ ≤ min{1, `2}

because

(
ρ+ x

1 + x

)
is a nondecreasing function of x. Hence, if the polynomial p(z) :=

am

m∏
v=1

(z − zv), am 6= 0, has no zeros in |z| < `, ` > 0, then

∣∣∣∣p(ρeiθ)

p(eiθ)

∣∣∣∣ ≥ (ρ+ `

1 + `

)m

,

for −π ≤ θ ≤ π, if 0 ≤ ρ ≤ min{1, `}. Consequently, if θ0 is such that |p(eiθ0)| =

M(p; 1), then

|p(ρeiθ0)| ≥ |p(eiθ0)|
(
ρ+ `

1 + `

)m

= M(p; 1)

(
ρ+ `

1 + `

)m

,

if 0 ≤ ρ ≤ min{1, `2}, which clearly gives M(p; ρ) ≥
(
ρ+ `

1 + `

)m

M(p; 1).

Theorem 2.10 is needed to prove Theorem 2.6. Thus, we will now state the

proof for Theorem 2.10 as it is given by Govil, Qazi, and Rahman [13, p. 459].

Let pK(z) := p(Kz) = a0 + a1Kz + . . .+ anK
nzn. Since p(z) 6= 0 in |z| < K,

we have that pK(z) 6= 0 for |z| < 1. Thus, Lemma 2.1 may be applied to pK ,

taking ρ1 =
ρ

K
and ρ2 = K to obtain

M(p; ρ) = M
(
pK ;

ρ

K

)
≥

(
1 + 2|λ| ρ

K
+
(

ρ
K

)2
1 + 2|λ|K +K2

)n/2

M(pK ;K)
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=

(
1 + 2|λ|ρK−1 + ρ2K−2

1 + 2|λ|K +K2

)n/2

M(pK ;K)

=

(
K−2(K2 + 2|λ|ρK + ρ2)

1 + 2|λ|K +K2

)n/2

M(pK ;K)

=

(
K2 + 2|λ|Kρ+ ρ2

1 + 2|λ|K +K2

)n/2

K−nM(pK ;K)

≥
(
K2 + 2|λ|Kρ+ ρ2

1 + 2|λ|K +K2

)n/2

K−nKnM(p; 1) for 0 ≤ ρ ≤ min{1, `2}

since M(pK ;K) = M(p;K2) and M(p;K2) ≥
(
K2 + `

1 + `

)n

M(p; 1) ≥ KnM(p; 1)

by Lemma 2.2. Hence, we have M(p; ρ) ≥
(
K2 + 2|λ|Kρ+ ρ2

1 + 2|λ|K +K2

)n/2

M(p; 1), and

the proof of Theorem 2.10 is complete.

Next, we will state the proof given by Govil, Qazi, and Rahman [13, p. 459]

for Theorem 2.6.

First, let 1 ≤ R ≤ K. Since p(z) 6= 0 for |z| < K, the polynomial pK(z) :=

p(Kz) =
n∑

v=0

avK
vzv 6= 0 for |z| < 1. Besides, M(pK ; ρ2) = M(p;R) and

M(pK ; ρ1) = M(p; 1) where ρ1 =
1

K
and ρ2 =

R

K
. Since R ∈ (1, K], we see

that 0 < ρ1 < ρ2 ≤ 1, and from the inequality in Lemma 2.1 we obtain

M(p; 1) = M(pK ; ρ1)

≥
(

1 + 2|λ|K−1 +K−2

1 + 2|λ|RK−1 +R2K−2

)n/2

M(pK ; ρ2), for 1 ≤ R ≤ K

=

(
1 + 2|λ|K−1 +K−2

1 + 2|λ|RK−1 +R2K−2

)n/2

M(p;R), for 1 ≤ R ≤ K
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which is equivalent to the inequality in Theorem 2.6 for 1 ≤ R ≤ K, and thus

Theorem 2.6 is established for 1 ≤ R ≤ K.

Now let K ≤ R ≤ K2. Then pR(z) := p(Rz) 6= 0 for |z| < K

R
. Since

K

R
≤ 1

and
1

R
≤ K2

R2
, we may apply Theorem 2.10 to pR with

K

R
instead of K and ρ =

1

R

to obtain

M(pR; 1) ≤

(
K2

R2 + 2|λ|K
R

+ 1
K2

R2 + 2|λ|K
R
· 1

R
+
(

1
R

)2
)n/2

M

(
pR;

1

R

)

which is equivalent to

M(p;R) ≤
(
K2 + 2|λ|KR +R2

K2 + 2|λ|K + 1

)n/2

M(p; 1)

which is Theorem 2.6 for K ≤ R ≤ K2, and thus Theorem 2.6 is completely

proved.

Now we prove Theorem 2.8. The proof here is again due to Govil, Qazi, and

Rahman [13, p. 460].

Without loss of generality, we may assume that p is of degree n, and that

M(p; 1) = 1. From the inequality in Theorem 2.6, it follows that

M(p;K2) ≤
(
K4 + 2|λ|K3 +K2

1 + 2|λ|K +K2

)n/2

M(p; 1)

=

[
K2

(
K2 + 2|λ|K + 1

K2 + 2|λ|K + 1

)]n/2

M(p; 1)

= KnM(p; 1)

= Kn, since M(p; a) = 1.
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So, M(p;K2) ≤ Kn. Hence, if g(z) := p(K2z) = a0 + K2a1z + K4a2z
2 + . . . +

K2nanz
n, then on |z| = 1, |g(z)| = |g(eiθ)| = |p(K2eiθ)| ≤ M(p;K2) ≤ Kn, which

implies |g(z)| ≤ Kn for |z| = 1. Besides, since p(z) 6= 0 in |z| < K, we have that

g(z) = p(K2z) 6= 0 in |K2z| < K, which implies that g(z) 6= 0 in |z| < 1

K
. If we

set

G(z) := K−nzng(1/z)

= K−nzn
(
a0 +K2a1(1/z) + . . .+K2nan(1/z)n

)
= K−na0z

n +K−n+2a1z
n−1 + . . .+Knan

then

|G(z)| = |G(eiθ)|

= |K−neinθg(1/e−iθ)|

= |K−ng(eiθ)|

= K−n|g(eiθ)|

= K−n|g(z)|, |z| = 1

≤ K−n(Kn)

= 1.
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So, |G(z)| ≤ 1 for |z| = 1. Also, since g(z) 6= 0 for |z| < 1

K
, this implies that

G(z) 6= 0 for

∣∣∣∣1z
∣∣∣∣ < 1

K
, implying that G(z) 6= 0 for |z| > K, which gives us

G(z) = 0 for |z| ≤ K. Thus, G(z) has all its zeros in the closed disk |z| ≤ K.

Since M(p; 1) = 1, that is max
|z|=1

|p(z)| = 1, it follows from an inequality of

Visser [23] that |a0|+ |an| ≤ max
|z|=1

|p(z)| = 1. So,

|a0|+ |an| ≤ 1. (2.6)

Hence, writing p(z) := an

n∏
v=1

(z − zv), where |zv| ≥ K for 1 ≤ v ≤ n, and
|a0|
|an|

=

|z1||z2| · · · |zn|, we see that
|a0|
|an|

≥ Kn, implying that |a0| ≥ Kn|an|. So, from

(2.4) we have that 1 ≥ |a0| + |an| ≥ Kn|an| + |an| = |an|(Kn + 1), implying that

|an| ≤
1

Kn + 1
, which implies that

|G(0)| = |Knan| = |Knan| ≤
Kn

Kn + 1
. (2.7)

To complete the proof, we will rely heavily on the use of Poisson’s integral

formula [22, p. 124], and for the sake of completeness we state it below.

Theorem 2.11. Let f(z) be analytic in a region including the cirlce |z| ≤ R, and

let u(r, θ) be its real part. Then for 0 ≤ r < R,

u(r, θ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos (θ − φ) + r2
u(R, φ)dφ.
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Now, let us suppose that G(z) 6= 0 for |z| ≤ 1. Then applying Poisson’s

integral formula to Log |G(z)|, which is real , we obtain

Log |G(reiθ)| =
1

2π

∫ π

−π

1− r2

1− 2r cos (θ − φ) + r2
Log |G(eiφ)|dφ, for 0 ≤ r < 1.

Since |G(z)| ≤ 1 for |z| = 1, we have Log |G(eiφ)| ≤ 0. So, we conclude that for

0 ≤ r ≤ 1 we have

Log |G(reiθ)| ≤ (1 + r)(1− r)

(1 + r)2
· 1

2π

∫ π

−π

Log |G(eiφ)|dφ

=
(1− r)

(1 + r)
· 1

2π

∫ π

−π

Log |G(eiφ)|dφ

=
1− r

1 + r
Log |G(0)|,

since Log |G(0)| = 1

2π

∫ π

−π

Log |G(eiφ)|dφ. So, we have that

|G(z)| ≤ |G(0)|(1−|z|)/(1+|z|) for 0 ≤ |z| ≤ 1,

which, when combined with (2.7) gives

|G(z)| ≤ |G(0)|(1−|z|)/(1+|z|)

≤
(

Kn

Kn + 1

)(1−|z|)/(1+|z|)

, for 0 ≤ |z| ≤ 1.

Therefore,

|G(z)| ≤
(

Kn

Kn + 1

)(1−|z|)/(1+|z|)

, for 0 ≤ |z| ≤ 1. (2.8)
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Next we will show that (2.8) remains true even if G has some zeros in |z| < 1,

say K2/z1, . . . , K
2/zm. In such a case,

|a0|
|an|

= |z1||z2| · · · |zm| · · · |zn| ≥

(
m∏

µ=1

|zµ|

)
Kn−m,

which implies that |a0| ≥ |an|Kn−m

n∏
µ=1

|zµ|, and from Visser’s inequality, it follows

that

1 ≥ |a0|+ |an|

≥ |an|Kn−m

m∏
µ=1

|zµ|+ |an|

= |an|

(
1 +Kn−m

m∏
µ=1

|zµ|

)
,

which implies that

|an| ≤ 1

1 +Kn−m

m∏
µ=1

|zµ|
,

and that

|G(0)| = |Knan| ≤ Kn

1 +Kn−m

m∏
µ=1

|zµ|
. (2.9)

44



Let

G∗(z) := G(z)
m∏

µ=1

K2z/zµ − 1

z −K2/zµ

= G(z)
m∏

µ=1

(
zµ

zµ

· K
2z − zµ

zµz −K2

)
.

So,

|G∗(0)| =

∣∣∣∣∣G(0)
m∏

µ=1

(
zµ

zµ

· zµ

K2

)∣∣∣∣∣
=

∣∣∣∣∣G(0)
m∏

µ=1

zµ

K2

∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣
Kn

1 +Kn−m

m∏
µ=1

|zµ|

m∏
µ=1

(
zµ

K2

)∣∣∣∣∣∣∣∣∣∣
, by (2.9)

=

Kn−2m

m∏
µ=1

|zµ|

1 +Kn−m

m∏
µ=1

|zµ|
,

giving us

|G∗(0)| ≤

Kn−2m

m∏
µ=1

|zµ|

1 +Kn−m

m∏
µ=1

|zµ|
. (2.10)
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Now,

|G∗(z)| =

∣∣∣∣∣G(z)
m∏

µ=1

(
zµ

zµ

· K
2z − zµ

zµz −K2

)∣∣∣∣∣
= |G(z)|

m∏
µ=1

∣∣∣∣zµ

zµ

· K
2z − zµ

zµz −K2

∣∣∣∣
= |G(z)|

m∏
µ=1

∣∣∣∣K2eiθ − zµ

zµeiθ −K2

∣∣∣∣ , for |z| = 1

= |G(z)|
m∏

µ=1

∣∣∣∣zµe
−iθ −K2

zµeiθ −K2

∣∣∣∣
= |G(z)|.

Since |G(z)| ≤ 1 on |z| = 1, then |G∗(z)| ≤ 1 for |z| = 1 and G∗ 6= 0 for |z| < 1.

Now, by Poisson’s integral formula,

Log |G∗(reiθ)| = 1

2π

∫ π

−π

1− r∗2

1− 2r∗ cos (θ − φ) + r∗2
Log |G∗(eiφ)|dφ,

for 0 ≤ r∗ < 1. Since |G∗(z)| ≤ 1 on |z| = 1, then for 0 ≤ φ < 2π, we have

Log |G∗(eiφ)| ≤ 0. Thus, for 0 ≤ r∗ < 1,

Log |G∗(r∗eiθ)| ≤ (1 + r∗)(1− r∗)

(1 + r∗)2
· 1

2π

∫ π

−π

Log |G∗(eiφ∗)|dφ∗

=
(1− r∗)

(1 + r∗)
· 1

2π

∫ π

−π

Log |G∗(eiφ∗)|dφ∗

=
1− r∗

1 + r∗
Log |G∗(0)|,
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that is, |G∗(z)| ≤ |G∗(0)|(1−|z|)/(1+|z|) for 0 ≤ |z| < 1, which when combined with

(2.10) gives

|G∗(z)| ≤


Kn−2m

m∏
µ=1

|zµ|

1 +Kn−m

m∏
µ=1

|zµ|


(1−|z|)/(1+|z|)

, for |z| < 1.

Hence,

∣∣∣∣∣G(z)
m∏

µ=1

(
K2z
zµ

− 1

z − K2

zµ

)∣∣∣∣∣ ≤


Kn−2m

m∏
µ=1

|zµ|

1 +Kn−m

m∏
µ=1

|zµ|


(1−|z|)/(1+|z|)

, for |z| < 1,

which implies that

|G(z)| ≤


Kn−2m

m∏
µ=1

|zµ|

1 +Kn−m

m∏
µ=1

|zµ|


(1−|z|)/(1+|z|)

m∏
µ=1

∣∣∣∣∣ z −
K2

zµ

K2z
zµ

− 1

∣∣∣∣∣ , for |z| < 1

≤


Kn−2m

m∏
µ=1

|zµ|

1 +Kn−m

m∏
µ=1

|zµ|


(1−|z|)/(1+|z|)

m∏
µ=1

(
|z|+ K2

|zµ|
K2

|zµ| |z|+ 1

)
, for |z| < 1.

Setting tµ := K2

|zµ| for 1 ≤ µ ≤ m we see that for |z| < 1, we have

G(z)| ≤ ψ(t1, t2, . . . , tm)
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where

ψ(t1, t2, . . . , tm) :=

(
Kn

t1 · t2 · · · tm +Kn+m

)(1−|z|)/(1+|z|) m∏
µ=1

(
|z|+ tµ
tµ|z|+ 1

)
.

To see this, observe that

Kn−2m

m∏
µ=1

|zµ|

1 +Kn−m

m∏
µ=1

|zµ|
=

KnK−2m

m∏
µ=1

1

|zµ|

[
1 +Kn−m

m∏
µ=1

|zµ|

]

=
KnK−2m

m∏
µ=1

1

|zµ|
+Kn−m

=
Kn

K2m

[
m∏

µ=1

1

|zµ|
+Kn−m

]

=
Kn

m∏
µ=1

K2

|zµ|
+Kn+m

=
Kn

K2

|z1| ·
K2

|z2| · · ·
K2

|zm| +Kn+m

=
Kn

t1 · t2 · · · tm +Kn+m
.

Setting Λ :=
1

Kn+m + t1 · t2 · · · tm
and Aν := (Kn)(1−|z|)/(1+|z|)

m∏
µ=1,µ 6=ν

(
|z|+ tµ
tµ|z|+ 1

)
for 1 ≤ ν ≤ m, we have

ψ(t1, t2, . . . , tm) =

(
Kn

t1 · t2 · · · tm +Kn+m

)(1−|z|)/(1+|z|) m∏
µ=1

(
|z|+ tµ
tµ|z|+ 1

)
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= AνΛ
(1−|z|)/(1+|z|)

(
|z|+ tν
tν |z|+ 1

)
,

and, for ν ∈ {1, . . . ,m}, we obtain the partial derivatives

∂ψ

∂tν
= AνΛ

(1−|z|)/(1+|z|)
[
(tν |z|+ 1)− (|z|+ tν)|z|

(tν |z|+ 1)2

]
+Aν ·

|z|+ tν
tν |z|+ 1

· (1− |z|)
(1 + |z|)

· Λ
−2|z|
1+|z|

(
−t1 · · · tν−1tν+1 · · · tm
(Kn+m + t1 · · · tm)2

)
= AνΛ

(1−|z|)/(1+|z|) (1− |z|2)
(tν |z|+ 1)2

−Aν ·
|z|+ tν
tν |z|+ 1

· 1− |z|
1 + |z|

· Λ
−2|z|
1+|z|

(
t1 · · · tν−1tν+1 · · · tm
(Kn+m + t1 · · · tm)2

)
= AνΛ

(1−|z|)/(1+|z|) (1− |z|2)
(tν |z|+ 1)2

−Aν ·
|z|+ tν
tν |z|+ 1

· 1− |z|
1 + |z|

(Kn+m + t1 · · · tm)
2|z|

1+|z|−2(t1 · · · tν−1tν+1 · · · tm)

= AνΛ
(1−|z|)/(1+|z|) (1− |z|2)

(tν |z|+ 1)2

−Aν ·
|z|+ tν
tν |z|+ 1

· 1− |z|
1 + |z|

(Kn+m + t1 · · · tm)
2|z|−2−2|z|

1+|z|

(
t1 · · · tm
tν

)
= AνΛ

(1−|z|)/(1+|z|) (1− |z|2)
(tν |z|+ 1)2

−Aν ·
|z|+ tν
tν |z|+ 1

· 1− |z|
1 + |z|

(Kn+m + t1 · · · tm)
−2

1+|z|

(
t1 · · · tm
tν

)
= AνΛ

(1−|z|)/(1+|z|) (1− |z|2)
(tν |z|+ 1)2

−Aν ·
|z|+ tν
tν |z|+ 1

· 1− |z|
1 + |z|

(
1

Kn+m + t1 · · · tm

) 2
1+|z|

(
t1 · · · tm
tν

)
= AνΛ

(1−|z|)/(1+|z|) (1− |z|2)
(tν |z|+ 1)2

−Aν ·
|z|+ tν
tν |z|+ 1

· 1− |z|
1 + |z|

Λ
2

1+|z|

(
t1 · · · tm
tν

)
.
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So, for ν ∈ {1, . . . ,m}, the partial derivatives

∂ψ

∂tν
= AνΛ

(1−|z|)/(1+|z|) (1− |z|2)
(tν |z|+ 1)2

−Aν ·
|z|+ tν
tν |z|+ 1

· 1− |z|
1 + |z|

Λ
2

1+|z|

(
t1 · · · tm
tν

)

are positive if and only if

(1 + |z|)2 > (|z|+ tν)(tν |z|+ 1)

(
1

Kn+m + t1 · · · tm

)(
t1 · · · tm
tν

)
,

which is true since tν < 1 for 1 ≤ µ ≤ m and K ≥ 1. Hence, ψ(t1, . . . , tm) ≤

ψ(1, . . . , 1) =

(
Kn

Kn+m + 1

)(1−|z|)/(1+|z|)

for |z| < 1, and so (2.8) holds even if G

has some zeros in the open disk |z| < 1.

From (2.8) we therefore conclude that for 0 < |z| ≤ 1,

∣∣∣∣ zn

Kn
p

(
K2

z

)∣∣∣∣ ≤ ( Kn

Kn + 1

)(1−|z|)/(1+|z|)

which is equivalent to

∣∣∣∣p(K2

z

)∣∣∣∣ ≤ Kn

|z|n

(
Kn

Kn + 1

)(1−|z|)/(1+|z|)

, for 0 < |z| ≤ 1

which implies that

|p(ζ)| ≤ |ζ|n

Kn

(
Kn

Kn + 1

)(|ζ|−K2)/(|ζ|+K2)

, for |ζ| > K2,
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which is equivalent to the inequality in Theorem 2.8, and the proof of Theorem

2.8 is thus complete.

Finally, we state the proof of Theorem 2.9 which is also given by Govil, Qazi,

and Rahman [13, p. 462].

Let pK(z) = p(Kz) := a0 +Ka1z+ . . .+Knanz
n. Then pK(z) 6= 0 for |z| < 1.

Applying Lemma 2.1 to pK taking ρ1 :=
ρ

K
and ρ2 :=

1

K
, we obtain

M(p; ρ) = M(pK ; ρ1)

≥

1 + 2
∣∣∣Ka1

na0

∣∣∣ ρ1 + ρ2
1

1 + 2
∣∣∣Ka1

na0

∣∣∣ ρ2 + ρ2
2

n/2

M(pK ; ρ2)

=

(
1 + 2|λ| ρ

K
+ ρ2

K2

1 + 2|λ| 1
K

+ 1
K2

)n/2

M(p; 1), for 0 ≤ ρ ≤ 1

=

(
K2 + 2|λ|ρK + ρ2

K2 + 2|λ|K + 1

)n/2

M(p; 1), for 0 ≤ ρ ≤ 1,

which is the inequality in Theorem 2.9, and thus proves Theorem 2.9.
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Chapter 3

Results Involving Entire Functions of Exponential Type

In this chapter we will study entire functions or exponential type, that is, entire

functions with some growth restriction. To begin, we will state some definitions

concerning entire functions and entire functions of exponential type which can

be found, for example, in the book by Levin [17, p. 1-3], (see also Boas [5, p.

8-12]). An entire function is a function of a complex variable analytic in the

entire plane and consequently represented by an everywhere convergent power

series f(z) = a0 + a1z + a2z
2 + · · · + anz

n . . .. These functions form a natural

generalization of the polynomials, and are close to polynomials in their properties.

The classical investigations of Borel, Hadamard, and Lindelöf dealt with the

connection between the growth of an entire function and the distribution of its

zeros. The rate of growth of a polynomial as the independent variable goes to

infinity is determined, of course, by its degree. On the other hand, the number of

roots of a polynomial is equal to its degree. Thus, the more roots a polynomial

has, the greater is its growth. This connection between the set of zeros of the

function and its growth can be generalized to arbitrary entire functions.

It is well known, and follows trivially from the maximum modulus principle,

that M(f ; r) := max
|z|=r

|f(z)| is an increasing function of r. Also, it is clear that this

function is continuous, and to see this let r1 < r2 and let 0 ≤ θ0 < 2π be such that
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|f(r2e
iθ0)| = M(f ; r2). Then

0 < M(f ; r2)−M(f ; r1)

= |f(r2e
iθ0)| −M(f ; r1)

≤ |f(r2e
iθ0)| − |f(r1e

iθ0)|

< ε

for r2 − r1 < δε since the function |f(reiθ)| as a function of r, is continuous.

The rate of growth of the function M(f ; r) is an important property for the

behaviour of an entire function. We first show that for an entire function not

a polynomial, M(f ; r) grows faster than any positive power of r. The following

result, given by Levin [17, p. 2], shows that if a function f does not grow faster

than any positive power of r, then f is a polynomial.

Theorem 3.1. If there exists a positive integer n such that lim inf
r→∞

M(f ; r)

rn
<∞,

then f(z) is a polynomial of degree at most n.

We now state the proof of Theorem 3.1 which is also given by Levin [17, p.

2]. Let n = N be a positive integer such that lim inf
r→∞

M(f ; r)

rN
< ∞. If f(z) =

a0 + a1z + · · ·+ aNz
N + aN+1z

N+1 + · · · and PN(z) = a0 + a1z + · · ·+ aNz
N , then

the function

φ(z) = [f(z)− PN(z)]z−N−1

=
aN+1z

N+1 + aN+2z
N+2 + · · ·

zN+1
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= aN+1 + aN+2z + aN+3z
2 + · · ·

is entire and tends uniformly to zero on some sequence of circles |z| = rn where

rn → ∞. To see that φ(z) tends uniformly to zero on some sequence of circles

|z| = rn where rn →∞, first consider

|PN(z)| = |a0 + a1z + · · ·+ aNz
N |

≤ |a0|+ |a1||z|+ |az||z2|+ · · ·+ |aN ||zN |,

which implies that

max
|z|=r

|PN(z)| ≤ |a0|+ |a1|r + |a2|r2 + · · ·+ |aN |rN

≤ (N + 1)M(f ; r)

because from Cauchy’s Inequality [22, p. 84], |an|rn ≤ M(f ; r) for all n. Now

consider

max
|z|=r

|f(z)− PN(z)| ≤ max
|z|=r

|f(z)|+ max
|z|=r

|PN(z)|

≤ M(f ; r) + (N + 1)M(f ; r)

= (N + 2)M(f ; r).
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Since lim inf
r→∞

M(f ; r)

rN
< ∞ implies that M(f ; r) < LrN on a sequence {rn} → ∞

and for some constant L. So,

max
|z|=r

|φ(z)| = max
|z|=r

∣∣|f(z)− PN(z)|z−N−1
∣∣

<
(N + 2)LrN

rN+1

=
(N + 2)L

r

which approaches zero as r approaches infinity, and thus φ(z) tends uniformly to

zero on some sequence of circles |z| = rn. Thus, it follows from the maximum

modulus principle that φ(z) ≡ 0. In other words, f(z) ≡ PN(z). Hence, f(z) is a

polynomial because PN(z) is a polynomial.

So, in order to estimate the growth of entire functions which are not polyno-

mials, we must choose comparison functions that grow faster than powers of r. We

choose comparison functions of the form erk
, where k > 0.

An entire function f(z) is said to be a function of finite order if there exists

a positive constant k such that the inequality max
|z|=r

|f(z)| < erk

is valid for all

sufficiently large values of r where r > r0(k). The greatest lower bound of such

numbers k is called the order of the entire function f(z). So, if ρ is the order of

the entire function f(z), and if ε is an arbitrary positive number, then

erρ−ε

< M(f ; r) < erρ+ε

(3.1)
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where the inequality on the right is satisfied for all sufficiently large values of r,

and the inequality on the left holds for some sequence {rn} of values of r, tending

to infinity. From condition (3.1) we define the order ρ of the function to be

ρ = lim sup
r→∞

log logM(f ; r)

log r
.

For functions of a given order, a more precise characterization of the growth

is given by the type of the function. By the type τ of an entire function f(z) of

order ρ we mean the greatest lower bound of positive numbers A for which

M(f ; r) < eArρ

(3.2)

for all sufficiently large values of r. From condition (3.2) we define the type τ of

the function to be

τ = lim sup
r→∞

logM(f ; r)

rρ
.

If τ = 0, the function f(z) is said to be of minimal type, if 0 < τ < ∞ of normal

type, and if τ = ∞ of maximal type.

We shall say that the function f2(z) is of larger growth than the function f1(z)

if the order of f2(z) is greater than the order off1(z), or if the orders are equal and

the type of f2(z) is larger than the type of f1(z).

Also note that the order of the sum of two functions is not greater than the

larger of the orders of the two summands, and if the orders of the summands and
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of the sum are all equal, then the type of the sum is not greater than the larger

of the types of the two summands. If one of the two functions is of larger growth

than the other, then the sum has the same order and type as the function of larger

growth.

The rate of growth of an entire function f in different directions can be spec-

ified by the Phragmén-Lindelöf indicator function of f defined as

hf (θ) := lim sup
r→∞

log |f(reiθ)|
r

, for 0 < r <∞ and 0 ≤ θ < 2π .

So, the type of an entire function f is equal to the maximum of the indicator

function of f .

According to a fundamental property of the indicator function, if hf (θ1) ≤ h1

and hf (θ2) ≤ h2, where α ≤ θ1 < θ2 ≤ β and 0 < θ2 − θ1 < π, then [5, Theorem

5.1.2]

hf (θ) ≤ h1 sin (θ2 − θ) + h2 sin (θ − θ1)

sin (θ2 − θ1)
, for θ1 ≤ θ ≤ θ2.

By an entire function of exponential type τ , we will mean an entire function

of order less than one and of any type τ ≥ 0 or an entire function of order one and

of type at most τ . For an entire function f of exponential type, hf (θ) <∞ for all

θ, and unless hf (θ) ≡ −∞, the function hf is continuous (see [5, Theorem 5.4.1]).
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Furthermore, we have [5, Theorem 5.4.4]

hf

(
θ − π

2

)
+ hf

(
θ +

π

2

)
≥ 0, for 0 ≤ θ < 2π.

In this chapter we will be mainly concerned with entire functions of exponen-

tial type having no zeros in a half-plane. Our results will include generalizations

of the Bernstein type inequalities discussed in chapters one and two. Most of the

results that we will be discussing here are given in a recent paper of Govil, Qazi,

and Rahman [14].

It is known [5, Theorem 7.8.1] that if ω is an entire function of exponential

type such that ω(z) 6= 0 for =z < 0 and hω(α) ≤ hω(−α) for some α ∈ (0, π), then

|ω(z)| ≤ |ω(z̄)| for =z > 0, (3.3)

and so

hω(α) ≤ hω(−α) for 0 < α < π. (3.4)

Hence the following result given in a paper of Govil, Qazi, and Rahman [14, Lemma

A] holds.

Theorem 3.2. Let ω be an entire function of exponential type having no zeros

in the open lower half-plane. Then (3.3) holds if and only if hω(α) ≤ hω(−α)

for some α ∈ (0, π). Thus, hω(α) ≤ hω(−α) for every α ∈ (0, π), if and only if

hω(α) ≤ hω(−α) for some α ∈ (0, π).
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If f is analytic and of exponential type in the upper half-plane such that

|f(x)| ≤M on the real axis, and hf

(π
2

)
≤ a, then [5, Theorem 6.2.4],

|f(z)| ≤ Mea=z for =z > 0.

From this it follows that if f is an entire function of exponential type τ such that

|f(x)| ≤M on the real axis, then for z ∈ C,

|f(z)| ≤Meτ |=z|. (3.5)

In particular, we get

Theorem 3.3. If f is an entire function of exponential type τ such that |f(x)| ≤M

on the real axis, then |f(z)| = |f(x+ iy)| ≤Meτ |y| for −∞ < x <∞ and y ≤ 0.

This result, known as Bernstein’s Inequality for functions of exponential type,

is mentioned for example, in Govil, Qazi, and Rahman [14, p, 898] and is best

possible. Equality holds for f(z) = λeiτz where λ ∈ C. To see this, consider

|f(z)| = |f(x+ iy)|

= |λeiτ(x+iy)|

= |λeiτx||e−τy|

= |λ|eτ |y|, because y ≤ 0

= sup
−∞<x<∞

|f(x)|eτ |y|

= Meτ |y|.
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The above result, Bernstein’s Inequality for functions of exponential type,

generalizes the result that if p(z) is a polynomial of degree at most n, then

M(p;R) ≤ M(p; 1)Rn, for R ≥ 1 (3.6)

which we have discussed in Chapter 1. This result is best possible.

We will now show that inequality (3.5) generalizes inequality (3.6). If p(z) is

a polynomial of degree n, then as is easy to see, the function f(z) = p(eiz) is an

entire function of exponential type n. Thus,

sup
−∞<x<∞

|f(x+ iy)| = sup
−∞<x<∞

|p(ei(x+iy))|

≤ sup
−∞<x<∞

|f(x)|en|y|, for y ≤ 0 by Theorem 3.3

which implies that

sup
−∞<x<∞

|p(e−yeix)| ≤ sup
−∞<x<∞

|p(eix)|en|y|, for y ≤ 0.

Now, take R = e−y which is greater than or equal to one because y ≤ 0. So we

have that y = − lnR. Thus, en|y| =
(
e|y|
)n

=
(
eln R

)n
= Rn, and we have that

max
|z|=R

|p(z)| ≤ max
|z|=1

|p(z)|en|y|

= max
|z|=1

|p(z)|Rn, for R ≥ 1.
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Hence, inequality (3.5) yields M(p;R) ≤ M(p; 1)Rn, which is inequality (3.6), for

polynomials of degree at most n and R ≥ 1.

If the polynomial p(z) has no zeros in the unit circle, then we have seen in

Chapter 2 (see inequality (2.1)) that inequality (3.6) can be replaced by

M(p;R) ≤ M(p; 1)
Rn + 1

2
, for R ≥ 1. (3.7)

As we know, the above inequality which is due to Ankeney and Riviln [1, p. 849]

is best possible with equality holding for p(z) =
λ+ µzn

2
where |λ| = |µ| = 1. The

following result of Boas [14, Theorem A] generalizes the above result.

Theorem 3.4. Let f be an entire function of exponential type τ such that |f(x)| ≤

M , on the real axis. Furthermore, let f(z) 6= 0 for =z > 0, and suppose that

hf

(π
2

)
= 0. Then

|f(z)| ≤ M
eτ |y| + 1

2
, for y := =z ≤ 0. (3.8)

To see how inequality (3.8) generalizes inequality (3.7) first note that for

p(z) :=
n∑

ν=0

aνz
ν 6= 0 for |z| < 1, the function f(z) := p(eiz) 6= 0 for =z > 0.

Also, the type τ of f(z) = p(eiz) which is an entire function of exponential type, is

equal to n, and, since |a0| = |p(0)| 6= 0, it is clear that hf

(π
2

)
= 0. Furthermore,

|f(x)| ≤M on the real axis if |p(z)| ≤M on the unit circle. So, we have

sup
−∞<x<∞

|f(x+ iy)| = sup
−∞<x<∞

|p(ei(x+iy))|
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≤ sup
−∞<x<∞

|f(x)|e
n|y| + 1

2
, for y ≤ 0 by Theorem 3.4,

which implies that

sup
−∞<x<∞

|p(e−yeix)| ≤ sup
−∞<x<∞

|p(eix)|e
n|y| + 1

2
, for y ≤ 0.

Take R = e−y which is greater or equal to one if y ≤ 0. Then y = − lnR, which

implies that en|y| =
(
e|y|
)n

=
(
eln R

)n
= Rn. Thus,

max
|z|=R

|p(z)| ≤ max
|z|=1

|p(z)|e
n|y| + 1

2

= max
|z|=1

|p(z)|
(
Rn + 1

2

)
, for R ≥ 1.

Hence, inequality (3.8) yields M(p;R) ≤M(p; 1)
Rn + 1

2
, which is inequality (3.7),

for polynomials with no zeros inside the unit circle and R ≥ 1.

Aziz and Dawood [2, p. 307] sharpened inequality (3.7) for the case in which

the polynomial p has no zeros on the unit circle. We state their result below.

Theorem 3.5. Let p be a polynomial of degree at most n having no zeros inside

the unit circle, then for R ≥ 1,

M(p;R) ≤
(
Rn + 1

2

)
max
|z|=1

|p(z)| −
(
Rn − 1

2

)
min
|z|=1

|p(z)|. (3.9)

Equality holds for p(z) = αzn + β where |β| ≥ |α|.

62



For the proof of Theorem 3.5 we need the following theorem given by Aziz

and Dawood [2, Theorem 2].

Theorem 3.6. If P (z) is a polynomial of degree n which does not vanish in the

disk |z| < 1, then

max
|z|=1

|P ′(z)| ≤ n

2

{
max
|z|=1

|P (z)| −min
|z|=1

|P (z)|
}
.

This result is best possible and equality holds for the polynomial P (z) = αzn + β,

where |β| ≥ |α|.

The proof that we give is partly different from a proof given by Aziz and

Dawood [2, p. 309-310]. We give this proof now. Let M = max
|z|=1

|P (z)| and

m = min
|z|=1

|P (z)|. Then m ≤ |P (z)| for |z| = 1. Since all the zeros of P (z) lie in

|z| ≥ 1, therefore, for every complex number α such that |α| < 1, it follows (by

Rouche’s theorem for m > 0) that the polynomial F (z) = P (z) − αm does not

vanish in |z| < 1.

If we define Q(z) := znP (1/z) and G(z) := znF (1/z), then G(z) has no zeros

in |z| > 1. This implies that
F (z)

G(z)
is analytic in |z| ≥ 1, which implies that∣∣∣∣F (z)

G(z)

∣∣∣∣ ≤ 1 for |z| ≥ 1. Thus, |F (z)| ≤ |G(z)| for |z| ≥ 1, which implies that

for every α such that |α| > 1, the function F (z) − αG(z) 6= 0 in |z| ≥ 1, that

is, F (z) − αG(z) has all its zeros in |z| < 1. So, by the Gauss-Lucas Theorem

F ′(z)− αG′(z) has all its zeros in |z| < 1, which implies that |F ′(z)| ≤ |α||G′(z)|
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for |z| ≥ 1. On making α → 1 we get |F ′(z)| ≤ |G′(z)| for |z| ≥ 1, which in

particular gives us |F ′(eiθ)| ≤ |G′(eiθ)| where 0 ≤ θ < 2π.

Now recall that F (z) = P (z)− αm and consider

G(z) = znF (1/z)

= znP (1/z)− αmzn

= Q(z)− αmzn.

This implies that G′(z) = Q′(z)− αnmzn−1. So, we have that

|P ′(z)| = |F ′(z)|

≤ |G′(z)|, for |z| ≥ 1

= |Q′(z)− αnmzn−1|, for |z| ≥ 1.

We can choose the argument of α such that

|Q′(z)− αnmzn−1| = |Q′(z)| − |α|nm, for |z| = 1

where the right hand side is non-negative since |Q′(z)| ≥ |α|nm. Making |α| → 1,

we have that

|P ′(z)| ≤ |Q′(z)| − nm on |z| = 1. (3.10)
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It is well known (see Govil and Rahman [15, p. 511]) that

|P ′(z)|+ |Q′(z)| ≤ Mn.

Putting this together with inequality (3.10) we get

|P ′(z)|+ |P ′(z)|+ nm ≤ Mn,

which implies that

2|P ′(z)| ≤ Mn−mn,

giving us

|P ′(z)| ≤ n

2
(M −m).

Hence, max
|z|=1

|P ′(x)| ≤ n

2
(M −m), and Theorem 3.6 is proved.

We will now use Theorem 3.6 to prove Theorem 3.5. This proof is given by

Aziz and Dawood [2, p. 310-311]. Let M = max
|z|=1

|P (z)| and m = min
|z|=1

|P (z)|. Since

P (z) is a polynomial of degree n which does not vanish in |z| < 1, therefore, by

Theorem 3.6 we have

|P ′(z)| ≤ n

2
(M −m), for |z| = 1.
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Now, P ′(z) is a polynomial of degree n − 1; therefore, it follows from inequality

(3.6) that for all r ≥ 1 and 0 ≤ θ < 2π,

|P ′(reiθ)| ≤ max
|z|=1

|P ′(eiθ)|rn−1

≤ n

2
rn−1(M −m).

Also, for each θ where 0 ≤ θ < 2π,

P (Reiθ)− P (eiθ) =

∫ R

1

eiθP ′(teiθ)dt.

This gives

|P (Reiθ)− P (eiθ)| ≤
∫ R

1

|P ′(teiθ)|dt

≤ (M −m)

2

∫ R

1

ntn−1dt

=
1

2
(Rn − 1)(M −m),

for each θ where 0 ≤ θ < 2π and R ≥ 1. Hence

|P (Reiθ)| ≤ |P (eiθ)|+ 1

2
(Rn − 1)(M −m)

≤ M +
1

2
(Rn − 1)(M −m)

=
2M

2
+
MRn −M

2
+
−mRn +m

2

=
M +MRn

2
+
−m(Rn − 1)

2

=
M(Rn + 1)

2
− m(Rn − 1)

2
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for each θ where 0 ≤ θ < 2π and R ≥ 1. Thus, we have that

max
|z|=R

|P (z)| ≤
(
Rn + 1

2

)
M −

(
Rn − 1

2

)
m

for R ≥ 1. Hence, Theorem 3.5 is proved.

As Theorem 3.4 is a generalization of inequality (3.7), one would like to obtain

a generalization of Theorem 3.5 for entire functions of exponential type, and this is

done by Govil, Qazi, and Rahman [14, Theorem 2.1]. We state their result below.

Theorem 3.7. Let f be an entire function of exponential type τ such that (i)

f(z) 6= 0 for all z in the open upper half-plane, (ii) 0 ≤ µ ≤ |f(x)| ≤ M for all

x ∈ R, (iii) hf

(π
2

)
= 0. Then

|f(z)| ≤ M

(
eτ |y| + 1

2

)
− µ

(
eτ |y| − 1

2

)
, for y := =z ≤ 0.

The bound is attained for functions of the form

f(z) :=
M + µ

2
eiα +

M − µ

2
eiβeiτz, for α ∈ R, β ∈ R.

As we have seen, the proof of Theorem 3.5 depends on the proof of Theorem

3.6. So, in order to prove Theorem 3.7 (which is a sharpening of Theorem 3.4),

one should first obtain a generalization of Theorem 3.6. This is done by Govil,

Qazi, and Rahman [14, Theorem 2.2], and we state their result below.
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Theorem 3.8. Let f be an entire function of exponential type τ such that (i)

f(z) 6= 0 for all z in the open upper half-plane, (ii) 0 ≤ µ ≤ |f(x)| ≤ M for all

x ∈ R, (iii) hf

(π
2

)
= 0. Then

|f ′(x)| ≤ M − µ

2
τ, for x ∈ R.

The bound is attained for functions of the form

f(z) =
M + µ

2
eiα +

M − µ

2
eiβeiτz, for α ∈ R, β ∈ R.

The proof of Theorem 3.8 depends on the following definitions and lemmas.

An entire function ω of exponential type having no zeros for y := =z < 0

and satisfying one of the conditions (3.3) or (3.4) is said to belong to the class

P . An additive homogeneous operator B[f(z)] which carries entire functions of

exponential type into entire functions of exponential type and leaves the class P

invriant is called a B-operator. An operator B is said to be additive if B[f + g] =

B[f ] + B[g], and homogeneous if B[cf ] = cB[f ].

Lemma 3.1. Let η > 0. The operator Tη which carries the function ω into the

function ω(z − iη) is a B-operator.

The following lemma can be found, for example, in Boas [5, Theorem 11.7.5].

Lemma 3.2. Differentiation is a B-operator.

The next lemma can also be found, for example, in Boas [5, Theorem 11.7.2].
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Lemma 3.3. Let Ω be an entire function of class B and of order 1 type σ. Fur-

thermore, let ω be an entire function of exponential type τ ≤ σ such that

|ω(x)| ≤ |Ω(x)|, for x ∈ R.

Then, for any B-operator B, we have

|B[ω](x)| ≤ |B[Ω](x)|, for x ∈ R.

The final lemma is given by Govil, Qazi, and Rahman [14, Theorem 1.1] which

we state below.

Lemma 3.4. Let f be an entire function of exponential type having no zeros in

the closed upper half-plane H, and suppose that |f(x)| ≥ µ > 0 on the real axis.

Furthermore, let hf

(π
2

)
= a. Then,

|f(x+ iy)| > µeay, for y > 0, x ∈ R

except for f(z) := ce−iaz where c ∈ C and |c| = µ.

Lemma 3.4 is of interest in itself because it can be seen as a minimum modulus

principle for entire functions of exponential type not vanishing in a half-plane. It

is in fact, for the proof of Lemma 3.4 that Govil, Qazi, and Rahman [14, Theorem

1.1] needed lemmas 3.1, 3.2, and 3.3, and finally, using Lemma 3.4, they proved

Theorem 3.8.
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We omit the proof of Theorem 3.8 as it is too technical. However, we will use

Theorem 3.8 to prove Theorem 3.7 which is a generalization of Theorem 3.5. We

state the proof of Theorem 3.7 below.

Since f ′ is also an entire function of exponential type τ , it follows from The-

orem 3.8 in conjunction with Theorem 3.3 that

|f ′(x− it)| ≤ M − µ

2
reτt, for x ∈ R, t > 0.

Hence, for any y > 0,

|f(x− iy)| ≤ |f(x)|+
∫ y

0

|f ′(x+ it)|dt

≤ M +

∫ y

0

M − µ

2
reτtdt

= M +
M − µ

2
(eτy − 1)

=
2M +Meτy −M − µeτy + µ

2

=
M +Meτy + µ− µeτy

2

= M

(
eτy + 1

2

)
− µ

(
eτy − 1

2

)
,

which is equivalent to

|f(z)| ≤ M

(
eτ |y| + 1

2

)
− µ

(
eτ |y| − 1

2

)
, for y < 0

which is the desired result. Thus, Theorem 3.7 is proved.
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