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Abstract
Understanding the mechanisms underlying natural variation in gene expression is an
important question in medical and evolutionary genetics. Many studies intend to compare
either (i) cell-type expression pro les across individuals for the same cell-type, or (ii) cell-
type expression pro les within an individual for di erent cell-types (NIH 2012). Naturally,
accurate estimates of these expression pro les is of great importance. However, the presence
of heterogeneity of cell-types in gene expression data can result in inaccurate estimates of
such cell-type expression pro les (Leek and Storey 2007).
The standard statistical method for assaying gene expression data is to use a simple
linear regression model, with the assumption that the presence of minor alleles in the geno-
type has an additive e ect on gene expression levels (Veyrieras 2008). This method assumes
that the observed gene expression data has a homogeneous composition of a single cell-type.
However there are many scenarios where it may be more appropriate to assume that ob-
served gene expression data is composed of two cell-types; for example a brain tissue sample
would presumably have a heterogeneous mixture of neuron and glial cell-types (GeneNetwork
2012).
Previous studies have developed methodologies for estimating cell-type expression pro-
 les given prior information regarding individual cell-type proportions; or conversely for esti-
mating cell-type proportions with prior knowledge of cell-type expression pro les. This thesis
derives a computational method for estimation of both the cell-type expression pro les and
individual cell-type proportions for a two cell-type model, without any prior information.
The parameter estimation techniques are based on an alternating-regression least-squares
process. This methodology is applied to both simulated data and a real dataset, and the
results are examined.
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Chapter 1
Introduction
Biotechnology plays an increasingly important role in the modern human experience.
Biological applications have often been the catalyst for the development of statistics as a
science in the 20th century. Whether it was Pearson and study of Darwin?s hypothesis,
Gosset?s search to brew the perfect batch of Guiness, or Fisher?s studies in crop variation,
statistics have often been motivated by biological processes. But Fisher and company could
not have imagined the wealth of biotechnological applications that pervade today?s world.
In the 21st century, foods are grown and processed using cultivated microorganisms.
Yeasts and mold are being studied as means to create proteins to supplement traditional
foods as the planet?s growing population strains natural resources. Genetic engineering has
helped us create genetically modi ed plants that grow better and have more bountiful yields,
and are more resistant to diseases and environmental hazards.
Biotechnology is increasingly used in the  elds of medicine and pharmocology. Recom-
binant DNA is used to produce speci c enzymes in the body. Hormones can be synthesized
through genetic engineering. Antibiotics and vaccines have been our  rst line of defense
against disease for close to 100 years; now scientists race to develop new treatments for
increasingly resistant strains of disease. New vaccines are being studied to prevent illnesses
such as hepatitis, malaria, and AIDS.
Some of the newest applications of biotechnology are in the  eld of bioinformatics. The
abilities to sequence genetic data, RNA, amino acids and protein sequences have provided
scientists a wealth of information from which to study the very building blocks of biological
organisms. Studies in genetics could reveal the causal links behind diseases like cancer or
diabetes, and help create treatments and cures for diseases (Dubey 2006).
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The studies of bioinformatics, and in particular statistical genetics, are still in their
relative infancies. New technologies allow us to study the underlying mechanisms through
which biological organisms function. One of the predominant questions in genetics today
is, what are the mechanisms through which genetic variation occurs? The research in this
thesis provides a tool to gain insight into this incredibly important question.
1.1 Background
Deoxyribonucleic acid, commonly known as DNA, is the hereditary material of an organ-
ism. The information contained in DNA gives the organism the instructions which controls
its functions. This genetic information is stored in the double-helix structure  rst proposed
by Watson and Crick (1963). The double-helix is the composition of two strands of comple-
mentary chemical bases wound together to form a spiral helix shape. Each strand contains a
string of chemical bases. There are a total of four di erent chemical bases: adenine, guanine,
cytosine, and thymine. These bases are typically referred to using the abbreviations A, C,
G, and T respectively. Each base is paired with its complement: A pairs with T, and C
pairs with G. Thus, the information contained in DNA can be represented by just one of the
two strands, since one strand is completely determined by the other. The chemical bases
of the strands, together with binding sugar and phosphate molecules are altogether called
nucleotides.
The DNA molecule is subdivided into tightly coiled structures called chromosomes.
Contained within each of these chromosomes are functional units of hereditary information
called genes. One of the primary mechanisms through which DNA regulates bodily activity
is through the production of proteins. Proteins are molecules required for the structure,
function, and regulation of the body?s tissues and organs, and the amount and timing of
production of proteins are what determines an individual?s phenotype. An individual?s phe-
notype is the composition of the physical embodiments or traits of the individual?s genetic
makeup. Information in each gene regulates the production of proteins in the body. Thus,
2
Figure 1.1: DNA double helix
this regulation of proteins is a key component of the study of genetics. The quantity of
protein produced by a gene is referred to as gene expression.
Genetic variation refers to di erences in the genetic code between individuals of the
same species. The DNA of any two members of a species is exceedingly similar. In humans,
for example, it is typical for over 99% of the genes of any two individuals to be identical.
It is the di erences in two individual?s genetic code which accounts for di erent physical
traits between the individuals. Since physical di erences are largely the manifestation of
di erences in protein production, scientists wish to understand the relationship between
genetic variation and protein production (Avila 1995).
Almost all locations in the genetic code are exceedingly stable across members of a
population. However, geneticists have observed that a tiny proportion of locations in the
genome have a preponderance of mutations across individuals. These locations are called
single nucleotide polymorphisms (SNPs). If these locations are known, then a study of
genetic variation between individuals can be reduced to studying these SNPs.
Consider the following illustration of a SNP. Suppose that a DNA segment is taken
at the same location from two individuals contain the nucleotyde strings CAGTAG and
CAGAAG. Then the two strings have a di erence of a single nucleotide. We say that there
are two alleles (forms of the nucleotyde): T, and A. Each individual has two sources of genetic
3
Figure 1.2: Gene within a cell chromosome / SNP illustration
code: one from the mother and one from the father. So going back to our example, assuming
that there are only two alleles at the SNP, then an individual may have the following allele
combinations: AA, AT, TA, or TT. Let g be the number of times T occurred at the SNP,
then g2f0;1;2g.
In order to assay the relationship between SNPs and gene expression, one must  rst
begin with knowledge of the genotypes and the gene expression levels of a cell-type for a
group of individuals. A genotype is a measure of how that individual?s genomic sequence
di ers from a representative genomic sequence from the species (NIH 2012).
There are various methods of genotyping. We describe the method used to procure the
data used by our study as an illustration (actual dataset discussed in detail later). This
method began with the polymerase chain reaction (PCR) method of ampli cation described
by Love et al. (1990) and Dietrich et al. (1992). The process involves taking a DNA segment
and denaturing the strands, then synthetic DNA blocks called primers are exposed to the
strands and bind to them wherever they can  nd a complementary match. The matched
strands are then removed from the remaining primers. The process is repeated k times, so the
DNA is ampli ed to a resulting 2k DNA segments. Figure 1.3 provides a visual illustration
of the process of genotyping.
4
Figure 1.3: Genotyping process
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The sequencing process begins by separating the DNA sequences into individual strands
of DNA. The molecules used to separate the chains are labeled using dyes which emit light
at di erent wavelengths. A laser sequencer then sends light through the ordered fragments
to create a sequence of di erent colors which can be then be expressed as the nucleic acid
bases. The strands are then pieced together to create the genomic sequence (Peirce 2004).
Scientists are often interested in measuring the quantity of proteins produced by a gene.
However it is di cult to directly measure protein levels, so proxy measures of protein levels
have been developed instead. These measures are chosen as a consequence of the biological
processes from which proteins are produced.
The production of proteins is controlled by the genes through the processes of tran-
scription and translation. The  rst step in protein synthesis, transcription, involves the
production of messenger ribonucleic acid (mRNA). mRNA is a sequence of nucleotides cre-
ated by unzipping a stretch of DNA, and creating a strand of mRNA complementary to the
one of the DNA pairs.
Translation is the second step of protein synthesis. The mRNA interacts with cell
machinery called ribosomes to create proteins. Blocks of transfer RNA (tRNA), each bound
to an amino acid, is matched to its complementary mRNA strand. Then the amino acids
separate from the tRNA and agglomerate to become a protein (Avila 1995).
Since mRNA is a precursor to protein synthesis, a biological assumption is often made
that mRNA levels correspond to protein levels. Thus, biologists frequently use mRNA
measurements as surrogate measurements of cell protein levels. New technologies developed
over the last 20 years allow us to measure mRNA expression pro les with a higher degree
of accuracy than ever before. Figure 1.4 provides an illustration of the transcription and
translation process.
A gene expression microarray is a powerful method of measuring mRNA. A microarray
chip is a slide where thousands of synthetic single strand DNA fragments are placed in a
array con guration. Scientists then take the tissue sample in question and expose it to
6
Figure 1.4: Illustration of the transcription / translation process
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the microarray. When an mRNA sequence is complementary to a DNA sequence on the
microarray, the two will hybridize (lock together). Then a  uorescent light in shone over
the array, and the intensity at which the light is re ected is used as a measure of how much
mRNA has hybridized to each sequence. The amount of mRNA that has hybridized to the
sequence is then assumed to correspond to how much the gene in which the sequence is
located is expressed for the organism cell-type (NIH 2012).
Modern technology such as DNA sequencing and microarrays allow us to quantitatively
study the underlying relationship between di erences in the genetic code, and observable
physical traits. Understanding variation in gene expression is a central goal in medical and
evolutionary genetics. Changes in the genetic code can result in biological conditions, a ect
Figure 1.5: Illustration of microarray slide
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how humans develop disease, and respond to pathogens, drugs, and vaccines. One can
imagine a time when disease-causing mutations can be identi ed, and the underlying causal
e ects that result in the development of the disease can then be arrested through the use
of drugs or other agents. As our scienti c understanding of genetic variation increases, we
become closer to realizing that goal.
Figure 1.6: Partial image of a lighted microarry chip
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1.2 Statistical model for eQTLs
Expression quantitative trait loci (eQTLs) are an important mechanism by which genetic
variation occurs. An eQTL occurs when the expression level (amount of mRNA) of a gene
is a ected by a mutation in the genome of an individual. Where we have both genetic
data and expression data for multiple individuals, we can use simple linear regression to
model eQTLs. Figure 1.7 uses constructed data to illustrate this model. Visually, the  gure
seems to suggest that the number of minor alleles found at this particular SNP location
has a nonzero linear relationship with the gene expression values as seen across a group
of individuals. The probability of the linear association being nonzero can be tested using
standard linear regression techniques.
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Figure 1.7: eQTL example, using constructed data as an illustration.
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With the advent of DNA sequencing and procedures to measure gene expression, there
have been many advancements in the  eld of genetics. One of the seminal eQTL studies
was written by Lander and Botstein (1989). This paper showed how phenotypes of inbred
organisms can be compared to SNPs found through restriction fragment length polymor-
phisms, to perform an extensive eQTL study. This was essentially a method of selective
genotyping which used the EM algorithm to compute maximum likelihood estimations for
the parameters of interest. A likelihood ratio test was then used to asses the probability of
a nonzero association between SNP and phenotype in question.
Haley and Knott (1992) published a work which introduced the use of linear regression
in place of maximum likelihood estimation to measure the relationship between SNPs and
phenotype data. The paper emphasized the generalizeability of the model, and demonstrated
that the model could be used to quickly and accurately estimate such relationships. Plomin
and McClearn (1991) published one of the early eQTL studies of BXD mice (more on BXD
mice later), assessing the relationships between genotypes and Mendelian traits.
Damerval et al. (1994) published one of the  rst papers which studied proteins from
selected tissues as response variables for genotype data. This work used electrophoresis
(sending an electric current through a  uid) to measure the quantity of anonymous proteins
in a cross between two distinct lines of maize. Shena et al. (1995) wrote one of the  rst
publications which used a microarray to measure gene expression. Cheung et al. (2004)
compared the prevelance between cis-eQTLs (proximal) and trans-eQTLs (distant). In
more recent years, the eQTL mapping studies of Veyrieras et al. (2007), and Pickrell et al.
(2010), were a large source of motivation for this paper.
1.2.1 Regression Model
We present the simple linear regression model described by Veyrieras as the paradigm
model for the relationship between gene expression and genotype. Suppose we have both
SNP genotypes and expression measurements of a particular gene for each of M individuals.
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Let yj be the gene expression data for individual j (j in 1;:::;M), and let gjk be the genotype
for individual j at SNP k (k in 1;:::;K). Genotypes are coded as having 0, 1, or 2 copies
of the minor allele. Then the e ect of individual j?s genotype at SNP k on his/her gene
expression level is assumed to follow the additive linear model:
yj =  + kgjk + jk (1.1)
where  in the mean expression level for individuals with g = 0, and  k is the additive e ect
of the minor alleles at SNP k, and  jk is the random error.
Table 1.1 shows a sample of what typical gene expression data and genotype data might
look like. When we have multiple genes and SNPs we can extend model 1.1 as follows.
Suppose we have expression data for M individuals over N genes, and genotype data for
these M individuals over K SNPs. Let yij be the gene expression level of individual j (j in
1;:::;M) at gene i (i in 1;:::;n), and let gjk be the genotype for individual j at SNP k (k
in 1;:::;K). Then we have:
yij =  i + ikgjk + ijk (1.2)
where  i is the ith-gene-level mean for g = 0,  ik is the additive e ect of the minor alleles of
SNP k on gene i, and  ijk is the random error.
1.3 Heterogeneity
Gene expression data that is obtained from microarray technology is procured from a
tissue sample placed on a microarray slide. These tissue samples are typically acquired the
old-fashioned way, by a skilled technician with a scalpel. Each tissue sample is comprised
of many cells. But these tissue samples are inherently comprised of multiple types of cells.
So what is the e ect of this heterogeneity of cell-types on observed expression pro le of the
tissue sample?
12
Probe Gene Chrome Location BXD1 BXD11    BXD98 BXD99
1416734 at Mkln1 6 173207123 7.290 6.796    6.843 6.897
1416735 at Asah1 8 59809599 11.165 10.792    10.459 10.806
1416736 at Casc3 11 72629825 10.543 10.816    11.010 10.932
1416737 at Gys1 7 60513192 9.250 9.420    9.558 9.405
1416738 at Brap 5 134623928 9.981 9.928    10.259 10.187
1416739 a at Brap 5 89019109 7.352 7.964    7.509 7.310
1416740 at Col5a1 2 <NA> 6.866 6.923    7.105 7.025
1416741 at Col5a1 2 84605517 7.606 7.688    7.567 7.701
1416742 at Cfdp1 8 115916275 10.817 11.038    10.816 11.359
1416743 at <NA> <NA> 119063096 9.174 8.896    8.699 9.155
1416744 at <NA> <NA> 8845486 4.754 4.812    4.736 4.841
1416745 x at <NA> <NA> 17366695 5.085 4.971    4.852 5.116
1416746 at H2afx 9 135699737 10.246 10.323    10.349 10.138
1416747 at Mfsd5 15 103613440 10.347 10.552    10.666 10.458
1416748 a at Mre11a 9 86474970 7.507 7.292    7.484 6.903
SNP Chrome Location BXD1 BXD11    BXD98 BXD99
rs13482141 14 39961750 2 0    2 0
gnf02.003.251 <NA> <NA> 0 2    0 2
rs13476330 2 5767413 0 2    0 0
rs6300458 14 105565103 2 2    2 0
rs13476286 1 187711002 2 2    2 0
gnf18.027.000 <NA> <NA> 0 0    2 2
rs3712063 10 67552467 2 2    2 2
CEL-6 17260153 <NA> <NA> 2 0    0 0
rs3665911 9 35793271 2 0    2 2
rs13481201 11 103038835 0 2    0 2
rs3700286 2 102471685 2 0    2 0
rs3672808 6 139805730 0 2    0 0
D4Mit178 4 66843132 0 2    0 0
rs13479338 7 81203872 1 2    2 2
rs13483716 20 10022276 2 2    2 0
Table 1.1: Samples of data from datasets GN110 and bxd.geno
Suppose that our tissue sample is composed of two di erent cell-types, let us call these
cell-types A and B. If we can assume that the ratio of mRNA fragments from each cell-type
that hybridize with each probe set is the same as the ratio of cells in the tissue sample
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between cell-types, then microarray data would have the composition
2
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(1.3)
where yi is the conglomerate amount that probe i is expressed, ai is the amount which probe
i is expressed in cell-type A, and bi is the amount which probe i is expressed in cell-type B.
 i is the proportion of cells from cell-type A of which the tissue sample is comprised.
From a general perspective, heterogeneity of cell-types in gene expression data present a
number of issues that can a ect downstream analyses. Microarray expression measurements
from heterogeneous cell-types re ect weighted averages of expression levels within cell-type
populations. When the cell-type expression pro les of the spurious cell-types di er from
the cell-type of interest, this has the potential of providing misleading results regarding the
expression pro le of the cell-type of interest. Moreover, observed changes in gene expression
may be the result of changes in the genetic code; or else they could be the result of changes
in the abundance of an cell-type within the tissue. Conversely, genuine changes in expresion
levels resulting from eQTL mechanisms may not be detected due to changes in the abundance
of cell-types within the tissue.
1.3.1 Previous Studies of Heterogeneity
There have been a number of studies regarding the issue of heterogeneity of cell-types in
gene expression data. An initial attempt was made by Venet et al. (2001), who proposed a
linear model to estimate cell-type proportions and cell-type speci c gene expression pro les.
However, Venet relied on known prior information regarding the true gene expression pro les
of the cell-types in question.
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Lu et al. (2003) used a simulated annealing and knowledge of genes expressed only
during speci c cell cycles to estimate the proportion of cell-types from a mixed sample of
yeast cells. Wang et al. (2006) performed an analogous study to estimate the proportions
of cell types of the mammary gland using measurements taken over the course of murine
mammary gland development and Ras-induced mammary tumorigenesis (arti cially induced
tumors). Again, prior knowedge of cell-type speci c pro les was necessary for both of these
approaches.
Another approach uses prior knowledge of cell-type proportions, as estimated by pathol-
ogists, to extract cell-type speci c information. Stuart et al. (2004) used linear regression
models to estimate the expected cell-type expression as the regression coe cient. Ghosh
(2004) used a hierarchical mixture model to model the data. A combination of methods of
moments procedures and the expectation-maximization (EM) algorithm were then used to
estimate the model parameters. There are, however, questions about the availability and re-
liability of the estimates of cell-type proportions made by pathologists. Erkkil a et al. (2010)
proposed a Markov Chain Monte Carlo sampler to alleviate some of the issues caused by
potential inacuracies of such proportion estimates.
Several works have been published with the goal of solely estimating cell-type propor-
tions. Gosink et al. (2007) used a ranking of gene expression levels as candidates to ?separate?
cell-types. Clarke et al. (2010) re ned Gosink?s method by using summary statistics of the
dataset to make the method more robust to noise inherent in gene expression data. Leek and
Storey (2007) proposed a surrogate variable analysis methodology for estimating cell-type
proportions.
1.4 Contribution of The Thesis
Prior to this study, no methodology has been developed to both estimate cell-type pro-
portions and cell-type speci c expression pro les without a priori information. Our method-
ology can extract the cell-type proportions and cell-type speci c expression pro les for a
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two-cell model without prior knowledge of either the cell-type proportions or the individual
cell-type expression pro les.
The information provided by this methodology will bene t scientists in a number of
ways. Researchers may be interested in the cell-type proportions of a tissue sample. For
example it may be valuable to know the proportion of cancerous cells in a given tissue. In
another scenario we may be interested in comparing expression pro les across varying cell-
types. Accurate estimates of the individual cell-type expression pro les will rely on being
able to isolate the cell-type of interest within expression data.
One of the sources of motivation for this research was supplied by the Genotype-Tissue
Expression (GTEx) project. GTEx \aims to study human gene expression and regulation in
multiple tissues, providing valuable insights into the mechanisms of gene regulation and, in
the future, its disease-related perturbations. Genetic variation between individuals will be
examined for correlation with di erences in gene expression level to identify regions of the
genome that in uence whether and how much a gene is expressed" (National Institute of
Health, 2012). The project is currently in the process of collecting genetic and expression-
level data for various tissues from multiple individuals.
In order to e ectively study di erences in gene expression a thorough and complete
mapping of eQTLs is essential. However, heterogeneity of cell-types within a tissue sample
may result in innacurate expression pro les for the cell-type of interest. Even the most
carefully planned and executed manual dissection will inevitably result in multiple cell types
within the sample. While there are some techniques for obtaining a pure-cell type, they are
generally costly and time-consuming making them impractical for a wide-ranging study such
as the GTEx project where many samples are needed. Allowing the presence of a second (or
more) cell type in expression data will presumably result in a loss of power and increase of
false positives. Therefore a computational method for modeling heterogeneity found within
expression data that would remove some of the detrimental e ects of multiple cell types
would be a useful resource for the researcher studying genetic variation.
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Figure 1.8: The GTEx process
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1.5 Real Data Analysis
We use the parameter estimation methodology developed in this thesis to estimate
the cell-type speci c expression pro les and individual cell-type proportions for a real data
set. We chose to analyze data collected from recombinant inbred (RI) strains of mice.
Recombinant inbred strains of mice are mice that have been inbred for many generations
until their genetic codes are virtually identical. These mice are then genotyped and bred
with other strains. The progeny of the second generation of such breeding are then inbred
until future generations of these o spring have identical genetic codes (but are unique across
strains). Once these lines have been established, they can be reproduced and disseminated
cheaply and easily.
Recombinant inbred mouse data has been used in many studies, and is often publicly
available. Moreover, many of these datasets have undergone stringent quality control and
error-checking processes (GeneNetwork 2012). These qualities make such datas ideal choices
for our purposes. The largest and most widely studied strains of recombinant inbred mice
are called the BXD strains. These mice are a mixture of two lines of mice; one called the ?B?
line and one called the ?D? line.
The gene expression data used in our study, titled GN110, was downloaded from
the GeneNetwork website [23]. The data was collected from the tissue samples using the
A ymetrix 4.30 v2 chip. This chip uses a total of 45,101 probes. The samples were pro-
cessed at the University of Memphis led by Thomas R. Sutter, with the actual processing
steps performed by Shirlean Goodwin. The data is taken from hippocampus (region of the
brain) tissue, in which we expect to have signi cant levels of heterogeneity. There are 205
mice in the dataset for a total dimension of 45;101 205. Out of the total of 205 mice,
there were 138 mice with BXD genotypes, from which there were 69 distinct strains. The
animals used to generate this set of data were obtained from the University of Tennessee,
the University of Alabama-Birmingham, or directly from the Jackson Laboratory (original
breeders of the BXD lines).
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Figure 1.9: Breeding process of BXD strain mice
The BXD genotype data was also downloaded from the GeneNetwork website. The
genotype  le contains 3,796 markers over a total of 88 BXD strains. These locations have
been determined by biologists to be places on the genome where the parental strains of the
BXD mice have di erent alleles. The data for each recombinant inbred strain at each SNP is
coded as either ?B,? ?D,? or ?H? for heterozygous. \SNPs are spaced approximately one every
4.3kb across the genome and were selected to be highly polymorphic among characterized
mouse strains. Genotypes called from analysis of the array data are highly reliable. From
an internal study of two strains, genotypes from 99.7% of the polymorphic SNPs that had
genotypes in the NCBI dbSNP database had matching genotypes from the Diversity Array"
(GeneNetwork, 2012).
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Genotyping was described in Peirce et al. (2004). \Genotyping was performed the PCR
protocol. DNA for the initial genotyping pass was puri ed from Princeton tail samples using
standard phenol-chloroform extractions from single animals that contributed to the subse-
quent generations. Primer pairs purchased from Research Genetics (Huntsville, AL) were
ampli ed using a high-stringency touchdown protocol in which the annealing temperature
was lowered progressively from 60 C to 50 C in 2 C steps over the  rst 6 cycles. After 30
cycles, PCR products were run on cooled 2.5% Metaphor agarose gels (FMC Inc., Rockland
ME), stained with ethidium bromide, and photographed. Gel photographs were scored and
directly entered into relational database  les."
The annotation data for the A ymetrix mouse 430 v2 chip was downloaded from the
Bioconductor website. \Bioconductor is an open source, open development software project
to provide tools for the analysis and comprehension of high-throughput genomic data. The
Bioconductor project started in 2001 and is overseen by a core team, based primarily at
the Fred Hutchinson Cancer Research Center, and by other members coming from US and
international institutions" (Bioconductor, 2012).
1.5.1 Processing Data
The GN110 dataset has dimensions 45;101 205 composed of 45,101 A ymetrix Mouse
4.30 v2 probes and 205 mice. We removed all mice that were not of a BXD genotype, which
reduced the set to 45;101 138. Many of the probes had not been mapped to a location on
the genome. We went through and removed all probes that did not have location annotation
data. This reduced the total number of probes to 33,887. For this study we were interested in
mapping the genes to local (nearby) SNPs. Many of the probes in the A ymetrix platform
map to the same genes. When multiple probes mapped to the same gene, we took the
mean expression levels of the probes across individuals to combine the data into gene level
information. This further reduced the data to dimensions 17;155 138.
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The genotype data also had some genotypes without location data. In addition, since
the expression data did not contain probes from the X or Y chromosomes we did not use
genotype data from these chromosomes. These entries were removed, resulting in dimensions
3;176 88. Table 1.10 and  gure 1.11 provide some summary statistics of the processed
dataset.
Mean
Min. 4.434000
1st Qu. 6.961000
Median 8.143000
Mean 8.255000
3rd Qu. 9.380000
Max. 14.840000
Type Frequency
B 174,497
H 6,981
D 171,550
Figure 1.10: Summary statistics of the gene-level means / frequency table for genotype data
Mean Expression Levels
Values Over 17,155 Genes
Frequency
4 6 8 10 12 14
0
500
1000
1500
Figure 1.11: Histogram of the gene-level means
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Chapter 2
Model
In developing the model used in this thesis, let us begin with a motivating example.
Consider the following problem. Suppose we have hippocampus tissue samples from multiple
individuals, and wish to estimate the expression pro le of the hippocampus cells. However,
it is well known that tissues in the brain are a heterogeneous mixture of neuron and glial
cells. If we measure the gene expression levels of these tissues with a microarray, how can
we estimate the true expression pro les of the hippocampus neuron and glial cells, and the
cell-type proportions within tissue samples?
Our investigation begins with the linear regression model of the relationship between
gene expression levels and genotypes previously described in Equation 1.2. Suppose we can
describe the relationship between the neuron-cell expression pro le and SNP genotype with
the model
aij =  i + ikgjk + (1)ijk (2.1)
where each gene expression level, denoted aij is the sum of the gene-level mean plus the
additive e ect of the minor alleles (see Section 1.2 for a full description of this model). But
for our hypothetical problem, we know that the observed expression data is the composition
of two separate cell-types. Suppose that we can describe the relationship between the gene
expression levels of glial-cells and genotypes of an individual at SNP k using the same model,
but with di erent, unrelated, parameters values as follows
bij =  i + ikgjk + (2)ijk (2.2)
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where bij is the glial-cell expression level for individual j at gene i,  i is the expression level
of gene i for g = 0,  ik is the additive e ect of the minor alleles for gene i and SNP k, gjk is
the genotype of individual j at SNP k, and  (2)ijk is the random error.
Now recall the model for expression data comprised of two cell-types, previously de-
scribed in Equation 1.3 (see Section 1.3 for more details).
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This can be extended to multiple individuals by the following
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or in terms of a given yij we can express this as
yij =  jaij + (1  j)bij (2.5)
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So we want to create a general model appropriate for a problem like the hypothetical one
introduced at the beginning of this chapter. Suppose that we know the following conditions
to be true:
 We have expression data which is comprised of exactly two cell-types
 The number of minor alleles has an additive e ect on the expresion level of a gene for
each cell-type
 The expression pro les of each cell-type are independent within individuals
 The proportion of the overall expression pro le coming from each cell-type is indepen-
dent across individuals
If these conditions are in fact met, then the full model which we use in this thesis is the
composition of Equations 2.1, 2.2, and 2.5. Essentially, we have taken the equation for
expression data comprised of two cell-types, and where we have expression levels aij and bij
we have substituted the linear models for the individual expression-pro les of each cell-type.
We propose the following model as a two cell-type representation of the relationship
between allele type and expression value for a given individual at a particular gene. Let us
denote our model as follows:
yij =  j ( i + ikgjk) + (1  j)( i + ikgjk) + ijk (2.6)
where subscript i represents the ith gene, and j represents the jth individual. Let us denote
cell-type A as the cell-type of interest, and cell-type B as the secondary cell-type. Then the
parameters have the following meanings:
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yij The gene expression value of individual j at gene i for a given tissue sample
 j The proportion of the tissue sample expression pro le coming from cell-type A
 i The ith-gene-level mean for g = 0, cell-type A
 ik The additive e ect of the minor alleles at SNP k on gene i for cell type A
gjk The genotype of individual j at SNP k
 i The ith-gene-level mean for g = 0, cell-type B
 ik The additive e ect of the minor alleles at SNP k on gene i for cell type B
 ijk The random errors of the model
2.1 Objective Function Q
We use a least-squares approach to parameter estimation. Thus, we want to minimize
the sum of the squared errors of our model with respect to  ; ; ; , and  . We begin with
our model:
yij =  j ( i + ikgjk) + (1  j)( i + ikgjk) + ijk (2.7)
Solving for  and squaring both sides gives us
 2ijk = fyij  j( i + ikgjk) (1  j)( i + ikgjk)g2 (2.8)
Let us de ne the objective function Q as
Q :=
X
i
X
j
 2ijk =  yij  j( i + ikgjk) (1  j)( i + ikgjk) 2 (2.9)
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2.2 Alternating-Regression Algorithm
We utilize an alternating-regression method to estimate the parameters previously de-
scribed in equation for the full model (equation 2.6). The alternating-regression method is
a multi-step process that allows us to treat this equation as a linear model by  xing various
parameters at di erent steps along the process. Being able to treat our model as a linear
model at the various steps allows us to utilize standard linear regression theory to e ciently
estimate the parameters at each step along the process. In Section 2.2 we demonstrate that
 xing either  or  xing  ; ; , and  reduces the full model to a linear regression model. So
these are the two sets of parameters which we alternatively  x as we minimize the objective
function Q.
The alternating regression algorithm begins by  xing  .  was chosen as the starting
point because we were able to develop a method of obtaining initial estimates for  (described
in section 2.2.4). Once the initial estimates for  are obtained, then we consider these values
to be  xed, and minimize the objective function Q, the squared loss of the  tted model, with
respect to  ; ; , and  .
Once we have estimates for  ; ; , and  , we consider these values to be  xed, and
minimize Q with respect to  . These two minimization steps are repeated alternatively,
until some convergence criterion has been achieved.
2.2.1 Fix  and Minimize With Respect to  ; ; ; 
Recall the alternating regression algorithm. The recurring parameter estimation loop
begins by  xing the values of  and estimating values for  ; ; , and  . Let us  x  ; then
following least-squares approach, we want the values for  ; ; , and  that will minimize
the objective function Q. Thus, we have
min
 ; ; ; 
Q = min
 ; ; ; 
X
i
X
j
 y
ij  j( i + ikgjk) (1  j)( i + ikgjk)
 2 (2.10)
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Figure 2.1: Alternating-regression  ow chart.
=
X
i
min
 i; i; i; i
X
j
 y
ij  j( i + ikgjk) (1  j)( i + ikgjk)
 2 (2.11)
Let us denote Qi as
Qi :=
X
j
 y
ij  j( i + ikgjk) (1  j)( i + ikgjk)
 2 (2.12)
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Note that we can rewrite Qi as
Qi =
X
j
fyij  j i  jgjk ik + (1  j) i + [ (1  j)gjk] ikg2 (2.13)
Then we can minimize each Qi individually using a least squares linear model for
min
 i; i; i; i
jjQijj2 = min
 i; i; i; i
jjY  X^ jj2 (2.14)
where the normed space is the Euclidean norm and we de ne Y, X, and ^ as
YM 1 =
2
66
66
4
j
yi 
j
3
77
77
5
; XM 4 =
2
66
66
4
j j j j
 diag( )g k diag(1M  ) diag(1M  )g k
j j j j
3
77
77
5
;
 4 1 = [  i  i  i  i ]0 (2.15)
If we can assume that  i k NM(0; 2IM), then ^ = (XTX) 1XTY is BLUE for  .
2.2.2 Fix  ; ; ; and Minimize With Respect to  
Recall the alternating regression algorithm. We treat our updated estimates of  ; ; 
and  as  xed values. Now we use the least-squares approach to minimize  . We want the
values for  that minimize the objective function Q, thus we have
min Q = min 
X
i
X
j
 y
ij  j( i + ikgjk) (1  j)( i + ikgjk)
 2 (2.16)
= min 
X
j
X
i
 y
ij  j( i + ikgjk) (1  j)( i + ikgjk)
 2 (2.17)
=
X
j
min
 j
X
i
 y
ij  j( i + ikgjk) (1  j)( i + ikgjk)
 2 (2.18)
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Let us denote Qj as
Qj =
X
i
 y
ij  j( i + ikgjk) (1  j)( i + ikgjk)
 2 (2.19)
Note that we can rewrite Qj as
Qj =
X
i
 (y
ij  i  igjk) [ i  i + ( i  i)gjk] j
 2 (2.20)
Then we can minimize each Qj individually using a least-squares linear model for
min 
j
jjQjjj2 = min 
j
jjY  X ^ jjj2 (2.21)
where we de ne Y and X as
YN 1 =
2
66
66
4
j
y j   diag( )gj 
j
3
77
77
5
; XN 1 =
2
66
66
4
j
   + diag(   )gj 
j
3
77
77
5
; (2.22)
and assuming   jk NN(0; 2IN), then ^ j = (XTX) 1XTY is BLUE for  j.
Since  j is a proportion, it has the constraint 0  j 1. So after estimation we perform
the function f( j), where
f( j) =
8
>>>
><
>>>>
:
0;  j < 0
 j; 0  j 1
1;  j > 1
(2.23)
2.2.3 Convergence Criterion
Convergence of estimates. Consider the objective function Q. At each step of the
alternating regression process we are minimizing Q; thus we have a nonincreasing sequence
of values for Q. Because Q is bounded from below by 0, there exists a minimum value
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for Q. Therefore, if we let the number of iterations of the alternating regression algorithm
approach in nity, the value of Q will reach its minimum and the parameter estimates will
have converged.
Since convergence of the parameter estimates of Q may require (potentially in nitely)
many iterations, a convergence criterion at which to stop is needed. The criterion we set was
as follows. Let ^ (k); ^ (k);^ (k); ^ (k), and ^ (k) be the vectors of parameter estimates for the kth
iteration of the alternating-regression process. Then our convergence criterion was satis ed
when (for k 2)
max
8
>>>
>>>>
>>>
>>>
<
>>>
>>>
>>>>
>>>
:
j^ (k) ^ (k 1)j
j^ (k) ^ (k 1)j
j^ (k) ^ (k 1)j
j^ (k) ^ (k 1)j
j^ (k) ^ (k 1)j
9
>>>
>>>>
>>>
>>>
=
>>>
>>>
>>>>
>>>
;
< 0:001 (2.24)
It should be noted that although we are guaranteed to achieve a local minimum for
Q, there is no guarantee that this will be a global minimum, a common problem with
optimization scenarios like this. Here we must rely on our initial estimates of the parameters.
If our starting point is close enough to the global minimum with regards to the \smoothness"
of the objective function, then we can avoid this problem.
2.2.4 Initial Estimates
Our algorithm requires that some initial estimates be provided. We assume that the
greatest source of variation across individuals in our two cell-type model will come from
di erences in cell-type proportions. Thus, information about the cell-type proportions should
be contained in the  rst principal components loading. After calculating the loadings, we
then performed a location shift and scaled these loadings from the  rst PC to  t values
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between zero and one. The formula used to do this was
^ i = PC1i min(PC1)max(PC1) min(PC1) (2.25)
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Chapter 3
Simulation
In this chapter, we use simulated data to test the performance of the parameter esti-
mation methodology. Since we know the true values of the parameters for our simulated
datasets, we can measure exactly how accurate the parameter estimates are, something that
cannot be done with a real data set. Simulating data also lets us perform parameter estima-
tion on many datasets, which allows us to study the consistency of the estimates.
The simulated datasets were created using parameters from the full model described in
Chapter 2. That is to say, that each parameter from the model was simulated individually,
and then a formula like the one in equation 2.6 was used to construct the simulated expression
data. This expression data was then fed into the alternating regression algorithm, which tried
to estimate the true parameters. The distributions for the parameters were loosely based on
values from the real hippocampus data used in this thesis, as described in the following.
3.1 Simulating Parameters
 Simulating  j
The  parameter is used to represent the proportion of cells in a tissue sample that come
from cell-type A. Since  is a proportion it must have a support between zero and one,
inclusive. Also, we expect more of the density of  to be closer to one than to zero, because
the tissue samples we are modeling are taken with the goal of obtaining as much of this
cell-type as possible. For these reasons the beta distribution is a natural distribution for  .
The parameters were set as  = 1;  = 0:5, which yields the density curve shown in Figure
3.1.
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Figure 3.1: Probability density function for a Beta(1;0:5) distribution
 Simulating  ; 
 and  are parameters which represent the additive e ect of the minor alleles at a given SNP
to the amount that a particular gene is expressed. We used the same process to simulate
both  and  , so let us describe the simulation of  as an illustration of both. Consider two
cases at an individual gene for  ik : one where there is an eQTL at SNP k for gene i, and
one where there is no eQTL. We can model these cases with individually. Speci cally, let
 ik iid 
8
><
>:
N( 1;1=3); SNP k is an eQTL for gene i
N(0;1=10); else
(3.1)
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Where 1=4 of the parameters were given the N( 1;1=3) distribution. The values of  1 were
chosen arbitrarily as a convenient non-zero number. The  i were then simulated using the
exact same process.
 Simulating  ,  
 and  are the gene-level means when the number of minor alleles is zero for cell-types A
and B. The gene means are not assumed to have any particular distribution, so we gave
them uniform distribution with values typical for the type of dataset used in this thesis.
Speci cally, let
 i iid Unif (4;13)
 i iid Unif (4;13)
(3.2)
 Simulating Genotypes
The number of minor alleles for a particular SNP was determined using the following process.
Two Bernoulli processes were simulated, representing the mother and the father of a diploid
organism. The probability of success for each trial was set at 0.5 as a reasonable middle
ground. Then the genotype was given by the number of successes for the two trials. This
can be represented as the binomial random variable
gij iid Bin( 2;0:5) (3.3)
Expression data matrix. Once all of the data was simulated, a perturbation factor was
incorporated. We denoted PN M as our perturbation matrix, where each pij iid N(0; 2).
We used two di erent variances for our perturbation matrix; the ?small? variance was set as
 2 = 0:1, and the ?large? variance was set as  2 = 0:5. Then the expression data matrix was
constructed using the formula
yij =  j ( i + ikgjk) + (1  j)( i + ikgjk) +pij (3.4)
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3.2 Parameter Estimation With Simulated Data
Simulation studies were performed on simulated data with two levels of random error
introduced into the data. One set of simulations was run with the small error term added;
these simulations were performed to measure how well the algorithm performs under ideal
conditions. Then, a second set of simulations was performed with the larger error introduced.
These simulations were run to get an impression of how well the parameter estimation method
would perform under less than perfect conditions.
At each of these levels of error, we investigate parameter estimates for both a single
simulation in detail, and then a meta-analysis of a run of 200 simulations.
3.2.1 Single-Simulation Results
In this section, the parameter estimates of a single data simulation at both levels of
error are studied in detail. At various places statistics are presented regarding the parameter
estimates for  and  obtained using the standard linear regression model (equation 1.2) for
comparitive purposes. In order to distinguish these estimates from the estimates obtained
using the full model, these estimates are denoted as ^  and ^  .
We begin our investigation of the two individual simulation studies with a look at
the convergence rates of the simulations. Table 3.1 displays the maximum di erence for
each vector of parameters between consecutive iterations. The small perturbation and large
perturbation simulations required 11 and 14 iterations to achieve convergence, respectively.
These numbers are above average for both levels of error, as shown later in Table 3.3. As
expected, the larger perturbation simulations tend to require more iterations to meet the
convergence criterion.
Because the values for  and  are on a larger scale than the other parameters, these
tend to take the longest to pass the convergence threshold. In addition, it is the case that
the observed expression data typically receives more of its weighted average from cell-type
A (because of the distribution of  ). For this reason the values of  and  are harder to
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j^ (k)i  ^ (k 1)i j j^ (k)i  ^ (k 1)i j j^ (k)i  ^ (k 1)i j j^ (k)i  ^ (k 1)i j j^ (k)i  ^ (k 1)i j
k = 2 0.010090 0.012041 0.017516 0.012726 0.000331
k = 3 0.000746 0.000497 0.002569 0.001350 0.000256
k = 4 0.000418 0.000201 0.002167 0.001066 0.000222
k = 5 0.000369 0.000172 0.001937 0.000938 0.000196
k = 6 0.000326 0.000152 0.001711 0.000828 0.000172
k = 7 0.000287 0.000134 0.001510 0.000731 0.000152
k = 8 0.000254 0.000118 0.001333 0.000645 0.000134
k = 9 0.000224 0.000104 0.001176 0.000569 0.000118
k = 10 0.000197 0.000092 0.001038 0.000502 0.000104
k = 11 0.000174 0.000081 0.000915 0.000443 0.000092
(a) Small perturbation
j^ (k)i  ^ (k 1)i j j^ (k)i  ^ (k 1)i j j^ (k)i  ^ (k 1)i j j^ (k)i  ^ (k 1)i | j^ (k)i  ^ (k 1)i j
k = 2 0.056670 0.041972 0.060059 0.050186 0.000666
k = 3 0.003026 0.002482 0.004189 0.003034 0.000271
k = 4 0.000751 0.000349 0.002045 0.000902 0.000231
k = 5 0.000625 0.000283 0.001838 0.000787 0.000213
k = 6 0.000577 0.000264 0.001711 0.000729 0.000198
k = 7 0.000536 0.000245 0.001589 0.000677 0.000183
k = 8 0.000498 0.000228 0.001476 0.000629 0.000170
k = 9 0.000463 0.000211 0.001371 0.000584 0.000158
k = 10 0.000430 0.000196 0.001274 0.000543 0.000147
k = 11 0.000399 0.000182 0.001183 0.000504 0.000136
k = 12 0.000371 0.000169 0.001099 0.000468 0.000126
k = 13 0.000344 0.000157 0.001020 0.000435 0.000117
k = 14 0.000320 0.000146 0.000947 0.000404 0.000109
(b) Large perturbation
Table 3.1: Covergence of parameter estimates between iterations
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estimate (consider the case when  = 1), and as a result, usually  will be the last parameter
to achieve convergence. Since small changes of  ; and  can change our inferences regarding
these parameters, we are happy to have this extra level of precision for them. Regardless, this
structure of parameter convergence should be taken into account when setting an appropriate
convergence criterion threshold.
Figure 3.2 displays scatterplots of estimates vs. actual values for small perturbations.
All of the parameters are estimated extremely well under these ideal conditions; the R2 value
for each of these plots is at least 0.978. Even the formula to extract initial estimates for  
was able to provide near-perfect results.
The graphs for  and  do show some signs of innacurate estimates. The three distri-
butions for the simulated values of  and  can be seen in these charts. In the case of  ,
it appears that there are some small problems with estimation when the true value of  is
close to 0.
Figure 3.5, the scatterplots for the large perturbation, seems to develop this story even
further. The R2 values dip as low as 0.91 and 0.87 for  and  . The estimates are performing
well as the true values of the parameters spread away from zero. But when the true estimates
are near to zero, the estimation algorithm has some di culty producing accurate estimates.
When the true parameters are close to zero, but are in fact, nonzero the estimations are
often being given as zero. In the context of eQTL mapping, this will result is type I errors.
It does seem evident, however, that there are few true values close to zero being mistakenly
estimated as nonzero.
Table 3.2 provides some more insight into the two simulations. Not surprising, the
distributions of the absolute values of the errors are highly right-skewed. This is especially
true for the paramaters of cell-type B:  and  . We can also compare the estimates  and
 for the full and simple regression models. As would be expected under these conditions,
the full model outperforms the simple regression model in all categories.
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Figures 3.4 and 3.5 provide a visual account of the summary statistics displayed in Table
3.2. Under ideal conditions, it can be seen that the full model is vastly outperforming the
simple linear regression model. But it is interesting to note that with a larger random error
factor, the median distances between estimates of  vs. actual values are rather comparable
(0.11 vs. 0.22). However the upper bound for errors is much higher for the simple regression
model than the full model (0.75 vs. 2.44). This is presumably caused by two main factors.
Firstly, 3=4 of the true values of  come from are normally distributed with mean 0. Since the
median vaue for both estimation techniques will come from this distribution, we wouldn?t
expect the estimates to be too far o . The maximum errors for ^  are likely occuring when
certain events transpire together. Consider, for example, the case when  ik = 1;  ik = 1,
and  = 0:5IM. In essence, the additive e ect of the minor alleles would cancel for both
cell-types would cancel each other out, a very di cult scenario for the simple regression
model to estimate.
Median Mean Max. Cor.
j^   j 0.023896 0.028366 0.166494 Cor(^ ; ) 0.999849
j^    j 0.520157 0.613438 3.123300 Cor(^  ; ) 0.938161
j^   j 0.180963 0.208039 0.896013 Cor(^ ; ) 0.994890
j^   j 0.019482 0.023127 0.129806 Cor(^ ; ) 0.998538
j^    j 0.141075 0.192488 1.647710 Cor(^  ; ) 0.870761
j^   j 0.054444 0.067444 0.420750 Cor(^ ; ) 0.989167
j^   j 0.015116 0.026086 0.084588 Cor(^ ; ) 1.000000
j^ init  j 0.014283 0.026404 0.084588 Cor(^ init; ) 0.999977
(a) Small perturbation
Median Mean Max. Cor.
j^   j 0.140213 0.168624 0.966488 Cor(^ ; ) 0.994584
j^    j 0.880538 1.021250 3.913900 Cor(^  ; ) 0.782634
j^   j 0.167807 0.200924 1.047130 Cor(^ ; ) 0.992209
j^   j 0.114517 0.137624 0.748990 Cor(^ ; ) 0.951996
j^    j 0.221030 0.301310 2.441560 Cor(^  ; ) 0.680216
j^   j 0.138122 0.164942 0.925134 Cor(^ ; ) 0.932811
j^   j 0.004515 0.004355 0.007375 Cor(^ ; ) 0.999991
j^ init  j 0.006781 0.006284 0.016525 Cor(^ init; ) 0.999833
(b) Large perturbation
Table 3.2: Single simulation summary statistics
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Figure 3.2: Scatterplots of estimates vs actual values for small perturbation
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Figure 3.3: Scatterplots of estimates vs actual values for large perturbation
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Figure 3.4: Boxplots of the distances between estimates and actual values for small pertur-
bation
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Figure 3.5: Boxplots of the distances between estimates and actual values for large perturba-
tion
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3.2.2 Multiple Simulations
In addition to the single-simulation studies that we did, we also did two runs of 200
simulations for both perturbation scenarios. Here we examine the  ndings from these simu-
lations. Table 3.3 provides a summary of the number of iterations needed for each simulation
to achieve convergence. It should be noted that over 50% of the simulations needed exactly
four iterations to achieve convergence. Since the rate convergance determines the computing
cost of estimating the parameters, it is encouraging that this number is reasonably low.
3 4 5 6 7 8 9 10 11 12
Small Perturbation 5 117 11 6 6 11 7 7 5 2
Large Perturbation 0 119 5 4 3 4 3 6 5 9
13 14 15 16 17 18 19 20 21 22 23
Small Perturbation 3 5 6 2 1 1 3 2 0 0 0
Large Perturbation 6 7 8 2 4 4 3 1 2 2 3
Table 3.3: Number of iterations needed to achieve convergence
Table 3.4 displays summary statistics for the data over the 200 iterations. The way
the data for these tables was formed is as follows. The summary statistics (median, mean,
maximum) of the absolute value of the di erences between the parameter estimates and their
true values was recorded for each of 200 simulations. The correlation coe cient between
estimates and actual values was also recorded for each simulation. Next, the median and
maximum entry out of the 200 simulations was recorded for each of those summary statistics.
So, as an example, the (1;2) entry of Table 3.4 (a) would be the median value out of the 200
mean di erences between ^ and  for small perturbation simulations.
The results from the multiple simulation studies seem to con rm the  ndings from the
single simulation investigations. Under ideal conditions like the small perturbation sim-
ulations, the alternating regression algorithm was able to estimate parameters with a high
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degree of accuracy. The median correlation coe cient was at least 0.988 for all of the param-
eters estimated with the full model. The maximum single di erence between the estimate
of  and actual value for any simulation was 0.228.
Estimation was somewhat less accurate for the large perturbation simulations. Corre-
lations coe cients for  and  were as low as 0.93 and 0.82, respectively (see  gure 3.6).
Correlation coe cients for  remained greater than 0.999. The distribution of the errors is
right-skewed, with a small percentage of errors very far from the medians. This is especially
evident with larger perturbation, and for estimates of the cell-type B expression pro le ( 
and  ).
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Figure 3.6: Correlation coe cients between estimates and actual values for  and  over 200
simulations, large perburtation
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Figures 3.7 and Figure 3.8 provide boxplots of summary statistics for the parameters
obtained over the course of the 200 simulations. Comparisons between errors for the pa-
rameter estimates of cell-type A for the full model and simple linear regression model are
simular to those made for the single-simulations examination. The estimates made with the
full model outperform those made with the simple regression model across the board. Again
we see that the di erences are especially demonstrable towards the right-tails or the error
distributions. One interesting point to note is that the performance of the simple regres-
sion model does not su er much between the small perturbation simulations and the large
perturbation simulations (0.81 vs. 0.79 median correlation). One may conclude that the
error resulting from under tting the model is vastly greater than the error introduced from
random error.
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Figure 3.7: Boxplots of the distances between estimates and actual values over 200 simula-
tions, small perturbation
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Summary
statistics
of
the
summary
statistics
Summarystatisticsfortheindividualsimulations
Median Mean Max. Cor.
^ 
 median: 0.026187 0.031323 0.178983 0.999812
max: 0.063421 0.072786 0.294510 0.999861
^  
 median: 0.672847 0.786515 3.389044 0.884439
max: 0.886521 1.023250 4.440977 0.953637
^ 
 median: 0.070221 0.081875 0.435217 0.999036
max: 0.399066 0.453559 1.431716 0.999627
^ 
 median: 0.021312 0.025382 0.142901 0.998233
max: 0.026396 0.031377 0.227643 0.998688
^  
 median: 0.165979 0.230198 1.892718 0.807808
max: 0.198904 0.276221 2.945403 0.907269
^ 
 median: 0.038226 0.046128 0.287352 0.994336
max: 0.073960 0.112940 0.774526 0.996869
^ 
 median: 0.008943 0.011099 0.025856 1.000000
max: 0.061701 0.074904 0.194696 1.000000
^ init
 median: 0.009546 0.011660 0.030124 0.999966
max: 0.061052 0.074925 0.195449 0.999985
(a) Small perturbation
Summary
statistics
of
the
summary
statistics
Summarystatisticsfortheindividualsimulations
Median Mean Max. Cor.
^ 
 median: 0.128135 0.152699 0.882586 0.995511
max: 0.164744 0.197546 1.310403 0.996589
^  
 median: 0.670697 0.786063 3.383101 0.884690
max: 0.974261 1.119224 4.448174 0.952732
^ 
 median: 0.214646 0.257856 1.584960 0.986944
max: 0.525513 0.603796 2.697766 0.993201
^ 
 median: 0.105397 0.125379 0.708158 0.958917
max: 0.136357 0.163212 1.025942 0.968915
^  
 median: 0.186571 0.247492 1.908560 0.789325
max: 0.229187 0.313412 2.662000 0.881143
^ 
 median: 0.168837 0.202277 1.297033 0.896312
max: 0.223872 0.271100 2.265407 0.937465
^ 
 median: 0.008864 0.011187 0.027835 0.999991
max: 0.082810 0.086217 0.236570 0.999995
^ init
 median: 0.009903 0.011746 0.031754 0.999918
max: 0.083123 0.086240 0.236570 0.999958
(b) Large perturbation
Table 3.4: Multiple simulations summary statistics
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Chapter 4
Real Data Analysis
In this chapter, the expression pro le of mouse hippocampus data is estimated. The
data used was BXD mouse data downloaded from the University of Tennessee GeneNetwork
website (see section 1.5 for details). This dataset contains data for 138 mice with BXD
genotypes; of these 138 mice there are 69 distinct BXD genotypes. It is standard procedure
when expression data is measured to take measurements of replicate genotypes when possi-
ble. This allows biologists to take an average between expression pro les of mice with the
same genotype, which reduces the variation from certain factors like measurement error and
heterogeneity of cell-types in tissue samples. But since this heterogeneity is exactly what we
wish to capture, we take a di erent approach.
Instead of taking an average between mice with the same genotype, we selected exactly
one mouse per genotype and estimated the expression pro les for the two-cell model. Being
able to choose from some number of mice for each genotype (there were either 1, 2, or 3
for each) allows us to select many di erent permutations of mice and perform parameter
estimation for each permutation. In the following sections we show some results for a single
permutation, and then a run of 50 di erent permutations.
4.1 One Permutation Estimations
In this section we present the results from estimating the parameters for a single random
permutation of mice. That is to say, that among the 69 genotypes of BXD mice, we randomly
selected exactly one mouse from each genotype. The process took 14 iterations to achieve
a convergence criterion level of 0.01 (the same criterion as described in equation 2.24 but
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with a relaxed convergence level to account for the messy nature of expression data). The
convergence rate of the parameter estimates are summarized in table 4.1.
Table 4.2 provides paramater estimates for a randomly chosen subset of 35 genes, with
p-values shown for the simple regression estimate of  . The correlation coe cients between
the full model and the simple regression model for  and  are 0.995 and 0.773, respectively.
j^ (k) ^ (k 1)j j^ (k) ^ (k 1)j j^ (k) ^ (k 1)j j^ (k) ^ (k 1)j j^ (k) ^ (k 1)j
k= 2 0.304679 0.235951 0.612022 0.576787 0.542642
k= 3 0.229603 0.134413 0.514765 0.365494 0.200853
k= 4 0.115091 0.088030 0.314559 0.164319 0.105522
k= 5 0.080841 0.060893 0.170371 0.089323 0.050350
k= 6 0.059704 0.045010 0.128324 0.068947 0.038062
k= 7 0.045188 0.033028 0.095707 0.050165 0.028459
k= 8 0.034840 0.025678 0.072561 0.038550 0.021749
k= 9 0.026192 0.018137 0.055291 0.028971 0.015623
k= 10 0.018928 0.015241 0.041611 0.022432 0.012873
k= 11 0.015705 0.011890 0.031065 0.015521 0.009414
k= 12 0.010380 0.007134 0.022448 0.011878 0.006390
k= 13 0.008307 0.005385 0.017092 0.009700 0.004602
k= 14 0.006474 0.004253 0.013255 0.006314 0.004556
k= 15 0.004845 0.003689 0.009209 0.004525 0.002153
Table 4.1: Real data single permutation convergence rate summary statistics.
4.2 Multiple Permutations Summary Statistics
In this section we estimated the parameters for the GN110 dataset using 50 distinct
permutations of mice. The mice used in each permutation were chosen at random from set
of between one and three mice for each particular genotype. The estimates were obtained
using both the full model and the simple linear regression model so as to make comparisons
between the two. Table 4.3 describes the amount of iterations needed to achieve convergence.
The number of iterations ranged from 5 to 23, while the bulk of the iterations were between
8 and 11.
50
Gene ^ ^  ^ ^  ^ ^ P(^  = 0)
Col6a2 9.44203 9.33269 0.03952 0.01314 9.15977 -0.01110 0.55820
Aacs 8.59271 8.51992 -0.00382 -0.00855 8.41598 -0.01849 0.49909
Aph1a 9.64702 9.39925 0.00515 0.01655 9.05920 0.01217 0.48458
Tbc1d9b 9.54571 9.47111 0.03861 0.01535 9.37316 -0.03348 0.32322
Elovl4 9.74437 9.69782 0.09855 0.10473 9.62975 0.11351 < 0.00001
A830080D01Rik 7.70850 8.22762 -0.01643 -0.02555 8.87166 0.06074 0.45313
Tpd52l2 8.25827 8.37211 -0.01436 -0.02319 8.53619 -0.03295 0.07526
Ankdd1b 8.45212 8.76414 0.07177 -0.00241 9.22364 -0.11222 0.88719
Tmem44 7.61123 7.60790 0.01300 -0.02162 7.60152 -0.07056 0.32420
2810021J22Rik 7.51027 7.70623 -0.02302 -0.01934 7.96289 0.03028 0.37315
4930430F08Rik 7.34618 7.66075 0.01605 0.00656 8.19208 -0.05883 0.75885
Rab33a 10.09197 10.18526 -0.03022 0.01357 10.31016 0.08875 0.50454
Fga 5.96737 5.99564 0.08854 0.03156 6.03505 -0.05417 0.32280
Tmem202 5.07375 5.10802 0.00558 -0.00995 5.16497 -0.03670 0.34053
Ror2 6.32052 6.29600 -0.00024 -0.00363 6.25956 -0.00787 0.63166
Elmod3 9.05404 8.94393 0.03523 0.02656 8.79623 0.00243 0.28053
Hyls1 7.33759 7.05757 0.03902 0.06111 6.62269 0.11808 0.02057
Steap1 7.11857 7.43024 0.04274 0.01192 7.98622 -0.12010 0.85632
Hlx 6.79844 6.68739 0.01100 -0.02529 6.51649 -0.07047 0.14869
ORF63 6.30348 6.21917 -0.03783 -0.00368 6.08208 0.05431 0.82314
Txnrd1 7.81803 7.77906 -0.03448 -0.04354 7.71439 -0.05029 0.00138
Synj2bp 9.72657 9.90656 0.13605 -0.00350 10.15370 -0.20705 0.83167
Spef2 5.37491 5.41132 0.00599 0.01385 5.47575 0.01608 0.23556
Iqcb1 7.56964 8.03789 0.09971 0.01584 8.78543 -0.14827 0.59665
Agpat4 11.23272 11.17328 -0.04110 -0.06435 11.08340 -0.09478 0.00021
Nptx2 7.17601 7.25361 0.09757 0.10909 7.38057 0.10550 < 0.00001
Jag2 8.63612 8.41494 0.05135 0.00645 8.03055 0.02097 0.78120
Dhx40 9.25713 9.43755 0.03804 0.02948 9.73506 -0.01006 0.10539
Pde6a 6.35925 6.29973 -0.01792 0.00558 6.20316 0.04589 0.59795
Lpar4 5.47823 5.74565 0.03303 -0.00184 6.12522 -0.04266 0.91482
Trip11 6.63798 6.73815 0.07852 0.18348 6.92785 0.27042 < 0.00001
Ttc30b 8.09382 8.45030 -0.08843 0.02829 8.99220 0.17370 0.43608
Nbr1 11.01091 10.99110 -0.03141 -0.00138 10.96388 0.04564 0.94283
Uqcrc1 13.08599 12.91979 -0.04256 -0.00555 12.68446 0.04236 0.74750
Rin2 8.77943 9.08552 0.02636 -0.06817 9.53553 -0.20738 0.01598
Table 4.2: Real data single permutation: the parameter estimates from both the full model
and simple linear regression model for a random subset of 35 genes.
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Table 4.4 displays summary statistics regarding the correlation coe cient between the
full model estimates and the simple regression estimates of  and  for each of the mouse
permutations. Interestingly, there is quite a high degree of correlation between the estimates.
Since the simple regression model is known to produce reasonably good results, some degree
of correlation would indicate that the estimates from the full model are approximately where
they should be.
Iterations 5 6 7 8 9 10 11 12 13 14 15 16 18 19 23
Frequency 1 4 3 8 5 5 8 3 3 2 2 1 2 2 1
Table 4.3: Number of iterations required to achieve convergence
Min. Median Mean Max.
cor(^ ; ^  ) 0.995300 0.997100 0.997000 0.998300
cor( ^ ; ^  ) 0.768500 0.861400 0.851900 0.911300
Table 4.4: Real data multiple permutations; summary statistics regarding the correlation
coe cient between parameter estimates for the full and simple linear regression model.
We also investigated the estimates of the cell-type proportion  . Table 4.5 and Figure
4.1 both describe the median estimates of  for each of the 138 mice. The frequency column
in Table 4.5 refers to the number of times that a particular mouse was chosen to represent
his or her genotype out of a possible 50 mouse permutations, ranging from 11 to 50 (50
occurs for those mice who were the sole representative of their genotype).
Figure 4.2 shows a histogram of correlation coe cients between the initial estimates
and  nal estimates of  for each of the 50 mouse permutations. The correlation coe cient
for each of the 50 permutations ranges from 0.41050 to 0.78170 with a median coe cient of
0.62000. If our estimates for  have any merit, then this would indicate that we are indeed
picking out a good amount of information regarding the cell-type proportion from the PC
loadings.
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Figure 4.1: Cell-type proportion coming from cell-type A
Figure 4.2: Correlation coe cient between  and  init
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Ind Freq Median StDev Ind Freq Median StDev Ind Freq Median StDev
1 22 0.50232 0.06390 47 22 0.76970 0.03873 93 24 0.74723 0.03211
2 28 0.89223 0.03154 48 28 0.62814 0.03642 94 26 0.70954 0.02575
3 30 0.30261 0.06199 49 24 1.00000 0.01483 95 24 0.73487 0.03801
4 20 0.82665 0.03618 50 26 0.84807 0.03524 96 24 0.54838 0.03404
5 18 0.75715 0.03112 51 26 0.52494 0.04439 97 26 0.73453 0.04872
6 32 0.77365 0.04050 52 24 1.00000 0.00488 98 25 0.70569 0.04341
7 26 0.18666 0.06959 53 24 0.95672 0.04073 99 25 0.48093 0.06025
8 24 0.66470 0.04402 54 26 0.65449 0.04423 100 25 0.71126 0.05190
9 25 0.84728 0.03396 55 21 0.70131 0.03974 101 25 0.61982 0.03381
10 25 1.00000 0.01178 56 29 0.95856 0.02896 102 26 0.92673 0.03380
11 21 0.33294 0.05851 57 29 0.84793 0.02743 103 24 0.87815 0.04744
12 29 0.81797 0.03540 58 21 0.51317 0.05346 104 23 0.57093 0.03340
13 27 0.77784 0.03568 59 25 0.69708 0.04332 105 27 0.27046 0.07197
14 23 0.27446 0.07251 60 25 0.60430 0.03637 106 22 0.74910 0.03843
15 22 0.72933 0.03484 61 23 0.72979 0.03768 107 28 0.13606 0.04754
16 28 0.78616 0.03707 62 27 0.98667 0.02452 108 26 0.36042 0.05320
17 31 0.07329 0.05391 63 25 0.70967 0.03844 109 24 0.41036 0.06263
18 19 0.57529 0.06533 64 25 1.00000 0.00000 110 27 0.70320 0.03260
19 24 0.81418 0.03412 65 27 0.75711 0.03439 111 23 0.26841 0.07793
20 26 0.70919 0.04862 66 23 0.55492 0.05298 112 21 0.46997 0.04853
21 16 0.82229 0.04438 67 29 0.70133 0.03958 113 29 0.85441 0.03454
22 20 0.74431 0.03211 68 21 0.58986 0.03876 114 16 0.82128 0.03257
23 14 0.54205 0.06022 69 50 0.27609 0.07707 115 18 0.65121 0.02931
24 27 0.71412 0.04179 70 20 0.60101 0.04557 116 16 0.59291 0.03642
25 23 0.71132 0.04361 71 30 0.56308 0.03990 117 50 0.62378 0.03883
26 11 0.76323 0.02555 72 26 0.65164 0.02580 118 29 0.53579 0.05894
27 18 0.49045 0.03432 73 24 0.82454 0.04238 119 21 0.83020 0.04377
28 21 0.65206 0.06425 74 25 0.69363 0.04017 120 29 0.86144 0.04264
29 24 0.62245 0.03872 75 25 0.53874 0.05457 121 21 0.56987 0.05530
30 26 0.74936 0.03412 76 21 0.74674 0.02465 122 23 0.78717 0.04269
31 26 0.73117 0.03522 77 29 0.55800 0.04438 123 27 1.00000 0.00000
32 24 0.60008 0.04766 78 26 0.73672 0.04981 124 24 0.68857 0.03457
33 24 0.85578 0.03189 79 24 0.50899 0.05095 125 26 0.71067 0.04548
34 26 0.76069 0.03312 80 25 0.96298 0.03070 126 25 0.83901 0.03703
35 22 0.72936 0.03365 81 25 0.84641 0.02929 127 25 0.59067 0.03601
36 28 0.64256 0.04482 82 25 0.94350 0.02786 128 30 0.80786 0.03949
37 28 0.89287 0.03193 83 25 0.63727 0.03537 129 20 0.74533 0.02589
38 22 0.65929 0.03951 84 18 0.80737 0.03259 130 50 0.75709 0.03598
39 22 0.76279 0.03945 85 32 0.37257 0.06468 131 24 0.88766 0.04221
40 28 0.71761 0.03694 86 24 0.63281 0.03956 132 26 0.77906 0.03321
41 24 0.71366 0.03997 87 26 0.72892 0.04257 133 23 0.65932 0.04967
42 26 0.89553 0.03845 88 23 0.62599 0.03164 134 27 0.72244 0.03202
43 22 0.53481 0.03819 89 27 0.69953 0.04583 135 24 0.25481 0.06032
44 28 0.21875 0.03888 90 26 0.76213 0.03487 136 26 0.98296 0.03870
45 20 0.95064 0.03154 91 24 0.80577 0.03939 137 26 0.85445 0.02932
46 30 0.74963 0.03531 92 26 0.41258 0.06002 138 24 0.52435 0.04538
Table 4.5: Individual mouse cell-type proportion estimates.
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Chapter 5
Discussion
5.1 Conclusion
The study of genetic variation is one of the exciting new frontiers in the study of biolog-
ical organisms. The ability to understand how changes in the genetic code a ect individual
phenotypes is an essential part in understanding the underlying mechanisms which shape
the living world. Mapping expression quantitative trait loci is one of the important ways
in which we study genetic variation. As more and more eQTL studies are done, it becomes
increasingly important to be able to cheaply and accurately estimate cell-type expression
pro les. But the presence of cell-type heterogeneity reduces the ability to accurately esti-
mate these pro les. This thesis presents a new methodology for estimating the cell-type
speci c expression pro les for a two cell-type model. It also estimates the proportion of the
observed expression pro le coming from each cell-type. The method employs an iterative
least-squares regression approach for parameter estimation known as alternating-regression.
The  rst step of this process requires creation of initial cell-type proportion estimates
for individuals of a dataset. Once we have these estimates we treat them as constants
and estimate the gene-level means and slope paramaters of our two cell-types. Next, we
treat these gene-level parameters as constants, and update our estimates of the cell-type
proportions. Then, we  x the cell-type proportions and update the gene-level parameters,
continuing back-and-forth inde nitely, until the parameter estimates pass some convergence
criterion.
In order to test its accuracy, the parameter estimation algorithm was tested on simulated
data. It was found that, for simulated data, we were able to use information contained in the
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 rst principal components loadings to construct initial cell-type parameter estimates which
had 99% correlation with the actual values.
Under ideal simulation conditions (small random error introduced into the data), the
parameter estimation algorithm was able to estimate all parameters with greater than 98%
R2 value. When more random error was introduced into the data, the median R2 values for ^ 
and ^ dropped to 0.919 and 0.803, respectively (greater than 0.972 for the other parameters).
It was typical to be able to estimate parameter values for the primary cell-type more
accurately than the secondary cell-type. This can be attributed to the distribution of the
cell-type proportion parameter  , which had most of its density favoring the primary cell-
type.
Scatterplots of estimated parameters vs. the actual simulated values for  and  indi-
cated the tricotomous distrubtion of the simulated data. Large absolute values of  ; were
well estimated, and there were few true values of  ; close to zero incorrectly estimated as
nonzero. The biggest problem that the estimation methodology had was with smaller (yet
nonzero) absolute values of  ; being incorrectly estimated as zero (type I errors).
A real data analysis was performed on mouse hippocampus data using the proposed
parameter estimation methodology. The dataset used was obtained from the GeneNetwork
website, and was comprised of 138 BXD recombinant inbred strains of mice comprised of
69 distinct BXD strains. Since there were more mice than genotypes, this enabled us to
estimate the parameters of many distinct permutations of mice.
Cell-type expression pro les for a two cell model were estimated using 50 di erent
permutations of BXD mice. Parameter estimates for the full model correlated moderately
with parameter estimates of  and  for the simple regression model (median R2 of 0.994
and 0.726, respectively). A histogram of estimated cell-type proportions for the individual
mice had a density with highest concentration between values of 0.5 and 0.9.
The research in this thesis has shown that the alternating-regression methodology for
parameter estimation of the two cell-type model can produce accurate estimates of cell-type
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speci c expression pro les. These estimates greatly outperform estimates obtained from
the standard simple linear regression model. For the researcher wishing to estimate cell-
type speci c expression pro les in a two cell-type setting, we present this methodology as a
superior alternative.
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