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Abstract

In this thesis, differential GPS methods are developed for use in automated vehicle
convoy positioning. The GPS pseudorange and carrier phase measurements are used to
compute relative position vectors between two vehicles with sub-meter errors. The carrier
phase measurement makes this level of accuracy attainable, but the carrier phase ambiguity
must be resolved prior to the relative position estimation. An algorithm, referred to as
Dynamic base Real Time Kinematic (DRTK) algorithm, is described in this thesis to estimate
the carrier phase ambiguity and the relative position vector between two GPS receivers.
The DRTK algorithm is capable of using single frequency (L1 or L2 frequency only) or
dual frequency (L1 and L2 frequency) GPS measurements to estimate the relative position
vector. A comparative study of the performance of the algorithm using either single or dual
frequency measurements is presented.

The DRTK algorithm is expanded to incorporate inertial measurement to increase to
output rate, to improve solution availability, and to improve the reliability of the algorithm.
Since inertial navigation systems (INS) compute a navigation solution independent of any
additional infrastructure, the INS can be used to update the relative position vector estimate
during short GPS outages. The update rate of the INS is also as much as ten times the rate of
the GPS receiver; the integrated system produces estimates at a significantly higher output
rate. The combined DRTK/INS system is implemented with two integration architectures —
a federated GPS/INS/DRTK architecture and a centralized DRTK/INS architecture. Each
configuration produced estimates of the relative position vector with error on the centimeter
level.

Finally, the use of relative positioning to autonomously follow a human driven lead ve-

hicle is presented. Time difference carrier phase (TDCP) measurements are used to estimate
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the change in the position of the following vehicle between measurement epochs. The TDCP
algorithm is combined with the DRTK algorithm to estimate the position of the following
vehicle relative to a virtual lead vehicle position. Analysis of the accuracy of the TDCP
algorithm at individual measurement epochs and over varying time intervals is presented.
The DRTK/TDCP following method is compared to a GPS waypoint following method using

data collected on an automated all-terrain vehicle.
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Chapter 1

Introduction

The Global Positioning System (GPS) has changed the way drivers navigate by com-
bining accurate position information with road maps to provide real time directions to their
destination. The future of GPS assisted ground vehicle operation is automation which has
already been demonstrated in precision agriculture and unmanned military vehicles (ref).
The work in this thesis focuses on automated vehicle convoys with autonomous ground vehi-
cles (AGV) following human driven lead vehicles. AGVs offer significant flexibility in convoy
operations. Automated following vehicles can be configured to have human drivers at the
ready or to be completely unmanned. In civilian applications, several automated delivery
trucks may leave a distribution center led by a human driven vehicle. Drivers in the following
vehicles can divert their attention from the road while the vehicle operates automatically.
When the lead driver needs a rest, one of the drivers of a following vehicle can relieve him
at the front of the formation. This would decrease the need for downtime, when the truck
sits still while the driver rests. A military convoy could operate in a similar fashion, but
instead of resting while in the following position, the driver’s responsibility is to monitor the
surroundings for hostile forces. However, it may be more important to remove drivers from
harms way by using unmanned vehicles.

Vehicle automation is not a new science but the advent of GPS has brought on new
possibilities for these complex systems. Accurate position and velocity information is invalu-
able when navigating without the benefit of human sensing and motor skill. Unfortunately,
GPS has its limitations in both accuracy and availability. Alternate measurement process-
ing techniques can be implemented to improve accuracy, but GPS availability will always

be affected by environmental influences. This thesis attempts to address each concern by



combining advanced GPS measurement processing with additional sensing capabilities to

provide a reliable and accurate navigation solution for autonomous following.

1.1 Vehicle Sensing Capabilities

Autonomous vehicles are typical outfitted with a multitude of sensors. This thesis
focuses on navigation systems incorporating GPS and inertial measurement units. The

following is an introduction to these sensors and their capabilities.

1.1.1 Global Positioning System

GPS consists of three segments including the space segment, the control segment, and
the user segment which combine to provide users with accurate position, velocity and time.
The space segment is composed of a minimum of 24 satellites in six orbital planes. Generally
there are approximately 32 satellites in orbit, oriented to allow users to have a clear line of
sight to at least four satellites at any given time. The control segment is based at Schriever
Air Force Base (AFB) in Colorado Springs, Colorado with additional monitoring stations
around the Earth and it is tasked with maintaining satellite orbits and accurate timing for
the system. The user segment is the GPS receiver which tracks radio signals broadcast by
each GPS satellite [28]. GPS satellites transmit on three frequencies in the L band: L1 at
1575.42 MHz, 1.2 at 1227.60 MHz and L5 at 1176.45 MHz. Each transmitted signal contains
a ranging code and navigation message modulated on a sinusoidal carrier.

The ranging codes are pseudorandom binary sequences unique to each satellite and
are referred to as pseudorandom noise (PRN) codes. The PRN codes are selected to be
orthogonal to one another allowing a receiver to access various satellite signals broadcast
at the same frequency through Code Division Multiple Access (CDMA) [19]. Both military
and civilian ranging codes are modulated on the .1 and L2 carrier frequencies. The civilian
ranging code, called the Course Acquisition (C/A) code, is 1023 chips long and repeats every

one millisecond. The military ranging code, or P code, is much longer, 6.1871 x 10'? chips,



and is broadcast at ten times the rate of the C/A code. Encryption of the P code limits
the availability of the signal to military users with access to the encryption key. Originally,
the L2 carrier was modulated with only the P code making it unavailable to civilian users.
The launch of Block IIR-M satellites beginning in 2005 marked the introduction of the L.2C
ranging code providing civilian users with dual frequency capabilities[9]. Despite the fact
that the L.2C code is available on a limited number of satellites in the constellation, many
civilian users can now access L2 P coded signals through semi-codeless tracking techniques
[32].

The navigation message provides the user with satellite information and the signal
transmission time [16]|. Satellite information includes almanac data, ephemeris data, and
satellite health which allow the user to determine the satellite’s position and velocity. The
distance from a given satellite to the receiver is calculated from the time of flight (TOF)
of the signal. The TOF formulation relies on a receiver generated replica of the ranging
code. The replica is shifted in time to match the satellite transmitted ranging code. With
perfect time synchronization between the satellite clock and the receiver clock, the time
shift is due to the TOF of the signal. The range from the receiver to the satellite is equal
to the TOF times the speed of light. The user’s position is then constrained to a sphere
centered at the satellite’s position with a radius equal to the measured range. With three
accurate measurements, the user’s position can be determined by trilateration. However, the
measured range is corrupted with timing errors due to the inaccuracy of both the satellite
and receiver clocks and is therefore referred to as the pseudorange measurement. Satellite
clock corrections terms are transmitted with the ephemeris data and are used to significantly
reduce the error introduced by the satellite clock. By including a fourth measurement, the

user estimates a three dimensional position and the range bias due to the receiver clock error.



GPS errors are not limited to satellite and receiver clock errors. Additional error sources
include but are not limited to satellite ephemeris errors, propagation delays due to the atmo-
sphere, multipath and receiver noise. Satellite ephemeris errors result from inaccurate infor-
mation in the transmitted navigation message and lead to ranging errors of approximately
2.1 meters on average. Atmospheric delays are attributed to two layers of the atmosphere:
the ionosphere and the troposphere. Ionospheric delays are typically the dominant GPS
error source resulting in average range errors of 4.0 meters when not modeled accurately.
The tropospheric delays are less severe with associated range errors of approximately 0.5
meters. Multipath, which is the error due to reflected GPS signals, and receiver noise con-
tribute additional range errors of approximately 1.0 meter and 0.5 meters respectively. The
cumulative effect of these errors and the residual satellite clock error is a range error with
a standard deviation of 5 meters. For a typical satellite geometry, this error will result in

horizontal position errors near 10 meters and vertical position errors near 13 meters [28].

1.1.2 Inertial Measurement Unit

Inertial Measurement Units (IMU) are comprised of some combination of accelerometers
and gyroscopes. These sensors provide measurements of specific force and angular rate
about the units sensitive axes hundreds of times a second. The IMU may be mounted in
a strapdown or gimbaled configuration with most modern applications using the strapdown
approach. IMUs are available in a variety of grades ranging from automotive to marine with
a wide range of accuracy and stability.

In principle, an accelerometer measures the displacement of an internal proof mass
relative to the IMU case caused by an externally applied force. For a sensor in free fall near
the surface of the Earth, the acceleration due to gravity is experienced by the proof mass and
IMU case resulting in a measurement of zero acceleration (neglecting drag effects). The same
sensor on the surface of the Earth measures the force of the Earth pushing up on the IMU

case and not on the spoof mass. Therefore, accelerometers are said to measure the specific



Table 1.1: Common Bias Values for Various IMU Grades (From: [17])
| IMU Grade | Accelerometer Bias (m/s?) | Gyroscope Bias (deg/hr) |

Marine 10~ 0.001

Aviation 3x107*—-10"3 0.01
Intermediate 1072 — 102 0.1

Tactical 1072 — 1071 1 — 100
Automotive > 1 > 100

force acting of the unit. Accelerometers used in strapdown applications are commonly either
pendulous or vibrating beam [17].

Gyroscopes measures the rate of change of the angular position of the IMU about a
sensitive axis. Common gyroscopes include spinning mass, optical, and vibratory devices.
These sensors operate on principles such as the conservation of angular momentum, the
Sagnac effect, and Coriolis acceleration. Additional information on gyroscope operation is
available in [17].

IMU errors include but are not limited to scale factor errors, misalignment errors, biases,
and random noise. The accelerometer and gyroscope biases are often the dominant errors
sources of an IMU. The bias term is composed of a static turn-on bias and a dynamic in-run

bias. Table 1.1 shows typical bias values for various IMU grades as given in [17].

1.2 Prior Work

This thesis incorporates GPS and IMUs to compute relative positioning information
for navigation of an autonomous vehicle following the path of a lead vehicle. Relative GPS
positioning is accomplished using the carrier phase measurement which will be described in
detail in Chapter 2. Carrier phase position estimation was originally studied for surveying
applications in the 1970s. The first use of carrier measurements for dynamic applications
came in 1985 [31]. Carrier phase measurements contain an inherent integer ambiguity that
must be resolved before estimating position. This ambiguity is easily estimated as a floating

point value; however position accuracy can be increased significantly if fixed integer estimate



is available . Researchers at Deft University addressed the integer estimation problem in the
1990s and developed the Least Squares Ambiguity Decorrelation Adjustment or LAMBDA
method [33].

Carrier phase relative positioning has been used extensively in aircraft navigation. First,
systems were developed to use GPS measurements from static bases at the airport to calculate
accurate relative positions for automated landing [11]. This work was later expanded to
include landing sites where a static GPS base station is unavailable, for example landing
on an aircraft carrier [10, 14, 29|. Carrier phase positioning has also been applied to in
flight operation of unmanned aerial vehicles (UAV). Relative position solutions using GPS
carrier measurements have been studied for autonomous formation flight [7] and autonomous
airborne refueling [20].

There is considerable work in the literature of the fusion of GPS and IMUs to produce
position, velocity, and attitude estimates with high update rates. The focus of this thesis
is the integration of carrier phase based GPS solutions with inertial measurements. At
the University of Calgary, inertial measurements were used to improve the reacquisition of
integer estimates of the carrier phase ambiguity [30]. Additionally, GPS and IMUs were used
in tandem for relative positioning in helicopter formation flight [13] and precision shipboard
landing [4]. In contrast to these examples, the carrier phase GPS and IMU positioning
algorithms described in this thesis are developed for ground vehicles. Also, the inertial
measurements are incorporated to increase the update rate of the position solution and
the GPS algorithms are developed to use L1 measurements,.2 measurements or L1 and L2
measurements. Results are shown comparing the solutions of single and dual frequency GPS
solutions.

Much of the research in the field of autonomous following relies on a clear line of sight
to the lead vehicle |5, 26, 25]. Often the following vehicle is sensing the position of the lead
vehicle in its field of vision with camera, Lidar, or both [15, 5, 8]. Typically, these methods

are chosen over GPS due to inconsistency and inaccuracy of GPS measurements. However,



the use of GPS does allow for non line of sight following and accuracy and integrity can be
improved by using carrier phase relative position. Researchers at the Position, Localization
and Navigation Group developed methods using carrier phase relative position to maintain

vehicle spacing in vehicle convoys [3].

1.3 Contributions

The focus of the research presented in this thesis is the development of relative position-
ing methods for autonomous ground vehicle convoys. To that end, the following contributions

are made:

e Relative positioning algorithms are developed to utilizing either the L1 frequency GPS
observable, the L2 frequency GPS observable or a combination of both L1 and L2
frequency GPS observables. The algorithms are compared based on accuracy and

reliable of their results in various operational scenarios.

e The relative positioning algorithms are expanded to include high update rate inertial
measurements to improve the availability of the relative position solution. Two integra-
tion architectures are implemented and their results are examined. A fault detection
and exclusion routine is incorporated to monitor solution integrity during the GPS
measurement update. The federated DRTK/INS integration architecture with fault
detection and exclusion capabilities was presented by the author of this thesis at the
Institute of Navigation and Institute of Electrical and Electronics Engineers Position,

Location, and Navigation Symposium in May 2010 [23].

e A path following method combining the relative positioning algorithm with GPS carrier
phase based odometry is examined. The inherent error growth due to the accumula-
tion of residual noise in the odometry estimates is evaluated. Time difference GPS
carrier phase estimation of the change in the position of a vehicle was combined with

GPS relative positioning in a terrain mapping algorithm by the author of this thesis



for publication in the proceedings of the Institute of Navigation GNSS conference in

September 2010 |22].

1.4 Thesis Outline

Chapter 2 is a discussion of differential GPS techniques focusing on carrier phase dif-
ferential positioning. Single and dual frequency algorithms are developed and compared.
These algorithms are expanded to include inertial measurements in Chapter 3. Chapter 4
introduces time differencing of GPS carrier phase measurements for vehicle odometry and its
impact on path following. Finally, Chapter 5 provides conclusions from the work presented

here and provides direction for future work in the field of autonomous vehicle convoys.



Chapter 2

Dynamic base Real Time Kinematic

In this work, GPS is used to determine position of the lead vehicle relative to the fol-
lowing vehicle. To limit the position errors of the standard GPS solution, differential GPS
(DGPS) techniques are used. DGPS takes advantage of the common mode error sources
experienced by receivers operating in close proximity. The signal delays introduced by the
atmosphere are highly correlated for receivers separated by several kilometers or less. The
residual satellite clock errors after correction are also nearly identical. Measurements from
two receivers are differenced to mitigate these common mode errors. DGPS methods incor-
porate the GPS pseudorange measurement, the carrier phase measurement, or both.

The carrier phase measurement is an accumulation of the cycles of the GPS sinusoidal
carrier from the time of signal acquisition to the present time. This phase shift can be
measured with significantly higher accuracy than the pseudorange (to within five millimeters
[24]) but the absolute measurement contains an ambiguous number of carrier cycles. With
accurate estimates of the carrier phase integer ambiguity, the relative position vector (RPV)
between two GPS receivers can be estimated to within centimeters of the true value.

Real time kinematic (RTK) systems exploit the accuracy of the carrier phase measure-
ment to calculate highly precise global position estimates. This is accomplished by combining
measurements from a static base station at a known position with measurements for roving
GPS receiver in the area. The base station broadcasts its position, pseudorange measure-
ments and carrier phase measurements to the rover and the RPV from the base station to
the rover is estimated. The RPV is then added to the position of base station resulting

in a global position solution for the rover. This method results in a highly accurate global



position solution of the roving receiver but requires the rover to be operating in proximity
to a GPS base station.

The autonomous following scenario offers a unique opportunity to apply the same tech-
nique without requiring the static base station. The global information is not the ultimate
concern of the following vehicle; only the relative location of the lead vehicle is important.
In this case the following vehicle is treated as a base station and the leader’s position is esti-
mated relative to the followers current location. The global accuracy is lost but the accuracy
of the RPV is retained. This method will be referred to as Dynamic base RTK (DRTK).
The pertinent GPS measurements and the RPV estimation algorithm are discussed in this

chapter.

2.1 Measurements

The formulation of the DRTK algorithm will begin with a description of the relevant
GPS measurements. The pseudorange and carrier phase measurements are expressed math-

ematically in Equation (2.1) and Equation (2.2) respectively.

P = Totcdly+cdt® +T7+ I; + M, + v, (2.1)

O TZ—FCdta—i-Cdts—FT;—I§+)\N5+M;¢+U2¢ (2.2)
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o is the measured pseudorange between receiver a and satellite s
is the measured carrier phase between receiver a and satellite s

ry is the true range between receiver a and satellite s

c is the speed of light

dt, is the receiver clock bias

dt® is the satellite clock bias

T is the tropospheric delay between receiver a and satellite s in units of meters
I: is the ionospheric delay between receiver a and satellite s in units of meters
A is the carrier wavelength (L1 = 0.1902m or L2 = 0.2442m)

N? is the carrier integer ambiguity between receiver a and satellite s

M? is the multipath error
is the measurement noise

As stated in the introduction, the GPS signal is subjected to delays due to the atmo-
sphere. It is interesting to note that the ionosphere affects the code based pseudorange
measurement and the carrier based phase measurement differently. The magnitude of the
errors are the same when each measurement is expressed in units of length. However, the
code is delayed, effectively increasing the measured pseudorange and the carrier is advanced
thereby decreasing the phase measurement. Assuming that multipath errors are small, the
ionospheric delay and the carrier integer ambiguity are the dominant differences in the two

measurements.

2.1.1 Single Differences

Given measurements from two receivers, the common mode errors of the measured
pseudorange and carrier phase are mitigated by computing the single difference of each mea-
surement. The single differenced pseudorange and carrier phase are calculated by subtracting
the measurement of one receiver to a given satellite from the corresponding measurement
from the second receiver. Therefore, single differenced pseudorange and carrier phase ob-
servables are computed for each visible satellite. Satellite clock errors are removed in the
operation and the errors due to atmospheric interference are significantly reduced. Residual

atmospheric errors are assumed to be small and are lumped in with the measurement noise
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term. After differencing, the pseudorange measurement is a function of the distance between
the receivers, the relative receiver clock bias, and noise of increased variance. The single dif-
ferenced carrier phase also contains the distance and noise terms in addition to the difference
of the carrier phase ambiguities from the two receivers. The noise term will be discussed
in detail in Section 2.2. Single differenced pseudorange and carrier phase measurements are

expressed mathematically in Equation (2.3) and Equation (2.4).

Apy, = 1o+ cdlay +vgy, (2.3)

Agbzb == T(Slb + Cdtab + )\N;b + U2b¢ (24)

The subscript ab denotes the relative information between receiver a and receiver b. In this

formulation, multipath errors are assumed to be negligible.

2.1.2 Double Differences

As seen in Equation (2.3) and Equation (2.4), the single differenced measurements con-
tain the relative clock bias from the receivers. It is beneficial to remove this clock error term
by computing the double differenced pseudorange and carrier phase. The double difference
calculation begins by selecting one of the computed single differences as the base measure-
ment. In this work the measurement corresponding to the closest satellite is selected as the
base measurement. This value is subtracted from the single differenced measurements asso-
ciated with the other visible satellites. The resulting observables are no longer a function of
the receiver clock biases. The double differenced pseudorange, expressed in Equation (2.5),

is only a function of the relative position of the two receivers and noise.

VA, = Top + Vo (2.5)
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As seen in Equation (2.6), the double differenced carrier phase contains the relative position,

the relative carrier phase ambiguity and noise.

VA = r + AN+ vt (2.6)

It is important to note that the single differenced and double differenced observables
are not the only valuable combinations of the pseudorange and carrier phase measurements.
Additional combinations include the widelane and narrowlane observables. These observables
minimize noise or maximize wavelength to assist in integer ambiguity resolution. They are

not discussed further in this thesis, but for additional information see [20] and [35].

2.2 Algorithm

Estimation of the RPV between two receivers using DRTK is a multistage process.
First, the carrier phase ambiguities are estimated as floating point values. Then fixed integer
estimates of the ambiguities are computed. The fixed integer estimate is subtracted from the
carrier phase measurement and the RPV is estimated. The complete process is a combination
of a Kalman filter (floating point ambiguity estimation) , the LAMBDA method (ambiguity

integer fixing), and least squares estimation (relative position vector estimation).

2.2.1 Kalman Filter Floating Point Ambiguity Estimation

Carrier phase ambiguities are initially estimated in a Kalman Filter. Specifically, it
is the single differenced ambiguities that are being estimated. The state vector, shown in
Equation (2.7), contains L1 and L2 frequency single differenced ambiguity states for each
visible satellite.

N1 Nm (2.7)

abrs T abro

€T = Nl Nm

abr1 abry
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Therefore x is a column vector of length 2m, where m is the number of satellite seen simul-
taneously by both receivers. Note that this assumes that each receivers provides L1 and L2

frequency measurements for each visible satellite.

2.2.1.1 Measurement Model

Constructing the measurement equation to fit the form of the Kalman filter, 2 = Hz, is
not a trivial undertaking. The single difference pseudorange and carrier phase measurements
are a function of two unknown terms plus the stochastic noise term. In order to estimate the
carrier phase ambiguity, the relative range term, r;,, must be removed from the equation.
The single differenced pseudorange and carrier phase originally defined in Equation (2.3)

and Equation (2.4) are rewritten in matrix form in Equation (2.8).

s

,rabz

s s s s s
Apsy | va, ua, U, 1 Tab, N 0 ) (2.8)
- ab :

s s s s s

Agbab uaw uay ua,Z 1 Tabz A
Cdtab

The non-deterministic terms are ignored for simplicity. The true range between receiver a
and receiver b is decomposed into the line of sight unit vector from receiver a to satellite
s and the z, y, and z components of the RPV in the Earth Center Earth Fixed (ECEF)
frame. For a description of the ECEF frame see [12]. The matrix containing the unit vectors
and a column of ones corresponding to the relative clock bias term is referred to here as the
geometry matrix.

Equation (2.8) assumes that the unit vector from receiver a to satellite s is approximately
equal to the unit vector from receiver b to satellite s. Formulation of the vector product of

the RPV using this assumption is shown in Equation (2.9), Equation (2.10) and Equation

14



(2.11).

Ty, "oy
re = g wg up || | u o, g, : (2.9)
ry T,
w, i, w ]~ [, g 210
T;jx —réw
re = |ul o owl || g - (2.11)
5, — Ta.

To estimate the single differenced ambiguity, N7, in Equation 2.8, it must be isolated
from the range information contained in the single differenced pseudorange and carrier phase
observables. This is done by premultiplying each term in Equation 2.8 by the left null space
of the geometry matrix. The left null space of matrix G is defined as the set of all vectors
@ such that a’G = 0. By multiplying Equation 2.8 by the left null space of the geometry

matrix, L defined in Equation 2.12, the lead term on the right hand side of the equation is

removed.
— T T T 7
1 m 1 m 1 m
Uay Uay, Ua, 1
T T T
1 m 1 m 1 m
Ua, Ua, Ua, 1
L = leftnull T T T (2.12)
1 -+ m 1 -+ m 1 -+ m
Uay Uay, Ua, 1
T T T
1 -+ m 1 -+ m 1 -+ m
| Ua, Ua, Ua, 1 |

The measurement vector z, shown in Equation 2.13, remains on the left hand side with

the single differenced pseudorange and carrier phase measurements multiplied by L. The
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equation shows the vector of single differenced .1 and .2 measurements from satellites 1 to
m.

T

s=L| Mgl Al Aelim Adlin (2:13)

br1 L2 abr1 abp2

The coefficient matrix for the state vector is now L times the matrix containing rows of
zeros corresponding to the single differenced pseudorange measurement and rows containing
the appropriate wavelength corresponding to the single differenced carrier phase measure-

ments. The matrix is represented in Equation 2.14.

02m><m O2m><m

H=1L )\Llfmxm 0m><m (214)
Omxm )\L2[m><m
The measurement equation now fits the z = Hx form of the Kalman filter. The update

step of the filter follows the implementation shown in Equations (2.15) through (2.17).

Ky = PrHFY(H.P;HY + Ry)™" (2.15)
Pl = (I - K H,)P; (2.16)

The Kalman gain K is calculated as a function of the error covariance matrix P, the measure-
ment matrix H, and the uncertainty in the measurement R. The error covariance matrix and
the state vector are then updated using the gain, the measurement matrix, and the a priori
estimates and error covariance. The initialization of the state vector and the error covari-
ance matrix are discussed in Section 2.2.1.3 along with the calculation of the measurement

uncertainty. For derivation of the Kalman filter measurement update see |2].
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2.2.1.2 Propagation Model

Assuming the GPS receiver maintains lock on the signal from a given satellite between
measurements, the carrier phase ambiguity remains constant. Therefore, the state transition
matrix is the identity matrix with dimension equal to the number of single differenced ambi-
guity estimates. Since the ambiguities are known to be constant with certainty the process
noise vector can be set to zero. However, to prevent the error covariance from settling to a
small value that results in a zero gain matrix, the process noise matrix,@, is set to 1 x 1076
times the identity matrix of with dimension equal to the number of single differenced am-
biguity estimates. The state estimates and error covariance matrix are propagated with the

standard Kalman time update equations shown in Equation 2.18 and Equation 2.19.

Pr = Ot (2.18)

Py = ®BIOT+Q (2.19)

The state transition matrix and the process noise vector are represented by ® and () respec-

tively.

2.2.1.3 Filter Initialization and Implementation

The state vector is initialized with single differenced pseudorange and carrier phase
measurements from each satellite. The initial estimate of the single differenced ambiguities
is equal to the difference between the single differenced pseudorange and single differenced

carrier phase measurement as seen in Equation 2.20. The value is divided by the signal
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wavelength to convert the estimate to units of cycles.

(Apib“ - Aqé(llbll)/)\lzl

(AP, — Agm )/ AL
(Apiblz - A%bm)/ AL2

=>
I

(2.20)

(APZIL)LQ - A(?Z?m)/ALz

The error covariance matrix is initialized as the identity matrix multiplied by 1/2 to
reflect the expected variance of the single differenced ambiguities. The initial uncertainty
is selected to provide desired filter performance based on experimental testing. Obviously,
the error covariance matrix is a square matrix with dimensions of 2m x 2m where m is the
number of visible satellites.

Measurement uncertainty, R, is calculated at each measurement update based on the
expected variance as defined in [28] and [19]. GPS measurement variance is a function
of receiver characteristics and the carrier to noise ratio, ¢/ng, of the received signal. The
expected pseudorange and carrier phase variances are given by Equation (2.21) and Equation

(2.23) respectively with parameters defined in Table 2.1.

0-127 = Ogatm + OQDLL <221>
4d2B 4d
= A P(2(1 —d 2.22
ODLL \l pyE (2( )+ Tc/no) ( )
04 = g T0PLL (2.23)
A B, 1
opLL = L ° 1+ ) (2.24)

27\ ¢/ng Tc/ng

The values for the receiver characteristics given in Table 2.1 are typical values taken from
[19] and [21]. Note that the variances calculated from Equation (2.21) and Equation (2.23)

represent the variance of individual pseudorange and carrier phase measurements. However,
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Table 2.1: Pseudorange and Carrier Phase variance calculation parameters

] Parameter \ Description \ Value ‘

s Variance due to atmospheric code delay | 5.22 (m)

Ae Code chip width 293.05 (m)

d Correlator spacing 0.5 (chips)

By, Code loop noise bandwidth 2 (Hz)

T Prediction integration time 2 (ms)

oG Variance due to atmospheric carrier delay | 0.03 (m)

AL Carrier wavelength L1, 1.2 (m)

By Carrier loop noise bandwidth 18 (Hz)

the filter observables are a combination of measurements from two receivers. Therefore, R
is a function of the measurement noise from receiver a and receiver b. Assuming that the
measurement noise is uncorrelated between receivers and that the atmospheric delays have

been removed through differencing, R is the diagonal matrix defined by Equation (2.25).

2 2
R— Oaprr T Obprs 0

2 2
0 aprr + Obprr

(2.25)

Equation (2.25) shows R for one satellite for simplicity; in actuality R has dimensions equal
to the two times number of visible satellites.

During filter operation, two conditions cause a modification of the dimensions of the
state vector and the error covariance matrix. The first is a result of the changing satellite
constellation. When a satellite that was previous being tracked by receivers a and b is
lost that ambiguity estimate is removed from the state vector. The corresponding row and
column of the error covariance matrix are also removed. Conversely, an additional ambiguity
estimate is added to the state vector when a new satellite is acquired and the error covariance
matrix is expanded to include the uncertainty in that estimate. The new ambiguity estimate
and error covariance are initialized as before.

Cycle slips also cause a modification of the state vector. A cycle slip occurs when the

receiver loses and reacquires lock on the carrier signal of a satellite between measurement
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updates. In this case the actual carrier phase ambiguity changes, nullifying the previous
estimate. Inclusion of the faulty estimate would severely degrade the RPV estimate. A cycle
slip detection algorithm is executed on each new measurement before it is used in the update
step. The single differenced pseudorange and carrier phase measurements from the current
and previous time steps are used to compute a time differenced ambiguity estimate, shown

in Equation (2.26).

AN}y = [(Api = Ady) — (Api_y — Adi )]/ A (2.26)

If this value exceeds a threshold, selected to be plus or minus one cycle for this work, the
measurement is deemed to have experienced a cycle slip and the ambiguity estimate and the

covariance are reset as if a new satellite were acquired.

2.2.2 Integer Fixing using the LAMBDA method

The second stage of RPV estimation is an attempt to fix the floating point ambiguity
estimates to integer values. The Kalman filter provides estimates of the single differenced
carrier ambiguities and a covariance matrix describing the uncertainty in the estimates. The
single differenced estimates are transformed into double differenced values prior to integer
fixing to remove residual receiver clock errors. Seeing that the transformation is a linear
process, a transformation matrix is constructed to perform the operation. An example of a

transformation matrix is given in Equation (2.27).

1 =100 0

. 0 -1 100
cd = (2.27)

0 -1 010

0 -1 00 1
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In the example, the second of five single differenced ambiguities is chosen as the base estimate
and is subtracted, via Equation (2.28), from the remaining estimates resulting in four double

differenced ambiguity estimates.
N; = CIN, (2.28)

The transformation matrix is also applied to the covariance matrix as seen in Equation

(2.29).

Py, = CipPyC” (2.29)

d

Intuitively, rounding is the most straightforward method of converting a floating point
value to an integer. However, the Kalman filter yields ambiguity estimates which are highly
correlated. This correlation can be seen in the off diagonal terms of the covariance matrix.
Simply rounding the estimates to their nearest integer makes insufficient use of the available
information. Optimal integer estimates take into account both the variance and covariance
of each floating point ambiguity estimate. However, searching the multi-dimensional space
defined by the total set of estimates is impractical. The LAMBDA method refines the
search space by decorrelating the ambiguity estimates through a transformation [33]. This
transformation results in a nearly diagonal covariance matrix which is used to calculate
integer estimates of the carrier ambiguities. The integer ambiguities are computed in a
sequential routine starting with the most certain estimate (lowest variance). The completed
set is then transformed back into the original domain.

While the LAMBDA method does provide the most likely candidate set of integer am-
biguities, they are not guaranteed to be correct [18]. The user must decide if the candidate
set meets the requirements of the application. The decision criterion used here is known as
the ratio test. Two candidate sets, N; and Ny, are computed via the LAMBDA method and

their deviations, d, from the original floating point ambiguity estimates, N , are calculate
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using Equation (2.30).

~ 9

d; = (N — Nj)Py (N — N)T (2.30)

If the ratio of the deviations, ds/d;, exceeds a selected threshold, the most likely candidate,
]\71, is retained and used to compute a high precision RPV. A threshold of three was used in

this work based on the results seen in [34].

2.2.3 Least Squares Relative Position Vector Estimation

The final step of the DRTK algorithm is the estimation of the RPV between the GPS
receivers. The first two steps of the algorithm provide the best available estimate of the
double differenced carrier phase ambiguities. Ideally, fixed integer estimates are successfully
computed with the LAMBDA method but the RPV is estimated regardless of the results
of the ratio test. The RPV estimate is therefore designated as a high precision (HPRPV)
estimate in the case that the integer estimates are available or a low precision (LPRPV)
estimate when the floating point estimate must be used. The solution procedure is same
regardless of the precision of the ambiguity estimates. Equation (2.31) shows the form of

the RPV estimate problem derived from Equation (2.6) and Equation (2.11).

VA¢ab — )\VANab = AﬁaFab + Vb (2.31)

Note that the A preceding the unit vector signifies that the base unit vector has been
subtracted to form the correct geometry and that the satellite notation has been removed

for clarity. The RPV is estimated using least squares as shown in Equation (2.32).

Fop = (A, T Aw) T AULT (VAGe — AVAN,,) (2.32)

A weighted least squares formulation may also be implemented to incorporate the measure-

ment uncertainty described in Section 2.2.1.3.
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2.3 Low Cost Alternative

In the previous section, a DRTK algorithm incorporating both L1 and L2 frequency
measurements was described. A goal of this thesis is to develop a single frequency alternative
and to evaluate any performance limitations. Single frequency receivers are far cheaper than
their dual frequency counterparts. Typically, single frequency receivers can be purchased for
less than $200 while dual frequency receivers can cost several thousands of dollars. Single
frequency antennas can be purchased at reduced cost as well.

The single frequency algorithm follows the same multistage process as the dual fre-
quency algorithm. First, the carrier phase ambiguities are estimated in a Kalman filter. The
state vector, measurement matrix, and measurement vector are modified to contain only L1
information as seen in Equations (2.33) through (2.36) (Note: L2 only implementation is

also possible).

T
z = | Ny, - Nz } (2.33)
- T
2= Ly Apym Ay } (2.34)
Ome
H =L (2.35)
)\Ll-[me,
1 - m 1 - m 1 - m
Ua,, Ua, Ua, 1
L = l@ftnu” T T T (236)
1 -+ m 1 -+ m 1 -+ m
Uay Ua, Ua, 1

The Kalman filtering stage is implemented as described in Section 2.2.1.3. Again, the
LAMBDA method is used to develop integer estimates of the double differenced ambigu-
ities and the RPV is estimated in a least squares routine. However, the reduction in the
number of available measurements both increases the uncertainty in the ambiguity estimates
and decreases the likelihood of successfully fixing integers. Figure 2.1 shows the increased

variance of the single frequency ambiguity estimates and the ratio test calculated from data
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Figure 2.1: Single and dual frequency mean ambiguity variance and the corresponding ratio
test from GPS data

collected on two dual frequency receivers. The same data set was processed with the dual
and single frequency algorithm (simply ignoring the L2 measurements in single frequency
calculations). It can be seen that the ratio test results from the single frequency algorithm
are consistently lower than the dual frequency algorithm. Despite this drawback, the single
frequency algorithm is capable of producing highly accurate results as long as the ratio test is
passed. Assuming that both algorithms settle on the same set of integers, the RPV estimate
calculated by the single frequency algorithm will be based on a subset of the same data used
in the dual frequency estimation. Recall that the ratio test threshold value of three was
selected in Section 2.2.2 with values greater than the threshold passing the test. Clearly,
the single frequency ratio exceeds the selected threshold for a majority of the data set. In
additional analysis, the single frequency algorithm was not as successful in passing the ratio
test. Overall, the ratio test was passed on 24.8 percent of all measurement epochs using only
L1 frequency measurements as compared to 62.8 percent using both L1 and L2 frequency
measurements. Additional analysis of the single and dual frequency algorithms is provided

in the next section.
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Figure 2.2: High precision baseline error calculated with the single and dual frequency
algorithms for a dynamic data set from two vehicles

2.4 Experimentation and Results

To compare the performance of the single and dual frequency algorithms, data was
collected with two Novatel Propak V3 receivers mounted on two Infiniti G35 sedans. A
Septentrio Pola RX2 receiver was used as a base station to calculate a RTK position solution
to be used as reference data. The receivers output L1 and L2 frequency measurements at
b5Hz. Pseudorange and carrier phase measurements were recording at varying separation
distances in both stationary and dynamic scenarios. The performance of the algorithms was
evaluated based on accuracy and the availability of a high precision solution.

The accuracies of the single and dual frequency DRTK algorithms were determined by
comparing the estimated RPV to the difference in the RTK reference solutions to the two
receivers. Both low precision and high precision RPVs were examined. The low precision
solution was computed at every measurement update while the high precision solution was
computed only when three or more fixed integer ambiguity estimates were available. Figure

2.2 and Figure 2.3 show the high precision and low precision results of a typical test run.
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Table 2.2: Statistics on HP and LP Baseline Errors

High Precision Low Precision
RMSE (cm) | Variance (¢cm?) | RMSE (cm) | Variance (em?)
Dual Frequency 0.33 0.10 20.87 430
Single Frequency 0.45 0.18 24.52 600

The error in the magnitude of the RPV is plotted verse time. Note that the magnitude of the
RPYV will also be referred to as the baseline. Clearly, the dual frequency and single frequency
high precision results show errors of similar magnitude throughout the run. As would be
expected the error is highly correlated between the two algorithms with the single frequency
algorithm producing slightly higher variance. The absolute value of the baseline error does
not exceed 4 cm for either algorithm. The root mean squared error (RMSE) and variance of
both the high and low precision solutions for each algorithm are provided in Table 2.2.

The low precision errors are typically slightly more than one order of magnitude higher
than the high precision errors. Here the maximum error for each algorithm is nearly 80
centimeters. This is still a marked improvement over the expected error of the standalone
GPS solution which is generally several meters. Again the errors are highly correlated with
higher variance seen in the single frequency solution.

RPV estimates were calculated for a variety of separation distances and the resulting
errors in the high precision solutions are shown in Figure 2.4. The majority of the errors for
each algorithm do not exceed 20 centimeters but it is apparent that the variance increases
slightly as the separation distance increases. Also notice that at a separation distance of
approximately 600 meters the dual frequency algorithm produces a high precision solution
while the single frequency algorithm does not. This portion of the data was collected during a
static test as can be seen by the constant separation distance. Approximately ten minutes of
data was collected during each static test and both the single and dual frequency algorithms
successfully estimated integer ambiguities for separation distances of 8, 150, and 350 meters.
However, the ratio test was not passed using only L1 frequency measurements with 600

meters of separation.
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Figure 2.3: Low precision baseline error calculated with the single and dual frequency algo-
rithms for a dynamic data set from two vehicles
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Figure 2.5: Dual and single frequency errors as a function of the number of visible satellites

The accuracy of the high precision solution from each algorithm was also evaluated
based on the number of satellites being tracked by each receiver. Figure 2.5 shows the single
and dual frequency results for various numbers of satellites with the red dots corresponding
to the one sigma bounds of the error. Again, the accuracy of each algorithm is comparable
but the algorithms can be differentiated by the availability of a high precision solution. With
both L1 and L.2 frequency measurements a high precision solution is calculated when tracking
as few as five satellites. A minimum of six satellites were required to successfully fix integers
when using only L1 frequency measurements.

It has been established that the primary difference in the single and dual frequency
algorithms is the availability of a high precision solution. To quantify this difference, the
time to first fix (TTFF) for each algorithm was calculated. The TTFF is time required
to fix floating point ambiguity estimates to integer values. The TTFF for each algorithm
is shown in Figure 2.6 as a function of the number of visible satellites. Statistics on the
TTFF for each algorithm are also provided in Table 2.3. The mean TTFF for the dual
frequency algorithm is approximately 0.2 seconds which corresponds to two measurement
epochs. The single frequency mean TTFF is significantly higher at almost 2.5 seconds or
approximately 12 measurement epochs. It is also important to note that the mean TTFF

with L1 measurements only increases considerably as the number of satellites decreases. In
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Table 2.3: Statistics on the TTFF

| | Mean (s) Standard Deviation (s)
Satellites | 9+ 8 7 6 5 | Total | 9+ 8 7 6 5 | Total
Dual 0.20 | 0.07 | 0.28 | 0.26 | 0.14 | 0.18 | 0.50 | 1.10 | 4.24 | 5.24 | 2.89 | 3.52
Single 244 1490 | 7.74 | 6.21 | NA | 4.29 | 14.33 | 36.17 | 32.96 | 30.07 | NA | 24.70
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Figure 2.6: Dual and single frequency TTFF as a function of the number of visible satellites

comparison, the mean TTFF using both L1 and L2 measurements is not effected by the
number of satellites but an increase in the standard deviation is seen as the number of

satellites decreases.

2.5 Conclusions

Single and dual frequency DRTK algorithm were developed and compared based on
their accuracy and the availability of a high precision solution. The accuracy of both the low
precision and the high precision RPV estimates of each algorithm were significantly better
than the traditional standalone GPS solution. The high precision baseline errors for each
algorithm was predominantly sub-centimeter. It is important to note that the residual error
of the DRTK algorithm is correlated with the residual error of the reference RTK solution, so
the reported errors may be slightly optimistic. The RTK solution is reported to be accurate
to the centimeter level and by comparison the DRTK algorithm errors are of the same order

of magnitude.
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High precision solution availability proved to be the primary difference in the perfor-
mance of the single and dual frequency algorithms. The mean TTFF of the single frequency
algorithm was 9 seconds for a variety of operational scenarios while the dual frequency al-
gorithm fixed integers in 0.2 seconds on average.

From the analysis, the single frequency algorithm is an effective alternative to the dual
frequency algorithm depending on the system requirements. Given that GPS availability is
high in the operational environment and that time can be given to allow the algorithm to fix
integers, the single frequency provides similar performance to the dual frequency algorithm.
If operation in poor GPS environments or immediate integer fixing are design requirement,

the dual frequency algorithm should be implemented.
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Chapter 3
DRTK and IMU Integration

The DRTK algorithm described in Chapter 2 provides RPV estimates at the output rate
of the GPS receiver, typically less than 10 Hz. By incorporating IMU measurements in the
navigation algorithm, the RPV can be estimated at five to ten times the rate of the GPS only
solution. In this chapter, GPS and IMU integration is discussed and possible architectures
are evaluated to determine the best method of data fusion for relative navigation of ground

vehicles.

3.1 GPS and IMU Integration

GPS and IMU are combined in integrated navigation solutions to take advantage of the
complimentary nature of each unit’s strengths and weaknesses. The strength of GPS lays
in its ability to provide a global navigation solution with predictable long term accuracy.
However, the GPS position solution is prone to meter level jumps and intermittent outages
due to faulty measurements, changing satellite geometry, and environmental interference.
The IMU is used to smooth jumps in the GPS position solution and bridge short GPS
outages. The IMU navigation solution requires global position initialization and periodic
updates to bound dead reckoning error growth due to integrated errors and noise. The
combined navigation system provides a smooth high rate solution with immunity to short
GPS outages.

At this point it is valuable to differentiate between an IMU and an inertial navigation
system (INS). The IMU is the device measuring the specific forces and angular rates acting on
the sensor platform. Combining these measurements with a navigation processor constitutes

an INS. The navigation processor is responsible for maintaining the orientation of the sensor
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Figure 3.1: GPS/INS filtered solution with erroneous stand alone GPS solution

frame relative to the navigation frame and computing position and velocity estimates from
the IMU measurement. This process is described in detail in the next section.

A comparison of a standalone GPS position solution and a GPS/INS position solution
is shown in Figures 3.1 and 3.2. Note that the background maps were made available
through GPS Visualizer. In each figure the GPS only solution, as reported by a Novatel
Propak V3 receiver, is shown in white and the GPS/INS solution is shown in blue. The
GPS/INS solution was calculated post process by combining pseudorange measurements
from the Novatel receiver with measurements from a Crossbow IMU440. These sensors were
affixed to a test vehicle traveling on a two lane county road. Figure 3.1 shows the standalone
GPS solution jump off the road by several meters while the GPS/INS solution maintains its
position on the road.

In Figure 3.2, the vehicle travels under an overpass and predictably the standalone GPS
solution is lost momentarily. The GPS/INS algorithm continues to output a solution by
dead reckoning with IMU measurements only until GPS returns. When satellite signals are

reacquired on the north side the overpass, a correction of the of INS solution can be seen.
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Figure 3.2: IMU dead reckoning under an overpass during GPS outage

GPS/INS integration architectures can be classified into three categories: loosely cou-
pled, tightly coupled, or deeply coupled. Variation of the method of integration and on the
names given to each category are found in the literature but generally the coupling archi-
tectures can be differentiate based on GPS measurements used to correct INS propagation
errors [17]. For example, the term loosely coupled indicates that GPS position and veloc-
ity estimates are used to update the INS solution. Tightly coupled GPS/INS architectures
utilize GPS pseudorange, carrier phase, and/or pseudorange rate measurements to update
the INS solution. Deep coupling of GPS and INS is performed at the signal processing level.
In-phase and quadraphase correlator outputs from the receiver tracking channels are used as
inputs to the navigation filter. The navigation filter feeds oscillator corrections back to the
GPS receiver and INS corrections to the navigation processor to update position estimates.
Figure 3.3 provides a visual representation of the three architectures.

Each integration method has advantages and disadvantages. The loosely coupled ar-
chitecture is relatively simple to implement but ignores valuable information when the GPS

receiver is not capable of computing a position solution due to limited satellite visibility (less
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Figure 3.3: GPS/INS coupling architectures from left to right - loosely coupled, tightly
coupled, and deeply coupled

than four satellites). Tight coupling avoids this deficiency by using all available pseudorange
and Doppler measurements whether the complete GPS solution is available or not. The
deeply coupled architecture excels in this area by improving the signal tracking capability of
the GPS receiver thereby maximizing the number of available GPS observables. Of course,
implementation becomes increasing difficult moving from loose to tight to deep integration.
One additional consideration for this work is the quality of the available measurements. Deep
coupling maximizes the available information often at the expense of quality. Signal tracking
at low carrier to noise ratios, the specialty of deeply coupled filters, can leads to degraded
measurements. Since the algorithms developed here are acutely dependent on measurement

quality, tight coupling is chosen as the basis for GPS/INS filter design.

3.2 Tightly Coupled GPS/INS

The tightly coupled GPS/INS navigation filter is founded on the INS position, velocity,
and attitude (PVA) solution. PVA estimates are computed in the INS navigation processor
and errors are tracked in an error state Kalman filter. The estimated errors are fed back to

the navigation processor and a corrected navigation solution is output.

3.2.1 INS Navigation Processor

Position, velocity and attitude estimation in the INS navigation processor is a multi-

stage process. The steps of the estimation procedure are shown in Figure 3.4. Clearly
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from the figure, a priori attitude, velocity, and position information is required for estimate
propagation. For now it is assumed that estimates of the initial conditions of the states are
available. The additional terms in the figure represent the IMU measurements of angular
rate, wy, and specific force, f;, and the local acceleration due to gravity, g., and the rotation
rate of the Earth, w,.

The first step in the navigation processor is the attitude update. Attitude information
is maintained in the form of a transformation matrix relating the platform body frame to
the chosen navigation frame. The ECEF frame is the navigation frame in this work and
therefore the transformation matrix is defined by the Euler rotation angles relating the body
frame and the ECEF frame. The Euler roll, pitch, and yaw angles, (¢,6,), define three
rotations transforming a vector in a given reference frame to a new frame. The Euler angles
o;, 05, and 9y, relate the body frame, b, to the ECEF frame, e, and the rotations associated

with these angle are shown in matrix form in Equations (3.1) through (3.3).

1 0 0
Ry = 0 cos¢p singy (3.1)

0 —sing¢j; cosoy

costy 0 —sinbj
Ry = 0 1 0 (3:2)

sindy 0 cost;
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cosyy sinyy 0
Ry = | —siny¢ cosyf 0 (3.3)
0 0 1

The resulting transformation matrix, Cf, is computed as shown in Equation (3.4).

sz = [Rﬂ [Rz} [R?)] (3~4)

On each IMU measurement, the transformation matrix is updated using the measured an-
gular rates, w,. Note that the measurements are in the IMU frame which is assumed to be
consistent with the platform body frame. Using a small angle approximation, the rate of

change of the transformation matrix is approximated by

Ce = Oy — Q. Cs (3.5)

where €);;, is the rotation of the body frame relative to an inertial frame expressed in skew-
symmetric form and §2;, is the rotation of the ECEF frame relative to an inertial frame also
expressed in skew-symmetric form. The ECEF frame rotates with the Earth and that rota-
tion is assumed to be constant here and given by the vector, w. =[ 0 0 7.292115 x 105 ]T
in units of radians per second [17]. The rotation of the body frame is measured by the IMU
and is given by the vector wy. The skew-symmetric form is defined in Equation (3.6) for an

arbitrary vector of rotations (w,,wy, w,).

0 —w., wy
Q= [(Wz’awyawz)]x = Wy 0 —Wy (36)
—Wy Wy 0
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Equation (3.5) is integrated assuming that 2, and ;. are constant over the IMU measure-
ment interval, At, and Cf is propagated using Equation (3.7).

o =Cp (T4 QuAt) — 0, At (3.7)

bk:—l bk:—l

The current transformation matrix and the accelerometer measurements are then used
to update the velocity estimate. Specific forces measured by the IMU, denoted as f;,, must
be rotated into the navigation frame prior to use. This is done by multiplying the measured

specific forces by the transformation matrix as seen in Equation (3.8).

fo = Cify (3.8)

The specific force measurement is corrected to account for gravity and Coriolis effects and

the estimated velocity is propagated using Equation (3.9).

‘/6 ‘/ek—l + (fe + ge — 2Qi6%k71)At (39)

k:

The acceleration due to gravity, g., is calculated based on the ECEF position of the platform
using the model described in [37].
Finally, the position estimate is updated by Euler integration using the current velocity

estimates as given in Equation (3.10).

P, =P,  +V,At (3.10)

k

Since the INS solution is depended on integration of IMU measurements known to contain
errors due to misalignment, biases and noise, the PVA estimates will diverge from the true
value over time. Corrections in the form of GPS measurements are used to bound this drift.
The pose error due to IMU errors is estimated in an extended Kalman filter described in the

next section.
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3.2.2 Kalman Filter

INS solution errors are estimated in an extended Kalman filter with 17 states as shown
in Equation (3.11).

v= | 6P, 6V, 60, b, b, cdt cdi (3.11)

Each of the first five terms in the state vector represent three dimensional components which
from left to right are the position error, velocity error, attitude error, accelerometer biases,
and gyroscope biases. The pose error states (position, velocity, and attitude) are estimated
in the ECEF frame while the bias states are estimated in the platform body frame. The last

two states are estimates of the GPS receiver clock bias and clock drift.

3.2.2.1 Measurement Model

As stated in Section 3.1, in a tightly coupled GPS/INS filter the INS navigation solution
is corrected using pseudorange and pseudorange rate measurements from GPS. The measured
pseudoranges and pseudorange rates are compared to predicted values derived from the INS
navigation solution. Equations (3.12) and (3.13) are used to compute the predicted the
pseudorange and pseudorange rate from the receiver to satellite s where P, is the position

of satellite s in ECEF coordinates.

ps = J(P.—P,)(P.— P,)T +cdt (3.12)
. P.— P (V, -V, .
ps = Fem Po) (Ve m Va) g (3.13)

J(P.—P,) (P.— P,)T
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The measurement vector contains the difference between the GPS measurements and the

INS based predictions which are called the measurement innovations, dz.

6Zp1 P1— lal

=1 | = o (3.14)
62?1 pl - pl

The dimensions of the measurement vector are 4m x 1 with m equal to the number of visible
satellites (assuming GPS measurements on L1 and L2 frequencies). Note that the measured

pseudorange rate, p is calculated from the GPS Doppler measurement, f;, by

p:-%ﬁ (3.15)

where ¢ is the speed of light and X is the wavelength of the carrier signal.

Since the measurement model is a nonlinear function of the states, as seen in the Equa-
tions (3.12) and (3.13), the measurement matrix, H, is a linearization of the actual mea-
surement model about the current states. It is derived by computing the partial derivative
of each equation with respect to the state vector. Despite the fact that the position and
velocity estimates from the INS navigation processor are dependent on the attitude errors,
those influences are assumed to be small relative to the influence of the position and velocity
errors. Therefore, attitude error affects on the pseudorange and pseudorange rate errors
are ignored. Also, the velocity error is assumed to be the dominant error in the predicted
pseudorange rate thus the partial derivative of Equation (3.13) with respect to the position

error is assumed to be zero. With these assumption in mind, the measurement matrix is
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approximated as

H = S 3 (3.16)

0 : 0000

where u’ is the unit vector from the GPS receiver to the i satellite and the column of ones
corresponding to the receiver clock bias for the first 2m rows and the receiver clock drift for
the last 2m rows.

The Kalman measurement update is performed by first calculating the Kalman gain
using the linearized measurement matrix, the a priori error covariance matrix, and the mea-

surement noise covariance matrix.

Ky, = PoH! (H PH + Ry)™" (3.17)

The error covariance matrix and the error state vector are then updated with Equations

(3.18) and (3.19).

Pt = (I - KyHy)P; (3.18)

The measurement noise covariance matrix, R, is defined in Section 3.2.3.

The estimated position, velocity, attitude from the navigation processor are corrected
using the error state vector. The position and velocity are update by simply adding the
corresponding error state to the previous estimate. The rotation matrix, Cf, is updated

using Equation (3.20) where Qsy is the skew symmetric form of the attitude error estimate.

Cet = (I3 + Qs0)C (3.20)
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After the pose estimates are updated, the error states are reset to zero.

3.2.2.2 Propagation Model

The Kalman filter requires a linear system model to propagate the states and error
covariance matrix in time. This is done by first defining the time derivative of the error state
vector as a linear function of the states. Starting with the Equation (3.21), the time rate of

change of the position errors is equal to the velocity errors.

6P, =6V, (3.21)

Propagation of the velocity estimates in the navigation processor is a function of the
local acceleration due to gravity, the Coriolis effect, and the accelerometer measurements.

The velocity error is dependent on each of these parameters as seen in Equation (3.22).

6V = Go0P, — 20,0V, — f.00, + Ch, (3.22)

Errors associated with the local acceleration due to gravity are introduced through the
position errors shown in the first term of the equation. G, is a matrix of gravity variations
defined for position vectors in the ECEF frame and its definition can be found in |35]. The
estimated Coriolis effect is influenced by the velocity errors and the resulting deviations are
accounted for in the second term. The final two terms are the affect of attitude errors on
the rotation of the accelerometer measurements into the navigation frame and the affect of
the accelerometer biases.

The time rate of change of the attitude errors is given in Equation (3.23).

S, = —0,.00, + Ctb, (3.23)
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Here, the attitude errors due to gyroscope biases are tracked along with any error introduced
when removing the Earth’s rotation from the gyroscope measurements.

In addition to the propagation models of the error states, models must be defined for the
accelerometer and gyroscope biases. The accelerometer and gyroscope biases are modeled

as Gauss Markov processes defined in Equation (3.24) and Equation (3.25) respectively.

. 1

by, = ——b,+ v, (3.24)

. 1

by = ——b,+ v, (3.25)
Tg

In this work, the time constants are as follows: 7, = 500s and 7, = 1300s. These values are
taken from experimental identification of time constants for similar hardware in [36]. The
noise terms are assumed to be zero mean white Gaussian noise.

With the system dynamics defined the system model, F', is constructed as seen in

Equation 3.26.

F=105 03 03 —LI; 0 00 (3.26)
03 03 03 03 —LI; 0 0

0 0 0 0 0 0 0

Note that the final two rows correspond to the GPS receiver clock bias and drift with the
derivative of the clock bias equal to the clock drift and the clock drift assumed to be driven
by zero mean white noise. The discrete state transition matrix, ®, is approximated by

truncating the Taylor series expansion of e to first order resulting in

® =1+ FAt (3.27)
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The first order approximation should be only used for propagation over sufficiently small
intervals (At < 1s) [17]. The state transition matrix is used to propagate both the state
vector and the error covariance matrix. The process noise covariance matrix, (), is defined

in the next section.

Ty = If + iy (3.28)

Po, = &Pfof+Q (3.29)

3.2.3 GPS/INS Filter Initialization and Implementation

Filter initialization includes estimating the initial position, velocity, and attitude to
“kick off” the INS navigation processor, and initialize the Kalman filter state vector and
error covariance matrix. The position and velocity estimates are initialization with the first
available GPS solutions but the initial attitude is not so easily estimated. High quality
IMUs are capable of estimating the orientation of a static platform by observing the Earth’s
rotation and the local acceleration due to gravity. In this work, automotive grade IMU are
the primary sensors used making this method infeasible. Alternatively, the attitude estimates
are initialized based on the local East, North, UP (ENU) frame. The pitch and roll of the
platform body frame relative to the local tangent plane are assumed to be zero. The yaw
angle relating the forward axis of the body frame and the north direction is estimated using
known landmarks. The rotation matrix relating the platform body frame to the local ENU

frame is then computed using

cosfs —sinf; 0 cosfy —sinfy 0 0 0 0
Ozl, = | sinfl3 cosf; O sinfly  cosfy O 0 cosf; sinb,; (3.30)
0 0 0 0 0 0 0 —sinf; cosH,
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where 6, 05, and 05 are 180°, —90°, and the yaw angle respectively. Note that this assumes
that the platform body frame is defined as x forward, y right, and z down. Now the rotation
matrix relating the local ENU frame to the ECEF frame, Cf is defined as seen in [12] and
[35] using the estimated Latitude and Longitude. Finally, the initial body frame to ECEF

frame transformation matrix is calculated using Equation (3.31).

Cf = CfCl (3.31)

The Kalman filter state vector and error covariance matrix are initialized more intu-
itively. Since the state vector is comprised of error estimates it can be initialized to zeros.
The error covariance matrix is initialized with the expected variance of the associated error
states.

The GPS measurement noise covariance matrix, R, is again calculated as a function
of the receiver characteristics and the carrier to noise ratio of each measurement. The
pseudorange variance, 05, due to atmospheric delays and the receiver delay lock loops (DLL)
was defined in Equation (2.21). The pseudorange rate measurement is tracked by the receiver

frequency lock loops (FLL) causing the variance to be dictated by Equation (3.32) and (3.33).

2 2 fz
\ [1B,, 1
= 1 3.33
orLL 27rT\/c/n0 (1+ Tc/no) (3:33)

The parameters in the above equations are defined previously in Table 2.1 with the exception
of fg, the dynamic stress error. Assuming that the pseudorange variance and the pseudor-

ange rate variance are uncorrelated the noise covariance matrix is a diagonal matrix is given

by
ai 0
R = (3.34)
0 03
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The process noise covariance matrix, (), is a diagonal matrix with approximations of
the noise variance induced through the navigation processor and the variance of white noise
of the GPS receiver clock bias and drift. Initial estimates of the noise variances are taken
from [6] and are tuned to improve performance.

The observability of the GPS/INS filter is an important point to consider. There are no
direct measurements of the platform’s attitude available from the GPS receiver. Therefore,
it can be difficult to differentiate attitude errors from accelerometer biases. For example, the
roll angle error and the lateral accelerometer bias introduce common deviations in the filter
solution. Accordingly, the platform must experience sufficient excitation to effectively distin-
guish accelerometer biases from attitude errors. Since the accelerometer biases are expected
to change slowly with time, they are more easily separated from the attitude errors during
high dynamic maneuvers. Generally once the platform has performed dynamic maneuvers,
the bias estimates converge to the actual values and the transience in the estimation error

decreases.

3.3 DRTK/INS

Combining GPS and INS for estimation of the relative position vector between two
vehicles is similar to the standard GPS/INS integration described above. However, there is
an addition choice of filter architectures. The RPV can be estimated in two stage federated
filter approach where two independent GPS/INS filters feed a third filter responsible for only
an RPV estimate or a single filter can be implemented combining measurements from each
platform and computing both global position estimates and relative position estimates. The

two implementation options are described below.

3.3.1 Federated Filter

A block diagram of the federated DRTK/INS filter approach is shown in Figure 3.5.

Two independent GPS/INS filters maintain global position estimates for each vehicle. These

45



GP5 Receiver s
s
L)
By,
GP5 Range ' e,
= IN5 correctons | ot
Processar =2 IhiNa;w,etmn
rocessor
Pseudorange GPE /INS
2 Mavigstion (€
Pzzudaorange Kzlman Filter
Rates ¢’
Pzzudorzngs ff paosition, welodty, sttitude
Carrier I |
. RPV
H DRTE / IN5 BV
M RPV
! Kalman Filter I
aI ]
Pzzudorangs
Carrier f position, velodty, sttitude
e
Pszudorangs GPS fINS
} Mavigation
Pzzudorange Kalman Filter
Rates
e > IN5 Mavigation
3 58 g o Processar
Bt saah IN5 corrections -
A N
GP5Receiver 1ML

Figure 3.5: Federated DRTK/INS filter configuration

filter are executed exactly as described in Section 3.2.3. On each IMU measurement epoch,
the specific force measurements are rotated in the navigation frame in the GPS/INS filter
during the propagation step and the rotated measurements, f., are sent to the DRTK/INS
filter for RPV propagation. The GPS pseudorange and carrier phase measurements from
each receiver are used to update the RPV and a relative velocity vector (RVV). The RPV
and RVV are estimated in a Kalman filter combining the filtering techniques described thus

far.
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3.3.1.1 Measurement Model

The DRTK/INS measurement update is similar to the measurement update discussed in
Chapter 2 with minor exceptions. First of all, the low precision RPV estimate is maintained
in the state vector rather than being estimated in a separate least squares routine. The state
vector also contains the RVV and the double differenced carrier phase ambiguity estimates.
The complete vector is given in Equation (3.35) with the total number of states being 6 +

2(m — 1) where m is the number visible satellites.

T

T=| Fw Ta VANR™ ' VAN™! (3.35)

abr1 abrs

Since the double differenced ambiguities are being estimated and the RPV is estimated
in the state vector, the measurement vector is constructed with no need of the left null
of the geometry matrix. The measurement vector simply contains the double differenced

pseudorange and carrier phase measurements.

T

= vAplmm—l VApl---m—l quslmm—l VAQZSlmm_l (336)

abr abrs abr1 abrs

The measurement matrix is now dependent on the satellite geometry. The unit vector
to the base satellite is subtracted from the remaining unit vectors to account for the double
difference. Rows corresponding to carrier phase measurements contain the signal wavelength
in the appropriate column to add the carrier ambiguity estimate to the estimated range. The
measurement matrix is shown in Equation (3.37) with the satellite notation removed but note

that the total number of rows in H will be 4(m — 1).

AUaLl 03 03 03

Atg,, 03 03 0
H— o 8T (3.37)

Auam 03 )\Ll 03

Aug,, 03 03 Az
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The Kalman measurement update is carried out with Equations (2.15) through (2.17).
The RPV estimated in the state vector is comparable to the low precision estimate of the
RPV described in the Chapter 2. To compute a high precision estimate, the estimated
carrier ambiguities must be fixed to integer values. Again, the LAMBDA method is used to
construct candidate integer sets and the ratio test is performed to evaluate the validity of

the fix. If the ratio test is passed the high precision RPV is estimated with Equation (2.32).

3.3.1.2 Propagation Model

As seen in Equation (3.35), the platform attitudes are not estimated the DRTK filter.
Since the rotated accelerometer measurements are available from the independent GPS/INS
filters, they can be used directly in the relative navigation filter. The rotated specific force

measurements enter the DRTK filter through the input matrix given by

SALI
I'= Atls (3.38)

O2(m—1)x3)

The state transition matrix is constructed accounting for the kinematic relationship of the

RVV and RPV and assuming the ambiguity estimates are constant.

I3 Atly  0@x2m-1))
¢ = O3 I3 O@x2mm-1) (3.39)

O20m—1) O2(m—1)  Io(m—1)

With the specific force measurements from the two platforms rotated into a common nav-
igation frame, they can be subtracted from one another to compute the relative specific
force. Also notice that since the platforms are assumed to be in close proximity (a re-
quirement of DRTK) and the measurements are expressed in the same frame the effects of

gravity experienced by each unit are approximately equal and are therefore removed when
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the measurements are subtracted. Finally, if it is assumed that the relative Coriolis effects
are small compared to the sensor noise, the relative acceleration of the two platforms can be

approximated by Equation (3.40).

Jear = Jeo = Jea (3.40)

Now the input to the system is given by, f.,, and the state vector and error covariance

matrix are propagated with the following equations:

ik = Opipot + Tife, (3.41)

P, = ®.P._ 10 +Q (3.42)

3.3.1.3 Implementation

The carrier phase ambiguities in the state vector are initialized with the first available
GPS pseudorange and carrier measurements as described in Section 2.2.1.3. RPV and RVV
estimates are initialized by differencing the GPS position and velocity solutions from the
two receivers. The error covariance matrix is initialization with the expected variances of
the RPV, RVV, and double differenced ambiguity estimates.

In the event that GPS becomes unavailable after initialization, the RPV estimates are
maintained by dead-reckoning with inertial measurements. This leads to an alternative
method of re-initialization of the carrier ambiguity estimates after short GPS outages. The

RPV estimate can be used to re-initialize the ambiguity estimates using Equation (3.43).

VAN, = (VAG — Adiyiy) /A (3.43)

In the discussion of the propagation of the RPV and the RVV, the accelerometer bias
was not mentioned explicitly, but there are two possible methods of accounting for them.

One option is to remove the bias prior to sending the specific force measurement to the
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DRTK algorithm but subtracting the GPS/INS estimate of the bias from the measurement.
The other option is to estimate the relative bias in the DRTK filter by augmenting the state
vector to include bias estimates. Each alternative offered similar results in testing. The
results presented in this chapter are computed by removing the bias prior to passing the
IMU measurements to the DRTK algorithm.

The measurement noise covariance matrix, R, is calculated as described in Section
2.2.1.3. However, the variance must be representative of the variance of double differenced
pseudorange and carrier measurements. The variance of the single differenced measurements

from receivers a and b is given by

R, = | opu (3.44)

2 2
0 Oaprr + Obprr

This matrix is transformed into the matrix of double differenced measurement variances

using the transformation matrix, C¢, detailed in Section 2.2.2.

T

R= R,| ° (3.45)

3.3.2 Centralized Filter

The alternative to the federated filter approach is one filter estimating global and rel-
ative position states. Figure 3.6 shows a block diagram of the centralized DRTK/INS filter
configuration. The filter inputs are the raw measurements from each GPS receiver and the
INS navigation processor outputs from each platform. The global position, velocity, and

attitude of each platform is estimated along with the RPV between the receivers.
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Figure 3.6: Centralized DRTK/INS filter configuration
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3.3.2.1 Measurement Model

The centralized DRTK/INS filter can be thought of as a combination of the GPS/INS
filter described in Section 3.2 and the DRTK algorithm described in Chapter 2. The Kalman
filter is implemented with a combination of error states and actual states. The position,
velocity, and attitude errors of each platform occupying the first 18 rows of the states vector.
Three dimensional accelerometer and gyroscope bias estimates make up the next 12 states
followed by the receiver clock bias and drift estimates. Next is the RPV error and the double
differenced carrier ambiguities. The complete vector is given in Equation (3.46).
r= | §P, 6V, oW, 0P, 6V, V., b, b, cdt, cdt, cdt, cdt, 6rey, VAN

(3.46)

€b

While implementing a filter of this size in real time may be troublesome, it is shown here
to investigate any performance improvements gained by coupling global position estimation
with relative position estimation.

As in the GPS/INS filter, predictions of the pseudorange and pseudorange rate mea-
surements are computed using Equation (3.12) and (3.13). The double differenced carrier
phase measurements are also predicted from the estimated relative position vector and the

carrier ambiguity estimates.

VAGw = Ay + VAN, (3.47)
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The measurement vector is constructed by subtracting the predictions from the GPS mea-

surements resulting in the measurement innovations.

8P Pa — Pa

0fa pa = Pa

opp | = Pb— Pb (3.48)
0P fb— P

Sha VAg, — VAGY,

Again, the predicted pseudorange and pseudorange rates are nonlinear combinations

of the position and velocity estimates. Therefore, the measurement matrix is developed

by linearizing the measurement equations about the current position and velocity. The

carrier phase prediction is a linear function of the RPV and the ambiguity estimates so the

measurement equation can be put directly into the measurement matrix.

_ﬁa 0 0
0 i, 0
H=10 0 0
0 0 0
0 0 0

000001000 0 0
000000100 0 O
@ 0 0000010 0 0 (3.49)
0@ 0000001 0 0
000 000DO0O0O0 0 A, A

The Kalman filter measurement update is performed using Equations (3.50) through (3.52).

An attempt is then made to fix

= P.HYH.P.H' + R,)™ (3.50)
= (I — KxHy) P, (3.51)

the floating point ambiguity estimates to integer values

using the LAMBDA method. With an acceptable integer set, the high precision RPV is
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estimated using least squares as seen in Equation (2.32). Since the errors in the position,
velocity, attitude, and RPV are being estimated in the Kalman filter, the estimates of the
actual states must be updated after a measurement update. The position, velocity, and
RPV estimates are updated by adding the estimated errors to the previous estimate while

the attitude estimates are updated as seen in the GPS/INS filter using Equation (3.20).

3.3.2.2 Propagation Model

The propagation step of the centralized DRTK/INS filter involves propagation of the
pose estimates and the RPV as well as propagation of the error states in the Kalman filter
time update. Propagation of the position, velocity, and attitude estimates follows the proce-
dure laid out in Section 3.2.1. The estimates of the pose of each platform are updated using

Equations (3.53) through (3.55).

P, = P, +V,At (3.53)
‘/ek = Vekﬂ + (fe + Je — 2Qie‘/ek,1)At (354)
Cp. = Cp  (I+QuAt) —Q.Cy At (3.55)

Propagation of the RPV can be performed by either doubly integrating the relative specific
force of the two platforms expressed in the navigation frame or by integrating the rela-
tive velocity of the two platforms. Here, the relative velocities are chosen and the RPV is
propagated by

Tabk = 7aab)c,1 + (‘/ebk - V

eak

)AL (3.56)

The system matrix is constructed in the same manner as the system matrix of the GPS/INS
filter. The accelerometer and gyroscope biases are modeled as Gauss Markov processes and

the ambiguity states are modeled as constants. The RPV error state dynamics are given by

5y = Vi, — 6V, (3.57)
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and the system matrix is shown in Equation (3.58).

_0 I 0 0 0 0 0 0 0000
Gy, =2