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Abstract 

 
 

Testosterone, the male androgen responsible for maintaining the male phenotype, 

is produced by testicular Leydig cells. Leydig cells express estrogen receptors and are 

therefore regulated by estrogen. Soybeans predominantly contain the isoflavones genistin 

and daidzin which are hydrolyzed in the gastrointestinal tract to genistein and daidzein. 

Although both genistein and daidzein possess estrogenic properties, it is unclear whether 

the controversial effects of soy-based infant formulas on testicular function are due to the 

independent actions of genistein or daidzein or result from both agents acting together. In 

the present study, lactational exposures to both genistein and daidzein together induced 

Leydig cell proliferation and decreased Leydig cell T production in 22- and 35-day-old 

Long-Evans male rats. In addition, lactational exposure to both genistein and daidzein 

reduced serum testosterone concentrations in male rats 22 days of age. Decreased 

androgen production persisted into adulthood, during which estrogen receptor 1 protein 

levels were increased and expression of many steroidogenic enzymes were impaired as a 

consequence to lactational exposures to both genistein and daidzein. Also, lactational 

exposure to genistein and daidzein decreased Sertoli cell product MIS and increased MIS 

type II receptor expressions in 22-day-old male rats. These observations indicate that 

genistein and daidzein behave in a dose-additive manner, and exposures to both 

isoflavones during the lactational period may also interfere with Leydig-Sertoli cell 

interaction, with an implication for overall testis function.  
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Section 1: Leydig Cell Development and Function 
 
 
 
Introduction. 

The testes are the primary reproductive organs in the male because they 

produce testosterone, the male androgen responsible for maintaining the male 

phenotype, and spermatozoa, which are the male gametes. Each testis consists of two 

major compartments: the vascularized interstitium and the avascular seminiferous 

tubule. Situated within the testicular interstitium are Leydig cells, which produce 

testosterone. Extending from the basement membrane of the seminiferous tubule to the 

open lumen are Sertoli cells, which play a critical role in sperm development.  

 

1.1: Fetal Leydig Cells. 

In the rat, there are two distinct generations of Leydig cells: fetal Leydig cells and 

postnatal Leydig cells. Developed in utero, the fetal Leydig cells gain capacity to 

synthesize testosterone by gestational day (GD) 15.5 [1]. Subsequently, testosterone 

production markedly increases, with maximum steroidogenic activity attained at GD19, 

or just before birth [2]. The testosterone secreted by fetal Leydig cells is required for the 

differentiation of the male urogenital system during late gestation [2]. Fetal Leydig cells 

express luteinizing hormone receptor (LHR) and respond to LH stimulation [3, 4]. 

However, fetal Leydig cell development is independent of LH stimulation, as evidenced 

by analyses of LHR knock-out (LHRKO) mice, demonstrating that these mice produce 

similar testosterone levels as wild-types during the prenatal period [5]. Although it is 

unclear whether fetal Leydig cells persist in the adult testis, it has been suggested that 

these cells undergo postnatal apoptosis [5].  



3 

 

 

1.2: Progenitor Leydig Cells. 

At postnatal day (PND) 7, spindle-shaped stem cells develop in the interstitium, 

mostly in the peritubular layer of the testis of the rat [6]. Proliferation of these stem cells 

in the testicular interstitium and their subsequent commitment to the Leydig cell lineage 

result in the progenitor Leydig cell (PLCs) population by PND21 [6]. The PLCs are 

small, spindle-shaped cells with a similar appearance to stem cells in the postnatal 

testis. Unlike stem cells, the PLCs are recognized as members of the Leydig cell 

lineage by virtue of their expression of Leydig cell markers including 3β-hydroxysteroid 

dehydrogenase (3βHSD), a critical steroidogenic enzyme involved in testosterone 

synthesis (to be discussed in detail later)  [7]. The PLCs contain only small amounts of 

smooth endoplasmic reticulum (SER), the organelle in which several steroidogenic 

enzymes are localized and thus produce only small amounts of steroids, mainly 

androsterone [7].  

 

1.3: Immature Leydig Cells. 

By PND28, the PLCs transform from a spindle-shape to a round structure and 

reduce their proliferative capacity, forming immature Leydig cells (ILCs). At this time, the 

population of ILCs is approximately 13-14 million [8]. During the transition from PLC to 

ILC, the SER expands greatly and the levels of 3βHSD increases [9]. Although these 

transformations result in a greater capacity for steroidogenesis by the ILCs, 

testosterone is unexpectedly not the major steroid produced [10]. Because the ILCs 

possess high levels of metabolizing enzymatic activity (i.e., 3α-hydroxysteroid 
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dehydrogenase, 3α-HSD, and 5α-reductase), they primarily produce the androgen 

metabolite 5α-androstane-3α, 17β-diol (ADIOL) [8].  

 

1.4: Adult Leydig Cells. 

From day 28 to day 56, the ILC population undergoes one final round of cell 

division, resulting in a population of approximately 25 million adult Leydig cells (ALCs) 

per testis [8]. In the ALCs, there is a predominance of testosterone over ADIOL 

production by PND56 [8]. In fact, testosterone production is 150 times greater in 90-day-

old ALCs than in PLCs at 21 days of age, and 5 times greater than in 35-day-old ILCs 

[7]. The ALCs have a greater abundance of SER compared to ILCs [8]. Although ALCs 

do not normally proliferate, they may however regenerate if the original population is 

eliminated. Thus, the population of ALCs is fully recovered within seven weeks of its 

eradication by ethane dimethanesulfonate (EDS), a cytoxin that specifically kills ALCs 

[11]. This regeneration involves the same cell progression that occurs during normal 

development of the ALCs, including the period during which ADIOL is the dominate 

steroid over testosterone [12].  

 

1.5: Luteinizing Hormone Receptor Signaling Pathway. 

Most of the testosterone produced by ALCs is mainly driven by LH stimulation. 

The LHR is a glycoprotein member of the superfamily of G protein-coupled receptors 

(GPCRs) [13]. The GPCR signaling pathway involves a receptor which recognizes an 

extracellular signal, an effector molecule which generates an intracellular signal, and a 

GTP-binding protein (G protein), a molecular switch which mediates signaling between 
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the receptor and effector molecule [13]. The G proteins are heterotrimers consisting of 

α, β, and γ subunits. In their inactive state, the Gα subunits bind GDP [14]. Binding of 

LH to the LHR activates stimulatory G proteins (Gs), which promote the release of GDP 

by the α subunit and binding of GTP [14]. Acting as an “on” signal, the active Gα subunit 

subsequently binds and activates the effector, adenylyl cyclase, which produces cyclic 

adenosine 3’,5’-cyclic monophosphate (cAMP) from the cellular ATP pool [14]. 

Subsequent hydrolysis of GTP by the GTPase domain of the Gα subunit results in 

termination of the hormonal signal, demoting it to an “off” position [14]. When the signal 

is “on”, a necessary step in the pathway of steroid hormone synthesis occurs; that is, 

the cAMP-dependent mobilization of cholesterol by protein transporters from cellular 

stores to the inner membrane of the mitochondria [15].  

 

1.6: Transport of Cholesterol into Mitochondria. 

Although details of this process remain unclear, it is possible that the cholesterol 

within steroidogenic cells may be stored in the form of lipoprotein and recognized by the 

membrane-bound scavenger receptor class B type I (SR-B1) lipoprotein receptor [16]. 

Also, there is the possibility that the cholesterol may be synthesized de novo from 

acetate by the 3-hydroxy-3- methyl-glutaryl-CoA (HMG-CoA) reductase enzyme [17]. In 

either case, cholesterol, in the form of cholesteryl esters, is subsequently stored in 

cytoplasmic lipid droplets [18]. Cholesterol is transported as lipid droplets in two phases 

in response to hormonal stimulation. The first phase involves the movement of the 

cholesteryl esters by cholesterol esterases and hormone-sensitive lipase towards the 

mitochondrial outer membrane [19, 20]. The second phase of cholesterol transfer 
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involves the mobilization of cholesterol from the outer mitochondrial membrane to the 

mitochondrial matrix. The two principal proteins that are involved in cholesterol transport 

across the mitochondrial membrane are the peripheral-type benzodiazepine receptor, 

recently renamed Translocator Protein (TSPO), and the steroidogenic acute regulatory 

protein (StAR) [21]. Evidence for StAR’s critical role in steroidogenesis was discovered 

in part from studies of congenital lipoid adrenal hyperplasia, an autosomal recessive 

disease resulting in the near absence of adrenal and gonadal steroid synthesis [22]. 

Studies revealed that the manifestation of the disease was due to mutations in the StAR 

gene [22]. The StAR gene was cloned and the 30 kDa phosphoprotein demonstrated to 

be processed from a 37 kDa cytosolic precursor protein containing a mitochondrial 

targeting sequence [23].  

TSPO is a high affinity, cholesterol binding protein, predominantly localized to the 

outer mitochondrial membranes of steroid-producing tissues [24]. Based on its 

structure, TSPO has been posited to function as a translocator of cholesterol [24]. In 

one study, Leydig cells were incubated with hCG, resulting in a rapid increase in TSPO 

ligand binding that can be inhibited by a PKA blocker, suggesting that cAMP-induced 

phosphorylation of TSPO may be involved in hCG-stimulated steroidogenesis [25]. 

Recent evidence suggests that TSPO and StAR form a complex that facilitates 

intramitochondrial cholesterol movement [26]. Even if this is the case, there appears to 

be a consensus that StAR is the transport protein primarily responsible for shuttling 

cholesterol into the mitochondria, thus continuing the process of testosterone 

production. 
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1.7: Testosterone Biosynthesis. 

In the rat, LH stimulation promotes cAMP to transfer cholesterol to the inner 

mitochondrial membrane where it is metabolized into pregnenolone via the P450 

cholesterol side chain cleavage enzyme (P450scc/CYP11A1) [27, 28]. Pregnenolone 

moves out of the mitochondria to the SER where it is converted to progesterone by 

3βHSD [27, 28]. Subsequently, progesterone is converted by 17α-hydroxylase/C17-20 

lyase (CYP17) to androstenedione [27. 28]. Finally, enzyme type 3 17β-hydroxysteroid 

dehydrogenase (17βHSD) metabolizes androstenedione into testosterone [27, 28]. 

Testosterone may be further metabolized into 17β-estradiol by aromatase enzyme 

action or into dihydrotestosterone (DHT) by 5α-reductase activity [28].  

 

1.8.1: Sertoli Cells. 

 Sertoli cells are anchored to the basement membrane and surround the 

developing population of sperm cells [29]. Interestingly, Sertoli cells are the only somatic 

cells in the seminiferous epithelium [29]. Once believed to be simply a structural 

component of the tubule, Sertoli cells are now considered to be the cellular “nurses” that 

aid in spermatogenesis [29]. Each Sertoli cell may host a maximum number of 

developing germ cells [29]. Hence, testes with a high number of Sertoli cells are 

capable of producing large numbers of spermatozoa [29]. Sertoli cells are analogous to 

the granulosal cells of the ovarian follicle [29]. However, unlike granulosal cells, the 

Sertoli cell contains receptors for both follicular-stimulating hormone (FSH) and 

testosterone [29]. Because Sertoli cells possess receptors to different hormones, both 

protein- and steroid-based, they have the capability of producing a variety of 
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substances. Examples include androgen-binding protein, a testosterone transport 

protein that increases testosterone concentration in the seminiferous tubules to 

stimulate spermatogenesis; transferin, a blood plasma protein that deliveries iron ions to 

spermatocytes for proper development; and Mullerian-inhibiting substance (MIS) [29, 

30]. 

 

1.8.2: Mullerian-inhibiting Substance. 

Also known as anti-Mullerian hormone (AMH), MIS is a gonad-specific member 

of the transforming growth factor β (TGF-β) family that is synthesized early in Sertoli cell 

development [30]. During male sexual differentiation, MIS induces regression of the 

Mullerian ducts. In addition, MIS plays a critical paracrine role in the regulation of Leydig 

cell development and testosterone biosynthesis [30-34]. Indeed, MIS has been shown 

to inhibit proliferation of prepubertal progenitor Leydig cells and prevent regeneration of 

Leydig cells after chemical ablation by EDS [35-36]. These actions of MIS in the testis 

are mediated directly through the MIS type II receptor, which is abundantly expressed in 

Leydig cells [31]. Male transgenic mice over-expressing MIS have feminized genitalia 

secondary to fewer Leydig cell numbers and decreased serum testosterone 

concentrations [37]. Conversely, mice with targeted deletions of MIS [MIS knockout 

(MIS-KO)] and/or its receptor develop Mullerian structures but also manifest Leydig cell 

hyperplasia, focal Leydig cell tumors, and infertility [36]. Recently, MIS has been shown 

to induce FSH mRNA expression and enhance LH promoter activity in a pituitary cell 

line, indicating that changes in MIS action may also affect the hypothalamic-pituitary-

gonadal axis [38]. Studies show that in adult MIS-KO mice, these is an increase in the 
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mRNA expression of P450c17A1, indicating that MIS may impair testosterone 

production by interfering with steroidogenic enzyme synthesis. [32]. 

 

In conclusion, it is clear that in the testis, testosterone production is a gradual 

and multi-step process that depends on endocrine as well as paracrine actions involving 

Leydig cells.  Although these steps are critical, there are additional mechanisms that are 

also necessary for normal Leydig cell function. Indeed, the next section will further 

discuss the complex regulation of testicular function, but with a focus on estrogen 

receptor signaling. 
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Section 2: Estrogen Receptors 

 

Introduction. 

The metabolism of testosterone by the aromatase P450 enzyme results in the 

steroid hormone product 17β-estradiol (E2). 17β-estradiol is a key regulator of growth, 

differentiation, and function in a wide array of target tissues, including the male 

reproductive tract. The following section will focus on estrogen regulation of testicular 

function by way of estrogen receptor signaling. 

 

2.1: Structure of Estrogen Receptors.  

Estrogen signaling involves two estrogen receptors (ESRs), ESR1 and ESR2 

(previously known as ERα and ERβ, respectively), both of which belong to the nuclear 

receptor family of transcription factors [39, 40]. ESR1 and ESR2 are located on 

chromosome 1 and 6 in the rat, respectively [40]. ESRs maintain conserved structure 

and possess three distinct functional domains [39, 40]. First, the N-terminal A/B domain 

is the most variable region, and the human ESR1 and ESR2 share less than 20% 

homology, suggesting that this domain may play a role in ER subtype-specific actions 

on target genes [40]. The A/B domain features an activation function (AF-1) that is 

ligand-independent and capable of promoter- and cell-specific activity [40, 41]. Second, 

the C-domain is the DNA-binding domain (DBD), and consists of two zinc finger motifs, 

which are not only responsible for DNA binding, but also for ESR dimerization, thus 

allowing the formation of homo- and heterodimers [40, 41]. This domain is highly 

conserved between ESR1 and ESR2 (95% homology), and the DBD from both 
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receptors bind to the same estrogen response element (ERE) [40]. Third, as part of the 

D/E/F ligand-binding domain (LDB), the D-domain is a flexible hinge between the DBD 

and the LBD [40]. The D domain, which is varies between ESR1 and ESR2 (only 30% 

homology), contains a nuclear localization signal that is necessary for nuclear 

translocation [40]. ESR1 and ESR2 share approximately 55% homology in LBD. The 

LBD plays an important role in ligand binding and receptor dimerization [41]. Also, the 

LBD contains a hormone-dependent activation function (AF-2) that works with AF-1 to 

recruit various co-regulatory protein complexes to the DNA-bound receptor [40]. 

Although the LBDs of ESR1 and ESR2 have very similar three-dimensional structures, 

the amino acids lining the ligand-binding pockets of ESR1 and ESR2 differ in two 

positions [41]. Moreover, the ligand-binding pocket of ESR1 is approximately 20% 

smaller than the one from ESR2, thus implying a selective affinity and pharmacology of 

ligands [41]. The F-domain of the LBD is less conserved between the two ESRs (less 

than 20% homology), and the function of this domain remains unclear [42]. One study 

suggested that in ESR1, the F domain plays a role in distinguishing estrogen agonists 

versus antagonists, possibly through interaction with cell-specific factors [42]. 

 

2.2: Estrogen Receptor Signaling Pathway. 

In the absence of ligand, the receptor is sequestered in a multi-protein inhibitory 

complex within the nuclei of target cells [41]. The classical mechanism of ESR signaling 

involves estrogen binding to receptors, causing the ESR to dissociate from its 

chaperone proteins, and then undergoing phosphorylation and dimerization [41]. 

Hormone binding also induces a change in conformation within the LBD of the ESRs, 
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allowing coactivator proteins, such as amplified in breast cancer-1 (AIB1), nuclear-

receptor coactivator-1 (NCoA-1/SRC1), p300, and CBP-associated factor (PCAF) to be 

recruited [41, 43]. These activated ESR-dimer complexes bind to specific estrogen 

receptor elements (EREs), cis-acting enhancers located within the regulatory regions of 

target genes [41, 43]. 

In humans, approximately one third of genes regulated by ESRs do not contain 

ERE-like sequences [41, 44]. It is possible that this mechanism of ERE-independent 

ESR activation is involve a tethering of the ligand-activated ESR to other transcription 

factors that are directly bound to DNA by their respective response elements [44]. For 

example, several genes are activated by 17β-estradiol through the interaction of ESRs 

with Fos and Jun proteins at activating protein-1 (AP-1) binding sites to induce or 

regulate transcriptional activity [44]. Studies suggest that genes containing GC-rich 

promoter sequences are regulated in an analogous manner, but include Sp-1 

transcriptional factor interaction with the ESRs [43]. Other transcriptional factors such as 

nuclear factor kB (NF-kB) and signal transducer and activator of transcription (STAT) 

may also play a role in this mechanism [43]. Moreover, involvement of specific E2-

ESRs-transcription factors depends on the ligand, the cell type, and the receptor 

subtype [41, 44]. In addition to the slow-acting, transcriptional effects of estrogen 

regulated by the classical nuclear ESRs, estrogen also mediates rapid effects that occur 

within seconds or minutes. These fast-acting effects include activation of different 

downstream signaling pathways, such as the mitogen-activated protein kinases 

(MAPKs) and phosphatidylinositol 3-kinase (PI3K) pathways, which regulate nuclear 

transcriptional events and cell proliferation [41, 45].  
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2.3: 17-β Estradiol and Estrogen Receptor Localization in the Testis. 

During fetal development in the rodent, Sertoli cells and Leydig cells, but not 

spermatogonia, express aromatase. However, most cells within the adult testis express 

aromatase, including Leydig cells, Sertoli cells, spermatocytes, spermatids and 

spermatozoa [46, 47]. Indeed, aromatase expression in the postnatal rat testis is 

dependent on age, occurring mainly in Sertoli cells and germ cells of the prepubertal 

testis no more than 21 days of age (i.e., prepubertal age) and in Leydig cells past this 

period [48]. In contrast to rodents, aromatase activity and estrogen biosynthesis occur 

predominantly in adipocytes in men, and the testis produces only 10–25% of E2 in 

circulation [49]. 

 Many studies indicate that in rodent testis, ESR1 is localized to Leydig cells and 

peritubular myoid cells, and ESR2 expression occurs in germ cells [50-52]. Beginning 

from 16 weeks of gestation in humans, ESR2 mRNA levels were 3 times greater than 

ESR1, but both were found to be present in the testis [53]. Interestingly, reports indicate 

that in the human testis, there are two variants of ERS2, designated ESR2.1 and 

ESR2.2 [54]. In fact, one study showed that ESR2.1 was more extensively expressed in 

Sertoli cells, germ cells and Leydig cells while ESR2.2 mRNA and protein were 

localized to spermatogonia in the fetal testis [55]. In the adult testis, both ESR1 and 

ESR2 are expressed in Leydig cells, Sertoli cells, elongating spermatids, and 

spermatocytes [56, 57]. In contrast, other studies show the localization of ESR1 in 

spermatids and mature spermatozoa, the presence of ESR2 in all germ cells, and the 

absence of ESR1 in Leydig cells [58, 59]. Also, there is higher ESR2.1 expression in 
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pachytene spermatocytes and round spermatids than in Sertoli cells and spermatogonia 

[58, 59]. Contrastingly, the expression of ESR2.2 is higher in Sertoli cells and 

spermatogonia than in spermatocytes [60]. Although the physiological importance of 

ESR2 isoforms in the human testis has yet to be clarified, studies indicate that ESR2.2 

forms heterodimers with ESR1, thus attenuating its transcriptional activity [61]. 

However, ESR2.2 is unable to bind endogenous E2 or recruit cofactors via the AF-2 

domain [61]. 

 

2.4: Studies Involving Transgenic Mice with Aromatase or ESR-Related Mutations. 

Estrogen action is a requirement for normal testicular function, as evidenced by 

testicular abnormalities in men with aromatase gene mutations and in individuals 

lacking a functional ESR1 that resulted in undescended testis, decreased sperm 

production, and altered endocrine profiles [62]. Thus, development of knockout (KO) or 

transgenic mice with impairments to molecular pathways related to hormone production 

action has advanced our understanding of reproductive endocrinology. Such mutated 

mice may have targeted deletion of the aromatase gene (ARKO), ESR1 gene 

(ESR1KO), ESR2 gene (ESR2KO) or both ESR subtypes (1/2ESRKO).  

ARKO mice adequately express ESR1 and ESR2 protein, but do not synthesize 

endogenous E2. Conversely, ESRKO mice have the capacity to produce E2 but lack 

either ESR1 and/or ESR2 protein [63]. Interestingly, a major problem associated with 

studies using ESRKO mice is the unintended abrogation of estrogen priming of 

extragonadal tissues during development [63]. In this respect, it is possible that the lack 

of endogenous E2 and/or ESR mediated activity during hypothalamic and pituitary 
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differentiation risks immature development of regulatory pathways in the HPT axis [63]. 

For example, ARKO mice have enlarged sex accessory organd, most likely due to 

observed elevations in serum testosterone levels and enhanced androgen action, and 

exhibit disruption in spermatogenesis, which is related to increased apoptosis of 

developing germ cells [63-65]. In contrast to the absence of E2, over expression of the 

aromatase gene and enhanced E2 production in mice induced cryptorchidism, 

spermatogenic arrest, increased Leydig cell proliferation, and decreased serum FSH 

and testosterone levels [63]. Disturbances in spermatogenesis were associated with 

decreased FSH levels while increased exposures to E2 induce Leydig cell hyperplasia 

[63, 66].  

Unlike ESR1 regulation of testicular function, ESR2 mediates germ cell 

development, as documented in numerous studies. For example, inactivation of ESR1 

in neonatal mice did not affect the number of Sertoli cells and spermatogonia, but ESR2 

inactivation resulted in more than a 50% increase in the number of spermatogonia, the 

stem cells for spermatogenesis [63, 67]. However, there was no evidence of disruption 

in sperm production in ESR2KO mice and no indication of ESR1 expression in Sertoli 

cells [63]. Interestingly, spermatogenic arrest occurs in ESR1KO mice, suggesting 

ESR1-mediated regulation of Sertoli cell support of germ cell development [63]. Basis 

for this observation stems from experiments involving transplantation of germ cells from 

ESR1-/- donor to testes of wild-type ESR1+/+ recipient mice void of germ cells [63]. 

Mating of these germ cell transplant recipients with wild-type females produced 

offspring heterozygous for the mutation ESR1+/- but maintained the coat-color marker 

of the ESR1-/- donor mice [63]. These observations confirmed that ESR1 was 
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necessary in testicular somatic cells, but not germ cells, for normal spermatogenesis 

[63, 68]. Unlike ESR1KO, ESR2KO males are fertile but have a higher risk for prostate 

hyperplasia with senescence [63]. Moreover, male 1/2ESRKO mice are characterized 

by infertility, which is potentially due to ESR1 deficiency because these effects are 

absent in ESR2KO mice [63, 69]. 

In addition to deficiencies in testicular function, ARKO and ESRKO consistently 

display abnormal endocrine profiles. For example, serum LH concentrations were 

increased in adult ARKO mice [64, 65] while serum testosterone levels, though elevated 

at 12–14 wk of age, were similar to wild-type and mutant mice [65]. Similarly, the 

concentrations of serum testosterone, LH, and FSH were increased in ESRKO males in 

comparison to their wild-type littermates [63, 70]. It is possible that the alterations in 

serum gonadotropin levels result from homeostatic adjustments to estrogen feedback 

regulation on the hypothalamic-pituitary axis [63]. Changes in serum steroid hormone 

levels occur in the ESR1KO but are absent in ESR2KO mice, suggesting that testicular 

steroidogenesis is mainly regulated by ESR1 [63]. Furthermore, administration ICI 

182,780, a pure, anti-estrogenic compound, decreased androgen biosynthesis in wild-

type but not ESR1KO Leydig cells [63, 67]. The impairment in androgen biosynthesis 

ESR1KO Leydig cells were a consequence to changes in steroidogenic enzyme activity, 

as ESR1 deficiency decreased gene expression for CYP17A1 and 17βHSD, enzymes 

involved in testosterone production [63].  

 
In essence, estrogen interaction with its receptors is a necessary regulator of 

steroidogenesis and spermatogenesis in the testis. Interestingly, estradiol is not the only 

substance that is capable of binding to ESRs. In this regard, there are exogenous 
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compounds that may activate or block ESR signaling, thereby possibly altering male 

reproductive function. Thus, the next section will address the subject of endocrine 

disruptors. 
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Section 3: Endocrine Disruptors 

 

Introduction. 

 Endocrine disruptors (EDs) are compounds in the environment or diet that 

interfere with normal hormone biosynthesis, signaling, or metabolism [71]. Many EDs 

possess estrogenic activity and disrupt normal estrogen signaling, which is mediated by 

ESR1 and ESR2. ESR1 and ESR2 have both unique and overlapping physiological 

roles in regulating estrogen signaling which are dependent on the ligand, the availability 

of cofactors, and the content of the target cell [71]. EDs that interfere with ESR signaling 

can modify genomic and nongenomic ESR activity through direct interactions with ESRs 

or through modulation of metabolic enzymes that are critical for normal estrogen 

synthesis and metabolism [71]. Many exogenous ligands with similar affinities to 

endogenous estrogen, 17β-estradiol, have been shown to display selective binding 

affinities to ESR1 and ESR2 [72]. Both ESR subtypes have relatively large ligand 

binding pockets that dictate common structural characteristics of estrogenic ligands [71, 

72]. In this respect, ESRs may bind numerous exogenous chemicals, and this broad 

specificity for ligands is what defines ESRs as promiscuous nuclear receptors [72]. 

Although EDs function through various mechanisms, many of them impact ESR 

signaling by directly binding with the ESR ligand binding pocket [71]. This section will 

discuss how the structural features of estrogenic compounds facilitate their interference 

with ESR signaling. Also, this section will highlight the general properties of EDs, such 

as pharmaceutical chemicals, bisphenols, and organochlorine pesticides.  
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3.1: Structural Features of Estrogenic Chemicals. 

  Crystal structures of the ligand binding domains (LBDs) of ESR1 and ESR2 

identify features of the ligand binding pockets that are important for comprehending 

which compounds may possess estrogenic activity through direct interaction with ESR1 

and/or ESR2. The ligand binding pockets of ESR1 and ESR2 are significantly larger, 

450 and 390 Å3, respectively, than E2, just 245 Å3, thus allowing a variety of molecules 

access to the LBD [73, 74]. Both receptors display similarly high affinities for E2 

because of the hydrophobic interactions and a network of hydrogen bonds between the 

hydroxyl groups on E2, a water molecule, and amino acids along the ligand binding 

pocket [73, 74]. Glu353 and Arg394 of ESR1 and Glu305 and Arg346 of ESR2 share 

hydrogen bonds with a water molecule and the hydroxyl in the A ring of E2 [74]. On the 

other side of the E2 molecule, the hydroxyl of the D ring shares a hydrogen bond with 

His524 of ESR1 that corresponds to His475 in ESR2 [74]. Ligands that bind directly to 

the LBD of ESRs are structurally analogous to E2 since they commonly have hydroxyl 

groups that undergo hydrogen bonding with the Glu, Arg, and His residues in the ligand 

binding pocket [74]. Although ESR1 and ESR2 have similar affinities for E2, there are 

many ligands that display selectivity for ESR1 and ESR2, including EDs. Differences in 

two amino acids within the ligand binding pocket are the main factors that define ESR 

subtype selectivity of many ligands [74]. Furthermore, in helix 5, Leu384 of ESR1 

corresponds to Met336 of ESR2, and in loop 6-7, and Met421 of ESR1 corresponds to 

Ile373 of ESR2 [74]. Based on the structural similarities of known ESR selective 

compounds, structural features that determine ESR selectivity and binding affinity are 
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critical for predicting chemicals that will directly bind ESRs and subsequently interfere 

with ESR signaling.  

 

3.2: Diethylstilbestrol. 

One of the pioneering examples of endocrine disruption is the exposure of 

women to diethylstilbestrol (DES), a therapeutic medication intended for preventing 

miscarriages during pregnancy [75]. Prenatal exposure to DES was later discovered to 

correlate with vaginal cancer in daughters of mothers taking DES, and structural, 

functional, and cellular anomalies in the reproductive system of males exposed to DES 

in utero [75]. DES has been studied in great detail because of its significant adverse 

effects on humans in utero, thus serving as a model for predicting actions of other EDs. 

It appears that DES acts through both genomic and nongenomic ER signaling to induce 

adverse ER signaling [75]. Indeed, DES is structurally analogous to E2, and crystal 

structures of ESR LBD bound to DES illustrate that the hydroxyl groups of DES are 

located in similar positions as those of E2 [75]. Thus, DES has a higher binding affinity 

index for ESRs than E2 due to additional hydrophobic interactions that enhances 

stabilization of the ligand to the receptors [76]. Because it has a high affinity for ESRs, 

DES is a potent transcriptional activator by way of genomic signaling [75, 76]. Studies 

show that neonatal exposure to DES caused a higher incidence of uterine tumors [75]. 

In addition, recent evidence suggests that DES can impact nongenomic estrogen 

signaling as well. For example, DES treatment of MCF7 breast cancer cells results in 

rapid activation of PI3 kinase signaling and phosphorylation of AKT [77, 78]. 

Furthermore, activation of the signaling cascade leads to phosphorylation of EZH2, a 
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histone methyl transferase, and modification of the chromatin structure, all of which 

contributes to the epigenetic effects of DES [78]. 

 

3.3: Methoxychlor and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane. 

Methoxychlor and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) are 

organochlorine pesticides that can exhibit estrogenic activity through interaction with the 

LBDs of both ESR1 and ESR2 [79]. DDT and methoxychlor promote uterine 

proliferation and cause abnormal follicle development, thereby impairing female 

reproductive function [80]. DDT occurs as a mixture of three isomers: p,p′-DDT, o,p′-

DDT, and o,o′-DDT [81]. Interestingly, o,p′-DDT is the isomeric form responsible for the 

estrogenicity of DDT, for it has a high binding affinity for both ESR1 and ESR2 [80, 81]. 

Although DDT was banned in the 1970s, it continues to be a relevant ED of current 

research because of its persistence in the environment and its accumulation in adipose 

tissue [80]. In fact, DDT and its dechlorinated metabolite 

dichlorodiphenyldichloroethylene (DDE) have been detected in the adipose tissue of 

humans in various regions throughout the world [81].  

As an alternative to DDT, methoxychlor was developed, but due to its endocrine 

disrupting properties, it was also banned by the United States Environmental Protection 

Agency in 2003 [82]. Most notably, methoxychlor stimulates uterotrophic activity and 

adversely affects fertility in rat models [83]. Although methoxychlor has relatively low 

binding affinities for ESR1 and ESR2 [79], the major metabolite of methoxychlor, 2,2-

bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), possesses unique estrogenic 

properties, which likely mediates the endocrine disrupting mechanism of methoxychlor. 
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Interestingly, HPTE behaves as an agonist for ESR1, but an antagonist for ESR2 [84]. 

In HepG2 liver carcinoma cells transfected with ESR1 and a luciferase reporter 

associated with an estrogen responsive complement 3 promoter, HPTE greatly 

enhanced reporter expression relative to E2 [84]. In cells under the same conditions, 

except for transfection with ESR2 instead of ESR1, HPTE induced luciferase expression 

that was only 13% of the maximal E2 response, indicating its agonistic properties are 

ESR1 selective [84]. In addition, HPTE selectively antagonizes E2-mediated ESR2 

activation. For example, HPTE co-treatment antagonized E2 induction of luciferase in 

HepG2 cells transfected with ESR2, but had no effect on E2-induced luciferase 

expression in cells transfected with ESR1 [84]. The selective agonistic properties of  

HPTE for ESR1 were also evident in similar chemicals with bishydroxyphenyl core 

structures, suggesting that many structurally-related compounds may regulate ESR 

signaling primarily through ESR1 [85]. In addition, studies show that ESR1KO mice do 

not respond to HPTE treatment, indicating that the effects of HPTE on gene regulation 

in the mouse uterus are dependent on ESR1 [86]. 

 

3.4: Bisphenol A.  

Industrial chemicals are commonly used in large quantities, and such large 

volumes and application of these chemicals are responsible for the high risk of 

exposure to humans. One of the highest volume chemicals used in industry is bisphenol 

A (BPA), a monomer of polycarbonate plastics [86]. Although present in medical tubing 

and epoxy resin, exposure to BPA occurs primarily through ingestion since 

polycarbonate plastics are used in food and water containers [87]. Human daily intake is 
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estimated to be approximately 1 µg/kg [87]. A recent study conducted by the Center for 

Disease Control estimates that over 90% of the United States population excrete 

significant amounts of BPA in their urine [87]. Even with the numerous in vitro and in 

vivo experiments demonstrating the estrogenic effects of BPA, there is still controversy 

surrounding the potential for BPA to significantly interfere with normal endocrine 

function. Similar to DES, BPA has two phenolic rings, but displays much lower binding 

affinities and transcriptional potencies for ESR1 and ESR2 [79, 88]. Studies show that a 

3-day exposure to a high dose (i.e., 100 mg/kg) of BPA can induce a uterotrophic 

response in immature CD-1 mice [89]. Considering the high doses of BPA necessary to 

elicit such responses, there continues to be uncertainty as to whether such evidence 

can be extrapolated to human exposure levels despite the many experimental systems 

in which BPA elicits estrogenic responses. 

In light of the low affinity of BPA for ESRs, it is possible that the estrogenic 

effects of BPA are due to nongenomic ER signaling. Indeed, studies show that BPA can 

bind to membrane-associated ESR1 or GPR30 and initiate rapid signaling [90, 91]. 

Furthermore, BPA has a higher affinity for GPR30 compared to that of ESR1 and ESR2 

[91]. In GH3/B6 pituitary cells, which have membrane-associated ESR1, nanomolar 

doses of BPA stimulated a calcium flux, indicating that rapid signaling can be triggered 

at environmentally relevant concentrations of BPA [90]. In micromolar ranges of BPA, 

nongenomic signaling is activated in MCF7 cells, as indicated by the presence of 

phosphorylated AKT and phosphorylated ERK proteins, and expression of temporarily-

transfected reporter constructs specifically responsive to MAPK and PI3K activation 

[92]. Studies indicate that the ability of BPA to induce genomic ESR-regulated 
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transcription is dependent on the availability of cofactors [93]. In HeLa cells transfected 

with ESR1 or ESR2 and the co-activators TIF2 or SRC-1, BPA had greater impact on 

gene expression in cells expressing ESR2 and  cofactor TIF-2, but similar effects in 

cells expressing ESR1 or ESR2 when SRC-1 was present [93]. Overall, it is clear that 

the complicated mechanisms through which BPA initiates signaling contribute to the 

controversy surrounding BPA and its role as an ED. 

 

 
3.5: Phytoestrogens. 

Phytoestrogens (also known as estrogen-like molecules or non-steroidal 

estrogens) are plant-based chemicals that have structures similar to that of E2 and 

display estrogenic properties, allowing them to act through ESR signaling pathways. 

Despite the structural similarity with E2, phytoestrogens are diphenolic yet non-steroidal 

compounds [93]. Phytoestrogens do not typically elicit severe, physiological 

abnormalities such as DES or other environmental EDs. Instead, phytoestrogens are 

often discussed in the context of promotion of bone and cardiovascular health, short-

term treatment for menopausal symptoms, and cancer prevention [94]. However, 

because of their profound physiological effects mediated by ESRs, phytoestrogens are 

classified as EDs, especially with their widespread exposure to humans through diets 

containing plant material [94]. Indeed, daily phytoestrogen intake ranges from 0.15 to 3 

mg per day in the United States [94, 95]. Although phytoestrogens have relatively weak 

affinities for ESR1 and ESR2, serum levels can reach near micromolar concentrations 

after a phytoestrogen-rich meal, significantly above the concentration of endogenously 

circulating estrogens (20-200 pg/mL) [96].  
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Phytoestrogenic compounds include more than 100 molecules, which are 

classified according to their chemical structure into 1) lignans (matairesinol, 

secoisolariciresinoldiglucoside), 2) coumestans (coumestrol, 4-methoxycoumestrol), 

and 3) stilbens (resveratrol), and 4) isoflavones (biochanin A, formonetin, genistein, 

daidzein) [94].  Most studies have mainly investigated the effects of isoflavones, as they 

are some of the most commonly ingested phytoestrogens [94]. 

Overall, it is clear that anthropogenic or synthetic EDs may cause detrimental 

physiological effects. However, naturally-occurring EDs, such as phytoestrogens, may 

be even more concerning since they are easily accessible within the environment. The 

next section will describe a specific category of phytoestrogens, namely isoflavones. 

There are various foods containing isoflavones. The following discussion will focus on 

the properties of isoflavones found in soybean products. 
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Section 4: Isoflavones and Soy-based Infant Formula 
 

4.1: Isoflavones Metabolism. 

In nature, isoflavones are present in more than 300 kinds of plants, but mostly 

found in the roots and seeds [97]. In plants, isoflavones are naturally present as sugar-

bound, biologically inactive compounds called glucoconjugates [98, 99]. By action of 

intestinal bacteria, they are hydrolyzed to aglycones, or active forms [100]. The 

aglycone (i.e., unconjugated, sugar-free) forms of isoflavones may be further 

metabolized directly in the intestine, or are transported from the intestine to the 

circulatory system [100]. Isoflavones can be measured in blood within an hour of 

ingestion [101, 102]. In blood serum, the highest concentrations of isoflavones are 

reached within 2-8 hours after consumption [102]. Degradation of isoflavones occurs in 

the liver, where they are conjugated with glucuronic acid and to a lesser degree with 

sulfates [102]. Finally, most of the ingested isoflavones are eliminated from the body in 

urine or bile within 24 hours [103-105]. 

 

4.2: Mechanism of Isoflavones Interaction with Estrogen Receptors. 

Because of their structural similarity with E2, isoflavones are able to bind to 

ESR1 and ESR2 [106]. Isoflavones act as agonists of ESRs, but their activity is lower 

than that of 17-β-estradiol [106]. In fact, most isoflavones have binding affinities that are 

approximately 100-500 times lower than that of 17β-estradiol [79]. However, at 

sufficiently high levels, the physiological effect of isoflavones may approach or exceed 

that of endogenous 17β-estradiol [79]. In addition, because isoflavones compete with 

estradiol for binding sites on ESRs, the effect of isoflavones on body homeostasis 
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depends also on the level of endogenous 17β-estradiol. For example, during a period of 

high concentrations of endogenous estrogens (e.g. women in the follicular phase of the 

menstrual cycle), the actions of isoflavones may be obstructed due to occupation of 

ESRs by 17β-estradiol, thus suppressing the full estrogenic potential of isoflavones [79, 

107]. In a contrasting state of low levels of endogenous estrogens (i.e., men, women in 

menopause, after ovariectomy), the estrogenic activity of isoflavones may manifest 

because of the high availability of binding sites on ESRs [79, 107, 108]. In this regard, 

there is an increasing use of isoflavones as an alternative or complement to hormonal 

replacement therapy in postmenopausal women [109].  

 

4.3: Isoflavone Interaction with the Metabolisms of Steroid Hormones. 

Isoflavone interaction with sex steroids may occur through multiple signaling 

pathways. In addition, influence of isoflavones on the metabolism of sex hormones can 

be quite complex and may depend on several factors including species, sex, age, and 

hormonal status. Moreover, the dosage and duration of isoflavone administration are 

not always linearly related to the treatment effect, thus explaining the significant 

variability of research findings. For example, one study showed that rats fed with high 

amounts of isoflavones had reduced plasma testosterone concentrations [110], but such 

changes were not observed in several other studies administering lower doses of 

isoflavones [111-113]. Furthermore, no changes in serum 17β-estradiol levels were 

reported after isoflavone administration in normal rats [110-112], but increased 17β-

estradiol serum levels were observed in ovariectomized rats [114].  

4.4: Soy-Based Infant Formula. 
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Isoflavone sources include red clover, germs of alfalfa, and flaxseed, but can be 

produced by some types of bacteria and fungi. Soybeans are one of the richest sources 

of isoflavones. On average, dry soybeans contain 1.2-4.2 mg isoflavones [115]. In fact, 

the content of isoflavones in soybeans may vary due to many factors, including the soil 

in which they are grown, climate, stage of their maturity, or degree of processing [115]. 

In general, higher levels of processing are associated with lower concentrations of 

isoflavones [115]. Soy is present in a widespread of food products, including milk, ice 

cream, tofu, and infant formula.  

Soy infant formula contains soy protein isolate and is fed to infants as a 

supplement to or a replacement for human milk, or as an alternative to cow milk 

formula. A number of studies worldwide have measured total isoflavone levels in infant 

formulas. In infant formulas manufactured in the United States, the range of total 

isoflavone levels reported in reconstituted or “ready-to-feed” formulas was 20.9-47 mg/L 

formula [116, 118].  

The three major isoflavones found in soy infant formula are predominantly the 

glyconic forms: genistin, daidzin, and glycitin [119-121]. These isoflavones are 

biologically active in their aglycone forms (sugar-free and unconjugated): genistein, 

daidzein, and glycitein, respectively [120-122]. The relative abundance of the 

isoflavones in soy infant formula (expressed in aglycone units) is: genistein (58-66%) > 

daidzein (29-34%) and glycitein (5-8%) [120-122]. Studies show that 30-50% of humans 

metabolize daidzein into another estrogenic metabolite called equol [123]. Furthermore, 

based on in vitro studies, the relative estrogenic activity of the isoflavones is genistein > 

equol > daidzein > glycitein [121-123]. Thus, because of their high abundance and 
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estrogenic activities, genistein and daidzein are considered the most important 

biologically active forms of isoflavones in soy-based infant formula.  

 

4.5: The Effects of Soy-Based Infant Formula on Male Reproductive Health. 

Soy isoflavones are generating public concern due to the fact that their presence 

in soy-based infant formulas exposes neonates to significantly higher concentrations of 

exogenous estrogens than other sources of infant diet. For example, the mean 

isoflavone intake in breastfed or cow milk–based formula infants is 0.005–0.01 mg⁄ day, 

while the intake of a soy-formula-fed infant in 6–47 mg⁄ day [124]. In this regard, 

numerous studies have been conducted in order to elucidate the effects of early-life 

exposure to isoflavones on reproductive health.  

  
Two studies reported the effects of feeding soy infant formula (versus standard 

cow milk formula) directly to infant marmosets (non-human primates) during lactational 

period (from PND4 or PND5 to PND35 to PND45; n=13 twin sets, plus four singletons) 

[30]. After treatment, the soy infant formula-fed males had significantly lower plasma 

testosterone levels than their cow milk formula-fed co-twins [125]. Histopathological 

analysis on the testes of a subset of the co-twins on PND35 to PND45 showed an 

increase in Leydig cell numbers per testes in the soy infant formula-fed marmosets 

compared to their cow milk formula–fed co-twin [125]. However, there was no significant 

change in testicular weight [125]. A follow up study was conducted on the remaining, 

sexually mature animals (80 weeks of age or older; n=7 co-twin sets) [126]. The males 

fed soy infant formula as infants had significantly heavier testes and an increase in the 

number of Leydig cells and Sertoli cells per testis as compared to cow milk formula-fed 
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controls [126]. However, there was no significant effect on timing of puberty, adult 

plasma testosterone levels, or fertility. It was suggested that the increase in testes 

weight was likely due to an increase in testicular cell populations [126]. Also, it is 

possible that the permanent change in Leydig and Sertoli cell populations may be an 

attempt at compensating for impaired Leydig cell function following soy infant formula 

exposure during lactation [126]. Furthermore, because the animals were also allowed to 

nurse from their mothers, the authors suggest that these studies may actually 

underestimate the effects of soy infant formula on human testicular development [126]. 

Similar to the effect described above in marmosets treated with soy infant 

formula during infancy, many studies reveal a generally consistent pattern of increased 

testicular weight in rats and mice treated with soy diet or isoflavone supplements during 

gestation and lactation or continuous exposure [127-130]. Exceptions include one study 

involving rats with a decrease in testis size [131], and two studies in rabbits resulting in 

no effect on testicular weight [132, 133]. One of the studies reporting an increase in 

testes weights (absolute and relative) was observed in rats 21 days of age with 

exposure to a soy-based diet supplemented with 5-1000 ppm and 50-1000 ppm 

isoflavones, respectively [127]. Furthermore, in 90-day-old male rats supplemented with 

the 50-1000 ppm isoflavones, absolute testes weights were decreased concurrently with 

an increase in serum testosterone levels at 1000 ppm isoflavone supplementation in 

comparison to controls [127]. Interestingly, decreased Leydig cell testosterone 

production was observed in adult male rats exposed to 1000ppm isoflavones 

supplementation during the perinatal period [127]. In another study, observations 

included an increase in absolute testes weights at PND28, but not at PND120, in male 
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rats continually exposed to soy-based diets containing from 36.1 to 1047 ppm 

isoflavones [128]. In contrast, one study documented decreased testes weights in soy-

diet control males relative to soy-free diet fed males [129]. In addition, there was a 

decrease in spermatocyte nuclear volume per Sertoli cell on PND18 and PND25, and a 

decrease in Sertoli cell nuclear volume per testes at PND18 in soy-diet control males in 

comparison to soy-free diet males [131]. A different study observed demasculinization 

of the reproductive system in pups after gestational and lactational exposure to dams 

(0, 5, 300 ppm from gestational day 1 until postnatal day 21), including smaller testis 

size, fewer pups with preputial separation at postnatal day 40, lower plasma 

testosterone concentration (3.72 ± 0.55, 1.76 ± 0.31, and 2.23 ± 0.42 ng/ml in 0, 5, and 

300 ppm, respectively), and fewer males capable of ejaculation at postnatal day 70 

[134].  

In closing, because numerous studies report conflict data after evaluating 

reproductive function in males exposed to soy isoflavones, there continues to be debate 

over the appropriate level of concern for this public health issue. In this regard, more 

research elucidating the acute and chronic effects of isoflavones exposure on testicular 

function is warranted.  
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Chapter 2: Thesis 
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Section 1: Background 

 

The testis consists of two major compartments: the interstitum and the 

seminiferous tubules. Components of the interstitium include two generations of Leydig 

cells that develop consecutively between embryogenesis and puberty [1]. As the first 

generation, the fetal Leydig cells differentiate from the stromal cells of the testis cords 

on gestational day (GD) 12 in the rat [1]. On GD19, or just prior to birth, fetal Leydig 

cells achieve peak steroidogenic capacity [1]. In contrast to the prenatal development of 

the first generation, the second generation of Leydig cells appears by postnatal Day 

(PND) 11 [135]. These cells are known as progenitor Leydig cells and possess great 

proliferative capacity. In fact, the most rapid increases in Leydig cell numbers occur 

between PND 14 and PND 56 in the rat [6]. At approximately PND 35, progenitor Leydig 

cells enlarge to form immature Leydig cells [6]. At approximately PND 56, immature 

Leydig cells undergo one final round of cell division and transform into adult Leydig cells 

[8]. Although adult Leydig cells in the sexually mature testis no longer possess 

proliferative ability, they are fully capable of producing steroid hormones, specifically 

testosterone [28].  

Testosterone synthesis involves transport of cholesterol by Steroidogenic Acute 

Regulatory (StAR) protein into the inner mitochondrial membrane where it is 

metabolized into pregnenolone via the P450 cholesterol side chain cleavage enzyme 

(P450scc/CYP11A1) [28]. Pregnenolone moves out of the mitochondria to the SER 

where it is converted to progesterone by 3β-hydroxysteroid dehydrogenase (3βHSD) 

[28]. Subsequently, progesterone is converted by 17α-hydroxylase/C17-20 lyase 
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(CYP17A1) to androstenedione [28]. Finally, androstenedione is metabolized to 

testosterone by type 3 17β-hydroxysteroid dehydrogenase (17βHSD) [28]. 

Located separately from Leydig cells are Sertoli cells, which reside with the 

seminiferous tubule of the testis. Sertoli cells are best known for its main function of 

nurturing the developing sperm cells through the different stages of spermatogenesis 

[136].  In addition, Sertoli cells secrete a series of hormones, including Mullerian-

inhibiting substance (MIS). As a member of the transforming growth factor-β family, MIS 

is a glycoprotein hormone responsible for inducing regression of the Mullerian ducts in 

the male embryo [136]. Neonatal MIS knock out (KO) mice are characterized by 

decreased germ cell numbers, suggesting that MIS regulates germ cell development 

[137]. Interestingly, MIS type II receptors (MISRII) are abundantly expressed on 

progenitor Leydig cells, immature Leydig cells and Sertoli cells [31]. This indicates that 

MIS may not only behave in an autocrine manner, but also works through a paracrine 

mechanism, namely regulation of Leydig cell function. Indeed, studies have 

demonstrated that MIS inhibits the progenitor Leydig cells proliferation, and regulates 

testosterone production [32, 138, 139].  

Testosterone may be converted into 17β estradiol via aromatase P450, which is 

present in the rat Leydig cells and Sertoli cells [47]. Therefore, estrogen may influence 

testicular function in a paracrine or autocrine manner when bound to estrogen receptors 

(ESRs). In the rat testis, there are two types of ESRs: ESR1, which is predominantly 

expressed in Leydig cells, and ESR2, which is mainly expressed in Sertoli cells [63]. 

The endocrine profile of ESR1 knockout (KO) mice includes abnormal 

spermatogenesis, steroidogenesis, and fertility patterns [63]. Conversely, ESR2KO mice 
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retain normal characteristics of male reproduction, implying that ESR1 is a major 

regulator of testicular function [63].  

In addition to localization within the testis, pituitary gonadotropes and 

hypothalamic nuclei mainly express ESR1 and ESR2, respectively, thus indicating a 

role for estrogen in the hypothalamus-pituitary-gonadal (HPG) axis, a major component 

of the endocrine system. The hypothalamus secretes GnRH, which binds to its 

receptors located on the anterior pituitary. Then, the anterior pituitary gland secretes 

follicle-stimulating hormone (FSH) and luteinizing hormone (LH), the primary tropic 

hormones that regulate testicular function. In the testis, FSH binding sites are 

exclusively expressed in Sertoli cells, and LH receptors (LHR) are solely located in 

Leydig cells. LH binding to LHR on Leydig cells results in testosterone secretion, which 

exerts a negative feedback onto both the hypothalamus and anterior pituitary and 

subsequently regulating GnRH and LH release, respectively. 

It is clear that the male reproductive tract is closely regulated by the endocrine 

system, and thus justifies the increasing concern about exogenous compounds that 

may potentially disrupt this hormonal homeostasis. These compounds are known as 

endocrine disruptors, chemicals in the environment (i.e., food, air, water) that interfere 

with normal endocrine function. Endocrine disruptors include anthropogenic substances 

such as bisphenol A (BPA), a plasticizer, and dichlorodiphenyltrichloroethane (DDT), 

the controversial and subsequently discontinued ingredient of pesticides. There are also 

naturally-occurring endocrine disruptors such as phytoestrogens, a diverse group of 

plant compounds that are structurally and functionally homologous to that of 17β-

estradiol. Increasing number of studies indicate that prolonged environmental exposure 
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to phytoestrogens may cause severe abnormalities in the male reproductive system, 

especially during fetal development.  

A highly-consumed source of phytoestrogens by man is soybeans. Soybeans 

predominantly contain a mixture of the isoflavones genistin and daidzin, which are 

hydrolyzed in the gastrointestinal tract to genistein and daidzein, respectively [140]. Soy 

isoflavones are generating public concern due to the fact that their presence in soy-

based infant formulas exposes neonates to significantly higher concentrations of 

exogenous than other sources of infant diet. For example, the mean isoflavone intake in 

breastfed or cow milk–based formula infants is 0.005–0.01 mg⁄ day, while the intake of a 

soy-formula-fed infant in 6–47 mg⁄ day [124]. Furthermore, previous studies 

demonstrated that perinatal exposure of male rats to high isoflavone concentrations 

significantly alters testosterone production that persists into adulthood [141]. Therefore, 

further investigation of the effects of early-life exposure to isoflavones on reproductive 

health is warranted.  

In order to address the issue of neonatal exposure to soy-based diets, the 

National Toxicology Program (NTP) commissioned a panel of experts to evaluate soy 

infant formula in 2010. After reviewing studies which, most of the time, focus on adverse 

effects of human exposure to genistein only, the NTP released a brief concluding that 

there was minimal concern for isoflavone exposure through soy infant formula. The 

panel also identified data gaps and research needs in the current literature in laboratory 

animals that limited its utility for reaching conclusions for infants fed soy infant formula. 

According to the panel, one major experimental design component lacking in the current 

research of soy infant formula was isoflavone exposure during the lactational period, 
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which is the most accurate period for comparison of human exposure to soy-based 

formula.  Many of the animal studies considered in the NTP evaluation of soy infant 

formula included isoflavone exposure during the continuous period of gestation, 

lactation, and post-weaning, making it difficult to distinguish the effects that might have 

occurred as a result of exposure during lactation alone. Therefore, data from young 

animals exposed directly to soy infant formula or isoflavones during the period of 

lactation only would provide a better approximation of human exposure of infants fed 

soy infant formula. Another problem with current studies investigating soy infant formula 

was the disregard for possible mixture effects. Although humans are exposed to 

mixtures of various chemicals present in the environment, research evaluating the 

effects of substances on living systems is frequently conducted using one compound at 

a time. For example, laboratory animal studies that involve administration of genistein 

only do not address the potential for interaction between other estrogenic isoflavones 

present in soy infant formula (i.e., daidzein). Indeed, numerous compounds may exhibit 

primarily independent actions, and many complex interactions may occur if two 

chemicals act at different but related targets. Therefore, in addition to continual research 

differentiating the individual actions of soy isoflavones, more studies considering the 

additive behavior of genistein and daidzein in a living system are necessary.  

There are three objectives to the present study. First, we will examine the 

importance of lactational period as a critical window of exposure to isoflavones. Second, 

we will determine whether the isoflavone-induced changes in testicular function are due 

to dose-additive behavior of genistein and daidzein or singular action by each 

compound. And third, we will investigate the ability of isoflavones indirectly regulating 
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Leydig cells via Sertoli cell product MIS, and thereby perturb the paracrine relationship 

between Leydig and Sertoli cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

Section 2: Experimental Protocol 

 

All animal procedures were performed using a protocol approved by the 

Institutional Animal Care and Use Committee of Auburn University and in compliance 

with the Guide for the Care and Use of Laboratory Animals.  

 
2.1: Housing of Animals. 

Time-bred Long-Evans dams (n =9-11 per group), weighing approximately 250 g, 

were given three days of acclimation time in the housing facility of the Department of 

Laboratory Animal Health, College of Veterinary Medicine, Auburn University. Each dam 

resided in a standard plastic cage (length, 0.47 m; width, 0.25 m; height, 0.22 m) 

containing wood chip bedding (Lab Products, Inc.) and glass water bottles. 

Polypropylene cages and glass bottles were used to eliminate background exposure to 

estrogens, which may occur when using polycarbonate cages [17]. Animals lived under 

constant conditions of light (12L:12D) and temperature (20-23°C), with free access to 

pelleted food.  

 

2.2: Diet Formulation and Experimental Design. 

In the present study, diets containing casein (control), genistin, daidzin, or whole 

soybeans, were used and formulated to be identical in terms of energy, micronutrients, 

cholesterol, calcium, and phosphorus (Table 1, 2). The isoflavone concentrations in 

experimental diets were 516 ppm genistin (GEN), 484 ppm daidzin DAID), and soybean 

meal (containing 516 ppm genistin with 484 ppm daidzin (SOY) (1000 ppm total 

isoflavone) based on the assayed content of genistin and daidzin, and calculation of the 
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equivalent aglycone as specified by the manufacturer, Harlan-Teklad (Table 1). 

Pregnant dams were maintained on a soy-free, casein-based diet from GD 12 to PND 1, 

and then fed experimental diets from PND 2 to PND 22. All male rats were reared with 

their natural littermates and not cross-fostered within groups. Because of the small 

population of Leydig cells in the prepubertal rat testis, each isolation procedure required 

at least 22 rats from each group. Therefore, male rats were selected randomly from 

members of each litter per group for analysis of Leydig cell function and other 

parameters from PND 22. At weaning (i.e., PND 22), all male offspring were fed the 

soy-free, casein-based control diet until they were sacrificed at 22-, 35-, and 96-days of 

age to collect serum and testicular samples.  

 

2.3: Leydig Cells Isolation Procedure. 

CO2 asphyxiation was performed on all Long-Evans rats for sacrifice, followed by 

castration. To begin Leydig cell isolation, the capsule surrounding each testis was 

surgically removed. Whole testicular tissue was digested in dissociation buffer (DB) 

containing 0.25mg/mL collagenase and 46µg/mL dispase for one hour in a shaking 

bath, with manual shaking every twenty minutes. Seminiferous tubules were removed 

by draining the mixture of DB and testicular fractions through nylon mesh (pore size, 0.2 

µm; Spectrum Laboratories, Inc.). The filtered DB containing the remaining testicular 

fractions were centrifuged at 2500 revolutions per minute (rpm) for 15 min at 4ºC. Cell 

fraction filtration was omitted from Leydig cell isolation procedure involving rats 96 days 

of age, when seminiferous tubules are sedimented by gravity in sedimentation buffer 

containing 10 mg/ml of bovine serum albumin. Cell fractions were added to Percoll 



41 

 

solution, and then centrifuged at 13500 rpm for 60 min to isolate gradient of Leydig 

cells. Leydig cell numbers were estimated using a hemocytometer, followed by purity 

assessment via histochemical staining for 3BHSD using 0.4 mM etiocholan-3β-ol-17-

one enzyme substrate (catalog no. E-5251, lot no. 11K4058; Sigma). 

 

2.4: Investigation of Leydig Cell Proliferation.  

After in vivo exposure to isoflavones, progenitor and immature Leydig cell 

proliferative activity were assessed by [3H] thymidine incorporation assays. Separate 

aliquots of 22- and 35-day-old Leydig cells were separately incubated in triplicate in 

culture medium containing 10 ng/ml of LH and 1 µCi/ ml of [3H] thymidine for labeling 

(specific activity: 80 Ci/mmol; lot no. 3106516; DuPont-NEN Life Science Products). 

After labeling for three hours, progenitor and immature Leydig cells were washed in 

Dulbecco phosphate-buffered saline (PBS) containing ethylenediaminetetra-acetic acid 

(EDTA; catalog no. E-5134, lot no. 074K0004; Sigma) and were divided into aliquots of 

0.5 X 106 cells and lysed in microcentrifuge tubes containing 500µL of hyamine 

hydroxide (catalog no. 802387, lot no. 8493J; MP Biomedicals) followed by scintillation 

counting. To assess whether Leydig cell proliferation was associated with cell-cycle 

progression and mitosis, cyclin D3 expression was measured from whole-cell lysates.  

 

2.5: Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and 

Western Blot Analysis.  

Leydig cells were homogenized in lysis buffer containing a protease inhibitor 

cocktail, including 80 µM aprotinin, 5mM bestatin, 1.5 mME-64, 0.5MEDTA, 2mM 
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leupeptin, and 1 mM peptatin (catalog no. 78410; Pierce Biotechnology, Inc.). To 

remove cellular debris, homogenized Leydig cells were centrifuged at 12,000 rpm for 10 

min at 4ºC. Protein concentration was measured using the BioRad protein assay (Bio-

Rad), with bovine serum albumin as standard. Protein aliquots (5-15 µg) diluted with 

Laemmli sample buffer (catalog no. 1610737; Bio-Rad) and 2-mercaptoethanol (catalog 

no. M7154; Sigma,Inc.) working solution were loaded onto 10% Tris-HCl mini 

acrylamide gels for SDS-PAGE and electrotransferred to nitrocellulose membranes 

(catalog no. 1620096; Bio-Rad) for 70-90 minutes. Membranes were blocked with 5% 

blotto (non-fat, dried milk in 0.1% PBS Tween 20) and subsequently incubated 

overnight at 4ºC with primary antibodies (Table 3). Blots were washed in 0.1% PBS 

Tween 20 three times (five minutes per wash) to remove unbound antibodies. 

Membranes were incubated with the respective horseradish peroxidase-conjugated 

secondary antibody (Santa Cruz Biotechnology) for 90 minutes at room temperature. 

Then, membranes were incubated with chemiluminescent developing reagent (catalog 

no. E2400; Denville) for 2 minutes. Membranes were subsequently exposed to x-ray 

film (catalog no. E-3012; Denville) to visualize the presence of the appropriate proteins. 

Protein expression was quantified using the Epson 4490 Perfection scanning software 

(Epson-America). Analysis of immunoblots involved measuring protein levels as the 

optical density of the bands using Doc-lt LS software (Ultra-Violet Products Ltd.). 

Proteins were normalized to B-Actin.  
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2.6: Investigation of Steroid Hormone Production. 

To measure testosterone production, testicular explants (0.05-0.10 g from PND 

22 male rats, 0.1-0.15 g from PND 35 male rats, 0.15-0.30 g from PND 96 male rats) 

and aliquots of Leydig cells (0.5 to 1X106) were incubated in microcentrifuge tubes. The 

culture medium consisted of DMEM/F-12 buffered with 14 mm NaHCO3 and 15 mm 

HEPES (Sigma Chemical Co., St. Louis, MO), and containing 0.1% BSA (MP 

Biomedicals LLC, Aurora, OH) and 0.5 mg/mL bovine lipoprotein (Sigma Chemical Co., 

St. Louis, MO). Incubations were conducted with a maximally stimulating dose of 100 

ng/ml ovine LH [(National Hormone and Peptide Program, National Institute of Diabetes 

and Digestive and Kidney Diseases (NIDDK)] at 34 C for 3 h. The concentration of T 

was assayed in duplicate in testicular explant samples and aliquots of spent media by 

tritium-based radioimmunoassay (RIA). To measure serum levels of testosterone and 

estradiol, serum was separated from trunk blood collected at the time that male rats 

were sacrificed at d 22, 35, and 96 postpartum. Serum testosterone and estradiol levels 

were measured by RIA using tritium-labeled testosterone and estradiol (both from 

PerkinElmer Life and Analytical Sciences, Boston, MA), respectively. 

 

2.7: Statistical Analysis.  

Data are presented as the mean ± SD. Assays involving material collected from 

animal studies were performed three to five times. Data were analyzed by one-way 

ANOVA followed by Dunnett test for multiple group comparisons (GraphPad, Inc.). 

Differences of P ≤ 0.05 were considered to be significant. 
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Section 3: Results 

 

Lactational exposure to isoflavones induces Leydig cell proliferation, and alters serum 
and testicular steroid hormone production in PND 22 male rats 
 

Lactational exposure of male rats to a combination of genistein and daidzein in 

the form of a whole soybean diet significantly increased progenitor Leydig cells 

proliferation compared to control (P < 0.01), as determined by [3H] thymidine uptake 

(Fig. 1A). Western blot analysis demonstrated that increased cell proliferation was 

related to greater cyclin D3 protein expression (Fig. 1B) (P < 0.05). Results of 

radioimmunoassays (RIA) indicated that serum estradiol and testosterone levels were 

significantly decreased in prepubertal male rats (PND 22) lactationally exposed to the 

maternal whole soybean diet than in control animals (Fig. 2A and Fig. 2B, respectively) 

(P < 0.05 and P < 0.01, respectively). Conversely, testosterone production significantly 

increased in testicular explants collected from 22-day old male rats exposed to the 

daidzin and whole soybean diets (Fig. 3A) (P<0.01). Furthermore, Leydig cell 

testosterone production was decreased in prepubertal male rats exposed to the genistin 

(P<0.01), daidzin (P<0.01), and whole soybean (P<0.01) diets (Fig. 3B). Table 4 

summarizes the previously-mentioned effects of lactational exposure to soy isoflavones 

on testicular function and steroid hormone production in male rats at 22 days of age. 

 
Lactational exposure to isoflavones induces proliferation and alters testicular steroid 
hormone production in male rats 35 days of age 
 

Immature Leydig cell proliferation increased in 35-day-old male rats lactationally 

exposed to the whole soybean diet (Fig.4) (P < 0.05). There were no differences in 

serum testosterone and estradiol levels in pubertal male rats (Fig. 5A and B). However, 
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testicular testosterone concentrations were increased in animals 35 days of age in the 

soybean diet group (Fig. 6A) (P < 0.05). In contrast, steroidogenic capacity was 

decreased in Leydig cells from 35-day-old male rats exposed only to the daidzin diet 

(Fig. 6B) (P < 0.05). Table 5 summarizes the effects of lactational exposure to soy 

isoflavones on testicular function and steroid hormone production in 35-day-old male 

rats. 

 

Lactational exposure to soy isoflavones impairs steroidogenic capacity in adult male 
rats 
 

At 96 days of age, serum estradiol levels were unchanged in male rats exposed 

to the isoflavones-containing diets (Fig. 7A). However, serum testosterone levels were 

decreased in the whole soybean diet group (Fig. 7B) (P < 0.05). Although testicular 

testosterone concentrations were unaffected in animals exposed to the soy isoflavone 

diets (Fig. 8A), Leydig cell testosterone production was decreased in male rats exposed 

to the genistin (P<0.01), daidzin (P<0.01), and whole soybean (P<0.01) diets, as shown 

in Fig. 8. Furthermore, the adverse effects of soy isoflavone exposure on steroidogenic 

capacity in Leydig cells was reflected in augmented expression of StAR (Fig. 9A) (P < 

0.01), and enzyme protein expression [i.e., HSD3B (Fig. 9C) (P < 0.01), and CYP17A1 

(Fig. 9D) (P < 0.01)], except for CYP11A1 (Fig. 9B), which remained unchanged, and 

HSD17B3, which was decreased (Fig. 9E) (P < 0.05). Table 6 summarizes the effects of 

lactational exposure to soy isoflavones on testicular function and steroid hormone 

production in adult male rats. The possibility of isoflavones action is reinforced by 

observations of increased in ESR1 expression (Fig. 10) (P < 0.01). However, there were 
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no differences in AR and LHR expression in adult male rats exposed to soy isoflavones 

in the diet (Fig. 11 and Fig. 12, respectively).  

 
 
Soy isoflavones regulate MIS expression in progenitor Leydig cells 
 
 Lactational exposure of 22-day-old male rats to the daidzin and whole soybean 

diet decreased MIS expression in Sertoli cells (Fig. 13A) (P < 0.05 and P < 0.01, 

respectively). In addition, MISRII levels were increased in prepubertal male rats 

exposed to the genistin (P < 0.01), daidzin (P < 0.01), and whole soybean (P < 0.01) 

maternal diets, as shown in Fig. 13B. Together, these observations suggest that MIS 

plays a role in isoflavone-mediated regulation of Leydig cell function in male rats 22 

days of age.  
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Section 4: Discussion 

 

In the present study, there were three main objectives: (1) to determine the 

importance of the lactational period as a critical window of exposure to soy isoflavones, 

(2) to examine the individual actions and possible mixture effects of soy isoflavones 

genistin and daidzin on testicular function, and (3) to investigate the potential for soy 

isoflavones to disrupt the paracrine relationship between testicular Leydig and Sertoli 

cells. Results showed that lactational exposure to a combination of genistein and 

daidzein increased Leydig cell proliferative activity in 22- and 35-day-old male rats. We 

also observed that exposure to daidzein, alone or in combination with genistein, 

decreased expression of MIS, a paracrine hormone demonstrated to inhibit postnatal 

Leydig cell proliferation. In this regard, mice that overexpress human MIS are known to 

have reduced Leydig cell numbers [32]. In contrast, MISKO mice develop Leydig cell 

hyperplasia [138]. Therefore, it is possible that the high concentrations of soy 

isoflavones suppressed MIS expression, and subsequently contribute to the induction of 

Leydig cell proliferation. MIS has also been indicated to mediate testosterone 

production. For example, plasma testosterone concentrations were diminished in 60-

day-old MISKO male mice [139]. Thus, observations of reduced serum testosterone 

levels in 22- and 35-day-old male rats when exposed to genistein and daidzein together 

may be a consequence of decreased MIS expression, at least in part.  

In the present study, testicular testosterone production increased in prepubertal 

male rats exposed to genistein and daidzin together, and in pubertal rats exposed to 

daidzein alone or with genistein during lactational period. Testicular testosterone levels 
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primarily depend on two factors: (1) the number of Leydig cells and (2) testosterone 

production per Leydig cell. Although we observed decreased Leydig cell testosterone 

production in 22- and 35-day-old rats exposed to genistein and/or daidzein, greater 

Leydig cell numbers may explain the overall increase in testicular testosterone 

production.  

Results also showed diminished serum 17β-estradiol concentrations in 

prepubertal male rats exposed to both genistein and daidzein during the lactational 

period. Therefore, diminished 17β-estradiol levels are possibly the result of reduced 

testosterone availability. The decrease in 17β-estradiol levels may be due a decrease in 

aromatase P450, the enzyme responsible for converting testosterone to 17β-estradiol. 

Although not explored in the present study, other studies have shown that isoflavones 

regulate aromatase expression. For instance, phytoestrogens, including genistein and 

daidzein, inhibit aromatase expression in human granulosa-luteal cells [142]. Moreover, 

it is possible that impairment to aromatase in these male rats may have adversely 

affected spermatogenesis, steroidogenesis, and fertility, as seen in transgenic 

aromatase-KO mice [46, 65]. 

Interestingly, most of the disturbances to testicular function and steroid hormone 

production in pre-pubertal male rats resulted from exposure to genistein and daidzein 

together, suggesting a dose-additive behavior when both isoflavones are administered 

to neonates. Also, lactational exposure to a combination of genistein and daidzein had 

similar outcomes in comparison to our previous perinatal (i.e., gestational and 

lactational periods) exposure studies. For example, perinatal exposure to 1000 ppm 

isoflavones also induced proliferation [141], and increased serum testosterone levels 
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[127] and decreased Leydig cell testosterone production [141]. It is possible that 

differences in testicular function and steroid hormone production are related to duration 

of exposure to dietary isoflavones. Overall, lactational exposure to soy isoflavones is a 

critical time of exposure to soy isoflavones in neonatal male rats.  

The endocrine disruptor hypothesis states that early developmental exposure to 

exogenous estrogenic chemicals can disrupt male reproductive development and impair 

fertility at later stages of life. In the present study, the isoflavones-induced changes 

observed before and during puberty were still apparent into adulthood. Indeed, serum 

testosterone levels remained decreased in 96-day-old male rats exposed to both 

genistein and daidzein during lactational period. It is interesting to note that previous 

studies show that perinatal exposure to genistein and daidzein together increased 

serum testosterone levels [127, 141] in contrast to observations in the present study in 

which lactational exposure to both isoflavones decreased serum testosterone 

production in adult male rats. Nevertheless, changes in androgen secretion and serum 

testosterone levels may be linked to ESR1-mediated activity, as ESR1 expression was 

increased in adult male rats exposed to a combination of genistein and the daidzein. 

Because ESR1KO mice display elevated serum testosterone levels [70], enhanced 

ESR1 protein expression likely renders Leydig cells more sensitive to the action of soy 

isoflavones, which affects steroid hormone production. The results also demonstrated 

that lactational exposures to soy isoflavones affected differentiation of Leydig cell 

steroidogenic capacity, as evidenced by altered expression of proteins involved in 

androgen biosynthesis (i.e., StAR and steroidogenic enzymes). Although we observed 

increased StAR protein levels and yet a decrease in Leydig cell testosterone production, 
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it is suggested that augmented StAR expression is due to a decrease in phosphorylated 

StAR, which is required to make cholesterol available for androgen biosynthesis [141, 

143]. Therefore, decreased androgen biosynthesis likely resulted from disruption of 

StAR phosphorylation after exposure to both genistein and daidzein during the 

lactational period. In addition, 3βHSD and CYP17A1 protein expressions were 

increased. Increased steroidogenic enzyme activity is probably the result of homeostatic 

adjustment to decreased cholesterol availability. However, there was a marked 

decrease in 17βHSD protein expression. The 17βHSD enzyme is involved in the final 

step in androgen biosynthesis; that is, converting androstenedione to testosterone. 

Moreover, reports associate suppressed MIS activity to inhibition of Hsd17b gene 

expression in adult MISKO mice [139]. Therefore, reduced MIS expression may 

contribute to decreased 17βHSD activity, ultimately impairing androgen biosynthesis in 

adult male rats exposed to both genistein and daidzein during the lactational period. 

However, it is also possible that the other enzymes in the androgen biosynthetic 

pathway are subject to interference by isoflavones-mediated MIS activity. For example, 

the observed increase in CYP17A1 expression may be also due to decreased MIS 

expression [32]. Thus, lactational exposure to both genistein and daidzein soy 

isoflavones may exert differential effects on steroidogenic enzyme capacity in Leydig 

cells.  

There was evidence demonstrating that exposure to both isoflavones during the 

lactational period interferes with Leydig-Sertoli cell paracrine action, ultimately resulting 

in abnormal Leydig cell function. In this regard, I believe that the next direction on this 

topic includes a further evaluation of Sertoli cell action on testicular function . Indeed, in 
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addition to MIS, Sertoli cells secrete numerous products, including androgen-binding 

protein, which increases testosterone concentration in the seminiferous tubules to 

stimulate spermiogenesis. Because of its extensive regulation of sperm development, 

studies investigating the effects of lactational exposure to isoflavones on the expression 

of Sertoli cell products are warranted. 
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Section 5: Conclusion 

 

Based on observations from the present study, the lactational period is a critical 

window of exposure to soy isoflavones.  Indeed, Leydig cell proliferative activity and 

steroidogenesis in male rats were affected after lactational exposure to soy isoflavones 

in the maternal diet.  Also, impairment of Leydig cell steroidogenesis persisted into 

adulthood because adult Leydig cells from animals exposed to soy isoflavones 

produced lesser testosterone amounts than control.  Importantly, more parameters were 

affected by exposure to the whole soy bean diet (SOY) than was seen in the genistein 

(GEN) and daidzein (DAID) diet groups implying that soy isoflavones may act in a dose-

additive manner.   Moreover, results suggest that lactational exposure to soy 

isoflavones may interfere with paracrine signaling mechanisms between Sertoli and 

Leydig cells because MIS and MISRII protein expression was altered after exposure to 

soy isoflavones, respectively.  Overall, given the homology in reproductive physiology 

among mammalian species, soy-based diets have the potential to disrupt the endocrine 

function of the mammalian testis especially following early-life exposures. However, 

additional studies are required to describe the long-term effects, if any, of the use of soy 

infant formulas in the population.  
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Table 1: Experimental Protocol. Time-bred, Long Evans  dams were fed diets 
containing casein, 516ppm genistin (GEN), 484 ppm daidzin (DAID), or soybean meal 
containing 516ppm genistin with 484 ppm daidzin (SOY; 1000 ppm total isoflavone) 
from PND1 until PND22. 

 
Group 1: 
Soy-free, 

casein-based diet 
(Control; n=9) 

 
Group 2: 

 
516 ppm genistin diet 

(n=10) 

 
Group 3: 

 
484 ppm daidzin diet 

(n=10) 

 
Group 4: 

Soybean meal diet 
516 ppm genistin & 

484 ppm daidzin 
(1000 ppm total) 

(n=11) 
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Table 2: Crude composition of experimental diets. Soybean diet contains 516ppm 
genistin and 484ppm daidzin (total isoflavones content:1000ppm genistin and daidzin). 
Dashes indicate absence of the respective ingredient. 
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 Molecular Weight 
(kDa) 

Catalog no. Dilution factor  

ACTB 42 sc-1616 1:2000 

AR 110 sc-815 1:2000 

Cyclin D3 35 sc-182 1:500 

CYP11A1 60 sc-18043 1:500 

CYP17A1 55 sc-46081 1:10000 

ESR1 66 ab2746-50 1:1000 

17βHSD 35 sc-66415 1:1000 

3βHSD 42 sc-28206 1:1000 

LHR 79 sc-26342 1:1000 

MIS 65 sc-6886 1:1000 

MISRII 63 sc-67287 1:2000 

StAR 30 sc-25806 1:2000 

 
Table 3: Compilation of primary antibodies recognizing respective proteins. Ab= Abcam, 
Inc., sc= Santa Cruz biotechnologies. 
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Lactational Exposure to Genistein and Daidzein Together Induced 
Progenitor Leydig Cell Proliferation  

 

  
Figure 1A: Proliferative activity of progenitor Leydig cells after lactational exposure of 
neonatal male rats to dietary isoflavones. Progenitor Leydig cell proliferative activity was 
determined by tritium-labeled thymidine incorporation assay followed by scintillation 
counting. * P< 0.01 versus control. 
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Lactational Exposure to Genistein and Daidzein Together Increased 
Cyclin D3 Protein Expression in Progenitor Leydig Cells 

 

 

            

      
Figure 1B: In order to confirm proliferative activity in progenitor Leydig cells isolated 
from neonatal male rats, progenitor Leydig cell expression of cell-cycle protein cyclin D3 
was analyzed by Western blotting and normalized to B-Actin. Data represent results 
from densitometric analysis of three Western blots. Cyclin D3= 35 kDa, B-Actin= 42 
kDa.  *P < 0.05 versus control. 
 

 
 
 
 
 
 
 

B-ACTIN 

CYCLIN D3 
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Lactational Exposure to Genistein and Daidzein Together Decreased  
Serum Estradiol Levels in Neonatal Male Rats (PND 22) 

          
Figure 2A: Serum estradiol levels in neonatal male rats after lactational exposure to 
dietary isoflavones. Serum was separated from blood, which was collected at sacrifice. 
Serum estradiol levels were measured by radioimmunoassays. * P< 0.05 versus control. 
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Lactational Exposure to Genistein and Daidzein Together Decreased  

Serum Testosterone (T) Levels in Neonatal Male Rats (PND 22) 
 

   
Figure 2B: Serum testosterone (T) levels in neonatal male rats after lactational 
exposure to dietary isoflavones. Serum was separated from blood, which was collected 
at sacrifice. Serum T levels were measured by radioimmunoassays. * P< 0.01 versus 
control. 
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Lactational Exposure to Daidzein Alone or with Genistein Increased Testicular 
Testosterone (T) Production in Neonatal Male Rats (PND 22) 

  
Figure 3A: Testosterone (T) production per gram of testicular explants collected from 
testes of neonatal male rats after lactational exposure to dietary isoflavones. Testicular 
T production was measured in aliquots of spent media after 3 h incubation by 
radioimmunoassays. * P< 0.01 versus control. 
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Genistein and Daizdzein, Acting Singly or Together, Decreased Progenitor Leydig 

Cell Testosterone (T) Production after Lactational Exposure (PND 22) 

    
Figure 3B: Testosterone (T) production by progenitor Leydig cells collected from testis 
of neonatal male rats after lactational exposure to dietary isoflavones. Leydig cell T 
production was measured in aliquots of spent media after 3 h incubation by 
radioimmunoassays. * P< 0.01 versus control. 
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Table 4: Summary of the effects of lactational exposure to dietary isoflavones on  
endocrine parameters in neonatal male rats. ND = No significant difference compared to 
control 

  

Genistein 

 

Daidzein 

 

Genistein & 

Daidzein 

Leydig cell Proliferation ND ND 
 

Estradiol Levels ND ND 
 

Serum T Levels ND ND 
 

Testicular T Production ND 
  

Leydig Cell T 

Production 

   



77 

 

 
Lactational Exposure to Genistein and Daidzein Together Increased 

Immature Leydig Cell Proliferation in Prepubertal Male Rats (PND 35) 

 
Figure 4: Proliferative activity of immature Leydig cells after lactational exposure of 
prepubertal male rats to dietary isoflavones. Immature Leydig cell proliferative activity 
was determined by tritium-labeled thymidine incorporation assay followed by scintillation 
counting. * P< 0.05 versus control. 
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Serum Estradiol Levels Were Similar in 

 Prepubertal Male Rats (PND 35) with and without Lactational Exposure to Soy 
Isoflavones 

 
Figure 5A: Serum estradiol levels in prepubertal male rats after lactational exposure to 
dietary isoflavones. Serum was separated from blood, which was collected after 
sacrifice. Serum estradiol levels were measured by radioimmunoassays.                         
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Serum Testosterone (T) Levels Were Similar in 

 Prepubertal Male Rats (PND 35) with and without Lactational Exposure to Soy 
Isoflavones 

 
 

 
Figure 5B: Serum testosterone (T) levels in prepubertal male rats after lactational 
exposure to dietary isoflavones. Serum was separated from blood, which was collected 
after sacrifice. Serum T levels were measured by radioimmunoassays.  
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Lactational Exposure to Genistein and Daidzein Together  
Increased Testicular Testosterone (T) Production in Prepubertal Male Rats (PND 

35) 

 
Figure 6A: Testosterone (T) production per gram of testicular explants collected from 
testes of prepubertal male rats after lactational exposure to dietary isoflavones. 
Testicular T production was measured in aliquots of spent media after 3 h incubation by 
radioimmunoassays. * P< 0.05 versus control. 
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Lactational Exposure to Daidzein Decreased Immature Leydig cell Testosterone 

(T) Production in Prepubertal Male Rats  
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Figure 6B: Testosterone (T) production by immature Leydig cells collected from testis 
of prepubertal male rats after lactational exposure to dietary isoflavones. Leydig cell T 
production was measured in aliquots of spent media after 3 h incubation by 
radioimmunoassays. * P< 0.05 versus control. 
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Table 5: Summary of the effects of lactational exposure to dietary isoflavones on 
endocrine parameters in male rats 35 days of age. ND = No significant difference 
compared to control 
 

  

Genistein 

 

Daidzein 

 

Genistein & 

Daidzein 

Leydig cell Proliferation ND ND 
 

Estradiol Levels ND ND ND 

Serum T Levels ND ND ND 

Testicular T Production ND ND 
 

Leydig Cell T 

Production 

ND 
 

ND 
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Serum Estradiol Levels Were Similar in 

 Sexually-mature Male Rats (PND 96) with and without Lactational Exposure to 
Soy Isoflavones 

 

 
Figure 7A: Serum estradiol levels in sexually-mature male rats after lactational 
exposure to dietary isoflavones. Serum was separated from blood, which was collected 
after sacrifice. Serum estradiol levels were measured by radioimmunoassays.   
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Lactational Exposure to Genistein and Daidzein Together Decreased Serum 

Testosterone (T) Levels in Sexually-mature Male Rats (PND 96) 

 
Figure 7B: Serum testosterone (T) levels in sexually-mature male rats after lactational 
exposure to dietary isoflavones. Serum was separated from blood, which was collected 
after sacrifice. Serum T levels were measured by radioimmunoassays. * P< 0.05 versus 
control. 
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Testicular Testosterone (T) Production Was Similar in 

 Sexually-mature Male Rats (PND 96) with and without Lactational Exposure to 
Soy Isoflavones 

 

 
Figure 8A: Testosterone (T) production per gram of testicular explants collected from 
testes of sexually-mature male rats after lactational exposure to dietary isoflavones. 
Testicular T production was measured in aliquots of spent media after 3 h incubation by 
radioimmunoassays.  
 
 



86 

 

 
Genistein and Daizdzein, Acting Singly or Together, Decreased Adult Leydig Cell 

Testosterone (T) Production after Lactational Exposure 
 
 

 
Figure 8B: Testosterone (T) production by adult Leydig cells collected from testis of 
sexually-mature male rats after lactational exposure to dietary isoflavones. Leydig cell T 
production was measured in aliquots of spent media after 3 h incubation by 
radioimmunoassays. * P< 0.01 versus control. 
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Table 6: Summary of the effects of lactational exposure to dietary isoflavones on 
endocrine parameters in PND 96 male rats. ND = No significant difference compared to 
control. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Genistein 

 

Daidzein 

 

Genistein & 

Daidzein 

Estradiol Levels ND ND ND 

Serum T Levels ND ND 
 

Testicular T Production ND ND ND 

Leydig Cell T 

Production 
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Lactational Exposure to Genistein and Daidzein Together  
Increased Steroidogenic Acute Regulatory (StAR) Protein Expression in Adult 

Leydig Cells (PND96) 
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Figure 9A: Expression of StAR in adult Leydig cells from sexually-mature male rats 
after lactational exposure to dietary isoflavones was analyzed by Western blotting and 
normalized to B-Actin. Data represent results from densitometric analysis of three 
Western blots. StAR= 30 kDa, B-Actin= 42 kDa. *P < 0.01 versus control. 
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Cytochrome P450 Side Chain Cleavage (CYP11A1) Protein Expression Was Not 
Affected by Lactational Exposure to Soy Isoflavones in Sexually-mature Male 

Rats (PND 96) 
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Figure 9B: Expression of CYP11A1 in adult Leydig cells from sexually-mature male rats 
after lactational exposure to dietary isoflavones was analyzed by Western blotting and 
normalized to B-Actin. Data represent results from densitometric analysis of two 
Western blots. CYP11A1= 60 kDa, B-Actin= 42 kDa. 
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Lactational Exposure to Genistein and Daidzein Together  
Increased 3-Beta Hydroxysteroid Dehydrogenase (3BHSD) Protein Expression in 

Adult Leydig Cells (PND 96) 
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Figure 9C: Expression of 3BHSD in adult Leydig cells from sexually-mature male rats 
after lactational exposure to dietary isoflavones was analyzed by Western blotting and 
normalized to B-Actin. Data represent results from densitometric analysis of three 
Western blots. 3BHSD= 42 kDa, B-Actin= 42 kDa. *P < 0.01 versus control. 
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Genistein and Daizdzein, Acting Singly or Together, Increased Cytochrome P450 
17α-hydroxylase (CYP17A1) Protein Expression in Adult Leydig Cells (PND 96) 

After Lactational Exposure 
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Figure 9D: Expression of CYP17A1 in adult Leydig cells from sexually-mature male rats 
after lactational exposure to dietary isoflavones was analyzed by Western blotting and 
normalized to B-Actin. Data represent results from densitometric analysis of three 
Western blots. CYP17A1= 55 kDa, B-Actin= 42 kDa. *P < 0.05 versus control. 
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Lactational Exposure to Genistein and Daidzein Together  
Decreased 17-Beta Hydroxysteroid Dehydrogenase (17BHSD) Protein Expression 

in Adult Leydig Cells (PND 96) 
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Figure 9E: Expression of 17BHSD in adult Leydig cells from sexually-mature male rats 
after lactational exposure to dietary isoflavones was analyzed by Western blotting and 
normalized to B-Actin. Data represent results from densitometric analysis of three 
Western blots.17BHSD= 35 kDa, B-Actin= 42 kDa. *P < 0.01 versus control. 
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Lactational Exposure to Genistein and Daidzein Together Increased 
Estrogen Receptor 1 (ESR1) Protein Expression in Adult Leydig Cells (PND 96) 
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Figure 10: Expression of ESR1 in adult Leydig cells from sexually-mature male rats 
after lactational exposure to dietary isoflavones was analyzed by Western blotting and 
normalized to B-Actin. Data represent results from densitometric analysis of four 
Western blots. ESR1= 66 kDa, B-Actin= 42 kDa. *P < 0.01 versus control. 
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Androgen Receptor (AR) Protein Expression in Adult Leydig Cells (PND 96) Was 
Not Affected by Lactational Exposure to Soy Isoflavones  

 
 

 

 

 
Figure 11: Expression of AR in adult Leydig cells from sexually-mature male rats after 
lactational exposure to dietary isoflavones was analyzed by Western blotting and 
normalized to B-Actin. Data represent results from densitometric analysis of four 
Western blots. AR= 110 kDa, B-Actin= 42 kDa.  
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Luteinizing Hormone Receptor (LHR) Protein Expression in Adult Leydig Cells 
(PND 96) Was Not Affected by Lactational Exposure to Soy Isoflavones  

 
 

 

 

   
Figure 12: Expression of LHR in adult Leydig cells from sexually-mature male rats after 
lactational exposure to dietary isoflavones was analyzed by Western blotting and 
normalized to B-Actin. Data represent results from densitometric analysis of four 
Western blots. LHR= 79 kDa, B-Actin= 42 kDa.  
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Lactational Exposure to Daidzein Alone or with Genistein Decreased Mullerian-
inhibiting Substance (MIS) Protein Expression  

in Sexually-mature Male Rats 
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Figure 13A: Expression of MIS in testes from neonatal male rats after lactational 
exposure to dietary isoflavones was analyzed by Western blotting and normalized B-
Actin. Data represent results from densitometric analysis of four Western blots.       
MIS= 65 kDa, B-Actin= 42kDa. *P < 0.01 versus control. 
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Genistein and Daizdzein, Acting Singly or Together, Increased Mullerian-
inhibiting Substance Type II Receptor (MISRII) Protein Expression in Adult Leydig 

Cells (PND 96) after Lactational Exposure  
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Figure 13B: Expression of MISRII in progenitor Leydig cells from neonatal male rats 
after lactational exposure to dietary isoflavones was analyzed by Western blotting and 
normalized to B-Actin. Data represent results from densitometric analysis of three 
Western blots. MISRII= 63 kDa, B-Actin= 42kDa. *P < 0.01 versus control. 
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