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In this dissertation, the dynamics and synthesis of open and closed kinematic chains

with frictional impact and joint clearance is studied.

First, the impact between rigid bodies with friction is investigated. A new model

of impact with friction is presented. The coefficient of rolling friction is defined and the

moment of rolling friction is introduced to the impact equations. The influence of the

moment of rolling friction and the geometrical characteristics of the links on the energy

dissipated by friction during the impact is analyzed.

Next, the effect of prismatic joint inertia on the dynamics of kinematic chains is

analyzed. The effect of the prismatic joint inertia on the position of the application

point of the joint contact forces is investigated. The influence of the joint inertia on

the dynamic response of a spatial robot arm with feedback control is analyzed. Also,

the influence of the joint inertia on the dynamic parameters of a planar mechanism is

exemplified using inverse dynamics.

Furthermore, a planar rigid-link mechanism with rotating prismatic joint and clear-

ance is modeled. The influence of the clearance gap size, crank speed, friction, and
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impact parameters on the dynamics of the system is analyzed. Nonlinear dynamics tools

are applied to analyze the data captured from the connecting rod of the mechanism.

Finally, a new structural synthesis of spatial mechanisms is developed based on the

system group classification. Spatial system groups of different families with one, two,

and three independent contours are presented. The advantage of the analysis of spatial

mechanisms based on the system group classification lies in its simplicity. The solution

of mechanisms can be obtained by composing the partial solutions of system groups.

For the previous models of impact with friction, the effect of the rolling friction was

neglected. In this dissertation, the moment of rolling friction is defined and introduced

to the impact equations. Prismatic joint inertia must be included for modeling high-

speed machine tools, manipulators, and robots. This problem is important, because in

some cases the moment of inertia of the prismatic joints is comparable to the moment

of inertia of the links and may significantly influence the dynamics of the system at high

speeds. Periodic motion is observed for the mechanism with rotating prismatic joint and

no clearance. The response of the mechanism with joint clearance is chaotic at relatively

high crank speeds. Also, a general method is presented in order to determine all the

configurations of complex spatial system groups and to automate the process.
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Chapter 1

Introduction

Consideration of dynamic modeling is an important part in the analysis, design and

control of mechanical systems such as mechanisms, manipulators, robots, etc. In general,

mechanical systems have several desirable features relative to the coupling contact forces

such as higher speed, improved mobility and stability, and reduced power consumption.

The dynamics of mechanical systems with frictional contacts and impacts has been de-

veloped and applied to many industrial applications. One of the important factors that

influence the dynamic stability and the performance of machines is joint clearance. In

the last years, many researchers have been studied the effects of the clearance on the

motion of mechanical systems.

In this dissertation the nonlinear dynamics of a mechanism with rotating prismatic

joint and clearance is investigated. Nonlinear dynamics tools were applied in order to

study the behavior of the mechanism. Frictional contacts and impacts and prismatic

joint inertia have been considered to model the mechanism.

In Chapter 2 a new model of rigid body impact with friction is presented. The

coefficient of rolling friction and the moment of rolling friction are introduced.

In Chapter 3 the influence of the prismatic joint inertia on the position of the

application point of the joint reaction forces and the effect on the dynamics and control

of open and closed kinematic chains is analyzed.
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In Chapter 4 the nonlinear dynamics of a planar, rigid-link mechanism with pris-

matic joint clearance is investigated. The influence of the clearance gap size, crank speed,

friction and impact parameters on the nonlinear behavior of the system are analyzed.

In Chapter 5 a new structural synthesis of spatial mechanisms is studied based on

the system group classification. Structural synthesis of mechanisms with the specified

number of contours and joint types is necessary in order to systematize the creative

design process.

Finally, in Chapter 6, general conclusions are recorded. For mechanical systems

with no clearance, the motion is periodic. Chaotic motion is observed for mechanical

systems with joint clearance.



Chapter 2

Impact with moment of rolling friction

The impact between rigid bodies and rough surfaces is studied. The rolling friction

moment and the coefficient of rolling friction are introduced, and an improved math-

ematical model of the planar impact with friction is presented. The influence of the

moment of rolling friction on the energy dissipated by friction during the impact is ana-

lyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy

is dissipated for larger values of the coefficient of kinetic friction and contact radius, and

for smaller values of the length of the beam. For a double pendulum, using the kinematic

coefficient of restitution, in some cases one can obtain energetically inconsistent results.

If the moment of rolling friction is introduced, this problem can be solved for some values

of the coefficient of rolling friction.

2.1 Introduction

Newton [1] defines the coefficient of restitution e as a kinematic quantity that is used

to derive a relation between the normal impact velocities of approach and separation at

the contact point. Poisson [2] divides the collision period in two phases, compression

and restitution. Poisson defines e as a kinetic quantity that relates the normal impulses

at the contact point that occur during each phase. Routh [3] presented a graphical

method based on Poisson’s hypothesis [2] to treat collision problems. Later Whittaker [4]

expanded Newton’s method [1] considering the frictional impulse. Routh and Whittaker

presented different approaches in the treatment of motion on the tangential direction at

3



4

the point of contact. Routh solves for the slipping velocity during collision and introduces

the possibility of changes in slipping direction during contact. Considering Whittaker’s

method, slipping occurs when the ratio of the normal and tangential impulses are greater

that the coefficient of friction µ.

Kane and Levinson [5] observed that the classical solution of rigid body impact

problems using Newton’s theory produces energetically inconsistent results. Keller [6]

attributed this paradoxical behavior to slip reversals during collision subject to frictional

effects. The Newtonian approach ignores the changes in the direction of slip, leading to

the overestimation of the rebound velocity as a result of impact. Keller introduced a

revised formulation of rigid body collision equations based on Poisson’s hypothesis such

that impact never increases energy. Stronge [7, 8] divided the energy that is dissipated

during collision into two portions: dissipation due to frictional impulse and dissipation

due to normal impulse. He solved the impact with friction problem using an energetic

coefficient of restitution.

Brach [9, 10] has proposed a solution scheme based on revising Whittaker’s method

in order to avoid energy increases from resulting solutions. The approach treats the

tangential impulse as a constant fraction µ of the normal impulse. Then energy loss is

examined to determine the appropriate value of µ that can be used in the actual solution.

He has expanded his approach, to treat contacts that take place over finite areas and

introduced a moment coefficient em to solve the collision problem. The same author [11]

has introduced a moment due to peeling at the trailing edge of the contact surface during

rolling in the equations of a planar impact of a sphere in the presence of adhesion.
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Marghitu [12] presented some impact friction versus impact angle plots for slender

steel beams with semi-spherical ends impacting the hard surface of a massive concrete

object. Similar impact friction plots were reported by Stoianovici and Hurmuzlu [13] for

a slender beam impacting a half-space. The classical coefficient of restitution is found to

depend strongly on the orientation of the bar, and the impacts are divided into a series

of micro-impacts. Calsamiglia et al. [14] observed that the coefficient of friction for

disks impacting a massive surface is found to depend on the inclination angle. Osakue

and Rogers [15] presented an experimental study of friction during planar low-speed

oblique impacts. Johansson and Kalbring [16] developed a numerical algorithm where

the impenetrability condition and Coulomb’s law of friction were formulated as equations

in terms of velocities and impulses rather than displacements and forces.

Pfeiffer and Glocker [17] presented theoretical and applied aspects of the dynamics

of multiple unilateral contacts in multibody mechanical systems. Kinetic restitution

was considered for the normal direction as well as the tangential restitution effects.

The problem of rigid body collision with multiple contact points was also studied by

Marghitu and Hurmuzlu [18]. Hurmuzlu [19] introduced a new method to solve collision

problems of slender bars with massive external surfaces on a revised energetic coefficient

of restitution that resolves the effect of impact induced vibrations on the post-collision

velocities of the impacting bars. The impulse-based rigid-body as well as the alternative

compliance-based approaches have failed to produce valid solutions to the problem of

predicting the post-impact velocities in multi-impact systems. Ceanga and Hurmuzlu

[20] considered the impulse-momentum-based rigid-body approach and solved the non-

uniqueness difficulty by introducing a new constant called the impulse transmission ratio.
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In the new algebraic rigid-body collision model presented in Chatterjee and Ruina

[21], it is possible to predict partially sliding disk collisions for suitable choices of the tan-

gential coefficient of restitution. Lankarani [22] presented a general formulation for the

analysis of impact problems with friction in both open- and closed-loop multibody me-

chanical systems. Newton’s coefficient of friction and Poisson’s coefficient of restitution

were used as known quantities.

For the previous models of impact with friction, the effect of the rolling friction was

neglected. In this paper, the moment of rolling friction is defined and introduced to

the impact equations. For the simple pendulum, the energetic coefficient of restitution

and the coefficient of rolling friction are used to model the impact. The influence of

the coefficient of kinetic friction and the geometrical characteristics (the impact angle,

the length and the contact radius of the beam) on the energy dissipated by friction

during impact is analyzed. For the double pendulum, using the kinematic coefficient

of restitution, in some cases one can obtain energetically inconsistent results. If the

moment of rolling friction is introduced, this problem can be solved for some values of

the coefficient of rolling friction.

2.2 Rolling friction

A homogeneous circular disk in motion on an inclined plane is shown in Fig. 2.1.

The fixed cartesian reference frame xOyz is chosen with the origin at O. The angle

between the axis Ox and the horizontal is α. The contact point between the disk and

the plane is B. The disk has the mass m, the radius r, and the center of mass at C. The

gravitational acceleration is g.
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Figure 2.1: Homogeneous disk in motion on an inclined rough plane.
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2.2.1 Pure rolling (no sliding)

The forces that act on the disk are the gravitational force G = −mg at the point

C, the normal reaction force N of the plane and the friction force Ff at the contact point

B. The rolling friction is considered negligible. The position vector rC of the center of

mass C of the disk is

rC = xC ı + r. (2.1)

The velocity vector vC of the center of mass C of the disk is

vC = ṙC = ẋC ı + ṙ = ẋC ı. (2.2)

Denoting ẋC = v, the velocity of the center of mass C becomes

vC = vı. (2.3)

Thus, the acceleration vector of aC of the center of mass C of the disk is

aC = v̇C = v̇ı. (2.4)

One can express the velocity vB of the contact point B as

vB = vC + ω × CB = vı + (−ωk) × (−r) = (v − rω)ı. (2.5)



9

In order to find the equation of motion for the disk, one can write the Newton’s equation

maC =
∑

F. (2.6)

The sum of the external forces can be written as

∑

F = mg + Ff + N = (mg sinα − Ff )ı + (N − mg cos α), (2.7)

where Ff = −Ff ı is the friction force, and N = N  is the reaction force of the plane on

the disk. From Eqs. (2.4), (2.6), and (2.7) one can write the following equations

mv̇ = mg sin α − Ff , (2.8)

N = mg cos α. (2.9)

The following moment equation can be written for the disk with respect to its center of

mass C

ICα =
∑

MC , (2.10)

where IC is the mass moment of inertia with respect to the point C, α = ω̇ = −ω̇k is

the angular acceleration, and ω = −ωk is the angular velocity of the disk. The sum of

the external moments can be written as

∑

MC = CB × F = (−r) × (−F ı) = −rFfk. (2.11)
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From Eqs. (2.10) and (2.11) one can write the following equation

IC ω̇ = rFf . (2.12)

For no sliding, the velocity vB is zero (vB = 0). Thus, from Eq. (2.5) one can write

ω = v/r and Eq. (2.12) becomes

IC

v̇

r2
= Ff . (2.13)

From Eqs. (2.8) and (2.13) the following equation of motion can be derived

(

m +
IC

r2

)

v̇ = mg sin α. (2.14)

A homogeneous disk is considered in our case and the mass moment of inertia with

respect to its center of mass is IC = m
r2

2
. Thus, Eq. (2.14) can be written as

v̇ =
2

3
g sinα. (2.15)

Condition for pure rolling

From Eq. (2.8) and Eq. (2.15) one can compute the friction force Ff as

Ff =
m

3
g sinα. (2.16)

The condition for the disk of rolling without sliding on the plane is

Ff ≤ µkN, (2.17)
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where µk is the coefficient of kinetic friction. From Eq. (2.9), Eq. (2.16), and Eq. (2.17)

one can obtain

tanα ≤ 3µk, (2.18)

or

α ≤ Φ, (2.19)

where the sliding friction angle Φ can be determined from the equation

tan Φ = 3µk, where µk = tanφ. (2.20)

Eq. (2.19) represents the condition for rolling without sliding of the disk on the plane.

If the angle α of the plane is smaller than the sliding friction angle Φ, the disk rolls on

the plane without sliding. If the angle α of the plane is greater than the sliding friction

angle Φ, the disk rolls and slides on the plane simultaneously.

Moment of rolling friction

Experimentally one can observe that if the angle α of the plane is small enough, the disk

does not move. The equilibrium conditions for the disk are v = 0, and ω = 0. The

rolling is stopped by a rolling resistant moment Mf that balances the active moment

rFf

Mf = rFf . (2.21)

The acceleration v̇ is zero and from Eq. (2.8) one can express the friction force as Ff =

G sinα. Thus, one can write

Mf = rmg sinα = rN tanα. (2.22)
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If α0 is the value of the angle α when the rolling starts, the moment Mf is called the

rolling friction moment and has the value

Mf = rN tanα0. (2.23)

The constant r tan α0 is denoted by s and represents the coefficient of rolling friction

s = r tan α0. (2.24)

The rolling friction moment Mf become

Mf = sN. (2.25)

The rolling friction moment Mf is proportional to the normal reaction N and has the

expression

Mf = −sN
ω

|ω|
. (2.26)

2.2.2 Rolling with moment of friction

In this case, Eq. (2.10) becomes

Iω̇ = rFf − sN. (2.27)

From Eq. (2.8) and Eq. (2.27) one can write

v̇ =
2

3
(sin α − cos α tan α0)g =

2 sin(α − α0)

3 cos α0
g. (2.28)
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In this case, the rolling condition is

sin(α − α0)

cos α0
≤ 3

sin(φ − α0)

cos φ
, (2.29)

or

tan α ≤ tan φ + 2(tanφ − tan α0). (2.30)

Eq. (2.30) can also be written as

α ≤ Φ, (2.31)

where the angle Φ can be obtained from

tan Φ = tanφ + 2(tan φ − tan α0). (2.32)

For the motion of the homogeneous disk on the plane of slope α, the following three

cases are possible:

Case 1. α < α0 (Eq. (2.28)). The disk has no motion.

Case 2. α0 ≤ α < Φ (Eq. (2.32)). The disk has pure rolling (no sliding) motion.

Case 3. α ≥ Φ. The disk has rolling and sliding motion simultaneously .

2.3 Impact with moment of rolling friction

2.3.1 Simple pendulum and energetic coefficient of restitution

The planar rigid pendulum with mass M and length L pivots around the frictionless

pin joint O, and the tip impacts an inelastic horizontal surface S at point C (Fig. 2.2).

The fixed cartesian reference frame xOyz is chosen. The inclination of the pendulum
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with respect to the vertical axis Oy is the angle θ. At the impact point C, the coefficients

of kinetic and static friction are µk and µs, the coefficient of rolling friction is s, and

the energetic coefficient of restitution is e∗. The ratio ωs/ωa of the separation angular

speed ωs = ω(ts) and the approach angular speed ωs = ω(ta) at impact is calculated.

The kinetic energy of the pendulum is

T =
1

2
Iω · ω, (2.33)

where I is the mass moment of inertia with respect to the joint O and ω = ωk is the

angular velocity of the pendulum.

The position of the contact point C relative to the center of axis O can be expressed as

rC = −xı − y, (2.34)

where x = L sin θ and y = L sin θ. Thus, the velocity of the point C is

vC = ω × rC . (2.35)

The differential of the impulse dp = dptı + dpn at the contact point C satisfies the

Amontons-Coulomb law

dpt = µkdpn, vC · ı < 0,

−µkdpn < dpt < µkdpn, vC · ı = 0,

dpt = −µkdpn, vC · ı > 0,

(2.36)
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Figure 2.2: Impact of a rigid simple pendulum with a rough horizontal surface.
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where pt is the tangential impulse and pn is the normal impulse to the surface S at the

point C.

The impact equation for the pendulum can be written as

(

∂T

∂ω

)

ts

−

(

∂T

∂ω

)

ta

=
∂vC

∂ω
· (ptı + pn) +

∂ω

∂ω
· Mf , (2.37)

where ta and ts are the approach and separation moments at the impact and Mf =

−spn
ω

|ω|
is the rolling friction moment at the point C.

The slip reverses in the direction of the compression impulse pc simultaneously with the

transition from compression to restitution. From Eq. (2.53) one can obtain the angular

velocity ω as a function of the normal impulse pn = p

ω(p) =















ωa −
x + µky + s

I
p, 0 < p ≤ pc,

−
x − µky − s

I
(p − pc), pc < p < ps,

(2.38)

where ps is the separation impulse.

In order to have slip reversal, the following condition must be satisfied µs < tan θ.

Otherwise the pendulum sticks after compression (ωs = 0).

The compression impulse pc can be calculated from  · vC(pc) = 0 as

pc =
Iωa

x + µky + s
. (2.39)

The work of the normal impulse during compression Wn(pc) is

Wn(pc) =

∫ pc

0
 · vC(p)dp = −

x(x + µky + s)

2I
p2

c . (2.40)
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The work of the normal impulse during restitution Wn(ps) − Wn(pc) is

Wn(ps) − Wn(pc) =

∫ pf

pc

 · vC(p)dp =
x(x − µky − s)

2I
(ps − pc)

2 . (2.41)

The energetic coefficient of restitution e∗ (Stronge [7]) can be written as

e2
∗ = −

Wn(ps) − Wn(pc)

Wn(pc)
=

x − µky − s

x + µky + s

(

ps

pc

− 1

)2

. (2.42)

From Eq. (2.42) one can compute the separation impulse ps as

ps = pc

(

1 + e∗

√

x + µky + s

x − µky − s

)

. (2.43)

The ratio of the angular velocities of separation ω(ps) and approach ω(0) becomes

ωs

ωa

=
ω(ps)

ω(0)
= e∗

√

x − µky − s

x + µky + s
. (2.44)

For no rolling friction moment (s = 0) the ratio
ωs

ωa

becomes

ωs

ωa

= e∗

√

1 − µk cot θ

1 + µk cot θ
. (2.45)

2.3.2 Double pendulum and kinematic coefficient of restitution

In Fig. 2.3, two uniform rigid rods 1 and 2 with lengths L1 and L2 and masses

m1 and m2 are joined at point B by a frictionless pin joint in order to form a planar

double pendulum. The end of the rod 1 pivots around a frictionless pin joint at O. The

free end of the rod 2 strikes a rough horizontal surface S at the point C. The rods



18

have the angles of inclination from axis Oy denoted by θ1 and θ2 and angular speeds

of magnitudes ω1 = θ̇1 and ω2 = θ̇2, respectively. The fixed cartesian reference frame

xOyz is chosen. At the impact point C, the coefficients of kinetic and static friction

are µk and µs, the coefficient of rolling friction is s, and the kinematic coefficient of

restitution is e. The separation angular speeds ωs1 and ωs2 are calculated with respect

to the approach angular speeds ωa1 and ωa2 and the initial angles θ10 and θ20. Also, the

difference ∆T = Ts − Ta of the kinetic energies of separation and approach Ts and Ta at

the impact is computed. The positions of the center of masses C1 and C2 of the rods 1

and 2 are

rC1 = −
L1

2
sin θ1ı −

L1

2
cos θ1, (2.46)

rC2 = −(L1 sin θ1 +
L2

2
sin θ2)ı − (L1 cos θ1 +

L2

2
cos θ2). (2.47)

The velocities of the center of masses C1 and C2 are

vC1 = ṙC1, and vC2 = ṙC2. (2.48)

The position of the contact point C is

rC2 = −(L1 sin θ1 +
L2

2
sin θ2)ı − (L1 cos θ1 +

L2

2
cos θ2). (2.49)

The velocity of the contact point C is vC = ṙC .

The kinetic energies T1 and T2 of the rods 1 and 2 are

Ti =
1

2
(mivCi · vCi + ICiωi · ωi), i = 1, 2, (2.50)
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Figure 2.3: Impact of a rigid double pendulum with a rough horizontal surface.
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where ICi is the mass moment of inertia with respect to the point Ci and ωi = ωik is

the angular velocity of the rod i, for i = 1, 2.

The kinetic energy T of the double pendulum is

T = T1 + T2. (2.51)

The differential of the impulse dp = dptı + dpn at the contact point C satisfies the

Amontons-Coulomb law

dpt = µkdpn, vC · ı < 0,

−µkdpn < dpt < µkdpn, vC · ı = 0,

dpt = −µkdpn, vC · ı > 0,

(2.52)

where pt is the tangential impulse and pn is the normal impulse to the surface S at the

point C.

The impact equation for the rod i can be written as

(

∂T

∂ωi

)

ts

−

(

∂T

∂ωi

)

ta

=
∂vC

∂ωi

· (ptı + pn) +
∂ωi

∂ωi

· Mf , i = 1, 2, (2.53)

where ta and ts are the approach and separation moments at the impact and Mf =

−spn
ω2

|ω2|
is the rolling friction moment at the point C.

The velocities of approach and separation vCa and vCs of the point C can be expressed

as

vCa = vC(ta), and vCs = vC(ts). (2.54)
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In order to have slip reversal, the following condition must be satisfied µs <

∣

∣

∣

∣

pt

pn

∣

∣

∣

∣

, other-

wise the rod 2 sticks after compression (vCs · ı = 0).

Using the kinematic coefficient of restitution e (Newton [1]) the following equation can

be written

e = −
vCs · 

vCa · 
. (2.55)

From Eqs. (2.53) and (4.107) one can compute the angular velocities of separation ω1s

and ω2s for the rods 1 and 2.

The kinetic energy dissipated by friction ∆T is

∆T = T (ts) − T (ta), (2.56)

where T (ta) and T (ts) are the kinetic energies before and after the impact for the double

pendulum.

2.4 Results

2.4.1 Simple pendulum

In this section, results from computer simulations are presented. The rigid pendulum

impacting a rough horizontal surface is shown in Fig. 2.2. The energetic coefficient of

restitution is e∗ = 0.3. Figures 2.4, 2.5, and 2.6 illustrate the ratio of the separation

angular speed ωs, the approach angular speed ωa, and the coefficient e∗ as a function of

the angle θ at the impact. The effect of the energy dissipated by friction at the impact

between the pendulum and the horizontal surface S is shown. At small values of the

angle θ the contact sticks (ωs = 0), if the coefficient of static friction is sufficiently large
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(µs ≥ tan θ). Also, for small angles θ the work done by the friction force Ft is large in

comparison with the work done by the normal contact force Fn.

In Fig. 2.4 the pendulum with the length L = 0.2 m and the contact radius r =

0.002 m is considered. The ratio (ωs/ωa)/e∗, that characterizes the energy dissipated

by friction at the impact, is plotted as function of the angle θ using different values of

the coefficient of kinetic friction µk. The results for no friction moment (Mf = 0) are

represented with continuous line and the results for nonzero friction moment (Mf 6= 0)

are represented with dotted line. For larger values of µk, larger differences between the

ratios considering zero and nonzero friction moment Mf are observed. For example, for

θ = 1.044 rad and µk = 0.3 the difference of ratios is dI = 0.010, and for θ = 1.044 rad

and µk = 0.9 the difference of ratios is dIV = 0.025.

In Fig. 2.5 the length L of the pendulum is modified while all the other parameters

are kept constant. Less energy is dissipated by friction for larger values of L. For example,

for r = 0.002 m, µk = 0.3 = constant, and θ = 1.044 rad, the ratio (ωs/ωa)/e∗ = 0.784

corresponds to L = 0.040 m and the ratio (ωs/ωa)/e∗ = 0.801 corresponds to L = 0.060

m.

A relation can also be established between the contact radius r of the pendulum and

the energy dissipated at impact (Fig. 2.6). Less energy is dissipated by friction for smaller

values of r. For example, for L = 0.200 m, µk = 0.5 = constant, and θ = 1.044 rad, the

ratio (ωs/ωa)/e∗ = 0.729 corresponds to r = 0.001 m and the ratio (ωs/ωa)/e∗ = 0.706

corresponds to r = 0.004 m.
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Figure 2.4: The influence of the coefficient µk and the angle θ on the ratio (ωs/ωa)/e∗
for Mf = 0 and Mf 6= 0.
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Figure 2.5: The influence of the length L and the angle θ on the ratio (ωs/ωa)/e∗ for
Mf 6= 0.
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Figure 2.6: The influence of the radius r and the angle θ on the ratio (ωs/ωa)/e∗ for
Mf 6= 0.
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2.4.2 Double pendulum

The rigid double pendulum impacting a rough horizontal surface is shown in Fig. 2.3.

For the rods 1 and 2, the following data are given: the masses m1 = m2 = 3 kg, the

lengths L1 = L2 = 2 m, the mass moments of inertia with respect to the axis Oz are

IC1 = IC2 = 1 kg m2, the inclination angles with respect to the axis Oy are θ1 = 20◦

and θ1 = 30◦, and the magnitudes of the angular speeds are ω1 = 1 rad/s and ω2 = 2

rad/s.

Figure 2.7 illustrates the energy variation ∆T as function of the coefficient e, for different

values of the coefficient s and constant coefficient of kinetic friction µk = 0.3 = constant.

For s = 0 (no moment of rolling friction) and 0.45 < e < 0.65, the energy variation ∆T

is positive and a paradoxical increase of energy is observed. Using a moment of rolling

friction, negative energy variation ∆T is obtained and energetically consistent results

for s > 0.16 and 0.45 < e < 0.65. For example, for e = 0.55 and s = 0, it results

∆T = 2.455 J, and for e = 0.55 and s = 0.16, it results ∆T = −1.783 J. For s = 0.08,

the energy variation ∆T is negative for 0.45 < e < 0.55 and positive for 0.55 < e < 0.65.

For example, for s = 0.08 and e = 0.5, it results ∆T = −0.779 J, and for s = 0.08 and

e = 0.6, it results ∆T = 0.926 J.

Figure 2.8 illustrates the energy variation ∆T as function of the coefficient µk,

for different values of the coefficient s and constant kinematic coefficient of restitution

e = 0.5 = constant. For s = 0 (no moment of rolling friction) and 0.3 < µk < 0.4, the

energy variation ∆T is positive and a paradoxical increase of energy is observed. Using

a moment of rolling friction, negative energy variation ∆T is obtained and energetically

consistent results for s > 0.25 and 0.3 < µk < 0.4. For example, for µk = 0.35 and s = 0,
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Figure 2.7: The influence of the coefficients s and e on the energy variation ∆T .
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it results ∆T = 1.538 J, and for µk = 0.35 and s = 0.25, it results ∆T = −2.354 J.

For s = 0.15, the energy variation ∆T is negative for 0.3 < µk < 0.35 and positive for

0.35 < µk < 0.4. For example, for s = 0.15 and µk = 0.3, it results ∆T = −2.344 J, and

for s = 0.15 and µk = 0.4, it results ∆T = 3.037 J.

Using the kinematic coefficient of restitution e to model the impact, for no rolling

friction moment (Mf = 0), the energy variation ∆T is positive in the cases considered

above and paradoxical results are observed (Kane and Levinson [5]). Using a rolling

friction moment (Mf 6= 0), the energy variation ∆T becomes negative for sufficiently

large values of s and energetically consistent results are obtained.

2.5 Conclusions

The results show the influence of the moment Mf on the energy dissipated by friction

during the impact for different values of the parameters θ, s, µk, e, L, and r. More

energy is dissipated during impact for larger values of s. For the simple pendulum, using

the rolling friction moment, the ratios of the separation angular speed, approach angular

speed, and the energetic coefficient of restitution are compared for a constant value of

µk and different values of the length L and the radius r of the beam. For the double

pendulum, when the kinematic coefficient of restitution e is used to model the impact,

an energy increase is observed in some cases. One can partially solve this problem and

obtain energetically consistent results introducing the moment of rolling friction Mf to

the impact equations. In order to validate the analytical results, experimental data are

needed.
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Figure 2.8: The influence of the coefficients s and µk on the energy variation ∆T .



Chapter 3

Effect of prismatic joint inertia

The effect of prismatic joint inertia on dynamics of kinematic chains with friction

is investigated. The mathematical model of a planar kinematic chain consisting of a

prismatic joint sliding along a link that is connected to a revolute joint is developed.

The influence of the slider inertia on the position of the application point of the joint

forces is analyzed. The effect of the slider link inertia on the dynamic response of a spatial

robot arm with feedback control is analyzed using Kane’s formulation. Larger values of

the initial condition response characteristics are observed for larger values of the slider

link inertia. Also, the effect of the prismatic joint inertia on the dynamic parameters of

a planar mechanism is exemplified using inverse dynamics based on the Newton-Euler’s

method. Numerical results are obtained and compared for zero and larger values of the

prismatic joint inertia at different speeds. The numerical simulations reveal that the

effect of slider inertia may be negligible at low speeds, but becomes significant at high

speeds.

3.1 Introduction

The center of mass simplifies the translational motion of the body, but it gives no

information about the distribution of the mass on the body. The mass of the body rep-

resents the amount of matter contained in the body and the resistance of the body to

translational motion. The quantity that is dependent on how the mass is distributed and

30
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describes the resistance of the body to rotation is the mass moment of inertia. Consid-

eration of dynamic modeling is an important part in the analysis, design and control of

mechanical systems such as mechanisms, robots, manipulators, etc. In general, mechan-

ical systems have several desirable features relative to the coupling contact forces such

as higher speed, improved mobility and control, and reduced power consumption. The

dynamics of mechanical systems with frictional contacts has been developed and applied

to many industrial applications. Examples in this area include fingered grippers [23] and

manipulation systems [24]. The contact normal and tangential forces can be determined

if the contacts are known for systems with independent constraints [25]. The contact

forces cannot be uniquely determined when the constraints are not all independent. It

has been shown that the initial value problem has no solution or multiple solutions for

some initial conditions [26].

The dynamics of elastic manipulators with prismatic joints has been investigated

by Kim [27] and Buffinton [28]. They examine the motion of a single beam moving

longitudinally over two distinct points. The equations of motion are formulated by

treating the beam’s supports as kinematical constraints imposed on an unrestrained

beam. Gordaninejad, Azhdari, and Chalhoub [29] examined the motion of a planar robot

arm consisting of one revolute and one prismatic joint. Benson and Talke [30] investigated

the dynamics of a magnetic recording slider of a rigid disk during its transition between

sliding and flying. The slider is modeled as a three degree-of-freedom system, capable of

lift, pitch, and roll. In addition to the load from the suspension arm and the impulsive

load arising from slider/disk collisions, they also considered the load due to inertia.
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Do and Yang [31] solved the inverse dynamics of the Stewart platform manipulator

[32] assuming the joints are frictionless and the moment of inertia of the legs has not

been updated as a function of configuration in the simulation algorithm for path tracking.

Ji [33] considered the question of leg inertia and studied its effect on the dynamics of

the Stuart platform. The dynamic and gravity effects as well as the viscous friction

at the joints were considered for the inverse dynamic formulation of the general Stuart

platform presented by Dasgupta and Mruthyunjaya [34]. Important research related to

the subject of the present paper has been done by Xi, Sinatra, and Han [35]. The authors

investigated the effect of leg inertia on dynamic parameters of sliding-leg hexapods.

The theory presented in this study can be applied to the dynamic modeling of parallel

manipulators with prismatic joints [36].

In the present paper, the effect of slider link mass moment of inertia on the dynamics

of mechanical systems with friction is investigated. The mathematical model of an open

kinematic chain is developed using Lagrange’s method for unconstrained and constrained

systems. Also, a controlled three-link planar robot arm is modeled by using Kane’s

method. A conventional feedback control [37] is used for the robot. The three-link

planar mechanism and the controlled three-link planar robot arm with prismatic joint

are presented as applications. The influence of the prismatic joint mass moment of inertia

on dynamic parameters as the application point of the joint contact forces, angular speed

of the links, actuator torques and forces is analyzed.

In general, the effect of prismatic joint inertia may be negligible at low speeds, but

becomes significant at high speeds. Hence, prismatic joint inertia must be included for
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modeling high-speed machine tools, manipulators, and robots. This problem is impor-

tant, because in some cases the moment of inertia of the prismatic joints is comparable

to the moment of inertia of the links and may significantly influence the dynamics of the

system at high speeds.

3.2 Mathematical background

The planar two-link mechanical system shown in Fig. 3.1 is considered. The carte-

sian reference frame xOOyO is chosen. The mobile reference frame xOy attached to the

link 1 is considered. The angle between the axis Ox and OxO is θ. For the links 1 and

2 the masses are m1 and m2, and the center of mass locations are designated by C1 and

C2. The length of the link 1 is L. The distance OC2 is denoted by r. The coefficient of

friction between the links 1 and 2 is µ. The gravitational acceleration g is considered.

The gravitational forces G1 and G2 that act on the links 1 and 2 are

G1 = −m1g (sin θı + cos θ) , G2 = −m2g (sin θı + cos θ) . (3.1)

The reaction force F12 and the friction force Ff12 exerted by the link 1 to the link 2 can

be written as

F12 = N , Ff12 = −µNsign(ṙ)ı. (3.2)

The reaction force F21 and the friction force Ff21 exerted by the link 1 to the link 2 are

F21 = −F12, Ff12 = −Ff12. (3.3)
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Figure 3.1: a. Open kinematic chain with slider and friction; b. Force diagram for the
link 1; c. Force diagram for the link 2.
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3.2.1 Newton-Euler equations

The dynamic system presented above is considered (Fig. 3.1) and the equations of

motion are derived by using the Newton-Euler’s method.

The position rP of the point P is

rP = pı, (3.4)

where P is the application point of the reaction force N between the links 1 and 2.

The sum of the moments for the link 2 with respect to the center of mass C2 is zero

(Fig. 3.1.c)

(rP − rC2
) × F12 − IC2

α = 0. (3.5)

One can solve the linear equation Eq. (3.5) with respect to p

p = r +
IC2

N
θ̈. (3.6)

The sum of the forces that act on the link 2 is zero (Fig. 3.1.c)

G2 + F12 + Ff12 − m2aC2
= 0. (3.7)

One can project Eq. (3.7) on  direction and find the reaction force N

N = m2(g cos θ + 2ṙθ̇ + rθ̈). (3.8)
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One can project Eq. (3.7) on ı direction

m2(g sin θ − rθ̇2 + r̈) + µNsign(ṙ) = 0. (3.9)

The sum of the moments for the link 1 with respect to the point O is zero (Fig. 3.1.b)

rC1
× G1 + rP × F21 − IC1O

α = 0. (3.10)

One can project Eq. (3.10) on k direction

1

6
m1L1(3g cos θ + 2Lθ̈) + Np = 0. (3.11)

From Eqs. (3.9) and (3.11) one can derive and solve the equations of motion with respect

to r and θ.

3.2.2 Lagrange equations (unconstrained system)

For the mechanical system shown in Fig. 3.1 the equations of motion for the uncon-

strained system are derived using Lagrange’s method. The polar coordinates q1 = r and

q2 = θ are chosen as generalized coordinates.

The positions rC1
and rC2

of the centers of mass C1 and C2 are

rC1
=

L

2
ı, rC2

= rı. (3.12)
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The angular velocity ω and angular acceleration α of the links 1 and 2 are

ω = θ̇k, α = θ̈k. (3.13)

The velocities vC1
and vC2

of the points C1 and C2 can be expressed as

vC1
= ṙC1

+ ω × rC1
, vC2

= ṙC2
+ ω × rC2

. (3.14)

The position rP of the point P is

rP = pı, (3.15)

where P is the application point of the reaction force F12.

The sum of the moments for the link 2 with respect to C2 is zero (Fig. 3.1.c)

(rP − rC2
) × F12 − IC2

α = 0. (3.16)

One can solve the linear equation Eq. (3.16) with respect to p

p = r +
IC2

N
θ̈. (3.17)

The sum of the forces that act on the link 2 is zero

G2 + F12 + Ff12 − m2aC2
= 0. (3.18)
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One can project the constraint Eq. (3.18) on  direction and find the reaction force N

N = m2(g cos θ + 2ṙθ̇ + rθ̈). (3.19)

The Lagrange differential equations are

d

dt

(

∂T

∂q̇i

)

−
∂T

∂qi

= Qi, i = 1, 2, (3.20)

where T is the total kinetic energy and Qi is the generalized force corresponding to qi.

The kinetic energy T1 for the link 1 is

T1 =
1

2
IOω · ω, (3.21)

where IO is the mass moment of inertia of the link 1 with respect to the point O.

The kinetic energy T2 for the link 2 is

T2 =
1

2
m2vC2

· vC2
+

1

2
IC2

ω · ω, (3.22)

where IC2
is the mass moment of inertia of the link 2 with respect to the center of mass

C2.

The total kinetic energy is

T = T1 + T2. (3.23)

The velocity vP1
and vP2

of the point P attached to the links 1 and 2 can be written as

vP1
= ω × rP , vP2

= ω × rP + ṙP . (3.24)
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The relative velocity vP21
of the link 2 with respect to the link 1 is

vP21
= vP2

− vP1
= ṙP . (3.25)

The generalized force Qi for the link i is

Qi =
∂vC1

∂q̇i

· G1 +
∂vC2

∂qi

· G2 +
∂vP1

∂q̇i

· (F21 + Ff21) +

∂vP2

∂q̇i

· (F12 + Ff12), i = 1, 2. (3.26)

From Eqs. (3.26), (3.25), and (3.3) one can write the generalized force Qi as

Qi =
∂vC1

∂q̇i

· G1 +
∂vC2

∂qi

· G2 +
∂vP21

∂q̇i

· (F12 + Ff12), i = 1, 2. (3.27)

From Eq. (3.20) one can derive and solve the equations of motion with respect to q1 and

q2.

3.2.3 Lagrange equations (constrained system)

For the mechanical system shown in Fig. 3.1 the equations of motion for the con-

strained system are derived using Lagrange’s method. The rod (link 1) and the slider

(link 2) are considered separately. The motion of the slider is expressed using the polar

coordinates r and θ. To express the motion of the rod the angle φ is introduced. One

can chose the generalized coordinates q1 = r, q2 = θ, and q3 = φ.

The constraint equation is

θ − φ = 0. (3.28)
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The Lagrange differential equations are

d

dt

(

∂T

∂q̇i

)

−
∂T

∂qi

= Qi, i = 1, 2, 3, (3.29)

where T is the total kinetic energy and Qi is the generalized force corresponding to qi.

The kinetic energy T1 for the link 1 is

T1 =
1

2
IOω1 · ω1, (3.30)

where ω1 = φ̇k.

The kinetic energy T2 for the link 2 is

T2 =
1

2
m2vC2

· vC2
+

1

2
IC2

ω2 · ω2, (3.31)

where ω2 = θ̇k and vC2
= ṙC2

+ ω2 × rC2
.

The total kinetic energy is

T = T1 + T2. (3.32)

The velocity vP1
of the point P attached to the link 1 can be written as

vP1
= ω1 × rP1

, (3.33)

where rP1
= p (cos φı + sin φ).

The velocity vP2
of the point P attached to the link 2 can be written as

vP2
= ω2 × rP2

+ ṗı, (3.34)
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where rP2
= p (cos θı + sin θ).

The generalized force Qi for the link i is

Qi =
∂vC1

∂q̇i

· G1 +
∂vC2

∂qi

· G2 +
∂vP1

∂q̇i

· (F21 + Ff21) +

∂vP2

∂q̇i

· (F12 + Ff12), i = 1, 2, 3. (3.35)

The sum of the moments for the link 2 with respect to C2 is zero

(rP2
− rC2

) × F12 − IC2
α2 = 0, (3.36)

where α2 = θ̈k.

One can solve Eq. (3.36) and find p.

p = r +
IC2

N
θ̈. (3.37)

From Eq. (3.29), for i = 3, one can find the reaction force N .

From Eq. (3.29), for i = 1, 2, and by using the constraint Eq. (3.28), one can derive and

solve the equations of motion.

3.2.4 Kane equations

For the system shown in Fig. 3.1, equations of motion are derived by using Kane’s

method. There are two generalized speeds u1 = ṙ and u2 = θ̇ corresponding to the

generalized coordinates r and θ. To find the value of the reaction force N one can

introduce the third generalized speed u3 on Ox-axis. Thus, from Eq. (3.25) one can
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write the relative velocity vP21
as

vP21
= ṙP + u3. (3.38)

From Eqs. (3.24) and (3.38) the velocity vP2
becomes

vP2
= vP1

+ vP21
= ω × rP + ṙP + u3. (3.39)

Furthermore, the velocity vC2
becomes

vC2
= ω × rC2

+ ṙC2
+ u3. (3.40)

The generalized forces Qj associated to the generalized speeds uj can be computed as

Qj =
∂vC1

∂uj

· G1 +
∂vC2

∂uj

· G2 +
∂vP1

∂uj

· (F21 + Ff21) +

∂vP2

∂uj

· (F12 + Ff12), j = 1, 2, 3. (3.41)

One can use Eq. (3.3) and rewrite Eq. (3.41) as

Qj =
∂vC1

∂uj

· G1 +
∂vC2

∂uj

· G2 +
∂vP21

∂uj

· (F12 + Ff12), j = 1, 2, 3. (3.42)

The generalized inertia forces F ∗
j can be written as

F ∗
j =

2
∑

i=1

∂vCi

∂uj

· (−miaCi
) +

2
∑

i=1

∂ωi

∂uj

· (−ICi
αi), j = 1, 2, 3. (3.43)
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One can write Kane’s equations associated to the generalized speeds uj as

F ∗
j + Qj = 0, j = 1, 2, 3. (3.44)

From Eq.(3.44), for j = 3, one can find the reaction force N .

From Eq.(3.44), for j = 1, 2, one can derive and solve the equations of motion with

respect to r and θ.

3.3 Kinematic chains

The basic theory presented in the previous section can be applied for the study of

open and closed kinematic chains with prismatic joints.

3.3.1 Open kinematic chains

The equations of motion for the three-link spatial robot arm with prismatic joint

(Fig. 3.2) are derived by using Kane’s method. The cartesian reference frame xOOyOzO is

chosen. The mobile reference frame xiOyizi is attached to the link i, i = 1, 2. The robot

arm has three degrees of freedom, those are the angles q1, q2, and the distance q3. The

link i has length Li, mass mi, center of mass Ci, and central inertia dyadic ĪCi
, i = 1, 2, 3.

The coefficient of friction between the links 2 and 3 is µ. Friction is negligible for the

rotational joints. The gravitational acceleration g is considered. The initial conditions

at t = 0 are q1(0) = q10, q2(0) = q20, q3(0) = q30 m, and q̇1(0) = q̇2(0) = q̇3(0) = 0.

The feedback control is implemented using the actuator torques Mc01 and Mc12 applied

to the rotational joints O and A and the actuator force Fc23 acting to the translational

joint at A. The desired final state of the system is q1 = q1f , q2 = q2f , and q3 = q3f . The
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Figure 3.2: Three-link robot arm with prismatic joint.

kO
k1

k2

zO



45

position rCi
of the center of mass Ci, i = 1, 2, 3, is

rC1
=

L1

2
ı1,

rC2
= L1ı1 +

L2

2
ı2, (3.45)

rC3
= L1ı1 + q3ı2.

The angular velocities and angular accelerations of the links 1 and 2 are

ω1 = q̇11, α1 = q̈11, (3.46)

ω2 = q̇11 + q̇2k2, α2 = q̈11 + q̈2k2. (3.47)

The velocities vCi
and accelerations aCi

of the points Ci, i = 1, 2, 3, can be expressed as

vCi
= ṙCi

+ ωi × rCi
, aCi

= v̇Ci
+ ωi × vCi

. (3.48)

The gravitational forces G1, G2, and G3 that act on the links 1, 2 and 3 are

G1 = −m1g1,

G2 = −m2g (sin q2ı2 + cos q22) , (3.49)

G3 = −m3g (sin q2ı2 + cos q22) .

The reaction force F23 and the friction force Ff23 exerted by the link 2 to the link 3 can

be written as

F23 = N 2, Ff23 = −µNsign(q̇3)ı2. (3.50)
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The reaction force F32 and the friction force Ff32 exerted by the link 1 to the link 2 are

F32 = −F23, Ff32 = −Ff23. (3.51)

The feedback control of the arm is realized using the actuator torques and forces

Mc01 = −[c11q̇1 + c12(q1 − q10)],

Mc12 = −[c21q̇2 + c22(q2 − q20)] +

(

m2

2
L2 + m3q3

)

g cos q2 + NL1 cos q2 +

+ [Fc23 − µNsign(q̇3)]L1 sin q2,

Fc23 = −[c31q̇3 + c32(q3 − q30)] + m3g sin q2 + µNsign(q̇3), (3.52)

where c11, c12, c21, c22, c31, c32 are constants.

The position of the application point P of the reaction force F23 is

rP = L1ı1 + pı2, (3.53)

where p = q3 +
IC3

N
q̈2.

The velocities vP2
and vP3

of the point P attached to the links 2 and 3 can be written

as

vP2
= ω2 × rP , vP3

= ω2 × rP + ṙP . (3.54)

The relative velocity vP32
between the links 3 and 2 is

vP23
= vP3

− vP2
= ṙP . (3.55)
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One can define the generalized speeds ui = q̇i corresponding to the generalized coordi-

nates qi, i = 1, 2, 3. To find the reaction force N one can introduce the generalized speed

u4 on the direction Ox2 in the expression of the relative velocity vP23

vP23
= ṙP + u42. (3.56)

Thus, the velocities vP3
and vC3

become

vP3
= ω2 × rP + ṙP + u42,

vC3
= ω2 × rC3

+ ṙC3
+ u42. (3.57)

The generalized forces Qj associated to the generalized speeds uj can be written as

Qj =
∂vC1

∂uj

· G1 +
∂vC2

∂uj

· G2 +
∂vC3

∂uj

· G3 +
∂ω1

∂uj

· Mc01 +

∂(ω2 − ω1)

∂uj

· Mc12 +
∂vP23

∂uj

· (F23 + Ff23 + Fc23), j = 1, 2, 3. (3.58)

The generalized inertia forces Fj can be written as

Fj =
3

∑

i=1

∂vCi

∂uj

· (−miaCi
) +

3
∑

i=1

∂ωi

∂uj

· (−ĪCi
· αi), j = 1, 2, 3. (3.59)

One can write Kane’s equations associated to the generalized speeds uj as

Fj + Qj = 0, j = 1, 2, 3. (3.60)
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From Eq. (4.120), for j = 4, one can find the reaction force N .

From Eq. (4.120), for j = 1, 2, 3, one can derive and solve the equations of motion with

respect to the generalized co-ordinates q1, q2, and q3.

3.3.2 Closed kinematic chains

The three moving link planar mechanism shown in Fig. 3.3 is considered. The angle

between the link 1 and Ox-axis is the driver angle θ1. A motor torque Mm is acting

on the link 1 while an external torque Me is applied on the link 3. The distance from

the center of mass C2 of the link 2 to the application point P of the reaction force F23

between links 2 and 3 is d. The coefficient of friction between the links 2 and 3 is µ. The

link i has the length Li, the mass mi, the center of mass Ci, the mass moments of inertia

ICi
, the linear acceleration aCi

, and the angular acceleration αi, for i = 1, 2, 3. The

gravitational force that acts on the link i is Gi = −mig, where g is the gravitational

acceleration. The distance d and the motor torque Mm can be computed using the

Newton-Euler’s equations. The Newton-Euler’s equations for the link 3 are

m3aC3
= F03 + F23 + Ff23 + G3, (3.61)

IC3
α3 = C3C × F03 + C3P × F23 + Me, (3.62)

where F03 is the reaction force from the link 0 (the ground) on the link 3, and F23 =

F23(− sin θ3ı + cos θ3) is the reaction force from the link 2 on the link 3.

The friction force Ff23 has opposite direction to the relative translational velocity v23
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Figure 3.3: Three-link mechanism with prismatic joint.

θ1 θ3
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between the links 2 and 3

Ff23 = −
v23

|v23|
µF23. (3.63)

The application point P (xP , yP ) of the reaction force F23 is not known but it is located

on the sliding direction

tan θ3 =
yP

xP − OA
, (3.64)

where θ3 is the angle between the link 3 and the Ox-axis.

The Newton-Euler’s equations for the link 2 are

m2aC2
= F12 + F32 + Ff32 + G2, (3.65)

IC2
α2 = C2P × F32, (3.66)

where F12 is the reaction force from the link 1 on the link 2, F32 = −F23, and Ff32 =

−Ff23.

From Eqs. (4.70), (4.71), (4.64), (3.64), (4.68), and (4.69) one can compute the reaction

forces F03, F23, F12, the friction force Ff23, and the position of the point P (xP , yP ).

The Newton-Euler’s equations for the link 1 are

m1aC1
= F01 + F21, (3.67)

IC1
α1 = C1C2 × F21 + C1O × F01 + Mm, (3.68)

where F01 is the reaction force from the link 0 (the ground) on the link 1, and F21 =

−F12.
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From Eqs. (4.66) and (4.67) one can compute the reaction force F01 and the motor torque

Mm.

3.4 Results

3.4.1 Open kinematic chain

In this section, results from computer simulations are presented. Numerical data

captured from the three-link spatial robot arm shown in Fig. 3.2 is analyzed. The

lengths of the links 1 and 2 are L1 = L2 = 0.1 m. The masses of the links 1, 2, and 3

are m1 = m2 = 1 kg, and m3 = 0.2 kg. The mass moments of inertia of the links 1,

2, and 3 are IC1x = 0, IC1y = IC1z = 0.01 kg m2, IC2x = 0, IC2y = IC2z = 0.01 kg m2,

IC3x = IC3y = 0, and IC3z = IC3
. The coefficient of friction between the links 2 and 3 is

µ = 0.5. The gravitational acceleration is g = 9.807 m/s2. The initial conditions at t = 0

are q1(0) = π/6 rad, q2(0) = π/4 rad, q3(0) = 0.01 m, and q̇1(0) = q̇2(0) = q̇3(0) = 0.

The feedback control is implemented using the constants c11 = c12 = 10, c21 = c22 = 0.1,

and c31 = c32 = 1. The desired final state of the system is q1f = q2f = π/3 rad,

and q3f = 0.1 m. The initial conditions response of the co-ordinate q2(t) for IC3
= 0,

IC3
= 0.05 kg m2, IC3

= 0.1 kg m2, and IC3
= 0.15 kg m2 is illustrated in Fig. 3.4.a-d.

One can define the error ei(t) = qi(t) − qif for the co-ordinate qi, i = 1, 2, 3. The

maximum overshoot eimax = max |ei(t)| and the settling time tsi (ei(t) < ei0 for t > tsi
),

can be computed for i = 1, 2, 3, where ei0 is a constant. The maximum overshoot e2max

and the settling time ts2
are computed for different values of IC3

, where e20
= 10−3

(Table 1). For IC3
= 0, the maximum overshoot is approximately zero (e2max ≈ 0) and

the settling time is ts2
= 4.83 s. Larger values of e2max and ts2

are observed for larger
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Figure 3.4: The dynamic response of the co-ordinate q2 for the robot arm in the cases:
a. IC3 = 0, b. IC3 = 0.05 kg m2, c. IC3 = 0.1 kg m2, and d. IC3 = 0.15 kg m2.
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values of IC3
for the same control parameters values. For example, for IC3

= 1 kg m2,

the maximum overshoot is e2max = 0.049 and the settling time is ts2
= 12.66 s.

Similar results can be obtained for the generalized co-ordinates q1 and q3.

IC3
[kg m2] 0 0.05 0.1 0.15

e2max ≈0 0.02 0.049 0.068

ts2
[s] 4.83 7.42 12.66 18.45

Table 3.1: The maximum overshoot e2max and the settling time ts2
computed for different

values of IC3
.

3.4.2 Closed kinematic chain

Simulation results captured from the planar three-link mechanism shown in Fig. 3.3

are presented. The cartesian reference frame xOOyO is considered. The masses of the

links 1, 2, and 3 are m1 = 0.5 kg, m2 = 0.2 kg, and m3 = 0.8 kg, respectively. The

lengths of the links 1 and 3 are L1 = 0.5 m and L3 = 0.8 m. The distance between the

points O and A is OA = 0.2 m. The mass moments of inertia for the links 1 and 3 are

IC1
= 0.01 kg m2 and IC3

= 0.042 kg m2. An external torque Me = 500 Nm is applied

on the link 3. The angle θ1 = π/3 is chosen for the simulations. The gravitational

acceleration is g = 9.807 m/s2.

Figures 3.5 and 3.6 illustrate the distance d and the torque Mm plotted for different

values of the mass moment of inertia IC2
and angular speeds ω1 = θ̇1, while the coefficient

of friction is µ = 0.5=constant. The distance d is zero (d = 0) for IC2
= 0. In Fig. 3.5

larger values of d are observed for larger values of IC2
and ω1. For example, for ω1 = 20

rad/s and IC2
= 0.004 kg m2 it results d = 0.0009 m, and for ω1 = 20 rad/s and

IC2
= 0.008 kg m2 it results d = 0.0019 m. Also, for IC2

= 0.006 kg m2 and ω1 = 10
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rad/s it results d = 0.0003 m, and for IC2
= 0.006 kg m2 and ω1 = 30 rad/s it results

d = 0.0037 m. Simultaneously, smaller values of Mm are observed for larger values of

IC2
and ω1 (Fig. 3.6). For example, for ω1 = 20 rad/s and IC2

= 0.004 kg m2 it results

Mm = 725.145 Nm, and for ω1 = 20 rad/s and IC2
= 0.008 kg m2 it results Mm = 723.158

Nm. Also, for IC2
= 0.006 kg m2 and ω1 = 10 rad/s it results Mm = 789.958 Nm, and

for IC2
= 0.006 kg m2 and ω1 = 30 rad/s it results Mm = 614.474 Nm. The distance d

increases and significantly modifies the value of the torque Mm for relatively high values

of the angular velocity ω1.

3.5 Conclusions

The effect of prismatic joint inertia on the dynamic parameters of planar kinematic

chains is presented. The application point of the slider contact forces changes its position

for different values of the slider inertia. The effect of the slider inertia may be negligible

at low speeds but becomes significant at relatively high speeds. Dynamic response char-

acteristics of a planar robot arm are compared for different values of the slider inertia.

The maximum overshoot may be negligible for small values of the mass moment of iner-

tia and for some control parameters. Larger values of the maximum overshoot and the

settling time are observed for larger values of the mass moment of inertia for the same

control parameters. Experimental data are needed in order to validate the analytical

results.
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Figure 3.5: The influence of the mass moment of inertia IC2
and angular speed ω1 on

the distance d.

Graph I II III IV
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Figure 3.6: The influence of the mass moment of inertia IC2
and angular speed ω1 on

the motor torque Mm.
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Chapter 4

Rigid body contact and impact

In this study a planar rigid-link mechanism with a rotating slider joint and clearance

is investigated. The influence of the clearance gap size, crank speed, friction and impact

parameters on the nonlinear behavior of the system are analyzed. Periodic response is

observed for zero clearance and also at low crank speeds and low values of the coefficient

of restitution for the mechanism with clearance. Chaotic motion is observed for relatively

high crank speeds. The sliding joint with clearance is modelled using a kinematic coeffi-

cient of friction and a coefficient of restitution. Nonlinear dynamics tools are applied to

analyze the simulation data captured from the connecting rod of the mechanism. The

largest Lyapunov exponent is used as an index for studying the stability of the system

and a diagnostic tool.

4.1 Introduction

One of the important factors that influence the dynamic stability and the perfor-

mance of mechanisms is the joint clearance. In the last years, many researchers have been

studied the effects of the clearance on the motion of mechanical systems. Farahanchi

and Shaw [38] considered the model of a planar, rigid-link mechanism with clearance at

the slider joint. They observed that the response of the system appears to be chaotic,

although periodic motion become more common as dissipation effects are increased.

Abarbanel et al. [39, 40, 41] developed dynamic tools for analyzing observed chaotic

57
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data. Nonlinear dynamic tools were presented by Nayfeh and Balachadran [42]. Re-

lated papers in the field of chaotic motion in mechanical systems are those of Kapitaniak

[43], and Ott et al. [44]. Deck and Dubowski [45] studied the problems encountered

in predicting the dynamic response of machines with clearance connections. Recent re-

search has contributed to the development of simulation methods for specific multibody

systems. Gilmore and Cipra [46] discussed a simulation method for planar dynamical

mechanical systems with changing topologies. The information provided by the rigid

bodies’ boundary descriptions was used to automatically predict and detect impacts.

Conti et al. [47] described a unified method to predict the contact changes due to kine-

matics. Contact and friction constraints were used by Pfeiffer [48] to study the stick-slip

phenomena. The first trials to model impacts with friction can be found in Brach [49],

and Wang and Mason [50]. Brach [49] considered only single collisions and formulates

the impact equations using Newton’s law. Wang and Mason [50] applied a time-scaling

method and solve the impact equations by using Poisson’s Law and Coulomb’s law for a

single contact. Jean and Moreau [51] reformulated Newton’s law in an unilateral manner

for multiple impacts with friction. In this work, the models of rigid and flexible body

impacts described by Marghitu et al. [52, 53, 54] were used. In a closely related paper,

Marghitu and Stoenescu [55] developed a dynamic analysis of children gait.

In this section, the dynamic analysis of a planar rigid-link mechanism with prismatic

joint and clearance is investigated [56, 57]. Periodic motion is observed for the system

with no clearance. The response of the system with clearance is chaotic at relatively

high crank speeds and low values of the coefficient of restitution.
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4.2 R-RTR mechanism

In this section, the planar R-RTR mechanism shown in Fig. 4.1 is considered. A fixed

reference frame xAyz is chosen. The lengths of the links are L1 = 0.001 m, L2 = 0.470 m,

and L3 = 0.047 m. The links 1 and 2 are rectangular prisms with the depth d = 0.001 m

and height h = 0.01 m. The link 3 has the height h3 = 0.02 m, and the depth d3 = 0.05

m. The mass density of the links is ρ = 7850 Kg/m3. The center of mass locations of the

links i = 1, 2, 3 are designated by Gi(xGi
, yGi

, 0). The initial conditions θ1(0) = π/6

rad and ω1(0) = θ̇1(0) = 0 rad/s are given.

Generalized coordinates

The number of degrees of freedom for the mechanism can be computed using the relation

M = 3n − 2c5 − c4,

where n is the number of moving links, c5 is the number of pin joints or slider joints

with one degree of freedom, and c4 is the number of pin joints or slider joints with two

degrees of freedom.

In our case, n = 3, c5 = 4 (A(R), B(R), C(T ), C(R)), c4 = 0, and the mechanism

has one degree of freedom (M = 1). One can choose the angle q1(t) = θ1(t) as the

generalized coordinate.

Kinematics

a. Position vectors

The position vector rG1
of the center of the mass G1 is

rG1
= xG1

ı + yG1
, (4.1)
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Figure 4.1: Rigid body diagram for the R-RTR mechanism with rotating prismatic joint.
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where xG1
and yG1

are the coordinates of G1

xG1
=

L1

2
cos q1, yG1

=
L1

2
sin q1. (4.2)

The position vector rG2
of the center of the mass G2 is

rG2
= xG2

ı + yG2
, (4.3)

where xG2
and yG2

are the coordinates of G2

xG2
= L1 cos q1 +

L2

2
cos θ2, yG2

= L1 sin q1 +
L2

2
sin θ2, (4.4)

where θ2 = arctan
L1 sin q1

L1 cos q1 − AC
.

The position vector rG3
of the center of the mass G3 is

rG3
= ACı. (4.5)

b. Velocity vectors

The velocity vector vG1
is the derivative with respect to time of the position vector rG1

vG1
= ṙG1

= ẋG1
ı + ẏG1

, (4.6)

where

ẋG1
= −

L1

2
q̇1 sin q1, ẏG1

=
L1

2
q̇1 cos q1. (4.7)
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The velocity vector vG2
is the derivative with respect to time of the position vector rG2

vG2
= ṙG2

= ẋG2
ı + ẏG2

, (4.8)

where

ẋG2
= −L1q̇1 sin q1 −

L2

2
θ̇2 sin θ2,

ẏG2
= L1q̇1 cos q1 +

L2

2
θ̇2 cos θ2.

(4.9)

The velocity vector vG3
is zero

vG3
= 0. (4.10)

c. Acceleration vectors

The acceleration vector aG1
is the double derivative with respect to time of the position

vector rG1

aG1
= r̈G1

= ẍG1
ı + ÿG1

, (4.11)

where

ẍG1
= −

L1

2
q̈1 sin q1 −

L1

2
q̇2
1 cos q1,

ÿG1
=

L1

2
q̈1 cos q1 −

L1

2
q̇2
1 sin q1.

(4.12)

The acceleration vector aG2
is the double derivative with respect to time of the position

vector rG2

aG2
= r̈G2

= ẍG2
ı + ÿG2

, (4.13)

where

ẍG2
= −L1q̈1 sin q1 − L1q̇

2
1 cos q1 −

L2

2
θ̈2 sin θ2 −

L2

2
θ̇2
2 cos θ2,

ÿG2
= L1q̈1 cos q1 − L1q̇

2
1 sin q1 +

L2

2
θ̈2 cos θ2 −

L2

2
θ̇2
2 sin θ2.

(4.14)
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The acceleration vector of aG3
is zero

aG3
= 0. (4.15)

d. Angular velocity vectors

The angular velocity vectors of the links 1, 2, and 3 are

ω = q̇1k,

ω2 = ω3 = θ̇2k.

(4.16)

e. Angular acceleration vectors

The angular acceleration vectors of the links 1, 2, and 3 are

α = q̈1k,

α2 = α3 = θ̈2k.

(4.17)

Force analysis

a. Masses

The masses of the links 1, 2 and 3 are

m1 = ρL1hd,

m2 = ρL2hd,

m3 = m3a − m3b,

where m3a = ρL3h3d3, m3b = ρL3hd.
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b. Gravitational forces

The gravitational forces of the link 1, 2, and 3 are

G1 = −m1g,

G2 = −m2g,

G3 = −m3g.

(4.18)

c. Mass moments of inertia

The mass moment of inertia of the link 1 with respect to the center of mass G1 is

IG1
=

m1

12

(

L2
1 + h2

)

.

The mass moment of inertia of the link 2 with respect to the center of mass G2 is

IG2
=

m2

12

(

L2
2 + h2

)

.

The mass moment of inertia of the link 3 with respect to the center of mass G3 is

IG3
=

m3a

12

(

L2
3 + h2

3

)

−
m3b

12

(

L2
3 + h2

)

.

d. Motor torque

The motor torque acts on the link 1

Mm = Mk. (4.19)
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For a D.C. electric motor, M = M0

(

1 −
ω1

ω0

)

, where M0 and ω0 are given in catalogues.

In our case, M0 = 1 Nm, and ω0 = 4 rad/s (Fig. 4.2).

4.2.1 Newton-Euler’s method

In this section the equation of motion for the mechanism is solved by using Newton-

Euler’s formulation. There are three rigid bodies in the system and one can write the

Newton-Euler equations for each link.

a. Link 1

The Newton-Euler equations for the link 1 are (see Fig. 4.3.a)

m1aG1
= F01 + F21 + G1, (4.20)

IG1
α1 = G1A × F01 + G1B × F21 + Mm, (4.21)

where F01 is the joint reaction of the ground 0 on the link 1 at the point A, and F21 is

the joint reaction of the link 2 on the link 1 at the point B

F01 = F01xı + F01y,

F21 = F21xı + F21y.

(4.22)

b. Link 2

The Newton-Euler equations for the link 2 are (see Fig. 4.3.b)

m2aG2
= F12 + F32 + G2, (4.23)
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Figure 4.2: The variation of the driver motor torque with respect to the angular speed
for the R-RTR mechanism.
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Figure 4.3: Rigid body diagram for the R-RTR mechanism.

a.

b.

c.



68

IG2
α2 = G2B × F12 + G2P × F32, (4.24)

where F12 is the joint reaction of the link 1 on the link 2 at the point B and F32 is the

joint reaction of the link 3 on the link 2 at the point P

F12 = −F21,

F32 = F32xı + F32y.

(4.25)

The application point P (xP , yP ) of the reaction force F32 is not known but it is located

on the sliding direction

tan θ2 =
yP

xP − AC
, (4.26)

where xP , yP are the coordinates of the point P .

The reaction force F32 is perpendicular to the sliding direction BD

F32 · BD = 0. (4.27)

c. Link 3

The Newton-Euler equations for the link 3 are (see Fig. 4.3.c)

m3aG3
= F23 + F03 + G3 = 0, (4.28)

IG3
α3 = CP × F23, (4.29)

where

F23 = −F32,

F03 = F03xı + F03y.

(4.30)
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There are ten scalar equations with ten unknowns. From the Eqs. (4.39), (4.40), (4.44),

(4.45), (4.26), (4.42), and (4.47) one can find the unknown joint reaction forces F01x,

F01y, F21x, F21y, F32x, F32y, F03x, F03y, and the coordinates xP and yP of the point P .

Knowing the reaction forces and the position vector rP as functions of q1(t), q̇1(t), and

q̈1(t), one can derive the equation of motion for the mechanism from Eq. (4.48).

4.2.2 Lagrange’s method

In this section the equation of motion for the mechanism is solved using Lagrange’s

formulation. The Lagrange differential equation for the mechanism with one degree of

freedom is

d

dt

(

∂T

∂q̇1

)

−
∂T

∂q1
= Q, (4.31)

where T is the total kinetic energy of the system, and Q is the generalized force.

The kinetic energy T1 for the link 1 is

T1 =
1

2
m1vG1

· vG1
+

1

2
IG1

ω1 · ω1. (4.32)

The kinetic energy T2 for the link 2 is

T2 =
1

2
m2vG2

· vG2
+

1

2
IG2

ω2 · ω2. (4.33)

The kinetic energy T3 for the link 3 is

T3 =
1

2
IG3

ω3 · ω3. (4.34)
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The total kinetic energy is

T =
3

∑

i=1

Ti. (4.35)

The generalized force Qi for the link i is

Qi =
∂rGi

∂q1
· Gi. (4.36)

The generalized force Qm for the motor is

Qm =
∂ω1

∂q̇1
· Mm = M0

(

1 −
q̇1

ω0

)

. (4.37)

The total generalized force Q for the mechanism is

Q =
3

∑

i=1

Qi + Qm =
3

∑

i=1

∂rGi

∂q1
· Gi +

∂ω1

∂q̇1
· Mm. (4.38)

For the link 1 some calculations are given

T1 =
1

2
(IG1

+
1

4
L2

1m1)q̇
2
1.

∂T1

∂q̇1
= (IG1

+
1

4
L2

1m1)q̇1.

∂rG1

∂q̇1
= −

1

2
L1(sin q1ı + cos q1).

Q1 =
∂rG1

∂q̇1
· (−m1g) = −

1

2
m1gL1 cos q1.
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From Eqs. (4.31), (4.35), and (4.38) one can derive and solve the equation of motion for

the mechanism.

Remark: Lagrange’s method does not require the calculation of the joint forces.

4.3 R-RTR mechanism with friction

The mechanism described in Section 4.2 is considered. The coefficient of kinetic

friction is µk = 0.4. The mechanism has one degree of freedom. One can chose the angle

q1(t) = θ(t) as the generalized coordinate for the system.

4.3.1 Newton-Euler’s method

The equation of motion for the mechanism is solved using Newton-Euler’s formu-

lation. There are three rigid bodies in the system and one can write the Newton-Euler

equations for each link.

a. Link 1

The Newton-Euler equations for the link 1 are (see Fig. 4.3.a)

m1aG1
= F01 + F21 + G1, (4.39)

IG1
α1 = G1A × F01 + G1B × F21 + Mm, (4.40)
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where F01 is the joint reaction of the ground 0 on the link 1 at the point A, and F21 is

the joint reaction of the link 2 on the link 1 at the point B

F01 = F01xı + F01y,

F21 = F21xı + F21y.

(4.41)

b. Link 2

The reaction force F32 is perpendicular to the sliding direction BD

F32 · BD = 0. (4.42)

The friction force Ff32
that acts on the link 2 is

Ff32
= Ff = −

vC2

|vC2
|
µkF32. (4.43)

The Newton-Euler equations for the link 2 are (see Fig. 4.3.b)

m2aG2
= F12 + F32 + G2 + Ff32

, (4.44)

IG2
α2 = G2B × F12 + G2P × F32, (4.45)

where F12 is the joint reaction of the link 1 on the link 2 at the point B and F32 is the

joint reaction of the link 3 on the link 2 at the point P

F12 = −F21,

F32 = F32xı + F32y.

(4.46)
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c. Link 3

The Newton-Euler equations for the link 3 are (see Fig. 4.3.c)

m3aG3
= F23 + F03 + G3 − Ff32

, (4.47)

IG3
α3 = CP × F23, (4.48)

where

F23 = −F32,

F03 = F03xı + F03y.

(4.49)

There are eight scalar equations with eight unknowns. From the Eqs. (4.39), (4.40),

(4.44), (4.42), and (4.47) one can find the unknown joint reaction forces F01x, F01y, F21x,

F21y, F32x, F32y, F03x, F03y.

Knowing the reaction forces as functions of q1(t), q̇1(t), and q̈1(t), one can derive the

equation of motion for the mechanism from Eq. (4.45).

4.3.2 Kane’s method

The equation of motion for the mechanism is solved using Kane’s formulation.

The total kinetic energy is

T =
3

∑

i=1

Ti, (4.50)

where Ti is the kinetic energy of the link i.



74

Generalized speeds

One can chose the generalized speed

u1 = q̇1. (4.51)

The velocity vector of the point C2 located on the link 2 can be written as

vC2
= vG2

+ ω2 × G2C, (4.52)

where G2C = rC − rG2
.

In order to take in consideration the reaction force N between the links 2 and 3 one can

introduce a new generalized speed u2 in the expression of the relative velocity vector

vC32

vC23
= vC2

− vC3
+ u2e2n, (4.53)

where e2n = − sin θ2ı + cos θ2 and θ2 = arctan
L1 sin q1

L1 cos q1 − AC
. Thus, one can write

vG3
= vC3

= −u2e2n.

Generalized forces

The reaction force F32 of the link 3 on the link 2 is

F32 = N = Ne2n. (4.54)

The reaction force F23 of the link 3 on the link 2 is

F23 = −F32 = −N. (4.55)
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The friction force Ff32
that acts on the link 2 is

Ff32
= Ff = −

vC2

|vC2
|
µkN. (4.56)

The friction force Ff23
that acts on the link 3 is

Ff23
= −Ff32

= −Ff . (4.57)

The generalized forces Qj associated to the generalized speeds uj , for j=1,2, can be

computed as

Qj =
3

∑

i=1

∂vGi

∂uj

· Gi +
∂vC2

∂uj

· (N + Ff ) +
∂vC3

∂uj

· (−N − Ff ) +
∂ω1

∂uj

· Mm. (4.58)

Generalized inertia forces

The forces F ∗
j can be written as

F ∗
j =

3
∑

i=1

∂vGi

∂uj

· (−miaGi
) +

3
∑

i=1

∂ωi

∂uj

· (−IGi
αi). (4.59)

Kane’s equations

One can write two Kane equations associated to the generalized speeds u1 and u2

F ∗
j + Qj = 0, j = 1, 2. (4.60)

From Eqs. (4.113) and (4.120) one can find the the reaction force N and the equation

of motion for the mechanism.
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One can write the angle θ2 as

θ2 =
π

2
−

q1

2
, (4.61)

the vector e2n as

e2n = − cos
q1

2
ı + sin

q1

2
, (4.62)

and the reaction force N between the links 2 and 3 as

N = m3g sin
q1

2
. (4.63)

4.3.3 Kineto-static analysis

In this section, the mechanism with no clearance (one degree of freedom) is con-

sidered (Fig. 4.1). Friction forces act at the rotational and translational joints. The

equation of motion is known and the reaction forces are computed. A Newtonian ap-

proach is used, that is, the method of consecutive approximations.

For the translational joint between the links i and j, the friction force Ffji acts on

the link i at the contact surface and is proportional to the coefficient of friction µ. The

force Ffji has opposite direction to the relative translational velocity vij between the

links i and j

Ffji = −
vij

|vij |
µFji, (4.64)

where vij = vi − vj .

The friction forces induce a moment Mfji that acts at the rotational joint between the

links i and j. The moment Mfji is proportional to the coefficient of friction µ, the radius

r of the joint, and has opposite sense to the relative angular velocity ωij between the
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links i and j

Mfji = −sign (ωij) µrFji, (4.65)

where ωij = ωi − ωj .

The Newton-Euler equations for the link 1 are (see Fig. 4.3.a)

m1aC1
= F01 + F21 + G1, (4.66)

IC1
α = C1A × F01 + C1B × F21 + Mf21. (4.67)

The Newton-Euler equations for the link 2 are (see Fig. 4.3.b)

m2aC2
= F12 + F32 + G2 + Ff32, (4.68)

IC2
α2 = C2B × F12 + C2Q × F32 + Mf12, (4.69)

where F12 = −F21 and Mf12 = −Mf21.

The Newton-Euler equations for the link 3 are (see Fig. 4.3.c)

0 = F23 + F03 + G3 + Ff23, (4.70)

IC3
α3 = CQ × F23 + Mf03, (4.71)

where F23 = −F32, and Ff23 = −Ff32.

The application point Q(xQ, yQ) of the reaction force F32 is not known but it is located
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on the sliding direction

tan q2 =
yQ

xQ − AC
, (4.72)

where tan q2 =
L1 sin q1

L1 cos q1 − AC
, and xQ, yQ are the coordinates of the point Q.

The method of consecutive approximations consists of the following steps:

1. Initially, the friction forces and moments are considered zero. From Eqs. (4.66),

(4.67), (4.68), (4.69), (4.70), (4.71), and (4.72) one can calculate the unknown joint

reaction forces F01x, F01y, F21x, F21y, F32x, F32y, F03x, F03y, and the coordinates xQ and

yQ.

2. Using the values of the reaction forces computed at the step 1, one can calculate

the friction force Ff32 and the friction moments Mf21, Mf03 from Eqs. (4.64) and

(4.65).

3. Using the value of the friction forces and moments computed at the step 2, one

can recalculate the reaction forces from Eqs. (4.66), (4.67), (4.68), (4.69), (4.70), (4.71),

and (4.72).

4. Using the new values of the reaction forces computed at the step 3, one can

recalculate the friction forces and moments from Eqs. (4.64) and (4.65).

5. Step 3 and step 4 are repeated until

∣

∣

∣F k
ij − F k+1

ij

∣

∣

∣ < ε

for all reaction forces Fij . The error ε ∈ R+ is known a priori, and F k
ij , F k+1

ij are the

magnitudes of the reaction forces Fij at two consecutive approximations.
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The method converges after a finite number of steps and the reaction forces with

frictions are calculated.

4.4 R-RTR mechanism with friction and clearance

In order to study the effects of clearances on the motion of a connecting rod in a

slider crank mechanism, a simplified model is used, shown in Fig. 4.1. The following

basic assumptions are considered. (i) All components are rigid. (ii) All motions occur in

a fixed plane. (iii) A motor with a variable torque is used to crank the mechanism. (iv)

The clearances for the slider are symmetrically placed about the nominal slider path,

that is, without clearance, and have a fixed magnitude. (v) The impacts between the

connecting rod and slider are instantaneous and are modelled using a constant coefficient

of restitution, a coefficient of friction, and a moment coefficient.

4.4.1 Equations of motion

Various methods are used to derive the equations of motion for the mechanism. It

is assumed that during the impacts the system position does not change, because the

impact time is very small. It is also assumed that the effect of finite forces is neglected

during the impact. When two bodies impact against each other, an unknown impulsive

force acts between them. The friction between the impact bodies introduces an tangent

impact force. Formulation of rigid body collision problems are based on two physical laws,

Coulomb’s law of dry friction and balance of momentum. To solve the impact equations,

additional relations are obtained using a coefficient of restitution and a coefficient of

friction.
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Figure 4.4 shows a planar slider joint where the backlash has been made very large

in order to make it clearly visible. Figure 4.5 illustrates a possible geometry for the slider

joint with clearance and the possible cases consist of: a) No contact (Fig. 4.5.a).

b) Contact or impact on a single point (Fig. 4.5.b).

c) Contact or impact on two opposed points (Fig. 4.5.c).

d) Contact or impact on two points on the same side (Fig. 4.5.d).

The conditions for switching from one case to a different one depend on the positions

of the links and the reaction forces at the contact points.

One can consider three lines (L, La and Lb) defined on the link 2, and four points (M ,

N , P , and Q) defined on the link 3 (see Fig. 4.1).

The equations corresponding to the line L, can be expressed as a function of the coordi-

nates of the links 1 and 2 as

Line L: y − m2x − n2 = 0,

where m2 = tan θ2 is the slope and n2 = L1 sin θ1 − m2 cos θ1 is the displacement of the

line L.

The equations corresponding to the lines La and Lb can be written as

Line La: y − max − na = 0,

Line Lb: y − mbx − nb = 0,

where ma = mb = m2 are the slopes and na = n2 −
l2

2 cos θ2
, nb = n2 +

l2
2 cos θ2

are the

displacements of the lines La and Lb.

The coordinates of the points M , N , P , Q can be expressed as functions of the coordi-

nates of the link 3 as
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Figure 4.4: Model of the R-RTR mechanism with rotating prismatic joint and clearance.
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Figure 4.5: Geometry of the slider joint with clearance for: a. no contact; b. contact
or impact on a single point; c. contact or impact on two points on the same side; d.
contact or impact on two opposed points.

a.
b.

c. d.
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Point P : xP = xC + r cos θ3, yP = yC + r sin θ3,

Point Q: xQ = xC + r cos(θ3 − θ30), yQ = yC + r sin(θ3 − θ30),

Point M :xM = xC + r cos(θ3 − θ30 + π), yM = yC + r sin(θ3 − θ30 + π),

Point N : xN = xC + r cos(θ3 + π), yN = yC + r sin(θ3 + π),

where xC = AC, yC = 0 are the coordinates of the point C, r =
√

L2
3 + (l2 + c)2/2 is

the rotation radius of the link 3, and θ30 = 2 arctan
L3

l2 + c
is the angle 6 MCN .

Using the expressions above, one can set the position conditions corresponding to the

four cases shown in Fig. 4.2 as following:

Case a) No conditions are necessary.

Case b) Point P is on the line La

yP − maxP − na ≈ 0. (4.73)

Case c) Point P is on the line La and point N is on the line Lb

yP − maxP − na ≈ 0,

yN − mbxN − nb ≈ 0. (4.74)

Case d) Points P and Q are on the line La

yP − maxP − na ≈ 0,

yQ − maxQ − na ≈ 0. (4.75)
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Impacts can occur when the joint is in either case b), c) or d). The impact conditions

depend on the relative linear velocities of the contact points. For example, in case b),

one can write the following impact condition

vn
P2

− vn
P3

≈ 0. (4.76)

where vn
P2

and vn
P3

are the normal velocities to the collision surface of the contact point

P between the links 2 and 3.

The contact conditions also depend on the reaction forces between the links at the contact

points. For example, in case b), the force condition can be written as

Nn
P2

− Nn
P3

≈ 0. (4.77)

where Nn
P2

and Nn
P3

are the reaction forces between the links 2 and 3 at the contact

point P.

The motion of the contact point during the impact can be described by one of the

following two cases:

1. The contact point is slipping along surface while interacting with it in the normal

direction. Since contact is maintained and slipping occurs, the normal and tangential

components of the contact forces can be represented for dry friction as Ft = −µk Fn.

2. The contact point is not slipping along but interacting with it in the normal

direction. The tangential velocity vt of the contact point is vt = 0 subject to |Ft/Fn| ≤ µs.
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4.4.2 Simulation algorithm

The simulation algorithm for the mechanism automatically determines when a change

in the topology occurs and reformulate the equations of motion to reflect the changes in

the system topology. The equations of motion depend on the contact and impact condi-

tions. Sets of nonlinear equations are solved for contact and sets of linear equations are

solved for impact.

The algorithm consisting of the following steps was written:

Step 1) Set up the input data, those are, the masses, the mass moments of inertia,

the dimensions of the links, and the coordinates of the mechanism.

Step 2) Set up the initial conditions: the initial coordinates, velocities and acceler-

ations of the links. Also, set up the initial time, the final time, and the step integration

time.

Step 3) Verify the position contact conditions (4.73), (4.75), and (4.74). If case a)

then go to step 4). If case b) then go to step 5). If case c) then go to step 6). If case d)

then go to step 7).

Step 4) Solve the equations of motion for no contact and go to step 8).

Step 5) Verify the impact condition. If impact is detected then solve the equation

of motion for impact on a single point and go to step 8). If no impact is detected then

verify the force contact condition. If case a) then go to step 4). If case b) then integrate

the equation of motion for contact on a single point and go to step 8).

Step 6) Verify the impact conditions. If impact is detected then solve the equation

of motion for impact on two points on the same side and go to step 8). If no impact is

detected then verify the force contact condition. If case a) then go to step 4). If case b)
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then go to step 5). If case c) then integrate the equation of motion for contact on two

points on the same side and go to step 8).

Step 7) Verify the impact conditions. If impact is detected then solve the equation

of motion for impact on two opposed points and go to step 8). If no impact is detected

then verify the force contact condition. If case a) then go to step 4). If case b) then go

to step 5). If case d) then integrate the equation of motion for contact on two opposed

points and go to step 8).

Step 8) Increment the integration time with the step integration time. If the inte-

gration time is less than the final time then go to step 3).

Step 9) Export the output data for analyzing.

Next, the equations of motion for the previous cases are derived.

4.4.3 No contact

In this section, the mechanism with two degrees of freedom is considered (Fig. 4.6).

One can choose the generalized coordinates q1 = θ1 and q2 = θ2. The equation of motion

is derived using the Lagrange’s method

d

dt

(

∂T

∂q̇i

)

−
∂T

∂qi

= Qi, i = 1, 2 (4.78)

where T is the kinetic energy, qi is the generalized coordinate, Qi is the generalized force

associated with the coordinate qi. The kinetic energy T1 for the link 1 is

T1 =
1

2
m1vG1

· vG1
+

1

2
IG1

ω1 · ω1, (4.79)
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Figure 4.6: Rigid body diagram for the R-RTR mechanism with prismatic joint and
clearance in the case of no contact.
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where ω1 = q̇1k.

The kinetic energy T2 for the link 2 is

T2 =
1

2
m2vG2

· vG2
+

1

2
IG2

ω2 · ω2, (4.80)

where ω2 = q̇2k.

The kinetic energy T is

T = T1 + T2. (4.81)

One can write the generalized force Q1 as

Q1 = −

(

1

2
m1 + m2

)

L1g cos q1. (4.82)

One can write the generalized force Q2 as

Q2 = −
1

2
m2L2g cos q2. (4.83)

From Eqs. (4.78), (4.81), and (4.82), one can write

(

m1L
2
1

4
+ m2L

2
1 + IG2

)

q̈1 +
1

2
m2L1L2[q̈2 cos(q2 − q1) −

q̇2
2 sin(q2 − q1)] = −L1

(

1

2
m1 + m2

)

g cos q1. (4.84)

From Eqs. (4.78), (4.81), and (4.83), one can write

(

m2L
2
2

4
+ IG2

)

q̈2 +
1

2
m2L1L2

[

q̈1 cos(q2 − q1) + q̇2
1 sin(q2 − q1)

]

=
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= −
1

2
L2m2g cos q2. (4.85)

Equations (4.84) and (4.85) are used and the equation of motion is derived.

4.4.4 Contact on a single point

In this case, the mechanism has two degrees of freedom (Fig. 4.7.a). One can chose

the generalized coordinates q1 = θ1 and q2 = θ2. Kane’s equations are used and the

equation of motion is derived. The kinetic energy T is

T = T1 + T2 + T3. (4.86)

One can find the position vector rP of the contact point P (xP , yP ) solving the system

of equations

tan q2 =
yB − yP

xB − xP

, (xC − xP )2 + (yC − yP )2 = r2. (4.87)

The angular velocity and acceleration vectors ω3 and α3 of the link 3 are

ω3 = θ̇3k, α3 = θ̈3k, (4.88)

where θ3 = arctan
yP

xP − AC
.

One can chose the generalized speeds u1 and u2

u1 = q̇1, u2 = q̇2. (4.89)
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Figure 4.7: Geometry of the mechanism for: a. contact or impact on a single point; b.
contact or impact on two opposed points; c. contact or impact on two points on the
same side.

a.

b.

c.
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In order to take in consideration the reaction force NP between the links 2 and 3 acting

at the point P one can introduce a new generalized speed u3 in the expression of the

relative velocity vP23

vP23
= vP2

− vP3
+ u3e2n, (4.90)

where vP2
= vG2

+ ω2 × (rP − rG2
) and vP3

= ω3 × (rP − rC).

The reaction force NP of the link 3 on the link 2 is

NP = NPe2n. (4.91)

The friction force FfP
that acts on the link 2 at the point P is

FfP
= −

vP

|vP |
µkN. (4.92)

The generalized forces Qj , for j = 1, 2, 3, can be computed as

Qj =
3

∑

i=1

∂vGi

∂uj

· Gi +
∂vP2

∂uj

· (NP + FfP
) +

∂vP3

∂uj

· (−NP − FfP
) +

∂ω1

∂uj

· Mm. (4.93)

The generalized inertia forces F ∗
j , for j = 1, 2, 3, can be written as

F ∗
j =

3
∑

i=1

∂vGi

∂uj

· (−miaGi
) +

3
∑

i=1

∂ωi

∂uj

· (−IGi
αi). (4.94)

One can write three Kane equations associated to the generalized speeds uj , for j = 1, 2, 3

F ∗
j + Qj = 0. (4.95)
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From Eqs. (4.113) and (4.120) one can find the equation of motion for the mechanism

and the reaction force N .

4.4.5 Impact on a single point

Next, the mechanism with three generalized coordinates is considered (Fig. 4.7.a).

One can choose q3 = θ3 as the third generalized coordinate. To derive the equation of

motion for the impact, an integrated form of the Lagrange’s equations is used

(

∂T

∂q̇i

)

ts

−

(

∂T

∂q̇i

)

ta

= Pi, i = 1, 2, 3 (4.96)

where T is the kinetic energy, q̇i is the velocity associated with the generalized coordinate

qi, Pi is the generalized impulse associated with the coordinate qi, and ta, ts are the times

of approach and separation for the impact.

The kinetic energy T3 for the link 3 is

T3 =
1

2
IG3

ω3 · ω3 =
1

2
IG3

q̇2
3, (4.97)

where ω3 = q̇3k.

The kinetic energy T is

T = T1 + T2 + T3. (4.98)

One can write the left hand sides of Eq. (4.96) as

(

∂T

∂q̇i

)

ts

−

(

∂T

∂q̇i

)

ta

=
∂T

∂q̇i

/

q̇i=Ωi−ωi

, i = 1, 2, 3 (4.99)
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where ωi = ωi(ta) = q̇i(ta) and Ωi = ωi(ts) = q̇i(ts) are the angular velocities associated

with the coordinates qi before and after the impact.

One can express the position vector rP of the impact point P (xP , yP ) solving the system

of equations

tan q2 =
yB − yP

xB − xP

, tan q3 =
yC − yP

xC − xP

. (4.100)

The velocity vector of the impact point P is vP = ṙP .

The generalized impulses (right-hand sides of Eq. (4.96)) can be written as

Pi =
∂vP

∂q̇i

· (Fne2n + Fte2t), i = 1, 2, 3 (4.101)

where e2n = − sin q2ı + cos q2 and e2t = cos q2ı + sin q2 are the unit vectors normal

and tangential to the contact surface, and Fn, Ft are the normal and the tangential

components of the impulse momentum F .

For the link 1, one can write

(

m1L
2
1

4
+ m2L

2
1 + IG1

)

(Ω1 − ω1) +
1

2
m2L1L2(Ω2 − ω2)

cos(q2 − q1) = P1. (4.102)

For the link 2 one can write

(

m2L
2
2

4
+ IG2

)

(Ω2 − ω2) +
1

2
m2L1L2(Ω1 − ω1) cos(q2 − q1) = P2. (4.103)

For the link 3 one can write

IG3
(Ω3 − ω3) = P3. (4.104)
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The velocities vP2
and vP3

of the contact points P2 and P3 located on the links 2 and 3

can be expressed as

vP2
= vB + q̇2k × BP,

vP3
= q̇3k × CP, (4.105)

where vB = ṙB is the linear velocity of the joint B, and CP = rP − ACı.

One can write the velocity of approach va and separation vs for the impact as

va = vP2
(ta) − vP3

(ta), vs = vP2
(ts) − vP3

(ts). (4.106)

From the definition of the coefficient of restitution e, one can write

e = −
vsn

van

, (4.107)

where van = va · e2n and vsn = vs · e2n are the projections of the linear velocities of

approach and separation va and vs on the normal direction e2n.

The tangential component vst of the velocity of separation vector vs can be expressed

as

vst = (vs · e2t)e2t. (4.108)

There are two cases of impact with friction at the point P :

1. No slipping. The following condition must be satisfied

∣

∣

∣

∣

Ft

Fn

∣

∣

∣

∣

< µs. (4.109)
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In this case, the velocity vector vst is zero

vst = 0. (4.110)

From Eqs. (4.102), (4.103), (4.104), (4.107), and (4.110) one can find the unknown

variables Fn, Ft, and Ωi, i = 1, 2, 3.

2. Slipping. The following condition must be satisfied

∣

∣

∣

∣

Ft

Fn

∣

∣

∣

∣

> µs. (4.111)

In this case, the following relation can be written

Fte2n = −
vst

|vst|
µk |Fn| . (4.112)

From Eqs. (4.102), (4.103), (4.104), (4.107), and (4.112) one can find the unknown

variables Fn, Ft, and Ωi, i = 1, 2, 3.

4.4.6 Contact on two opposed points

In this case, the mechanism has one degree of freedom. One can chose q1 = θ1 as

the generalized coordinate (Fig. 4.7.b). Kane’s equations are used and the equation of

motion is derived.

One can chose the generalized speed

u1 = q̇1. (4.113)
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One can write the position vector rN of the contact point N(xN , yN ) as

rN = rP + 2re2t. (4.114)

There are two contact points between the link 2 and the link 3, those are P and N . In

order to take in consideration the reaction forces NP and NN acting at the points P and

N one can introduce the generalized speeds u2 and u3 in the expressions of the relative

velocities vP23
and vN23

vP23
= vP2

− vP3
+ u2e2n, vN23

= vN2
− vN3

+ u3e2n, (4.115)

where vP2
= vG2

+ω2 × (rP − rG2
), vP3

= ω3 × (rP − rC), vN2
= vG2

+ω2 × (rN − rG2
),

and vN3
= ω3 × (rN − rC).

The reaction forces NP and NN of the link 3 on the link 2 at the points P and N are

NP = NPe2n, NN = NNe2n. (4.116)

The friction forces FfP
and FfN

that act on the link 2 at the points P and N are

FfP
= −

vP

|vP |
µkNP , FfN

= −
vN

|vN |
µkNN . (4.117)

The generalized forces Qj , for j = 1, 2, 3, can be computed as

Qj =
3

∑

i=1

∂vGi

∂uj

· Gi +
∂vP2

∂uj

· (NP + FfP
) +

∂vP3

∂uj

· (−NP − FfP
)

+
∂vN2

∂uj

· (NN + FfN
) +

∂vN3

∂uj

· (−NN − FfN
) +

∂ω1

∂uj

· Mm. (4.118)
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The generalized inertia forces F ∗
j , for j = 1, 2, 3, can be written as

F ∗
j =

3
∑

i=1

∂vGi

∂uj

· (−miaGi
) +

3
∑

i=1

∂ωi

∂uj

· (−IGi
αi). (4.119)

One can write three Kane equations associated to the generalized speeds uj , for j = 1, 2, 3

F ∗
j + Qj = 0. (4.120)

From Eqs. (4.113) and (4.120) one can find the equation of motion for the mechanism

and the reaction forces NP and NN .

4.4.7 Impact on two opposed points

In this case, the mechanism has three generalized coordinates (Fig. 4.7.b). The link

2 impacts the link 3 simultaneously in two points, those are P (xP , yP ) and N(xN , yN ).

One can express the position vectors rP and rN of the impact points P (xP , yP ) and

N(xN , yN ) solving the system of equations

tan q2 =
yB − y

xB − x
, (xC − x)2 + (yC − y)2 = r2. (4.121)

The velocity vectors of the impact points P and N are vP = ṙP and vN = ṙN .

The generalized impulses can be written as

Pi =
∂vP

∂q̇i

· (FIne2n + FIte2t) +
∂vN

∂q̇i

· (FIIne2n + FIIte2t), i = 1, 2, 3, (4.122)
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where FIn, FIt and FIIn, FIIt are the normal and the tangential components of the im-

pulse momenta FI and FII .

The velocities vN2
and vN3

of the contact points N2 and N3 located on the links 2 and

3 can be expressed as

vN2
= vB + q̇2k × BN, vN3

= θ̇3k × CN, (4.123)

where CN = rN − ACı.

One can write the velocities of approach vIa, vIIa and separation vIs, vIIs for the impact

points P and N as

vIa = vP2
(ta) − vP3

(ta), vIIa = vN2
(ta) − vN3

(ta),

vIs = vP2
(ts) − vP3

(ts), vIIs = vN2
(ts) − vN3

(ts). (4.124)

From the definition of the coefficient of restitution e, one can write

e = −
vIsn

vIan

, e = −
vIIsn

vIIan

, (4.125)

where vIan = vIa · e2n, vIsn = vIs · e2n, vIIan = vIIa · e2n, and vIIsn = vIIs · e2n.

The tangential components vIst and vIIst of the velocity of separation vectors vIs and

vIIs can be expressed as

vIst = (vIs · e2t)e2t, vIIst = (vIIs · e2t)e2t. (4.126)

There are two cases of impact with friction:
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1. No slipping. The following two conditions must be satisfied

∣

∣

∣

∣

FIt

FIn

∣

∣

∣

∣

< µs and

∣

∣

∣

∣

FIIt

FIIn

∣

∣

∣

∣

< µs. (4.127)

In this case, the velocity vectors vIst and vIIst are zero

vIst = vIIst = 0. (4.128)

From Eqs. (4.102), (4.103), (4.125), and (4.128) one can find the unknown variables FIn,

FIt, FIIn, FIIt, and Ωi, i = 1, 2, 3.

2. Slipping. One of the following conditions must be satisfied

∣

∣

∣

∣

FIt

FIn

∣

∣

∣

∣

> µs or

∣

∣

∣

∣

FIIt

FIIn

∣

∣

∣

∣

> µs. (4.129)

In this case, the following two relations can be written

FIte2n = −
vIst

|vIst|
µk |FIn| , FIIte2n = −

vIIst

|vIIst|
µk |FIIn| . (4.130)

From Eqs. (4.102), (4.103), 4.125), and (4.130) one can find the unknown variables FIn,

FIt, FIIn, FIIt, and Ωi, i = 1, 2, 3.

4.4.8 Contact or impact on two points on the same side

Considering the endpoints, the line contact is kinematically equivalent to two point

contact along a line segment [46]. Thus, this case is similar to the case c) for contact or

impact on two opposite points (Fig. 4.7.c).
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4.5 Working Model and Mathematica simulations

For this section, the mechanism shown in Fig. 4.6 is considered. The numerical

results obtained solving the equation of motion for the mechanism using Mathematica

and data captured from the Working Model simulation are compared.

In order to compare the results, the initial conditions used in Mathematica are used

as input data in Working Model. For example, one can set up the variable torque M

of the motor in the “Properties” window from “Window” menu by choosing the motor

type “Torque” and introducing the value M = M0(1−ω/ω0), where M0, ω0 are constant

and ω is the rotational velocity of the driver link (see Fig. 4.8). The graph of the torque

M can be visualized by selecting the command “Torque transmitted” from “Measure”

menu.

Data from Working Model graphs can be exported choosing the command “Ex-

port...” from “File” menu. The data is exported in a plain text file for the desired

interval of time and accuracy. This way, the data can be imported and analyzed using

various tools. In this case, the simulated data for the motor torque M is exported from

Working Model and imported in a Mathematica program. To import a file in a Mathe-

matica program, one can use the command Import["file", "format"] which imports

data in the specified file format from a file and converts it to a Mathematica expression.

For example, if the Working Model exported file name is torque.dta, the command

to import the file in Mathematica can be Import["torque.dta", "Table"]. Also, the

motor torque M can be computed solving the equation of motion using Mathematica. In

our case, the Lagrange method was used. For a given interval of time, the torque M is

computed using Mathematica (Mc), and captured from the Working Model simulation
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Figure 4.8: Working Model simulation of the driver motor torque for the double pendu-
lum.
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(Ms). The graphs of the torques Mc and Ms are compared in Fig. 4.9. The error err(t)

between the numerical data Mc(t) and Ms(t) at the time t can be computed as

err(t) = |Mc(t) − Ms(t)|.

The relative maximal error errrel
max can be calculated as

errrel
max =

maxt∈[ti,tf ] err(t)

M0
· 100,

where [ti, tf ] is the time interval used for the analysis.

In our case, the value of the relative maximal error is computed with the Mathematica

program shown in Appendix A as errrel
max = 4.5%.

4.6 Results

In this section, results from computer simulations are presented using analysis tools.

In Fig. 4.4 the mechanism with slider clearance is shown. The masses of the links are

m1 = 0.008 kg, m2 = 0.038 kg, and m3 = 0.015 kg. The mass moments of inertia for the

links are IG1
= 6.733× 10−6 Kg m3, IG2

= 6.925× 10−4 Kg m3, and IG3
= 2.220× 10−6

Kg m3. The lengths of links are L1=0.1 m, L2=0.47 m, and L3 = 0.047 m. The nominal

width of the slider (link 3) is l3 = 0.025 m. The distance between the pin joints A and

C is AC = 0.28 m. The kinetic coefficient of friction µk=0.3, the static coefficient of

friction µs=0.35, and the coefficient of restitution e = 0.4 are used. These values are

constant through the investigation. The analysis is performed for different values of the
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Figure 4.9: Comparison of simulation results obtained using Mathematica and Working
Model.
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clearance c, varying the nominal angular velocity of the link 1, ω10. The torque of the

motor acting at joint A is chosen as Mm = M0(1 − ω1/ω10), where M0 = 1 Nm.

Figure 4.10.a shows the vertical trajectory for the center of mass G2 of the link 2,

yG2
, in the state space for zero clearance (c=0 mm). On the three-dimensional graphic,

the coordinate of the position yG2
(t) is plotted along the coordinate yG2

(t + T ) and the

coordinate yG2
(t + 2T ), where T = 3 is the time lag. The trajectory is a closed loop and

the motion is periodic. In this case, the largest Lyapunov exponent is λ = 0 and all the

other exponents are less than zero, that is, a periodic orbit.

Figure 4.10.b shows the vertical trajectory yG2
in the state space for nonzero clear-

ance c=1 mm, and ω10 = 200 rpm. The curve is not closed, that is, an unstable orbit.

The largest Lyapunov exponent calculated is positive, denoting the chaotic behavior of

the system.

Next the largest Lyapunov exponent is computed for a set of simulation results for

different values of the nominal angular velocity of the crank: ω10=50 rpm, ω10=100 rpm,

ω10=150 rpm, and ω10=200 rpm. Figure 4.11 shows the results for the clearances: c=0.5

mm (Fig. 4.11.a), c=1 mm (Fig. 4.11.b), and c=1.5 mm (Fig. 4.11.c). For constant

clearance (c=constant), and for larger values of the nominal angular velocity ω10 one

can obtain larger values of the Lyapunov exponent λ. For c=0.5 mm, ω10=50 rpm, it

results λ=20.54, and for c=0.5 mm, ω10=200 rpm, it results λ=26.55. Also, for constant

nominal angular velocity (ω10=constant), and for larger values of the clearance c one

can obtain larger values of the Lyapunov exponent λ. For ω10=100 rpm, c=0.5 mm, it

results λ=24.66, and for ω10=100 rpm, c=1.5 mm, it results λ=28.90.
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Figure 4.10: Trajectory of the vertical coordinate yG2
in the state space for: a. zero

clearance (c = 0 mm); b. nonzero clearance (c = 1 mm).

b.

a.
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Figure 4.11: Largest Lyapunov exponent computed for a set of values of the nominal
angular velocity ω10 and for the clearances: a. c = 0.5 mm; b. c = 1 mm; c. c = 1.5
mm.

c.

b.

a.
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4.7 Conclusions

The dynamic analysis of a planar mechanism with clearance at the sliding joint is

presented. The mathematical model shows that either of four possible contact modes

can occur during motion, and the conditions for switching from one case to another.

Either contacts or impacts are detected at the contact points between the connecting

rod and the slider.

The results present the influence of the slider clearance and the crank speed on

the stability of the system. The Lyapunov exponents are computed for the simulated

data and used as a diagnostic tool. For the mechanism with no clearance, the motion

is periodic. Chaotic motion is observed for the mechanism with slider clearance. The

largest Lyapunov exponents are compared for different crank speeds at different values

of the clearance. For a constant value of the clearance, larger Lyapunov exponents

correspond to higher crank speeds.



Chapter 5

Structural synthesis of spatial mechanisms

A new structural synthesis of spatial mechanisms is studied based on the system

group classification. New spatial system groups of different families with one, two, and

three independent contours are presented. Several structure configurations of system

groups with the same number of independent contours can be obtained for a given fam-

ily. The advantage of the analysis of spatial mechanisms based on the system group

classification lies in its simplicity. The solution of mechanisms can be obtained by com-

posing the partial solutions of system groups.

5.1 Introduction

Structural synthesis of mechanisms with the specified number of contours and joint

types is necessary in order to systematize the creative design process. The structural

synthesis of mechanisms was accomplished using the graph theory [58, 59]. Tsai [60]

applied the graph theory, combinatorial analysis, and computer algorithms to systemat-

ically enumerate all possible mechanism topologies having same degrees of freedom and

joint types. Belfiore and Pennestri [61] elaborated a method for automatically drawing

kinematic chains with specified number of contours using the graph theory. Sen and

Mruthynjaya [62] studied the singularities in the workspace of planar closed-loop manip-

ulators. The singularities are determined using the centers of rotation for closed kine-

matic chains with two degrees of freedom. A classification of Assur groups with multiple

joints is presented by Jinkui and Weiqing [63]. Designers also generated collections of

108
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mechanisms classified according to their functional characteristics[64]. Using the theory

of symmetric groups, Tuttle and Peterson [65] generated planar linkages by contraction

and expansion on a base structure. Huang and Huang [66] described a computer-aided

method to generate planar kinematic chains using the approach of contracted link ad-

jacency matrix. The methodology developed by Chiou and Kota [67] systematically

generates alternate mechanism concepts using symbolic matrices and constraint vectors

representing a library of mechanisms building blocks. Rao and Deshmukh [68] presented

a method to generate distinct kinematic chains that does not require the test of iso-

morphism. Shen, Ting and Yang [69] offers a general and versatile method to identify

the possible configurations up to twenty-nine types of basic kinematic chains contain-

ing up to four independent contours. A method of computer-aided structure synthesis

of multi-loop three-dimensional kinematic chains was presented by Shujun [70]. Struc-

tural synthesis of planar and spatial mechanisms with bars was studied by Popescu and

Ungureanu [71].

Given the required inputs to any single or multiple degree of freedom mechanism,

the mechanism can always be decomposed into system groups. The advantage of the

system group classification lies in the fact that the global solution can be obtained by

composing the partial solutions. Using subroutines for the system groups the spatial

mechanisms can be analyzed in a systematic way. The purpose of this article is to offer

a general method to determine all the configurations of complex spatial system groups

and to automate the process. Spatial mechanisms can always be decomposed into system

groups. The solution of mechanisms can be obtained by composing the partial solutions

of system groups.
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5.2 Degree of freedom and family

The number of independent coordinates that uniquely determine the relative po-

sition of two links connected by a joint is called the degree of freedom of the joint.

Alternatively, the term joint class is introduced. A joint is called of the j-th class if it

diminishes the relative motion of a rigid linked bodies by j degrees of freedom (i.e., j

scalar constraint conditions correspond to the given kinematic pair). It follows that such

a joint has (6j) independent coordinates.

The family f of a mechanism is the number of degrees of freedom that are eliminated

from all the links of the system. A free body in space has six degrees of freedom. A

system of family f consisting of n movable links has (6 − f)n degrees of freedom. Each

joint of class j diminishes the freedom of motion of the system by (j − f) degrees of

freedom. Denoting the number of joints of class k as ck, it follows that the number of

degrees of freedom M of a particular system is

M = (6 − f)n −
5

∑

j=f+1

(j − f)cj . (5.1)

In the literature this is referred to as the Dobrovolski formula.

For the general case of planar mechanisms, mechanisms of family f = 3, the number

of degrees of freedom M is calculated as

M = 3n −
5

∑

j=4

(j − 3)cj = 3n − 2c5 − c4, (5.2)

where n is the number of moving links, c5 is the number of full joints, and c4 is the

number of half joints. The most common types of planar and spatial joints are shown
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in Fig. 5.1. Two planar joints of the class 5 (one degree of freedom joints) are shown, a

slider joint in Fig. 5.1.a and a pin joint in Fig. 5.1.b. Figure 5.1.c represents a cylindrical

joint of the class 4 (two degrees of freedom joints). A spherical joint of the class 3 (three

degree of freedom joints) is shown in Fig. 5.1.d.

Of special interest are the kinematic chains which do not change their degree of

freedom after being connected to an arbitrary system. Kinematic chains defined this

way are called system groups. A structurally new system can be created connecting

them to or disconnecting them from a given system. For the case of planar systems,

from Eq. (5.2) one can obtain

3n − 2c5 = 0, (5.3)

according to which the number of system group links n is always even. The simplest

fundamental kinematic chain is the binary group with two links (n = 2) and three full

joints (c5 = 3). This binary group is called dyad.

The cartesian reference frame xOyz is chosen for the mechanical systems (Fig.5. 2).

The rotations about the axis are represented by R and the translations along the axis

are represented by T .

5.3 Independent contours

A contour or loop is a configuration described by a polygon consisting of links

connected by joints. The presence of loops can be used to determine the type of kinematic

chains. Closed kinematic chains have one ore more loops so that each link and each joint

is contained in at least one loop. A closed kinematic chain has no open attachment points.
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Figure 5.1: Types of joints: a. Slider joint (class 5); b. Pin joint (class 5); c. Cylindrical
joint (class 4); d. Spherical joint (class 3).

b.

d.c.

a.
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Figure 5.2: The cartesian spatial reference frame xOyz.
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An open kinematic chain contains no loops. Mixed kinematic chains are a combination

of closed and open kinematic chains.

A contour with at least one link that is not included in any other contour of the chain

is called independent contour. The number of independent contours N of a kinematic

chain can be computed as

N = c − n, (5.4)

where c is the number of joints, and n is the number of moving links.

Planar kinematic chains are presented in Fig.5. 3. The kinematic chain shown in

Fig. 5.3.a has two moving links 1 and 2 (n = 2), three joints (c = 3), and one independent

contour (N = c − n = 3 − 2 = 1). This kinematic chain is a dyad. In Fig. 5.3.b, a new

kinematic chain is obtained by connecting the free joint of the link 1 to the ground (link

0). In this case, the number of independent contours is also N = c − n = 3 − 2 = 1.

The kinematic chain shown in Fig. 5.3.c has three moving links 1, 2, and 3 (n = 3), four

joints (c = 4), and one independent contour (N = c − n = 4 − 3 = 1). A closed chain

with three moving links 1, 2, and 3 (n = 3), and one fixed link 0, connected by four

joints (c = 4) is shown in Fig. 5.3.d. This is a four-bar mechanism. In order to find the

number of independent contours, only the of moving links are considered. Thus, there

is one independent contour (N = c − n = 4 − 3 = 1). The kinematic chain presented

in Fig. 5.3.e has four moving links 1, 2, 3, and 4 (n = 4), and six joints (c = 6). There

are three contours: 1-2-3, 1-2-4, and 3-2-4. Only two contours are independent contours

(N = 6 − 4 = 2).

Spatial kinematic chains are depicted in Fig. 5.4. The kinematic chain shown in

Fig. 5.4.a has five links 1, 2, 3, 4, and 5 (n = 5), six joints (c = 6), and one independent



115

Figure 5.3: Planar kinematic chains.

e.

c. d.

b.
a.
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contour (N = c − n = 6 − 5 = 1). For the spatial kinematic chain shown in Fig. 5.4.b,

there are six links 1, 2, 3, 4, 5, and 6 (n = 6), eight joints (c = 8), and three contours

1-2-3-4-5, 1-2-3-6, and 5-4-3-6. In this case, two of the contours are independent contours

(N = c − n = 8 − 6 = 2).

5.4 Spatial system groups

One can determine the system groups for spatial mechanisms by analogy to the

system groups for the planar mechanisms. The system groups have the degree of freedom

M = 0. All possible system groups can be determined for each family of chains.

For the family f = 0, for system groups, from Eqs. (5.1) and (5.4) the mobility is

M = 6n − 5c5 − 4c4 − 3c3 − 2c2 − c1 = 0, (5.5)

and the number of moving links is

n = c − N. (5.6)

From Eqs. (5.5) and (5.6) one can express the number of joints of class 5 as

c5 = 6N − 5c1 − 4c2 − 3c3 − 2c4, (5.7)

and the number of moving links as

n = −N + c1 + c2 + c3 + c4 + c5. (5.8)
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Figure 5.4: Spatial kinematic chains.

a.

b.
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For the family f = 1, c1 = 0 and it results

c5 = 5N − 4c2 − 3c3 − 2c4, n = −N + c2 + c3 + c4 + c5. (5.9)

For the family f = 2, c1 = 0, c2 = 0 and it results

c5 = 4N − 3c3 − 2c4, n = −N + c3 + c4 + c5. (5.10)

For the family f = 3, c1 = 0, c2 = 0, c3 = 0 and it results

c5 = 3N − 2c4, n = −N + c4 + c5. (5.11)

For the family f = 4, c1 = 0, c2 = 0, c3 = 0, c4 = 0 and it results

c5 = 2N, n = −N + c5. (5.12)

Using the above conditions, all the possible solutions for spatial system groups can be

determined. The number of joints c1, c2, , c3, and c4 are cycled from 0 to w, where w

is a positive integer, for system groups with one or more independent contours (N ≥ 1).

The number of joints c5 and the number of moving links n are computed for each system

group. An acceptable solution has to verify the conditions n > 0 and c5 > 0. In Table 1,

the number of possible solutions is presented for some values of w between 0 and 40

and for kinematic chains with one contour (N = 1), two contours (N = 2), and three

contours (N = 3). For N = 1 and w ≥ 3, there are 23 possible solutions. For N = 2,

there are 85 solutions for w ≥ 6, and for N = 3 there are 220 solutions for w ≥ 9.
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5.4.1 System groups with one independent contour

The combinations of spatial system groups with one independent contour (N = 1)

are presented in Table 2. The number of joints c1, c2, c3, and c4 are cycled from 0 to

3, and the number of joints c5 and the number of moving links n are computed. System

groups from Table 2 are exemplified next for each of the families f = 0, 1, 2, 3, and 4.

For the family f = 0, four system groups are illustrated in Fig. 5.5. The values c5

and n are computed from Eqs. (5.7) and (5.8), respectively. A spatial system group with

no joints of class 1, 2, 3, and 4 (c1 = c2 = c3 = c4 = 0) is shown in Fig. 5.5.a. The system

group has six joints of class 5 (c5 = 6(1) = 6), and five moving links (n = −1 + 6 = 5).

A system group with one joint of class 4 (c4 = 1) and no joints of class 1, 2, and 3

(c1 = c2 = c3 = 0) is shown in Fig. 5.5.b. The system group has four joints of class 5

(c5 = 6(1) − 2(1) = 4), and four moving links (n = −1 + 1 + 4 = 4). A system group

with two joints of class 4 (c4 = 2) and no joints of class 1, 2, and 3 (c1 = c2 = c3 = 0) is

shown in Fig. 5.5.c. The system group has two joints of class 5 (c5 = 6(1) − 2(2) = 2),

and four moving links (n = −1 + 2 + 2 = 3). A system group with one joint of class 3

(c3 = 1) and no joints of class 1, 2, and 4 (c1 = c2 = c4 = 0) is shown in Fig. 5.5.d. The

system group has three joints of class 5 (c5 = 6(1) − 3(1) = 3), and three moving links

(n = −1 + 1 + 3 = 3).

The spatial mechanism presented in Fig. 5.6 is built from the system group shown in

Fig. 5.5.b. The mechanism has one degree of freedom (M = 6n−5c5−4c4−3c3−2c2−c1 =

6(5) − 5(5) − 4(1) = 1). The driver link is the link 5. The relative linear velocities are

symbolized by vij and the relative angular velocities are symbolized by ωij , where i and j
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w 0 1 2 3 4 5 6 7 8 9 10 20 30

N = 1 5 18 22 23 23 23 23 23 23 23 23 23 23

N = 2 5 30 62 76 82 84 85 85 85 85 85 85 85

N = 3 5 31 100 158 190 205 214 218 218 220 220 220 220

Table 5.1: The number of configurations of system groups with one, two and three
independent contours (N = 1, 2, and 3)

Index f c1 c2 c3 c4 c5 n

1 0 0 0 0 0 6 5

2 0 0 0 0 1 4 4

3 0 0 0 0 2 2 3

4 0 0 0 0 3 0 2

5 0 0 0 1 0 3 3

6 0 0 0 1 1 1 2

7 0 0 0 2 0 0 1

8 0 0 1 0 0 2 2

9 0 0 1 0 1 0 1

10 0 1 0 0 0 1 1

11 1 0 0 0 0 5 4

12 1 0 0 0 1 3 3

13 1 0 0 0 2 1 2

14 1 0 0 1 0 2 2

15 1 0 0 1 1 0 1

16 1 0 1 0 0 1 1

17 2 0 0 0 0 4 3

18 2 0 0 0 1 2 2

19 2 0 0 0 2 0 1

20 2 0 0 1 0 1 1

21 3 0 0 0 0 3 2

22 3 0 0 0 1 1 1

23 4 0 0 0 0 2 1

Table 5.2: The configurations of system groups with one independent contour (N = 1)
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Figure 5.5: System groups with one independent contour (N = 1) of the family f = 0.

d.

c.

b.

a.
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are the numbered links. Only one relative velocity is represented on the reference frame

in order to show that the respective motion exists.

For the family f = 1, three systems groups are depicted in Fig. 5.7. The values c5

and n are computed from Eq. (5.9). The missing translations and rotations with respect

to the axis of the reference frame xOyz are specified further on for each system group.

A spatial system group with no joints of class 1, 2, 3, and 4 (c1 = c2 = c3 = c4 = 0) is

shown in Fig. 5.7.a. The system group has five joints of class 5 (c5 = 5(1) = 5), and four

moving links (n = −1+5 = 4). There are no rotations Rx for the links. A system group

with no joints of class 1, 2, and 3 (c1 = c2 = c3 = 0) and one joint of class 4 (c4 = 1) is

shown in Fig. 5.7.b. The system group has three joints of class 5 (c5 = 5(1)− 2(1) = 3),

and three moving links (n = −1 + 1 + 3 = 4). There are no translations Tz for the links.

A system group with one joint of class 3 (c3 = 1) and no joints of class 1, 2, and 4

(c1 = c2 = c4 = 0) is shown in Fig. 5.7.c. The system group has two joints of class 5

(c5 = 5(1)−3(1) = 2), and two moving links (n = −1+3 = 2). There are no translations

Ty for the links.

For the family f = 2, four system groups are presented in Fig. 5.8. The values c5

and n are computed from Eq. (5.10). Two spatial system groups with no joints of class

1, 2, 3, and 4 (c1 = c2 = c3 = c4 = 0) are shown in Figs. 8.a and 8.b. The system groups

have four joints of class 5 (c5 = 4(1) = 4), and three moving links (n = −1+4 = 3). For

the system group in Fig. 5.8.a, there are no translations Tx and no rotations Ry for the

links. For the system group in Fig. 5.8.b, there are no translations Ty and no rotations

Rx for the links. A system group with no joints of class 1, 2, and 3 (c1 = c2 = c3 = 0)

and one joint of class 4 (c4 = 1) is shown in Fig. 5.8.c. The system group has two joints
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Figure 5.6: Spatial mechanism with one independent contour and a system group of the
family f = 0.
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Figure 5.7: System groups with one independent contour (N = 1) of the family f = 1.

c.

b.

a.
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of class 5 (c5 = 4(1) − 2(1) = 2), and two moving links (n = −1 + 1 + 2 = 2). There

are no translations Tz and no rotations Ry for the links. A system group with one joint

of class 3 (c3 = 1) and no joints of class 1, 2, and 4 (c1 = c2 = c4 = 0) is shown in

Fig. 5.8.d. The system group has one joints of class 5 (c5 = 4(1) − 3(1) = 1), and one

moving link (n = −1 + 1 + 1 = 1). There are no translations Tx and Tz for the links.

The spatial mechanism presented in Fig. 5.9 is built from the system group shown

in Fig. 5.8.b. The mechanism has one degree of freedom (M = 4n − 3c5 − 2c4 − c3 =

4(4) − 3(5) = 1). The link 4 is the driver link.

For the family f = 3, three system groups are presented in Fig. 5.10. The values c5

and n are computed from Eq. (5.11). Three system groups with no joints of class 1, 2, 3,

and 4 (c1 = c2 = c3 = c4 = 0) are shown in Fig. 5.10. The system groups have three

joints of class 5 (c5 = 3(1) = 3), and two moving links (n = −1 + 3 = 2). There are no

translations Tx and no rotations Ry and Rz for the system group in Fig. 5.10.a. There are

no translations Tx and no rotations Rx and Rz for the system group in Fig. 5.10.b. There

are no translations Tz and no rotations Rx and Ry for the system group in Fig. 5.10.c.

For the family f = 4, two planar system groups with no joints of class 1, 2, 3, and

4 (c1 = c2 = c3 = c4 = 0) are shown in Fig. 5.11. The values c5 and n are computed

from Eq. (5.12). for each system group, there are two joints of class 5 (c5 = 2(1) = 2),

and one moving link (n = −1 + 2 = 1). Also, there are two planar translations for the

links and thus the family of the systems is f = 6 − 2 = 4.
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Figure 5.8: System groups with one independent contour (N = 1) of the family f = 2.

d.

c.

b.

a.
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Figure 5.9: Spatial mechanism with one independent contour and a system group of the
family f = 2.
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Figure 5.10: System groups with one independent contour (N = 1) of the family f = 3.

a.

b.

c.
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Figure 5.11: System groups with one independent contour (N = 1) of the family f = 4.

a.

b.
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5.4.2 System groups with two independent contours

Spatial system groups with two independent contours (N = 2) are presented. The

number of joints c1, c2, c3, and c4 are cycled, and the number of joints c5 and the number

of moving links n are computed. Examples of system groups with N = 2 are described

next for each of the families f = 1, 2, 3, and 4.

For the family f = 1, a system group is depicted in Fig. 5.12. The system group

has no joints of class 1, 2, 3, and 4 (c1 = c2 = c3 = c4 = 0). There are ten joints of class

5 (c5 = 5(2) = 10), and eight moving links (n = −2+10 = 8). There are no translations

Tx for the links.

For the family f = 2, two system groups are illustrated in Fig. 5.13. A system group

with no joints of class 1, 2 and 3 (c1 = c2 = c3 = 0) and one joint of class 4 (c4 = 1) is

shown in Fig. 5.13.a. The system group has six joints of class 5 (c5 = 4(2) − 2(1) = 6),

and five moving links (n = −2+1+6 = 5). There are no translations Tx and no rotations

Rx for the links. A system group with no joints of class 1 and 2 (c1 = c2 = 0), one joint

of class 3 (c3 = 1), and one joint of class 4 (c4 = 1) is shown in Fig. 5.13.b. The system

group has three joints of class 5 (c5 = 4(2) − 3(1) − 2(1) = 3), and three moving links

(n = −2 + 1 + 1 + 3 = 3). There are no translations Tx and Ty for the links.

For the family f = 3, three system groups are presented in Fig. 5.14. A system

group with no joints of class 1, 2, 3, and 4 (c1 = c2 = c3 = c4 = 0) is shown in

Fig. 5.14.a. The system group has six joints of class 5 (c5 = 3(2) = 6), and four moving

links (n = −2 + 6 = 4). There are no translations Tx, Ty, and Tz for the links. A

spatial system group and a planar system group with no joints of class 1, 2 and 3

(c1 = c2 = c3 = 0) and one joint of class 4 (c4 = 1) are shown in Fig. 5.14.b and Fig.14.c,
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Figure 5.12: System group with two independent contours (N = 2) of the family f = 1.
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Figure 5.13: System groups with two independent contours (N = 2) of the family f = 2.

b.

a.
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respectively. The system groups have four joints of class 5 (c5 = 3(2) − 2(1) = 4), and

three moving links (n = −2 + 1 + 4 = 3). There are no translations Ty, Tz and no

rotations Rz for the spatial system in Fig. 5.14.b.

For the family f = 4, a planar system group with no joints of class 1, 2, 3, and 4

(c1 = c2 = c3 = c4 = 0) is shown in Fig. 5.15. The system group has four joints of class

5 (c5 = 2(2) = 4), and two moving links (n = −2 + 4 = 2).

The spatial mechanism shown in Fig. 5.16 contains a system group of the family

f = 0 that has c1 = c2 = 0, c3 = 1, c4 = 2, c5 = 6(2) − 3(1) − 2(2) = 5, and

n = −2 + 1 + 2 + 5 = 6. The mechanism has two degrees of freedom M = 6n − 5c5 −

4c4 − 3c3 − 2c2 − c1 = 6(8) − 5(7) − 4(2) − 3(1) = 2. The links 7 and 8 are driver links.

5.4.3 System groups with three independent contours

Spatial system groups with three independent contours (N = 3) are presented. The

number of joints c1, c2, c3, and c4 are cycled and the number of joints c5 and the number

of moving links n are computed. System groups with N = 3 are exemplified next for

each of the families f = 2, 3, and 4.

For the family f = 2, a spatial system group with no joints of class 1 and 2 (c1 =

c2 = 0), one joint of class 3 (c3 = 1), and one joint of class 4 (c4 = 1) is shown in

Fig. 5.17. The system group has seven joints of class 5 (c5 = 4(3) − 3(1) − 2(1) = 7),

and six moving links (n = −3 + 1 + 1 + 7 = 6). There are no translations Tx and Tz for

the links.

For the family f = 3, a planar system group with no joints of class 1, 2, and 3

(c1 = c2 = c3 = 0) and one joint of class 4 (c4 = 1) is depicted in Fig. 5.18. The
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Figure 5.14: System groups with two independent contours (N = 2) of the family f = 3.

a.

b.

c.



135

Figure 5.15: System group with two independent contours (N = 2) of the family f = 4.
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Figure 5.16: Spatial mechanism with two independent contours and a system group of
the family f = 0.
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Figure 5.17: System group with three independent contours (N = 3) of the family f = 2.
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system group has seven joints of class 5 (c5 = 3(3) − 2(1) = 7), and five moving links

(n = −3 + 1 + 7 = 5).

For the family f = 4, a planar system group with no joints of class 1, 2, 3, and 4

(c1 = c2 = c3 = c4 = 0) is shown in Fig. 5.19. The system group has six joints of class 5

(c5 = 2(3) = 6), and three moving links (n = −3 + 6 = 3).

The spatial mechanism presented in Fig. 5.20 contains a system group of the family

f = 0 that has c1 = c2 = 0, c3 = 3, c4 = 4, c5 = 6(3) − 3(3) − 2(4) = 1, and

n = −3 + 3 + 4 + 1 = 5. The mechanism has three degrees of freedom M = 6n − 5c5 −

4c4 − 3c3 − 2c2 − c1 = 6(8)− 5(4)− 4(4)− 3(3) = 3. The links 6, 7 and 8 are driver links.

5.5 Conclusions

The method of computer-aided structural synthesis of spatial mechanisms presented

in this paper is based essentially on system group formation using the number of inde-

pendent contours and joints as inputs. The number of joints of different classes are cycled

for different families and several structures of spatial system groups with one, two, or

more independent contours are obtained. For a given family, different configurations of

system groups with the same number of independent contours can be obtained. Spatial

mechanisms can be structured based on spatial system groups.
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Figure 5.18: System group with three independent contours (N = 3) of the family f = 3.
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Figure 5.19: System group with three independent contours (N = 3) of the family f = 4.
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Figure 5.20: Spatial mechanism with three independent contours and a system group of
the family f = 0.



Chapter 6

Discussions and conclusions

In this dissertation the nonlinear dynamics of a mechanical system with joint clear-

ance is investigated. Modeling this system leads to modeling contacts and impacts that

occur between the links and the joints. Also, at high speeds, the joint moment of inertia

may significantly influence the behavior of the system.

In Chapter 2, the influence of the moment of rolling friction on the energy dissipated

by friction during the impact for different values of the geometrical parameters of the links

is analyzed. More energy is dissipated during impact for larger values of the coefficient

of rolling friction. An energy increase is observed in some cases when the kinematic

coefficient of restitution is used to model the impact. One can partially solve this problem

and obtain energetically consistent results introducing the moment of rolling friction to

the impact equations.

In Chapter 3, the effect of joint inertia on the dynamics of kinematic chains is

presented. The application point of the joint contact forces changes its position for

different values of the slider inertia. Dynamic response characteristics of a planar robot

arm are compared for different values of the prismatic joint inertia.

In Chapter 4, the influence of the prismatic joint clearance and the crank speed

on the stability of mechanisms is studied. The Lyapunov exponents are computed for

simulated data and used as a diagnostic tool. The largest Lyapunov exponents are

compared for different crank speeds at different values of the clearance.

142
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In Chapter 5, a computer-aided structural synthesis of spatial mechanisms is pre-

sented. The method is based essentially on system group formation using the number

of independent contours and joints as inputs. For each family, the number of joints are

cycled and several structures of spatial system groups are obtained. The solution of a

spatial mechanism can be obtained by composing the partial solutions of the system

groups.

Future work includes experimental approaches of dynamics and control of robotic

arms with joint clearance. The influence of the clearance at joints and the effect of joint

inertia on the control parameters of the systems should be investigated.
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