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Abstract
The laboratory experiments described in this dissertation establish that strongly localized DC
electric fields perpendicular to the ambient magnetic field can behave as a radiation source for
electromagnetic ion cyclotron waves, transporting energy away from the region of wave generation.
This investigation is motivated by numerous space observations of electromagnetic ion cy-
clotron waves. Ion cyclotron waves are important to space weather dynamics due to their ability to
accelerate ions transverse to the background magnetic field, leading to ion outflows in the auroral
regions. Many different theoretical mechanisms have been presented to account for these waves.
Sheared flows produced by localized electric fields coupled with a perpendicular magnetic field
are a potentially important energy source that can create waves of this type.
In situ observations of sheared plasma flows collocated with electromagnetic wave activity
have led to this laboratory effort to investigate the impact of electromagnetic, velocity shear-driven
instabilities on the near-Earth space plasma dynamics. Under scaled ionospheric conditions in the
Space Physics Simulation Chamber at the Naval Research Laboratory (NRL), the transition from
electrostatic to electromagnetic ion cyclotron (EMIC) wave propagation has been investigated.
Previous experiments at West Virginia University, NRL, and Auburn University demonstrated
that transverse sheared plasma flows can independently drive electrostatic ion cyclotron waves. It
was also observed that these waves were capable of heating the ions in the direction transverse to
the magnetic field. The general wave characteristics and wave dispersion experimentally observed
are in agreement with the current theoretical models. The electrostatic waves generated in the
experiments described in this dissertation were consistent with the previous electrostatic experi-
ments described above. In addition, the electromagnetic component of these waves increase by
two orders of magnitude as the plasma  was increased.
ii
The EMIC waves exhibited an electric field threshold of 60.5 V/m and their frequency in-
creased as the applied electric field increased. The observed EMIC waves are predominantly az-
imuthally propagating m = 1 cylindrical waves, which propagate in the direction of the E B
drift. A velocity shear modified dispersion relation was derived from the Pe~nano and Ganguli
model for electromagnetic waves in the presence of sheared flows, and the dispersion relation is
compared with experimental observations.
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Chapter 1
Introduction
Strongly localized plasma flows are capable of driving a variety of instabilities in a wide
range of plasma environments from space to fusion plasmas. Sheared plasma flows transverse
to the background magnetic field have been predicted to drive Alfv en waves for a large range of
frequencies below the ion cyclotron frequency. Of particular interest are Alfv en waves near the
ion cyclotron frequency due to their ability to heat ions and affect bulk plasma transport. We
present the results from a directed laboratory investigation confirming the spontaneous generation
of electromagnetic ion cyclotron waves due to these transverse sheared flows.
In the following sections of the introduction, we will discuss the motivation for this work by
examining some of the unresolved questions posed by observations in space and how the presence
of localized, small-scale electric field structures can play an important role in resolving these out-
standing issues. Space observations suffer from a variety of complications that can make it very
difficult to definitively test the theoretical solutions posed. There is often an ambiguity in deter-
mining whether an observation is a result of a temporal or spatial process, and there is a lack of
a reproducible environment where parameters can be isolated and tested individually. Laboratory
experiments can play a key role in verifying theoretical models and assisting in the interpretation
of in situ data, since experiments can be conducted in a controlled, reproducible fashion to isolate
the process under investigation and are designed to be diagnosed thoroughly. In the last section we
present a review of the laboratory experiments that paved the way for the current investigation.
1.1 Motivation
Since the initial observation of ionospheric ion outflows [92], a number of different sources
of magnetospheric plasma have been identified. These ionospheric sources include the polar wind
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[11], cleft ion fountain [63], polar cap outflows [93], and ion fluxes in the auroral zone [92] and
can account for a significant fraction of the magnetospheric plasma. The H+ and He+ ions that
comprise the polar wind, which was theoretically predicted by Banks and Holzer [12] and later
confirmed by observations [75], is a dominant source of particle flux.
O+ ions, originating from low-altitude, cold, gravitationally bound ionospheric distributions,
were observed to be accelerated to energies sufficient to overcome gravity and outflow to the mag-
netosphere. Ion drift measurements in the cleft ion fountain and the presence of O+ ions in the
plasma sheet and ring current have led to the conclusion that these ion outflows are the dominant
source of mass in the magnetosphere [23]. These energetic ion flows: ion beams, ion conics, and
upwelling ions, are identified by their energy, angular distribution in velocity space, and spatial
location [110]. The origin of the ion fluxes in the auroral zone and the cleft ion fountain, however,
is not well understood.
A majority of the ionospheric ion outflow is directly associated with the auroral zone and is
caused by perpendicular energization of all major ion species. This extra perpendicular energy can
be converted to parallel energy via the mirror force. The accelerated ions travel up the field lines of
the divergent terrestrial magnetic field and form conic-shaped distributions in velocity space [8].
Transversely accelerated ions (TAI) have been observed by several sounding rockets: SCIFER [54]
and AMICIST [16], and by numerous satellites: Hilat [101], Freja [7], FAST [20], and CLUSTER
[103] at altitudes from 400 km to greater than 4000 km and with energies ranging from 1 eV to 1
keV. TAI are an important part of the coupling between the ionosphere and the magnetosphere. The
physical mechanism for the acceleration is the interaction between the ions and electric fields at
some frequency. While more than one mechanism may be responsible for the energization, several
observations indicate that there is a strong correlation between TAI and broadband low-frequency
waves [23, 78]. A statistical study of observations by Freja indicated that TAI are most often
associated with observations of boardband extremely low-frequency (BBELF) fluctuations in the
auroral zone up to 1700 km [54]. Another statistical study of observation by FAST indicated that
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99% of TAI are associated with BBELF fluctuations, at 84%, and electromagnetic ion cyclotron
(EMIC) waves, at 15%, up to 4200 km [68].
A variety of homogeneous plasma instabilities have been suggested as the source for these
broadband waves. Field-aligned current is often associated with TAI, which led to the suggestion
of a current-driven electrostatic ion cyclotron (CDEIC) instability as a viable option [53]. It was
subsequently shown that the observed field aligned currents are rarely above threshold for the
instability [54]. Alfv en waves are also frequently observed with the broadband waves [105]. It has
been suggested that these broadband fluctuations are Doppler-shifted inertial Alfv en waves [96]. It
was later shown that this interpretation was only partially correct and that the observed fluctuations
were non-propagating in the reference frame of the plasma [57].
The idea of the near-Earth plasma environment as being a largely homogeneous medium has
been replaced due to observations of a variety of inhomogeneities at the smallest detectable scale
lengths. Some examples of these observations are auroral arcs with thicknesses of 100 m [70, 18]
and gradients in precipitating electron flux with scale lengths down to 10 m [15], localized electric
fields of large magnitude in the polar magnetosphere [73, 74], and sheared plasma flows observed
using radar backscatter techniques [86, 99]. Several theories for these broadband fluctuations have
been proposed that utilize plasma inhomogeneity as the source of free energy. There are the shear
assisted current driven electrostatic ion acoustic instability and the shear assisted current driven
electrostatic ion cyclotron instability, where the current threshold can be substantially lowered due
to the presence of parallel velocity shear [41]. The electrostatic inhomogeneous energy density
driven (IEDD) instability [35], electromagnetic ion cyclotron modes [83], and electromagnetic
modes in the subcyclotron regime [82] can all be driven by transverse velocity shear. The single
tearing (ST) mode [90], double tearing (DT) mode, and current-advective shear-driven interchange
(CASDI) mode [91] are magnetohydrodynamic modes driven by the transverse gradient in the
field-aligned current. All of these modes are supported by space observations as viable theories
for BBELF and the source of TAI, but there is no conclusive evidence for selecting one above the
others.
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Previous work at West Virginia University [61, 4] and the Naval Research Laboratory (NRL)
[5] has experimentally verified the existence of the electrostatic IEDD instability, however, the
absence of laboratory experiments exploring the characteristics of the other proposed shear-driven
modes indicates a key dearth in our understanding of the physical processes of the space environ-
ment due to plasma inhomogeneities.
1.2 Space Observations
1.2.1 Ion Flows
The first ion outflow measurements were observations of a flux of precipitating keV O+ ions
in the auroral zone [92] and were later confirmed by observations of upflowing ions (UFI) above
5000 km by the S3-3 satellite. Two types of UFI were observed: ion beams, which are ion flows
mostly parallel to the magnetic field, and ion conics, which are ion flows at an angle to the mag-
netic field [94]. There are in general two broad categories of ion outflows: bulk ion flows and
energized ion flows. Bulk ion flows typically have energies of a few eV and have bulk flow ve-
locities. An example of a bulk ion flow is the polar wind, which has thermal O+ upflow in the
topside auroral zone. Energized ion flows are characterized by much higher energies in the range
from 10 eV to greater than 1 keV. In contrast to bulk ion flows, only a small fraction of the ions
are energized. Examples of energized ion flows are upwelling ions, ion beams, and ion conics,
including transversely accelerated ions.
The polar wind is the outflow of thermal ions near open magnetic field lines in the polar
ionosphere resulting mainly from the ambipolar acceleration of ambient ions. The polar wind
consisting of H+ and He+ ions was confirmed by thermal ion measurements on ISIS-2 [46], and
Akebono observed the existence of O+ polar wind [1]. It occurs essentially at all times and at
all latitudes poleward of the plasmasphere and is characterized by energy less than a few eV and
temperature of a fraction of an eV. The polar wind can be supersonic above 1500-2000 km and has
a larger velocity on the dayside than on the nightside [110].
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The auroral bulk upflow was first identified by the Alouette I sounding rocket [64]. It is a bulk
ion upflow of thermal O+ in the topside auroral ionosphere at altitudes from 400 km to 1500 km
and is not caused by an auroral potential drop. The main heating mechanism is frictional heating
and increased temperature at low altitudes results in an increased parallel pressure gradient, while
new plasma is horizontally convected into the heating region [8]. In contrast to the polar wind the
bulk of the ions in the flow do not reach escape velocity [66, 104], but do have enough energy
to reach regions of higher ion energization at higher altitudes and consequently are an important
source for other auroral energization mechanisms [34].
Energetic auroral ions are divided into two main types, ion beams and ion conics, which are
distinguished by the angle of the flow relative to the magnetic field. Ion beams are upflowing ions
that have a peak flux along the upward magnetic field direction. They are generally observed at
altitudes above 5000 km with energies from 10 eV to a few keV. Ion conics have a peak flux at an
angle with respect to the upward magnetic field direction. They are generally observed at altitudes
from 1000 km [58, 109], out to several Earth radii [47, 22]. TAI have peak angles at or close to
90 degrees with respect to the magnetic field. They are typically located 400 km [109, 10], out to
several Earth radii in the auroral zone [47, 9]. All major ion species are accelerated perpendicular
to the ambient magnetic field to energies from a few eV to 1 keV. The ions are accelerated gradually
over an extended altitude region appearing as ion conics of increasing energy and slowly decreasing
cone angle [110]. This ion heating has been well correlated with observations of BBELF up to an
altitude of at least 1700 km within the auroral ionosphere [7].
Upwelling ions have been observed at altitudes of 2000-5000 km and on the dayside are
typically less energetic but have higher fluxes than transversely accelerated ions on the nightside.
They have characteristic temperatures of a few eV and a parallel energy component, resulting in
upward ion fluxes exceeding 1012 m 2s 1, where all observed ion species were heated [65].
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1.2.2 Broadband Extra Low Frequency Fluctuations
Broadband extra low frequency (BBELF) fluctuations are a phenomenon frequently found in
the topside auroral F region and at higher altitudes. The observed wave activity is several mV/m or
larger fluctuating electric field with a power law spectrum extending from well below the local O+
ion cyclotron frequency to well above the H+ cyclotron frequency in the observer reference frame,
essentially from a few Hz to a few kHz. No structure is observed at the cyclotron frequencies in
the electric field power spectrum [54]. At frequencies below the O+ cyclotron frequency, mag-
netic fluctuations are observed along with the electric fluctuations, and the magnetic fluctuations
typically decrease faster with frequency than the electric field fluctuations [7, 44]. Measurements
of the wavelength of BBELF fluctuations at higher frequencies using interferometric coherency
have led to the conclusion that it is characterized by short wavelengths, in some cases on the or-
der of the O+ gyroradius [16, 55]. Rocket observations of BBELF fluctuations suggest that it is
most commonly found just poleward of the region 1 currents. On the nightside this corresponds to
the ?Alfv enic? aurora or return current region [69]. On the prenoon dayside it corresponds to the
region poleward of the convection reversal.
The importance of BBELF fluctuations is that they are the leading candidate responsible for
transversely accelerated ions in the auroral ionosphere [7, 78, 59]. Figure 1.1 shows a segment of
SCIFER sounding rocket data illustrating the correlation between transversely accelerated ions in
the top panel and BBELF fluctuations in the middle panel, taken from Kintner et. al [54]. The
fact that in some cases BBELF fluctuations are electromagnetic [102, 105], and in other cases are
electrostatic [17] suggests that there may be more than one physical description for the observed
broadband fluctuations [57].
Direct in situ observations of strongly sheared transverse plasma flows have frequently been
associated with broadband low-frequency oscillations. For example, Kelley and Carlson [49] re-
ported detection of intense velocity shear in association with large- and small-scale electrostatic
waves near the edge of an auroral arc. The largest-amplitude waves were collocated with the
strongest velocity shear (scale length 100 m). The long-wavelength waves were explained by the
6
Figure 1.1: Segment of data from SCIFER sounding rocket illustrating the correlation between
transversely heated ions (top panel) and BBELF fluctuations (middle panel). The lower panel
shows higher frequency spectrum with Langmuir waves present. Reproduced from Kintner et al.
[54].
7
Kelvin-Helmholtz instability, but a mechanism capable of explaining the observed small-scale ir-
regularities was lacking. Kelly and Carlson [49] state that ?A velocity shear mechanism operating
at wavelengths short in comparison with the shear scale length, such as those observed here, would
be of significant geophysical importance.? Earle et al. [31] also describe sounding rocket obser-
vations of broadband, low-frequency (10 Hz < f < 1000 Hz) electrostatic waves well correlated
with highly transverse flows and magnetic field aligned current (FAC). While some of the spectra
showed agreement with the spectrum that would be anticipated for CDEIC waves [53, 28, 30],
other spectra implied a more important role for velocity shear.
A number of researchers have considered sheared plasma flow to be an important element in
driving low-frequency broadband waves which can provide the necessary transverse ion heating.
Clear indication of broadband fluctuations associated with large velocity shears, FAC (generally
below the anticipated thresholds for current-driven instabilities), and upward flowing conic-shaped
ion energy distributions in the auroral F region was found using DE 2 satellite observations [13].
The authors point out the consistency of their results with numerical simulations of small-scale
turbulence generated by secondary instabilities growing on low-frequency primary waves [52]
and discuss possible direct velocity shear influence on the growth of current-driven ion-cyclotron
waves. Further evidence of the relationship between velocity shear and ion energization was pro-
vided by observations of thermal ion upwellings using HILAT satellite data from the dayside polar
ionosphere [101]. It was found that shear in the transverse plasma velocity is common to most
thermal ion upwelling observations. Tsunoda et al. [101] suggested that velocity shear provides
a substantial portion of the free energy necessary for the initial heating and subsequent transport
of ionospheric plasma up to magnetospheric altitudes. Indeed, upflowing oxygen ions contained
within regions of sheared transverse plasma flow have been observed by the DE 2 satellite [67]. In
addition, Kivanc and Heelis [56] have investigated the statistical relationship between horizontal
velocity shears and vertical ion drifts in the high-latitude ionosphere using DE 2 data. Their results
indicate that the vertical ion drift depends on the transverse shear when the bulk horizontal plasma
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drift is less than 1 km/s. For bulk horizontal flows exceeding 1 km/s, however, the data are more
consistent with a scenario of Joule heating initiating the ion outflow.
1.3 Laboratory Experiments
Unambiguous in situ detection of small-scale, quasi-static structures is difficult, principally
because temporal observations are made while the spacecraft is moving through the medium being
diagnosed. Often, the question as to whether the observed structures are spatial or temporal arises.
Consequently, application of theoretical models to the observations can become difficult. Labora-
tory experiments can provide crucial guidance in bridging the gap between theoretical models and
the interpretation of in situ observations, especially when they are performed under carefully scaled
conditions. With the distinct advantage of thorough diagnosis under controlled, reproducible con-
ditions, laboratory experiments can be a very useful tool for uncovering important observational
signatures, as well as helping to validate and refine theoretical models. This synergistic approach
can lead to greater confidence in the interpretation of spacecraft data.
The effects of sheared flows on space plasmas, both parallel and transverse to a background
magnetic field, have motivated a variety of laboratory experiments. Transverse shear in field
aligned ion flow was first considered by D?Angelo using a fluid theory [26]. It was shown that
an instability is triggered when the gradient in the drift exceeds a critical value for plasmas with
Te = Ti. The parallel velocity shear mechanism can be relevant to space plasmas with strong
inhomogeneities in field-aligned flows like auroral arcs[18] and the polar cusps [27, 85]. In the
laboratory these effects were studied by D?Angelo and von Goeler [29] in a double-ended Q ma-
chine. The experiments showed that sufficiently large shear could drive azimuthally propagating
waves with frequencies near the ion cyclotron frequency. Willig et al. [108] reproduced many
features of this ?D?Angelo mode? and conclusively showed that the instability was driven by shear
in the flow not the flow itself.
Similar to the transverse shear work of D?Angelo and von Goeler [29], Kent et al. [51]
observed a wave localized to the region containing shear in the rotational velocity of the plasma
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that agreed well with Kelvin-Helmholtz (KH) theory. Jassby [48] conducted a detailed analysis of
the KH instability, comparing theoretical results with measurements from a Q machine experiment
in which the level of transverse shear could be controlled by an externally applied electric field. In
a shear layer several ion gyroradii wide, Jassby observed azimuthally propagating, low-frequency
KH waves and waves with frequency slightly higher than the ion cyclotron frequency with growth
rates and amplitude smaller than the KH waves.
The generation of ion-cyclotron waves by strong potential structures was investigated in a
double-ended Q machine by Nakamura et al. [89] and Sato et al. [87]. Two plasmas of dif-
ferent diameters and potentials were merged, creating a strong, three-dimensional double layer.
Azimuthally propagating electrostatic waves with frequency above the ion cyclotron frequency
were observed. Alport et al. [2] investigated strong, three-dimensional magnetized double layers
in a weakly ionized argon discharge with a diverging magnetic field. Large-amplitude, narrow-
band electrostatic waves with frequency corresponding to the ion cyclotron frequency and several
harmonics were observed at the position of the parallel double layer. The waves were primarily
radially propagating transverse to the axial magnetic field.
Velocity shear effects are believed to be important in space plasmas, particularly because
small-scale transverse electric field structures are frequently being observed by high-resolution in
situ diagnostics. The transverse, localized electric fields are often found in conjunction with field
aligned current [57]. Ganguli et al. [35, 36, 37, 34] and Ganguli [33] have theoretically investigated
the generalized plasma equilibrium which includes effects of velocity shear generated by localized
transverse electric fields, density gradients, and field-aligned currents. This study has identified
a new branch of plasma oscillation called the inhomogeneous energy-density-driven instability,
which is sustained by shear-induced inhomogeneity in the wave energy density. Application of
this model to space plasmas has been made by Gavrishchaka et al. [39, 43]. Depending on the
local conditions, the oscillations can be in the ion cyclotron frequency range, causing the waves to
be mistaken for the CDEIC instability especially when FAC is present. In contrast to the CDEIC
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instability, the IEDD waves are predicted to have a broadband, spiky spectral signature and to
propagate predominantly in the E B direction [37, 42, 77].
Laboratory investigation of the effects due to the combination of FAC and localized transverse
electric fields were first performed at West Virginia University in a Q machine plasma. The rel-
ative contributions of these free-energy sources could be externally controlled using a segmented
electrode consisting of an inner disk and an outer annulus [21]. The transverse dc electric fields
were used to vary the magnitude of the E B drift, which generated a radial shear in the azimuthal
flow due to the electric field localization. Using this setup, Koepke et al. [61] and Amatucci [3],
demonstrated that the character of electrostatic ion-cyclotron waves can change significantly when
the effects of transverse shear are included. When weak electric fields were applied and sufficiently
large parallel electron drift were applied, CDEIC waves were observed. As the velocity shear was
increased, a distinct transition in the mode characteristics occurred. The wave amplitude became
large, the spectrum became much broader, and the waves became spatially localized within the
velocity-shear region and a transition to azimuthal propagation was observed. Most significantly,
the experiments demonstrated that the threshold values of the FAC con be substantially reduced
in the presence of velocity shear [3], in good agreement with theoretical predictions. By compar-
ison with theoretical predictions, it was determined that these waves resulted from the resonant
response of the IEDD instability [61, 4, 3, 60, 100].
In the case of strong shear, ion cyclotron waves can grow from a reactive response of the
plasma to shear-induced inhomogeneity in wave energy density without the presence of field-
aligned currents [35, 37]. This regime was investigated and verified by Amatucci et al. [5] in the
Naval Research Laboratory?s Space Physics Simulation Chamber (NRL SPSC). There was good
agreement between the experimentally measured values of mode amplitude and the theoretically
predicted IEDD instability growth rate. The wave propagation is primarily in the azimuthal di-
rection, but the axial wave number increased with an increase in the electric field, implying that
the waves become more oblique. These observational signatures of wave generation by transverse
velocity shear have been invoked in conjunction with ground-based photometer measurements of
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rapid variations in the frequency of flickering aurora [71]. These results may also have relevance
to the observations of BBELF by the SCIFER sounding rocket data where these waves were found
in association with localized electric fields.
Measurements of perpendicular ion energization resulting from the shear-driven waves in
collisionless conditions were made in the NRL SPSC [106, 6]. The ion temperature was observed
to increase by a factor of two to four following the onset of the shear-driven waves. No increase
in ion energy was detected in the presence of strong, but sub-threshold, transverse electric fields,
establishing the waves as the source of ion heating. The IEDD instability maintains a large growth
rate over a wide range of temperature ratios [35, 40]; it represents a more efficient source of ion
heating than the CDEIC instability, which is self-limiting as Ti increases with respect to Te [80].
In a set of papers [81, 82, 83], Pe~nano and Ganguli, derive a system of eigenvalue equations
describing electromagnetic waves in a collisionless, magnetized plasma in the presence of a local-
ized transverse inhomogeneous dc electric field. They numerically solve the resulting dispersion
relation for typical conditions in the F region of the ionosphere in two regimes: very low fre-
quencies and for frequencies near the ion cyclotron frequency. In the subcyclotron regime [82],
the results were compared to those obtained from numerically solving the dispersion relation de-
scribing the electrostatic KH mode. Growth rates were compared as a function of the real part
of the frequency normalized to the Alfv en frequency !A = kzvA. The solution from the electro-
magnetic treatment could be accurately described by the electrostatic treatment for<(!) >>!A.
Both modes have a critical frequency below which they are stable, but the critical frequency from
the electromagnetic treatment is lower, which indicates that there is a frequency range where the
mode is purely electromagnetic. This suggests that this wave mode could have similar frequency
spectrum to BBELF, the very low frequency electromagnetic components yielding to higher purely
electrostatic fluctuations. In the ion cyclotron regime [83], it was shown that localized inhomoge-
neous transverse shear can drive instabilities near the ion cyclotron frequency. These waves have
characteristics similar to observations of EMIC waves near the edges of auroral arcs.
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Chapter 2
Theory
In a series of papers Ganguli et al. [35, 36, 38] investigated the effects of inhomogeneous
transverse flows on the stability of a magnetized plasma. A kinetic, electrostatic dispersion re-
lation describing ion cyclotron modes was first studied with the addition of an inhomogeneous
transverse electric field. A top hat electric field, a uniform electric field in a central region and
zero outside of that region, was employed to aid in understanding. Using negative energy wave
considerations, it was shown that these sheared transverse flows can lead to an instability with the
Doppler-shifted frequency resonant with the ion cyclotron frequency. In subsequent papers, the
theory was extended to arbitrary flow profiles[36], cylindrical geometry[84], and electromagnetic
instabilities[81, 82, 83].
We can gain a general understanding for this type of instability by comparing it to the two-
stream instability where the negative energy wave concept is often used to explain it. Consider
a plasma with no magnetic field where the ions are stationary and the electrons are drifting at a
velocity v0. The characteristic frequency for the electron and ion fluids are the electron and ion
plasma frequency, respectively. If the electron plasma frequency can be Doppler-shifted near the
ion plasma frequency, then an instability can grow.
The negative energy wave formalism can be described in physical terms as follows. If the
time averaged energy density with the wave present is less than the time averaged energy density
without the wave, then the wave is said to have negative energy, because it lowers the total energy
of the system. In the system just described, the electron fluctuations can be shown to have negative
energy, while the ion fluctuations have positive energy [24]. At any point in space, these two waves
can grow at the expense of each other, which is an example of a local instability.
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If we consider a uniform plasma with the magnetic field in the ^z-direction and a uniform
electric field in the ^x-direction, the plasma will undergo a bulk plasma drift given by the E B
drift vE. Since both species drift at the same velocity, we an transform to a frame moving at vE,
where it is clear that there is no free energy to drive an instability. For this reason, a non-uniform
electric field is required for this instability.
In the presence of a non-uniform electric field, it is possible to have a region with negative
energy and a region with positive energy. A wave packet can couple these two regions, allowing
for the flow of energy from the negative energy region to the positive energy region leading to
wave growth, which is an example of a non-local instability. The coupling of these two regions
with differing energy densities resulted in it being called the inhomogeneous energy density driven
instability.
In the first few sections of the chapter, we will seek a general understanding of the underlying
physics of this instability. We will first examine the concept of negative energy waves following
the derivation in Stix [97], and their use in determining plasma instability. Next, we will study the
effects of applying a top hat electric field to the simplest system that supports ion cyclotron modes.
With an understanding of this system, we will proceed to the electromagnetic theory.
2.1 Negative Energy Waves
We start from Poynting?s Theorem in the standard differential form:
r 
 1
 0E B
 
= 
 1
 0B 
@B
@t + E 
 
J + 0@E@t
  
: (2.1)
Using Ohm?s Law J =   E and noting that the conductivity tensor  has no explicit time
dependence, we can write the following,
r 
 1
 0E B
 
= 
 1
 0B 
@B
@t + E 
@
@t (f + I 0g E)
 
: (2.2)
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Taking the expression in braces in the above equation to be the dielectric tensor  , we can write:
r 
 1
 0E B
 
= 
 1
 0B 
@B
@t + E 
@D
@t
 
; (2.3)
where we have used that D =   E for the electric displacement. The left-hand side of Equation
(2.3) represents the flux of electromagnetic energy and the right-hand side represents the rate of
change of the energy density.
If we now look for plane wave solutions such that E, B, and D vary as the real part of
A1 expi(k x !t), we can rewrite Poynting?s Theorem in terms of time averaged harmonic
fields. Absorbing the spatial fluctuations into the complex amplitude and allowing the frequency
! to be complex, we can write the real part of the harmonic fields as
< A1e i!t = 12  A1e i!t + A 1e i! t : (2.4)
Using these definitions, we start with the left-hand side of Equation (2.3):
1
 0r (E B) =
1
4 0r 
 (E
1 B1)e i2!t + (E1 B 1)e i(! !
 )t
+ (E 1 B1)e i(! ! )t + (E 1 B 1)ei2! t :
(2.5)
Setting ! = !r + i!i explicitly and time averaging Equation (2.5) over one period, any oscilla-
tory terms will time average to zero. The remaining growth terms will yield a phase factor after
averaging, resulting in:
r hSi= 14 
0
r [(E1 B 1) + (E 1 B1)]e2 i: (2.6)
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Take the first term on the right-hand side of Equation (2.3) and apply the same procedure as above:
 1 
0
 
B @B@t
 
= 1 
0
 1
2
 B
1e i!t + B 1ei!
 t  @
@t
1
2
 B
1e i!t + B 1ei!
 t 
 
= 14 
0
  B
1e i!t + B 1ei!
 t   ( i!)B
1e i!t + (i! )B 1ei!
 t  
= 14 
0
[(i!r +!i)B1 B 1 + ( i!r +!i)B 1 B1]e2 i
= !i2 
0
jB1j2e2 i: (2.7)
The second term on the right-hand side of Equation (2.3) is a bit more complicated and will be
carefully taken in parts. The electric displacement itself is assumed to be a plane wave oscillation,
and the real part can be written as before as:
<(D) = 12    E1e i!t + (  E1) ei! t : (2.8)
The whole second term, using a similar procedure as above, can be written as:
 
 
E @D@t
 
= 
 1
2
 E
1e i!t + E 1ei!
 t  1
2
  i!  E
1e i!t +i!    E 1ei!
 t 
 
= 14 [i! E1    E 1 i!E 0   E1]e2 i: (2.9)
In order to finish evaluating this term, we need to explore some tensor properties. Any tensor can
be written as the sum of a hermitian tensor and an anti-hermitian tensor. If the adjoint or complex
conjugate transpose of a tensor returns the same tensor, Hy = H, then it is hermitian. If the adjoint
of a tensor returns the negative of the original tensor, Ay =  A, then it is anti-hermitian. We
express a tensor T in terms of its hermitian and anti-hermitian parts:
T = H + A; (2.10)
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where the hermitian and antihermitian parts are defined as follows:
H = 12  T + Ty (2.11a)
A = 12  T Ty : (2.11b)
If we take the adjoint of the expressions in Equation (2.11), we can verify that the hermitian and
anti-hermitian definitions are satisfied. The reason for using this property is to exploit the inherent
symmetry of the above definitions. We will explore these symmetries in the following aside. If
we explicitly separate the real and imaginary parts of a hermitian tensor H =  + i and an
anti-hermitian tensor A =  +i , where  ,  ,  , and  have real components, we can write:
Hy = H Ay = A
( ij +i ij)y =  ji i ji =  ij +i ij ( ij +i ij)y =  ji i ji =  ij i ij:
Equating the real and imaginary parts of each set, we have the following relations:
 ij =  ji  ij =  ji
 ij =  ji  ij =  ji:
These four expressions tell us that the<(H) and the=(A) are symmetric, while the=(H) and
the<(A) are anti-symmetric. These symmetries imply that the complex conjugate of a hermitian
tensor is equivalent to its transpose, H = HT, and that the complex conjugate of an anti-hermitian
tensor is equivalent to the negative of its transpose, A =  AT. Using these definitions, we can
rewrite Equation (2.9) as the following:
 
 
E @D@t
 
= 14 [i! E1 (  H +   A) E 1 i!E 1 ( H +  A) E1]e2 i: (2.12)
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From the symmetry properties we can evaluate the following expressions:
E1   H E 1 = E1  TH E 1 = E 1  H E1 (2.13)
E1   A E 1 = E1   TA E 1 = E 1  A E1: (2.14)
With these expressions, we can finish evaluating Equation (2.12):
 
 
E @D@t
 
= 14 [ i(! ! )E 1  H E1 i(! +! )E 1  A E1]e2 i
= 12 [!iE 1  H E1 i!rE 1  A E1]e2 i: (2.15)
Gathering all of the terms together from Equation (2.6), Equation (2.7), and Equation (2.15), we
can write Poynting?s theorem for harmonically varying fields as:
1
 0r [(E1 B
 
1) + (E
 
1 B1)] =  
 1
 0 2!iB
 
1 B1 + 2!iE
 
1  H E1
 2i!rE 1  A E1]:
(2.16)
If !i !r, we can expand  in a Taylor series about the point ! = !r:
 (!)  (!r) + (! !r) @ @!
  
  
!=!r
+:::
  (!r) +i!i @ @!
  
  
!=!r
+::: (2.17)
Substituting this result into the definition for an anti-hermitian tensor given in Equation (2.11b),
we can write the following expression:
 A 12
 
 +i!i@ @!  y +i!i@ 
y
@!
 
+:::
  A +i!i@ H@! (2.18)
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This expression can be substituted into the last term in Equation (2.16):
r S = 
 1
 0 2!iB
 
1 B1 + 2!iE
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 @
@! [! H]
 
 E1 +!rE 1  A E1
 
; (2.19)
where S = 1 0 [(E1 B 1) + (E 1 B1)] is the Poynting vector. The first term on the right hand
side of Equation (2.19) is the typical energy density in the wave magnetic field, while the second
term is an effective energy density in the wave electric field, however, it represents the sum of the
electrostatic energy density and the contribution of the charged-particle kinetic energy due to the
coherent wave motion. The last term on the right hand side represents the dissipation or absorption
of energy by the dielectric medium.
We can write the time averaged effective energy density for an electrostatic wave as
Weff = 14j 1j2 k 
 @
@! [! H]
 
 k; (2.20)
where  1 is the wave electrostatic potential. The sign of the effective electric wave energy density
is determined by @@! [! H]. If this term is negative, the total energy of the system in a time averaged
sense has been lowered due to the presence of the wave. It is energetically favorable for the wave
to grow. This establishes a necessary but not sufficient criterion for instability, where
@
@! [! H] < 0: (2.21)
Nezlin [76] provides a good example of the use of this methodology in applying it to the plasma
beam driven instability.
2.2 Electrostatic Example
In this section we use the simplest plasma model that supports ion cyclotron waves. We treat
the ions as a cold fluid and the electrons using the Boltzmann relation, and we add an arbitrary
electric field profile in the ^x-direction. We assume electrostatic waves with a propagation angle
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almost perpendicular to B0. As discussed in Chen [24], it is beneficial to make the propagation
small enough such that ther= ik^y for the ions, but large enough that the electrons can carry out
Debye shielding.
2.2.1 Model Description
Ion dynamics can be descibed by the cold fluid equations:
@ni
@t +r (nivi) = 0 (2.22) 
@
@t + vi r
 
vi = em
i
(E + vi B); (2.23)
where mi is the ion mass, e is the charge of an electron, ni is the ion density, and vi is the ion
fluid velocity. We are considering only electrostatic modes, and we linearize the above equations
by assuming the following forms:
B = B0^z
E = E0(x)^x r  1(x)ei(ky !t) 
vi = v1x(x)ei(ky !t)^x+ v0(x) +v1y(x)ei(ky !t) ^y
ni = ni0 +ni1(x)ei(ky !t)
The 0 and 1 subscripts refer to the equilibrium and perturbed values for each quantity, respectively.
The equilibrium velocity is given simply by the E B velocity, v0 (x) vE = E0=B0^y.
Let us now turn our attention to the fluctuating quantities. Linearizing Equation (2.23) leads
to two coupled equations for the fluctuating velocities in the x and y directions
 i!1v1x = em
i
@ 1
@x +  civ1y
 i!1v1y = ik em
i
 1   civ1x;
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where!1 = ! kvE and = 1+ 1 ci @vE@x . Solving these equations yields the following expressions
for the fluctuating velocity components in terms of the wave potential
v1x = iem
iD
 
!1@ 1@x  k ci 1
 
(2.24)
v1y = em
iD
 
  ci@ 1@x  k!1 1
 
; (2.25)
where D = !21    2ci. Keeping only the first order terms in Equation (2.22), we are left with the
following expression for the ion density fluctuations
ni1 = n0i!
1
 @v
1x
@x +ikv1y
 
: (2.26)
Assuming Boltzmann electrons yields the following expression for the electron density fluctuations
with temperature Te
ne1 = n0e 1T
e
: (2.27)
Using the plasma approximation of quasi-neutrality, ni1  ne1 we can derive the following differ-
ential equation for the wave potential
D @@x
 1
D
@ 1
@x
 
+
 m
i
me
D
v2te +
k ci
!1
1
D
@D
@x  k
2
 
 1 = 0; (2.28)
where vte = pTe=me is the electron thermal velocity. If we assume the following form for the
background electric field,
E(x) =
8
><
>:
E0; for jxj L
0; for jxj>L;
(2.29)
we can divide the space into two regions, where within each region, @vE@x = 0, = 1,D = !21  2ci,
and @D@x = 0. With these simplifications !1 = ! kvE in Region (i), wherejxj L and !1 = ! in
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Region (ii), wherejxj>L and leads to the following differential equations
@2 i
@x2 =  
2
i i (2.30)
@2 ii
@x2 =  
2
ii ii; (2.31)
where  i and  ii are the wave potential in Region (i) and (ii) respectively and
 2i = mim
e
!21   2ci
v2te  k
2 (2.32)
 2ii = mim
e
!2  2ci
v2te  k
2: (2.33)
The even solutions to these differential equations can be written as
 i(x) = Acos ( ix) (2.34)
 ii(x) = Bexp (i iix+i ); (2.35)
where A, B, and  are constants. By requiring that these solutions and their derivatives be contin-
uous across the boundary, x = L, we arrive at the following transcendental equation for the real
and imaginary parts of !:
  i tan ( iL) = i ii: (2.36)
2.2.2 Analysis
If Equations (2.32) and (2.33) are rearranged, we can see the effects of imposing the top-hat
electric field.
!21   2ci   2i +k2 v2s = 0 (2.37)
!2  2ci   2ii +k2 v2s = 0 (2.38)
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Figure 2.1: Real (black) and imaginary (red) parts of the radial eigenfunction for the wave poten-
tial, using L = 0:1 m, E0 =  600 V/m, and k = 9:2 m 1. This value of k yields the maximum
growth rate for the lowest order mode for the given parameters. The associated eigenvalue is
! = 1:4  ci and  = 0:07  ci. The shaded region indicates the location of the flow layer.
These dispersion relations are those from the fluid model that we have chosen with the addition of
an effective kx given by  i and  ii in the two regions. By applying the top-hat electric field, we
have imposed a spatial scale on the plasma and must include a wave vector in the ^x-direction in
the dispersion relation.
Equation (2.36) can be solved numerically using a root finder to determine the complex! that
will satisfy the matching conditions at the boundary. The plasma parameters that we use to solve
the equation are as follows: density n0 = 1016 m 3, electron temperature Te = 3:0 eV, background
magnetic field B0 = 0:03 T, and the ion species is singly ionized Argon. If we take L = 0:1
m and the electric field E0 =  600 V/m, we find unstable solutions with the maximum growth
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Figure 2.2: Normalized real frequency (a), real (black) and imaginary (red) parts of  i (b), normal-
ized growth rate (c), and real (black) and imaginary (red) parts of  ii (d) as functions of k for the
same conditions as above.
rate at k = 9:2 m 1 and with eigenvalue ! = 1:4  ci and  = 0:07  ci. Figure (2.1) shows the
real (black) and imaginary (red) parts of this radial eigenfunction for the wave potential for the
lowest order mode. This typical eigenfunction is in agreement with the eigenfunctions reported by
Ganguli et al [38].
Figure (2.2) (b) shows the growth rate normalized to the ion cyclotron frequency as a function
of k for the parameters given above for the lowest order mode. There are two regions where the
growth rate goes to zero. The cutoff at large k is a geometric effect that can be seen from the
form of Equation (2.36). When  goes to zero,  i becomes purely real and  ii becomes purely
imaginary. This makes Equation (2.36) purely real. Under these conditions the left-hand-side of
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Equation (2.36), has periodic singularities. The first of which occurs when  iL =  =2. This
effectively sets a limit on the smallest perpendicular wavelength for the instability.
The cutoff at small k gives the flow threshold for the instability. This can be seen by applying
the negative energy wave formalism to this analysis. We can calculate the effective wave energy
density using the expression from Equation (2.20) and the dielectric constant that is given by the
left-hand side of Equation (2.37). In order for the system to be unstable, the negative energy wave
formalism requires thathWeffi< 0, and this sign is determined by
!@ @! = 2!!1: (2.39)
The energy density can become negative if !1 < 0, which implies that kvE > !. This imposes a
necessary condition for instability, however, it is not sufficient as will be shown below.
The first bit of information we will need is an expression for the real and imaginary parts of
the square root of a complex number. If z2 =  + i , where  and  are both real, we write
an expression for z, by writing z2 in terms of magnitude and phase. The magnitude is given
by r = p 2 + 2, and the phase is  = arctan ( = ). The real and imaginary parts of z are
zR =prcos ( =2) andzI =prsin ( =2). We take Equations (2.32-2.33), and explicitly substitute
! = !r +i .
 2i = i +i i  ii = ii +i ii
 i =!
2
1r  
2  2
ci
v2s  k
2  ii =!
2
r  
2 2
ci
v2s  k
2
 i =2 !1rv2
s
 ii =2 !v2
s
;
where !1r = !r kvE. From Figure (2.2) (c), we can see that as  goes to zero as we lower k, the
real part of  i is positive and the imaginary part of  i!0 . This implies that  i must be negative,
which requires  i and  i to have opposite signs. From the negative energy analysis we know that
!1r < 0 and  > 0, we know that  i < 0. This means that  i > 0, which gives us the following
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expression:
!21r >  2ci +k2v2s
)!1r >
  
 
p 2
ci +k2v2s
  
 ;
where we have used that at threshold  goes to zero. Again using that !1r must be negative, we
keep only the negative root.
!1r <  p 2ci +k2v2s
)kvE > !r +p 2ci +k2v2s (2.40)
In turn, we can see from Figure (2.2) (d), that the real part of  ii! 0+ and the imaginary part of
 ii > 0 as  goes to zero as we lower k. These two conditions imply that  ii > 0, which requires
that  ii and  ii have the same sign. Since by construction ! > 0 and  > 0, then  ii must be
positive. This implies that  ii > 0, which allows us to write the following expression for !r as we
let  !0:
!r >
q
 2ci +k2v2s: (2.41)
Substituting this result into Equation (2.40), we can write the threshold condition for this instabil-
ity:
kvE > 2
q
 2ci +k2v2s: (2.42)
This threshold condition ensures that the wave energy density is negative in the region with the
flow and that !1 can satisfy Equation (2.37).
We can use the unstable solution plotted in Figure 2.1 and Equations (2.24-2.26) to calculate
the oscillating velocity and density of the fluid as functions of space and time. With these quanti-
ties, we can construct the time averaged energy density and see how this wave is indeed a negative
energy wave.
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Figure 2.3: The time averaged change in the energy density stored in the electric field. The wave
acts to reduce the applied background electric field.
We first calculate the change in the energy density stored in the electric field:
 WE =
 1
2 0jE0 + E1j
2
 
 12 0jE0j2; (2.43)
where<>denotes a time average, E0 is the background electric field, and E1 = r 1 is the wave
electric field. The resulting change in the energy density stored in the electric field as a function
of the normalized position in the ^x-direction is plotted in Figure 2.3. As can be seen, the wave
acts to reduce the electric field in the top hat region, which is consistent with the simulations of
Palmadesso et al. [79].
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Figure 2.4: The time averaged change in the energy density of the whole system. The waves acts
to lower the energy density of the system.
We can also look at the change in energy density of the system due to the instability:
 W =
 1
2mi (n0 +n1)jv0 + v1j
2
 
 12min0jv0j2 +  WE; (2.44)
where we have used  WE from Equation (2.43). The resulting change in the energy density for
the system as a function of the normalized position in the ^x-direction is plotted in Figure 2.4. As
expected, the total energy of the system is lowered due to the presence of the wave. This is due to
the fact that the ion density fluctuations and the ion velocity fluctuations are out of phase. Over a
wave period, the kinetic energy of the particles is less than at equilibrium. The wave acts to lower
the energy density of the system. It is energetically favorable for the wave to grow.
28
2.3 Electromagnetic Model
In this section we present the Pe~nano and Ganguli [81] non-local, collisionless model for
electromagnetic waves in the presence of an inhomogeneous electric field transverse to the back-
ground magnetic field. What follows is an outline of the derivation, however, a thorough treatment
can be found in Appendix A. A Cartesian coordinate system is used with the background magnetic
field along the z axis, such that B0 = B0^z. The nonuniform DC electric field is in the x direction,
E0 = E0(x)^x. This leads to an equilibrium E B drift along the y axis, vE =  E0=B0. We
assume perturbations of the form:
~A = A1(x) exp [i(kyy +kzz !t)]; (2.45)
where ky and kz are real wave vector components, A1(x) is the complex amplitude, and ! is the
complex frequency.
The ions and the motion of the electrons perpendicular to the background magnetic field are
treated as cold fluids. We can express the perturbed perpendicular current density as
J1? =  1vE +
X
 
q n0 v1? ; (2.46)
where the subscript  denotes the plasma species, q is the charge, n is the density, v? is the
perpendicular fluid velocity components. The perturbed charge density  1 is determined from the
linearized continuity equation:
i! 1 = @J1x@x +ikyJ1y +ikzJ1z: (2.47)
The perturbed ion velocities and the perpendicular components of the perturbed electron ve-
locities are determined from the linearized momentum equation in terms of the perturbed electric
field components. We construct the perpendicular current density and the ion contribution to the
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parallel current density by substituting into Equation (2.46):
J1x = i! 0
X
 
!2p 
!2 2 D 
 
!21E1x +i!  E1y i!1vE@E1y@x
 
(2.48)
J1y = 1vE i! 0
X
 
!2p 
!2 2 D 
 
!!1E1y     vE@E1y@x  i    !1E1x
 
(2.49)
Ji1z =i! 0
 !2
pi
!
  
E1z + kzvE!
1
E1y
 
; (2.50)
where D =    !21= 2 ,   = 1+v0E=  , !1 = ! kyvE, !2p = e2n0=( 0m ) is the plasma fre-
quency, and   = q B0=m is the signed cyclotron frequency. For consistency with assumptions
made when calculating the kinetic electron response, we assume thatjv0E= ej 1 and set  e = 1.
The parallel motion of the electrons is treated kinetically in order to retain electron Landau
damping effects. The lowest order contribution to the perturbed parallel electron current density is
determined by first assuming that the scale lengths of the background electric field is much larger
than the electron gyroradius (LE   e), the wave frequency is much smaller than the electron
cyclotron frequency (! j ej), and the transverse wavelength is much bigger than the electron
gyroradius (k? e 1). With these assumption we can write the parallel electron current density
as
Je1z = i! 0
 !2
pe
!2
 
 2eZ0( e)
 
E1z + kzvE!
1
E1y
 
; (2.51)
where  e = !1= p2kzvte , vte = pTe=me, and Z0 is the derivative of the plasma dispersion
function with respect to its argument.
The perturbed current density is substituted in to the wave equation and the following matrix
equation is obtained:
0
BB
BB
@
C11 B12 @@x +C12 B13 @@x
@B12
@x +B12
@
@x C12
@A22
@x
@
@x +A22
@2
@x2 +C22 C23
@B13
@x +B13
@
@x C23 A33
@2
@x2 +C33
1
CC
CC
A
0
BB
BB
@
E1x
E1y
E1z
1
CC
CC
A
= 0: (2.52)
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The individual matrix elements used above are given below.
A22 = c
2
!2  
X
 
!2p 
!2
v2E
 2 D (2.53)
A33 = c
2
!2 (2.54)
B12 =  i
"
kyc2
!2 +
X
 
!2p 
!2
!1vE
 2 D 
#
(2.55)
B13 =  ikzc
2
!2 (2.56)
C11 = 1 k
2
yc
2
!2  
k2zc2
!2 +
X
 
!2p 
!2
!21
 2 D (2.57)
C12 =  C21 = i
X
 
!2p 
!2
!
  D (2.58)
C22 =1 k
2
zc
2
!2  
X
 
!2p 
 2 D 
  
 
!21
@vE
@x  1
 
+ k
2
zv
2
E
!21 (P 1) +
@
@x
"X
 
!2p 
!2
 !v
E
!1  D 
 # (2.59)
C23 = C32 = kykzc
2
!2 +
kzvE
!1 (P 1) (2.60)
C33 = P k
2
yc
2
!2 (2.61)
The above system of eigenvalue equations can be solved numerically for the perturbed electric
field profiles and the eigenvalue !. It describes all cold plasma normal modes in the presence of
transverse velocity shear. The inhomogeneous electric field introduces a variety of modifications
to the dispersion of the waves [82]. A nonuniform Doppler shift is introduced that cannot be trans-
formed away, which implies that the Doppler-shifted frequency controls the resonance properties.
In addition, the cyclotron frequency is modified by the presence of the sheared flows. The effective
cyclotron frequency  0 !p    . This can be seen from the factor  2 D =      !21, which
is the cyclotron resonance.
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2.4 Electromagnetic Top Hat
Since there are no spatial derivatives of E1x in the first equation of Equation (2.52), E1x in
terms of E1y and E1z can be written as
E1x = 1C
11
 
B12@E1y@x +B13@E1z@x +C12E1y
 
: (2.62)
We apply a top hat electric field as defined in Equation (2.29) such that any derivative with respect
to x that is not applied to a perturbed electric field is zero and substitute explicitly for E1x in the
remaining equations of Equation (2.52). We are left with two coupled differential equations
 
A22 B
2
12
C11
 @2E
1y
@x2  
B12B13
C11
@2E1z
@x2 +
B13C12
C11
@E1z
@x
+
 C2
12
C11 +C22
 
E1y +C23E1z = 0 (2.63)
 
A33 B
2
13
C11
 @2E
1z
@x2  
B12B13
C11
@2E1y
@x2  
B13C12
C11
@E1y
@x
+C23E1y +C33E1z = 0: (2.64)
If we take Region (i) to be where x< L, Region (ii) to be where L<x<L, and Region
(iii) the be where x>L, then the above coupled second order differential equations have constant
coefficients in each region individually, and we can assume a solution E1 /exp(i x). This yields
the following characteristic system of equations:
[  2R +i  S ST + T] E1 = 0; (2.65)
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where R, S, and T are 2 2 matrices, the superscript T denotes the transpose, and the vector E1
contains the components E1y and E1z. The nonzero matrix elements are as follows:
R11 = A22 B212=C11 (2.66)
R12 = R21 = B12B13=C11 (2.67)
R22 = A33 B213=C11 (2.68)
S12 = B13C12=C11 (2.69)
T11 = C212=C11 +C22 (2.70)
T12 = R21 = C23 (2.71)
T22 = C33: (2.72)
Taking the determinant and setting it equal to zero, leads to an equation that is biquadratic in  ,
which has the following solution:
 = 
 1
2A
 
 B pB2 4AC
  1=2
; (2.73)
where A = R11R22 R212, B = 2R12T12 S212 R22T11 R11T22, and C = T11T22 T212. The
general solution to the electromagnetic top hat is
Region (i) :E1 = A1e1 exp ( i 1x) +A2e2 exp ( i 2x) (2.74)
Region (ii) :E1 = B1e1 exp ( i 1x) +B2e2 exp ( i 2x)
+B3e3 exp ( i 3x) +B4e4 exp ( i 4x) (2.75)
Region (iii) :E1 = C1e1 exp ( i 1x) +C2e2 exp ( i 2x); (2.76)
where the sign of  used in Region (i) and (iii) are chosen such that the solution is evanescent as
x! 1. The vectors en are the wave electric field polarization in the yz plane associated with a
33
given  n, and can be determined from [82]
en =   2nR22 T22 ^y + T12 i nS12  2nR12 ^z: (2.77)
Figure 2.5: Real (solid black) and imaginary (dashed red) parts of the radial eigenfunctions of E1x
(top), E1y (middle) and E1z (bottom) for L = 0:05 m 1, E0 = 400 V/m, B0 = 300 G, n0 = 1016
m 3, Te = 3:0 eV, ky = 7:7 m 1, kz = 0:1 m 1, != i = 0:713, and  = 1 = 0:0927.
We require that the function and its derivative be continuous at both boundaries, x =  L
and x = L, for each component of the perturbed electric field. The resulting system of equations
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Figure 2.6: Real frequency (top) and growth rate (bottom) as a function of normalized ky for the
same parameters for Figure 2.5. Figure depicts the two thresholds for the instability, where the
velocity threshold occurs for kyL = 0:58.
is solved for the eigenvalue ! and eigenvector A. Figure 2.5 shows the resulting eigenfunctions
for the experimentally relevant plasma parameters: density n0 = 1016 m 3, electron temperature
Te = 3:0 eV, magnetic field B0 = 300 G, electric field E0 = 400 V/m, and electric field width L =
0:05 m. Figure 2.6 shows the dependence of the normalized real frequency (top) and normalized
growth rate (bottom) as a function of kyL. The threshold at kyL =  1:01 occurs when the real
frequency approaches the ion cyclotron frequency. The opposite threshold is equivalent to the
velocity threshold for the instability.
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2.5 Velocity Shear Modified Alfv en Wave Dispersion Relation
We now consider a smooth, continuous electric field profile, and we seek to examine the mod-
ifications to the typical Alfv en wave dispersion relation due to the presence of sheared transverse
plasma flows. As we saw in Section 2.2, the first consequence of imposing an electric field pro-
file in the ^x-direction is that the wave becomes bounded in this direction and an effective kx is
now present. Although we can no longer Fourier transform in the x direction, we instead allow
@2=@x2 ! k2x in Equation (2.52), where kx now represents an averaged quantity over the profile
as in a WKB approximation. We use the weak shear limit, 1 i @vE@x << 1, to aid in clarity of the
physics although this limit can be relaxed. With these considerations and the assumption that !1 is
on the order of  i,   = 1, D = 1 !21= 2 , and we can rewrite Equation (2.52) as:
0
BB
BB
@
S n2y n2z nxny + 0 nxnz
nxny + 0 S n2z + 1 n2x nynz + 2
nxnz nynz + 2 P n2x n2y
1
CC
CC
A
0
BB
BB
@
E1x
E1y
E1z
1
CC
CC
A
= 0; (2.78)
where we have used that S = !2pi!2 !21 2
i !
21 , P =
!2pe
!2  
2Z0( ),  0 = SkxvE
!1 ,  1 =  
2
0=S+ 
2
2=P S(1 
!2
!21 ), and  2 = P
kzvE
!1 . We obtain the dispersion relation by taking the determinant of Equation
(2.78) and setting it equal to zero. If vE is zero,  0,  1, and  2 are zero, and the dispersion relation
reduces to:
 S n2   S n2
z
  P n2
?
  n2
?n
2
z
 = 0: (2.79)
The first factor describes the fast mode or compressional Alfv en wave, and the second factor de-
scribes the shear Alfv en wave. When vE 6= 0, setting the determinant of Equation (2.78) equal to
zero leads to the following dispersion relation:
 S n2   S n2
z + 1
  P n2
?
  n2
xn
2
z (nynz + 2)
2 =
  P n2  n2x 1  20  2nxny 0 + (nx 2 nz 0)2:
(2.80)
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The presence of the inhomogeneous flow couples the compressional and shear Alfv en waves, and
the dispersive properties can be significantly modified. These modifications will be examined in
more detail in Section 4.4 with a comparison to the experimental observations.
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Chapter 3
Experimental Setup
All of the experiments described in this dissertation were conducted in the Space Physics
Simulation Chamber (SPSC) at the Naval Research Laboratory in Washington, DC. The SPSC is
a large-scale, linear plasma device used to investigate basic near-Earth space plasma phenomena
in appropriately scaled plasma conditions. The main objective of the space experiments section
is to act as a bridge between in situ space data and theory to improve the understanding of basic
geospace plasma processes. This work is in support of the Office of Naval Research?s Space
Research and Space Technology focus area. In the present chapter, we will give specific details
of the the SPSC layout, capabilities, and plasma source. This will be followed by a detailed
description of the experimental setup including all diagnostics used in the experiment.
3.1 Space Physics Simulation Chamber
The SPSC is composed of two main sections: the Main Chamber and the Source Chamber.
Figure 3.1 shows a photograph of the SPSC with the Source Chamber section on the left-hand
side of the photo. The two chambers are separated by a 70 cm gate valve that allows for the two
chambers to be operated individually or as one long chamber. The Source Chamber was initially
designed as a place to create and condition the plasma before injecting it into the larger volume of
the Main Chamber, however, for the experiments reported here, it is used a separate experimental
volume.
The Main Chamber is a 5-m long, 1.8-m diameter stainless steel vacuum chamber pumped
by two cryogenic pumps with a base pressure of approximately 5 10 7 Torr. It has five water-
cooled electromagnets capable of producing a maximum uniform axial magnetic field of 250 G.
The plasma source is a large grid hot filament source composed of 140 Tungsten filaments that
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Figure 3.1: A photograph of the Space Physics Simulation Chamber.
are heated by a 20 V, 600 A power supply, which is capable of producing up to 20 A of emission
current. The Argon plasma column has a diameter of approximately 75 cm with electron density
up to 1010 cm 3 and electron temperature 0:1 1:5 eV. The typical operating pressure is 10 4
Torr, which keeps the neutral collision frequency low.
The Source Chamber is a 1.5-m long, 0.55-m diameter stainless steel vacuum chamber that
is pumped by turbo pumps with a typical base pressure 1 10 7 Torr. It has seven water-cooled
electromagnets: each magnet has an inner diameter of 1.09 m and 110 turns. The first and last
magnet in the array are each powered by two 60 V, 200 A power supplies. The inner five magnets
are individually powered by a 40 V, 300 A power supply. The whole array is capable of producing a
uniform axial magnetic field up to 750 G. The plasma source is an RF inductively coupled source,
which is driven by a 250 W broadband amplifier with a frequency range of 10 kHz to 200 MHz.
The source is typically operated at 14.2 MHz and 100 W of RF power yielding a 16-cm diameter
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Argon plasma column with electron density n = 1010 cm 3 and electron temperature Te = 3 5
eV. The typical operating pressure is 1 mTorr, which results in an ion-neutral collision frequency
of  in = 3:9 103 s 1.
3.2 Experimental Layout
Figure 3.2 shows a schematic of the experimental setup. The ring electrodes are placed at the
end of the internal axial translation stage approximately 125 cm away from the RF plasma source.
The radial translation stages are in a plane approximately 20 cm away from the ring electrodes. In
this plane are an emissive probe, a double probe, and a _B probe. Each of the radial probes can be
retracted to r = 25 cm, and can be translated 35 cm. There are two setups for the probe on the
axial translation stage for the initial electrostatic experiments and the subsequent electromagnetic
experiments.
Figure 3.2: A schematic of the experimental setup.
For the electrostatic experiments, a probe with three single-tipped Langmuir probes was at-
tached to the axial translation stage. The probe tips were displaced radially by approximately 1.0
cm center-to-center. This allowed for one probe tip on axis, one in the space between the ring
40
electrodes, and one within the second electrode. Each tip consisted of a 3:2 mm-diameter stainless
steel tube that was 3 mm long. For the electromagnetic experiments, the ring probe was attached
to the axial translation stage, which is shown in Figure 3.11.
3.2.1 Plasma Source
In order to be able to measure the electromagnetic component of the instability, it was nec-
essary to increase the plasma beta  = nkTB2=2 0 in the experiment. Plasma beta is the ratio of the
kinetic to magnetic pressure in the plasma, which is an effective measure of the ability of the
plasma to modify the background magnetic field. The original experiments investigating the elec-
trostatic velocity shear-driven ion cyclotron instabilities conducted in the SPSC were done at very
low values of plasma beta  = 8 10 7, which were far too low to observe electromagnetic ef-
fects. In order to achieve the higher density and temperatures needed to increase , the hot filament
plasma source was replaced with an inductively coupled RF source.
The design for the RF antenna followed the considerations of Chen [25]. We use a half-
wavelength Nagoya Type-III antenna [107] around a Pyrex tube as our plasma source. The tube
has a 10-cm radius and is 45 cm long. Under these constraints we need to determine the proper
length for the antenna for good coupling to the plasma wave we will launch. The wave we are
trying to launch with our antenna is a helicon wave, which is just a bounded whistler mode. The
dispersion relation for the whistler mode propagating at an angle  with respect to the magnetic
field is given by:
k2 = !
2
c2  
!!2pe
c2 (!  ce cos ): (3.1)
If !   ce the displacement current term, !2=c2, and the ! term in the denominator can be
neglected. In this limit (3.1) can be written as:
k2 = !!
2
pe
c2 ce cos : (3.2)
41
We can write the total wave numberk as a sum of the perpendiculark? and parallelkk components
with respect to the background magnetic field, which allows us to write cos = kk=k. Since
the helicon wave is bounded, the value of k? is determined by the boundary conditions. For a
cylinder of radius a coaxial with B, we expect the lowest order radial function to be an m-th
order Bessel function of the first kind Jm(k?r), and the edge of the cylinder must match with the
first zero crossing of the radial wave function, i.e. Jm(k?a) = 0. This determines the value of
the perpendicular wave number k? = pm1=a, where we have used that pm1 is the first zero of
the Bessel function with azimuthal mode number m. The Nagoya Type-III antenna will launch
a cylindrical wave with azimuthal mode number m = 1, which yields p11  3:83. This implies
that the perpendicular wave number is k? = 38:3 m 1. Substituting for cos into Equation (3.2),
yields the following expression:
k = !k
k
!2pe
c2 ce = e 0vp
n
B; (3.3)
where we have used that vp = !=kk, which is the wave phase velocity in the direction parallel to
the magnetic field.
The impact-ionization cross section for Argon peaks for electron energies betweenW = 50 
200 eV [98]. The optimal coupling for plasma production is achieved when the wave is resonant
with electrons in this energy range,! = kkvp. This allows the wave to sustain the plasma discharge
by energizing electrons through Landau damping into the energy range for optimal ionization. We
takeW = 50 eV, which yieldsvp = p2W=me = 4:19 106 m/s. We choose a parallel wavelength
of 30 cm, which corresponds to kk = 20:9 m 1. These values result in a resonant frequency
f = !2  14 MHz. This frequency fits well into the range of our RF amplifier and matching
network. Putting this kk into Equation (3.3) and solving for n, we are left with a linear function in
terms of B:
n = kBe 0v
p
; (3.4)
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Figure 3.3: Typical density and electron temperature profiles.
which is what is required to fit the whistler dispersion relation. In order to be able to fit many
ion gyroradii across the plasma column, we chose a background magnetic field of B = 300 G for
typical operation. This results in approximately 30 ion gyroradii across the plasma column. At this
magnetic field, the density would need to be n = 1:55 1012 cm 3 to fit the whistler dispersion
relation. We constructed a Nagoya Type-III half-wavelength antenna with a 10-cm radius and 15-
cm length. The antenna feed is composed of two 10 AWG bare solid conductor copper with single
hole fish spine ceramic beads for electrical and thermal insulation. The entire assembly is covered
in a copper braid that effectively extends the copper mesh Faraday cage to the matching network.
This RF antenna design provides good coupling with the plasma. Figure 3.3 shows typical density
and electron temperature profiles with 64 W of RF power as measured by a floating double probe.
As can be seen a density of 1 1010 cm 3 can be achieved with a modest amount of power.
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3.3 Diagnostics
The SPSC has a variety of plasma diagnostics to determine basic plasma parameters and
wave characteristics. For these experiments, a floating double probe is used for plasma density
and electron temperature measurements as well as density fluctuations. An emissive probe is used
for DC plasma potential and electric field measurements and AC plasma potential fluctuations.
Magnetic probes are used for measuring magnetic fluctuations. These diagnostics and the analysis
used to determine the various plasma parameters and wave characteristics are described in the
following sections.
3.3.1 Double Probe
Langmuir probes are often used to measure many basic plasma parameters: density, electron
temperature, and plasma potential. Single-tipped Langmuir probes are difficult to interpret in
RF plasma discharges due to the rapidly oscillating floating potential. One solution is to use an
RF-compensated Langmuir probe [32], which makes use of RF chokes to reduce the voltage at
the RF-source frequency across the plasma-probe junction. Another solution is to use a floating
double probe. A double probe consists of two Langmuir probes connected by an isolated DC
power supply. As the DC bias between the probes is swept, the current flowing between the probes
is recorded. Since no ground reference is needed, the floating potentials of the probes are allowed
to follow the oscillations in the plasma. This makes them ideal for use in RF generated plasmas.
To understand the operation of this diagnostic, consider an ideal double probe with identical
tips. If either tip were swept as a Langmuir probe with the power supply referenced to ground, the
resulting I-V characteristic would look like that shown in Figure 3.4, where collected electrons are
treated as a positive current. One important point to note in the I-V characteristic is the floating
potential Vf, which is the potential at which no net current is collected by the probe. This is the
potential that an electrically isolated or ?floating? electrode would assume in the plasma.
In the double probe configuration, rather than being referenced to chamber ground, an isolated
power supply is connected between the two probe tips and the system as a whole floats electrically
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Figure 3.4: Typical current-voltage trace for a single-tipped Langmuir probe.
with respect to the plasma potential. If there is no DC bias between the probes, both probes will
be at the floating potential and there will be no current flowing between them. If we now bias
the probes relative to each other, the potential of probe 1 moves above the floating potential, and
probe 1 collects predominantly electrons. Likewise, the potential of probe 2 moves below the
floating potential, and probe 2 collects predominantly ions. With our chosen sign convention,
this corresponds to current coming in to the circuit at probe 1 and leaving the circuit at probe 2.
According to Kirchoff?s laws, the magnitude of the current collected by each probe must be equal.
In this way, the probes move around on the I-V characteristic with a separation determined by the
DC bias and the voltages are such that magnitude of the collected currents are equal, which is the
value of the current flowing through the circuit. As an example, we apply a 10 V bias between the
probes. The voltage and collected current for probe 1 (green) and 2 (red) are indicated in Figure
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3.4. Probe 1 floats to 1:62 V and collects 3:1  A, while probe 2 floats to  8:39 V and collects
 3:1  A. The net current is zero, and the voltage difference is 10 V, the applied bias. The total
current through the circuit is 3:1  A.
Figure 3.5: Typical current-voltage trace for a floating double probe (squares) and best non-linear
fit (solid line).
We follow the derivation by Hershkowitz [45] for the theoretical I-V characteristic of a floating
double probe. We assume that a double probe consisting of two identical spherical probes, labeled
1 and 2, with area A are inserted in to a Maxwellian plasma with density n and temperature Te.
Since the system is isolated from ground the electron and ion currents to the probes must cancel:
i1+ +i2+ = i1 +i2 : (3.5)
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The current I in the loop can be written as
I = i1+ i1 = i2  i2+: (3.6)
We can calculate the electron current density collected by one of the probes by taking the first
moment of the distribution function
je(V) = e
Z
f(x;v;t)vzdvxdvydvz; (3.7)
where f(x;v;t) is the electron distribution function. Evaluating the integral and multiplying by
the probe area gives an expression for the probe current
i1 = i 1 exp
 eV
1
Te
 
; (3.8)
where i 1 = Aen0pTe=me is the electron saturation current. Equations (3.5-3.8) can be rear-
ranged to give
I = i+ tanh
 eV
2Te
 
; (3.9)
where i1+ = i2+ = i+, which is the ion saturation current and V is the relative bias voltage defined
as V = V1 V2. The approximate ion saturation current is given by the following expression
i+ = neA
rT
e
mi; (3.10)
where mi is the ion mass. Orbital theory developed by Langmuir and Mott-Smith [72] gives
geometric corrections to the I-V characteristic. For spherical probes the sheath increases roughly
linearly with increasing bias. This is seen in the I-V trace as a linear increase in the ion saturation
current with increasing bias. With these considerations, the following model is used to analyze the
double probe data:
I(V) = a0(V  a1) +a2 tanh
 V  a
1
a3
 
+a4; (3.11)
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where a1 allows for a voltage shift in the trace and a4 allows for a current shift. A least squares fit
is applied to the double probe data using the Levenberg-Marquardt method [62]. Figure 3.5 shows
a typical double probe trace and best fit result from the fitting routine. Parameters a2 and a3 in
conjunction with Equations (3.5) and (3.10) can be used to determine the electron temperature and
plasma density. We first calculate the electron temperature in eV
Te = a32 : (3.12)
Once we have the electron temperature we can calculate the plasma density in m 3
n = a2eApeT
e=mi
; (3.13)
where the probe area A is given in m2 and the factor of e within the square root is used to convert
the electron temperature to Joules.
The least squares fit also returns a covariance matrix. The diagonal of the covariance matrix
is the square of statistical error in each of the best fit parameters. These errors along with the
estimated errors in the probe area can be propagated through to determine the error in the deter-
mination of the plasma parameters. The error propagation equations were determined using the
general procedure using partial derivatives with respect to each parameter as described in Beving-
ton and Robinson [14]. The specific error equations are as follows
 Te =
r
 a3
2 (3.14)
 n = n
s 
 a2
a2
 2
+
  A
A
 2
+
  T
e
2Te
 2
; (3.15)
where  a2 and  a3 come from the covariance matrix. These error estimates only incorporate sta-
tistical error and do not include systematic errors or errors associated with inaccuracies in the
model. With these caveats in mind, the error calculated from the standard deviation of the plasma
parameters determined from many shots lies within these error estimates.
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The main section of the double probe used in the SPSC experiments is a 15-cm long 3:2-mm
diameter four-bore ceramic tube. One pair of holes is filled with a 0:25-mm diameter nichrome
wire used to heat the probe to minimize contamination. The probe tips are two stainless steel ball
bearings with a diameter or 3:175 mm. In the other pair of holes of the four-bore ceramic tube,
there is a 26 AWG enameled copper wire. Once the wire leaves the four-bore ceramic tube, it
is housed in a 1:65-mm diameter single bore ceramic tube that is 2:5 cm long. The wire is then
inserted in a small hole drilled into the ball bearings. The enameled copper wire serves as both
an electrical connection to the probe tip as well as structural support. The two probe tips have a
separation of 1:4 cm. When the probe is being used to measure density and temperature, the probe
tips are aligned just off of being parallel with the magnetic field to prevent shadowing.
3.3.2 Emissive Probe
When an isolated probe is placed in a plasma, it initially collects more electrons than ions
due to the greater mobility of the electrons. This charge imbalance causes the probe to float to a
voltage lower than the plasma potential, which serves to impede electron collection and attract a
sufficient number of ions to maintain a net current of zero. A probe that can emit as well as collect
electrons can take advantage of this condition to provide an accurate measurement of the plasma
potential. The emissive probe filament is heated to a temperature, where, when an applied voltage
is swept in the manner of a Langmuir probe, the electron emission portion of the IV characteristic
is 10 times the level of electron saturation current. At such high emissivity, the I-V characteristic in
the transition region between electron emission and electron collection becomes very steep and the
floating potential approaches the plasma potential. In this limit, a high impedance measurement of
the floating potential of the probe yields an accurate estimate of the plasma potential [50].
The probe tip consists of an 3:2-mm diameter four-bore ceramic tube and a 0:125-mm diame-
ter, 0:5-cm long thoriated tungsten filament. The filament is pressure fit into two adjacent holes of
the ceramic tube along with a 22 AWG copper wire. An isolated 6-V, 5-A, power supply operating
in constant current mode is used to heat the filament to thermionic emission. A high impedance
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measurement of the voltage is made between the low voltage side of the heater supply and chamber
ground.
The following calibration procedure is used to determine an operating heater current such
that the probe emits an electron current sufficient to cause the floating potential of the probe to
approach the plasma potential for all electric fields applied in the experiment. For the calibration,
the digital multimeter used to measure floating potential of the probe is replaced with a source
meter. The source meter allows us to bias the probe and measure the collected or emitted current
with high precision. Figure 3.6 shows the floating potential of an emissive probe as a function of
the heater current. The floating potential will asymptote at the plasma potential. The threshold for
this emissive probe was 2:50 A at 3:42 V for a total heating power of 8:5 W.
Figure 3.6: Emissive probe floating potential as a function of the applied heater current. The
floating potential asymptotes at the plasma potential.
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During normal operation of the emissive probe, we measure the radial profile of plasma po-
tential. This profile is differentiated numerically to determine the radial electric field profile. Since
the differentiation always considers the difference in the potential between two points, we do not
concern ourselves with determining the best absolute measurement of the plasma potential. We can
ignore the potential gradient across the filament due to the heater supply. This is also the reason
we elect to use the floating potential of the probe instead of the more accurate limit of zero emis-
sion analysis technique [95] that can eliminate the effects of space charge on the plasma potential
measurement.
A typical measurement consists of 100 voltage measurements at a given radial location. The
average of the voltage measurements is taken as the plasma potential at that location, and the
standard deviation of the measurements around the mean is taken as the statistical error in the
measurement. We use the second order central algorithm for the numerical derivative:
f (xi) = dydx = 12dx (yi+1 yi 1): (3.16)
This procedure causes us to lose the outer two radial points for every derivative. A sample plasma
potential profile and derived electric field are plotted in Figure 3.7.
3.3.3 Magnetic Probe
A time varying magnetic flux through a loop of wire produces a voltage difference on the two
ends of the loop according to Faraday?s law. If we consider a harmonically varying magnetic field
B = B0 exp [i(k x !t)] through a stationary loop of area A, we can write Faraday?s law as
follows:
V = i!B ^nA; (3.17)
where ^n is the unit vector normal to the loop. If we know the area of the loop and we measure the
amplitude and frequency content of the voltage across the loop, we can calculated the amplitude
of the magnetic field fluctuations at a given frequency.
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Figure 3.7: Example of plasma potential (top) and electric field (bottom) profiles.
An effective _B probe must be small for good spatial resolution and minimal perturbation of
the plasma, however, the total area must be large enough to measure small magnetic fields at our
frequencies of interest. For the loop of the probe, we used a ceramic wound surface mount inductor
with a nominal inductance of 33  H. The inductor is 2:54 mm by 2:54 mm in cross-section and
3:25 mm long. The loop has a cross-sectional area of 0:0654 cm2.
A twisted pair of wires is connected to each inductor, and the assembly is mounted to an 3:2-
mm diameter ceramic tube. An insulating ceramic adhesive, Ceramabond, is used to rigidly attach
the inductor and the ceramic tube while serving as an insulator between the electrical connections
to the inductor and the plasma. A 4:8-mm stainless steel tube is placed over the ceramic tube, and
aluminum foil is placed over the Ceramabond-covered inductor and tucked under the stainless steel
tube. This assembly acts as an electrostatic shield for the probe. The foil is coated with a thin layer
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of Cerambond to insulate the foil from the plasma and to rigidly attach the stainless steel tube to
the assembly.
A 11:4-cm diameter, 20-turn Helmholtz coil pair is used for probe calibration. The Helmholtz
coil will produce a known and uniform axial magnetic field B = (4=5)3=2 0nI=R, where n is
the number of turns, I is the current, and R is the radius of the coil. With these dimensions, the
region of magnetic field within 1% error is a radius of 3:4 cm [19], which is an order of magnitude
larger than the coil. We use a 15 MHz function generator capable of producing a 10 V amplitude
sine wave and sourcing the requisite current to drive the Helmholtz coil. The current in the coil is
measured using a Pearson coil, which gives a 0:1 V/A signal with a response time less than 100 ns.
With the probe centered in the Helmholtz coil, it is rotated to minimize the voltage signal and the
direction of maximum signal is marked on the probe shaft. The minimum is easier to determine
than the maximum due to the sign change. We record the output from the probe and Pearson coil
for a frequency range of 100 Hz to 20 kHz with loop normal 90 degrees with respect to the axis of
the Helmholtz coil. This gives us the frequency dependent error in the magnetic field component
measured by the probe being calibrated With the probe rotated 90 degrees to give maximum signal,
we repeat the frequency scan. A typical calibration curve for a three axis _B probe is plotted in
Figure 3.8, which shows the frequency dependent probe area calculated using Equation (3.17) for
the frequency range of interest in the experiment. The color of the trace denotes the coil: coil1
(black), coil2 (red), and coil3 (green). The type of line denotes the magnetic field direction that
was being tested: Br (solid), B (dotted), and Bz (dashed). The figure shows that the effective
probe area for a coil in a direction perpendicular to the coil axis is over an order of magnitude
smaller than the area parallel to the coil axis. Since the effective probe areas are relatively constant
for the frequency range of interest, the value is averaged over the frequency range from 5 to 15
kHz. This yields an effective area for these probes of A1 = 23:1 0:5 cm2, A2 = 23:1 0:5 cm2,
and A3 = 23:8 0:5 cm2. This gives approximately 350 turns for the coils.
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Figure 3.8: Typical calibration curves for _B probes.
The first measurements of the magnetic fluctuations in our experiment were made using a
spectrum analyzer, which has a sensitivity of -120 dBm but at the expense of losing phase infor-
mation. These measurements indicated that maximum amplitude of the total magnetic fluctuations
was approximately 0.25  T. This results in voltage signals from the probe of approximately 100
 V. These voltage signals are too small for our oscilloscopes to measure, which is necessary for
us to recover phase information for wave dispersion measurements. It was clear that we needed to
design and build differential amplifiers for the probes.
3.3.4 Differential Amplifier Circuit
We chose a differential amplifier circuit for its large common mode rejection properties, which
would insure that the recorded signal was due to the electric field inductively produced by the
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Figure 3.9: A schematic of the circuit (a) for a single channel differential amplifier and circuit
board layout (b) for three amplification channels.
oscillating magnetic flux through the probe. A gain of 1000 was chosen for ease of oscilloscope
measurements. This would have to be achieved in two stages in order to maintain the necessary
frequency bandwidth. Figure 3.9 (a) depicts a schematic of the circuit for a single channel of
amplification. The two main components are an instrumentation amplifier, the LT1167, and a
low noise operational amplifier, the LT1037. Figure 3.9 (b) shows the circuit board layout for three
amplification channels. Two of these boards were used to create a six channel differential amplifier
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box used for the six single _B probes on the ring probe assembly. A similar six channel amplifier
box was constructed for two three axis probes.
Code Component
U1 LT1167
U2 LT1037
C1-C4 47  F Tantalum47 nF Ceramic
R1 500  
R2 2 k 
R3 18 k 
Table 3.1: Component list for the differential amplifier circuit boards.
Table 3.1 lists the parts and values of the capacitors and resistors used in Figure 3.9. The
LT1167 is a low noise instrumentation amplifier whose gain can be set by a single external resistor.
The 500  resistor sets the gain to 100. The voltage noise is 7:5 nV/pHz. The main advantage
of using this instrumentation amplifier is that it provides a typical common mode rejection of 125
dB at a gain of 100, which will limit the electrostatic pickup of the coil. The LT1037 is a low
noise operational amplifier, with 2:5 nV/pHz wideband noise. The LT1037 is configured as a
non-inverting amplifier with an additional gain of 10.
Each differential amplifier channel was separately calibrated using a network analyzer. The
output port of the network analyzer was connected to one of the amplifier channels, the output of
that amplifier channel was connected to the input port of the network analyzer through a 20 dB
attenuator. The network analyzer sent a small amplitude signal at various frequencies from 500
Hz to 20 kHz, and recorded the amplified signal, averaging over a 100 Hz bandwidth. A typical
calibration is plotted in Figure 3.10, which shows the magnitude (top) and phase (bottom) of the
transmission coefficient, the ratio of the input power to output power as a function of frequency.
As can be seen, the gain is relatively constant for the frequencies of interest, 5 to 20 kHz, and is
approximately a gain of 1000. The phase, however, shows a linear change of approximately 0.8
degs/kHz over the frequency range tested. We must take this into account when analyzing phase
correlation measurements as a function of frequency. Although the calibration curves were similar
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from channel to channel, we chose to individually calibrate a probe and its amplifier channel as a
unit.
Figure 3.10: Typical calibration curves for the differential amplifier circuit showing the (top) mag-
nitude and (bottom) phase of the ratio of input to output power for a 3 channel board.
3.4 Ring Electrodes
The electrodes used for the majority of the experiments presented here consist of a center disk
and an annulus with a radial gap between the electrodes of 3 mm, which is approximately half an
ion gyroradius. The electrostatic experiments, presented in Section 4.1, used a 2:2-cm diameter
center disk and an annulus that was 2:5 cm wide and had an outer diameter of 5 cm. In the
electromagnetic experiments, described in Section 4.2, we used a 2-cm diameter center disk and
an isolated 0:6-cm wide annulus with an outer diameter of 3:8 cm. The electrodes were attached
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to a block of 6:4-mm thick teflon. Each electrode can be biased individually and sets the potential
of a cylindrical shell of the plasma. The potential differences between these concentric shells
of plasma generate an azimuthally symmetric, inhomogeneous radial electric field. This electric
field in conjunction with the presence of the axial magnetic field, causes a cylindrically symmetric
azimuthal plasma flow due to the E B drift. The inhomogeneity in the radial electric field results
in radial shear in the azimuthal velocity profile, which extends along the length of the device and
is the source of the free energy to drive the observed instabilities.
3.4.1 SPSC Translation Stages
The SPSC is equipped with a variety of both internal and external translation stages for probe
positioning. On the source chamber there are three axes for radial positioning, and one internal
axial stage. Each axis consists of a controller, an amplifier, a stepper motor, and a stage with a
precision lead screw. In addition there is a system consisting of three stages for x-y positioning
of the laser induced fluorescence pump and probe beams and another internal motor mounted to
the axial stage that connects to a vertical ring assembly that allows for radial positioning of an
array of probes while maintaining a fixed azimuthal orientation. These translation stages will all
be described in detail in the following section.
The three radial stages are all located on the same axial plane, 98 cm from the plasma source.
All three radial stages allow for 50 cm of travel, but in order to help avoid collisions, each is limited
to approximately 30 cm of travel. The two horizontal stages have lead screws with a pitch of 1 cm
per turn. The stepper motors are operated such that one revolution is accomplished in 400 steps.
This gives a minimum radial resolution of 25 m. Each stage has a rotary encoder with a resolution
of 4000 counts per revolution. The actual position of the probe can be determined to 2.5  m. The
vertical stage has a lead screw with a pitch of 0.25 cm per turn. The finer lead screw was used for
smaller backlash for vertical mounting. This gives another factor of 4 decrease in the minimum
step size. However, the spatial resolution of the measurements tends to be limited by probe size
and not positioning errors.
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The internal axial stage uses a special vacuum compatible motor designed to handle the lower
heat transfer of the vacuum environment. The center of the translation stage carriage is 22.5 cm
from the plasma source at its minimum axial position and can travel 76 cm away from the source.
It also has a lead screw with a pitch of 1 cm per turn. The stage is mounted aligned with the
cylindrical axis of the chamber at a 45 degree angle from the bottom of the chamber. The motor
is equipped with a resolver whose output is equivalent to the 4000 counts per revolution rotary
encoders used on the external motors.
Mounted to the carriage of the internal axial stage is another vacuum compatible motor. The
shaft of this second motor is coupled to a vertical ring assembly shown in Figure 3.11. The ring
assembly consists of two rings with aluminum ball bearings between them that allows them to
freely rotate relative to each other. The inner diameter of the ring assembly is 26 cm, which
is outside the main plasma column. When the motor spins the six probes, which are equally
distributed azimuthally, rotate together. As the assembly rotates, the probe tips remain equally
spaced azimuthally and the probes move radially. However, the probe tips suffer a rotation about
the symmetry axis of the chamber and unequal radial step sizes. An amplifier capable of micro-
stepping is used to control this stepper motor and causes the motor to take 2000 steps to complete
a revolution. The micro-stepping results in an angular resolution of 3 mrads.
Let l be the probe length, and the initial position of the probe is such that it is aligned radially.
If the probe is displaced by an angle  from its initial position, the change in radial position of the
probe is given by  r = l(1 cos ). If the probe is at an angle  relative to its initial position and
is displaced by a small angular step   , the radial step can be expressed as  r = lsin   . Since
the probes will never be displaced by an angle larger than 90o, this expression says that the largest
 r will occur for the largest  .
If we assume a typical probe length of 15 cm and that we want to scan 10 cm in radius, the
angular displacement at r = 10 cm is approximately 19:5o. Taking a step size of 3 mrads at this
angle results in a radial step size of  r = 0:15 mm. The spatial resolution is again limited by the
size of the probe and not the positioning system.
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Figure 3.11: Photograph of internal ring assembly, which has six _B probes mounted on it.
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Chapter 4
Analysis
The electrostatic inhomogeneous energy density driven instability was studied thoroughly
both theoretically and experimentally as discussed previously. It was also shown that the electro-
magnetic version of this instability can be well described by the electrostatic theory under certain
conditions. This provides a natural starting point for the experiments in search of electromagnetic
ion cyclotron waves driven by strongly sheared flows. This chapter will start with the electrostatic
experiments used as a benchmark for the subsequent electromagnetic experiments. The second
section will present the observations of the electromagnetic mode characteristics. Section three
will present the dependence of some of these characteristics on plasma  . This chapter will end
with a comparison of the observations to the existing theory.
4.1 Electrostatic Comparison
Parameter WVU NRL ES IEDDI Auburn NRL EM IEDDI
n (cm 3) 1:0 109 3:5 107 8:0 109 1:0 1010
Ti (eV) 0:2 0:05 0:05 0:05
Te (eV) 0:2 1:0 5 10 3:0 5:0
B (G) 1500 40 100 300
 7:1 10 9 8:8 10 7 4:0 10 5 5:0 10 5
me=mi 1:4 10 5 1:4 10 5 1:4 10 4 1:4 10 5
Table 4.1: Comparison of plasma parameters between previous electrostatic IEDDI experiments.
The previous experiments investigating the velocity shear-driven ion cyclotron instability
were conducted under very different plasma conditions. Table 4.1 gives a summary of typical
plasma parameters in the previous WVU, NRL, and Auburn electrostatic experiments and the cur-
rent NRL electromagentic experiments. Although the experiments were conducted under a wide
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range of plasma conditions, it will be shown that using similar techniques to impose inhomoge-
neous radial electric fields, we can reproduce the important features of the electrostatic instability.
For these experiments, we left the inner electrode disconnected while biasing the outer ring to
100 V. For comparison, the plasma potential with the electrodes disconnected is approximately
30 V. Figure 4.1 is a plot of the radial electric field profile for this configuration with 100 V bias
(blue) and all electrodes disconnected (red), where the shaded boxes represent the location of the
electrodes.
Figure 4.1: A plot of radial electric field with 100 V bias on Ring 2 only (blue) and all electrodes
disconnected (red). The shaded boxes represent the location of the electrodes.
Above a threshold electric field, approximately 60:5 V/m, a localized electrostatic wave can
been seen in the density fluctuations. Figure 4.2 shows a typical power spectrum of a time series
taken from one of the tips of the double probe biased into ion saturation. Since these are steady state
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measurements, we can assume constant temperature. Under these considerations, ion saturation
fluctuations are a measurement of density fluctuations. As can be seen, the mode exhibits the
characteristic ?spiky? structure of IEDDI with a peak frequency below the ion cyclotron frequency
f=fci 0:84, and the observed fluctuations are broadband  f=f0  0:10.
Figure 4.2: A typical power spectrum from time series of density fluctuations.
A radial scan of density fluctuations yields the magnitude of the radial wave packet, as shown
in Figure 4.3. Normalized density fluctuations  n=n are plotted as a function of radial position
in blue. The density fluctuations  n were determined by taking the standard deviation of the
time series about the mean value, which is proportional to the density n. The normalized shear
frequency 1 i @vE@x is plotted in red, where the slabE Bdrift has been used to estimate the azimuthal
flow. It can be seen that the peak in the density fluctuations is spatially localized to the region where
the velocity shear is large and negative as predicted by the theory.
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The wave vector components of the electrostatic wave were determined by using the phase of
the Fourier transform of the cross-correlation of two time series of density fluctuations from spa-
tially separated probes. Figure 4.4 shows the magnitude (top) and phase (bottom) of the Fourier
transform of the cross-correlation from the two tips of the double probes. We fit a Lorentzian distri-
bution to the region around the peak amplitude in the cross-correlation magnitude. The Lorentzian
used in the fit is defined as:
p(f) = a
 b2
(f f0)2 +b2
 
+c; (4.1)
where we have amplitude a, half-width at half maximum b, peak frequency f0, and offset c. We
use the full width at half maximum 2b to window the phase function. The average and standard
deviation of the phase within that window are taken as the phase shift and error respectively. We
Figure 4.3: A plot of a radial scan of density fluctuations (top) and normalized shear frequency
(bottom).
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apply this technique to density fluctuation signals from one of the biased electrodes and one of
the Langmuir probe tips on the axial translation stage as we move the probe in z. We expect a
linear variation of the phase shift as a function of z, and the slope of a linear fit to the data yields
the wave vector component in the ^z-direction. Figure 4.5 (a) shows a typical measurement of
kz = 1:25 0:08 m 1.
Figure 4.4: Illustration of the phase correlation method used to determine wave vector components,
showing (top) cross-correlation magnitude with Lorentzian fit (red) and (bottom) phase showing
average value (green) over indicated window (white region).
Applying the same technique to density fluctuation signals from the double probe tips as
we rotate the double probe at the radial location of peak wave amplitude, we can determine the
azimuthal component of the wave vector. Assuming the axial and azimuthal wavelengths are longer
than the separation between the probe tips, we can write the following expression for the measured
65
phase shift between the probe tips:
  = kydsin +kzdcos ; (4.2)
where  is the angle of the double probe plane relative to the magnetic field and d is the separation
between the probe tips. Since the axial wavelength is much longer than the probe separation,
the contribution to the phase from the second term of Equation (4.2) is smaller than the error in
the phase measurement making this term negligible for this analysis. Figure 4.5 (b) is a typical
measurement of the transverse wave number, and a least-squares fit of asin to the data. For this
measurement, the probe was positioned at the location of peak wave amplitude, r = 2:2 cm. The
best fit coefficient for the case shown is a = 1:34 and the probe separation is d = 2:8 cm, which
results in ky =  48 6 m 1. Radial scans of ky show a sign reversal as we cross zero, which
is indicative of azimuthal propagation. The azimuthal wave number can be written as k = m=r,
where m is the azimuthal mode number and r is the radial position. If we set our measurement of
ky = k , we calculate an azimuthal mode number ofjmj = 1:06 0:13. Careful analysis of the
phase shifts show that the wave propagates in the ^ -direction, which is the direction ofE Bdrift.
The results are consistent with the previous experiments, which measured a primarily azimuthally
Figure 4.5: Example measurements of kz (a) and k (b).
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propagating mode that propagates in the direction of the E B drift, which is necessary for the
Doppler-shifted frequency to be resonant with the ion cyclotron frequency.
Figure 4.6: Plot (a) shows the pulse applied to the annulus (red) and the resultant electron saturation
current showing growth of waves (black). Plot (b) shows a small portion of the electron saturation
current (black) in part (a) with the average value subtracted off. The dashed green lines are the
exponential envelope illustrating the wave growth.
We measured the growth rate for the instability with a series of experiments where the poten-
tial on the outer ring was pulsed. For the case plotted in Figure 4.6, the pulse had an amplitude of
60 V, which is above the threshold for the instability, and a period of 8 ms, which is long enough
to ensure saturation of the mode. Figure 4.6 (a) shows the pulse in red and the current collected
by a probe biased into electron saturation, approximately 93 V, in black as functions of time. The
density depletion, caused by the electron current collected by the biased ring, develops at a charac-
teristic time of 0:1 ms, which is the transit time to cross the distance from the rings to the probe, 20
cm, at the ion sound speed, cs = 2690 m/s. At approximately 0:23 ms after the rising edge of the
pulse, the density cavity and the electric field have developed, and the waves begin to grow. We
take half the distance between each peak and trough as the amplitude and the average time between
each peak and trough as the time associated with the amplitude. We fit a growing exponential to
this data of the formaexp( t), where is the growth rate. Figure 4.6 (b) shows the result of apply-
ing this fit to the data in part (a). The dotted red line is the best fit and the dashed green line is the
exponential envelope illustrating the growth of the instability. Every measurement of the growth
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rate is a result of the average of the  determined from 25 time series. Applying this technique the
growth rate of the electrostatic mode was  = 1840 90 rads, equivalently  = 0:03 i.
4.2 Electromagnetic Mode Characteristics
Plasma  = nkTB2=2 0 is a measure of the ability of the plasma to modify the background mag-
netic field, as is necessary for the fluctuating magnetic field of an electromagnetic plasma wave.
If the Alfv en velocity vA = B=p 0nmi is less than the electron thermal speed vTe = p2Te=me,
kinetic Alfv en waves will propagate in the medium. In the opposite limit, the waves will be inertial
Alfv en waves. The requirement for a kinetic Alfv en wave can be expressed as  > me=mi. As
Table 4.1 shows, the previous electrostatic experiments were conducted at values of  much less
than the ratio of the electron to ion mass ratio me=mi. Under these conditions, any magnetic fluc-
tuations would be very difficult to detect. The plasma  in the current experiments can be varied
from 0:07 me=mi < < 3:73 me=mi.
Above a threshold electric field, approximately 60:5 V/m, we measure magnetic fluctuations
in addition to the electrostatic fluctuations. Figure 4.7 shows a typical power spectrum of the mag-
netic fluctuations seen in the experiment. The power spectrum of the magnetic fluctuations displays
the same characteristics as the electrostatic fluctuations, including the ?spiky? nature of the insta-
bility with a peak near the cyclotron frequency and the mode is broadband  f=fci = 0:10 0:15.
The amplitudes of the wave magnetic field components are roughly equal, with the total magnetic
field fluctuation amplitude B1  0:25  T. The wave electric field can be approximated using the
measured electrostatic wave potential as E1 = k 1  2 V/m. The contribution to the electric field
from the time varying vector potential can be estimated by @A1@x  !kB1 < 7 10 4 V/m. This
resulted in an E1=B1 ratio of approximately ten times the Alfv en speed.
Figure 4.8 shows a comparison of radial profiles of normalized wave amplitude for the elec-
trostatic (dashed line) and electromagnetic fluctuations (solid line). The outer electrode was biased
to 150 V relative to chamber ground, while the center disk was disconnected. Both profiles indicate
a spatial localization to regions of strong velocity shear, where the inhomogeneous electric field
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Figure 4.7: Typical power spectrum of the magnetic fluctuations seen in the experiment.
was present. However, the electromagnetic profile shows significant wave power outside the shear
layer.
The phase shift between magnetic fluctuations detected by two spatially separated magnetic
probes was determined as described in the previous section using the Fourier transform of the
cross-correlation function. The measurement of the axial wave number was made by fitting a line
to three unequally spaced axial phase shift measurements at the center of the chamber. The least-
squares fit indicated a propagation direction parallel to B with kz = 0:05  0:007 cm 1. The
measurement of the azimuthal component of the wave number was made between two magnetic
probes that could be translated radially and separated by 90 degrees in the azimuthal direction.
The two probes were scanned radially, recording the measured phase shifts. The phase shifts
were constant and approximately equal to  =2, as shown in Figure 4.9. These measurements
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Figure 4.8: Profiles of normalized wave amplitude as a function of radial position are shown,
where the dashed line and the solid line depict the electrostatic ( n= nmax) and electromagnetic
( B= Bmax) fluctuations respectively. The shaded regions indicate the positions of the electrodes.
of the azimuthal mode number are consistent with an m = 1 cylindrical mode, rotating in the
direction of the azimuthal flow. The measurement of the wave number components are consistent
with a primarily azimuthally propagating electromagnetic wave with a radial eigenmode structure
as expected for the instability under study. The normalized amplitude for the electromagnetic
fluctuations are plotted as a green dashed line to lend context to the profile. The linearly increasing
region is outside the main plasma column and far out on the tail of the radial eigenmode.
When the electrodes are biased, magnetic field-aligned current and density gradients are es-
tablished in addition to the radial electric field. Care must be taken to identify the source of the
free energy that is driving the observed instability. The measurements of the field-aligned current
also show an oscillating current up to approximately I = 3:3 mA due to the electrostatic mode.
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Figure 4.9: Phase shift between two magnetic probes separated by  =2 azimuthally while both
probes are scanned together radially. The solid red line is at a phase shift equal to - =2, which
is the phase shift expected for an m = 1 cylindrical mode propagating in the direction of the
azimuthal flow. The normalized amplitude for the electromagnetic fluctuations (green dashed line)
is plotted to give context to the phase shift profile.
As a zeroth order sanity check, we imagine this current flowing through an infinitesimal wire,
and compute the magnitude of the oscillating magnetic field produced by this wire. The resulting
magnetic field magnitude is B =  0I=(2 r). An oscillating current of 3:3 mA would produce an
oscillating magnetic field on the order of the observed magnetic fluctuations only when within a
few millimeters of the oscillating current. The observed local maxima in the magnetic fluctuations
are too far from the field-aligned current for the magnetic fluctuations to be caused merely by this
oscillating current.
The parallel electron drift velocity was estimated from measurements of the maximum field-
aligned current collected by the electrodes. Assuming that the field-aligned current profile was
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uniform, we can use the expression for the ion saturation current collected by a biased Langmuir
probe to estimate the electron drift velocity, I = enAvd [24], where e is the charge on the electron,
nis the bulk plasma density,Ais the electrode area, andvd is now the drift velocity of the electrons.
Under these assumptions, the maximum electron drift velocity was found to be vd 16 km/s. The
theory incorporating the effects of collisions on the current-driven ion cyclotron instability were
presented in a paper by Satyanarayana et al. [88]. In the weakly collisional limit where  i= i < 1
and  e=(kkvte), the critical drift velocity vc is given by:
vc
vte =
!r
kkvte +
  1p
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; (4.3)
where  e and  i are the electron-neutral and ion-neutral collision frequencies, vte is the electron
thermal speed,  is the electron to ion temperature ratio, and  1 = I1(k? i=2) exp (k? i=2), where
I1 is the modified Bessel function of first order and  i is the ion gyroradius. The resultant critical
drift velocity isvc 550 km/s for our experimental parameters, which is more than 30 times larger
than the estimated electron drift in the experiment. The observed mode cannot be current driven.
Distinguishing between the density gradient and the inhomogeneous electric field as the
source of free energy requires a bit more care, since the density gradient and the largest gradi-
ent in the electric field occur at the same radial location. In Figure 4.10, the top panel shows
the normalized magnetic (solid) and electrostatic (dashed) fluctuation amplitudes as a function of
radius. The bottom panel shows the normalized shear frequency (solid) !s = 1 i @vE@r and the nor-
malized density gradient (dashed)  e@ln (n)@r as a function of radius, where  e = c=!ce is the electron
skin depth. The normalized shear frequency is much larger than the normalized density gradient,
which suggests that the sheared flows are the dominant source of free energy.
We examine the behavior of the electric field and the density gradient near the threshold for
the wave. Figure 4.11 shows a plot of the normalized mode amplitude (solid line) as a function of
the bias applied to the outer electrode. A comparison of the fractional change in the electric field
(filled circles) and the density gradient (open triangles) as functions of bias demonstrates a clear
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Figure 4.10: The solid and dashed lines in the top plot are the radial profiles of the normalized
magnetic and electrostatic fluctuation amplitude respectively. The bottom plot shows radial profiles
of shear frequency (solid) and normalized density gradient (dashed).
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correlation between the growth of the mode and the electric field. The reference values at threshold
are E0 = 60:5 V/m and (@lnn=@r)0 = 19:5 m 1. As the wave amplitude changes rapidly above
threshold, the electric field changes by a factor of 4 while the density gradient remains fairly
constant. This clearly indicates that the electric field and hence the sheared flows are responsible
for driving the observed waves, not the density gradients. Furthermore, the expected frequencies
for drift waves are much higher than the observed frequencies. At the maximum of the electrostatic
signal, the diamagnetic drift frequency is ! = k kBTeeB0 @lnn@r = 5:9 ci, which is well above the
observed frequency. In addition, the observed wave propagates in the direction of the E B drift
and not the electron diamagnetic drift direction.
In order to further test whether the electromagnetic wave and the electrostatic wave are created
by the same shear-driven instability, a bias scan of the outer electrode was conducted. Changing
the bias on the electrodes changed the radial electric field and thus the flow shear, which resulted
in a different frequency for the observed mode. The inset in Figure 4.11 shows that the frequency
of the electromagnetic wave (open squares) tracks the frequency of the electrostatic wave (filled
circles).
4.3 Beta Dependence
A common and often difficult problem associated with using magnetic probes to measure os-
cillating magnetic fields is the possibility of capacitive pickup contaminating the inductive electric
field being measured. A variety of techniques were used to minimize these effects, including elec-
trostatic shielding of the coils and the use of differential amplifiers. It is important to verify that
the magnetic fluctuations that were measured are indeed a result of an inductive electric field an
not electrostatic pickup. For a stringent test, we can make use of the fact that as the plasma beta is
decreased, electromagnetic effects are diminished.
A series of scans were performed, changing the plasma  by scanning the RF power used to
produce the plasma. Varying the RF power results in changes to both the density and the electron
temperature, both of which will affect the plasma  . The density and electron temperature in
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Figure 4.11: Normalized wave amplitude (solid line), fractional electric field (filled circles), (E 
E0)=E0, where E0 = 60:5 V/m, and fractional density gradient (open triangles), (@lnn=@r 
(@lnn=@r)0)=(@lnn=@r)0, where (@lnn=@r)0 = 19:5 m 1, as a function of applied ring bias.
The inset is a plot of observed frequency as a function of the applied electrode bias: peak frequency
of electrostatic fluctuations (filled circles) within the shear layer and magnetic fluctuations (open
squares) at the edge of the plasma column.
an inductively coupled plasma are functions of magnetic field, background gas pressure, and RF
power, however, for conditions during this scan,  varied approximately as a linear function of the
applied RF power.
Figure 4.12 shows an RF power scan of  for a magnetic field of 300 G. The electrostatic
wave amplitude is shown as green circles, while the electromagnetic wave amplitude is shown as
red circles. Both amplitudes exhibit a three order of magnitude change for a relatively small range
of  . The most important feature to note in Figure 4.12 is that the electromagnetic wave amplitude
decreases by a factor of approximately 1000 while the electrostatic wave amplitude decreases by
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less than a factor of 2. This situation would not be possible if the magnetic fluctuation signal is
merely due to electrostatic pickup. The voltage fluctuations detected by the magnetic loop are
induced by a changing magnetic field, and those magnetic fluctuations behave appropriately as a
function of  . However, the apparent  threshold is in reality due to the sensitivity of the magnetic
probe and the inherent noise in the system.
Figure 4.12: Electrostatic (green circles) and electromagnetic (red circles) wave amplitude (not to
scale) as a function plasma  . Electromagnetic wave amplitude decreases as  decreases, while a
significant electrostatic wave power remains.
These RF power scans were repeated for a range of magnetic field values, 300-600 G. The
general behavior remained the same with the amplitude of the magnetic fluctuations decreasing
with decreasing  while the electrostatic fluctuation amplitude remained large. Figure 4.13 ex-
amines the data set from the perspective of a constant applied RF power and varying background
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magnetic field. For a given RF power, the magnetic fluctuation amplitude decreases as the back-
ground magnetic field is increased. For the background magnetic field value where the magnetic
fluctuation amplitude decreases to the noise floor, the value of  was computed and plotted as a
function of the applied RF power. The value of  that reduces the magnetic field amplitude below
the detectable level for our probes is a constant value, 1:66 0:34 10 5.
Figure 4.13: The value of  (black circles) at which the magnetic fluctuation amplitude decreases
to the noise floor as a function of the applied RF power with a linear fit (solid red line) to the data.
4.4 Theory Comparison
There are two interesting experimental observations that we can directly compare to predic-
tions from the theoretical model discussed in Chapter 2. The first is the velocity shear-modified
Alfv en wave dispersion relation given in Equation (2.80). The second is the difference in width
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Figure 4.14: Determination of the real (a) and imaginary (b) parts of the average radial wave
vector. The real part is determined from the slope of a linear fit to phase shift data as a function
of the radial separation between two probes. The imaginary part is determined from a fit of the
exponential decay of the radial eigenmode.
of the radial eigenmodes for the electrostatic and electromagnetic fluctuations shown in Figure
4.8. As we will show, the derived model captures some of the essential physics of the instability
observed in the experiment.
In order to see if the observations are consistent with the velocity shear-modified Alfv en wave
dispersion relation, Equation (2.80), we first need to determine a complex averaged kx. Figure
4.14 illustrates how the real and imaginary parts of kr were determined from the experimental
measurements. The slope of a linear fit to the phase shift between two magnetic probes as a
function of the radial distance between them yields the real part of kr = 0:168 cm 1, Figure 4.14
(a). A least squares fit to the electromagnetic wave amplitude profile of the formAexp[i r], yields
the imaginary part of kr,  = 0:15 cm 1, Figure 4.14 (b). We fit data in different spatial regions,
because the dominant real kr should occur near the peak amplitude but the imaginary part will
manifest itself in the decay of the profile.
We use the measured, complex value ofkr as an estimate for our spatially averaged quantitykx
used in Equation (2.80). Using the experimentally measured plasma parameters, complex kx, and
electric field, we can make plots of  /! from Equation (2.80) as a function of kz. The results are
plotted (solid line) in Figure 4.15, where the dashed lines are the upper and lower bound due to the
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Figure 4.15: Growth rate divided by real frequency as a function ofkz for Equation (2.80) including
sheared flow (green) with upper and lower bound due to the error in the measured E (dashed) and
a similar plot for shear Alfv en waves from homogeneous plasma theory (red), which are damped
for all values of kz plotted here. Experimental observations appear in the shaded box.
error in the measured E. The black circle represents the observed values incorporating the spectral
width of the mode and the error in kz measurement. For comparison, the red line is the solution for
shear Alfv en waves from homogeneous plasma theory, which leads to damped modes. Even when
considering the effects of electron Landau damping, the instability has a positive growth rate in the
presence of sheared flows for much larger values of kz than would be expected from homogeneous
plasma theory. The observations are consistent with the predictions from velocity-shear modified
dispersion relation.
The radial eigenfunctions shown in Figure 2.1 allow us to predict the radial profile of the
electrostatic 1 and electromagnetic fluctuations B1 =r A1. Using the Coulomb gauger A1 =
79
0 and the definition of the electric field
E1 = r 1 @A1@t ; (4.4)
we can arrive at the following differential equation for the electrostatic fluctuations in terms of the
radial eigenfunctions from the simulation:
@2 1
@x2  
 k2
y +k
2
z
  
1 = 
@E1x
@x  ikyE1y ikzE1z (4.5)
and the components of the vector potential:
@A1x
@x = 
ky
!E1y 
kz
!E1z i
 k2
y +k
2
z
!
 
 1 (4.6)
A1y = i! (E1y +iky 1) (4.7)
A1z = i! (E1z +ikz 1): (4.8)
The results of these calculations have been plotted in Figure 4.16, where we have taken the
curl of the vector potential to get B1. The dashed black line is the fluctuating electrostatic potential
and the solid red line is the magnitude of the magnetic fluctuations as functions of position nor-
malized to the size of the flow layer. The full-width at half-maximum ofjB1jis approximately 3
times larger than the full-width at half-maximum of  1. This is consistent with the experimental
observations, where the corresponding ratio is approximately 5. This indicates that the theory pre-
dicts the localization of the electrostatic fluctuations to the shear layer, while the electromagnetic
fluctuations extend further and have the possibility to influence the dynamics outside of the region
of generation.
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Figure 4.16: Fluctuating electrostatic potential (black dashed line) and magnitude of the magnetic
fluctuations (solid red line) calculated from the eigenfunction solutions from the electromagnetic
top hat from chapter 2.
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Chapter 5
Conclusion
The experiments presented establish that strongly localized dc electric fields perpendicular
to the ambient magnetic field can behave as a radiation source for electromagnetic ion cyclotron
waves, which can transport energy away from the region of wave generation. We established a
foundation for this laboratory investigation of velocity shear-driven electromagnetic ion cyclotron
instabilities by reproducing the electrostatic experiments on the inhomogeneous energy density
driven instability. Biasable electrodes were employed to create controllable inhomogeneous radial
electric fields, which would establish the azimuthal sheared flows that would be the free energy
source for the instability. We observed modes with a ?spiky?, broadband spectrum near the ion
cyclotron frequency whose frequency shifted with applied electric field. The wave was observed
to be a predominantly azimuthally propagating, m = 1 cylindrical wave with a radial eigenmode
structure confined to the shear layer. The wave propagation is in the direction of the E B drift.
All of these observations are consistent with the characteristics of the previous electrostatic IEDDI
experiments.
Once this foundation was firmly established, we used the magnetic loop probes to look for
the presence of magnetic fluctuations. The observed magnetic fluctuations had similar frequency
content to the electrostatic fluctuations. We have ruled out potential alternative sources for the
observed magnetic fluctuations, i.e. oscillating parallel current and electrostatic pickup. Due to the
strength and extend of the radial profile of the oscillations, the oscillating parallel current could not
account for the magnetic fluctuations. Electrostatic pickup could also be ruled out due to the differ-
ent behavior of the electrostatic and electromagnetic fluctuations as the plasma  was decreased.
The power spectrum of the magnetic signals exhibited the same ?spiky?, broadband spectrum,
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with similar peak frequency and whose frequency shifted in the same manner with applied elec-
tric field. We measured the magnetic fluctuations to be a predominantly azimuthally propagating,
m = 1 cylindrical wave whose radial eigenmode structure, however, extended much further than
the electrostatic fluctuations. Again, the wave propagation direction was observed to be along the
E B drift.
The general characteristics of the electromagnetic wave are consistent with the intuition de-
veloped from studying the electrostatic mode, however, a detailed analysis of the source of free
energy is required to ensure that the observed instability is driven by the sheared flows. A com-
parison of the estimated parallel electron drift in the experiment and the critical drift velocity for
current driven instability using the weakly collisional theory, indicated that the observed parallel
drift was 30 times smaller than the critical drift velocity necessary for the observed mode to be
a result of a current driven instability. We considered the density gradient as another possible
candidate for the source of free energy, however, the diamagnetic drift frequency in the region of
interest is ! =  5:9 ci, which is well above the observed frequency. In addition, the observed
wave propagates in the direction of the E B drift and not the electron diamagnetic drift. Near
the threshold for the instability, the fraction change in the electric field and the density gradient
were compared to the fractional increase in the wave amplitude. The growth of the wave was well
correlated with the growth of the electric field, leading us to determine that the electric field and,
hence, the flows are responsible for the growth of the instability.
As expected, the amplitude of the magnetic fluctuations decreased as the plasma  decreased.
This trend was consistent regardless of whether  was modified by changing the kinetic pressure
or the magnetic pressure. The amplitude of the magnetic fluctuations decreased by a factor of
approximately 1000 over the relatively small range of  in the experiments. With the appropriate
directional, oscillating electric field diagnostics, these  scans could result in a clear observation
of the electrostatic to electromagnetic transition of this instability.
83
Finally, we made comparisons of the experimental observations with predictions from the
present theory of Pe~nano and Ganguli [82]. Although, the existing theory assumes Cartesian co-
ordinates, thereby neglecting cylindrical effect, there is compelling agreement between theory and
experiment. We determined numerically that the radial profiles of the electrostatic potential and
the magnetic field of the wave are consistent with those observed in the experiment, where the
ratio of the full-width at half-maximum of the magnetic fluctuations to electrostatic fluctuations is
approximately 5. In addition, the observed dispersion of the wave in the experiment was consistent
with the velocity shear-modified Alfv en wave dispersion relation derived in the weak shear limit
from the electromagnetic model and inconsistent with homogeneous shear Alfv en wave theory.
However, more of the dispersion relation needs to be mapped out before the theory can be verified.
It would also be beneficial to determine where warm ion effects, which are not included in the
present model, begin to substantially modify the dispersion relation.
The experimental observations and the agreement with the theory lead us to conclude that
we have made the first observation of electromagnetic ion cyclotron waves driven by strongly
sheared plasma flows. The experimental observation of these waves and additional careful studies
of their characteristics may lead to an explanation of the origins of broadband electromagnetic
waves observed near auroral arcs and the resultant ion heating. In future experiments, we plan
to investigate ion heating effects and the development of ion conics due to the presence of these
waves.
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Appendix A
Dispersion Relation for Electromagnetic Waves in Presence of Transverse Velocity Shear
A.1 Model Derivation
We are following the derivation in the 2000 JGR paper by Pe~nano and Ganguli. Ion and
perpendicular electron dynamics can be described by the cold fluid equations:
@n 
@t +r (n v ) = 0 (A.1) 
@
@t + v  r
 
v = qm
 
(E + v  B); (A.2)
where  refers to particle species. We linearize the above equations by assuming the following
forms:
B = B0^z + B1(x) exp [i(kyy +kzz !t)]
E = E0(x)^x+ E1(x) exp [i(kyy +kzz !t)] (A.3)
v = v 0(x)^y + v 1(x) exp [i(kyy +kzz !t)]
The 0 subscripts refer to the equilibrium values for each quantity,and v 0 is the E B velocity
vE =  E0(x)=B0^y. Linearizing the equation of motion, we arrive at the following system of
equations:
 i!1v 1x = qm
 
(E1x +vEB1z +v1yB0)
 i!1v 1y +v 1x@vE@x = qm
 
(E1y v1xB0)
 i!1vi1z = em
i
(E1z vEB1z);
where !1 = ! kyvE. Note that the third equation above is only for the ions. We will deal with
the parallel motion of the electrons separately. The above system of equations can be solved for
the following velocities:
v 1x = 1 2
 D 
q
m [E1y   i!1 (E1x +vEB1z)]
v 1y = 1 2
 D 
q
m [    (E1x +vEB1z) +i!1E1y] (A.4)
vi1z = i!
1
q
mi [E1z vEB1x];
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where   = qB0m ,   = 1 + 1  @vE@x , and D =    !1 2
 
. We can use Faraday?s law to eliminate B1
in the above expressions. Due to the inhomogeneity in the ^x-direction, we apply a spatial Fourier
transform only in the ^y- and ^z-directions as shown above in Equation (A.3). The appropriate form
for the del operator isr= @@x^x + iky^y + ikz^z. Applying this in the expression for Faraday?s law,
we can write the following expressions for the first order magnetic fluctuations:
B1x = ky!E1z kz!E1y
B1y = kz!E1x + i!@E1z@x (A.5)
B1z = i!@E1y@x  ky!E1x:
Substituting Equation (A.5) into Equation (A.4), we are left with expressions for the first order
velocities in terms of the electric field fluctuations:
v 1x = 1 2D
 
q
m 
 
  E1y vE!1! @E1y@x  i!
2
1
! E1x
 
v 1y = 1 2D
 
q
m 
  
   !1
! E1x +i!1E1y ivE
    
!
@E1y
@x
 
(A.6)
vi1z = i!
1
e
mi
 !
1
!E1z +
kzvE
! E1y
 
:
We are now in a position to determine the expression for the first order perpendicular current
density:
J1? =  1vE^y +
X
 
qn 0v 1?; (A.7)
where  1 is a placeholder for the first order charge density fluctuations that we will determine from
the continuity equation later. Substituting the velocities in the ^x- and ^y-directions from Equation
(A.6), we arrive at the following expressions for the perpendicular components of J1:
J1x = i! 0
X
 
!2p 
!2 2 D 
 
!21E1x +i!  E1y i!1vE@E1y@x
 
(A.8)
J1y =  1vE i! 0
X
 
!2p 
!2 2 D 
 
!!1E1y     vE@E1y@x  i    !1E1x
 
; (A.9)
where the plasma frequency for a given species  is given by !2p = e2n 0 0m .
The first order current density parallel to the background magnetic field can be written as the
sum of the ion and electron contributions: J1z = Ji1z+Je1z. The ion contribution can be calculated
using the ^z component from Equation (A.6):
Ji1z = i! 0
 !2
pi
!
  
E1z + kzvE!
1
E1y
 
: (A.10)
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Electron Landau damping is retained by keeping the lowest-order kinetic contributions toJe1z.
Je1z = i! 0
 !2
pe
!2
 
 2eZ0( e)
 
E1z + kzvE!
1
E1y
 
; (A.11)
where  e = !1= p2kzvthe , vthe = pTe=me, and Z0 is the derivative of the plasma dispersion
function with respect to its argument. The perturbed parallel current density is
J1z = i! 0 (P 1)
 
E1z + kzvE!
1
E1y
 
; (A.12)
where P = 1 !2pi!2  !2pe!2  2eZ0( e). Using a linearized version of Equation (A.1), we arrive at the
following expression for the perturbed charge density
 1 = i! 0!
1
(
@
@x
"X
 
!2p 
!2 2 D 
 
!21E1x +i!  E1y i!1vE@E1y@x
 #
+iky
X
 
!2p 
!2 2 D 
 
!!1E1y     vE@E1y@x  i    !1E1x
 
+ikz (P 1)
 
E1z + kzvE!
1
E1y
  
:
(A.13)
Taking the curl of Faraday?s law and substituting Ampere?s law, we can write the wave equa-
tion as
r r ~E1 !
2
c2
 
~E1 1
i! 0
~J1
 
= 0: (A.14)
This can be written as the following matrix equation:
M E1 = 0; (A.15)
where the vector E1 is
E1 =
0
@
E1x
E1y
E1z
1
A (A.16)
and we will determine the matrix elements individually. Note that in writing Equation (A.15) we
have multiplied Equation (A.14) by c2!2 .
M11 = 1 k
2
yc
2
!2  
k2zc2
!2 +
X
 
!2p 
!2
!21
 2 D (A.17)
M12 = i
"
k2yc2
!2 +
X
 
!2p 
!2
!1vE
 2 D 
#
@
@x +i
X
 
!2p 
!2
!
  D (A.18)
M13 = ikzc
2
!2
@
@x (A.19)
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M21 = i
"
kyc2
!2 +
X
 
!2p 
!2
!1vE
 2 D 
#
@
@x i
vE
!1
@
@x
 X
 
!2p 
!2
!21
 2 D 
!
 i
X
 
!2p 
!
    !
 2 D 
Note that the derivative in the second term above is not applied to the electric field vector. Expand
  in the third term and rearrange the terms:
M21 = i
"
kyc2
!2 +
X
 
!2p 
!2
!1vE
 2 D 
#
@
@x i
X
 
!2p 
!2
!
  D 
 i!
1
"
vE @@x
 X
 
!2p 
!2
!21
 2 D 
!
+
X
 
!2p 
!
!1
 2 D 
@
@x (! kyvE +kyvE)
#
Let?s focus on the last term in brackets. Since, !1 = ! kyvE the terms in the parentheses goes to
!1 + kyvE. The !1 part of this term can combine with the first term in the brackets allowing us to
take the vE into the derivative.
M21 = i
"
kyc2
!2 +
X
 
!2p 
!2
!1vE
 2 D 
#
@
@x i
X
 
!2p 
!2
!
  D 
 i!
1
"
@
@x
 X
 
!2p 
!2
!21vE
 2 D 
!
+
X
 
!2p 
!2
!1kyvE
 2 D 
@vE
@x
#
Again focusing on last term in brackets, take the derivative of one !1 in the first term. One of the
resulting terms will cancel the second term in brackets. By adding a constant within the derivative,
we arrive at the final form for this term.
M21 = i
"
kyc2
!2 +
X
 
!2p 
!2
!1vE
 2 D 
#
@
@x i
X
 
!2p 
!2
!
  D 
 i @@x
"
kyc2
!2 +
X
 
!2p 
!2
!1vE
 2 D 
# (A.20)
Again it is important to note that the derivative in the last term does not act on the electric field
vector.
M22 =
 
c2
!2  
X
 
!2p 
!2
v2E
 2 D 
!
@2
@x2 + 1 
k2zc2
!2 +
k2zv2E
!21 (P 1) +
vE
!1
@
@x
 X
 
!2p 
!2
!  
 2 D 
!
+
X
 
!2p 
!2
kyvE!
 2 D +
X
 
!2p 
!2
!1!
 2 D  
X
 
!2p 
!2
vE!
!1 2 D 
 
  + @vE@x
 @
@x
 vE!
1
@
@x
 X
 
!2p 
!2
!1vE
 2 D 
@
@x
!
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The derivative in the fifth term does not act on the electric field vector, however, all others do. We
take a derivative of !1 in the last term.
M22 =
 
c2
!2  
X
 
!2p 
!2
v2E
 2 D 
!
@2
@x2 + 1 
k2zc2
!2 +
k2zv2E
!21 (P 1) +
vE
!1
@
@x
 X
 
!2p 
!2
!  
 2 D 
!
+
X
 
!2p 
!2
kyvE!
 2 D +
X
 
!2p 
!2
!1!
 2 D  
X
 
!2p 
!2
vE!  
!1 2 D 
@
@x 
X
 
!2p 
!2
vE!
!1 2 D 
@vE
@x
@
@x
+ vE!
1
X
 
!2p 
!2
kyvE
 2 D 
@vE
@x
@
@x vE
@
@x
 X
 
!2p 
!2
vE
 2 D 
!
@
@x
The first term and last three terms can be combined, and we arrive at the following expression.
M22 = @@x
" 
c2
!2  
X
 
!2p 
!2
v2E
 2 D 
!
@
@x
#
+ 1 k
2
zc
2
!2 +
k2zv2E
!21 (P 1) +
X
 
!2p 
!2
kyvE!
 2 D 
+ vE!
1
@
@x
 X
 
!2p 
!2
!  
 2 D 
!
+
X
 
!2p 
!2
!1!
 2 D  
X
 
!2p 
!2
    vE!
!1 2 D 
@
@x
We evaluate the derivative in the sixth term and notice that one of the resulting terms cancels the
last term. We also rewrite the fifth term by taking kyvE = ! !1 and notice that the !1 term
cancels with the seventh term.
M22 = @@x
" 
c2
!2  
X
 
!2p 
!2
v2E
 2 D 
!
@
@x
#
+ 1 k
2
zc
2
!2 +
k2zv2E
!21 (P 1)
+
X
 
!2p 
 2 D +
X
 
!2p 
!2
!vE
!1  
@
@x
 1
D 
 
We add and subtract the term P !2p  2
 D 
  
!21
@vE
@x , and we combine the term we added and the last
term above to write the following.
M22 = @@x
" 
c2
!2  
X
 
!2p 
!2
v2E
 2 D 
!
@
@x
#
+ 1 k
2
zc
2
!2 +
k2zv2E
!21 (P 1)
 
X
 
!2p 
 2 D 
  
 
!21
@vE
@x  1
 
+ @@x
"X
 
!2p 
!2
 !v
E
!1  D 
 # (A.21)
Note that only the derivatives in the first term act on the electric field vector.
M23 = kykzc
2
!2 +
kzvE
!1 (P 1) (A.22)
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M31 = ikzc
2
!2
@
@x (A.23)
M32 = kykzc
2
!2 +
kzvE
!1 (P 1) (A.24)
M33 = P k
2
yc
2
!2 +
c2
!2
@2
@x2 (A.25)
We can use Equations (A.17-A.25) to rewrite Equation (A.15) as
@
@x
 
A @E1@x
 
+ B @E1@x + @@x BT E1 + C E1 = 0; (A.26)
where we have grouped terms that contain derivatives of the electric field vector. We could alter-
natively write the expression as
0
@
C11 B12 @@x +C12 B13 @@x
@B12
@x +B12
@
@x C12
@A22
@x
@
@x +A22
@2
@x2 +C22 C23@B
13
@x +B13
@
@x C23 A33
@2
@x2 +C33
1
A
0
@
E1x
E1y
E1z
1
A = 0: (A.27)
The individual matrix elements used above are given below.
A22 = c
2
!2  
X
 
!2p 
!2
v2E
 2 D (A.28)
A33 = c
2
!2 (A.29)
B12 = i
"
kyc2
!2 +
X
 
!2p 
!2
!1vE
 2 D 
#
(A.30)
B13 = ikzc
2
!2 (A.31)
C11 = 1 k
2
yc
2
!2  
k2zc2
!2 +
X
 
!2p 
!2
!21
 2 D (A.32)
C12 = C21 = i
X
 
!2p 
!2
!
  D (A.33)
C22 = 1 k
2
zc
2
!2  
X
 
!2p 
 2 D 
  
 
!21
@vE
@x  1
 
+ k
2
zv
2
E
!21 (P 1) +
@
@x
"X
 
!2p 
!2
 !v
E
!1  D 
 # (A.34)
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C23 = C32 = kykzc
2
!2 +
kzvE
!1 (P 1) (A.35)
C33 = P k
2
yc
2
!2 (A.36)
A.2 Zero Flow Limit
If there is no flow vE = 0, then we can evaluate several parameters:   = 1, !1 = !,
and D =  2  !2. Since there is no structure in the ^x-direction, terms containing derivatives
with respect to x are zero. Applying these conditions to Equation (A.27) results in the following
expression: 0
@
S  2  iD 0
iD S  2z  y z
0  y z P  2y
1
A
0
@
E1x
E1y
E1z
1
A = 0; (A.37)
where we have used that k2 = k2y +k2z such that  = kc! ,  y = kyc! , and  z = kzc! .
S = 1 !
2
pi
!2  2i  
!2pe
!2  2e (A.38)
D = !
2
pi
!2
! i
 2i  !2 +
!2pe
!2
! e
 2e !2 (A.39)
As Te goes to zero,  e goes to infinity, and in the large argument limit Z0! 1 2
e
. In this limit P can
be written as
P = 1 !
2
pi
!2  
!2pe
!2 (A.40)
Under the cold plasma limit, Equation (A.37) reduces to the standard wave equation with the
cold plasma dielectric tensor as expected. S, D, and P are the standard ?sum?, ?difference?, and
?principal? definitions contained in the cold plasma dielectric tensor.
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