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Abstract

In this thesis, di�erential GPS methods are developed for use in automated vehicle

convoy positioning. The GPS pseudorange and carrier phase measurements are used to

compute relative position vectors between two vehicles with sub-meter errors. The carrier

phase measurement makes this level of accuracy attainable, but the carrier phase ambiguity

must be resolved prior to the relative position estimation. An algorithm, referred to as

Dynamic base Real Time Kinematic (DRTK) algorithm, is described in this thesis to estimate

the carrier phase ambiguity and the relative position vector between two GPS receivers.

The DRTK algorithm is capable of using single frequency (L1 or L2 frequency only) or

dual frequency (L1 and L2 frequency) GPS measurements to estimate the relative position

vector. A comparative study of the performance of the algorithm using either single or dual

frequency measurements is presented.

The DRTK algorithm is expanded to incorporate inertial measurement to increase to

output rate, to improve solution availability, and to improve the reliability of the algorithm.

Since inertial navigation systems (INS) compute a navigation solution independent of any

additional infrastructure, the INS can be used to update the relative position vector estimate

during short GPS outages. The update rate of the INS is also as much as ten times the rate of

the GPS receiver; the integrated system produces estimates at a signi�cantly higher output

rate. The combined DRTK/INS system is implemented with two integration architectures �

a federated GPS/INS/DRTK architecture and a centralized DRTK/INS architecture. Each

con�guration produced estimates of the relative position vector with error on the centimeter

level.

Finally, the use of relative positioning to autonomously follow a human driven lead ve-

hicle is presented. Time di�erence carrier phase (TDCP) measurements are used to estimate
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the change in the position of the following vehicle between measurement epochs. The TDCP

algorithm is combined with the DRTK algorithm to estimate the position of the following

vehicle relative to a virtual lead vehicle position. Analysis of the accuracy of the TDCP

algorithm at individual measurement epochs and over varying time intervals is presented.

The DRTK/TDCP following method is compared to a GPS waypoint following method using

data collected on an automated all-terrain vehicle.
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Chapter 1

Introduction

The Global Positioning System (GPS) has changed the way drivers navigate by com-

bining accurate position information with road maps to provide real time directions to their

destination. The future of GPS assisted ground vehicle operation is automation which has

already been demonstrated in precision agriculture and unmanned military vehicles (ref).

The work in this thesis focuses on automated vehicle convoys with autonomous ground vehi-

cles (AGV) following human driven lead vehicles. AGVs o�er signi�cant �exibility in convoy

operations. Automated following vehicles can be con�gured to have human drivers at the

ready or to be completely unmanned. In civilian applications, several automated delivery

trucks may leave a distribution center led by a human driven vehicle. Drivers in the following

vehicles can divert their attention from the road while the vehicle operates automatically.

When the lead driver needs a rest, one of the drivers of a following vehicle can relieve him

at the front of the formation. This would decrease the need for downtime, when the truck

sits still while the driver rests. A military convoy could operate in a similar fashion, but

instead of resting while in the following position, the driver's responsibility is to monitor the

surroundings for hostile forces. However, it may be more important to remove drivers from

harms way by using unmanned vehicles.

Vehicle automation is not a new science but the advent of GPS has brought on new

possibilities for these complex systems. Accurate position and velocity information is invalu-

able when navigating without the bene�t of human sensing and motor skill. Unfortunately,

GPS has its limitations in both accuracy and availability. Alternate measurement process-

ing techniques can be implemented to improve accuracy, but GPS availability will always

be a�ected by environmental in�uences. This thesis attempts to address each concern by
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combining advanced GPS measurement processing with additional sensing capabilities to

provide a reliable and accurate navigation solution for autonomous following.

1.1 Vehicle Sensing Capabilities

Autonomous vehicles are typical out�tted with a multitude of sensors. This thesis

focuses on navigation systems incorporating GPS and inertial measurement units. The

following is an introduction to these sensors and their capabilities.

1.1.1 Global Positioning System

GPS consists of three segments including the space segment, the control segment, and

the user segment which combine to provide users with accurate position, velocity and time.

The space segment is composed of a minimum of 24 satellites in six orbital planes. Generally

there are approximately 32 satellites in orbit, oriented to allow users to have a clear line of

sight to at least four satellites at any given time. The control segment is based at Schriever

Air Force Base (AFB) in Colorado Springs, Colorado with additional monitoring stations

around the Earth and it is tasked with maintaining satellite orbits and accurate timing for

the system. The user segment is the GPS receiver which tracks radio signals broadcast by

each GPS satellite [28]. GPS satellites transmit on three frequencies in the L band: L1 at

1575.42 MHz, L2 at 1227.60 MHz and L5 at 1176.45 MHz. Each transmitted signal contains

a ranging code and navigation message modulated on a sinusoidal carrier.

The ranging codes are pseudorandom binary sequences unique to each satellite and

are referred to as pseudorandom noise (PRN) codes. The PRN codes are selected to be

orthogonal to one another allowing a receiver to access various satellite signals broadcast

at the same frequency through Code Division Multiple Access (CDMA) [19]. Both military

and civilian ranging codes are modulated on the L1 and L2 carrier frequencies. The civilian

ranging code, called the Course Acquisition (C/A) code, is 1023 chips long and repeats every

one millisecond. The military ranging code, or P code, is much longer, 6.1871× 1012 chips,
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and is broadcast at ten times the rate of the C/A code. Encryption of the P code limits

the availability of the signal to military users with access to the encryption key. Originally,

the L2 carrier was modulated with only the P code making it unavailable to civilian users.

The launch of Block IIR-M satellites beginning in 2005 marked the introduction of the L2C

ranging code providing civilian users with dual frequency capabilities[9]. Despite the fact

that the L2C code is available on a limited number of satellites in the constellation, many

civilian users can now access L2 P coded signals through semi-codeless tracking techniques

[32].

The navigation message provides the user with satellite information and the signal

transmission time [16]. Satellite information includes almanac data, ephemeris data, and

satellite health which allow the user to determine the satellite's position and velocity. The

distance from a given satellite to the receiver is calculated from the time of �ight (TOF)

of the signal. The TOF formulation relies on a receiver generated replica of the ranging

code. The replica is shifted in time to match the satellite transmitted ranging code. With

perfect time synchronization between the satellite clock and the receiver clock, the time

shift is due to the TOF of the signal. The range from the receiver to the satellite is equal

to the TOF times the speed of light. The user's position is then constrained to a sphere

centered at the satellite's position with a radius equal to the measured range. With three

accurate measurements, the user's position can be determined by trilateration. However, the

measured range is corrupted with timing errors due to the inaccuracy of both the satellite

and receiver clocks and is therefore referred to as the pseudorange measurement. Satellite

clock corrections terms are transmitted with the ephemeris data and are used to signi�cantly

reduce the error introduced by the satellite clock. By including a fourth measurement, the

user estimates a three dimensional position and the range bias due to the receiver clock error.
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GPS errors are not limited to satellite and receiver clock errors. Additional error sources

include but are not limited to satellite ephemeris errors, propagation delays due to the atmo-

sphere, multipath and receiver noise. Satellite ephemeris errors result from inaccurate infor-

mation in the transmitted navigation message and lead to ranging errors of approximately

2.1 meters on average. Atmospheric delays are attributed to two layers of the atmosphere:

the ionosphere and the troposphere. Ionospheric delays are typically the dominant GPS

error source resulting in average range errors of 4.0 meters when not modeled accurately.

The tropospheric delays are less severe with associated range errors of approximately 0.5

meters. Multipath, which is the error due to re�ected GPS signals, and receiver noise con-

tribute additional range errors of approximately 1.0 meter and 0.5 meters respectively. The

cumulative e�ect of these errors and the residual satellite clock error is a range error with

a standard deviation of 5 meters. For a typical satellite geometry, this error will result in

horizontal position errors near 10 meters and vertical position errors near 13 meters [28].

1.1.2 Inertial Measurement Unit

Inertial Measurement Units (IMU) are comprised of some combination of accelerometers

and gyroscopes. These sensors provide measurements of speci�c force and angular rate

about the units sensitive axes hundreds of times a second. The IMU may be mounted in

a strapdown or gimbaled con�guration with most modern applications using the strapdown

approach. IMUs are available in a variety of grades ranging from automotive to marine with

a wide range of accuracy and stability.

In principle, an accelerometer measures the displacement of an internal proof mass

relative to the IMU case caused by an externally applied force. For a sensor in free fall near

the surface of the Earth, the acceleration due to gravity is experienced by the proof mass and

IMU case resulting in a measurement of zero acceleration (neglecting drag e�ects). The same

sensor on the surface of the Earth measures the force of the Earth pushing up on the IMU

case and not on the spoof mass. Therefore, accelerometers are said to measure the speci�c

4



Table 1.1: Common Bias Values for Various IMU Grades (From: [17])
IMU Grade Accelerometer Bias (m/s2) Gyroscope Bias (deg/hr)

Marine 10−4 0.001
Aviation 3× 10−4 − 10−3 0.01

Intermediate 10−3 − 10−2 0.1
Tactical 10−2 − 10−1 1− 100

Automotive > 1 > 100

force acting of the unit. Accelerometers used in strapdown applications are commonly either

pendulous or vibrating beam [17].

Gyroscopes measures the rate of change of the angular position of the IMU about a

sensitive axis. Common gyroscopes include spinning mass, optical, and vibratory devices.

These sensors operate on principles such as the conservation of angular momentum, the

Sagnac e�ect, and Coriolis acceleration. Additional information on gyroscope operation is

available in [17].

IMU errors include but are not limited to scale factor errors, misalignment errors, biases,

and random noise. The accelerometer and gyroscope biases are often the dominant errors

sources of an IMU. The bias term is composed of a static turn-on bias and a dynamic in-run

bias. Table 1.1 shows typical bias values for various IMU grades as given in [17].

1.2 Prior Work

This thesis incorporates GPS and IMUs to compute relative positioning information

for navigation of an autonomous vehicle following the path of a lead vehicle. Relative GPS

positioning is accomplished using the carrier phase measurement which will be described in

detail in Chapter 2. Carrier phase position estimation was originally studied for surveying

applications in the 1970s. The �rst use of carrier measurements for dynamic applications

came in 1985 [31]. Carrier phase measurements contain an inherent integer ambiguity that

must be resolved before estimating position. This ambiguity is easily estimated as a �oating

point value; however position accuracy can be increased signi�cantly if �xed integer estimate
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is available . Researchers at Deft University addressed the integer estimation problem in the

1990s and developed the Least Squares Ambiguity Decorrelation Adjustment or LAMBDA

method [33].

Carrier phase relative positioning has been used extensively in aircraft navigation. First,

systems were developed to use GPS measurements from static bases at the airport to calculate

accurate relative positions for automated landing [11]. This work was later expanded to

include landing sites where a static GPS base station is unavailable, for example landing

on an aircraft carrier [10, 14, 29]. Carrier phase positioning has also been applied to in

�ight operation of unmanned aerial vehicles (UAV). Relative position solutions using GPS

carrier measurements have been studied for autonomous formation �ight [7] and autonomous

airborne refueling [20].

There is considerable work in the literature of the fusion of GPS and IMUs to produce

position, velocity, and attitude estimates with high update rates. The focus of this thesis

is the integration of carrier phase based GPS solutions with inertial measurements. At

the University of Calgary, inertial measurements were used to improve the reacquisition of

integer estimates of the carrier phase ambiguity [30]. Additionally, GPS and IMUs were used

in tandem for relative positioning in helicopter formation �ight [13] and precision shipboard

landing [4]. In contrast to these examples, the carrier phase GPS and IMU positioning

algorithms described in this thesis are developed for ground vehicles. Also, the inertial

measurements are incorporated to increase the update rate of the position solution and

the GPS algorithms are developed to use L1 measurements,L2 measurements or L1 and L2

measurements. Results are shown comparing the solutions of single and dual frequency GPS

solutions.

Much of the research in the �eld of autonomous following relies on a clear line of sight

to the lead vehicle [5, 26, 25]. Often the following vehicle is sensing the position of the lead

vehicle in its �eld of vision with camera, Lidar, or both [15, 5, 8]. Typically, these methods

are chosen over GPS due to inconsistency and inaccuracy of GPS measurements. However,
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the use of GPS does allow for non line of sight following and accuracy and integrity can be

improved by using carrier phase relative position. Researchers at the Position, Localization

and Navigation Group developed methods using carrier phase relative position to maintain

vehicle spacing in vehicle convoys [3].

1.3 Contributions

The focus of the research presented in this thesis is the development of relative position-

ing methods for autonomous ground vehicle convoys. To that end, the following contributions

are made:

• Relative positioning algorithms are developed to utilizing either the L1 frequency GPS

observable, the L2 frequency GPS observable or a combination of both L1 and L2

frequency GPS observables. The algorithms are compared based on accuracy and

reliable of their results in various operational scenarios.

• The relative positioning algorithms are expanded to include high update rate inertial

measurements to improve the availability of the relative position solution. Two integra-

tion architectures are implemented and their results are examined. A fault detection

and exclusion routine is incorporated to monitor solution integrity during the GPS

measurement update. The federated DRTK/INS integration architecture with fault

detection and exclusion capabilities was presented by the author of this thesis at the

Institute of Navigation and Institute of Electrical and Electronics Engineers Position,

Location, and Navigation Symposium in May 2010 [23].

• A path following method combining the relative positioning algorithm with GPS carrier

phase based odometry is examined. The inherent error growth due to the accumula-

tion of residual noise in the odometry estimates is evaluated. Time di�erence GPS

carrier phase estimation of the change in the position of a vehicle was combined with

GPS relative positioning in a terrain mapping algorithm by the author of this thesis
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for publication in the proceedings of the Institute of Navigation GNSS conference in

September 2010 [22].

1.4 Thesis Outline

Chapter 2 is a discussion of di�erential GPS techniques focusing on carrier phase dif-

ferential positioning. Single and dual frequency algorithms are developed and compared.

These algorithms are expanded to include inertial measurements in Chapter 3. Chapter 4

introduces time di�erencing of GPS carrier phase measurements for vehicle odometry and its

impact on path following. Finally, Chapter 5 provides conclusions from the work presented

here and provides direction for future work in the �eld of autonomous vehicle convoys.
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Chapter 2

Dynamic base Real Time Kinematic

In this work, GPS is used to determine position of the lead vehicle relative to the fol-

lowing vehicle. To limit the position errors of the standard GPS solution, di�erential GPS

(DGPS) techniques are used. DGPS takes advantage of the common mode error sources

experienced by receivers operating in close proximity. The signal delays introduced by the

atmosphere are highly correlated for receivers separated by several kilometers or less. The

residual satellite clock errors after correction are also nearly identical. Measurements from

two receivers are di�erenced to mitigate these common mode errors. DGPS methods incor-

porate the GPS pseudorange measurement, the carrier phase measurement, or both.

The carrier phase measurement is an accumulation of the cycles of the GPS sinusoidal

carrier from the time of signal acquisition to the present time. This phase shift can be

measured with signi�cantly higher accuracy than the pseudorange (to within �ve millimeters

[24]) but the absolute measurement contains an ambiguous number of carrier cycles. With

accurate estimates of the carrier phase integer ambiguity, the relative position vector (RPV)

between two GPS receivers can be estimated to within centimeters of the true value.

Real time kinematic (RTK) systems exploit the accuracy of the carrier phase measure-

ment to calculate highly precise global position estimates. This is accomplished by combining

measurements from a static base station at a known position with measurements for roving

GPS receiver in the area. The base station broadcasts its position, pseudorange measure-

ments and carrier phase measurements to the rover and the RPV from the base station to

the rover is estimated. The RPV is then added to the position of base station resulting

in a global position solution for the rover. This method results in a highly accurate global

9



position solution of the roving receiver but requires the rover to be operating in proximity

to a GPS base station.

The autonomous following scenario o�ers a unique opportunity to apply the same tech-

nique without requiring the static base station. The global information is not the ultimate

concern of the following vehicle; only the relative location of the lead vehicle is important.

In this case the following vehicle is treated as a base station and the leader's position is esti-

mated relative to the followers current location. The global accuracy is lost but the accuracy

of the RPV is retained. This method will be referred to as Dynamic base RTK (DRTK).

The pertinent GPS measurements and the RPV estimation algorithm are discussed in this

chapter.

2.1 Measurements

The formulation of the DRTK algorithm will begin with a description of the relevant

GPS measurements. The pseudorange and carrier phase measurements are expressed math-

ematically in Equation (2.1) and Equation (2.2) respectively.

ρsa = rsa + cdta + cdts + T sa + Isa +M s
aρ + vsaρ (2.1)

φsa = rsa + cdta + cdts + T sa − Isa + λN s
a +M s

aφ
+ vsa

φ
(2.2)
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where,
ρsa is the measured pseudorange between receiver a and satellite s
φsa is the measured carrier phase between receiver a and satellite s
rsa is the true range between receiver a and satellite s
c is the speed of light
dta is the receiver clock bias
dts is the satellite clock bias
T sa is the tropospheric delay between receiver a and satellite s in units of meters
Isa is the ionospheric delay between receiver a and satellite s in units of meters
λ is the carrier wavelength (L1 = 0.1902m or L2 = 0.2442m)
N s
a is the carrier integer ambiguity between receiver a and satellite s

M s
a is the multipath error

vsa is the measurement noise

As stated in the introduction, the GPS signal is subjected to delays due to the atmo-

sphere. It is interesting to note that the ionosphere a�ects the code based pseudorange

measurement and the carrier based phase measurement di�erently. The magnitude of the

errors are the same when each measurement is expressed in units of length. However, the

code is delayed, e�ectively increasing the measured pseudorange and the carrier is advanced

thereby decreasing the phase measurement. Assuming that multipath errors are small, the

ionospheric delay and the carrier integer ambiguity are the dominant di�erences in the two

measurements.

2.1.1 Single Di�erences

Given measurements from two receivers, the common mode errors of the measured

pseudorange and carrier phase are mitigated by computing the single di�erence of each mea-

surement. The single di�erenced pseudorange and carrier phase are calculated by subtracting

the measurement of one receiver to a given satellite from the corresponding measurement

from the second receiver. Therefore, single di�erenced pseudorange and carrier phase ob-

servables are computed for each visible satellite. Satellite clock errors are removed in the

operation and the errors due to atmospheric interference are signi�cantly reduced. Residual

atmospheric errors are assumed to be small and are lumped in with the measurement noise
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term. After di�erencing, the pseudorange measurement is a function of the distance between

the receivers, the relative receiver clock bias, and noise of increased variance. The single dif-

ferenced carrier phase also contains the distance and noise terms in addition to the di�erence

of the carrier phase ambiguities from the two receivers. The noise term will be discussed

in detail in Section 2.2. Single di�erenced pseudorange and carrier phase measurements are

expressed mathematically in Equation (2.3) and Equation (2.4).

∆ρsab = rsab + cdtab + vsabρ (2.3)

∆φsab = rsab + cdtab + λN s
ab + vsabφ (2.4)

The subscript ab denotes the relative information between receiver a and receiver b. In this

formulation, multipath errors are assumed to be negligible.

2.1.2 Double Di�erences

As seen in Equation (2.3) and Equation (2.4), the single di�erenced measurements con-

tain the relative clock bias from the receivers. It is bene�cial to remove this clock error term

by computing the double di�erenced pseudorange and carrier phase. The double di�erence

calculation begins by selecting one of the computed single di�erences as the base measure-

ment. In this work the measurement corresponding to the closest satellite is selected as the

base measurement. This value is subtracted from the single di�erenced measurements asso-

ciated with the other visible satellites. The resulting observables are no longer a function of

the receiver clock biases. The double di�erenced pseudorange, expressed in Equation (2.5),

is only a function of the relative position of the two receivers and noise.

∇∆ρstab = rstab + vstab (2.5)
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As seen in Equation (2.6), the double di�erenced carrier phase contains the relative position,

the relative carrier phase ambiguity and noise.

∇∆φstab = rstab + λN st
ab + vstab (2.6)

It is important to note that the single di�erenced and double di�erenced observables

are not the only valuable combinations of the pseudorange and carrier phase measurements.

Additional combinations include the widelane and narrowlane observables. These observables

minimize noise or maximize wavelength to assist in integer ambiguity resolution. They are

not discussed further in this thesis, but for additional information see [20] and [35].

2.2 Algorithm

Estimation of the RPV between two receivers using DRTK is a multistage process.

First, the carrier phase ambiguities are estimated as �oating point values. Then �xed integer

estimates of the ambiguities are computed. The �xed integer estimate is subtracted from the

carrier phase measurement and the RPV is estimated. The complete process is a combination

of a Kalman �lter (�oating point ambiguity estimation) , the LAMBDA method (ambiguity

integer �xing), and least squares estimation (relative position vector estimation).

2.2.1 Kalman Filter Floating Point Ambiguity Estimation

Carrier phase ambiguities are initially estimated in a Kalman Filter. Speci�cally, it

is the single di�erenced ambiguities that are being estimated. The state vector, shown in

Equation (2.7), contains L1 and L2 frequency single di�erenced ambiguity states for each

visible satellite.

x =
[
N1
abL1

· · · Nm
abL1

N1
abL2

· · · Nm
abL2

]T
(2.7)
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Therefore x is a column vector of length 2m, where m is the number of satellite seen simul-

taneously by both receivers. Note that this assumes that each receivers provides L1 and L2

frequency measurements for each visible satellite.

2.2.1.1 Measurement Model

Constructing the measurement equation to �t the form of the Kalman �lter, z = Hx, is

not a trivial undertaking. The single di�erence pseudorange and carrier phase measurements

are a function of two unknown terms plus the stochastic noise term. In order to estimate the

carrier phase ambiguity, the relative range term, rsab, must be removed from the equation.

The single di�erenced pseudorange and carrier phase originally de�ned in Equation (2.3)

and Equation (2.4) are rewritten in matrix form in Equation (2.8).

 ∆ρsab

∆φsab

 =

 usax usay usaz 1

usax usay usaz 1





rsabx

rsaby

rsabz

cdtab


+

 0

λ

N s
ab (2.8)

The non-deterministic terms are ignored for simplicity. The true range between receiver a

and receiver b is decomposed into the line of sight unit vector from receiver a to satellite

s and the x, y, and z components of the RPV in the Earth Center Earth Fixed (ECEF)

frame. For a description of the ECEF frame see [12]. The matrix containing the unit vectors

and a column of ones corresponding to the relative clock bias term is referred to here as the

geometry matrix.

Equation (2.8) assumes that the unit vector from receiver a to satellite s is approximately

equal to the unit vector from receiver b to satellite s. Formulation of the vector product of

the RPV using this assumption is shown in Equation (2.9), Equation (2.10) and Equation
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(2.11).

rsab =
[
usbx usby usbz

]

rsbx

rsby

rsbx

−
[
usax usay usaz

]

rsax

rsay

rsax

 (2.9)

[
usax usay usaz

]
≈

[
usbx usby usbz

]
(2.10)

rsab =
[
usax usay usaz

]

rsbx − r

s
ax

rsby − r
s
ay

rsbx − r
s
az

 (2.11)

To estimate the single di�erenced ambiguity, N s
ab, in Equation 2.8, it must be isolated

from the range information contained in the single di�erenced pseudorange and carrier phase

observables. This is done by premultiplying each term in Equation 2.8 by the left null space

of the geometry matrix. The left null space of matrix G is de�ned as the set of all vectors

~a such that ~aTG = 0. By multiplying Equation 2.8 by the left null space of the geometry

matrix, L de�ned in Equation 2.12, the lead term on the right hand side of the equation is

removed.

L = leftnull





u
1 · · · m

T

ax u
1 · · · m

T

ay u
1 · · · m

T

az 1

u
1 · · · m

T

ax u
1 · · · m

T

ay u
1 · · · m

T

az 1

u
1 · · · m

T

ax u
1 · · · m

T

ay u
1 · · · m

T

az 1

u
1 · · · m

T

ax u
1 · · · m

T

ay u
1 · · · m

T

az 1





(2.12)

The measurement vector z, shown in Equation 2.13, remains on the left hand side with

the single di�erenced pseudorange and carrier phase measurements multiplied by L. The
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equation shows the vector of single di�erenced L1 and L2 measurements from satellites 1 to

m.

z = L
[

∆ρ1···m
abL1

∆ρ1···m
abL2

∆φ1···m
abL1

∆φ1···m
abL2

]T
(2.13)

The coe�cient matrix for the state vector is now L times the matrix containing rows of

zeros corresponding to the single di�erenced pseudorange measurement and rows containing

the appropriate wavelength corresponding to the single di�erenced carrier phase measure-

ments. The matrix is represented in Equation 2.14.

H = L


02m×m 02m×m

λL1Im×m 0m×m

0m×m λL2Im×m

 (2.14)

The measurement equation now �ts the z = Hx form of the Kalman �lter. The update

step of the �lter follows the implementation shown in Equations (2.15) through (2.17).

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)

−1 (2.15)

P+
k = (I −KkHk)P

−
k (2.16)

x̂+
k = x̂−k +Kk(zk −Hkx̂

−
k ) (2.17)

The Kalman gainK is calculated as a function of the error covariance matrix P , the measure-

ment matrix H, and the uncertainty in the measurement R. The error covariance matrix and

the state vector are then updated using the gain, the measurement matrix, and the a priori

estimates and error covariance. The initialization of the state vector and the error covari-

ance matrix are discussed in Section 2.2.1.3 along with the calculation of the measurement

uncertainty. For derivation of the Kalman �lter measurement update see [2].
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2.2.1.2 Propagation Model

Assuming the GPS receiver maintains lock on the signal from a given satellite between

measurements, the carrier phase ambiguity remains constant. Therefore, the state transition

matrix is the identity matrix with dimension equal to the number of single di�erenced ambi-

guity estimates. Since the ambiguities are known to be constant with certainty the process

noise vector can be set to zero. However, to prevent the error covariance from settling to a

small value that results in a zero gain matrix, the process noise matrix,Q, is set to 1× 10−6

times the identity matrix of with dimension equal to the number of single di�erenced am-

biguity estimates. The state estimates and error covariance matrix are propagated with the

standard Kalman time update equations shown in Equation 2.18 and Equation 2.19.

x̂−k+1 = Φkx̂
+
k (2.18)

P−
k+1 = ΦkP

+
k ΦT

k +Q (2.19)

The state transition matrix and the process noise vector are represented by Φ and Q respec-

tively.

2.2.1.3 Filter Initialization and Implementation

The state vector is initialized with single di�erenced pseudorange and carrier phase

measurements from each satellite. The initial estimate of the single di�erenced ambiguities

is equal to the di�erence between the single di�erenced pseudorange and single di�erenced

carrier phase measurement as seen in Equation 2.20. The value is divided by the signal
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wavelength to convert the estimate to units of cycles.

x̂ =



(∆ρ1
abl1
−∆φ1

abl1
)/λL1

...

(∆ρmabl1 −∆φmabl1)/λL1

(∆ρ1
abl2
−∆φ1

abl2
)/λL2

...

(∆ρmabL2
−∆φmabl2)/λL2



(2.20)

The error covariance matrix is initialized as the identity matrix multiplied by 1/2 to

re�ect the expected variance of the single di�erenced ambiguities. The initial uncertainty

is selected to provide desired �lter performance based on experimental testing. Obviously,

the error covariance matrix is a square matrix with dimensions of 2m× 2m where m is the

number of visible satellites.

Measurement uncertainty, R, is calculated at each measurement update based on the

expected variance as de�ned in [28] and [19]. GPS measurement variance is a function

of receiver characteristics and the carrier to noise ratio, c/n0, of the received signal. The

expected pseudorange and carrier phase variances are given by Equation (2.21) and Equation

(2.23) respectively with parameters de�ned in Table 2.1.

σ2
ρ = σ2

ρatm + σ2
DLL (2.21)

σDLL = λc

√√√√4d2Bnρ

c/n0

(2(1− d) +
4d

Tc/n0

) (2.22)

σ2
φ = σ2

φatm + σ2
PLL (2.23)

σPLL =
λL
2π

√
Bnφ

c/n0

(1 +
1

Tc/n0

) (2.24)

The values for the receiver characteristics given in Table 2.1 are typical values taken from

[19] and [21]. Note that the variances calculated from Equation (2.21) and Equation (2.23)

represent the variance of individual pseudorange and carrier phase measurements. However,
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Table 2.1: Pseudorange and Carrier Phase variance calculation parameters
Parameter Description Value

σ2
ρatm Variance due to atmospheric code delay 5.22 (m)

λc Code chip width 293.05 (m)
d Correlator spacing 0.5 (chips)
Bnρ Code loop noise bandwidth 2 (Hz)
T Prediction integration time 2 (ms)
σ2
φatm Variance due to atmospheric carrier delay 0.03 (m)

λL Carrier wavelength L1, L2 (m)
Bnφ Carrier loop noise bandwidth 18 (Hz)

the �lter observables are a combination of measurements from two receivers. Therefore, R

is a function of the measurement noise from receiver a and receiver b. Assuming that the

measurement noise is uncorrelated between receivers and that the atmospheric delays have

been removed through di�erencing, R is the diagonal matrix de�ned by Equation (2.25).

R =

 σ2
aDLL

+ σ2
bDLL

0

0 σ2
aPLL

+ σ2
bPLL

 (2.25)

Equation (2.25) shows R for one satellite for simplicity; in actuality R has dimensions equal

to the two times number of visible satellites.

During �lter operation, two conditions cause a modi�cation of the dimensions of the

state vector and the error covariance matrix. The �rst is a result of the changing satellite

constellation. When a satellite that was previous being tracked by receivers a and b is

lost that ambiguity estimate is removed from the state vector. The corresponding row and

column of the error covariance matrix are also removed. Conversely, an additional ambiguity

estimate is added to the state vector when a new satellite is acquired and the error covariance

matrix is expanded to include the uncertainty in that estimate. The new ambiguity estimate

and error covariance are initialized as before.

Cycle slips also cause a modi�cation of the state vector. A cycle slip occurs when the

receiver loses and reacquires lock on the carrier signal of a satellite between measurement

19



updates. In this case the actual carrier phase ambiguity changes, nullifying the previous

estimate. Inclusion of the faulty estimate would severely degrade the RPV estimate. A cycle

slip detection algorithm is executed on each new measurement before it is used in the update

step. The single di�erenced pseudorange and carrier phase measurements from the current

and previous time steps are used to compute a time di�erenced ambiguity estimate, shown

in Equation (2.26).

dN s
k,k−1 = [(∆ρsk −∆φsk)− (∆ρsk−1 −∆φsk−1)]/λ (2.26)

If this value exceeds a threshold, selected to be plus or minus one cycle for this work, the

measurement is deemed to have experienced a cycle slip and the ambiguity estimate and the

covariance are reset as if a new satellite were acquired.

2.2.2 Integer Fixing using the LAMBDA method

The second stage of RPV estimation is an attempt to �x the �oating point ambiguity

estimates to integer values. The Kalman �lter provides estimates of the single di�erenced

carrier ambiguities and a covariance matrix describing the uncertainty in the estimates. The

single di�erenced estimates are transformed into double di�erenced values prior to integer

�xing to remove residual receiver clock errors. Seeing that the transformation is a linear

process, a transformation matrix is constructed to perform the operation. An example of a

transformation matrix is given in Equation (2.27).

Cd
s =



1 −1 0 0 0

0 −1 1 0 0

0 −1 0 1 0

0 −1 0 0 1


(2.27)
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In the example, the second of �ve single di�erenced ambiguities is chosen as the base estimate

and is subtracted, via Equation (2.28), from the remaining estimates resulting in four double

di�erenced ambiguity estimates.

N̂d = Cd
s N̂s (2.28)

The transformation matrix is also applied to the covariance matrix as seen in Equation

(2.29).

PNd = Cd
sPNsC

dT

s (2.29)

Intuitively, rounding is the most straightforward method of converting a �oating point

value to an integer. However, the Kalman �lter yields ambiguity estimates which are highly

correlated. This correlation can be seen in the o� diagonal terms of the covariance matrix.

Simply rounding the estimates to their nearest integer makes insu�cient use of the available

information. Optimal integer estimates take into account both the variance and covariance

of each �oating point ambiguity estimate. However, searching the multi-dimensional space

de�ned by the total set of estimates is impractical. The LAMBDA method re�nes the

search space by decorrelating the ambiguity estimates through a transformation [33]. This

transformation results in a nearly diagonal covariance matrix which is used to calculate

integer estimates of the carrier ambiguities. The integer ambiguities are computed in a

sequential routine starting with the most certain estimate (lowest variance). The completed

set is then transformed back into the original domain.

While the LAMBDA method does provide the most likely candidate set of integer am-

biguities, they are not guaranteed to be correct [18]. The user must decide if the candidate

set meets the requirements of the application. The decision criterion used here is known as

the ratio test. Two candidate sets, N̆1 and N̆2, are computed via the LAMBDA method and

their deviations, d, from the original �oating point ambiguity estimates, N̂ , are calculate
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using Equation (2.30).

di = (N̂ − N̆i)P
−1
N (N̂ − N̆i)

T (2.30)

If the ratio of the deviations, d2/d1, exceeds a selected threshold, the most likely candidate,

N̆1, is retained and used to compute a high precision RPV. A threshold of three was used in

this work based on the results seen in [34].

2.2.3 Least Squares Relative Position Vector Estimation

The �nal step of the DRTK algorithm is the estimation of the RPV between the GPS

receivers. The �rst two steps of the algorithm provide the best available estimate of the

double di�erenced carrier phase ambiguities. Ideally, �xed integer estimates are successfully

computed with the LAMBDA method but the RPV is estimated regardless of the results

of the ratio test. The RPV estimate is therefore designated as a high precision (HPRPV)

estimate in the case that the integer estimates are available or a low precision (LPRPV)

estimate when the �oating point estimate must be used. The solution procedure is same

regardless of the precision of the ambiguity estimates. Equation (2.31) shows the form of

the RPV estimate problem derived from Equation (2.6) and Equation (2.11).

∇∆φab − λ∇∆Nab = ∆~ua~rab + vab (2.31)

Note that the ∆ preceding the unit vector signi�es that the base unit vector has been

subtracted to form the correct geometry and that the satellite notation has been removed

for clarity. The RPV is estimated using least squares as shown in Equation (2.32).

~rab = (∆ ~ua
T∆ ~ua)

−1∆ ~ua
T(∇∆φab − λ∇∆Nab) (2.32)

A weighted least squares formulation may also be implemented to incorporate the measure-

ment uncertainty described in Section 2.2.1.3.
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2.3 Low Cost Alternative

In the previous section, a DRTK algorithm incorporating both L1 and L2 frequency

measurements was described. A goal of this thesis is to develop a single frequency alternative

and to evaluate any performance limitations. Single frequency receivers are far cheaper than

their dual frequency counterparts. Typically, single frequency receivers can be purchased for

less than $200 while dual frequency receivers can cost several thousands of dollars. Single

frequency antennas can be purchased at reduced cost as well.

The single frequency algorithm follows the same multistage process as the dual fre-

quency algorithm. First, the carrier phase ambiguities are estimated in a Kalman �lter. The

state vector, measurement matrix, and measurement vector are modi�ed to contain only L1

information as seen in Equations (2.33) through (2.36) (Note: L2 only implementation is

also possible).

x =
[
N1
abL1

· · · Nm
abL1

]T
(2.33)

z = L
[

∆ρ1···m
abL1

∆φ1···m
abL1

]T
(2.34)

H = L

 0m×m

λL1Im×m

 (2.35)

L = leftnull




u

1 · · · m
T

ax u
1 · · · m

T

ay u
1 · · · m

T

az 1

u
1 · · · m

T

ax u
1 · · · m

T

ay u
1 · · · m

T

az 1



 (2.36)

The Kalman �ltering stage is implemented as described in Section 2.2.1.3. Again, the

LAMBDA method is used to develop integer estimates of the double di�erenced ambigu-

ities and the RPV is estimated in a least squares routine. However, the reduction in the

number of available measurements both increases the uncertainty in the ambiguity estimates

and decreases the likelihood of successfully �xing integers. Figure 2.1 shows the increased

variance of the single frequency ambiguity estimates and the ratio test calculated from data
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Figure 2.1: Single and dual frequency mean ambiguity variance and the corresponding ratio
test from GPS data

collected on two dual frequency receivers. The same data set was processed with the dual

and single frequency algorithm (simply ignoring the L2 measurements in single frequency

calculations). It can be seen that the ratio test results from the single frequency algorithm

are consistently lower than the dual frequency algorithm. Despite this drawback, the single

frequency algorithm is capable of producing highly accurate results as long as the ratio test is

passed. Assuming that both algorithms settle on the same set of integers, the RPV estimate

calculated by the single frequency algorithm will be based on a subset of the same data used

in the dual frequency estimation. Recall that the ratio test threshold value of three was

selected in Section 2.2.2 with values greater than the threshold passing the test. Clearly,

the single frequency ratio exceeds the selected threshold for a majority of the data set. In

additional analysis, the single frequency algorithm was not as successful in passing the ratio

test. Overall, the ratio test was passed on 24.8 percent of all measurement epochs using only

L1 frequency measurements as compared to 62.8 percent using both L1 and L2 frequency

measurements. Additional analysis of the single and dual frequency algorithms is provided

in the next section.
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Figure 2.2: High precision baseline error calculated with the single and dual frequency
algorithms for a dynamic data set from two vehicles

2.4 Experimentation and Results

To compare the performance of the single and dual frequency algorithms, data was

collected with two Novatel Propak V3 receivers mounted on two In�niti G35 sedans. A

Septentrio Pola RX2 receiver was used as a base station to calculate a RTK position solution

to be used as reference data. The receivers output L1 and L2 frequency measurements at

5Hz. Pseudorange and carrier phase measurements were recording at varying separation

distances in both stationary and dynamic scenarios. The performance of the algorithms was

evaluated based on accuracy and the availability of a high precision solution.

The accuracies of the single and dual frequency DRTK algorithms were determined by

comparing the estimated RPV to the di�erence in the RTK reference solutions to the two

receivers. Both low precision and high precision RPVs were examined. The low precision

solution was computed at every measurement update while the high precision solution was

computed only when three or more �xed integer ambiguity estimates were available. Figure

2.2 and Figure 2.3 show the high precision and low precision results of a typical test run.
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Table 2.2: Statistics on HP and LP Baseline Errors
High Precision Low Precision

RMSE (cm) Variance (cm2) RMSE (cm) Variance (cm2)

Dual Frequency 0.33 0.10 20.87 430
Single Frequency 0.45 0.18 24.52 600

The error in the magnitude of the RPV is plotted verse time. Note that the magnitude of the

RPV will also be referred to as the baseline. Clearly, the dual frequency and single frequency

high precision results show errors of similar magnitude throughout the run. As would be

expected the error is highly correlated between the two algorithms with the single frequency

algorithm producing slightly higher variance. The absolute value of the baseline error does

not exceed 4 cm for either algorithm. The root mean squared error (RMSE) and variance of

both the high and low precision solutions for each algorithm are provided in Table 2.2.

The low precision errors are typically slightly more than one order of magnitude higher

than the high precision errors. Here the maximum error for each algorithm is nearly 80

centimeters. This is still a marked improvement over the expected error of the standalone

GPS solution which is generally several meters. Again the errors are highly correlated with

higher variance seen in the single frequency solution.

RPV estimates were calculated for a variety of separation distances and the resulting

errors in the high precision solutions are shown in Figure 2.4. The majority of the errors for

each algorithm do not exceed 20 centimeters but it is apparent that the variance increases

slightly as the separation distance increases. Also notice that at a separation distance of

approximately 600 meters the dual frequency algorithm produces a high precision solution

while the single frequency algorithm does not. This portion of the data was collected during a

static test as can be seen by the constant separation distance. Approximately ten minutes of

data was collected during each static test and both the single and dual frequency algorithms

successfully estimated integer ambiguities for separation distances of 8, 150, and 350 meters.

However, the ratio test was not passed using only L1 frequency measurements with 600

meters of separation.
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Figure 2.3: Low precision baseline error calculated with the single and dual frequency algo-
rithms for a dynamic data set from two vehicles

Figure 2.4: Dual and single frequency errors as a function of the separation distance
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Figure 2.5: Dual and single frequency errors as a function of the number of visible satellites

The accuracy of the high precision solution from each algorithm was also evaluated

based on the number of satellites being tracked by each receiver. Figure 2.5 shows the single

and dual frequency results for various numbers of satellites with the red dots corresponding

to the one sigma bounds of the error. Again, the accuracy of each algorithm is comparable

but the algorithms can be di�erentiated by the availability of a high precision solution. With

both L1 and L2 frequency measurements a high precision solution is calculated when tracking

as few as �ve satellites. A minimum of six satellites were required to successfully �x integers

when using only L1 frequency measurements.

It has been established that the primary di�erence in the single and dual frequency

algorithms is the availability of a high precision solution. To quantify this di�erence, the

time to �rst �x (TTFF) for each algorithm was calculated. The TTFF is time required

to �x �oating point ambiguity estimates to integer values. The TTFF for each algorithm

is shown in Figure 2.6 as a function of the number of visible satellites. Statistics on the

TTFF for each algorithm are also provided in Table 2.3. The mean TTFF for the dual

frequency algorithm is approximately 0.2 seconds which corresponds to two measurement

epochs. The single frequency mean TTFF is signi�cantly higher at almost 2.5 seconds or

approximately 12 measurement epochs. It is also important to note that the mean TTFF

with L1 measurements only increases considerably as the number of satellites decreases. In
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Table 2.3: Statistics on the TTFF
Mean (s) Standard Deviation (s)

Satellites 9+ 8 7 6 5 Total 9+ 8 7 6 5 Total
Dual 0.20 0.07 0.28 0.26 0.14 0.18 0.50 1.10 4.24 5.24 2.89 3.52
Single 2.44 4.90 7.74 6.21 NA 4.29 14.33 36.17 32.96 30.07 NA 24.70

Figure 2.6: Dual and single frequency TTFF as a function of the number of visible satellites

comparison, the mean TTFF using both L1 and L2 measurements is not e�ected by the

number of satellites but an increase in the standard deviation is seen as the number of

satellites decreases.

2.5 Conclusions

Single and dual frequency DRTK algorithm were developed and compared based on

their accuracy and the availability of a high precision solution. The accuracy of both the low

precision and the high precision RPV estimates of each algorithm were signi�cantly better

than the traditional standalone GPS solution. The high precision baseline errors for each

algorithm was predominantly sub-centimeter. It is important to note that the residual error

of the DRTK algorithm is correlated with the residual error of the reference RTK solution, so

the reported errors may be slightly optimistic. The RTK solution is reported to be accurate

to the centimeter level and by comparison the DRTK algorithm errors are of the same order

of magnitude.
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High precision solution availability proved to be the primary di�erence in the perfor-

mance of the single and dual frequency algorithms. The mean TTFF of the single frequency

algorithm was 9 seconds for a variety of operational scenarios while the dual frequency al-

gorithm �xed integers in 0.2 seconds on average.

From the analysis, the single frequency algorithm is an e�ective alternative to the dual

frequency algorithm depending on the system requirements. Given that GPS availability is

high in the operational environment and that time can be given to allow the algorithm to �x

integers, the single frequency provides similar performance to the dual frequency algorithm.

If operation in poor GPS environments or immediate integer �xing are design requirement,

the dual frequency algorithm should be implemented.
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Chapter 3

DRTK and IMU Integration

The DRTK algorithm described in Chapter 2 provides RPV estimates at the output rate

of the GPS receiver, typically less than 10 Hz. By incorporating IMU measurements in the

navigation algorithm, the RPV can be estimated at �ve to ten times the rate of the GPS only

solution. In this chapter, GPS and IMU integration is discussed and possible architectures

are evaluated to determine the best method of data fusion for relative navigation of ground

vehicles.

3.1 GPS and IMU Integration

GPS and IMU are combined in integrated navigation solutions to take advantage of the

complimentary nature of each unit's strengths and weaknesses. The strength of GPS lays

in its ability to provide a global navigation solution with predictable long term accuracy.

However, the GPS position solution is prone to meter level jumps and intermittent outages

due to faulty measurements, changing satellite geometry, and environmental interference.

The IMU is used to smooth jumps in the GPS position solution and bridge short GPS

outages. The IMU navigation solution requires global position initialization and periodic

updates to bound dead reckoning error growth due to integrated errors and noise. The

combined navigation system provides a smooth high rate solution with immunity to short

GPS outages.

At this point it is valuable to di�erentiate between an IMU and an inertial navigation

system (INS). The IMU is the device measuring the speci�c forces and angular rates acting on

the sensor platform. Combining these measurements with a navigation processor constitutes

an INS. The navigation processor is responsible for maintaining the orientation of the sensor
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Figure 3.1: GPS/INS �ltered solution with erroneous stand alone GPS solution

frame relative to the navigation frame and computing position and velocity estimates from

the IMU measurement. This process is described in detail in the next section.

A comparison of a standalone GPS position solution and a GPS/INS position solution

is shown in Figures 3.1 and 3.2. Note that the background maps were made available

through GPS V isualizer. In each �gure the GPS only solution, as reported by a Novatel

Propak V3 receiver, is shown in white and the GPS/INS solution is shown in blue. The

GPS/INS solution was calculated post process by combining pseudorange measurements

from the Novatel receiver with measurements from a Crossbow IMU440. These sensors were

a�xed to a test vehicle traveling on a two lane county road. Figure 3.1 shows the standalone

GPS solution jump o� the road by several meters while the GPS/INS solution maintains its

position on the road.

In Figure 3.2, the vehicle travels under an overpass and predictably the standalone GPS

solution is lost momentarily. The GPS/INS algorithm continues to output a solution by

dead reckoning with IMU measurements only until GPS returns. When satellite signals are

reacquired on the north side the overpass, a correction of the of INS solution can be seen.
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Figure 3.2: IMU dead reckoning under an overpass during GPS outage

GPS/INS integration architectures can be classi�ed into three categories: loosely cou-

pled, tightly coupled, or deeply coupled. Variation of the method of integration and on the

names given to each category are found in the literature but generally the coupling archi-

tectures can be di�erentiate based on GPS measurements used to correct INS propagation

errors [17]. For example, the term loosely coupled indicates that GPS position and veloc-

ity estimates are used to update the INS solution. Tightly coupled GPS/INS architectures

utilize GPS pseudorange, carrier phase, and/or pseudorange rate measurements to update

the INS solution. Deep coupling of GPS and INS is performed at the signal processing level.

In-phase and quadraphase correlator outputs from the receiver tracking channels are used as

inputs to the navigation �lter. The navigation �lter feeds oscillator corrections back to the

GPS receiver and INS corrections to the navigation processor to update position estimates.

Figure 3.3 provides a visual representation of the three architectures.

Each integration method has advantages and disadvantages. The loosely coupled ar-

chitecture is relatively simple to implement but ignores valuable information when the GPS

receiver is not capable of computing a position solution due to limited satellite visibility (less
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Figure 3.3: GPS/INS coupling architectures from left to right - loosely coupled, tightly
coupled, and deeply coupled

than four satellites). Tight coupling avoids this de�ciency by using all available pseudorange

and Doppler measurements whether the complete GPS solution is available or not. The

deeply coupled architecture excels in this area by improving the signal tracking capability of

the GPS receiver thereby maximizing the number of available GPS observables. Of course,

implementation becomes increasing di�cult moving from loose to tight to deep integration.

One additional consideration for this work is the quality of the available measurements. Deep

coupling maximizes the available information often at the expense of quality. Signal tracking

at low carrier to noise ratios, the specialty of deeply coupled �lters, can leads to degraded

measurements. Since the algorithms developed here are acutely dependent on measurement

quality, tight coupling is chosen as the basis for GPS/INS �lter design.

3.2 Tightly Coupled GPS/INS

The tightly coupled GPS/INS navigation �lter is founded on the INS position, velocity,

and attitude (PVA) solution. PVA estimates are computed in the INS navigation processor

and errors are tracked in an error state Kalman �lter. The estimated errors are fed back to

the navigation processor and a corrected navigation solution is output.

3.2.1 INS Navigation Processor

Position, velocity and attitude estimation in the INS navigation processor is a multi-

stage process. The steps of the estimation procedure are shown in Figure 3.4. Clearly
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Figure 3.4: INS navigation processor steps

from the �gure, a priori attitude, velocity, and position information is required for estimate

propagation. For now it is assumed that estimates of the initial conditions of the states are

available. The additional terms in the �gure represent the IMU measurements of angular

rate, ωb, and speci�c force, fb, and the local acceleration due to gravity, ge, and the rotation

rate of the Earth, ωe.

The �rst step in the navigation processor is the attitude update. Attitude information

is maintained in the form of a transformation matrix relating the platform body frame to

the chosen navigation frame. The ECEF frame is the navigation frame in this work and

therefore the transformation matrix is de�ned by the Euler rotation angles relating the body

frame and the ECEF frame. The Euler roll, pitch, and yaw angles, (φ, θ, ψ), de�ne three

rotations transforming a vector in a given reference frame to a new frame. The Euler angles

φeb, θ
e
b , and ψ

e
b , relate the body frame, b, to the ECEF frame, e, and the rotations associated

with these angle are shown in matrix form in Equations (3.1) through (3.3).

R1 =


1 0 0

0 cosφeb sinφeb

0 − sinφeb cosφeb

 (3.1)

R2 =


cos θeb 0 − sin θeb

0 1 0

sin θeb 0 cos θeb

 (3.2)
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R3 =


cosψeb sinψeb 0

− sinψeb cosψeb 0

0 0 1

 (3.3)

The resulting transformation matrix, Ce
b , is computed as shown in Equation (3.4).

Ce
b = [R1][R2][R3] (3.4)

On each IMU measurement, the transformation matrix is updated using the measured an-

gular rates, ωb. Note that the measurements are in the IMU frame which is assumed to be

consistent with the platform body frame. Using a small angle approximation, the rate of

change of the transformation matrix is approximated by

Ċe
b = Ce

bΩib − ΩieC
e
b (3.5)

where Ωib is the rotation of the body frame relative to an inertial frame expressed in skew-

symmetric form and Ωie is the rotation of the ECEF frame relative to an inertial frame also

expressed in skew-symmetric form. The ECEF frame rotates with the Earth and that rota-

tion is assumed to be constant here and given by the vector, ωe = [ 0 0 7.292115× 10−5 ]T

in units of radians per second [17]. The rotation of the body frame is measured by the IMU

and is given by the vector ωb. The skew-symmetric form is de�ned in Equation (3.6) for an

arbitrary vector of rotations (ωx, ωy, ωz).

Ω = [(ωx, ωy, ωz)]× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (3.6)
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Equation (3.5) is integrated assuming that Ωib and Ωie are constant over the IMU measure-

ment interval, ∆t, and Ce
b is propagated using Equation (3.7).

Ce
bk

= Ce
bk−1

(I + Ωib∆t)− ΩieC
e
bk−1

∆t (3.7)

The current transformation matrix and the accelerometer measurements are then used

to update the velocity estimate. Speci�c forces measured by the IMU, denoted as fb, must

be rotated into the navigation frame prior to use. This is done by multiplying the measured

speci�c forces by the transformation matrix as seen in Equation (3.8).

fe = Ce
bfb (3.8)

The speci�c force measurement is corrected to account for gravity and Coriolis e�ects and

the estimated velocity is propagated using Equation (3.9).

Vek = Vek−1
+ (fe + ge − 2ΩieVek−1

)∆t (3.9)

The acceleration due to gravity, ge, is calculated based on the ECEF position of the platform

using the model described in [37].

Finally, the position estimate is updated by Euler integration using the current velocity

estimates as given in Equation (3.10).

Pek = Pek−1
+ Vek∆t (3.10)

Since the INS solution is depended on integration of IMU measurements known to contain

errors due to misalignment, biases and noise, the PVA estimates will diverge from the true

value over time. Corrections in the form of GPS measurements are used to bound this drift.

The pose error due to IMU errors is estimated in an extended Kalman �lter described in the

next section.
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3.2.2 Kalman Filter

INS solution errors are estimated in an extended Kalman �lter with 17 states as shown

in Equation (3.11).

x =
[
δPe δVe δΨe ba bg cdt cdṫ

] T

(3.11)

Each of the �rst �ve terms in the state vector represent three dimensional components which

from left to right are the position error, velocity error, attitude error, accelerometer biases,

and gyroscope biases. The pose error states (position, velocity, and attitude) are estimated

in the ECEF frame while the bias states are estimated in the platform body frame. The last

two states are estimates of the GPS receiver clock bias and clock drift.

3.2.2.1 Measurement Model

As stated in Section 3.1, in a tightly coupled GPS/INS �lter the INS navigation solution

is corrected using pseudorange and pseudorange rate measurements from GPS. The measured

pseudoranges and pseudorange rates are compared to predicted values derived from the INS

navigation solution. Equations (3.12) and (3.13) are used to compute the predicted the

pseudorange and pseudorange rate from the receiver to satellite s where Pse is the position

of satellite s in ECEF coordinates.

ρ̂s =
√

(Pe − Pse) · (Pe − Pse)T + cdt (3.12)

ˆ̇ρs =
(Pe − Pse)T · (Ve − Vse)√
(Pe − Pse) · (Pe − Pse)T

+ cdṫ (3.13)
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The measurement vector contains the di�erence between the GPS measurements and the

INS based predictions which are called the measurement innovations, δz.

z =



δzρ1
...

δzρ̇1
...


=



ρ1 − ρ̂1

...

ρ̇1 − ˆ̇ρ1

...


(3.14)

The dimensions of the measurement vector are 4m×1 with m equal to the number of visible

satellites (assuming GPS measurements on L1 and L2 frequencies). Note that the measured

pseudorange rate, ρ̇ is calculated from the GPS Doppler measurement, fd, by

ρ̇ = − c
λ
fd (3.15)

where c is the speed of light and λ is the wavelength of the carrier signal.

Since the measurement model is a nonlinear function of the states, as seen in the Equa-

tions (3.12) and (3.13), the measurement matrix, H, is a linearization of the actual mea-

surement model about the current states. It is derived by computing the partial derivative

of each equation with respect to the state vector. Despite the fact that the position and

velocity estimates from the INS navigation processor are dependent on the attitude errors,

those in�uences are assumed to be small relative to the in�uence of the position and velocity

errors. Therefore, attitude error a�ects on the pseudorange and pseudorange rate errors

are ignored. Also, the velocity error is assumed to be the dominant error in the predicted

pseudorange rate thus the partial derivative of Equation (3.13) with respect to the position

error is assumed to be zero. With these assumption in mind, the measurement matrix is
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approximated as

H =



u1 0 0 0 0 1 0

... 0 0 0 0
... 0

0 u1 0 0 0 0 1

0
... 0 0 0 0

...


(3.16)

where ui is the unit vector from the GPS receiver to the ith satellite and the column of ones

corresponding to the receiver clock bias for the �rst 2m rows and the receiver clock drift for

the last 2m rows.

The Kalman measurement update is performed by �rst calculating the Kalman gain

using the linearized measurement matrix, the a priori error covariance matrix, and the mea-

surement noise covariance matrix.

Kk = PkH
T
k (HkPkH

T
k +Rk)

−1 (3.17)

The error covariance matrix and the error state vector are then updated with Equations

(3.18) and (3.19).

P+
k = (I −KkHk)P

−
k (3.18)

x̂+
k = x̂−k +Kkzk (3.19)

The measurement noise covariance matrix, R, is de�ned in Section 3.2.3.

The estimated position, velocity, attitude from the navigation processor are corrected

using the error state vector. The position and velocity are update by simply adding the

corresponding error state to the previous estimate. The rotation matrix, Ce
b , is updated

using Equation (3.20) where ΩδΨ is the skew symmetric form of the attitude error estimate.

Ce+
b = (I3 + ΩδΨ)Ce

b (3.20)
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After the pose estimates are updated, the error states are reset to zero.

3.2.2.2 Propagation Model

The Kalman �lter requires a linear system model to propagate the states and error

covariance matrix in time. This is done by �rst de�ning the time derivative of the error state

vector as a linear function of the states. Starting with the Equation (3.21), the time rate of

change of the position errors is equal to the velocity errors.

δṖe = δVe (3.21)

Propagation of the velocity estimates in the navigation processor is a function of the

local acceleration due to gravity, the Coriolis e�ect, and the accelerometer measurements.

The velocity error is dependent on each of these parameters as seen in Equation (3.22).

δV̇e = GoδPe − 2ΩieδVe − feδΨe + Ce
b ba (3.22)

Errors associated with the local acceleration due to gravity are introduced through the

position errors shown in the �rst term of the equation. Go is a matrix of gravity variations

de�ned for position vectors in the ECEF frame and its de�nition can be found in [35]. The

estimated Coriolis e�ect is in�uenced by the velocity errors and the resulting deviations are

accounted for in the second term. The �nal two terms are the a�ect of attitude errors on

the rotation of the accelerometer measurements into the navigation frame and the a�ect of

the accelerometer biases.

The time rate of change of the attitude errors is given in Equation (3.23).

δΨ̇e = −ΩieδΨe + Ce
b bg (3.23)
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Here, the attitude errors due to gyroscope biases are tracked along with any error introduced

when removing the Earth's rotation from the gyroscope measurements.

In addition to the propagation models of the error states, models must be de�ned for the

accelerometer and gyroscope biases. The accelerometer and gyroscope biases are modeled

as Gauss Markov processes de�ned in Equation (3.24) and Equation (3.25) respectively.

ḃa = − 1

τa
ba + va (3.24)

ḃg = − 1

τg
bg + vg (3.25)

In this work, the time constants are as follows: τa = 500s and τg = 1300s. These values are

taken from experimental identi�cation of time constants for similar hardware in [36]. The

noise terms are assumed to be zero mean white Gaussian noise.

With the system dynamics de�ned the system model, F , is constructed as seen in

Equation 3.26.

F =



03 I3 03 03 03 0 0

Go −2Ωie −fe Ce
b 03 0 0

03 03 −Ωie 03 Ce
b 0 0

03 03 03 − 1
τa
I3 0 0 0

03 03 03 03 − 1
τg
I3 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0



(3.26)

Note that the �nal two rows correspond to the GPS receiver clock bias and drift with the

derivative of the clock bias equal to the clock drift and the clock drift assumed to be driven

by zero mean white noise. The discrete state transition matrix, Φ, is approximated by

truncating the Taylor series expansion of eF∆t to �rst order resulting in

Φ = I + F∆t (3.27)
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The �rst order approximation should be only used for propagation over su�ciently small

intervals (∆t < 1s) [17]. The state transition matrix is used to propagate both the state

vector and the error covariance matrix. The process noise covariance matrix, Q, is de�ned

in the next section.

x̂−k+1 = x̂+
k + Φkx̂

+
k (3.28)

P−
k+1 = ΦkP

+
k ΦT

k +Q (3.29)

3.2.3 GPS/INS Filter Initialization and Implementation

Filter initialization includes estimating the initial position, velocity, and attitude to

�kick o�� the INS navigation processor, and initialize the Kalman �lter state vector and

error covariance matrix. The position and velocity estimates are initialization with the �rst

available GPS solutions but the initial attitude is not so easily estimated. High quality

IMUs are capable of estimating the orientation of a static platform by observing the Earth's

rotation and the local acceleration due to gravity. In this work, automotive grade IMU are

the primary sensors used making this method infeasible. Alternatively, the attitude estimates

are initialized based on the local East, North, UP (ENU) frame. The pitch and roll of the

platform body frame relative to the local tangent plane are assumed to be zero. The yaw

angle relating the forward axis of the body frame and the north direction is estimated using

known landmarks. The rotation matrix relating the platform body frame to the local ENU

frame is then computed using

C l
b =


cos θ3 − sin θ3 0

sin θ3 cos θ3 0

0 0 0




cos θ2 − sin θ2 0

sin θ2 cos θ2 0

0 0 0




0 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1

 (3.30)
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where θ1, θ2, and θ3 are 180o, −90o, and the yaw angle respectively. Note that this assumes

that the platform body frame is de�ned as x forward, y right, and z down. Now the rotation

matrix relating the local ENU frame to the ECEF frame, Ce
l is de�ned as seen in [12] and

[35] using the estimated Latitude and Longitude. Finally, the initial body frame to ECEF

frame transformation matrix is calculated using Equation (3.31).

Ce
b = Ce

l C
l
b (3.31)

The Kalman �lter state vector and error covariance matrix are initialized more intu-

itively. Since the state vector is comprised of error estimates it can be initialized to zeros.

The error covariance matrix is initialized with the expected variance of the associated error

states.

The GPS measurement noise covariance matrix, R, is again calculated as a function

of the receiver characteristics and the carrier to noise ratio of each measurement. The

pseudorange variance, σ2
ρ, due to atmospheric delays and the receiver delay lock loops (DLL)

was de�ned in Equation (2.21). The pseudorange rate measurement is tracked by the receiver

frequency lock loops (FLL) causing the variance to be dictated by Equation (3.32) and (3.33).

σ2
ρ̇ = σ2

FLL +
f 2
E

9
(3.32)

σFLL =
λ

2πT

√
4Bnp

c/n0

(1 +
1

Tc/n0

) (3.33)

The parameters in the above equations are de�ned previously in Table 2.1 with the exception

of fE, the dynamic stress error. Assuming that the pseudorange variance and the pseudor-

ange rate variance are uncorrelated the noise covariance matrix is a diagonal matrix is given

by

R =

 σ2
ρ 0

0 σ2
ρ̇

 (3.34)
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The process noise covariance matrix, Q, is a diagonal matrix with approximations of

the noise variance induced through the navigation processor and the variance of white noise

of the GPS receiver clock bias and drift. Initial estimates of the noise variances are taken

from [6] and are tuned to improve performance.

The observability of the GPS/INS �lter is an important point to consider. There are no

direct measurements of the platform's attitude available from the GPS receiver. Therefore,

it can be di�cult to di�erentiate attitude errors from accelerometer biases. For example, the

roll angle error and the lateral accelerometer bias introduce common deviations in the �lter

solution. Accordingly, the platform must experience su�cient excitation to e�ectively distin-

guish accelerometer biases from attitude errors. Since the accelerometer biases are expected

to change slowly with time, they are more easily separated from the attitude errors during

high dynamic maneuvers. Generally once the platform has performed dynamic maneuvers,

the bias estimates converge to the actual values and the transience in the estimation error

decreases.

3.3 DRTK/INS

Combining GPS and INS for estimation of the relative position vector between two

vehicles is similar to the standard GPS/INS integration described above. However, there is

an addition choice of �lter architectures. The RPV can be estimated in two stage federated

�lter approach where two independent GPS/INS �lters feed a third �lter responsible for only

an RPV estimate or a single �lter can be implemented combining measurements from each

platform and computing both global position estimates and relative position estimates. The

two implementation options are described below.

3.3.1 Federated Filter

A block diagram of the federated DRTK/INS �lter approach is shown in Figure 3.5.

Two independent GPS/INS �lters maintain global position estimates for each vehicle. These
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Figure 3.5: Federated DRTK/INS �lter con�guration

�lter are executed exactly as described in Section 3.2.3. On each IMU measurement epoch,

the speci�c force measurements are rotated in the navigation frame in the GPS/INS �lter

during the propagation step and the rotated measurements, fe, are sent to the DRTK/INS

�lter for RPV propagation. The GPS pseudorange and carrier phase measurements from

each receiver are used to update the RPV and a relative velocity vector (RVV). The RPV

and RVV are estimated in a Kalman �lter combining the �ltering techniques described thus

far.
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3.3.1.1 Measurement Model

The DRTK/INS measurement update is similar to the measurement update discussed in

Chapter 2 with minor exceptions. First of all, the low precision RPV estimate is maintained

in the state vector rather than being estimated in a separate least squares routine. The state

vector also contains the RVV and the double di�erenced carrier phase ambiguity estimates.

The complete vector is given in Equation (3.35) with the total number of states being 6 +

2(m− 1) where m is the number visible satellites.

x =
[
~rab ~vab ∇∆N1···m−1

abL1
∇∆N1···m−1

abL2

]T
(3.35)

Since the double di�erenced ambiguities are being estimated and the RPV is estimated

in the state vector, the measurement vector is constructed with no need of the left null

of the geometry matrix. The measurement vector simply contains the double di�erenced

pseudorange and carrier phase measurements.

z =
[
∇∆ρ1···m−1

abL1
∇∆ρ1···m−1

abL2
∇∆φ1···m−1

abL1
∇∆φ1···m−1

abL2

]T
(3.36)

The measurement matrix is now dependent on the satellite geometry. The unit vector

to the base satellite is subtracted from the remaining unit vectors to account for the double

di�erence. Rows corresponding to carrier phase measurements contain the signal wavelength

in the appropriate column to add the carrier ambiguity estimate to the estimated range. The

measurement matrix is shown in Equation (3.37) with the satellite notation removed but note

that the total number of rows in H will be 4(m− 1).

H =



∆uaL1
03 03 03

∆uaL2
03 03 03

∆uaL1
03 λL1 03

∆uaL1
03 03 λL2


(3.37)
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The Kalman measurement update is carried out with Equations (2.15) through (2.17).

The RPV estimated in the state vector is comparable to the low precision estimate of the

RPV described in the Chapter 2. To compute a high precision estimate, the estimated

carrier ambiguities must be �xed to integer values. Again, the LAMBDA method is used to

construct candidate integer sets and the ratio test is performed to evaluate the validity of

the �x. If the ratio test is passed the high precision RPV is estimated with Equation (2.32).

3.3.1.2 Propagation Model

As seen in Equation (3.35), the platform attitudes are not estimated the DRTK �lter.

Since the rotated accelerometer measurements are available from the independent GPS/INS

�lters, they can be used directly in the relative navigation �lter. The rotated speci�c force

measurements enter the DRTK �lter through the input matrix given by

Γ =


1
2
∆t2I3

∆tI3

0(2(m−1)×3)

 (3.38)

The state transition matrix is constructed accounting for the kinematic relationship of the

RVV and RPV and assuming the ambiguity estimates are constant.

Φ =


I3 ∆tI3 0(3×2(m−1))

03 I3 0(3×2(m−1))

02(m−1) 02(m−1) I2(m−1)

 (3.39)

With the speci�c force measurements from the two platforms rotated into a common nav-

igation frame, they can be subtracted from one another to compute the relative speci�c

force. Also notice that since the platforms are assumed to be in close proximity (a re-

quirement of DRTK) and the measurements are expressed in the same frame the e�ects of

gravity experienced by each unit are approximately equal and are therefore removed when
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the measurements are subtracted. Finally, if it is assumed that the relative Coriolis e�ects

are small compared to the sensor noise, the relative acceleration of the two platforms can be

approximated by Equation (3.40).

feab = feb − fea (3.40)

Now the input to the system is given by, feab , and the state vector and error covariance

matrix are propagated with the following equations:

x̂k = Φkx̂k−1 + Γkfeabk (3.41)

Pk = ΦkPk−1ΦT
k +Q (3.42)

3.3.1.3 Implementation

The carrier phase ambiguities in the state vector are initialized with the �rst available

GPS pseudorange and carrier measurements as described in Section 2.2.1.3. RPV and RVV

estimates are initialized by di�erencing the GPS position and velocity solutions from the

two receivers. The error covariance matrix is initialization with the expected variances of

the RPV, RVV, and double di�erenced ambiguity estimates.

In the event that GPS becomes unavailable after initialization, the RPV estimates are

maintained by dead-reckoning with inertial measurements. This leads to an alternative

method of re-initialization of the carrier ambiguity estimates after short GPS outages. The

RPV estimate can be used to re-initialize the ambiguity estimates using Equation (3.43).

∇∆Nλ = (∇∆φ−∆~ua~rab)/λ (3.43)

In the discussion of the propagation of the RPV and the RVV, the accelerometer bias

was not mentioned explicitly, but there are two possible methods of accounting for them.

One option is to remove the bias prior to sending the speci�c force measurement to the
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DRTK algorithm but subtracting the GPS/INS estimate of the bias from the measurement.

The other option is to estimate the relative bias in the DRTK �lter by augmenting the state

vector to include bias estimates. Each alternative o�ered similar results in testing. The

results presented in this chapter are computed by removing the bias prior to passing the

IMU measurements to the DRTK algorithm.

The measurement noise covariance matrix, R, is calculated as described in Section

2.2.1.3. However, the variance must be representative of the variance of double di�erenced

pseudorange and carrier measurements. The variance of the single di�erenced measurements

from receivers a and b is given by

Rs =

 σ2
aDLL

+ σ2
bDLL

0

0 σ2
aPLL

+ σ2
bPLL

 (3.44)

This matrix is transformed into the matrix of double di�erenced measurement variances

using the transformation matrix, Cd
s , detailed in Section 2.2.2.

R =

 Cd
s 0

0 Cd
s

Rs

 Cd
s 0

0 Cd
s


T

(3.45)

3.3.2 Centralized Filter

The alternative to the federated �lter approach is one �lter estimating global and rel-

ative position states. Figure 3.6 shows a block diagram of the centralized DRTK/INS �lter

con�guration. The �lter inputs are the raw measurements from each GPS receiver and the

INS navigation processor outputs from each platform. The global position, velocity, and

attitude of each platform is estimated along with the RPV between the receivers.
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Figure 3.6: Centralized DRTK/INS �lter con�guration
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3.3.2.1 Measurement Model

The centralized DRTK/INS �lter can be thought of as a combination of the GPS/INS

�lter described in Section 3.2 and the DRTK algorithm described in Chapter 2. The Kalman

�lter is implemented with a combination of error states and actual states. The position,

velocity, and attitude errors of each platform occupying the �rst 18 rows of the states vector.

Three dimensional accelerometer and gyroscope bias estimates make up the next 12 states

followed by the receiver clock bias and drift estimates. Next is the RPV error and the double

di�erenced carrier ambiguities. The complete vector is given in Equation (3.46).

x =
[
δPea δVea δΨea δPeb δVeb δΨeb ba bg cdta cdṫa cdtb cdṫb δrab ∇∆Nab

] T

(3.46)

While implementing a �lter of this size in real time may be troublesome, it is shown here

to investigate any performance improvements gained by coupling global position estimation

with relative position estimation.

As in the GPS/INS �lter, predictions of the pseudorange and pseudorange rate mea-

surements are computed using Equation (3.12) and (3.13). The double di�erenced carrier

phase measurements are also predicted from the estimated relative position vector and the

carrier ambiguity estimates.

∇∆φ̂ab = ∆~ua~rab +∇∆Nab (3.47)
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The measurement vector is constructed by subtracting the predictions from the GPS mea-

surements resulting in the measurement innovations.

z =



δρa

δρ̇a

δρb

δρ̇b

δφab


=



ρa − ρ̂a

ρ̇a − ˆ̇ρa

ρb − ρ̂b

ρ̇b − ˆ̇ρb

∇∆φ1
ab −∇∆φ̂1

ab


(3.48)

Again, the predicted pseudorange and pseudorange rates are nonlinear combinations

of the position and velocity estimates. Therefore, the measurement matrix is developed

by linearizing the measurement equations about the current position and velocity. The

carrier phase prediction is a linear function of the RPV and the ambiguity estimates so the

measurement equation can be put directly into the measurement matrix.

H =



~ua 0 0 0 0 0 0 0 1 0 0 0 0 0

0 ~ua 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 ~ub 0 0 0 0 0 0 1 0 0 0

0 0 0 0 ~ub 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ∆~ua λ


(3.49)

The Kalman �lter measurement update is performed using Equations (3.50) through (3.52).

Kk = PkH
T
k (HkPkH

T
k +Rk)

−1 (3.50)

P+
k = (I −KkHk)P

−
k (3.51)

x̂+
k = x̂−k +Kkzk (3.52)

An attempt is then made to �x the �oating point ambiguity estimates to integer values

using the LAMBDA method. With an acceptable integer set, the high precision RPV is
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estimated using least squares as seen in Equation (2.32). Since the errors in the position,

velocity, attitude, and RPV are being estimated in the Kalman �lter, the estimates of the

actual states must be updated after a measurement update. The position, velocity, and

RPV estimates are updated by adding the estimated errors to the previous estimate while

the attitude estimates are updated as seen in the GPS/INS �lter using Equation (3.20).

3.3.2.2 Propagation Model

The propagation step of the centralized DRTK/INS �lter involves propagation of the

pose estimates and the RPV as well as propagation of the error states in the Kalman �lter

time update. Propagation of the position, velocity, and attitude estimates follows the proce-

dure laid out in Section 3.2.1. The estimates of the pose of each platform are updated using

Equations (3.53) through (3.55).

Pek = Pek−1
+ Vek∆t (3.53)

Vek = Vek−1
+ (fe + ge − 2ΩieVek−1

)∆t (3.54)

Ce
bk

= Ce
bk−1

(I + Ωib∆t)− ΩieC
e
bk−1

∆t (3.55)

Propagation of the RPV can be performed by either doubly integrating the relative speci�c

force of the two platforms expressed in the navigation frame or by integrating the rela-

tive velocity of the two platforms. Here, the relative velocities are chosen and the RPV is

propagated by

~rabk = ~rabk−1
+ (Vebk − Veak )∆t (3.56)

The system matrix is constructed in the same manner as the system matrix of the GPS/INS

�lter. The accelerometer and gyroscope biases are modeled as Gauss Markov processes and

the ambiguity states are modeled as constants. The RPV error state dynamics are given by

δ~̇rab = δVeb − δVea (3.57)
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and the system matrix is shown in Equation (3.58).

F =



0 I3 0 0 0 0 0 0 0 0 0 0 0 0

Go −2Ωie −fe 0 0 0 Ce
b 0 0 0 0 0 0 0

03 03 −Ωie 0 0 0 0 Ce
b 0 0 0 0 0 0

0 0 0 0 I3 0 0 0 0 0 0 0 0 0

0 0 0 Go −2Ωie −fe Ce
b 0 0 0 0 0 0 0

0 0 0 0 0 −Ωie 03 Ce
b 0 0 0 0 0 0

0 0 0 0 0 0 − 1
τa
I3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 − 1
τg
I3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 I3 0 0 I3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0



(3.58)

The state transition matrix is approximated by Equation 3.27 and the state vector and error

covariance matrix are propagated using Equations 3.28 and 3.29.

3.3.2.3 Implementation

The centralized DRTK/INS �lter is initialized with the �rst available GPS measure-

ments as described in previous implementations. As with the federated �lter approach the

double di�erence ambiguity estimates can be initialized with either the double di�erenced

pseudorange and carrier phase measurements or with the estimated RPV position vector.

The error states used in the Kalman �lter are initialized to zero.

GPS measurement variances are de�ned as a function of the carrier to noise ratio of

the given signal in Equations (2.21), (3.32), and (2.24). These values are used once again
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in the measurement noise covariance matrix. The measurement noise of the pseudorange,

pseudorange rate, and carrier phase measurements are assumed to be uncorrelated but it

should be noted that there is some correlation of the pseudorange rate and carrier phase

noise that is ignored. The measurement noise covariance matrix is therefore represented by

the matrix de�ned in Equation (3.59).

R =



σ2
ρa 0 0 0 0

0 σ2
ρ̇a 0 0 0

0 0 σ2
ρ 0 0

0 0 0 σ2
ρ̇a 0

0 0 0 0 Cd
s (σ2

aPLL
+ σ2

bPLL
)Cd

s


(3.59)

Note that the single di�erence carrier phase variance has been transform into the double

di�erence variance.

Each of the DRTK/INS integrated �lters described in this chapter may implemented

with single or dual frequency GPS measurements. The federated and centralized �lter con-

�gurations are initially compared based on performance in dual frequency operation to de-

termine any discernible di�erences. The federated �lter is selected for further study and its

performance with only L1 measurements is examined. The federated �ltering architecture

is expanded in Appendix 5.2.3 to include fault detection and exclusion (FDE) capabilities.

Additional results on the e�ectiveness of the FDE algorithm are also provided in the ap-

pendix.

3.4 Experimentation and Results

The federated and centralized DRTK/INS �lters were tested in post-process using data

collected at the National Center for Asphalt Technology (NCAT) at Auburn University. Data

was collected on the test track and in the surrounding areas as seen in Figure 3.7. Two In�niti

G35 sedans were equipped with Novatel Propak V3 GPS receivers and automotive grade

56



Figure 3.7: NCAT test facility with data collection locations. Background map by GPS
Visualizer

Crossbow 440 IMUs. GPS measurements were collected at 5 Hz and inertial measurements

were collected at 20 Hz. A Septentrio Pola Rx2 GPS receiver was used as a base station to

calculate a RTK position solution to be used as reference data.

The primary motivation for the developing both centralized and federated DRTK/INS

�lters was to determine if the coupling of the global and relative position estimates in the

centralized �lter would improve the accuracy of either estimate. In contrast to the coupled

global and relative states of the centralized �lter, there is no feedback from the DRTK �lter

to the independent GPS/INS �lters in the federated architecture. For this reason the analysis

begins with an evaluation of the global positions estimates of the individual vehicles. The

estimated position of one of the test vehicles is shown in a local East, North, Up (ENU)

frame in Figure 3.8. Note that the position of the vehicle is estimated in the ECEF frame

and rotated into a local ENU frame using the initial position as the frame origin. The

position solutions calculated with the centralized and federated �lters are shown with the

RTK reference solution. A portion of the �gure is expanded in Figure 3.9 to reveal the

three position solutions. A slight bias of the position solution from each �lter can be seen

in the �gure. This can be attributed to unmodeled GPS errors such as atmospheric delays

and signal multipath. Each estimate tracks the RTK solution well with little discernible

di�erence in their accuracies. The East and North position errors are calculated at the 5 Hz
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Figure 3.8: East and North global position solutions for one vehicle computed with central-
ized and federated �lters shown with RTK reference solution

Figure 3.9: Zoom view of global position solutions shown with RTK reference solution
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Table 3.1: Error Analysis of Position Estimates from Centralized and Federate Filters
East North

RMSE (m) Variance (m2) RMSE (m) Variance (m2)

Centralized 1.17 0.40 0.63 0.25
Federated 1.32 0.44 0.67 0.40

Figure 3.10: High and low precision baseline estimates as calculated by centralized
DRTK/INS �lter for separation distances up to 500 meters

update rate on the RTK solution and the results are shown in Table 3.1. The RMSE of the

East and North position estimates is below one and one half meters for each �ltering option.

The analysis does not reveal a signi�cant di�erence in the accuracy of the two �lters when

estimating the global position of one vehicle.

It is important to evaluate the accuracy of the relative position estimates. The low

precision and high precision estimates of the baseline between the two vehicles are shown in

Figure 3.10. The low precision solution is marked by blue Xs and the high precision solution

is shown as green circles. This solution was calculated using the centralized architecture

but it is typical of the results of each �ltering method. A comparison of the results of

the two �ltering options is shown in Figure 3.11. The error in the relative position vector

is shown for the centralized �lter in green and the federated �lter in red. The reference

RPV was calculated by subtracting the RTK position solution of the two vehicles. From
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Figure 3.11: Low precision relative position vector errors in the ECEF frame of the central-
ized (green) and federated (red) RPV estimates as compared to RTK solution

Table 3.2: Statistics on HP and LP Baseline Errors
High Precision Low Precision

RMSE (cm) Variance (cm2) RMSE (cm) Variance (cm2)

Centralized 0.13 0.03 12.03 44.0
Federated 0.06 0.03 13.57 17.0

the �gure it is clear that the federated �lter produces a smoother RPV estimate than the

centralized �lter. The low precision and high precision baseline errors are shown in Figure

3.12 and 3.13 respectively. In Table 3.2, the RMSE and variance of the low precision and high

precision baseline errors are given. The results of each �lter are comparable to the results

seen in Chapter 2. Recall from Section 2.4 that the RMSE of the low precision baseline error

was approximately 20 centimeters using only GPS measurements. The error is improved

slightly by incorporating the IMU as the RMSE is approximately 13 centimeters for both

the centralized and federated �lter. Notice that the high precision error is consistent with

the previous results showings sub-centimeter errors. This would be expected since the high

precision solution is computed in the same manner as it was in Chapter 2.
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Figure 3.12: Low precision baseline error of centralized and federated DRTK/INS �lters

Figure 3.13: High precision baseline error of centralized and federated DRTK/INS �lters
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One �nal point of comparison of the centralized and federated �ltering approaches was

the reacquisition of �xed integer estimates of the carrier ambiguity after a GPS outage. As

stated in Section 3.3.1.3, after a GPS outage the ambiguity estimates may be reinitialized

using the propagated RPV estimate from the INS. To test the e�ectiveness of this initializa-

tion method, GPS outages were simulated during data processing. The ambiguity estimates

were then reinitialized using Equation 3.43 and the time to reacquire �xed integer estimates

was recorded. The results are shown in Figure 3.14 with the results of the DRTK algorithm

described in Chapter 2 which does not use the INS for dead-reckoning. In the �gure, the

reacquisition time using the dead-reckoning solution increases signi�cantly after as little as a

one second outage. The increase in the reacquisition time is due to the drift of the INS RPV

solution during the GPS outage. Accordingly, as the outage time increases, the INS solution

degrades and the time to reacquisition increases. As would be expected, the original DRTK

algorithm resulted in consistent �xing times regardless of the duration of the outage. The

integer reacquisition times for the DRTK algorithm correspond well with the mean time to

�rst �x reported in Chapter 2 of approximately 0.2 seconds. It is important to consider the

quality of the IMU used in this test when evaluating these results. The unit used here was

an automotive grade IMU which exhibits drift characteristics that can result in meter level

errors in as little as one second [35]. Given a higher quality IMU, the results shown here

could be signi�cantly improved.

From these results, it is shown that both the centralized and federated DRTK/INS

integration architectures provide low precision RPV estimates with sub-meter level errors.

The two �ltering options o�er similar accuracies for both the global and relative position

estimates. Furthermore, neither �lter provides improvement in reacquisition of carrier am-

biguities after a GPS outage. For these reasons and due to the complexity of the centralized

�lter architecture, the federated �lter is selected as the preferred option. The federated �lter

was implemented and testing using only L1 measurements as a continuation of the single

and dual frequency comparison from Chapter 2.
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Figure 3.14: Integer reacquisition times after a GPS outage using di�erent initialization
procedures

Table 3.3: Statistics on HP and LP Baseline Errors of Single Frequency Federated Filter
High Precision Low Precision

RMSE (cm) Variance (cm2) RMSE (cm) Variance (cm2)

Single Frequency 0.25 0.50 22.81 467

Evaluation of the single frequency algorithm focuses on the relative position estimation.

Figure 3.12 shows the error in the low precision RPV estimates in the ECEF frame. The

results shown here are comparable to those shown in Figure 3.11. The RMSE and variance

of the baseline errors are provided in Table 3.3. Note that the low precision RMSE is nearly

identical to the GPS only single frequency solution which was approximately 24 centimeters.

Again, the RMSE of the high precision baseline error is consistent with the results shown in

Chapter 2. The high precision baseline error is shown graphically in Figure 3.13.

Finally, the reacquisition of carrier phase ambiguities was investigated. As with the

dual frequency algorithms, GPS outages ranging from two measurement epochs up to seven

measurement epoch were simulated during data processing. The ambiguities estimates were

reinitialized after the outage using the INS RPV solution. The results of the test are shown in
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Figure 3.15: Low precision relative position vector errors in the ECEF frame of the single
frequency federated RPV estimates as compared to RTK solution

Figure 3.16: High precision baseline error of single frequency federated DRTK/INS �lter
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Figure 3.17: Integer reacquisition times after a GPS outage using single frequency measure-
ments and di�erent initialization procedures

Figure 3.17 with the results of the DRTK only algorithm using L1 frequency measurements.

As expected, the DRTK algorithm results in consistent reacquisition times for various outage

times. The integer reacquisition times for the DRTK algorithm were slightly shorter than

the mean time to �rst �x reported in Chapter 2 of approximately 4.3 seconds. Again, the

RPV based initialization method shows increasing reacquisition times as the duration of the

outage increase.

3.5 Conclusions

Centralized and federated DRTK/INS integrated navigation systems were presented.

The �lter architectures were implemented and tested in post process using actual GPS and

IMU data collect on two vehicles. The results indicate that each form is capable of providing

estimates of the RPV between the two vehicles with sub-meter errors. Initialization of ambi-

guity estimates with INS propagated RPV estimates was also investigates. The automotive

grade IMU used in this research did not provide the level of stability required to decrease

the integer reacquisition time. The traditional ambiguity initialization method described in
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the Section 2.2.1.3 provided more consistent results. The federated DRTK/INS �lter was

chosen as the preferred integration architecture due to the similarity in performance of the

two methods and due to the complexity the centralized �lter approach.

The federated DRTK/INS �lter was also implemented and tested using only L1 fre-

quency measurements. As in Chapter 2, the �xed ambiguity RPV accuracy of the DRTK/INS

�lter was comparable using either single or dual frequency measurements. As with the dual

frequency algorithm, there was no improvement in the time to reacquire �xed integer ambi-

guity estimates using the dead reckoning RPV estimate.
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Chapter 4

Performance Analysis of DRTK/TDCP Following

In this Chapter, an autonomous following method using di�erential GPS techniques

is compared to an autonomous following method using standard GPS positioning. A de-

scription of each method is provided beginning with the following method using standard

GPS positioning. Perhaps the most intuitive use of GPS positioning in the leader/follower

application is the �breadcrumb� following method. In this approach, the following vehicle

is noti�ed of the lead vehicle's global position periodically. A database of the lead vehicle

positions are stored as GPS coordinates or waypoints de�ning the lead vehicle's path. The

following vehicle then selects a waypoint from the database to drive towards. The waypoint

is selected based on some minimum following distance or look ahead distance. The selected

waypoint is the point in the database closest to the following vehicle that exceeds the look

ahead distance. Often the look ahead distance is variable and is scaled by the speed of the

following vehicle. Additional constraints are used to ensure that the selected waypoint is in

front of the following vehicle.

The breadcrumb following method requires accurate and smooth GPS global position

estimates of both the lead vehicle and the following vehicle. However, standard GPS po-

sitioning errors are typically on the order of ten meters horizontally with a minimum of

meter level errors under ideal conditions. An example of the horizontal position error of a

standard GPS solutions is shown in Figure 4.1. The error is calculated between the standard

position solution reported by the Novatel Propak V3 receiver and a RTK reference solution.

The magnitude of horizontal position error calculated in a local ENU frame is plotted. The

bottom graph is a zoomed portion of the top graph showing the horizontal error from the

150 second mark to the 200 second mark. As seen in the �gure, there are several meter level
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Figure 4.1: Horizontal position error for standard positioning solution as calculated by No-
vatel receiver compared to RTK reference

jumps in the position error in the 50 second time window and the maximum error is over

10 meters. Depending on the operational environment, using this solution for autonomous

following could be dangerous. If the vehicles are operating in a road setting, a shift of only

a couple of meters could lead to a head on collision as seen in Figure 4.2. In a military

application, the autonomous vehicle could be following a land mine clearing vehicle through

a mine �eld were accurate lateral positioning is vital. While the use of an RTK base station

will improve the accuracy and consistency of the GPS position solution, base stations are

not available in all operating environments. An alternative is to use the di�erential GPS

methods discussed in Chapter 2 and 3 to provide highly accurate relative position estimates.

As shown in Chapter 2, the DRTK algorithm is capable of producing relative position

vectors (RPV) between two platforms with sub-centimeter errors. This information can be

used in an alternative following method in place of the global position estimates used in the

breadcrumb following method. The RPV is used to calculate the a desired heading angle

for the following vehicle which will point the following vehicle at the current position of
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Figure 4.2: Shift in standard positioning solution (red dots) relative to the actual path of
the lead vehicle (blue dots)

Figure 4.3: The desired heading angle of the following vehicle is calculated using the relative
position vector expressed in the East, North, Up frame

the lead vehicle. The desire heading angle, ψd, the current heading angle of the following

vehicle, ψc, and the RPV are shown for a leader/follower con�guration in Figure 4.3. The

desired heading angle is calculated using the East and North components of the RPV using

Equation (4.1).

ψd = arctan
(
RPVE
RPVN

)
(4.1)
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Figure 4.4: As the separation distance increases and the lead vehicle turns with a tight
radius, the following vehicle will cut the corner if it turns directly towards the lead vehicle.

The following vehicle is steered to the desired heading and acts as if it is being towed

by the lead vehicle. The towing aspect of the RPV following method introduces a di�erent

shortcoming to the leader/follower problem. When the lead vehicle performs a tight turn,

the following vehicle will cut the corner of the turn as seen in Figure 4.4. This e�ect is

exaggerated as the separation distance increases. Accordingly, the RPV following method

is limited to applications with short following distances or predominantly straight paths.

In order to reduce the impact of these limitations, a modi�ed RPV following method is

used to reduce the e�ective separation distance of the two vehicles without constraining

the physical separation distance. This method uses a combination of di�erential GPS carrier

phase algorithms including the DRTK algorithm and a time di�erence carrier phase (TDCP)

algorithm.
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4.1 TDCP positioning

The time di�erence carrier phase (TDCP) algorithm is conceptually similar to the DRTK

algorithm in that a di�erence of two measurements is used to minimize the a�ect of common

GPS errors on position estimation. The TDCP algorithm is used to compute the change in

the position of one receiver from one measurement epoch to the next measurement epoch.

Recall the GPS carrier phase measurement model from Equation (2.2). The di�erence be-

tween two successive carrier phase measurements is given in Equation (4.2).

φsak − φ
s
ak−τ

= rsak + cdtak + cdtsk + T sak − I
s
ak

+ λN s
ak

+ vsa
k

−rsak−τ − cdtak−τ − cdt
s
k−τ − T sak−τ + Isak−τ − λN

s
ak−τ
− vsa

k−τ
(4.2)

The majority of the common mode errors are remove as a result of the subtraction. For

a short time step, the satellite clock error is nearly equal to the value from the previous

measurement epoch and is removed. The ionospheric and tropospheric e�ects are largely

removed and any residual atmospheric error is ignored. Assuming that there is no cycle slip

of the carrier signal between measurements, the carrier ambiguity is also removed through

subtraction. The result is an observation of the change in the range from receiver a to

satellite s from time k − τ to time k corrupted by the receiver clock drift and noise, where

τ is the measurement time step.

φsak−τ,k = rsak−τ,k + cdtak−τ,k + vsak−τ,k (4.3)

The change in the range from receiver a to satellite s can be rewritten as the range from a

to s at time k minus the range from a to s at time k− τ ; each range is expressed as the dot

product of the line of sight unit vector from receiver to satellite and vector components of
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the range in the ECEF frame.

φsak−τ,k = Gs
ak


rsaxk

rsayk

rsazl

−G
s
ak−τ


rsaxk−τ

rsayk−τ

rsazk−τ

+ cdtak−τ,k + vsak−τ,k (4.4)

Note that G is the geometry matrix given by the unit vector from receiver a to satellite s.

Gs
ak

=
[
usaxk usayk usazk

]
(4.5)

The range terms in Equation (4.4) are regrouped into terms associated with the change in

the satellite position and terms associated with the change in the receiver position seen in

Equation (4.6).

φsak−τ,k = Gs
ak


rsxk

rsyk

rszl

−G
s
ak−τ


rsxk−τ

rsyk−τ

rszk−τ



+Gs
ak


raxk

rayk

razl

−G
s
ak−τ


raxk−τ

rayk−τ

razk−τ

+ cdtak−τ,k + vsak−τ,k (4.6)

Assuming that the line of sight unit vector does not change signi�cantly over the measure-

ment time step, the time di�erence carrier phase measurement minus the change in the

satellite position is expressed as a function of the current unit vector, the change in the
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receiver position, the receiver clock drift, and noise.

φsak−τ,k +Gs
ak−τ


rsxk−τ

rsyk−τ

rszk−τ

−G
s
ak


rsxk

rsyk

rszl

 =
[
Gs
ak

1

]


raxk−τ,k

rayk−τ,k

razk−τ,k

cdtak−τ,k


+ vsak−τ,k (4.7)

The change in the position of the receiver is then estimated using weighted least squares. The

weighting matrix is derived from the variance of the carrier phase measurements based on the

carrier to noise ratio as seen in Equation (2.24). Note that the carrier phase measurements

are checked for cycle slips as described in Section 2.2.2 to ensure that the carrier ambiguity

is removed prior to estimating the change in position.

4.2 DRTK/TDCP Following

As previously stated, the DRTK/TDCP following method is a modi�cation of the RPV

following method. Originally introduced in [35], the DRTK/TDCP following method reduces

the e�ective following distance by using the RPV to a virtual leader position to calculate the

desired heading of the following vehicle. The virtual leader position acting as the terminus

of the RPV is actually a position of the lead vehicle at a previous GPS measurement epoch.

The DRTK/TDCP following method is shown visually in Figure 4.5. The RPV of interest,

RPVk ,k−n , is shown in green and is the RPV between the following vehicle's current position

P F
k , and the lead vehicle's previous position, PL

k−n at time k − n. RPVk ,k−n is calculated by

subtracting the change in the following vehicle's position from time k − n to time k from

the relative position vector, RPVk−n, shown in black. The change in the follower's position

from time k − n to time k is calculated using Equation (4.8).

∆P F
k−n,k =

k∑
i=k−n

∆P F
i (4.8)
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Figure 4.5: Using past knowledge of the lead vehicle's position relative the following vehicle
and knowledge of the change in the position of the follower, the following vehicle steers
toward a virtual leader position with a much shorter separation distance. The current leader
and follower positions are shown in bright white and bright red respectively. The transparent
white and red vehicles represent the previous leader and follower positions.

The TDCP algorithm is used to estimate the change in the following vehicle's position at each

GPS measurement epoch, represented by ∆P F
i . The RPV between the vehicles is estimated

at each measurement epoch using the DRTK algorithm. With these estimates of the RPV

and the change in the following vehicle's position, the RPV to the virtual leader is calculated

using Equation (4.9).

RPVk,k−n = RPVk−n −∆P F
k−n,k (4.9)

The desired heading angle is computed using Equation (4.1).

To perform the steps of the DRTK/TDCP following method, a database of RPV and

∆P F values is maintained. The values are stored sequentially and once a RPV is used

to compute the relative position to a virtual leader position, all RPV and ∆P F values

occurring prior to that measurement are deleted to limit the size of the database. As with

the RPV following method, the virtual leader position is selected based on minimum look

ahead distance. The distance to the virtual leader position is computed starting with the

current relative position vector, RPVk,k. If that distance is greater than the look ahead

distance, the next previous measurement epoch is considered and the RPVk,k−1 is computed
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to the virtual leader position PL
k−1. If the magnitude of RPVk,k−1 is still greater than the

look ahead distance, the RPVk,k−2 is computed. This continues until the magnitude of the

RPVk,k−m is less than the look ahead distance and the previously computed measurement

is used, RPVk,k−(m+1). This ensures that the closet virtual leader position that exceeds the

look ahead distance is used. Notice that if the magnitude of the current relative position

vector is less than the look ahead distance the DRTK/TDCP following method reverts to

the RPV following method.

An additional point of interest in the DRTK/TDCP following method is the accuracy

of the estimated change in the following vehicle's position. Since the individual change in

position estimates are based on di�erential GPS carrier phase measurements, the error in

any one ∆P F estimate is expected to be on the order of centimeters. However, since the

estimates from the TDCP algorithm contain some level of residual error, as the estimates

are accumulated the error increases. Accordingly the accuracy of the TDCP is examined

in the next section along with the e�ectiveness of the DRTK/TDCP following method as

compared to GPS waypoint following.

4.3 Experimentation and Results

4.3.1 TDCP Error Analysis

The TDCP algorithm was �rst tested using data collected with a Novatel Propak V3

GPS receiver attached to a test vehicle. The vehicle was driven near the National Center for

Asphalt Technology test track for approximately ten minutes as data was collected at 5 Hz.

The change in the vehicle's position between GPS measurement epochs was estimated in post

process with the TDCP algorithm. The resulting estimates were compared to a reference

solution computed by subtracting consecutive RTK position solutions. The performance of

the TDCP algorithm is shown in Figure 4.6 along with the performance of the standard

position solution reported by the Novatel receiver. The error in the TDCP estimate and the

error in the change of the standard Novatel position solution are plotted in the �gure. The
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Figure 4.6: Error in the change in the position of a moving receiver for standard GPS position
solution and TDCP estimation. The �gure on the right is a zoomed view of the �gure on
the left.

Table 4.1: Standard Deviation of Errors in Change in Position Estimates
Standard GPS TDCP

σ∆East(cm) σ∆North(cm) σ∆Up(cm) σ∆East(cm) σ∆North(cm) σ∆Up(cm)
5.4 6.9 25.0 0.12 0.2 0.34

image on the left of the �gure shows the larger errors in the standard position solution with

some errors over one meter. On the right, a closer view of the errors resulting from each

method is shown. Clearly each method results in near zero means errors with the standard

position solution exhibiting signi�cantly higher deviation. The standard deviations of the

errors in the TDCP solution and the standard GPS solution are given in Table 4.1. While

each method results in a standard deviation of less than one meter, the standard deviation

of the standard GPS solution is more than one order of magnitude higher than the TDCP

solution.

Figure 4.6 and Table 4.1 show that the TDCP algorithm is capable of estimating the

change in the vehicle's position with sub-centimeter errors. The DRTK/TDCP following

method described in this chapter requires that the TDCP estimates be accumulated to

compute the change in the follower's position over several measurement epochs. Therefore,

the TDCP estimates were accumulated over the full data set with the initial position of the
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Figure 4.7: East and North positions on a receiver comparing the accumulated TDCP esti-
mates to the reference RTK solution.

vehicle taken to be the origin of a local East, North, Up navigation frame. The accumulated

TDCP East and North estimates and the RTK reference positions are shown in Figure 4.7.

As previously stated, the TDCP estimates contain residuals errors that can a�ect the

accumulated position estimates. These errors are due to unaccounted for e�ects such as

changing multipath e�ects, residual satellite clock errors, and residual atmospheric e�ects.

The assumption of constant line sight unit vectors also contributes to the TDCP errors. The

result of these e�ects are time correlated biases in the TDCP change in position estimates.

When this biases are accumulated to compute the change in the position of the vehicle

over several measurement epochs, the error in the estimate increases. This tendency is

shown in Figure 4.8 where the error in the accumulated TDCP estimate is plotted over

a thirteen minute data set. The East position error increases with some variation while

the North position error increases nearly linearly. The horizontal error reaches 1 meter in

approximately 100 seconds.

To better characterize the error growth of the accumulated TDCP estimates, data was

collected on a stationary GPS receiver for twenty-four hours and analyzed. Allan variance
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Figure 4.8: Error in the accumulated TDCP position estimate relative to the RTK solution.

analysis was used to examine the variability of the accumulated TDCP estimates as the

number of accumulation increases. Originally developed to study the stochastic properties of

clocks and oscillators [1], the Allan variance is used in this thesis to compare the accumulated

TDCP performance to standard GPS positioning. In general, the Allan variance is computed

for a range of selected averaging times and is a measure of the variability of the data sequence

for each averaging time. For a formal de�nition of the Allan variance and for studies on the

use of Allan variance analysis to characterize stochastic processes see [1] and[36].

The twenty-four hour data set was divided into averaging times ranging from 0.2 seconds

to 12 hours. In Figures 4.9 through 4.11, the Allan deviations of the accumulated TDCP

East, North, and Height estimates are shown in blue, and the Allan deviations of the standard

GPS East, North, and Height positions are shown in red. Note that the Allan deviation is

the square root of the Allan variance and that the values are plotted on a log-log scale in

the �gures. The �gures show that for short averaging times the TDCP algorithm produced

more consistent results than the standard GPS solution, as was expected. For the shortest

averaging times, the Allan deviation corresponds closely to the standard deviation of the

dynamic data set presented in Table 4.1. Recall that the TDCP standard deviation was on
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Figure 4.9: East position Allan deviation of the accumulated TDCP (blue) and the standard
GPS position (red)

the order of millimeters and the standard GPS position standard deviation was on the order

of centimeters. Also, the vertical position estimate produces the highest variance as seen in

the both the table and the Allan deviation plots. For higher averaging times the deviation

of the accumulated TDCP estimates is near 10 meters while the deviation of the standard

GPS position levels o� below 1 meter. The spikes in the �gures near the maximum averaging

times are due to the fact that the twenty-four hour data set can only be subdivided into a

few set of data of that length. Therefore, the deviation is being computed with only a few

data points resulting in higher volatility.

As the averaging time increases, the Allan deviation of the accumulated TDCP estimates

overtakes the Allan deviation of the standard GPS solution. A closer view of the crossover

of the East and North deviations can be seen in Figure 4.12. Notice that the values are now

plotted on a linear scale. The leveling o� e�ect of the Allan deviation of the standard GPS

position is clear on the linear scale with a maximum Allan deviation of approximately 0.3

meters. As was seen with the error of the accumulated TDCP estimates in Figure 4.8, the

accumulated TDCP deviation increases nearly linearly as the averaging time increases. The
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Figure 4.10: North position Allan deviation of the accumulated TDCP (blue) and the stan-
dard GPS position (red)

Figure 4.11: Height position Allan deviation of the accumulated TDCP (blue) and the
standard GPS position (red)
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Figure 4.12: East and North Allan deviation of the accumulated TDCP (blue) and the
standard GPS position (red)

accumulated TDCP deviation increases beyond the deviation of the standard GPS position

at approximately 230 seconds in the East position and approximately 150 seconds in the

North position.

The implications of the accumulated TDCP error growth on the DRTK/TDCP following

method are seen by noticing that the averaging times in Figure 4.12 can be though of as

the time interval between the lead vehicle and following vehicle. Accordingly, based on the

results shown in Figure 4.12, if the following vehicle is less than 150 seconds behind the

lead vehicle; the accumulated TDCP estimates will provide a more accurate and consistent

estimate of the change in the position of the following vehicle than standard GPS positioning.

By assuming that the following vehicle is moving at a constant speed, the averaging time

or following time can be converted to a following distance. The Allan deviations of the

accumulated TDCP estimates and the standard GPS positioning solution are shown as a

function of following distance based on a variety of constant speeds in Figure 4.13. As

seen in the �gure, the accumulated TDCP Allan deviation is lower than the deviation of

standard GPS positioning for di�erent following distances based on the speed of the vehicle.

As the speed of the following vehicle increases, the accumulated TDCP estimates outperform

standard GPS positioning for longer following distances. In Table 4.2, the Allan deviations
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Figure 4.13: Allan deviation of the accumulated TDCP and the standard GPS positioning
lateral position estimation as a function of following distance based on a constant speed

Table 4.2: Accumulated TDCP and Standard GPS Positioning Allan deviations as a function
of Following Distance

Speed - 1.5 m/s Speed - 9 m/s Speed - 26 m/s

Following
Distance
(m)

SPS
(cm)

TDCP
(cm)

Following
Distance
(m)

SPS
(cm)

TDCP
(cm)

Following
Distance
(m)

SPS
(cm)

TDCP
(cm)

190 25.5 23.4 1150 25.4 23.6 3300 25.4 23.4
200 26.4 24.7 1200 26.4 24.7 3575 26.4 25.3
210 25.8 25.8 1250 25.1 25.6 3650 25.2 25.8
220 26.3 27.0 1300 25.4 26.6 3775 26.8 26.7
230 26.4 28.2 1350 25.7 27.7 4000 26.1 28.2

of the accumulated TDCP estimates and the standard GPS positioning are shown for the

same three selected speeds. Following distances shown in the table were selected to show

the point of intersection of the accumulated TDCP and standard GPS positioning Allan

deviations. The speeds were selected to cover a range of operating conditions such as walking

speeds (1.5 m/s), slower driving speeds (9 m/s), and highway driving speeds (26 m/s). The

accumulated TDCP estimates provided lower Allan deviations for following distances less

than approximately 200 meters at walking speeds, for distances less than 1200 meters at

slower driving speeds, and for distances less than 3500 meters at highway speeds.

The twenty-four hour data set was also used to determine the mean time to 1 meter

horizontal error when accumulating TDCP estimates. For this analysis the TDCP estimates

were accumulated until the horizontal error (the euclidean norm of the East and North error)
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Figure 4.14: Time to one meter horizontal error for accumulated TDCP estimates

exceeded 1 meter; then the time recorded and the value was reset to zero. The results are

shown in Figure 4.14. The mean time to 1 meter error was 378 seconds with a maximum

value of over 2500 seconds and a minimum value of 3.4 seconds.

4.3.2 DRTK/TDCP Following and Waypoint Following

Finally, a comparison of the DRTK/TDCP following method and the waypoint (bread-

crumb) following method was performed. Each method was used to navigate an automated

ATV Corp. Prowler all-terrain vehicle (ATV) to reproduce the path of a human driven In-

�niti G35 sedan. The Prowler ATV and In�niti G35, seen in Figure 4.15, were each equipped

with a Novatel Propak V3 receiver and a 900 MHz radio modem for inter-vehicle communi-

cation. In addition to GPS, the Prowler was also equipped with a Crossbow IMU 440, an

Advantech computer, and a SmartMotor for steering control. Additional hardware was used

to communicate actuator commands between the navigation processor on the Advantech

computer and the SmartMotor. The heading error and the rate of change of the heading

error of the Prowler were regulated using a proportional-derivative controller (PD) operating

at 20Hz. Heading errors were calculated between the desired heading angle (estimated using
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Figure 4.15: In�niti G35 and Prowler ATV

either the DRTK/TDCP or the waypoint following methodology described in this chapter)

and the current heading of the Prowler. The current heading of the Prowler was estimated in

a loosely coupled GPS/INS �lter and the rate of change of the heading error was estimated

by numerically di�erentiating the heading error over successive iterations.

Results of the DRTK/TDCP following method are shown in Figure 4.16. An RTK sys-

tem was used to record the positions of the lead vehicle and following vehicle as the path

was driven. Let it be stated again that the lead vehicle was human driven and the follow-

ing vehicle was steered autonomously. The speed of the following vehicle was maintained

manually. In the �gure, the following vehicle is seen to e�ectively reproduce the path of the

lead vehicle. The following vehicle deviates slightly from the path in the �rst corner near

the coordinates East � 40 meters and North � 20 meters. This may be due to �uctuations of

the speed of the following vehicle which will change the look ahead distance used to select

the virtual leader position. Notice that the following vehicle reproduce the path with little

to no bias on the straight sections of the path.

The waypoint following method was �rst implemented using the RTK position solution

of the lead vehicle with the expectation that the results would be similar to the DRTK/TDCP

following method. The DRTK/TDCP following method is expected to outperform the way-

point following method when a RTK base station is unavailable. As seen in Figure 4.17,
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Figure 4.16: RTK positions of the lead vehicle and following vehicle using the DRTK/TDCP
following method

Figure 4.17: RTK positions of the lead vehicle and following vehicle using the waypoint
following method with the RTK position of the lead vehicle

the waypoint following method using the RTK position of the lead vehicle produces results

comparable to the DRTK/TDCP following method. Again, on the straight sections of the

path the following vehicle reproduces the path without signi�cant lateral bias. However,

the following vehicle does turn inside the path in the �rst turn. The speed of the following

vehicle and the resulting look ahead distance may account for this phenomenon

To evaluate the e�ectiveness of the waypoint following method when RTK is unavailable,

the Prowler was steered with the waypoint following method using the lead vehicle's standard

GPS position as reported by the Novatel receiver. The results of the test are shown in
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Figure 4.18: RTK positions of the lead vehicle and following vehicle using the waypoint
following method with the standard GPS position of the lead vehicle

Figure 4.18. Clearly, the path of the following vehicle is o�set laterally from the path of the

lead vehicle as expected due to errors in the standard GPS position. For comparison, the

DRTK/TDCP following method and the waypoint following method were used to duplicate

the same path of the lead vehicle. This was done by recording the lead vehicle's standard

GPS position while using the DRTK/TDCP following method to follow the lead vehicle.

The waypoint following method was then used to reproduce the recorded path of the lead

vehicle. The DRTK/TDCP follower positions and the waypoint follower positions are plotted

along with the lead vehicle positions in Figure 4.19. The Prowler reproduces the path of the

lead vehicle using either following method. However, the waypoint following method using

standard GPS positions again produces a path with a lateral bias relative to the lead vehicle.

The lateral errors for each following method are shown in Figure 4.20. The lateral errors of

the DRTK/TDCP following method are most prominent in the turns as seen on the 20-30

second and 40-60 second intervals. At the 60 second mark the error in the DRTK/TDCP

method settles to centimeter level as the path straightens. The lateral error of the waypoint

following method is signi�cantly higher for the majority of the path with a maximum error

of nearly 3 meters. The waypoint method also exhibits an o�set of approximately 0.5 meters

during the straight portion of the path starting a the 50 second mark. Error statistics for
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Figure 4.19: RTK positions of the lead vehicle, the following vehicle using the DRTK/TDCP
following method, and the following vehicle using the waypoint following method with the
standard GPS position of the lead vehicle

Table 4.3: Lateral Error Comparison of DRTK/TDCP Following and Waypoint Following
DRTK/TDCP Waypoint (RTK) Waypoint (Standard)

Mean Lateral Error (m) 0.30 0.44 0.81
Error Variance (m2) 0.09 0.18 0.49

several test runs using both the DRTK/TDCP following method and the waypoint following

method are provided in Table 4.3. The results of waypoint following with RTK positions

and with standard GPS positions are shown. As expected the waypoint following method

is comparable to the DRTK/TDCP following method when RTK positions are available.

The mean lateral error nearly doubles when only standard GPS positions are available. It

is important to note that the reported error includes both the error due to the navigation

algorithm and error due to the vehicle controller. Also note that the speed of the following

vehicle was controlled manually and that the speed in�uences the selected leader position

used to calculate the desired heading. Variation in the speed of the vehicle between the

DRTK/TDCP run and the waypoint run a�ect the performance of each method, particularly

in the turns.
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Figure 4.20: Lateral error of the DRTK/TDCP and waypoint following method. Standard
GPS positions are used for waypoint following

4.4 Conclusions

In this chapter, autonomous vehicle navigation using GPS is examined. Two methods

are discussed: DRTK/TDCP following and waypoint following. The DRTK/TDCP follow-

ing method requires accurate estimates of the change in the position of the following vehicle

between GPS measurement epochs. Accordingly, an algorithm using time di�erence carrier

phase measurement is presented. The accuracy of the TDCP algorithm is evaluated based

single epoch estimation and accumulated position change estimation. The TDCP algorithm

provided signi�cantly improved performance over standard GPS position for single epoch

change in position estimation. As the TDCP estimates were accumulated to determine the

change in position over several measurement epochs the solution degrades. Allan variance

analysis indicated that the TDCP algorithm provided improvement over standard GPS po-

sitioning when accumulated for less than two to three minutes on average. Despite the

limitation of the accumulated TDCP position estimation method, it is an e�ective alterna-

tive to standard GPS positioning for the DRTK/TDCP following method since the number
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of required accumulations is a function of the distance to the virtual leader position which

can be selected by the user.

The DRTK/TDCP following method and the waypoint following method were compared

using an automated ATV. The ATV autonomous duplicated the path of a human driven lead

vehicle using both the DRTK/TDCP method and the waypoint method. When using a RTK

position solution for the lead vehicle, the waypoint following method provided comparable

performance to the DRTK/TDCP following method. The waypoint following performance

degraded signi�cantly when standard GPS leader positions were used. The DRTK/TDCP

following method reproduced the path of the lead vehicle with a mean lateral error of 30

centimeters.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, di�erential GPS methods are developed for use in autonomous vehicle

following applications. An autonomous vehicle requires robust, accurate positioning infor-

mation to e�ectively duplicate the path driven by a lead vehicle. In Chapter 2, carrier phase

based di�erential GPS algorithms were shown to produce relative position vectors between

two vehicles with centimeter level errors. Dual frequency and Single frequency algorithms

were described and compared based on accuracy and reliability. The accuracy of the dual

and single frequency algorithm were shown to be commensurate. However, the availability

of the �xed integer high precision solution varied between the algorithms as shown by the

time to �rst �x.

The DRTK algorithms described in Chapter 2 are expanded in Chapter 3 to incorporate

high rate inertial measurements. Blending of IMU measurements with GPS measurements

exploits the complimentary capabilities of the sensors. The GPS/INS navigation solution

combines the fast update, short term accuracy of the IMU with the driftless, global position-

ing from GPS. The tightly coupled architecture, characterized by the use of GPS pseudorange

measurements, was selected for study in this thesis. To combine GPS and IMU measure-

ments from two vehicles, two �lter alternatives are proposed - a federated Kalman �lter and

a centralized Kalman �lter. Each �lter was described in detail and the results of a compara-

tive analysis were presented. The �lters performed with comparable accuracy and reliability;

however due to the complexity of the centralized �lter approach the federated �lter was se-

lected. The dead reckoning performance of the federated DRTK/INS �lter was examined as

it pertains to the reacquisition of �xed integer carrier phase ambiguity estimates. Results
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were presented for the performance of the federated DRTK/INS �lter use both dual and

single frequency GPS measurements.

In Chapter 4, the use of time di�erenced carrier phase GPS measurements for change

in position estimation is described. The accuracy of the TDCP algorithm over long time

periods, up to 24 hours, is examined and compared to standard GPS positioning. Also, the

TDCP algorithm is combined with the DRTK algorithm to estimate the relative position

vector between the current position of the following vehicle and a previous position of the

lead vehicle. This relative position associating the follow vehicle and a virtual lead vehicle is

used in an autonomous following application. The DRTK/TDCP following method is tested

on an autonomous recreational vehicle. The results of tests are compared to the performance

of the same vehicle autonomously navigating a path of GPS waypoints.

5.2 Future Work

Future work in the leader/follower �eld may continue to focus on non line of sight

following. The autonomous following method described in Chapter 4 may be expanded

to include velocity control capabilities. Additional sensors, such as optical sensors, may

be incorporated to improve functionality. Light Detection and Ranging Sensors (Lidar)

and cameras may be used in obstacle avoidance, terrain characterization, or in cooperative

localization routines. Some initial strides have been made in characterizing the terrain and

mapping features along the path of the lead vehicle using Lidar information and those e�orts

are described brie�y in the following sections.

5.2.1 Leader Path Terrain Characterization

In an attempt to provide the following vehicle with additional information about the

path of the lead vehicle, the lead vehicle may be equipped with a three dimensional Lidar.

The Lidar provides the range and bearing to features in the �eld of vision by calculating the

time of �ght of an emitted pulse which is re�ected back to the sensor. With this information
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Figure 5.1: Three dimensional point cloud constructed using Lidar data from the lead vehicle
showing the variability of the terrain along the path

a three dimensional point cloud of the environment near the lead vehicle can be developed.

The coordinates of the cloud are in the frame of the current position of the lead vehicle.

Using the TDCP and DRTK algorithms described in this thesis, the point cloud can be

resolved into coordinates corresponding to the position of the following vehicle. The result

is a three dimensional map of the terrain near the lead vehicle expressed relative to the

following vehicles position. A visual representation of a three dimensional point developed

using this method is shown in Figure 5.1 along with a picture of the actual terrain. The

variability of the surface can be seen clearly in both the point cloud and the picture.

Using the three dimensional point cloud of the terrain near the lead vehicle, a quantities

representation of the roughness of the terrain can be calculated. The root mean square

elevation and the power spectral density are two methods used to characterize terrains. In

Figure 5.2, a plot of the root mean square elevation along the path of the lead vehicle is

shown. The data was collected along the path previously shown in Figure 5.1. Generally, the

higher root mean square elevation values correspond to rougher terrain. This information

may used in adaptive path planning algorithms to maneuver the following vehicle to �atter

terrain while maintaining its proximity to the lead vehicles path.
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Figure 5.2: The root mean square elevation along the path of the lead vehicle as it travel
through a rocky terrain

5.2.2 Leader Path Obstacle Detection

The three dimensional terrain map may also be useful in detecting potentially hazardous

obstacles along the path of the lead vehicle. In Figure 5.3, the lead vehicle is traveling in

close proximity to a series of concrete barriers. The barriers are clearly detected by the Lidar

on the lead vehicle and are present in the resulting point cloud. In this case, it would be

useful to isolate points of interest from the complete map corresponding to the borders of

the barriers. The wavelet transform can be used to identify points in the three dimensional

point cloud which deviation signi�cantly from the surrounding points. An example of the

points of interest identi�ed by the wavelet transform is shown in Figure 5.4. The wavelet

transform e�ectively selects points of interest corresponding to the location of the barriers

but also identi�es the edges of the search space. With re�nement, the wavelet transform

may prove to be a useful tool in an obstacle avoidance algorithm.
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Figure 5.3: Three dimensional point cloud of the lead vehicles path a series of barriers with
a picture of the actual terrain

Figure 5.4: Points of interest along the barriers as identi�ed by the wavelet transform
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5.2.3 Feature Tracking and Cooperative Localization

One �nal approach would be to use the additional sensor information to improve the per-

formance of the existing following method. It was shown in Chapter 4 that the accumulation

of TDCP estimates leads to growth in the positioning error. In a feature rich environment,

it may be possible to bound that error growth by matching features seen by the following

vehicle to features previously seen by the lead vehicle. The position of the feature may be

recorded as the lead vehicle passes using a combination of the DRTK algorithm and ranging

information from a Lidar. This known position may be used to determine the change in the

following vehicle's position as it navigates near the feature. This information may be used to

improve the TDCP estimates, particularly as the change in position is accumulated along the

path. It may also be possible to navigate in the absence of GPS using a cooperative mapping

and localization method similar to Simultaneous Localization and Mapping (SLAM).
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Appendix A

Fault Detection and Exclusion for GPS Error Mitigation

GPS measurements are a�ected by several error sources previously outline in Chapter

1 of this thesis. Typically these sources of error introduce a predictable variance in the

GPS pseudorange, pseudorange rate, and carrier phase measurements. Occasionally, these

errors signi�cantly exceed the expected value resulting in a degraded pose estimation. The

extraneous measurements are often the result of satellite failure, severe multipath, or receiver

failure. Navigation solution degradation due to satellite failure and severe multipath is

potentially avoidable given that the faulty measurements are successfully detected. Fault

detection and exclusion (FDE) algorithms identify outlining measurements and exclude the

outliers from the calculations used to update the state estimates.

In the Kalman �lter approach to GPS/INS navigation discussed in Chapter 3, errors in

the GPS measurements corrupt the navigation solution through the measurement innova-

tions. Accordingly, the innovations are often used as the test statistics in FDE algorithms.

Two fault detection methods incorporating the measurement innovations are innovation �l-

tering and innovation sequence monitoring [17]. Innovation �ltering is a snapshot method

used to detect immediate large deviations between the predicted measurement and the ac-

tual measurement. Innovation sequence monitoring is used to detect errors that are �rst

introduced as small variations but increase with time. Innovation sequence monitoring of-

fers a level of sensitivity that is not available with innovation �ltering but is cumbersome

to implement requiring multiple parallel �lters for proper fault exclusion. For that reason,

innovation �ltering was selected for implementation.
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A.1 Innovation Filtering

Innovation �ltering compares the measurement innovations to a prede�ned threshold in

order to identify extraneous measurements. The measurement innovations are the di�erence

between the current measurements and the predicted measurements calculated in the mea-

surement update of the Kalman �lter. Since the innovations are a function of the current

measurement and the propagated states, the magnitude of the individual innovations varies

greatly based on measurement noise and state uncertainty. Therefore, the innovations are

scaled before they are compared to the detection threshold. The denominator of the Kalman

gain equation is used to normalize the innovations since it represents the expected covariance

of the measurement innovations. The covariance, S, is the sum of the projection of the state

covariance into the measurement domain and the current measurement covariance as seen

in Equation (5.1).

Sk = HkP
−
k H

T
k +Rk (5.1)

The measurement innovations, δz, are scaled by the square root of the diagonal elements of

S resulting in the vector of test statistics, y.

yki =
δzki√
Skii

(5.2)

The index i is given by i = 1...m where m is the number of measurements. Each elements of

y is compared to the fault detection threshold which is chosen to meet a selected probability

of false alarm. If the threshold is exceeded, the corresponding rows of the measurement

vector and geometry matrix are removed.

A.2 Implementation

The federated DRTK/INS relative positioning algorithm described in Chapter 3 is ex-

panded to include fault detection and exclusion capabilities. The �lter architecture requires
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the computation of measurement innovations in the individual GPS/INS �lters and in the

master DRTK/INS �lter. Refer to Figure 3.5 for clari�cation if necessary. The FDE is incor-

porated in the GPS/INS �lters due to the inherent integrity monitoring already present in

the DRTK algorithm, in the form of the cycle slip detection. Additional consideration was

given to the fact that there is no feedback from the DRTK/INS �lter to the GPS/INS �lters.

It the FDE algorithm were incorporated only at the DRTK/INS level, faulty measurements

could be used in the measurement update of the GPS/INS �lters, corrupting the individual

GPS/INS navigation solutions. The FDE algorithm is not included at both the GPS/INS

level and the DRTK level to prevent redundancy.

Early, the measurement innovations of the GPS/INS tightly coupled �lter were de�ned in

Equation (3.14). These innovations are scaled as shown in Equations (5.1) and (5.2), and are

compared the a threshold value of 3. This threshold is selected to limit the probably of fault

alarm to 0.27 percent [17]. The FDE algorithm identi�es any extraneous GPS measurements

in the GPS/INS �lters. The erroneous measurements are removed from the GPS/INS update

equations and the corresponding PRN number is sent to the DRTK/INS �lter. During

the DRTK/INS update step, the measurements from the satellite corresponding that RPN

number are removed from consideration.

A.3 Experimentation and Results

Testing the FDE algorithm involved simulating a degradation in a GPS pseudorange

measurement. Data was collected on two vehicles as described in Section 3.4. One pseudor-

ange measurement from a satellite visible to both receivers was selected and that pseudorange

was corrupted with a simulated additive error. Two error models were used in testing: a

constant bias and a �rst order Gauss Markov random walk.

A range of constant bias values were tested in both single and dual frequency �lters to

evaluate the sensitivity of the FDE algorithm and to determine the e�ect of the error on the

navigation solution. The biases used in testing ranged from 10 meters to 30 meters and were
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added to sixty second sections of a much longer data run. The test was repeated twenty times

throughout the data run. A typical response of the GPS/INS �lter with and without the

FDE algorithm is shown in Figure 5.5. The east and north errors (with respect to the RTK

reference solution) of each �lter are shown for an added bias error of 25 meters. The error

was introduced at 100 seconds, with a duration of sixty seconds and was added to measured

pseudorange from 1 of 8 visible satellites. The error was detected by the FDE algorithm

at each GPS measurement epoch. Clearly, the error induced a signi�cant deviation in both

the east and north position estimates in the �lter not equipped with FDE. After the error is

removed, at the 160 second mark, the GPS/INS solution returns to the original error levels.

The mean results of the twenty test segments are shown in Table 5.1. The mean percent-

age of correct detections for the L1 only algorithm and the L1/L2 algorithm are presented

along with the mean low precision baseline root mean square error from the DRTK master

�lter. The high precision baseline errors is not included due to the consistency of the results;

the high precision error was sub-centimeter for all cases shown. The FDE algorithm detected

no errors with magnitudes less than the minimum value in the table and detected all errors

with magnitudes greater than the maximum error in the table. The results show that with

either L1 frequency or L1 and L2 frequency measurements the FDE algorithm detected 100

percent of the distorted measurements when the additive error exceeded 18.5 meters. The

FDE algorithm exhibited sightly higher sensitivity with dual frequency measurements as 100

percent of the distorted measurements were detected down to 16.5 meters. The DRTK low

precision baseline error increases for both the L1 and L1/L2 algorithm as the bias value in-

crease until a signi�cant majority of the faulty measurements are detected. With 100 percent

detection the algorithms returns to error level consistent with the results shown in Chapter

3. Recall, the DRTK/INS L1/L2 algorithm had a low precision root mean square error of

13.6 centimeters and the DRTK/INS L1 algorithm had a low precision root mean square

error of 22.8 centimeters.

102



Figure 5.5: GPS/INS �ltered solution with one corrupted GPS pseudorange measurement
with and without FDE algorithm

Table 5.1: Results of FDE algorithm for a GPS pseudorange measurement corrupted with
constant bias error

Bias (m) L1 Mean
Detection (%)

L1 LP
Baseline

RMSE (cm)

L1/L2 Mean
Detection (%)

L1/L2 LP
Baseline

RMSE(cm)

14.0 0 66.5 0 51.5
14.5 0 68.7 7.5 53.7
15.0 0 70.9 18.2 55.8
15.5 0 73.2 24.2 57.9
16.0 0 75.4 75.3 59.9
16.5 2.6 77.6 100.0 6.5
17.0 17.6 79.9 100.0 6.5
17.5 31.8 79.2 100.0 6.5
18.0 94.3 17.3 100.0 6.5
18.5 100.0 17.3 100.0 6.5
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In order to give some context to this analysis, consider the expected pseudorange mea-

surement error due to normally experienced error sources such as ephemeris errors, satellite

clock errors, ionosphere delays, troposphere delay, multipath, and thermal noise. According

to [28], the cumulative e�ect of these errors is an expected one sigma range error of approx-

imately 5.3 meters. The simulated errors of 10 and 30 meters therefore represent 2σ and

6σ errors, respectively. Assuming that the errors follow a Gaussian distributed, an error

of 10 meters will occur approximately once in 22 measurements during normal operation.

An error of 30 meters can be expected only once in over 500 million measurements. Recall

that the FDE algorithm detected errors in the 16 to 18 meter range e�ectively which would

correspond to approximately a 3σ error. A 3σ error can be expected to occur once in 370

measurements. Accordingly, a measurement error exceeding the detection capabilities of

the FDE algorithm would not be expected to happen often during normal operation. How-

ever, in some environments, such as heavy foliage or urban canyons, errors due to multipath

can induce signi�cant errors. The e�ective use of FDE to detect errors in heavy foliage

environments was shown in [6].

The second test of the FDE algorithm involved time varying errors. The additive error

was simulated as a �rst order Gauss Markov random walk de�ned by Equation (5.3).

vk+1 = e−
1
τ
dtvk + εk (5.3)

The dynamics of the error were dictated by the time constant, τ , and the variance σ2
ε .

Note that ε is a zero mean white Gaussian random variable with variance σ2
ε . Several

combination of time constants and variances were tested with values of τ ranging from 30 to

110 seconds and values of σ2
ε ranging from 0.25 to 25 meters. The values are selected based on

a study examining carrier phase ambiguity resolution in the presents of time correlated noise

performed at the University of Calgary [27]. The variance values of this study extend beyond

those of the Calgary study to determine the detection capabilities of the FDE algorithm.
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Figure 5.6: Example of the simulated �rst order Gauss Markov random walk errors used to
test the FDE algorithm

Four typical random walk errors are shown in Figure 5.6. It is clear that the variance of ε

signi�cantly impacts the magnitude of the error, particularly for the 60 second simulation

time use in this test. As would be expected from the innovation �ltering method, which

is a snapshot method, the magnitude of the error was the driving factor in the probability

of detection. The random walk errors with low variance values do not reach magnitudes

high enough to be detected by the FDE algorithm. As seen in Figure 5.6, the random walk

errors with a variance of 5 meters can reach magnitudes well in excess of the sensitivity level

established by the bias testing. However, the transient property of the random walk means

that the magnitude of the error will not always exceed the expected detection abilities of

the FDE algorithm. This is apparent in the data in Table 5.2. The table summarizes the

results of 100 Monte Carlo simulations. Less than �fty percent of the time varying errors

were successfully detected regardless of the variance of the stochastic term. The algorithm

did not show signi�cant sensitivity to changes in the time constant.
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Table 5.2: Results of FDE algorithm for 100 Monte Carlo simulations of a GPS pseudorange
measurement corrupted with random walk error
τ(s) σ2

ε (m
2) L1 Mean Correct Detection (%) L1/L2 Mean Correct Detection (%)

30 0.25 0 0
70 0.25 0 0
110 0.25 0 0
30 4.0 6.4 10.4
70 4.0 8.3 10.2
110 4.0 9.5 10.5
30 25.0 41.7 44.1
70 25.0 45.9 46.1
110 25.0 44.1 45.8

A.4 Conclusions

The DRTK/INS federated Kalman �lter described in Chapter 3 is expanded to in-

clude fault detection and exclusion capabilities. The FDE algorithm is incorporated in the

GPS/INS �lters that feed the DRTK master �lter. To test the algorithm, simulated errors

were added to real GPS pseudorange measurements and the data was processed with the

DRTK/INS FDE algorithm. Constant errors and time varying errors were simulated in sep-

arate tests and performance measures of the algorithm were presented. The FDE algorithm

detected all constant bias errors with magnitudes greater than 18 meters. Detection of time

varying errors was also heavily dependent on the magnitude of the error. Slowly drifting,

low magnitude errors were not detected by the algorithm.
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