3-Cycle Systems and Structure within Graph Decompositions

by
Joe Chaffee
A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy
Auburn, Alabama
August 2, 2014

Keywords: graph decomposition, neighborhood graph, quadratic leave, quadratic excess Copyright 2014 by Joe Chaffee

Approved by
Chris Rodger, Chair, Don Logan Endowed Chair of Mathematics, Department of Mathematics and Statistics; Associate Dean for Research and Graduate Studies, COSAM Curt Lindner, Distinguished University Professor, Department of Mathematics and Statistics
Peter Johnson, Professor, Department of Mathematics and Statistics

Abstract

An H-decomposition of a graph G is a partition of the edge set $E(G)$ such that each element of the partition induces a subgraph isomorphic to H. A packing or cover of λK_{n} (with triples) is an ordered pair (V, B) where V is an n-element set and B is a set of 3 -element subsets of V called blocks such that each 2-element subset of V appears in at most λ blocks or at least λ blocks respectively. Define $E(B)=\{\{x, y\},\{x, z\},\{y, z\} \mid\{x, y, z\} \in B\}$. The leave of a packing is defined to be the multiset of edges $L=E\left(\lambda K_{n}\right)-E(B)$ and the excess or padding of a cover is defined to be the multiset of edges $P=E(B)-E\left(\lambda K_{n}\right)$.

In this dissertation, necessary and sufficient conditions for the existence of $K_{3^{-}}$ decompositions of $K=\lambda_{1} K_{m} \vee_{\lambda_{2}} \lambda_{1} K_{n}$ are found when $\lambda_{1} \geq \lambda_{2}$, vastly generalizing the results in the literature on K_{3}-decompositions of K. In a specific case of this problem (namely when $n=2$), it is useful to know for which simple quadratic subgraphs Q of K_{n} (so Q cannot have 2-cycles) do there exist a K_{3}-decomposition of $\lambda K_{n}-E(Q)$ (that is, a packing of λK_{n} with leave equal to $\left.E(Q)\right)$. A complete solution to this question is provided; in addition to being useful in proving the first result, it is also significant in that it extends a classic result of Colbourn and Rosa who answered the same question when $\lambda=1$.

In terms of the quadratic leave problem, the previous result, while short and simple, has a gap in that it does not allow Q to have 2-cycles; the next result resolves this issue. In a packing of $2 K_{n}$, the neighborhood graph of a vertex v is defined to be the graph induced by the multiset of edges $\{\{a, b\} \mid\{a, b, v\} \in B\}$. In a maximum packing of $2 K_{n}$, the neighborhood graph of a vertex is a 2-regular graph on either $n-1$ or $n-2$ vertices. Colbourn and Rosa provided a chararterization of which 2-regular graphs on $n-1$ or $n-2$ vertices can be the neighborhood graph of a vertex in some maximum packing of $2 K_{n}$ when $n \equiv 0$ or $1(\bmod 3)$; this dissertation provides such a characterization in the case where

$n \equiv 2(\bmod 3)$. This result along with the Colbourn and Rosa result $(n \equiv 0$ or $1(\bmod 3))$ is used to find necessary and sufficient conditions for a K_{3}-decomposition of $\lambda K_{n}-E(Q)$ where Q is any 2-regular graph on at most n vertices (so Q can have 2-cycles).

Finally, having already found necessary and sufficient conditions for Q to be a 2-regular leave of λK_{n}, the problem of when a quadratic graph Q has edge set equal to the excess of a cover of λK_{n} is considered, and necessary and sufficient conditions for a K_{3}-decomposition of $\lambda K_{n}+E(Q)$ appear in the dissertation.

Acknowledgments

I would like to thank Chris Rodger for his guidance, advice, and patience in working with me.

Table of Contents

Abstract ii
Acknowledgments iv
List of Figures vii
1 Introduction 1
1.1 Definitions 1
1.2 History 2
2 Group Divisible Designs with Two Associate Classes and Quadratic Leaves of Triple Systems 6
2.1 Introduction 6
2.2 Terminology 9
2.3 The Case where K has no parts of size 2 9
2.4 Quadratic Leaves 17
2.5 The case where $m=2$ 21
3 Neighborhoods in Maximum Packings of $2 K_{n}$ and Quadratic Leaves of Triple Systems 34
3.1 Introduction 34
3.2 Preliminary Results 35
3.3 Neighborhoods for $2 K_{3 x+2}$ 39
3.4 Quadratic Leaves 44
4 Neighborhoods in Maximum Packings of $2 K_{n}$ - A Second Version 48
4.1 Introduction 48
4.2 Preliminary Results 48
4.3 Main Result 51
5 Quadratic Excesses or Paddings of Covers with Triples of λK_{n} 60
5.1 Introduction 60
5.2 Results 60
6 Conclusion 65
Bibliography 67

List of Figures

$1.3 C_{8}$. 2

Chapter 1

Introduction

This dissertation will focus on two main problems. First, it will look at finding $K_{3^{-}}$ decompositions of a specific family of graphs. Second, it will look at structure within packings and covers of λK_{n}. This introduction will first give a number of very general definitions in Section 1.1, and then discuss some previously solved problems related to the results in this dissertation in Section 1.2. The remaining chapters of this dissertation will be devoted to proving the results I have obtained over the past five years.

1.1 Definitions

A graph G is an ordered pair $(V(G), E(G))$ where $V(G)$ is a set of elements called vertices and $E(G)$ is a multiset of unordered pair of vertices; the elements of $E(G)$ are called edges. When $|V(G)|=n$, for notational purposes, it is often convenient to let $V(G)=\mathbb{Z}_{n}=$ $\{0,1, \ldots, n-1\}$. A graph H is said to be a subgraph of a graph G if $V(H) \subset V(G)$ and $E(H) \subset E(G)$. Two particular graphs that appear extensively in this dissertation are λK_{n}, which is the graph with n vertices in which every pair of vertices is joined by λ edges, and $\lambda_{1} K_{n} \vee_{\lambda_{2}} \lambda_{1} K_{m}$, which is the graph in which the vertex set is partitioned into two parts M and N where $|M|=m,|N|=n$, and each pair of vertices is joined by λ_{1} edges if they are in the same part and is joined by λ_{2} edges if they are in different parts. Two vertices u and v are said to be adjacent if $\{u, v\} \in E(G)$. If u and v are adjacent, we write $u \sim v$. The edge $\{u, v\}$ is said to be incident with the vertices u and v. The degree of a vertex v, denoted by $\operatorname{deg}_{G}(v)=\operatorname{deg}(v)$, is the number of edges incident with v. A k-cycle is a graph on k vertices in which every vertex has degree 2 . When a cycle C is considered as a subgraph of K_{n}, C is said to be a Hamilton cycle if $|V(C)|=\left|V\left(K_{n}\right)\right|=n$ and C is said to be a near-Hamilton
cycle if $|V(C)|=n-1$. Figures $1.1,1.2$, and 1.3 show the graphs $2 K_{9}, \lambda_{1} K_{m} \vee_{\lambda_{2}} \lambda_{1} K_{n}$, and C_{8} respectively.

Figure 1.1: $2 K_{9}$

Figure 1.2: $\lambda_{1} K_{m} \vee_{\lambda_{2}} \lambda_{1} K_{n}$

Figure 1.3: C_{8}

1.2 History

An H-decomposition of a graph G is a partition of the edge set $E(G)$ such that each element of the partition induces a subgraph isomorphic to H. In this dissertation, $K_{3^{-}}$ decompositions of graphs will be studied. Perhaps the most famous problem related to this topic is finding necessary and sufficient conditions for the existence of a K_{3}-decomposition of K_{n}. This problem was solved by Kirkman who showed in [19] that there exists a $K_{3^{-}}$ decomposition of K_{n} if and only if $n \equiv 1$ or $3(\bmod 6)$. A natural extension of this problem is to find necessary and sufficient conditions for the existence of a K_{3}-decomposition of λK_{n}. This was solved by Hanani in [17] where it was shown that there exists a K_{3}-decomposition of λK_{n} if and only if $\lambda(n-1)$ is even, $\lambda(n)(n-1)$ is divisible by 3 , and $n \neq 2$. A λ-fold triple system is an ordered pair (V, B) where V is a n-element set and B is a set of 3 -element subsets of V called blocks such that each 2-element subset of V appears in λ blocks of B. The blocks of B are also called triples. It is straightforward to see that a λ-fold triple system is equivalent to a K_{3}-decomposition of λK_{n}.

With the necessary and sufficient conditions for a K_{3}-decomposition of λK_{n} well-established, there are a few natural directions to go, three of which are as follows:

1. What are necessary and sufficient conditions for K_{3}-decompositions of more general graphs G ?
2. What type of structure is present in K_{3}-decompositions of λK_{n} ?
3. What are some natural notions of closeness to K_{3}-decompositions of λK_{n}, and when can they be achieved?

These three questions are the main focus of the work in this dissertation. The first question is studied almost exclusively in Chapter 2; hence terminology specific to that question will appear in Chapter 2. The other questions are studied throughout the dissertation, and hence the rest of this introduction will provide some definitions and history related to the last two questions.

The two most natural notions of closeness to a K_{3}-decomposition of a graph G are packings and coverings. For the purposes of this dissertation, a packing of a graph G is a K_{3}-decomposition of a subgraph H of G. In the case where $G=\lambda K_{n}$, a packing is sometimes referred to as a partial (λ-fold) triple system. If (V, B) is a (partial) triple system, define the set of edges $E(B)=\{\{x, y\},\{x, z\},\{y, z\} \mid\{x, y, z\} \in B\}$. If (V, B) is a packing of λK_{n}, then the leave of the packing is defined to be the multiset of edges $L=E\left(\lambda K_{n}\right) \backslash E(B)$. It will cause no confusion to also refer to the leave as being the subgraph induced by $E\left(\lambda K_{n}\right) \backslash E(B)$. In particular, in the special case where $L=\{\{a, b\},\{a, b\}\}, L$ is expressed as the 2 -cycle (a, b). A vertex v is said to be in the leave if there is some edge in the leave that is incident with v. A maximum packing is a packing such that among all packings the number of edges in its leave is as small as possible (with respect to the graph G). On the other hand, a cover of a graph G is a K_{3}-decomposition of $E(G)+P$ where P is a multiset of edges with underlying vertex set $V(G)$; in this dissertation, the topic of covers will only appear when $G=\lambda K_{n}$. If (V, B) is a cover of λK_{n}, define the set of edges $E(B)=\{\{x, y\},\{x, z\},\{y, z\} \mid\{x, y, z\} \in B\}$; the
excess or padding of the cover is defined to be $E(B) \backslash E\left(\lambda K_{n}\right)$. Much like with leaves, it is commonplace to look at the subgraph induced by the excess as opposed to the excess itself. A minimum cover is a cover such that among all covers the number of edges in its excess is as small as possible (with respect to the graph G).

Maximum packings and minimum covers have also been well studied, and the leaves of all maximum packings of λK_{n} and the excesses of all minimum covers of λK_{n} have been found; for instance, see [23]. In this dissertation, quadratic leaves and excesses will be studied, but before getting to this problem, a related problem is considered.

In any partial triple system (V, B) of $2 K_{n}$, the neighborhood of a vertex $v \in V$ is the graph induced by $\{\{x, y\} \mid\{v, x, y\} \in B\}$. If (V, B) is a maximum packing of $2 K_{n}$ then the neighborhood of each vertex is a 2 -regular graph, also called a quadratic graph. It will cause no confusion to also refer to the neighborhood as a set of cycles, each being a component of the neighborhood. It is natural to ask for which quadratic graphs Q does there exist a maximum packing (V, B) of $2 K_{n}$ in which there exists a vertex $v \in V$ for which the neighborhood of v is Q ? Colbourn and Rosa came up with a large part of the answer in [9].

Theorem 1.1. [9] Suppose $n \equiv 0$ or 1 ($\bmod 3$). A 2-regular graph Q on $n-1$ vertices is the neighborhood of a vertex in a 2-fold triple system on n vertices if and only if $(n, Q) \notin$ $\left\{\left(6, C_{2} \cup C_{3}\right),\left(7, C_{3} \cup C_{3}\right)\right\}$.

One purpose of looking at this structure within 2-fold triple systems is that it helps determine when 2-fold triple systems are not isomorphic. The dissertation extends this result by proving an analogous result for $n \equiv 2(\bmod 3)$; this result appears in Chapter 3 . A simpler proof of this result that also subsumes the Colbourn and Rosa result appears in Chapter 4.

This structure problem seems unrelated to the earlier topic of quadratic leaves and excesses, but in fact, the topic of quadratic leaves is related to this structure problem. In most cases, deleting a vertex in a maximum packing of $2 K_{n}$ induces a packing of $2 K_{n-1}$ where the leave induces a quadratic graph. For quadratic excesses, there is perhaps not as
clear a motivation for studying them, but they do form a natural complement to quadratic leaves and are hence discussed. In terms of quadratic leaves and excesses, the only explicit results prior to this dissertation are for $\lambda=1$ and are as follows:

Theorem 1.2. [11] Let Q be a 2-regular (quadratic) simple graph. There exists a K_{3} decomposition of $K_{n}-E(Q)$ if and only if

1. n is odd,
2. $\left|E\left(K_{n}\right)\right|-|E(Q)|$ is divisible by 3, and
3. $(n, Q) \notin\left\{\left(7, C_{3} \cup C_{3}\right),\left(9, C_{4} \cup C_{5}\right)\right\}$.

Theorem 1.3. [10] Let Q be a quadratic graph on n vertices. Then Q is the excess of a cover of K_{n} if and only if

1. n is odd, and
2. $|E(Q)|+\left|E\left(K_{n}\right)\right| \equiv 0(\bmod 3)$.

In this dissertation, both of these results are extended to the case where $\lambda>1$, although it should be mentioned that part of the the quadratic leave result for when $\lambda=2$ is a direct consequence of Theorem 1.1. The result for quadratic leaves appears in Chapter 3 although a partial result is mentioned in Chapter 2, while the result for quadratic excesses appears in Chapter 5.

More specific terminology will be introduced in the chapters as it is needed and the dissertation now goes into the specific results obtained over the last five years.

Chapter 2

Group Divisible Designs with Two Associate Classes and Quadratic Leaves of Triple Systems

2.1 Introduction

A group divisible design with two associate classes $G D D\left(v,\left\{g_{1}, \ldots, g_{n}\right\}, k, \lambda_{1}, \lambda_{2}\right)$ is an ordered triple (V, G, B) where V is a v-set of symbols, G is a partition of V into n sets (called groups) of sizes g_{1}, \ldots, g_{n} (possibly $g_{i}=g_{j}$ for some $i \neq j$ so $\left\{g_{1}, \ldots, g_{n}\right\}$ is regarded as a multiset), and B is a set of k-element subsets of V known as blocks, such that any two distinct elements of V appear together in λ_{1} blocks if they are in the same group and λ_{2} blocks otherwise. In the special case where $\lambda_{1}=0, \lambda_{2}=1$, and $k=3$, it is common to use $G D D\left(v,\left\{g_{1}, \ldots, g_{n}\right\}\right)$ instead of $G D D\left(v,\left\{g_{1}, \ldots, g_{n}\right\}, 3,0,1\right)$, and the design is called a group divisible design.

Bose and Shimamoto were among the first to classify such designs [2]. Fu, Rodger, and Sarvate solved the existence of these designs for $k=3$ when all groups have the same size $[15,16]$. A more general problem is to settle the existence question for $k=3$ when the groups have different sizes. In general this is a difficult problem, perhaps the most difficult case being when there are exactly two groups. Pabhapote and Punnim solved the existence in this case under the assumptions that $\lambda_{2}=1$ and that neither m nor n is 2 [25]. In this chapter, their result is generalized with a different proof, completely solving the interesting case where one of the two groups has size 2 (see Section 2.5) and also solving the case where $\lambda_{2} \leq \lambda_{1}$ (see Section 2.3). These results are stated in the major theorem of the chapter (see Theorem 2.2).

The problem can be approached in terms of an equivalent graph decomposition problem. Let $K=K\left(M, N, \lambda_{1}, \lambda_{2}\right)=\lambda_{1} K_{m} \vee_{\lambda_{2}} \lambda_{1} K_{n}$ where $|M|=m$ and $|N|=n$ be a graph on the
vertex set $M \cup N$ (M and N are called the parts) in which for each $x, y \in M \cup N$ with $x \neq y$, there exist λ_{1} edges between x and y if x and y are in the same part and λ_{2} edges between x and y otherwise. An edge $e=\{x, y\}$ is said to be pure if x and y lie in the same part and is said to be mixed otherwise. A K_{3}-decomposition of a graph G is an ordered pair $(V(G), B)$ where B is a partition of $E(G)$ into sets, each of which induces a K_{3}; in this chapter focus will be placed on the case where $G=K$. Sometimes the copies of K_{3} are called triples and the K_{3}-decomposition of K is called a triple system of K. It is straightforward to see that such a graph decomposition is equivalent to a $G D D\left(v=m+n,\{m, n\}, 3, \lambda_{1}, \lambda_{2}\right)$. To begin, some obvious necessary conditions for the existence of this K_{3}-decomposition of K are given. Some of these conditions appear in other papers (such as [13]), but the proof is included here for completeness.

Lemma 2.1. Let $K=\lambda_{1} K_{m} \vee_{\lambda_{2}} \lambda_{1} K_{n}$ with $|M|=m$ and $|N|=n$. Assume that $n=2$ only if $m=2$. The following conditions are necessary for the existence of a K_{3}-decomposition of K.

1. 3 divides $\lambda_{1}\left(\binom{m}{2}+\binom{n}{2}\right)+\lambda_{2} m n$,
2. 2 divides $\lambda_{1}(m-1)+\lambda_{2} n$ and 2 divides $\lambda_{1}(n-1)+\lambda_{2} m$,
3. $2 \lambda_{1}\left(\binom{m}{2}+\binom{n}{2}\right) \geq \lambda_{2} m n$,
4. if $m=2$ then $\lambda_{1} \leq \lambda_{2} n$, and
5. if $m=2$ and $n \leq 2$ then $\lambda_{1}=\lambda_{2}$.

Proof. The first and second conditions are necessary since the total number of edges must be divisible by 3 and the degree of each vertex must be divisible by 2 respectively. The last three conditions come from looking at the types of triples that can be chosen. Note that every triple that contains a mixed edge must use precisely two mixed edges and a pure edge; thus, the third condition is necessary. If $m=2$ then each triple that uses a pure edge in M,
must also use two mixed edges; thus, the fourth condition is necessary. Finally, if $m=2$ and n is less than or equal to 2 then every triple must use a pure edge and two mixed edges, so the fifth condition is necessary.

Note that under the assumption that $\lambda_{1} \geq \lambda_{2}$, the third necessary condition simplifies to requiring that either $m>1$ or $n>1$.

It seems reasonable to conjecture that the conditions of Lemma 2.1 are sufficient as well. As noted earlier, this conjecture is proved in the case where $m=2$ (see Section 2.5: Theorem 2.14) and where $\lambda_{1} \geq \lambda_{2}$ (see Section 2.3: Theorem 2.11). These proofs culminate in the following result.

Theorem 2.2. Let $K=\lambda_{1} K_{m} \vee_{\lambda_{2}} \lambda_{1} K_{n}$ with $m=2$ if $n=2$. Let $\lambda_{1} \geq \lambda_{2}$ if $m \neq 2$. There exists a K_{3}-decomposition of K if and only if

1. 3 divides $\lambda_{1}\left(\binom{m}{2}+\binom{n}{2}\right)+\lambda_{2} m n$,
2. 2 divides $\lambda_{1}(m-1)+\lambda_{2} n$ and 2 divides $\lambda_{1}(n-1)+\lambda_{2} m$,
3. $2 \lambda_{1}\left(\binom{m}{2}+\binom{n}{2}\right) \geq \lambda_{2} m n$,
4. if $m=2$ then $\lambda_{1} \leq \lambda_{2} n$, and
5. if $m=2$ and $n \leq 2$ then $\lambda_{1}=\lambda_{2}$.

Another valuable result in this chapter is the generalization of the classic result by Colbourn and Rosa establishing necessary and sufficient conditions for the existence of a K_{3}-decomposition of $K_{n}-E(Q)$ where Q is a 2-regular subgraph of K_{n} (see Theorem 2.12). In Section 2.4, the generalization of this problem to $\lambda K_{n}-E(Q)$ is completely solved as long as Q is simple, the necessary and sufficient conditions depending on n, Q, and λ (see Theorem 2.13). This result is then used in the proof of Lemma 2.18, thus helping to settle the $m=2$ case (see Theorem 2.14).

2.2 Terminology

The following terminology will be used throughout the chapter so it is defined here and complements the terminology given in Chapter 1 . In K_{v} with vertex set \mathbb{Z}_{v}, define the difference of an edge joining two vertices i and j as $d(i, j)=\min \{|i-j|, v-|(i-j)|\}$. For each $D \subset\{1, \ldots, v-1\}$, let $G_{v}(D)$ be the graph with vertex set Z_{v} and edge set consisting of all edges of differences in D. A difference d is said to be good if $\frac{v}{\operatorname{gcd}(v, d)}$ is even. A difference triple is a triple (a, b, c) of unique integers from the set $\{1, \ldots, v-1\}$, such that $a+b=c$ or $a+b+c=v$.

For $i \in\{1,3,5\}$, let $F_{i}(V(G))$ be a graph with vertex set $V(G)$ in which one vertex has degree i and the rest have degree 1 ; these graphs are known as 1 -factors, 3-poles (tripoles), and 5 -poles when $i=1,3$, and 5 respectively.

A graph G is said to be evenly equitable if each vertex of G has even degree and for all $u, v \in V(G),|d(u)-d(v)| \leq 2$.

2.3 The Case where K has no parts of size 2

In this section, Theorem 2.2 is proved in the case where neither part has size 2 (see Theorem 2.11). First some lemmas that are used in the proof of the theorem are given. The first addresses the well-known existence of maximum packings and minimum covers of μK_{v} with triples.

Theorem 2.3. [17, 23] Let $\mu \geq 1$ and $v \geq 3$. Let P (or L) be any multigraph with the least number of edges in which all vertices have degree congruent to $\mu(v-1)(\bmod 2)$ and with $|E(P)|+\frac{\mu v(v-1)}{2} \equiv 0(\bmod 3)\left(\right.$ or $\frac{\mu v(v-1)}{2}-|E(L)| \equiv 0(\bmod 3)$ respectively). Then there exists a K_{3}-decomposition of $\mu K_{v} \cup E(P)$ (or $\mu K_{v}-E(L)$ respectively).

A latin square L of order n is an $n \times n$ array containing the symbols $0,1, \ldots, n-1$ such that each symbol appears exactly once in each row and each column. If L is a latin square,
we refer to the symbol in cell (a, b) as being $a \circ b$. With the operation \circ, the latin square is referred to as a quasigroup; the quasigroup is denoted by (L, \circ). A quasigroup is said to be idempotent if $i \circ i=i$ for every $i \in\{0,1, \ldots, n-1\}$. The next lemma shows that quasigroups can be constructed so that they are not commutative; this result will be used later to build a triple system with a desired property.

Lemma 2.4. For all $n \geq 4$, there exists an idempotent quasigroup of order n that is not commutative. That is, for all $n \geq 4$, there exists an idempotent quasigroup of order n in which there exist a and b such that $a \circ b \neq b \circ a$.

Proof. If n is even, then the result follows since in every idempotent quasigroup, each symbol appears once on the main diagonal and hence appears off the main diagonal an odd number of times. If n is odd, then define $i \circ i=i$ and $(i+1) \circ(j+2)=i \circ j$ for $0 \leq i, j<n$ (reducing sums modulo n). Since 2 is relatively prime to n, this product defines a quasigroup. Since $n \geq 4$, cells $(1,0)$ and $(0,1)$ contain different symbols.

The following useful observation is easily proved.

Observation 2.5. For any $m, n, \lambda \geq 1$, if the number of edges in both λK_{n} and λK_{m} are not congruent (mod 3), then the number of edges in one of the parts is congruent to 0 (mod $3)$.

Proof. If neither $\left|E\left(\lambda K_{m}\right)\right|$ nor $\left|E\left(\lambda K_{n}\right)\right|$ is divisible by 3 , then $\left|E\left(K_{m}\right)\right| \equiv\left|E\left(K_{n}\right)\right| \equiv 1$ $(\bmod 3)$ and then $\left|E\left(\lambda K_{m}\right)\right| \equiv\left|E\left(\lambda K_{n}\right)\right| \equiv \lambda(\bmod 3)$ which proves the claim.

The next lemma is also easily proved and helps to eliminate cases in the proof of Theorem 2.11.

Lemma 2.6. Let $\lambda_{1}, \lambda_{2}, m$, and n be positive integers. Furthermore, suppose that 3 divides $\left(\lambda_{1}\left(\binom{m}{2}+\binom{n}{2}\right)+\lambda_{2} m n\right)$. If $m+n \equiv 2(\bmod 3)$ and $\lambda_{2} \equiv 1$ or $2(\bmod 3)$, then either m or n is congruent to $0(\bmod 3)$.

Proof. Assume that $m \equiv n \equiv 1(\bmod 3)$. Then $\binom{m}{2} \equiv\binom{n}{2} \equiv 0(\bmod 3)$. But none of λ_{2}, m, n is congruent to $0(\bmod 3)$. So $\lambda_{2} m n$ is not congruent to $0(\bmod 3)$ and thus $\left(\lambda_{1}\left(\binom{m}{2}+\binom{n}{2}\right)+\lambda_{2} m n\right)$ is not divisible by 3 , a contradiction.

Lemma 2.7. Let $v \equiv 0$ or $1(\bmod 3), \lambda$ be even, and $v \geq 12$. Then there exists a $K_{3}{ }^{-}$ decomposition $\left(V, T\left(z_{0}, z_{1}, z_{2}, z_{3}, z_{4}\right)\right)$ of λK_{v} containing the following triples: $\left\{z_{0}, z_{1}, z_{2}\right\}$, $\left\{z_{0}, z_{1}, z_{3}\right\}$, and $\left\{z_{2}, z_{3}, z_{4}\right\}$.

Proof. Since $v \equiv 0$ or $1(\bmod 3)$ and $\lambda-2$ is even, by Theorem 2.3 , let $\left(V, B_{0}\right)$ be a $K_{3^{-}}$ decomposition of $(\lambda-2) K_{v}$. Let $\epsilon \in\{0,1\}$ with $\epsilon \equiv v(\bmod 3)$. Let $V=\left(\mathbb{Z}_{\frac{v-\epsilon}{3}} \times \mathbb{Z}_{3}\right) \cup I$ where $I=\{\infty\}$ if $\epsilon=1$ and $I=\emptyset$ otherwise. Let (L, \circ) be a non-commutative latin square of order $\frac{v-\epsilon}{3} \geq 4$ (see Lemma 2.4). For each $x \in \mathbb{Z}_{\frac{v-\epsilon}{3}}$ let $\left(\{x\} \times \mathbb{Z}_{3}, B_{x}\right)$ or $\left(\{\infty\} \cup\left(\{x\} \times \mathbb{Z}_{3}\right), B_{x}\right)$ be a K_{3}-decomposition of $2 K_{3+\epsilon}$ if $\epsilon=0$ or 1 respectively. Let $B^{\prime}=\{\{(i, l),(j, l),(i \circ j, l+$ $\left.1)\},\{(i, l),(j, l),(j \circ i, l+1)\} \left\lvert\, 0 \leq i<j \leq \frac{v-\epsilon}{3}\right., 0 \leq l \leq 2\right\}$ where $l+1=0$ when $l=2$. Let $B=\cup_{x \in \mathbb{Z}_{\frac{v-\epsilon}{3}}} B_{x} \cup B^{\prime}$. Then (V, B) is a K_{3}-decomposition of $2 K_{v}$. Furthermore, since $a \circ b \neq$ $b \circ a$ for some $a, b \in \mathbb{Z}_{\frac{v-\epsilon}{3}}$, define $\left(z_{0}, \ldots, z_{4}\right)=((a, 0),(b, 0),(a \circ b, 1),(b \circ a, 1),((a \circ b) \circ(b \circ a), 2))$. The result is then seen in $\left(V, B_{0} \cup B\right)$.

To settle two small cases in Lemma 2.10 (see below), the two following well-known results are needed, with one on 1-factorizations of difference-induced subgraphs, and the other on the existence of $G D D \mathrm{~s}$.

Theorem 2.8. [20] Let D be a set of differences. Then $G_{v}(D)$ has a 1-factorization if and only if D contains at least one good difference.

The second theorem is proved in much greater generality in the original paper, but for the purposes of this chapter, it states the following:

Theorem 2.9. [8] There exists a $G D D(6 k,\{12,6,6, \ldots, 6\})$ for all $k \geq 5$.

The following lemma is useful in a couple of cases in the proof of the main theorem of this chapter.

Lemma 2.10. Let $\lambda_{2}=1$. Let $v \equiv 0$ or $4(\bmod 6)$ with $v \geq 12$ and let $z(v) \in\{3,4\}$ with $z(v) \equiv v(\bmod 3)$. Then there exists a K_{3}-decomposition of $\lambda_{2} K_{v}-E(L)$ where L is a graph on v vertices with $z(v)$ vertices of degree 3 and the rest of degree 1 such that no two vertices of degree 3 are adjacent.

Proof. The cases $v=12$ and $v=16$ are handled first and are also used in the next paragraph. For $v=12$, the result is seen in $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{3}, B_{12}=\{\{(i, 0),(j, 1),(i+j, 2)\} \mid 0 \leq i, j \leq\right.$ $\left.3\} \cup\left\{\{(1, j),(2, j),(3, j)\} \mid j \in \mathbb{Z}_{3}\right\}\right)$ where $i+j$ is reduced $(\bmod 4)$. For $v=16$, consider $\left(\mathbb{Z}_{16}, B^{\prime}=\{\{i, i+2, i+5\},\{i, i+6, i+7\} \mid 0 \leq i \leq 15\}\right)$ where addition is done (mod 16$)$. Note that these triples contain all edges of differences $1,2,3,5,6$, and 7 . Now note that the differences of 4 and 8 form four disjoint copies of K_{4}. Let $B^{\prime \prime}$ consist of one triple from each K_{4}. Then $\left(\mathbb{Z}_{16}, B_{16}=B^{\prime} \cup B^{\prime \prime}\right)$ is the required K_{3}-decomposition. For each $v \in\{12,16\}$, the leave L_{v}^{\prime} consists of $z(v)$ vertex-disjoint stars.

Now assume $v \geq 30$ and let $\epsilon \in\{0,4\}$ with $\epsilon \equiv v(\bmod 6)$. Let $\delta=\frac{v-\epsilon-12}{6}$; hence, $\delta \geq 3$. By Theorem 2.9, let (V, B) be a $G D D$ with δ groups of size 6 on the vertex sets $G_{1}, \ldots, G_{\delta}$ and one group of size 12 with vertex set G_{0}. Let $I=\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}$ if $v \equiv 4(\bmod 6)$ and $I=\emptyset$ otherwise. If $v \equiv 4(\bmod 6)$, then for $1 \leq i \leq \delta$, let $B_{i}=\left\{\left\{\infty_{j}, x, y\right\} \mid 1 \leq j \leq 4,\{x, y\} \in H_{j, i},\left\{H_{1, i}, \ldots, H_{5, i}\right\}\right.$ is a 1-factorization of K_{6} on the vertex set $\left.G_{i}\right\}$ and let $L_{i}=H_{5, i}$. If $v \equiv 0(\bmod 6)$, then for $1 \leq i \leq \delta$, let B_{i} consist of the triples of a maximum packing on the vertex set G_{i} with leave the 1-factor L_{i}. For each $v \in\{12,16\}$, let $\left(G_{0} \cup I, B_{0}\right)$ be a K_{3}-decomposition of $K_{v}-L_{0}$ where L_{0} is isomorphic to L_{v}^{\prime} (as defined in the previous paragraph). Then $\left(\cup_{i \in \mathbb{Z}_{\delta+1}} G_{i} \cup I, \cup_{i \in \mathbb{Z}_{\delta+1}} B_{i}\right)$ is the required K_{3}-decomposition with leave $\cup_{i \in \mathbb{Z}_{\delta+1}} L_{i}$.

It remains to settle the result for $v \in\{18,22,24,28\}$.

Let $v \in\{22,28\}$, and let $I=\left\{\infty_{1}, \ldots, \infty_{v-16}\right\}$. By Theorem 2.8, there exists a 1 factorization $\left\{F_{1}, \ldots, F_{v-16}\right\}$ of $G_{16}(\{2,3,5\})$ and $G_{16}(\{1,2,3,5,6,7\})$ if $v=22$ or 28 respectively (since 3 is a a good difference). Let $B^{\prime}=\{\{i, i+6, i+7\} \mid 0 \leq i \leq 15\}$ (where addition is done modulo 16) if $v=22$ and $B^{\prime}=\emptyset$ if $v=28$. Let $B^{\prime \prime}$ be the set of triples of a maximum packing on the vertex set I (with leave a 1 -factor in both cases (see Theorem 2.3)). Let $B=B^{\prime} \cup B^{\prime \prime} \cup\left\{\{4+i, 8+i, 12+i\} \mid i \in \mathbb{Z}_{4}\right\} \cup\left\{\left\{x, y, \infty_{j}\right\} \mid\{x, y\} \in F_{j}, 1 \leq j \leq v-16\right\}$. Then $\left(\mathbb{Z}_{16} \cup I, B\right)$ is the required packing.

Let $v=18$. Consider the vertex set $\left\{\infty_{1}, \ldots, \infty_{6}\right\} \cup \mathbb{Z}_{12}$. By Theorem 2.8, let $\left\{F_{1}, \ldots, F_{6}\right\}$ be a 1 -factorization of $G_{12}(\{1,2,5\})$. Let $\left(\left\{\infty_{1}, \ldots, \infty_{6}\right\}, B_{1}\right)$ be a maximum packing of K_{6} with leave the 1-factor L. Let $B=B_{1} \cup\left\{\left\{x, y, \infty_{j}\right\} \mid\{x, y\} \in F_{j}, 1 \leq j \leq 6\right\} \cup\{\{i, i+4, i+8\} \mid$ $0 \leq i \leq 3\} \cup\{\{i+3, i+6, i+9\} \mid 0 \leq i \leq 2\}$ where addition is done modulo 12 . Then $\left(\left\{\infty_{1}, \ldots, \infty_{6}\right\} \cup \mathbb{Z}_{12}, B\right)$ is the required decomposition with leave consisting of L together with 3 vertex disjoint stars joining vertex i to vertices $i+3, i+6$, and $i+9$ for each $i \in \mathbb{Z}_{3}$.

Let $v=24$. Consider the vertex set $\left\{\infty_{1}, \ldots, \infty_{10}\right\} \cup \mathbb{Z}_{14}$. By Theorem 2.8, let $\left\{F_{1}, \ldots, F_{9}\right\}$ be a 1-factorization of $G_{14}(\{3,4,5,6,7\})$ (with good difference 3$)$. Now, let $F_{10}=\{\{13,11\}$, $\{12,0\},\{1,3\},\{2,4\},\{5,7\},\{6,8\},\{9,10\}\}$. This matching along with the set of triples $\{\{3 i, 3 i+1,3 i+2\} \mid 0 \leq i \leq 1\} \cup\{\{3 i+1,3 i+2,3 i+3\} \mid 2 \leq i \leq 3\}$, the star joining 13 to 0,1 , and 12 , and the star joining 6 to 4,5 , and 7 use up all edges of difference 1 and 2 except $\{2,3\},\{8,10\}$, and $\{9,11\}$. Let $\left(\left\{\infty_{1}, \ldots, \infty_{10}\right\}, B_{1}\right)$ be a maximum packing of K_{10} with leave L a tripole. Let $B=B_{1} \cup\left\{\left\{x, y, \infty_{j}\right\} \mid\{x, y\} \in F_{j}, 1 \leq j \leq 10\right\} \cup\{\{3 i, 3 i+1,3 i+2\} \mid 0 \leq$ $i \leq 1\} \cup\{\{3 i+1,3 i+2,3 i+3\} \mid 2 \leq i \leq 3\}$. Then $\left(\left\{\infty_{1}, . ., \infty_{10}\right\} \cup \mathbb{Z}_{14}, B\right)$ is the required decomposition with leave consisting of L, the star joining 13 to 0,1 , and 12 , the star joining 6 to 4,5 , and 7 , and the independent edges $\{2,3\},\{8,10\}$, and $\{9,11\}$.

The next theorem is the main result of this section.

Theorem 2.11. Let λ_{1} and λ_{2} be positive integers with $\lambda_{1} \geq \lambda_{2}$. Let m and n be positive integers not equal to 2. Then there exists a K_{3}-decomposition of $\lambda_{1} K_{n} \vee_{\lambda_{2}} \lambda_{1} K_{m}$ if and only if

1. 3 divides $\lambda_{1}\left(\binom{m}{2}+\binom{n}{2}\right)+\lambda_{2} m n$,
2. 2 divides $\lambda_{1}(m-1)+\lambda_{2} n$ and 2 divides $\lambda_{1}(n-1)+\lambda_{2} m$, and
3. either $m \neq 1$ or $n \neq 1$.

Proof. The necessity of Conditions $(1-3)$ was shown in Lemma 2.1. To prove the sufficiency, regular use of Theorem 2.3 will be made with $\mu=\lambda_{2}$ and $v=m+n$; this is possible since $\lambda_{2} \geq 1$ by assumption and since $m+n \geq 3$ by Condition 3 . Several cases and subcases will be considered in turn.

Case 1: Suppose that $\lambda_{2}(m+n-1)$ is even (so each vertex of $\lambda_{2} K_{m+n}$ has even degree). This will be broken into two subcases.

Case 1.1: Suppose the number of edges of $\lambda_{2} K_{m+n}$ is divisible by 3 .
By Theorem 2.3, let $\left(M \cup N, T_{1}\right)$ be a K_{3}-decomposition of $\lambda_{2} K_{m+n}$. Now applying Observation 2.5 with $\lambda=\lambda_{1}-\lambda_{2}$ along with Condition (1) shows that the number of edges in each of $\left(\lambda_{1}-\lambda_{2}\right) K_{m}$ and $\left(\lambda_{1}-\lambda_{2}\right) K_{n}$ is divisible by 3 . The second condition shows that each vertex of $\left(\lambda_{1}-\lambda_{2}\right) K_{m}$ and of $\left(\lambda_{1}-\lambda_{2}\right) K_{n}$ has even degree. Hence, by Theorem 2.3 there exist K_{3}-decompositions $\left(M, T_{2}\right)$ and $\left(N, T_{3}\right)$ of $\left(\lambda_{1}-\lambda_{2}\right) K_{m}$ and of $\left(\lambda_{1}-\lambda_{2}\right) K_{n}$ respectively. Then $\left(M \cup N, \cup_{i=1}^{3} T_{i}\right)$ is the required K_{3}-decomposition. Note Case 1.1 settles the existence for Case 1 unless both $\lambda_{2} \not \equiv 0(\bmod 3)$ and $m+n \equiv 2(\bmod 3)$.

Case 1.2: Suppose $\lambda_{2} \equiv 1$ or $2(\bmod 3)$ and that $(m+n) \equiv 2(\bmod 3)$.
By Lemma 2.6, one of m and n is divisible by 3 , say $m \equiv 0(\bmod 3)$. So by Condition 1 , $\lambda_{1} \equiv 0(\bmod 3)$. By Theorem 2.3, let $\left(M \cup N, T_{1}\right)$ be a maximum packing of $\lambda_{2} K_{m+n}$ with leave L being a double edge joining two vertices n_{1} and n_{2} in N if $\lambda_{2} \equiv 1(\bmod 3)$ and being the four cycle $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ in N if $\lambda_{2} \equiv 2(\bmod 3)$. (In this case, since $n+m \equiv 2 \bmod 3$,
since $m \equiv 0 \bmod 3$, and since $n \neq 2, n \geq 5$.) By Condition 2, each vertex of $\left(\lambda_{1}-\lambda_{2}\right) K_{m}$ and of $\left(\lambda_{1}-\lambda_{2}\right) K_{n}+E(L)$ has even degree. By Theorem 2.3, let $\left(M, T_{2}\right)$ be a K_{3}-decomposition of $\left(\lambda_{1}-\lambda_{2}\right) K_{m}$. Finally, by Theorem 2.3, let $\left(N, T_{3}\right)$ be a minimum cover of $\left(\lambda_{1}-\lambda_{2}\right) K_{n}$ with padding $P=L,\left(\right.$ recall that $\left.\lambda_{1} \equiv 0(\bmod 3)\right)$. Then $\left(M \cup N, \cup_{i=1}^{3} T_{i}\right)$ is the required K_{3}-decomposition.

Case 2: Now suppose that $\lambda_{2}(m+n-1)$ is odd. Note that Condition 2 implies that m, n, and λ_{1} are all even. This is broken into four subcases.

Case 2.1: Suppose that:

1. $m, n \equiv 0(\bmod 6)$,
2. $m \equiv 0(\bmod 6)$ and $n \equiv 4(\bmod 6)$, or
3. $m, n \equiv 4(\bmod 6)$.

By Theorem 2.3, there exists a maximum packing, $\left(M \cup N, T_{1}\right)$, of $\lambda_{2} K_{m+n}$ with leave $L=F_{1}(M) \cup F_{1}(N), F_{1}(M) \cup F_{3}(N), F_{3}(M) \cup F_{3}(N)$ in cases (1), (2), and (3) respectively (note that both $|M|$ and $|N|$ are even so that each edge of the leave can lie entirely within M or N). By Theorem 2.3 let $\left(M, T_{2}\right)$ be a minimum cover of $\left(\lambda_{1}-\lambda_{2}\right) K_{m}$ with padding $L[M]$ (the subgraph of L induced by M). By Theorem 2.3, let $\left(N, T_{3}\right)$ be a minimum cover of $\left(\lambda_{1}-\lambda_{2}\right) K_{n}$ with padding $L[N]$. Then $\left(M \cup N, \cup_{i=1}^{3} T_{i}\right)$ is the required K_{3}-decomposition.

Case 2.2: Let $m \equiv 0(\bmod 6)$ and $n \equiv 2(\bmod 6)$.
Note that the necessary conditions imply that $\lambda_{1} \equiv 0(\bmod 6)$ (Condition 1 implies $\lambda_{1} \equiv 0(\bmod 3)$ and Condition 2 implies λ_{1} is even.) By Theorem 2.3, let $\left(M \cup N, T_{1}\right)$ be a maximum packing of $\lambda_{2} K_{m+n}$ with leave $F(M) \cup F(N), F(M) \cup F_{3}(N)$, or $F(M) \cup F_{5}(N)$ for $\lambda_{2} \equiv 1,3$, or $5(\bmod 6)$ respectively. By Theorem 2.3 , let $\left(M, T_{2}\right)$ be a minimum cover of $\left(\lambda_{1}-\lambda_{2}\right) K_{m}$ with padding $F(M)$. Note that $\left(\lambda_{1}-\lambda_{2}\right) \equiv 5,3$, or $1(\bmod 6)$ respectively. By Theorem 2.3, let $\left(N, T_{3}\right)$ be a minimum cover of $\left(\lambda_{1}-\lambda_{2}\right) K_{n}$ with padding $F(N), F_{3}(N)$, or $F_{5}(N)$ respectively. Then $\left(M \cup N, \cup_{i=1}^{3} T_{i}\right)$ is the required K_{3}-decomposition.

For the next two subcases, the structure from Lemmas 2.7 and 2.10 are useful here.
Case 2.3: Let $m, n \equiv 2(\bmod 6)$.
In Case 2.3, two cases are considered at first and then merged at the end.
First suppose $\lambda_{2}=1$. Since $2 \notin\{m, n\}, m, n \geq 8$, so since in this subcase $m+n \equiv 4$ $(\bmod 6)$, by Lemma 2.10 there exists a K_{3}-decomposition $\left(M \cup N, T_{1}^{\prime}\right)$ of $K_{m+n}-\left(E\left(L_{M}\right) \cup\right.$ $\left.E\left(L_{N}\right)\right)$ where L_{M} and L_{N} are spanning subgraphs of M and N respectively, each consisting of two vertex disjoint copies of $K_{1,3}$ and a matching on the remaining vertices.

Since λ_{2} is odd in Case 2, we can now suppose that $\lambda_{2} \geq 3$. By Lemma 2.7, there exists a K_{3}-decomposition $\left(M \cup N, T\left(m_{1}, m_{2}, n_{1}, n_{2}, n_{3}\right)\right)$ of $\left(\lambda_{2}-1\right) K_{m+n}$, where $\left\{m_{1}, m_{2}\right\} \subset M$ and $\left\{n_{1}, n_{2}, n_{3}\right\} \subset N$. By Theorem 2.3, there exists a maximum packing ($M \cup N, T_{1}^{*}$) of K_{m+n} with leave $F(M) \cup F_{3}(N)$; name them so they contain the edges $\left\{m_{1}, m_{2}\right\},\left\{n_{1}, n_{2}\right\},\left\{n_{3}, n_{6}\right\}$, $\left\{n_{3}, n_{5}\right\}$, and $\left\{n_{3}, n_{4}\right\}$. Let $T_{1}=T_{1}^{\prime} \cup T_{1}^{*} \cup\left\{\left\{n_{1}, n_{2}, m_{1}\right\},\left\{n_{1}, n_{2}, m_{2}\right\}\right\} \backslash\left\{\left\{n_{1}, n_{2}, n_{3}\right\}\right.$, $\left.\left\{m_{1}, m_{2}, n_{1}\right\},\left\{m_{1}, m_{2}, n_{2}\right\}\right\}$. Then $\left(M \cup N, T_{1}\right)$ is a packing of $\lambda_{2} K_{m+n}$ with leave $L_{M} \cup L_{N}$ where L_{M} contains three copies of the edge $\left\{m_{1}, m_{2}\right\}$ and a matching on the remaining vertices and L_{N} is a five-pole with n_{3} being the vertex of degree 5 .

In either case, triples are added to $\left(M \cup N, T_{1}\right)$ as follows: Let $\left(M, T_{2}\right)$ and $\left(N, T_{3}\right)$ be minimum covers of M and N with padding L_{M} and L_{N} respectively (see Theorem 2.3). Then $\left(M \cup N, \cup_{i=1}^{3} T_{i}\right)$ is the required K_{3}-decomposition.

Case 2.4: Let $m \equiv 4(\bmod 6)$ and $n \equiv 2(\bmod 6)$.
First suppose $\lambda_{2}=1$. Since in this subcase $m+n \equiv 0(\bmod 6)$ and since $n \neq 2$ so $n \geq 8$ and $m+n \geq 12$, by Lemma 2.10 there exists a K_{3}-decomposition ($M \cup N, T_{1}^{\prime}$) of $K_{m+n}-\left(E\left(L_{M}\right) \cup E\left(L_{N}\right)\right)$ where L_{M} is a spanning subgraph of M consisting of a $K_{1,3}$ and a matching on the remaining vertices and L_{N} is a spanning subgraph of N consisting of two vertex disjoint copies of $K_{1,3}$ (recall that we observed that $n \geq 8$) and a matching on the remaining vertices.

Again since λ_{2} is odd in Case 2, we can now suppose that $\lambda_{2} \geq 3$. By Lemma 2.7, there exists a K_{3}-decomposition $\left(M \cup N, T\left(m_{1}, m_{2}, n_{1}, n_{2}, n_{3}\right)\right)$ of $\left(\lambda_{2}-1\right) K_{m+n}$, where $\left\{m_{1}, m_{2}\right\} \subset$
M and $\left\{n_{1}, n_{2}, n_{3}\right\} \subset N$. By Theorem 2.3, there exists a maximum packing ($M \cup N, T_{1}^{*}$) of K_{m+n} with leave $F(M) \cup F(N)$; name them so they contain the edges $\left\{m_{1}, m_{2}\right\}$ and $\left\{n_{1}, n_{2}\right\}$. Let $T_{1}=T_{1}^{\prime} \cup T_{1}^{*} \cup\left\{\left\{n_{1}, n_{2}, m_{1}\right\},\left\{n_{1}, n_{2}, m_{2}\right\}\right\} \backslash\left\{\left\{n_{1}, n_{2}, n_{3}\right\},\left\{m_{1}, m_{2}, n_{1}\right\},\left\{m_{1}, m_{2}, n_{2}\right\}\right\}$. Then $\left(M \cup N, T_{1}\right)$ is a packing of $\lambda_{2} K_{m+n}$ with leave $L_{M} \cup L_{N}$ where L_{M} contains three copies of the edge $\left\{m_{1}, m_{2}\right\}$ and a matching on the remaining vertices and L_{N} is a tripole.

In either case, triples are added to $\left(M \cup N, T_{1}\right)$ as follows. Let $\left(M, T_{2}\right)$ and $\left(N, T_{3}\right)$ be minimum covers of M and N with padding L_{M} and L_{N} respectively (see Theorem 2.3). Then $\left(M \cup N, \cup_{i=1}^{3} T_{i}\right)$ is the required K_{3}-decomposition.

2.4 Quadratic Leaves

In this section, the following strong result of Rosa and Colbourn is generalized to all values of λ. Not only is this of interest in its own right, but it will also be useful in Section 2.5.

A graph is said to be quadratic if each vertex has either degree 2 or degree 0 .

Theorem 2.12. [11]

1. Let Q be a quadratic (simple) graph on $n \equiv 3(\bmod 6)$ vertices and $c \equiv 0(\bmod 3)$ edges. Then Q is the leave of a packing of K_{n} unless $n=9$ and $Q=C_{4} \cup C_{5}$.
2. Let $n \equiv 1$ or $5(\bmod 6)$, and let Q be a quadratic graph on $c<n$ edges with $c \equiv n-1$ $(\bmod 3)$. Then Q is the leave of a packing of K_{n} unless $n=7$ and $Q=C_{3} \cup C_{3}$.

The next result is the main result of the section. A portion of the result for $\lambda=2$ was proved in [9].

Theorem 2.13. Let $n>2$ and let Q be a quadratic simple graph on at most n vertices. Then Q is the leave of a packing of λK_{n} if and only if:

1. Either λ is even or n is odd,
2. 3 divides $\left|E\left(\lambda K_{n}\right)\right|-|E(Q)|$, and
3. (a) if $\lambda=1$ and $n=7$, then $Q \neq C_{3} \cup C_{3}$,
(b) if $\lambda=1$ and $n=9$, then $Q \neq C_{4} \cup C_{5}$, and
(c) if $\lambda=2$ and $n=6$, then $Q \neq C_{3} \cup C_{3}$.

Proof. Suppose there exists a packing of $\lambda K_{n}-E(Q)$. Since each vertex of Q has even degree and each vertex of $\lambda K_{n}-E(Q)$ must have even degree, each vertex of λK_{n} must have even degree so Condition 1 is necessary. Since the edges of $\lambda K_{n}-E(Q)$ are partitioned into sets of size 3 , Condition 2 is necessary.

Conditions $3(a)$ and $3(b)$ follow from Theorem 2.12. Condition $3(c)$ follows from the fact that the only K_{3}-decomposition of $2 K_{6}$ (up to isomorphism) does not contain two disjoint triples. Thus Condition 3 is necessary.

The proof of the sufficiency is broken into several cases, based on the congruence classes $(\bmod 6)$ of n. Let n, λ, and Q satisfy Conditions $(1-3)$. Theorem 2.12 handles the case where $\lambda=1$, so assume $\lambda>1$, Also, if $|E(Q)|=0$, then by Theorem 2.3, there exists a K_{3}-decomposition of λK_{n}, which proves the result. Hence, assume $|E(Q)| \geq 3$. (Note that no simple quadratic graph has 1 or 2 edges.)

If $n \equiv 1(\bmod 6)$ or $n \equiv 3(\bmod 6)$, Condition 2 is satisfied if and only if $|Q| \equiv 0(\bmod$ 3). So, unless $\lambda>1$ and $(n, Q) \in\left\{\left(7, C_{3} \cup C_{3}\right),\left(9, C_{4} \cup C_{5}\right)\right\}$, the result follows by taking a triple system of $K_{n}-E(Q)$ (see Theorem 2.12) together with a triple system of $(\lambda-1) K_{n}$.

If $\lambda>1$ and $(n, Q)=\left(7, C_{3} \cup C_{3}\right)$, then by Theorem 2.3, the vertices of two triple systems of K_{7} with vertex set V can be named to contain the triples $T_{1}=\left\{a_{1}, b_{1}, c_{1}\right\}$ and $T_{2}=\left\{a_{2}, b_{2}, c_{2}\right\}$ respectively, with $T_{1} \cap T_{2}=\emptyset$; let B_{1} be the union of the triples of these triple systems with $Q=T_{1} \cup T_{2}$ removed. If $\lambda>1$ and $(n, Q)=\left(9, C_{4} \cup C_{5}\right)$, then by Theorem 2.12, let $\left(V, B_{1}^{\prime}\right)$ be a triple system of $K_{9}-L_{1}$ where L_{1} is the nine-cycle ($0,1,2,3,4,5,6,7,8$) and let $\left(V, B_{1}^{\prime \prime}\right)$ be a triple system of $K_{9}-L_{2}$ where L_{2} is the six-cycle $(0,3,6,4,8,7)$. Let
$B_{1}=B_{1}^{\prime} \cup B_{1}^{\prime \prime} \cup\{\{3,4,6\},\{0,7,8\}\}$. In either case, let $\left(V, B_{2}\right)$ be a triple system of $(\lambda-2) K_{n}$. Then $\left(V, B_{1} \cup B_{2}\right)$ is the required decomposition.

Suppose $n \equiv 5(\bmod 6)$. Let $\epsilon \in\{1,2,3\}$ with $\epsilon \equiv \lambda(\bmod 3)$. By Theorem 2.3, let $\left(V, B_{1}\right)$ be a K_{3}-decomposition of $(\lambda-\epsilon) K_{n}$. The three ϵ values are now considered separately.

Suppose $\epsilon=1$. By Theorem 2.12, let $\left(V, B_{2}\right)$ be a K_{3}-decomposition of $K_{n}-E(Q)$.
Suppose $\epsilon=2$. Let Q^{\prime} be formed from Q by replacing one cycle, $c=(0,1, \ldots, x)$, of length $x+1 \geq 4$ in Q with the cycle $(1, \ldots, x)$ (by Condition $2,|E(Q)| \equiv\left|E\left(2 K_{n}\right)\right| \equiv 2(\bmod$ $3)$ and hence there must be a cycle of length at least 4). By Theorem 2.12, let (V, B_{2}^{\prime}) be a K_{3}-decomposition of $K_{n}-E\left(Q^{\prime}\right)$. Let $\left(V, B_{2}^{\prime \prime}\right)$ be a K_{3}-decomposition of $K_{n}-E(L)$ where L is the 4 -cycle $(0,1,2, x)$. Let $B_{2}=B_{2}^{\prime} \cup B_{2}^{\prime \prime} \cup\{\{1,2, x\}\}$.

Finally, suppose $\epsilon=3$. By Condition $2,|V(G[Q])| \leq n-2$ so say $0 \notin V(G[Q])$. Let $c=(1,2, \ldots, x)$ be any cycle in Q and set $c^{\prime}=(0,1, \ldots, x)$. Form Q^{\prime} from Q by replacing c with c^{\prime}. Also by Condition $2,|E(Q)| \equiv\left|E\left(\lambda K_{n}\right)\right| \equiv 0(\bmod 3)$, so $\left|E\left(Q^{\prime}\right)\right| \equiv 1 \equiv\left|E\left(K_{n}\right)\right|$ $(\bmod 3)$. So by Theorem 2.12 , let $\left(V, B_{2}^{\prime}\right)$ be a K_{3}-decomposition of $K_{n}-E\left(Q^{\prime}\right)$. By Theorem 2.3, let $\left(V, B_{2}^{\prime \prime}\right)$ be a K_{3}-decomposition of $2 K_{n}-E(L)$ where L consists of two copies of the edge $\{1, x\}$. Let $B_{2}=B_{2}^{\prime} \cup B_{2}^{\prime \prime} \cup\{\{0,1, x\}\}$.

In each case, $\left(V, B_{1} \cup B_{2}\right)$ is the required K_{3}-decomposition.
Suppose $n \equiv 4(\bmod 6)$. First suppose $(n, Q) \neq\left(10, C_{4} \cup C_{5}\right)$. By Condition $1, \lambda$ is even. By Theorem 2.3, let $\left(V, B_{1}\right)$ be a K_{3}-decomposition of $(\lambda-2) K_{n}$. By Condition 2, $|V(G[Q])| \leq n-1$ so say $0 \notin V(G[Q])$. Let $G=G\left[V\left(K_{n}\right) \backslash\{0\}\right]$. By Theorem 2.12, let (V^{*}, B_{2}) be a K_{3}-decomposition of $G-E(Q)$. Let $\left(V, B_{3}\right)$ be a maximum packing of K_{n} with leave L, a tripole, that includes the edges $\{0,1\},\{1,2\}$, and $\{1,3\}$. Finally, let $B_{4}=$ $\{\{x, y, 0\} \mid\{x, y\}$ is an independent edge in $L\} \cup\{\{0,1,2\},\{0,1,3\}\}$. Then $\left(V, \cup_{i=1}^{4} B_{i}\right)$ is the required decomposition. Now suppose $(n, Q)=\left(10, C_{4} \cup C_{5}\right)$. Let $\left(\mathbb{Z}_{10}, B_{1}\right)$ be a maximum packing of K_{10} with leave consisting of the edges $\{0,1\},\{0,8\},\{0,9\},\{2,3\},\{4,5\}$, and $\{6,7\}$, and let $\left(\mathbb{Z}_{10}, B_{2}\right)$ be a maximum packing with leave consisting of the edges $\{0,3\},\{1,2\}$,
$\{5,6\},\{4,8\},\{7,8\},\{8,9\}$. Then $\left(V, B_{1} \cup B_{2} \cup\{\{0,8,9\}\}\right)$ is the required packing of $2 K_{10}$ and can be combined with a K_{3}-decomposition of $(\lambda-2) K_{n}$ to get the result for higher values of λ.

Suppose $n \equiv 2(\bmod 6)$. Note that $n \neq 2$. By Condition $1, \lambda$ is even. Let $\epsilon \in\{2,4,6\}$ and set $\epsilon \equiv \lambda(\bmod 6)$. By Theorem 2.3, let $\left(V, B_{1}\right)$ be a K_{3}-decomposition of $(\lambda-\epsilon) K_{n}$. Suppose $\epsilon=2$.

First suppose that Q contains a cycle of length at least 5 . Let Q^{\prime} be formed from Q by replacing a cycle, $c=(0,1, \ldots, x)$, of length $x+1 \geq 5$ in Q with the cycle $c^{\prime}=(2, \ldots, x)$. Note that $0 \notin V\left(G\left[Q^{\prime}\right]\right)$. Let $G=G\left[V\left(K_{n}\right) \backslash\{0\}\right]$. Since $\lambda \equiv 2(\bmod 6)($ since $\epsilon=2$ in this subcase), then $|E(Q)| \equiv\left|E\left(\lambda K_{n}\right)\right| \equiv 2(\bmod 3)$, and hence $\left|E\left(Q^{\prime}\right)\right| \equiv 0(\bmod 3)$. Further, $n-1 \equiv 1(\bmod 6)$ so by Theorem 2.12 , let $\left(V^{*}, B_{2}\right)$ be a K_{3}-decomposition of $G-E\left(Q^{\prime}\right)$. Now let $\left(V, B_{3}\right)$ be a maximum packing of K_{n} with leave L, a 1-factor, with $\{1,2\}$ and $\{0, x\}$ as edges in the 1-factor. Finally, let B_{4} consist of the following triples: $\{\{x, y, 0\} \mid\{x, y\} \in(L \backslash\{\{1,2\},\{0, x\}\})\} \cup\{\{0,2, x\}\}$. Then $\left(V, \cup_{i=1}^{4} B_{i}\right)$ is the required decomposition.

Now suppose Q contains only three and four cycles. There are at least two four cycles; name them $(0,1,2,3)$ and $(4,5,6,7)$. Let Q^{\prime} be formed from Q by removing these two four cycles and replacing them with the six-cycle $(2,3,4,5,6,7)$. Note that $0 \notin V\left(G\left[Q^{\prime}\right]\right)$. Let $G=G\left[V\left(K_{n}\right) \backslash\{0\}\right]$. By the above argument, let $\left(V^{*}, B_{2}\right)$ be a K_{3}-decomposition of $G-E\left(Q^{\prime}\right)$. Now let $\left(V, B_{3}\right)$ be a maximum packing of K_{n} with leave L, a 1-factor, with $\{1,2\},\{4,7\}$ and $\{0,3\}$ as edges in the 1 -factor. Finally, let B_{4} consist of the following triples: $\{\{x, y, 0\} \mid\{x, y\} \in(L \backslash\{\{1,2\},\{0,3\},\{4,7\}\})\} \cup\{\{0,2,7\},\{0,3,4\}\}$. Then $\left(V, \cup_{i=1}^{4} B_{i}\right)$ is the required decomposition.

Suppose $\epsilon=4$. By Condition $2,|V(G[Q])| \leq n-1$ so say $0 \notin V(G[Q])$. Let $c=$ $(1,2, \ldots, x)$ be any cycle in Q and set $c^{\prime}=(0,1, \ldots, x)$. Form Q^{\prime} from Q by replacing c with c^{\prime}. By the above case for $\epsilon=2$, let $\left(V, B_{2}\right)$ be a packing of $2 K_{n}$ with leave Q^{\prime}. By Theorem
2.3, let $\left(V, B_{3}\right)$ be a maximum packing of $2 K_{n}$ with leave the double edge $\{1, x\}$. Then $\left(V, \cup_{i=1}^{3} B_{i} \cup\{\{0,1, x\}\}\right)$ is the required decomposition.

Suppose $\epsilon=6$. By Condition $2,|V(G[Q])| \leq n-2$ so say $0 \notin V(G[Q])$. Let $c=$ $(1,2, \ldots, x)$ be any cycle in Q and set $c^{\prime}=(0,1, \ldots, x)$. Form Q^{\prime} from Q by replacing c with c^{\prime}. By the above case for $\epsilon=4$, let $\left(V, B_{2}\right)$ be a packing of $4 K_{n}$ with leave Q^{\prime}. By Theorem 2.3 , let $\left(V, B_{3}\right)$ be a maximum packing of $2 K_{n}$ with leave the double edge $\{1, x\}$. Then $\left(V, \cup_{i=1}^{3} B_{i} \cup\{0,1, x\}\right)$ is the required decomposition.

Finally, suppose $n \equiv 0(\bmod 6)$. The proof is similar to the case where $n \equiv 2(\bmod$ 6) with $\epsilon=2$ unless Q consists entirely of 3 -cycles. It is first assumed that Q contains a 5 -cycle, then two edges are removed from a cycle of length at least 5 , a vertex is deleted, and then the leave is modified just as in the case where $n \equiv 2(\bmod 6)$ with $\epsilon=2$. If there are no five cycles, but at least one four cycle, then there are necessarily three four cycles since $|E(Q)| \equiv 0(\bmod 3)$. Take two of the four cycles and then proceed in the same manner as in the case where $n \equiv 2(\bmod 6)$ with $\epsilon=2$. Finally, if there are only 3 -cycles, note that $n \geq 12$ (by assumption) and take a K_{3}-decomposition of λK_{n} that contains a parallel class ($\frac{n}{3}$ disjoint triples; take the B_{x} from Lemma 2.7 for example).

2.5 The case where $m=2$

A proof of Theorem 2.2 in the case where $m=2$ is given in this section. The proof relies on results which follow it, but is worth reading first before all the details potentially cloud the idea.

Theorem 2.14. Let $m=2$. Let λ_{1}, λ_{2}, and n be positive integers. Then there exists a K_{3}-decomposition of $\lambda_{1} K_{n} \vee_{\lambda_{2}} \lambda_{1} K_{2}$ if and only if

1. 3 divides $\lambda_{1}\left(\binom{m}{2}+\binom{n}{2}\right)+\lambda_{2} m n$,
2. 2 divides $\lambda_{1}(m-1)+\lambda_{2} n$ and 2 divides $\lambda_{1}(n-1)+\lambda_{2} m$,
3. $2 \lambda_{1}\left(\binom{m}{2}+\binom{n}{2}\right) \geq \lambda_{2} m n$,
4. $\lambda_{1} \leq \lambda_{2} n$, and
5. if $n \leq 2$ then $\lambda_{1}=\lambda_{2}$.

Proof. The necessity of Conditions $(1-5)$ has been shown in Lemma 2.1, so the sufficiency is now proved. Let $M=\left\{m_{0}, m_{1}\right\}$.

For both $n=1$ and $n=2$, Condition 5 requires $\lambda_{1}=\lambda_{2}$. If $n=1$, then the sufficiency follows from taking λ_{2} copies of a triple system on 3 vertices. If $n=2$, then Condition 2 implies that λ_{1} is even. Thus, the sufficiency follows from taking $\frac{\lambda_{1}}{2}$ copies of a 2 -fold triple system of $2 K_{4}$.

Suppose $n \geq 3$. The following three steps are taken, although they are dependent upon lemmas provided afterwards.

Step 1: Since $m=2$, the number of mixed edges incident with each vertex of N is even. Together with Condition 2, this implies that each vertex in $\lambda_{1} K_{n}$ has even degree. Let (N, B_{1}) be a K_{3}-decomposition of $\lambda_{1} K_{n}-E(L)$ where L is a subgraph of K_{n} such that:
(a) $|E(L)|=\lambda_{2} n-\lambda_{1}$,
(b) the subgraph induced by $E(L)$ is connected, and
(c) each vertex of L has even degree less than or equal to $2 \lambda_{2}$.

The existence of L is shown in Lemma 2.18, but at least it is noted here that $\lambda_{2} n-\lambda_{1} \geq 0$ by Condition 3 .

Step 2: Since the subgraph of K induced by $E(L), G=K[E(L)]$, is connected (by (b)) and since all vertices in G have even degree (by (c)), there exists an Euler circuit E of G. Alternately color the edges of E with colors 0 and 1 . By Condition $2, \lambda_{2} n-\lambda_{1}$ is even, so E has even length, so for each vertex w in G, the number of edges in G incident with w colored 0 equals the number colored 1. Let $B_{2}=\left\{\left\{m_{i}, w, u\right\} \mid\{w, u\} \in E(L)\right.$ is colored $\left.i, i \in \mathbb{Z}_{2}\right\}$. Then for each $i \in \mathbb{Z}_{2}$ and each $n \in N$, the number of triples containing the pair $\left\{m_{i}, n\right\}$ is $\frac{d_{G}(n)}{2}$.

Step 3: By $(c), \lambda_{2}-\frac{d_{G}(n)}{2}$ is a nonnegative integer for each $n \in N$. So let B_{3} be the multiset of triples formed as follows: for each $n \in N$, let B_{3} contain $\lambda_{2}-\frac{d_{G}(n)}{2}$ copies of the triple $\left\{m_{0}, m_{1}, n\right\}$.

By $(a), \sum_{n \in N}\left(\lambda_{2}-\frac{d_{G}(n)}{2}\right)=n \lambda_{2}-|E(L)|=\lambda_{1}$, so λ_{1} triples in B_{3} contain the pair $\left\{m_{0}, m_{1}\right\}$. Therefore $\left(M \cup N, \cup_{i=1}^{3} B_{i}\right)$ is the required decomposition.

So the result for $m=2$ is proved provided that it can be shown that the K_{3}-decomposition of $\lambda_{1} K_{n}-E(L)$ in Step 1 actually exists. Conditions 3 and 1 imply that the number of edges in $\lambda_{1} K_{n}-E(L)$ is nonnegative and divisible by 3 respectively. It is now show how the $K_{3^{-}}$ decomposition from Step 1 can be achieved. However, before showing the existence of L, a powerful result due to Simpson is given along with a corollary that will frequently be used in showing the existence of L.

A Langford sequence of order n and defect d with $n>d$ is a sequence $L=\left(l_{1}, l_{2}, \ldots, l_{2 n}\right)$ of $2 n$ integers satisfying the conditions
(a) for every $k \in\{d, d+1, \ldots, d+n-1\}$, there exist exactly two elements $l_{i}, l_{j} \in L$ such that $l_{i}=l_{j}=k$, and
(b) if $l_{i}=l_{j}=k$, then $|i-j|=k$.

A hooked Langford sequence of order n and defect d with $n>d$ is a sequence $L=$ $\left(l_{1}, l_{2}, \ldots, l_{2 n}, l_{2 n+1}\right)$ of $2 n$ integers satisfying the conditions
(a) $l_{2 n}=0$
(b) for every $k \in\{d, d+1, \ldots, d+n-1\}$, there exist exactly two elements $l_{i}, l_{j} \in L \backslash\left\{l_{2 n}\right\}$ such that $l_{i}=l_{j}=k$, and
(c) if $l_{i}=l_{j}=k$, then $|i-j|=k$.

Theorem 2.15. [29]

1. A Langford sequence of order n and defect d exists if and only if
(a) $n \geq 2 d-1$ and
(b) $n \equiv 0,1(\bmod 4)$ and d is odd, or $n \equiv 0,3(\bmod 4)$ and d is even.
2. A hooked Langford sequence of order n and defect d exists if and only if
(a) $n(n-2 d+1)+2 \geq 0$ and
(b) $n \equiv 2,3(\bmod 4)$ and d is odd, or $n \equiv 1,2(\bmod 4)$ and d is even.

Corollary 2.16. Let $n \geq 3, w \geq d+3 n, 0 \leq \delta \leq n$, and $D_{1} \subset\left\{d+i \mid i \in \mathbb{Z}_{n}\right\}$ with $\left|D_{1}\right|=n-\delta$. If there exists a Langford sequence or a hooked Langford sequence of order n and defect d, then there exists $D \subset\left\{d+i \mid i \in \mathbb{Z}_{3 n}\right\}$ with $|D|=3 \delta$ and $D_{1} \cap D=\emptyset$ such that there exists a set of triples B^{\prime} such that $B=\left\{b+j \mid b \in B^{\prime}, j \in \mathbb{Z}_{w}\right\}$ is a K_{3}-decomposition of $G_{w}(D)$.

The triples in B^{\prime} are said to generate the K_{3}-decomposition of $G_{w}(D)$.
Proof. Let $L=\left(l_{1}, \ldots, l_{2 n}\right)$ or $\left(l_{1}, \ldots, l_{2 n-1}, 0, l_{2 n+1}\right)$. Let $B^{\prime}=\left\{\{0, i+n, j+n\} \mid l_{i}=l_{j}, l_{i} \notin D^{\prime}\right\}$ so that the triple $\{0, i+n, j+n\}$ contains edges of differences $n+i, j+i$ and $d(i, j)$. Then $\left(\mathbb{Z}_{w}, B\right)$ is the required decomposition.

The following useful result will also be used in the proof of Lemma 2.18.

Theorem 2.17. [27] For $n \neq 2$ there exists an equitable partial triple system containing v triples for any $1 \leq v \leq \mu(n, \lambda)$ where

$$
\mu(n, \lambda)=\left\{\begin{array}{llll}
\left\lfloor\frac{n}{3}\left\lfloor\frac{\lambda(n-1)}{2}\right\rfloor\right\rfloor-1 & \text { if } n \equiv 2 \quad(\bmod 6) & \text { and } \lambda=4 \quad(\bmod 6) \\
& \text { if } n \equiv 5 \quad(\bmod 6) & \text { and } \lambda=1 \text { or } 4 \quad(\bmod 6) \\
\left\lfloor\frac{n}{3}\left\lfloor\frac{\lambda(n-1)}{2}\right\rfloor\right\rfloor & \text { otherwise } &
\end{array}\right.
$$

The following lemma shows the existence of the decomposition described in Step 1 of the proof of the main theorem of this section.

Lemma 2.18. Let $m=2$ and suppose the following five conditions hold:

1. 3 divides $\lambda_{1}\left(\binom{m}{2}+\binom{n}{2}\right)+\lambda_{2} m n$,
2. 2 divides $\lambda_{1}(m-1)+\lambda_{2} n$ and 2 divides $\lambda_{1}(n-1)+\lambda_{2} m$,
3. $2 \lambda_{1}\left(\binom{m}{2}+\binom{n}{2}\right) \geq \lambda_{2} m n$,
4. $\lambda_{1} \leq \lambda_{2} n$, and
5. if $n \leq 2$ then $\lambda_{1}=\lambda_{2}$.

Then there exists a subgraph L of $\lambda_{1} K_{n}$ with $\lambda_{2} n-\lambda_{1}$ edges which is evenly equitable and connected for which there exists a K_{3}-decomposition of $\lambda_{1} K_{n}-E(L)$.

Proof. This lemma is proved in several cases. The vertex set of K_{n} will be \mathbb{Z}_{n}. First small values of λ are considered before a general construction is provided. For the small cases, Corollary 2.16 is consistently used.

Case 1: First, suppose $\lambda_{1}=1$. Note that L being evenly equitable and having $\lambda_{2} n-\lambda_{1}$ edges is equivalent to requiring that every vertex in the leave have degree $2 \lambda_{2}$ except for a single vertex which has degree $2 \lambda_{2}-2$; the exceptional vertex in the following constructions will be vertex 0,1 or 2 . Conditions 1 and 2 imply that $n \equiv 1,5(\bmod 6)$ and $\lambda_{2} \equiv 1(\bmod$ 6). It can be assumed that $\lambda_{2}>1$ since otherwise, the problem simplifies to simply looking for a K_{3}-decomposition of $K_{6 x+3}$ or $K_{6 x+1}$ which are both known to exist. Set $\lambda_{2}=6 z+1$ with $z \geq 1$.

Suppose $n \equiv 5(\bmod 6)$. It can be assumed that $n \geq 17$, since if $n=5$ or 11 , then Condition 3 in conjunction with the fact that $\lambda_{2} \equiv 1(\bmod 6)$ implies that $\lambda_{2}=1$. For $n=6 k+5 \geq 17$, using edges of only differences 1 and 2 , let $B_{1}=\{\{3 i, 3 i+1,3 i+2\} \mid$ $0 \leq i \leq 2 k+1\}$, where addition is done $(\bmod 6 k+5)$. Note that every symbol except 0 appears in exactly one triple; 0 appears in two. If $n=17,23,29$, or 35 , let $B_{2}^{\prime}=$ $\{\{0,3,8\},\{0,4,10\}\},\{\{0,3,9\},\{0,4,11\},\{0,5,13\}\},\{\{0,4,14\},\{0,7,16\},\{0,3,8\}\{0,6,17\}\}$,
or $\{\{0,3,17\},\{0,5,11\},\{0,7,20\},\{0,9,19\},\{0,4,12\}\}$ respectively. Otherwise, by Corollary 2.16 , let B_{2}^{\prime} be a set of triples that generate a K_{3}-decomposition of $G_{n}(D)$ where $D=\{3,4, \ldots, 3 k+2\}$.

First note that $k \geq 2 z$, since by Condition $3,2+n(n-1) \geq 2 \lambda_{2} n=(12 z+2) n$, so since $n-1$ is an integer and $n>2$ it follows that $n-1 \geq 12 z+2$, so $6 k+4 \geq 12 z+2$ so $k \geq 2 z$. Therefore, B_{2} can be formed by removing $2 z \geq 2$ triples from B_{2}^{\prime}, one of which contains the difference 4. So $\left|B_{2}\right|=\left|B_{2}^{\prime}\right|-2 z=k-2 z \geq 0$. Then ($\left.\mathbb{Z}_{n}, B_{1} \cup\left\{b+j \mid j \in \mathbb{Z}_{n}, b \in B_{2}\right\}\right)$ is the required K_{3}-decomposition, since if $v \in \mathbb{Z}_{n} \backslash\{0\}$, then $d_{L}(v)=(n-1)-2-6(k-2 z)=$ $12 z+2=2 \lambda_{2}$ and $d_{L}(0)=(n-1)-4-6(k-2 z)=2 \lambda_{2}-2$. So L is evenly equitable with $\lambda_{2} n-\lambda_{1}$ edges. Since all edges of difference 4 are in L, L is connected.

Suppose $n \equiv 1(\bmod 6)$. It can be assumed that $n \geq 19$, since if $n=7$ or 13 , then Condition 3 in conjunction with the fact that $\lambda_{2} \equiv 1(\bmod 6)$ implies that $\lambda_{2}=1$. For $n=6 k+1 \geq 19$, using edges of only differences 1,2 , and 3 , form triples as follows. Let $\epsilon \in\{1,4,7\}$ with $\epsilon \equiv n(\bmod 9)$. Let $n=9 j+\epsilon$ and $B_{1}^{\prime}=\{\{9 i, 9 i+1,9 i+3\},\{9 i+1,9 i+$ $2,9 i+4\},\{9 i+2,9 i+3,9 i+5\},\{9 i+4,9 i+6,9 i+7\},\{9 i+5,9 i+7,9 i+8\},\{9 i+6,9 i+8,9 i+9\} \mid$ $0 \leq i \leq j-1\}$. Note that symbols 0 and $9 j$ appear in one triple; symbols $1, \ldots, 9 j-1$ appear in two.

If $\epsilon=1$, then let $B_{1}^{\prime \prime}=\{\{9 j, 0,2\}\}$. If $\epsilon=4$, then let $B_{1}^{\prime \prime}=\{\{9 j, 9 j+1,9 j+3\},\{9 j+$ $1,9 j+2,0\},\{9 j+2,9 j+3,1\}\}$. If $\epsilon=7$, then let $B_{1}^{\prime \prime}=\{\{9 j, 9 j+1,9 j+3\},\{9 j+1,9 j+$ $2,9 j+4\},\{9 j+2,9 j+3,9 j+5\},\{9 j+4,9 j+6,0\},\{9 j+5,9 j+6,1\}\}$.

In any case, set $B_{1}=B_{1}^{\prime} \cup B_{1}^{\prime \prime}$. Note that every symbol except y appears in exactly two triples; y appears in three triples, where $y=2$ if $\epsilon=1$ and $y=1$ if $\epsilon=4$ or 7 .

If $n \geq 25$, then there exists a set B_{2}^{\prime} of triples that generates a K_{3}-decomposition of $G_{n}(D=\{4,5, \ldots, 3 k\})$. This follows from Corollary 2.16 if $n \geq 49$. If $n=25,31,37$, or 43 , let $B_{2}^{\prime}=\{\{0,4,13\},\{0,7,15\},\{0,5,11\}\},\{\{0,5,11\},\{0,4,17\},\{0,9,19\},\{0,7,15\}\},\{\{0,4,17\}$, $\{0,7,18\},\{0,6,14\},\{0,5,15\},\{0,9,21\}\}$, or $\{\{0,11,23\},\{0,7,22\},\{0,4,13\},\{0,6,16\}$, $\{0,5,19\},\{0,8,25\}\}$ respectively.

Now use B_{2}^{\prime} to define B_{2}. First note that $k-1 \geq 2 z$, since by Condition $3,2+n(n-1) \geq$ $2 \lambda_{2} n=(12 z+2) n$, so since $n-1$ is an integer and $n>2$ it follows that $n-1 \geq 12 z+2$, so $6 k \geq 12 z+2$, so $k-1 \geq 2 z$. Therefore if $n \geq 25$, then B_{2} can be formed by removing $2 z \geq 2$ triples from B_{2}^{\prime}, one of which contains the difference 4. So $\left|B_{2}\right|=\left|B_{2}^{\prime}\right|-2 z=(k-1)-2 z \geq 0$. If $n=19$, then $\lambda_{2} \in\{1,7\}$ so it can be assumed that $\lambda_{2}=7$; this means that $k-1=2 z$ so define $B_{2}=\emptyset$ in this case. Then for $n \geq 19$, $\left(\mathbb{Z}_{n}, B_{1} \cup\left\{b+j \mid j \in \mathbb{Z}_{n}, b \in B_{2}\right\}\right)$ is the required K_{3}-decomposition, since if $v \in \mathbb{Z}_{n} \backslash\{y\}$, then $d_{L}(v)=(n-1)-4-6((k-1)-2 z)=$ $12 z+2=2 \lambda_{2}$ and $d_{L}(y)=(n-1)-6-6((k-1)-2 z)=2 \lambda_{2}-2$. So L is evenly equitable with $\lambda_{2} n-\lambda_{1}$ edges. Since all edges of difference 4 are in L, L is connected.

Case 2: Now suppose $\lambda_{1}=2$. Then $n \equiv 1,2,4$, or $5(\bmod 6)$. If $\lambda_{2}=2$, the result follows from Theorem 2.3, so assume $\lambda_{2}>2$. Note that L being evenly equitable and having $\lambda_{2} n-\lambda_{1}$ edges is equivalent to requiring that every vertex in the leave have degree $2 \lambda_{2}$ except for two vertices each of which has degree $2 \lambda_{2}-2$.

Suppose $n \equiv 1$ or $5(\bmod 6)$. Conditions 1 and 2 imply that $\lambda_{2} \equiv 2(\bmod 6)$. It can be assumed that $n \geq 11$ since if $n=5$ or 7 , then Condition 3 in conjunction with the fact that $\lambda_{2} \equiv 2(\bmod 6)$ implies that $\lambda_{2}=2$.

First suppose $n \geq 17$. By Case 1 , there exists a K_{3}-decomposition $\left(\mathbb{Z}_{n}, B_{1}\right)$ of $K_{n}-E\left(L_{1}\right)$ where L_{1} is a subgraph of K_{n} with $\left(\lambda_{2}-1\right) n-\left(\lambda_{1}-1\right)$ edges which is evenly equitable and connected. By Theorem 2.12, there exists a K_{3}-decomposition $\left(\mathbb{Z}_{n}, B_{2}\right)$ of $K_{n}-E\left(L_{2}\right)$ where L_{2} is a subgraph of K_{n} consisting of a $n-1$ cycle such that the vertex not in the cycle has maximum degree in L_{1}. Then $\left(\mathbb{Z}_{n}, B_{1} \cup B_{2}\right)$ is the required decomposition with $L=G\left[E\left(L_{1}\right) \cup E\left(L_{2}\right)\right]$.

Suppose $n=11$ or 13 . Condition 3 implies that $\lambda_{2}=2$ or 8 , so it can be assumed that $\lambda_{2}=8$. For $n=11$, let $B=\{\{3 i+j, 3 i+1+j, 3 i+2+j\} \mid 0 \leq i \leq 3,0 \leq j \leq 1\}$. Then $\left(\mathbb{Z}_{n}, B\right)$ is the required K_{3}-decomposition, since if $v \in \mathbb{Z}_{n} \backslash\{0,1\}$, then $d_{L}(v)=2(10)-4=16=2 \lambda_{2}$ and $d_{L}(0)=d_{L}(1)=2(10)-6=2 \lambda_{2}-2$. So L is evenly equitable with $\lambda_{2} n-\lambda_{1}$ edges. Since all edges of difference 4 are in L, L is connected. For $n=13$, let $B=\{\{0+j, 1+j, 3+$
$j\},\{1+j, 2+j, 4+j\},\{2+j, 3+j, 5+j\},\{4+j, 6+j, 7+j\},\{5+j, 7+j, 8+j\},\{6+j, 8+j, 9+$ $j\},\{9+j, 10+j, 12+j\},\{10+j, 11+j, 0+j\},\{11+j, 12+j, 1+j\} \mid 0 \leq j \leq 1\}$. Then $\left(\mathbb{Z}_{n}, B\right)$ is the required K_{3}-decomposition, since if $v \in \mathbb{Z}_{n} \backslash\{1,2\}$, then $d_{L}(v)=2(12)-8=16=2 \lambda_{2}$ and $d_{L}(1)=d_{L}(2)=2(12)-10=2 \lambda_{2}-2$. So L is evenly equitable with $\lambda_{2} n-\lambda_{1}$ edges. Since all edges of difference 4 are in L, L is connected.

Now assume $n \equiv 2$ or $4(\bmod 6)$. In this case, the half-difference is present and used only once. Instead of thinking of the differences as $1,2, \ldots, \frac{n}{2}, 1,2, \ldots, \frac{n}{2}-1$, it is useful to think of them as $1,2, \ldots, n-1$ since, for instance, the difference 1 can be thought of as a difference $n-1$. In both cases, by Condition $1, \lambda_{2} \equiv 2(\bmod 3)$, so let $\lambda_{2}=3 z+2$.

Suppose $n \equiv 2(\bmod 6)$ with $n>2$, and let $n=6 k+2$. Although, it seems unnecessary at this point, $\lambda_{2}=2$ is allowed for cases where $n \equiv 2(\bmod 6)$ (see Cases 4 and 5 for the use of this result). Using only differences 1,2 , and $n-1=1$, let $B_{1}=\{\{i, i+1, i+2\} \mid$ $0 \leq i \leq n-1, i \equiv 0,1(\bmod 3)\}$. Then each vertex has degree 4 from the triples in B_{1} except 0 and 1 which have degree 6 . Now assume $n \geq 20$. Consider the differences in $D^{\prime}=\{3,4, \ldots, n-2\}$. Then $\left|D^{\prime}\right| \equiv 1(\bmod 3)$. Let $v=n-2$ or $n-3$ if $\frac{n-5}{3} \equiv 0,1$ $(\bmod 4)$ or $2,3(\bmod 4)$ respectively. By Corollary 2.16 , there exists a set of triples B_{2}^{\prime} that generates a K_{3}-decomposition of $G_{n}\left(D=D^{\prime} \backslash\{v\}\right)$. Note that $2 k-1 \geq z$, since by Condition 3, $4+2 n(n-1) \geq 2 \lambda_{2} n=(6 z+4) n$, so since $n-1$ is an integer and $n>2$, $(n-1) \geq(3 z+2)$, so $6 k+1 \geq 3 z+2$, so $2 k-1 \geq z$. Therefore, B_{2} can be formed by removing $z \geq 0$ triples from B_{2}^{\prime}; if $z \geq 1$, choose one that contains the difference 3 . So $\left|B_{2}\right|=\left|B_{2}^{\prime}\right|-z=2 k-1-z \geq 0$. For $n=8$, by Condition $3, \lambda_{2}=2$ or 5 . If $\lambda_{2}=2$, let $B_{2}=\{\{0,2,5\}\}$, and if $\lambda_{2}=5$ and let $B_{2}=\emptyset$. For $n=14$, by Condition $3, \lambda_{2}=2,5,8$, or 11. If $\lambda_{2}=2$, let $B_{2}=\{\{0,2,6\},\{0,3,6\},\{0,4,9\}\}$. If $\lambda_{2}=5$, let $B_{2}=\{\{0,4,9\},\{0,6,13\}\}$. If $\lambda_{2}=8$, let $B_{2}=\{\{0,4,9\}\}$. If $\lambda_{2}=11$, let $B_{2}=\emptyset$. Then for $n \geq 8,\left(\mathbb{Z}_{n}, B_{1} \cup\left\{b+j \mid j \in \mathbb{Z}_{n}, b \in B_{2}\right\}\right)$ is the required K_{3}-decomposition, since if $v \in \mathbb{Z}_{n} \backslash\{0,1\}$, then $d_{L}(v)=(2 n-2)-4-6((2 k-1)-z)=6 z+4=2 \lambda_{2}$ and $d_{L}(0)=d_{L}(1)=(2 n-2)-6-6((2 k-1)-z)=2 \lambda_{2}-2$. So L is evenly equitable with
$\lambda_{2} n-\lambda_{1}$ edges. So it remains to show that L is connected. If $\lambda_{2} \geq 5$ or if $n \geq 20$ and $\left(\lambda_{2}, v\right) \in(z, n-3)$, then since all edges of difference 3 are in L, L is connected. For $n \geq 8$, the edges of difference 1,2 , and $n-1$ not used in B_{1} form $\frac{n-2}{3}$ vertex-disjoint 3 -cycles, namely $L^{\prime}=\{(i, i+1, i+2) \mid i \equiv 2(\bmod 3), 2 \leq i \leq n-3\}$. If $n \geq 20$ and $\left(\lambda_{2}, v\right)=(2, n-2)$, then since $G_{n}(\{n-2\})$ has two components (induced by odd and even vertices), L is connected since it also contains $(2,3,4) \in L^{\prime}$. If $n \in\{8,14\}$, then L is formed from L^{\prime} by adding $E\left(G_{n}\left(\left\{\frac{n}{2}\right\}\right)\right)$, so is easily seen to be connected.

Suppose $n \equiv 4(\bmod 6)$ and let $n=6 k+4$. If $n \geq 10$, then using only differences 1 and 2 , let $B_{1}=\{\{i, i+1, i+2\} \mid 0 \leq i \leq n-4, i \equiv 0(\bmod 3)\} \cup\{\{n-2, n-1,0\}\}$. Then each vertex has degree 2 from the triples in B_{1} except vertices 0 and $n-2$ which have degree 4 . Now further assume $n \geq 22$. Consider the differences in $D^{\prime}=\{3,4, \ldots, n-1\}$. Then $\left|D^{\prime}\right| \equiv 1(\bmod$ 3). Let $v=n-1$ or $n-2$ if $\frac{n-4}{3} \equiv 0,1(\bmod 4)$ or $2,3(\bmod 4)$ respectively. By Corollary 2.16, there exists a set of triples B_{2}^{\prime} that generates a K_{3}-decomposition of $G_{n}\left(D=D^{\prime} \backslash\{v\}\right)$. Note that $2 k \geq z$, since by Condition $3,4+2 n(n-1) \geq 2 \lambda_{2} n=(6 z+4) n$, so since $n-1$ is an integer and $n>2,(n-1) \geq(3 z+2)$, so $6 k+3 \geq 3 z+2$, so $2 k \geq z$. Therefore, B_{2} can be formed by removing $z \geq 1$ triples from B_{2}^{\prime}, one of which contains the difference 3 . So $\left|B_{2}\right|=\left|B_{2}^{\prime}\right|-z=2 k-z \geq 0$. For $n=10$, by Condition $3, \lambda_{2}=2,5$, or 8 so assume $\lambda_{2}=5$ or 8. If $\lambda_{2}=5$, let $B_{2}=\{\{0,4,9\}\}$, and if $\lambda_{2}=8$, let $B_{2}=\emptyset$. For $n=16, \lambda_{2}=2,5,8,11$ or 14 , so assume $\lambda_{2} \in\{5,8,11,14\}$. If $\lambda_{2}=5$, let $B_{2}=\{\{0,4,15\},\{0,6,13\},\{0,5,14\}\}$. If $\lambda_{2}=8$, let $B_{2}=\{\{0,4,15\},\{0,6,13\}\}$. If $\lambda_{2}=11$, let $B_{2}=\{\{0,4,15\}\}$. If $\lambda_{2}=14$, let $B_{2}=\emptyset$. Then for $n \geq 10$, $\left(\mathbb{Z}_{n}, B_{1} \cup\left\{b+j \mid j \in \mathbb{Z}_{n}, b \in B_{2}\right\}\right)$ is the required K_{3}-decomposition, since if $v \in \mathbb{Z}_{n} \backslash\{0, n-2\}$, then $d_{L}(v)=(2 n-2)-2-6(2 k-z)=6 z+4=2 \lambda_{2}$ and $d_{L}(0)=d_{L}(n-2)=(2 n-2)-4-6(2 k-z)=2 \lambda_{2}-2$. So L is evenly equitable with $\lambda_{2} n-\lambda_{1}$ edges. Since all edges of difference 3 are in L, L is connected.

Finally, if $n=4$, Condition 3 implies $\lambda_{2}=2$ so the result follows from Theorem 2.3.

Before proceeding to the general case, because of the limitations of Theorem 2.13, three more special cases need to be handled, namely where $\lambda_{1}=3$ and $n \equiv 5(\bmod 6)$ and the two cases where $n \equiv 2(\bmod 6)$ and $\lambda_{1}=4$ or 6 .

Case 3: Suppose $\lambda_{1}=3$ and $n \equiv 5(\bmod 6)$. Conditions 1 and 2 imply that $\lambda_{2} \equiv 3$ $(\bmod 6)$. First suppose $n \geq 11$. By Case 2 , there exists a K_{3}-decomposition $\left(\mathbb{Z}_{n}, B_{1}\right)$ of $2 K_{n}-E\left(L_{1}\right)$ where L_{1} is a subgraph of $2 K_{n}$ with $\left(\lambda_{2}-1\right) n-\left(\lambda_{1}-1\right)$ edges which is evenly equitable and connected. By Theorem 2.12, there exists a K_{3}-decomposition $\left(\mathbb{Z}_{n}, B_{2}\right)$ of $K_{n}-E\left(L_{2}\right)$ where L_{2} is a subgraph of K_{n} consisting of an $n-1$ cycle; name the vertices so that the vertex not in the cycle has maximum degree in L_{1}. Then $\left(\mathbb{Z}_{n}, B_{1} \cup B_{2}\right)$ is the required decomposition with $L=G\left[E\left(L_{1}\right) \cup E\left(L_{2}\right)\right]$. Now suppose $n=5$. Then Condition 3 in conjunction with the fact that $\lambda_{2} \equiv 3(\bmod 6)$ implies $\lambda_{2}=3$ so the result follows by Theorem 2.3.

Case 4: Suppose $\lambda_{1}=4$ and $n \equiv 2(\bmod 6)$ with $n>2$. Conditions 1 and 2 imply that $\lambda_{2} \equiv 1(\bmod 3)$. By Case 2 , there exist K_{3}-decompositions $\left(\mathbb{Z}_{n}, B_{1}\right)$ and $\left(\mathbb{Z}_{n}, B_{2}\right)$ of $2 K_{n}-E\left(L_{1}\right)$ and $2 K_{n}-E\left(L_{2}\right)$ respectively where L_{1} is a subgraph of $2 K_{n}$ with $\left(\lambda_{2}-\right.$ 2) $n-\left(\lambda_{1}-2\right)$ edges which is evenly equitable and connected, and L_{2} is a subgraph of $2 K_{n}$ with $2 n-2$ edges which is evenly equitable and connected. Name the vertices so that $G\left[E\left(L_{1}\right) \cup E\left(L_{2}\right)\right]$ is also evenly equitable. Then $\left(\mathbb{Z}_{n}, B_{1} \cup B_{2}\right)$ is the required decomposition with $L=G\left[E\left(L_{1}\right) \cup E\left(L_{2}\right)\right]$.

Case 5: Suppose $\lambda_{1}=6$ and $n \equiv 2(\bmod 6)$ with $n>2$. Conditions 1 and 2 imply that $\lambda_{2} \equiv 0(\bmod 3)$. By Cases 4 and 2 , there exist K_{3}-decompositions $\left(\mathbb{Z}_{n}, B_{1}\right)$ and $\left(\mathbb{Z}_{n}, B_{2}\right)$ of $4 K_{n}-E\left(L_{1}\right)$ and $2 K_{n}-E\left(L_{2}\right)$ respectively where L_{1} is a subgraph of $4 K_{n}$ with $\left(\lambda_{2}-\right.$ 2) $n-\left(\lambda_{1}-2\right)$ edges which is evenly equitable and connected, and L_{2} is a subgraph of $2 K_{n}$ with $2 n-2$ edges which is evenly equitable and connected. Name the vertices so that $G\left[E\left(L_{1}\right) \cup E\left(L_{2}\right)\right]$ is also evenly equitable. Then $\left(\mathbb{Z}_{n}, B_{1} \cup B_{2}\right)$ is the required decomposition with $L=G\left[E\left(L_{1}\right) \cup E\left(L_{2}\right)\right]$.

To this point, the theorem is proved if $\lambda_{1} \in\{1,2\}$ and if $\left(\lambda_{1}, n\right) \in\{(3,5(\bmod 6)),(4,2$ $(\bmod 6)),(6,2(\bmod 6))\}$. So now consider the remaining cases. A two-step approach is taken in each of three cases, making use of Theorems 2.13 and 2.17.

Case 1: Suppose $n \equiv 0,1,3$, or $4(\bmod 6)$. Let $\lambda^{\prime} \in\{1,2\}$ with $\lambda^{\prime} \equiv n(\bmod 2)$. Set $\lambda^{*}=\lambda_{1}-\lambda^{\prime}$. Since either n or $n-1$ is divisible by 3 in this case, $\lambda_{1} \frac{n(n-1)}{2} \equiv 0(\bmod$ 3). Also, $\lambda_{1} \frac{n(n-1)}{2}-\left(\lambda_{2} n-\lambda_{1}\right)=\lambda_{1}\left(1+\frac{n(n-1)}{2}\right)-\lambda_{2} n=\lambda_{1}\left(\frac{m(m-1)}{2}+\frac{n(n-1)}{2}\right)-\lambda_{2} n \equiv$ $\lambda_{1}\left(\frac{m(m-1)}{2}+\frac{n(n-1)}{2}\right)+2 \lambda_{2} n(\bmod 3) \equiv 0(\bmod 3)$ where the last step follows from Condition 1. Therefore, $\lambda_{2} n-\lambda_{1}$ is divisible by 3 . By Condition $2, \lambda_{2} n-\lambda_{1}$ is even. Since $n \equiv 0,1,3$ or $4(\bmod 6), \lambda^{\prime n(n-1)} \frac{2}{2}$ is divisible by 3 .

First, suppose $\lambda_{2} n-\lambda_{1} \leq n$. By Theorem 2.13, there exists a packing (V, B_{1}) of $\lambda^{\prime} K_{n}$ with leave a cycle on $\lambda_{2} n-\lambda_{1}$ vertices. By Condition 1 and by definition, both λ_{1} and λ^{\prime} respectively are even when n is even; hence λ^{*} is even when n is even. Since $n \equiv 0,1(\bmod$ $3)$ and λ^{*} is even when n is even, by Theorem 2.3, there exists a K_{3}-decomposition (V, B_{2}) of $\lambda^{*} K_{n}$. Then ($V, B_{1} \cup B_{2}$) is the required packing.

Now suppose $\lambda_{2} n-\lambda_{1}>n$. By Theorem 2.13, let $\left(V, B_{1}\right)$ be a packing of $\lambda^{\prime} K_{n}$ with leave a cycle on $\epsilon=n$ vertices when $n \equiv 0(\bmod 3)$ and $\epsilon=n-1$ vertices when $n \equiv 1(\bmod$ 3). Again λ^{*} is even if n is even so $\left\lfloor\frac{\lambda^{*}(n-1)}{2}\right\rfloor=\frac{\lambda^{*}(n-1)}{2}$. Further, since in this case either n or $n-1$ is divisible by $3,\left\lfloor\frac{n}{3} \frac{\lambda^{*}(n-1)}{2}\right\rfloor=\frac{n}{3} \frac{\lambda^{*}(n-1)}{2}$. So by Theorem 2.17, there exists an evenly equitable partial triple system $\left(V, B_{2}\right)$ of $\lambda^{*} K_{n}$ with $\frac{\lambda^{*} \frac{n(n-1)}{2}-\left(\lambda_{2} n-\lambda_{1}-\epsilon\right)}{3}$ triples; this is an integral number of triples since each of $\lambda^{*} \frac{n(n-1)}{2}, \lambda_{2} n-\lambda_{1}$, and ϵ is divisible by 3 . Finally, if $n \equiv 1(\bmod 3)$, then name the symbols in $\left(V, B_{2}\right)$ so that the vertex left out of the $n-1$ cycle gets maximum degree in the leave of $\left(V, B_{2}\right)$. Then $\left(V, B_{1} \cup B_{2}\right)$ is the required packing since $|E(L)|=\epsilon+\left(\lambda^{*} \frac{n(n-1)}{2}-3\left(\frac{\lambda^{*} \frac{n(n-1)}{2}-\left(\lambda_{2} n-\lambda_{1}-\epsilon\right)}{3}\right)\right)=\lambda_{2} n-\lambda_{1}$ and L is easily seen to be evenly equitable and connected.

Case 2: Suppose $n \equiv 5(\bmod 6)$ and $\lambda_{1}>3$. Let $\lambda^{\prime} \in\{1,2,3\}$ with $\lambda^{\prime} \equiv \lambda_{1}(\bmod 3)$. Let $\lambda^{*}=\lambda_{1}-\lambda^{\prime}$. By the same argument as when $n \equiv 0$ or $1(\bmod 3)$, Condition 1 implies
that $\lambda_{1} \frac{n(n-1)}{2}-\left(\lambda_{2} n-\lambda_{1}\right)$ is divisible by 3 . Since $\lambda_{1} \equiv \lambda^{\prime}(\bmod 3), \lambda^{\prime \frac{n(n-1)}{2}}-\left(\lambda_{2} n-\lambda_{1}\right)$ is also divisible by 3 .

First suppose that $\lambda_{2} n-\lambda_{1} \leq n$. By Theorem 2.13, there exists a packing $\left(V, B_{1}\right)$ of $\lambda^{\prime} K_{n}$ with leave a cycle on $\lambda_{2} n-\lambda_{1}$ vertices. Since $\lambda^{*} \equiv 0(\bmod 3)$, by Theorem 2.3, there exists a K_{3}-decomposition $\left(V, B_{2}\right)$ of $\lambda^{*} K_{n}$. Then $\left(V, B_{1} \cup B_{2}\right)$ is the required packing.

Now suppose $\lambda_{2} n-\lambda_{1}>n$. Since $n \equiv 5(\bmod 6), m n=2 n \equiv 1(\bmod 3)$ and $\frac{m(m-1)}{2}+\frac{n(n-1)}{2} \equiv 2(\bmod 3) ;$ hence, by Condition $1, \lambda_{1} \equiv \lambda_{2}(\bmod 3)$. Since $n \equiv 2(\bmod 3)$ in this case, and since $\lambda_{1} \equiv \lambda_{2}(\bmod 3), \lambda_{2} n \equiv 2 \lambda_{1}(\bmod 3)$ so $\lambda_{2} n-\lambda_{1} \equiv \lambda_{1}(\bmod 3)$. Also, since $\frac{n(n-1)}{2} \equiv 1(\bmod 3), \lambda^{\prime} \frac{n(n-1)}{2} \equiv \lambda^{\prime}(\bmod 3)$. By Theorem 2.13 , there exists a packing $\left(V, B_{1}\right)$ of $\lambda^{\prime} K_{n}$ with leave a cycle on $\epsilon=n-1, n$, or $n-2$ vertices when $\lambda^{\prime}=1,2$ or 3 respectively. In this case, $(n-1)$ is even and λ^{*} is divisible by 3 , so $\left\lfloor\frac{n}{3}\left\lfloor\frac{\lambda^{*}(n-1)}{2}\right\rfloor\right\rfloor=\frac{n}{3} \frac{\lambda^{*}(n-1)}{2}$. So by Theorem 2.17, there exists an equitable partial triple system (V, B_{2}) of $\lambda^{*} K_{n}$ with $\frac{\lambda^{*} \frac{n(n-1)}{2}-\left(\lambda_{2} n-\lambda_{1}-\epsilon\right)}{3}$ triples; this is an integral number of triples since λ^{*} is divisible by 3 and $\lambda_{2} n-\lambda_{1} \equiv \lambda_{1} \equiv \lambda^{\prime} \equiv \epsilon(\bmod 3)$. Finally, if $\epsilon=n-1$ or $n-2$, then name the symbols of $\left(V, B_{2}\right)$ so that each vertex not in the $n-1$ or $n-2$ cycle gets no smaller degree in the leave of (V, B_{2}) than any vertex in the cycle. Then $\left(V, B_{1} \cup B_{2}\right)$ is the required packing, since L is clearly evenly equitable and connected and $|E(L)|=\epsilon+\left(\lambda^{*} \frac{n(n-1)}{2}-3\left(\frac{\lambda^{*} \frac{n(n-1)}{2}-\left(\lambda_{2} n-\lambda_{1}-\epsilon\right)}{3}\right)\right)=\lambda_{2} n-\lambda_{1}$.

Case 3: Finally, suppose $n \equiv 2(\bmod 6)$. By Condition $2, \lambda_{1}$ is even, so it can be assumed $\lambda_{1}>6$ (since all smaller cases were handled previously). Recall that $n>2$. Let $\lambda^{\prime} \in\{2,4,6\}$ with $\lambda^{\prime} \equiv \lambda_{1}(\bmod 6)$. Set $\lambda^{*}=\lambda_{1}-\lambda^{\prime}$. By the same argument as when $n \equiv 0$ or $1(\bmod 3)$, Condition 1 implies that $\lambda_{1} \frac{n(n-1)}{2}-\left(\lambda_{2} n-\lambda_{1}\right)$ is divisible by 3 . Since $\lambda_{1} \equiv \lambda^{\prime}$ $(\bmod 3), \lambda^{\prime} \frac{n(n-1)}{2}-\left(\lambda_{2} n-\lambda_{1}\right)$ is also divisible by 3 .

First suppose that $\lambda_{2} n-\lambda_{1} \leq n$. By Theorem 2.13, there exists a packing (V, B_{1}) of $\lambda^{\prime} K_{n}$ with leave a cycle on $\lambda_{2} n-\lambda_{1}$ vertices. Since $\lambda^{*} \equiv 0(\bmod 6)$, by Theorem 2.3 , there exists a K_{3}-decomposition $\left(V, B_{2}\right)$ of $\lambda^{*} K_{n}$. Then $\left(V, B_{1} \cup B_{2}\right)$ is the required packing.

Suppose $\lambda_{2} n-\lambda_{1}>n$. Since $n \equiv 2(\bmod 6), m n=2 n \equiv 1(\bmod 3)$ and $\frac{m(m-1)}{2}+\frac{n(n-1)}{2} \equiv$ $2(\bmod 3)$; hence, by Condition $1, \lambda_{1} \equiv \lambda_{2}(\bmod 3)$. Since $n \equiv 2(\bmod 3)$ in this case, and
since $\lambda_{1} \equiv \lambda_{2}(\bmod 3), \lambda_{2} n \equiv 2 \lambda_{1}(\bmod 3)$ so $\lambda_{2} n-\lambda_{1} \equiv \lambda_{1}(\bmod 3)$. Also, since $\frac{n(n-1)}{2} \equiv 1$ $(\bmod 3), \lambda^{\prime n(n-1)}-\equiv \lambda^{\prime}(\bmod 3)$. By Theorem 2.13, there exists a packing $\left(V, B_{1}\right)$ of $\lambda^{\prime} K_{n}$ with leave a cycle on $\epsilon=n, n-1$, or $n-2$ vertices when $\lambda^{\prime}=2,4$ or 6 respectively. In this case, λ^{*} is even and divisible by 3 , so $\left\lfloor\frac{n}{3}\left\lfloor\frac{\lambda^{*}(n-1)}{2}\right\rfloor\right\rfloor=\frac{n}{3} \frac{\lambda^{*}(n-1)}{2}$. So by Theorem 2.17, there exists an equitable partial triple system $\left(V, B_{2}\right)$ of $\lambda^{*} K_{n}$ with $\frac{\lambda^{*} \frac{n(n-1)}{2}-\left(\lambda_{2} n-\lambda_{1}-\epsilon\right)}{3}$ triples; this is an integral number of triples since λ^{*} is divisible by 3 and $\lambda_{2} n-\lambda_{1} \equiv \lambda_{1} \equiv \lambda^{\prime} \equiv \epsilon(\bmod$ 3). Finally, if $\epsilon=n-1$ or $n-2$, then name the symbols of (V, B_{2}) so that each vertex not in the $n-1$ or $n-2$ cycle gets no smaller degree in the leave of $\left(V, B_{2}\right)$ than any vertex in the cycle. Then $\left(V, B_{1} \cup B_{2}\right)$ is the required packing, since L is clearly evenly equitable and connected and $|E(L)|=\epsilon+\left(\lambda^{*} \frac{n(n-1)}{2}-3\left(\frac{\lambda^{*} \frac{n(n-1)}{2}-\left(\lambda_{2} n-\lambda_{1}-\epsilon\right)}{3}\right)\right)=\lambda_{2} n-\lambda_{1}$.

Chapter 3

Neighborhoods in Maximum Packings of $2 K_{n}$ and Quadratic Leaves of Triple Systems

3.1 Introduction

In this chapter, the quadratic leave problem is considered again, this time with the focus of allowing 2-cycles in the leave. To do this, a characterization of the possible neighborhood graphs in maximum packings of $2 K_{n}$ is given which in turn will be used to solve the quadratic leave problem. As mentioned in the introduction, in [9], Colbourn and Rosa characterized the possible neighborhood graphs in a 2-fold triple system on n vertices when $n \equiv 0$ or 1
 this chapter, a characterization of the possible neighborhood graphs of vertices in a maximum packing of $2 K_{n}$ for $n \equiv 2(\bmod 3)$ is given (see Theorem 3.9). When $n \equiv 2(\bmod 3)$ the leave of a maximum packing (V, B) of $2 K_{n}$ is the 2-cycle (a, b) for some $a, b \in V$ (with $a \neq b$); see Lemma 3.2. So in this case an additional interesting aspect of finding the neighborhood of a vertex v in a maximum packing of $2 K_{n}$ arises; the neighborhood is a 2-regular graph on $n-2$ vertices if $v \in\{a, b\}$ and is a 2-regular graph on $n-1$ vertices otherwise. The proof technique in this chapter builds on modern observations recently made independently in two papers [3, 22] concerning the existence of leaves of partial hamilton cycle decompositions of K_{n}.

Bryant, Horsley, and Maenhaut have some results which relate to Theorem 3.10. In [4], they show that K_{n} can be decomposed into 2-regular subgraphs of orders m_{1}, \ldots, m_{t} provided that n is odd, $3 \leq m_{i} \leq n$ for $1 \leq i \leq t$, and $\sum m_{i}=\binom{n}{2}$. Note that specifying $m_{1}, m_{2}, \ldots, m_{j}(j<t)$ to be the lengths of the cycles described in Theorem 3.10 is not sufficient to force the 2-regular subgraphs to be cycles, nor to force the cycles in the quadratic graph to be vertex disjoint. In [6], Bryant and Horsley extend their first result by showing
that K_{n} can be decomposed into cycles of orders m_{1}, \ldots, m_{t} provided that n is odd, $3 \leq$ $m_{i} \leq n$ for $1 \leq i \leq t$, and $\sum m_{i}=\binom{n}{2}$ whenever n is sufficiently large. Note that Theorem 3.10 cannot be obtained from this result in the special case where $\lambda=1$ and n is large enough since the cycles in the quadratic graph are not forced to be vertex disjoint.

Maximal cycle systems have also been of interest from another perspective. Rather than study the structure of the leave, several papers have considered its size, addressing the spectrum question of finding the set S of integers for which there exists a partial k-cycle system with leave of size l for each $l \in S$. Cycles of length 3 and hamilton cycles have been of particular interest (see for instance [12, 8, 28]).

For any multiset D with elements chosen from $\{1,2, \ldots, n-1\}$, let $G_{n}(\{D\})$ be the multigraph with vertex set \mathbb{Z}_{n} and edge multiset $\left\{\{v, v+d\} \mid d \in D, v \in \mathbb{Z}_{n}\right\}$ reducing sums modulo n. Note that with this definition $G_{n}(\{d\})=G_{n}(\{n-d\})$ and is a 2-regular graph regardless of the value of d (if $d=\frac{n}{2}$ then each component is a 2 -cycle). The edges in $G_{n}(\{d\})$ are said to have difference d. This definition is slightly non-standard since edges are allowed to have difference $d>\frac{n}{2}$, but this approach is very useful when decomposing $2 K_{n}$.

If $\{a, b, c\}$ is a triple on the vertex set \mathbb{Z}_{n} then define $\{a, b, c\}+j=\{a+j, b+j, c+j\}$, reducing sums modulo n. Similarly, if $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is a cycle on the vertex set \mathbb{Z}_{n} then define $\left(a_{0}, a_{1}, \ldots, a_{n}\right)+j=\left(a_{0}+j, a_{1}+j, \ldots, a_{n}+j\right)$, reducing sums modulo n.

Throughout the chapter, λ and n are assumed to be positive integers.

3.2 Preliminary Results

To start, a well-known result on quasigroups is given.

Lemma 3.1. [27] There exists an idempotent quasigroup of order n for all $n \neq 2$.

The following is a specific case of well-known results on packings of λK_{n}, and is sufficient for the purposes of this chapter.

Lemma 3.2. [14] Suppose $\lambda \geq 1$ and $n \neq 2$. There exists a K_{3}-decomposition of λK_{n} if and only if λ is divisible by

1. 2 if $n \equiv 0$ or $4(\bmod 6)$,
2. 3 if $n \equiv 5(\bmod 6)$, and
3. 6 if $n \equiv 2(\bmod 6)$.

Furthermore, there exists a maximum packing of λK_{n} with leave L where:

1. L is a 4 -cycle if $\lambda=4$ and $n \equiv 2(\bmod 3)$ or $\lambda=1$ and $n \equiv 5(\bmod 6)$, and
2. L is a 2 -cycle if $\lambda=2$ and $n \equiv 2(\bmod 3)$.

The next result is a neat way to be able to deal with the many possibilities for Q.

Lemma 3.3. For any quadratic multigraph Q on n vertices, there exists a subgraph of $G_{n}(\{1,1,2\})$ which is isomorphic to Q.

Proof. For each l with $2 \leq l \leq n$, define the cycle $c(l)$ of length l in $G_{n}(\{1,1,2\})$ as follows. If $l=2$ then let $c(l)=(0,1)$. If $l=2 x>2$ then let $c(l)=(0,2,4,6, \ldots, 2 x-2,2 x-1,2 x-$ $3,2 x-5, \ldots, 1)$. Finally, if $l=2 x-1$ then let $c(l)=(0,2, \ldots, 2 x-2,2 x-3,2 x-5, \ldots, 1)$. Suppose that Q is the disjoint union of t cycles of lengths l_{1}, \ldots, l_{t} (possibly $l_{i}=2$). For $1 \leq i \leq t$ let $s_{i}=\sum_{j=1}^{i} l_{j}$, and let $c_{i}=c\left(l_{i}\right)+s_{i-1}$, defining $s_{0}=0$. Then $\bigcup_{i=1}^{t} c_{i}$ is a subgraph of $G_{n}(\{1,1,2\})$ and is isomorphic to Q.

The following result was proved by Petersen.
Lemma 3.4. [26] Let H be any $2 k$-regular multigraph. There exists a 2-factorization of H.
In constructing maximum packings, it will always be first assumed that the desired neighborhood contains a small cycle, the size of which will depend upon the current case. The following lemma is a well-known approach that will allow for the extension of these constructions to cases where the prescribed small cycle is not present by combining two cycles in the neighborhood of a vertex v into a single cycle.

Lemma 3.5. Let (V, S) be a partial 2 -fold triple system, and let $v \in V$. Suppose that $\{a, b\}$ and $\{c, e\}$ are edges in disjoint cycles in the neighborhood of v, and further suppose that there is some $w \in V$ with $w \neq v$ such that $\{\{a, c, w\},\{b, e, w\}\} \subset S$. Then there exists a partial 2-fold triple system (V, S^{\prime}) such that

1. $E(S)=E\left(S^{\prime}\right)$,
2. the neighborhood of v in S^{\prime} is obtained from the neighborhood of v in S by replacing one copy of the edges $\{a, b\}$ and $\{c, e\}$ with one copy of the edges $\{a, c\}$ and $\{b, e\}$.

Proof. Define $S^{\prime}=(S \backslash\{\{v, a, b\},\{v, c, e\},\{w, a, c\},\{w, b, e\}\})$
$\cup\{\{v, a, c\},\{v, b, e\},\{w, a, b\},\{w, c, e\}\}$.

The next lemma settles cases that will be used in Section 3 for the general construction, and includes a proof of Theorem 3.9 when $n \in\{5,8\}$. When $n \in\{4,6\}$, the results follow from the results of Colbourn and Rosa but are included here for completeness.

Lemma 3.6. Let $S=\left\{\left(4, C_{3}\right),\left(6, C_{5}\right),\left(5, C_{3}\right),\left(5, C_{4}\right),\left(8, C_{3} \cup C_{3}\right),\left(8, C_{2} \cup C_{4}\right),\left(8, C_{2} \cup C_{2} \cup\right.\right.$ $\left.\left.C_{2}\right),\left(8, C_{6}\right),\left(8, C_{4} \cup C_{3}\right),\left(8, C_{2} \cup C_{5}\right),\left(8, C_{2} \cup C_{2} \cup C_{3}\right),\left(8, C_{7}\right)\right\}$. For each $(n, Q) \in S$, there exists a maximum packing of $2 K_{n}$ such that the neighborhood of some vertex is Q.

Proof. Let the vertex set of K_{n} be $V=\{a, b\} \cup \mathbb{Z}_{n-2}$. In each case, a maximum packing is formed with leave the 2-cycle (a, b) if $n \in\{5,8\}$ and the empty leave if $n \in\{4,6\}$. All addition in the following is defined modulo $n-2$. In each case, the set of blocks defined produce a maximum packing of $2 K_{n}$.

Let $n=4$. Define $B=\{\{a, b, 0\},\{a, b, 1\},\{a, 0,1\},\{b, 0,1\}\}$. Then the neighborhood of a is C_{3}.

Let $n=6$. Define $B=\{\{a, b, 0\},\{a, b, 1\},\{a, 0,2\},\{a, 1,3\},\{a, 2,3\},\{b, 0,3\},\{b, 1,2\}$, $\{b, 2,3\},\{0,1,2\},\{0,1,3\}\}$. Then the neighborhood of a is C_{5}.

Let $n=5$. Define $B=\{\{j, i, i+1\} \mid j \in\{a, b\}, 0 \leq i \leq 2\}$. Then the neighborhood of a is C_{3} and the neighborhood of 0 is C_{4}.

Let $n=8$. Define $B_{1}=\left\{\{i, i+1, i+3\},\{a, i, i+2\},\{b, i, i+1\} \mid i \in \mathbb{Z}_{6}\right\}, B_{2}=$ $\left\{\{i, i+1, i+2\},\{a, i, i+3\},\{b, i, i+2\} \mid i \in \mathbb{Z}_{6}\right\}, B_{3}=\{\{0,2,4\},\{0,2,5\},\{0,3,5\},\{1,2,4\}$, $\{1,3,4\},\{1,3,5\},\{b, 0,3\},\{b, 0,4\},\{b, 1,2\},\{b, 1,5\},\{b, 2,3\},\{b, 4,5\},\{a, 0,1\},\{a, 0,1\}$, $\{a, 2,3\},\{a, 3,4\},\{a, 4,5\},\{a, 2,5\}\}$, and $B_{4}=\{\{a, 0,1\},\{a, 0,1\},\{0,2,3\},\{0,2,3\},\{0,4,5\}$, $\{0,4, b\},\{0,5, b\},\{a, 2,4\},\{a, 2,5\},\{a, 3,4\},\{a, 3,5\},\{1,2,4\},\{1,2, b\},\{1,3,5\},\{1,3, b\}$, $\{1,4,5\},\{2,5, b\},\{3,4, b\}\}$. In B_{1}, the neighborhood of a is $C_{3} \cup C_{3}$ and of b is C_{6}. In B_{2}, the neighborhood of a is $C_{2} \cup C_{2} \cup C_{2}$. In B_{3}, the neighborhood of a is $C_{2} \cup C_{4}$, of 0 is $C_{2} \cup C_{5}$, and of 2 is C_{7}. In B_{4}, the neighborhood of 0 is $C_{2} \cup C_{2} \cup C_{3}$. Finally, using an approach similar to Lemma 3.5, the neighborhood of 0 in $\left(B_{4} \backslash\{\{0,1, a\},\{0,2,3\}\{a, 2,5\},\{1,3,5\}\}\right) \cup$ $\{\{a, 0,2\},\{0,1,3\},\{a, 1,5\},\{2,3,5\}\}$ is $C_{4} \cup C_{3}$.

Before proceeding to the main theorem of this chapter, the powerful result on Langford sequences that was proved over a series of papers is given again (see for example [29]).

A Langford sequence of order $m \geq 1$ and defect $\delta \geq 1$ is a sequence $L=\left(l_{1}, l_{2}, \ldots, l_{2 m}\right)$ of $2 m$ positive integers satisfying the conditions
(a) for every $k \in\{\delta, \delta+1, \ldots, \delta+m-1\}$, there exist exactly two integers l_{i}, l_{j} in L such that $l_{i}=l_{j}=k$, and
(b) if $l_{i}=l_{j}=k$, then $|i-j|=k$.

A hooked Langford sequence of order $m \geq 1$ and defect $\delta \geq 1$ is a sequence $L=$ $\left(l_{1}, l_{2}, \ldots, l_{2 m}, l_{2 m+1}\right)$ of $2 m+1$ nonnegative integers satisfying the conditions
(a) $l_{2 m}=0$
(b) for every $k \in\{\delta, \delta+1, \ldots, \delta+m-1\}$, there exist exactly two integers l_{i}, l_{j} in L such that $l_{i}=l_{j}=k$, and
(c) if $l_{i}=l_{j}=k$, then $|i-j|=k$.

For emphasis, a Langford sequence is sometimes called a perfect Langford sequence.

Theorem 3.7. [29] A Langford sequence of order m and defect δ exists if and only if

1. $m \geq \delta-1$, and
2. either $m \equiv 0,1(\bmod 4)$ and δ is odd, or $m \equiv 0,3(\bmod 4)$ and δ is even.

A hooked Langford sequence of order m and defect δ exists if and only if
3. $m(m-2 \delta+1)+2 \geq 0$, and
4. either $m \equiv 2,3(\bmod 4)$ and δ is odd, or $m \equiv 1,2(\bmod 4)$ and δ is even.

Remark: Notice that every pair of integers m and δ satisfies either Condition 2 or Condition 4. Also, if $\delta=2$ then Conditions 1 and 3 are satisfied for all $m \geq 1$ when Conditions 2 and 4 respectively are satisfied.

The following well-known result is the purpose of introducing these sequences.

Lemma 3.8. If there exists a Langford sequence or a hooked Langford sequence of order m and defect δ then, for each $n>\delta+3 m$, there exists a K_{3}-decomposition of $G_{n}(\{\delta, \delta+$ $1, \ldots, \delta+3 m-1\})$ or of $G_{n}(\{\delta, \delta+1, \ldots, \delta+3 m-2, \delta+3 m\})$ respectively.

Proof. Let $\left(l_{1}, \ldots, l_{2 m}\right)$ or $\left(l_{1}, \ldots, l_{2 m+1}\right)$ be a Langford sequence or a hooked Langford sequence respectively. Define $B=\left\{\{0, \delta+m-1+i, \delta+m-1+j\}+t \mid l_{i}=l_{j}, t \in \mathbb{Z}_{n}\right\}$. Then $\left(\mathbb{Z}_{n}, B\right)$ is the required decomposition.

3.3 Neighborhoods for $2 K_{3 x+2}$

The first of the two main results of this chapter is now stated and proved.

Theorem 3.9. Let $n \equiv 2(\bmod 3)$ with $n>2$, and let Q be a 2 -regular multigraph on either $n-2$ or $n-1$ vertices. Then there exists a maximum packing of $2 K_{n}$ with leave a 2 -cycle such that the neighborhood graph of some vertex is Q if and only if $(n, Q) \neq\left(5, C_{2} \cup C_{2}\right)$.

Proof. If there exists a maximum packing of $2 K_{5}$ such that the neighborhood of some vertex is $C_{2} \cup C_{2}$, then deleting the triples containing this vertex leaves the graph $2 K_{2,2}$ which contains no K_{3}; so this case is not possible.

The sufficiency is now proved. So let Q be a 2-regular graph on $n-2$ or $n-1$ vertices, $n \equiv 2(\bmod 3)$, and $(n, Q) \neq\left(5, C_{2} \cup C_{2}\right)$. Let $|V(Q)|=n-2+\epsilon$ with $\epsilon \in\{0,1\}$. In each case, a maximum packing (V, B) of $2 K_{n}$ is produced in which the neighborhood of the vertex ∞_{0} is Q. If $n \in\{5,8\}$ then the result follows from Lemma 3.6, so it can be assumed that $n=3 k+5 \geq 11$.

Note that if $|V(Q)|=n-2$ then ∞_{0} must be in the leave, so the maximum packing will be constructed with leave the 2 -cycle $\left(\infty_{0}, \infty_{1}\right)$. If $|V(Q)|=n-1$ then ∞_{0} cannot be in the leave, so for notational convenience the maximum packing will be constructed with leave the 2 -cycle $\left(\infty_{1}, \infty_{3}\right)$.

Case 1: Suppose that Q contains a cycle c of length $3+\epsilon$. Let $V=\bigcup_{i=0}^{4}\left\{\infty_{i}\right\} \cup \mathbb{Z}_{3 k}$ and name the cycle $c=\left(\infty_{2-\epsilon}, \infty_{3-\epsilon}, \ldots, \infty_{4}\right)$. By Lemma 3.6, let $\left(\left\{\infty_{i} \mid i \in \mathbb{Z}_{5}\right\}, B_{0}\right)$ be a maximum packing of $2 K_{5}$ with leave the 2-cycle $\left(\infty_{1}, \infty_{3 \epsilon}\right)$ in which the neighborhood of ∞_{0} is the $(3+\epsilon)$-cycle c.

By Lemma 3.3, let G_{0} be a subgraph of $G_{3 k}(\{1,3 k-2,3 k-1\})$ isomorphic to $Q \backslash\{c\}$. Since $G_{3 k}(\{1,3 k-2,3 k-1\})-E\left(G_{0}\right)$ is a 4-regular graph, by Lemma 3.4 it has a 2 factorization $\left\{G_{1}, G_{2}\right\}$. Let $d=3 k-4$ if $k-2 \equiv 0$ or $3(\bmod 4)$ and let $d=3 k-5$ if $k-2 \equiv 1$ or $2(\bmod 4)$. By Lemma 3.4 let $\left\{G_{3}, G_{4}\right\}$ be a 2-factorization of $G_{3 k}(\{3 k-3, d\})$. Let $B_{1}=\left\{\left\{\infty_{i}, y, z\right\} \mid\{y, z\} \in E\left(G_{i}\right), 0 \leq i \leq 4\right\}$. So the neighborhood of ∞_{0} is Q, and all that remains to do is to partition the edges of $G_{3 k}(\{2,3, \ldots, 3 k-4\} \backslash\{d\})$ into triples; note that if $k=2$ then this graph has no edges, so it can be assumed that $k \geq 3$. By the remark following Theorem 3.7, there exists either a perfect or a hooked Langford sequence of order $k-2 \geq 1$ and defect 2 , so the choice of d ensures that by Corollary 3.8 there exists a $K_{3^{-}}$ decomposition $\left(\mathbb{Z}_{3 k}, B_{2}\right)$ of $G_{3 k}(\{2,3, \ldots, 3 k-4\} \backslash\{d\})$. Then $\left(\left\{\infty_{i} \mid i \in \mathbb{Z}_{5}\right\} \cup \mathbb{Z}_{3 k}, \bigcup_{i=0}^{2} B_{i}\right)$ is the required decomposition.

Case 2: Suppose that Q contains a cycle c_{0} of length $x+4+\epsilon \geq 5+\epsilon$. Let $V=$ $\bigcup_{i=0}^{4}\left\{\infty_{i}\right\} \cup \mathbb{Z}_{3 k}$ and name the cycle $c_{0}=\left(0,1, \ldots, x-1, \infty_{2-\epsilon}, \infty_{3-\epsilon}, \ldots, \infty_{4}, x\right)$. Define the cycles $c_{0}^{\prime}=\left(\infty_{2-\epsilon}, \infty_{3-\epsilon}, \ldots, \infty_{4}\right)$ and $c_{0}^{\prime \prime}=(0,1,2, \ldots, x-1, x)$ (so if $x=1$ then $c_{0}^{\prime \prime}$ is a 2-cycle). Let Q^{\prime} be formed from Q by replacing c_{0} with $c_{0}^{\prime} \cup c_{0}^{\prime \prime}$. Since Q^{\prime} contains a cycle of length exactly $3+\epsilon$, the argument in Case 1 can be used to produce a packing (V, B_{0}) of $2 K_{n-5}$ with leave $\bigcup_{i=0}^{4} G_{i}$ where $G_{0}=Q^{\prime} \backslash\left\{c_{0}^{\prime}\right\}$ and $\left\{G_{1}, \ldots, G_{4}\right\}$ is a 2 -factorization of $G^{\prime}=$ $G_{3 k}(\{1,3 k-1,3 k-2,3 k-3, d\})-E\left(G_{0}\right)$ with $d \in\{3 k-4,3 k-5\}$. Note that $\{x-1, x\} \subset V\left(c_{0}^{\prime \prime}\right)$ and that $x+1 \notin V\left(c_{0}^{\prime \prime}\right)$ since $x+4+\epsilon \leq|V(Q)|=n-2+\epsilon=3 k+2+\epsilon$ implies that $x \leq 3 k-2$ (so $x+1 \neq 0$). Therefore G^{\prime} contains two copies of the edge $\{x, x+1\}$ (one of difference 1 and one of difference $3 k-1$) and one copy of the edge $\{x-1, x+1\}$ (of difference $3 k-2$), so one copy of the edge $\{x, x+1\}$ must be in a different 2-factor than the edge $\{x-1, x+1\}$; say these 2 -factors are G_{4} and $G_{2-\epsilon}$ respectively. By Lemma 3.6, let ($\left\{\infty_{i} \mid i \in \mathbb{Z}_{5}\right\}, B_{1}$) be a maximum packing of $2 K_{5}$ with leave the 2-cycle $\left(\infty_{1}, \infty_{3 \epsilon}\right)$ such that the neighborhood of ∞_{0} is the $(\epsilon+3)$-cycle c_{0}^{\prime}. Then $\left(\left\{\infty_{i} \mid i \in \mathbb{Z}_{5}\right\} \cup \mathbb{Z}_{3 k}, B_{0} \cup B_{1} \cup\left\{\left\{\infty_{i}, a, b\right\} \mid\{a, b\} \in E\left(G_{i}\right)\right\}\right)$ is a maximum packing of $2 K_{n}$ such that the neighborhood of ∞_{0} is Q^{\prime}. Finally, by applying Lemma 3.5 to this maximum packing with $v=\infty_{0}, w=x+1, a=\infty_{2-\epsilon}, b=\infty_{4}, c=x-1$, and $e=x$, a maximum packing of $2 K_{n}$ in which the neighborhood of ∞_{0} is Q is produced.

Case 3: Suppose that $\epsilon=1$ and each cycle in Q is a 2 -cycle. Then n is odd so let $n=$ $6 l+5$ with $l \geq 1$. Let $V=\left\{\infty_{0}\right\} \cup\left(\mathbb{Z}_{3 l+2} \times \mathbb{Z}_{2}\right)$. By Lemma 3.1, let $\left(\mathbb{Z}_{3 l+2}, \circ\right)$ be an idempotent quasigroup. By Lemma 3.2, there exists a maximum packing $\left(\mathbb{Z}_{3 l+2} \times\{1\}, B_{1}\right)$ of $2 K_{3 l+2}$ with leave a 2-cycle c. Then $\left(\left\{\infty_{0}\right\} \cup \mathbb{Z}_{3 l+2} \times \mathbb{Z}_{2}, B_{1} \cup\{\{(a, 0),(b, 0),(a \circ b, 1)\},\{(a, 0),(b, 0),(b \circ\right.$ $\left.a, 1)\} \mid 0 \leq a<b \leq 3 l+1\} \cup\left\{\left\{\infty_{0},(a, 0),(a, 1)\right\},\left\{\infty_{0},(a, 0),(a, 1)\right\} \mid a \in \mathbb{Z}_{3 l+2}\right\}\right)$ is the required decomposition with leave c.

Case 4: In view of Cases 1 and 2, suppose that if $\epsilon=0$ then each cycle in Q has length 2 or 4 , and if $\epsilon=1$ then each cycle in Q has length 2,3 , or 5 . In view of Case 3 , if $\epsilon=1$ then also assume that Q contains at least one cycle of length 3 or 5 .

Case 4.1: Assume that $n \geq 17$. In this subcase it is convenient to redefine k so that $n=3 k+8$; so $k \geq 3$. Let $V=\left\{\infty_{i} \mid i \in \mathbb{Z}_{8}\right\} \cup \mathbb{Z}_{3 k}$.

Suppose $\epsilon=0$. If Q contains only 4 -cycles then let Q^{\prime} be formed from Q be replacing one 4 -cycle, say $\left(1, \infty_{6}, \infty_{7}, 2\right)$, with the two 2 -cycles $\left(\infty_{6}, \infty_{7}\right)$ and (1,2), and if Q contains a 2-cycle, say $\left(\infty_{6}, \infty_{7}\right)$, then let $Q^{\prime}=Q$. We can assume that either Q^{\prime} contains both the 4 -cycle $c_{1}=\left(\infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right)$ and the 2 -cycle $c_{2}=\left(\infty_{6}, \infty_{7}\right)$, or Q^{\prime} contains the three 2-cycles $c_{1}=\left(\infty_{2}, \infty_{3}\right), c_{2}=\left(\infty_{4}, \infty_{5}\right)$, and $c_{3}=\left(\infty_{6}, \infty_{7}\right)$; let $c^{*}=\left\{c_{1}, c_{2}\right\}$ or $\left\{c_{1}, c_{2}, c_{3}\right\}$ respectively.

Suppose $\epsilon=1($ and hence $|V(Q)|=n-1 \equiv 1(\bmod 3))$. Since $|V(Q)| \equiv 1(\bmod$ $3), Q$ contains at least two cycles of length $2(\bmod 3)$. If Q contains two 5 -cycles then let them be $\left(0,1, \infty_{6}, \infty_{7}, 2\right)$ and $c_{1}=\left(\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right)$; form Q^{\prime} from Q be replacing the first 5 -cycle with the two cycles $c_{2}=\left(\infty_{6}, \infty_{7}\right)$ and $c_{3}=(0,1,2)$, and let $c^{*}=\left\{c_{1}, c_{2}\right\}$. If Q contains exactly one 5 -cycle and a 2 -cycle then let them be $c_{1}=\left(\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right)$ and $c_{2}=\left(\infty_{6}, \infty_{7}\right)$; let $Q^{\prime}=Q$ and $c^{*}=\left\{c_{1}, c_{2}\right\}$. If Q contains no 5 -cycles then it must contain two 2 -cycles and a 3 -cycle (in view of Case 3), say $c_{1}=\left(\infty_{1}, \infty_{2}\right), c_{2}=\left(\infty_{6}, \infty_{7}\right)$, and $c_{3}=\left(\infty_{3}, \infty_{4}, \infty_{5}\right)$; let $Q^{\prime}=Q$ and $c^{*}=\left\{c_{1}, c_{2}, c_{3}\right\}$.

In either case, by Lemma 3.6 let $\left(\left\{\infty_{i} \mid i \in \mathbb{Z}_{8}\right\}, B_{0}\right)$ be a maximum packing of $2 K_{8}$ with leave the 2-cycle $\left(\infty_{1}, \infty_{3 \epsilon}\right)$ such that the neighborhood of ∞_{0} is c^{*}.

By Lemma 3.3, let G_{0} be a subgraph of $G_{3 k}(\{1,3 k-2,3 k-1\})$ isomorphic to $Q^{\prime} \backslash\left\{c^{*}\right\}$. Let $d=3 k-7$ if $k-3 \equiv 0$ or $3(\bmod 4)$ and let $d=3 k-8$ if $k-3 \equiv 1$ or $2(\bmod 4)$. Since $G=G_{3 k}(\{1,3 k-1,3 k-2,3 k-3,3 k-4,3 k-5,3 k-6, d\})-E\left(G_{0}\right)$ is a 14-regular graph, by Lemma 3.4 it has a 2-factorization $\left\{G_{1}, G_{2}, \ldots, G_{7}\right\}$. Note that if $Q^{\prime} \neq Q$, then $Q^{\prime} \backslash c^{*}$ contains either the cycle $(1,2)$ or the cycle $(0,1,2)$, which implies that G_{0} does not contain any copies of the edge $\{1,3\}$ or $\{2,3\}$ and hence that G contains two copies of the edge $\{2,3\}$ and one copy of the edge $\{1,3\}$. Thus one copy of the edge $\{2,3\}$ must be in a different 2-factor than the edge $\{1,3\}$; say these 2-factors are G_{7} and G_{6} respectively. Let $B_{1}=\left\{\left\{\infty_{i}, y, z\right\} \mid\{y, z\} \in E\left(G_{i}\right), 0 \leq i \leq 7\right\}$. So the neighborhood of ∞_{0} is Q^{\prime}, and all
that remains to do is to partition the edges of $G_{3 k}(\{2,3, \ldots, 3 k-7\} \backslash\{d\})$ into triples; to do so, note that this graph is graph is empty if $k=3$, so we can assume that $k \geq 4$. There exists either a perfect or a hooked Langford sequence of order $k-3 \geq 1$ and defect 2 , so the choice of d ensures that by Corollary 3.8 there exists a K_{3}-decomposition ($\mathbb{Z}_{3 k}, B_{2}$) of $G_{3 k}(\{2,3, \ldots, 3 k-7\} \backslash\{d\})$. Then $\left(\left\{\infty_{i} \mid i \in \mathbb{Z}_{8}\right\} \cup \mathbb{Z}_{3 k}, \bigcup_{i=0}^{2} B_{i}\right)$ is a maximum packing of $2 K_{n}$ such that the neighborhood of ∞_{0} is Q^{\prime}. If $Q^{\prime} \neq Q$ then apply Lemma 3.5 with $v=\infty_{0}$, $w=3, a=\infty_{6}, b=\infty_{7}, c=1$, and $e=2$ to produce a maximum packing of $2 K_{n}$ in which the neighborhood of ∞_{0} is Q.

Case 4.2: Assume that $n=14,|V(Q)|=13$, and Q contains a 5 -cycle, c. By Lemma 3.6, let $\left(\left\{\infty_{i} \mid i \in \mathbb{Z}_{6}\right\}, B_{1}\right)$ be a K_{3}-decomposition of $2 K_{6}$ such that the neighborhood of ∞_{0} is the 5 -cycle $c \in Q$. By Lemma 3.3, let G_{0} be a subgraph of $G_{8}(\{1,6,7\})$ isomorphic to $Q \backslash\{c\}$. Since $G_{8}(\{1,6,7\})-E\left(G_{0}\right)$ is a 4-regular graph, by Lemma 3.4 it has a 2 -factorization $\left\{G_{1}, G_{2}\right\}$. Let $B_{2}=\{\{0,2,5\},\{1,3,6\}\}$. Then $\left(G_{8}(\{2,3,4,5\})\right) \backslash\left(E\left(B_{2}\right) \cup\{4,7\} \cup\{4,7\}\right)$ is a 6 -regular graph so it has a 2-factorization $\left\{G_{3}, G_{4}, G_{5}\right\}$. Then $\left(\left\{\infty_{i} \mid i \in \mathbb{Z}_{6}\right\} \cup \mathbb{Z}_{8}, B_{1} \cup\right.$ $B_{2} \cup\left\{\left\{a, b, \infty_{i}\right\} \mid\{a, b\} \in E\left(G_{i}\right), 0 \leq i \leq 5\right\}$) is the required decomposition (with leave the 2-cycle $(4,7))$.

Case 4.3: Assume that $n=14,|V(Q)|=13$, and Q contains a 3-cycle, c. By Lemma 3.6, let $\left(\left\{\infty_{i} \mid i \in \mathbb{Z}_{4}\right\}, B_{1}\right)$ be a K_{3}-decomposition of $2 K_{4}$ such that the neighborhood of ∞_{0} is the 3-cycle $c \in Q$. By Lemma 3.3, let G_{0} be a subgraph of $G_{10}(\{1,8,9\})$ isomorphic to $Q \backslash\{c\}$. Since $G_{10}(\{1,8,9\})-E\left(G_{0}\right)$ is a 4-regular graph, by Lemma 3.4 it has a 2-factorization $\left\{G_{1}, G_{2}\right\}$. Let $B_{2}=\{\{0,2,5\},\{0,5,7\},\{1,3,6\},\{1,6,8\},\{2,4,7\},\{2,7,9\},\{3,5,8\},\{0,3,8\}$, $\{0,4,6\},\{1,5,9\},\{0,3,7\},\{1,4,7\},\{1,4,8\},\{3,6,9\},\{2,6,9\},\{2,5,8\}\} \cup\left\{\left\{\infty_{3}, i, i+4\right\} \mid i \in\right.$ $\left.\mathbb{Z}_{10}\right\}$. Then $\left(\left\{\infty_{i} \mid i \in \mathbb{Z}_{4}\right\} \cup \mathbb{Z}_{10}, B_{1} \cup B_{2} \cup\left\{\left\{a, b, \infty_{i}\right\} \mid\{a, b\} \in E\left(G_{i}\right), 0 \leq i \leq 2\right\}\right)$ is the required decomposition (with leave the 2-cycle $(4,9)$).

Case 4.4: Assume that $n=14,|V(Q)|=12$, and Q contains $\alpha 4$-cycles where $0 \leq \alpha \leq 3$. Let $B=\left(\left\{\{i, i+3, i+4\},\{i, i+2, i+5\},\{i, i+4, i+5\},\left\{\infty_{0}, i, i+6\right\},\left\{\infty_{1}, i, i+2\right\} \mid i \in\right.\right.$ $\left.\mathbb{Z}_{12}\right\} \backslash\left\{\{j, j+3, j+4\},\{j+4, j+6, j+9\},\left\{\infty_{0}, j, j+6\right\},\left\{\infty_{0}, j+3, j+9\right\} \mid 1 \leq j \leq\right.$
$\alpha\}) \cup\left\{\{j, j+4, j+6\},\{j+3, j+4, j+9\},\left\{\infty_{0}, j, j+3\right\},\left\{\infty_{0}, j+6, j+9\right\} \mid 1 \leq j \leq \alpha\right\}$. Then $\left(\mathbb{Z}_{12} \cup\left\{\infty_{0}, \infty_{1}\right\}, B\right)$ is a maximum packing of $2 K_{14}$ with leave $\left(\infty_{0}, \infty_{1}\right)$ such that the neighborhood of ∞_{0} consists of $\alpha 4$-cycles and $\frac{12-4 \alpha}{2} 2$-cycles as required.

Case 4.5: Assume that $n=11$. It is impossible for $|Q|=9$ and to have Q consist only of 2 -cycles and 4 -cycles, so assume that $|Q|=10$. Let $B=\left\{\left\{\infty_{0}, 0,1\right\},\left\{\infty_{0}, 0,1\right\},\left\{\infty_{0}, 2,3\right\}\right.$, $\left\{\infty_{0}, 2,3\right\},\left\{\infty_{0}, 4,5\right\},\left\{\infty_{0}, 4,6\right\},\left\{\infty_{0}, 5,6\right\},\left\{\infty_{0}, 7,8\right\},\left\{\infty_{0}, 7,9\right\},\left\{\infty_{0}, 8,9\right\},\{0,2,4\}$, $\{0,2,7\},\{0,3,5\},\{0,3,8\},\{1,2,6\},\{1,2,9\},\{1,3,4\},\{1,3,7\},\{0,4,8\},\{0,5,9\},\{0,6,7\}$, $\{0,6,9\},\{1,4,9\},\{1,5,7\},\{1,5,8\},\{1,6,8\},\{2,4,8\},\{2,5,8\},\{2,5,9\},\{2,6,7\},\{3,4,9\}$, $\{3,5,7\},\{3,6,8\},\{3,6,9\},\{4,5,6\},\{7,8,9\}\}$. Then $\left(V=\left\{\infty_{0}\right\} \cup \mathbb{Z}_{10}, B\right)$ is a maximum packing of $2 K_{11}$ with leave $(4,7)$ in which the neighborhood of ∞_{0} is $C_{2} \cup C_{2} \cup C_{3} \cup C_{3}$. Since the triples $\{0,4,8\},\{1,5,8\} \in B$, apply Lemma 3.5 to (V, B) with $v=\infty_{0}, w=8, a=0$, $b=1, c=4$, and $e=5$, to replace the cycles $(0,1)$ and $(4,5,6)$ in the neighborhood of ∞_{0} with the cycle $(0,1,5,6,4)$, so in the resulting maximum packing (V, B^{\prime}) the neighborhood of ∞_{0} is $C_{5} \cup C_{2} \cup C_{3}$. Finally, since the triples $\{2,7,6\},\{3,9,6\} \in B^{\prime}$, apply Lemma 3.5 to $\left(V, B^{\prime}\right)$ with $v=\infty_{0}, w=6, a=2, b=3, c=7$, and $e=9$, to replace the cycles $(2,3)$ and $(7,8,9)$ in the neighborhood of ∞_{0} with the cycle $(2,3,9,8,7)$, so in the resulting maximum packing ($V, B^{\prime \prime}$) the neighborhood of ∞_{0} is $C_{5} \cup C_{5}$.

3.4 Quadratic Leaves

Having proved Theorem 3.9, it can now be used along with the corresponding Colbourn and Rosa result (see [9]) to assist in proving the second main result of this chapter.

Theorem 3.10. Let Q be a quadratic graph in λK_{n}. There exists a K_{3}-decomposition of $\lambda K_{n}-E(Q)$ if and only if

1. $\lambda(n-1)$ is even,
2. $\left|E\left(\lambda K_{n}\right)\right|-|E(Q)|$ is divisible by 3,
3. $(\lambda, n, Q) \notin\left\{\left(1,7, C_{3} \cup C_{3}\right),\left(1,9, C_{4} \cup C_{5}\right),\left(2,6, C_{3} \cup C_{3}\right),\left(2,5, C_{2} \cup C_{3}\right)\right\}$, and

4. if $\lambda \neq 2$ then $n \neq 2$.

Proof. To see the necessity of Conditions $(1-4)$ consider the following. If $(\lambda, n, Q) \in$ $\left\{\left(1,7, C_{3} \cup C_{3}\right),\left(1,9, C_{4} \cup C_{5}\right)\right\}$ then by the Colbourn and Rosa result (see Theorem 1.2), there is no K_{3}-decomposition of $K_{n}-E(Q)$. If $(\lambda, n, Q) \in\left\{\left(2,5, C_{2} \cup C_{3}\right),\left(2,6, C_{3} \cup C_{3}\right)\right\}$ and if there exists a K_{3}-decomposition $\left(\mathbb{Z}_{n}, B_{1}\right)$ of $2 K_{n}-E(Q)$ then $\left(\mathbb{Z}_{n+1}, B_{1} \cup\{\{n, a, b\} \mid\right.$ $\{a, b\} \in E(Q)\})$ is a K_{3}-decomposition of $2 K_{n+1}$ in which the neighborhood of n is Q; but this contradicts Theorem 1.1. This proves the necessity of Condition (3). The necessity of Conditions (1) and (2) follows since each vertex in each triple has even degree and each triple contains 3 edges respectively. The necessity of Condition (4) is clear since λK_{2} contains no copies of K_{3}.

To prove the sufficiency, the result is clear if $n \leq 2$, and the result follows from Theorem 1.2 if $\lambda=1$, so assume that $n \geq 3$ and $\lambda \geq 2$. Let Q be a quadratic graph such that Conditions $(1-3)$ are satisfied.

Case 1: Suppose $\lambda=2$.
If $(n, Q) \in\left\{\left(5, C_{2}\right),\left(6, C_{3}\right)\right\}$ then the result follows in each case from Lemma 3.2 by taking a maximum packing of $2 K_{n}$, then removing any one triple if $n=6$. By Condition $2,|E(Q)| \equiv n-\epsilon(\bmod 3)$ where $\epsilon=1$ if $n \equiv 1(\bmod 3)$ and $\epsilon=0$ otherwise. Form the 2-regular graph Q^{\prime} on $n-\epsilon$ vertices by adding $\frac{n-|E(Q)|-\epsilon}{3} 3$-cycles to Q (by Condition (2) this is an integral number of 3 -cycles). Let $B=\left\{\{x, y, z\} \mid(x, y, z) \in Q^{\prime} \backslash Q\right\}$. It can be assumed that $\left(n+1, Q^{\prime}\right) \notin\left\{\left(7, C_{3} \cup C_{3}\right),\left(6, C_{2} \cup C_{3}\right)\right\}$ since $\left(n+1, Q^{\prime}\right) \in\left\{\left(7, C_{3} \cup C_{3}\right),\left(6, C_{2} \cup C_{3}\right)\right\}$ only if $(n, Q) \in\left\{\left(5, C_{2}\right),\left(6, C_{3}\right),\left(5, C_{2} \cup C_{3}\right),\left(6, C_{3} \cup C_{3}\right)\right\}$, where the first two are handled at the beginning of this case and the last two are prohibited by Condition 3. So by either Theorem 1.1 or 3.9 there exists a maximum packing $\left(\mathbb{Z}_{n+1}, B^{\prime}\right)$ of $2 K_{n+1}$ in which the neighborhood of the vertex n is Q^{\prime}. Then $\left(\mathbb{Z}_{n},\left(B^{\prime} \backslash\left\{b \in B^{\prime} \mid n \in b\right\}\right) \cup B\right)$ is the required decomposition.

Case 2: Suppose $\lambda>2$ and $n \equiv 0$ or $1(\bmod 3)$. First suppose that $(n, Q) \neq\left(6, C_{3} \cup C_{3}\right)$. By Condition $2,|E(Q)| \equiv 0(\bmod 3)$ regardless of the value of λ. By the result of Case 1, let $\left(\mathbb{Z}_{n}, B_{0}\right)$ be a K_{3}-decomposition of $2 K_{n}-E(Q)$. Let $\left(\mathbb{Z}_{n}, B_{1}\right)$ be a K_{3}-decomposition of
$(\lambda-2) K_{n}$; this exists by Lemma 3.2 since $n \equiv 0$ or $1(\bmod 3)$ and since if n is even then $\lambda-2$ is even by Condition (1). Then $\left(\mathbb{Z}_{n}, B_{0} \cup B_{1}\right)$ is the required decomposition. Using Lemma 3.2, if $(n, Q)=\left(6, C_{3} \cup C_{3}\right)$ then let $\left(\mathbb{Z}_{6}, B_{1}\right)$ and $\left(\mathbb{Z}_{6}, B_{2}\right)$ be K_{3}-decompositions of $2 K_{6}$ such that $\{0,1,2\} \in B_{1}$ and $\{3,4,5\} \in B_{2}$, and let $\left(\mathbb{Z}_{6}, B_{3}\right)$ be a K_{3}-decomposition of $(\lambda-4) K_{6}$. Then $\left(\mathbb{Z}_{6}, B_{1} \cup B_{2} \cup B_{3} \backslash\{\{0,1,2\},\{3,4,5\}\}\right)$ is the required decomposition.

Case 3: Suppose $\lambda>2$ and $n \equiv 2(\bmod 3)$. Let $V(Q) \subset \mathbb{Z}_{n}$. By Condition (4), $n \neq 2$. First suppose that $n \neq 5$. Let $\delta \equiv \lambda(\bmod 3)$ with $\delta \in\{2,3,4\}$ if $n \equiv 5(\bmod 6)$ and $\delta \in\{2,4,6\}$ if $n \equiv 2(\bmod 6)$. By Lemma 3.2 and Conditions (1) and (2) there exists a K_{3}-decomposition $\left(\mathbb{Z}_{n}, B_{0}\right)$ of $(\lambda-\delta) K_{n}$.

If $\delta=2$ then by Condition $(2)|E(Q)| \equiv 2(\bmod 3)$, so by Case 1 let $\left(\mathbb{Z}_{n}, B_{1}\right)$ be a K_{3}-decomposition of $2 K_{n}-E(Q)$.

If $\delta=4$ then by Condition $(2)|E(Q)| \equiv 1(\bmod 3)$ so $|E(Q)| \leq n-1$, so say $0 \notin V(Q)$ and that $(1, \ldots, x)$ is a cycle in Q. Form Q^{\prime} from Q by replacing the cycle $(1, \ldots, x)$ in Q with the cycle $(0,1, \ldots, x)$. By Case 1 there exists a K_{3}-decomposition $\left(\mathbb{Z}_{n}, B_{1}^{\prime}\right)$ of $2 K_{n}-E\left(Q^{\prime}\right)$. By Lemma 3.2 let $\left(\mathbb{Z}_{n}, B_{1}^{\prime \prime}\right)$ be a maximum packing of $2 K_{n}$ with leave the 2 -cycle $(1, x)$. Let $B_{1}=B_{1}^{\prime} \cup B_{1}^{\prime \prime} \cup\{0,1, x\}$.

If $\delta \in\{3,6\}$ then by Condition $(2)|E(Q)| \equiv 0(\bmod 3)$, so say $0,1 \notin V(Q)$. Form Q^{\prime} from Q by adding the 2-cycle $(0,1)$. By Case 1 let $\left(\mathbb{Z}_{n}, B_{1}^{\prime}\right)$ be a K_{3}-decomposition of $2 K_{n}-E\left(Q^{\prime}\right)$. By Lemma 3.2 let $\left(\mathbb{Z}_{n}, B_{1}^{\prime \prime}\right)$ be a maximum packing of $(\delta-2) K_{n}$ with leave the 4 -cycle $(2,0,3,1)$. Let $B_{1}=B_{1}^{\prime} \cup B_{1}^{\prime \prime} \cup\{\{0,1,2\},\{0,1,3\}\}$.

Then for each $\delta \in\{2,3,4,6\},\left(\mathbb{Z}_{n}, B_{0} \cup B_{1}\right)$ is the required decomposition.
Finally, suppose that $n=5$. Based on the above argument, it suffices to find packings of λK_{5} with leave Q for $(\lambda, Q) \in\left\{\left(2, C_{5}\right),\left(3, C_{3}\right),\left(4, C_{4}\right),\left(4, C_{2} \cup C_{2}\right),\left(5, C_{2} \cup C_{3}\right)\right\} .(\lambda, Q)=$ $\left(2, C_{5}\right)$ was handled in Case 1 . When $(\lambda, Q)=\left(3, C_{3}\right)$, by Lemma 3.2 let $\left(\mathbb{Z}_{5}, B\right)$ be a $K_{3^{-}}$ decomposition of $3 K_{5}$ and let $b \in B$; then $\left(\mathbb{Z}_{5}, B \backslash b\right)$ is the required decomposition. When $(\lambda, Q)=\left(4, C_{4}\right)$ the result follows from Lemma 3.2 by taking a maximum packing of $4 K_{5}$. When $(\lambda, Q)=\left(4, C_{2} \cup C_{2}\right)$, by Lemma 3.2 let $\left(\mathbb{Z}_{5}, B_{1}\right)$ and $\left(\mathbb{Z}_{5}, B_{2}\right)$ be maximum packings of
$2 K_{5}$ with leaves $(0,1)$ and $(2,3)$ respectively; then $\left(\mathbb{Z}_{5}, B_{1} \cup B_{2}\right)$ is the required decomposition. Finally, when $(\lambda, Q)=\left(5, C_{2} \cup C_{3}\right)$, by Lemma 3.2 let $\left(\mathbb{Z}_{5}, B_{1}\right)$ be a K_{3}-decomposition of $3 K_{5}$ that contains the triple $\{0,1,2\}$, and let $\left(\mathbb{Z}_{5}, B_{2}\right)$ be a maximum packing of $2 K_{5}$ with leave the 2-cycle $(3,4)$; then $\left(\mathbb{Z}_{5}, B_{1} \cup B_{2} \backslash\{0,1,2\}\right)$ is the required decomposition.

Chapter 4

$$
\text { Neighborhoods in Maximum Packings of } 2 K_{n}-\text { A Second Version }
$$

4.1 Introduction

Having completed the solution to the neighborhood graph problem in the last chapter by solving the case where $n \equiv 2(\bmod 3)$, this chapter focuses on finding a unified proof for the neighborhood graph problem. While the proof technique used in the last chapter for $n \equiv 2(\bmod 3)$ is similar in principle to the proof technique used in the corresponding Colbourn and Rosa result, it does not seem that the techniques used in either proof can be used to readily obtain the other result, even if one "allows" extreme cases (such as the case when each cycle in the neighborhood has length two) to be handled using alternate methods. In this chapter, a new, simpler, and unified proof that obtains both results is provided (see Theorem 4.5). However, this new proof relies heavily on a major result, namely a recent and quite powerful result due to Bryant, Horsley, and Pettersson (see Theorem 4.3). Section 4.2 will begin with some well-known lemmas that are useful in handling extreme cases of Theorem 4.5. The theorem of Bryant, Horsley, and Pettersson will then be given and used to establish a lemma that will be used in several cases of the proof of the main theorem. Finally, Section 4.3 contains the new proof of the main theorem.

4.2 Preliminary Results

To begin this section, two well-known results are given, one being on idempotent quasigroups and the other on maximum partial triple systems. These lemmas will be used to handle extreme cases of the main theorem (specifically the cases where $n \equiv 1$ or $5(\bmod 6)$ and Q contains only 2 -cycles).

Lemma 4.1. [27] There exists an idempotent quasigroup of order n for all $n \neq 2$.

The second lemma is more extensive than what appears below; however, what appears below is sufficient for this chapter.

Lemma 4.2. [14] The leave of a maximum partial triple system of λK_{n} is

1. \varnothing if $\lambda=2$ and $n \equiv 0,1(\bmod 3)$,
2. a 2 -cycle if $\lambda=2$ and $n \equiv 2(\bmod 3)$,
3. a $K_{1,3}$ and $\frac{n-4}{2}$ independent edges if $\lambda=1$ and $n \equiv 4(\bmod 6)$, and
4. a 1 -factor if $\lambda=1$ and $n \equiv 2(\bmod 6)$.

The powerful cycle-decomposition theorem of Bryant, Horsley, and Petterson from [5] appears next.

Theorem 4.3. [5]

1. Let n be odd. There exists a decomposition of K_{n} into cycles of length m_{1}, \ldots, m_{t} if and only if
(a) $3 \leq m_{i} \leq n$ for $1 \leq i \leq t$ and
(b) $\sum_{i=1}^{t} m_{i}=\binom{n}{2}$.
2. Let n be even. There exists a decomposition of K_{n} into cycles of length m_{1}, \ldots, m_{t} and a 1-factor F if and only if
(a) $3 \leq m_{i} \leq n$ for $1 \leq i \leq t$ and
(b) $\sum_{i=1}^{t} m_{i}=\binom{n}{2}-\frac{n}{2}$.

This result provides the backbone of the proof technique used in this chapter, establishing that K_{n} minus the edges of a certain set of cycles and possibly a 1-factor can be decomposed into triples.

The full power of this result is not needed for the main theorem, since at most three cycle lengths are chosen for any particular case. However, while older and more basic results can be used in many of the cases, it does not seem like older results are sufficient to handle all cases in the proof of the theorem (for instance, the case in which K_{n} needs to be decomposed into a 1-factor, a Hamilton cycle, a near Hamilton cycle, and triples.)

A lemma that will be used in multiple cases in the proof of Theorem 4.5 is now given. The lemma and the proof of it will look quite similar to the proofs that appear in the cases of the proof of the main theorem; this lemma is stated here however since it is used in several cases of the main theorem.

Lemma 4.4. Let $n \equiv 0(\bmod 3)$ and let Q be a 2 -regular graph on n vertices. Then for any integer $2 \leq k \leq n-1$, there exists a decomposition of $2 K_{n}$ into triples and $k 2$-factors, one of which is Q.

Proof. Let $\epsilon \in\{0,1\}$ with $\epsilon \equiv n(\bmod 2)$. Let $Q=\left\{c_{0}, \ldots, c_{q-1}\right\}$, where for each $i \in \mathbb{Z}_{q}$, the cycle $c_{i}=\left(c_{i, 1}, \ldots, c_{i, l_{i}}\right)$ has length l_{i}. Since $n \equiv 0(\bmod 3)$, the number of edges in any Hamilton cycle of K_{n} and any 1-factor of K_{n} is a multiple of 3. Further, since $\left|E\left(K_{n}\right)\right| \equiv 0$ $(\bmod 3)$, by Theorem $4.3, K_{n}$ can be decomposed into j Hamilton cycles for $0 \leq j \leq \frac{n-2+\epsilon}{2}$, $1-\epsilon 1$-factors, and triples. So let $\left(\mathbb{Z}_{n}, B_{1}\right)$ be a K_{3}-decomposition of $K_{n}-E\left(G_{1}\right)$, where G_{1} consists of the $h=\min \left\{k-1, \frac{n-2+\epsilon}{2}\right\}$ Hamilton cycles H_{1}, \ldots, H_{h}, along with the 1-factor F_{0} if $\epsilon=0$. In particular, let $H_{1}=\left(c_{0,1}, \ldots, c_{0, l_{0}}, c_{1,1}, \ldots, c_{1, l_{1}}, \ldots, c_{q-1,1}, \ldots, c_{q-1, l_{q-1}}\right)$. Let $\left(\mathbb{Z}_{n}, B_{2}\right)$ be a K_{3}-decomposition of $K_{n}-E\left(G_{2}\right)$ where G_{2} contains the $k-h-1+\epsilon$ Hamilton cycles $H_{h+2-\epsilon}, \ldots, H_{k}$, along with the 1-factor F_{1} if $\epsilon=0$. Note that if $\epsilon=1$, then $k-h-1+\epsilon=k-h \geq k-(k-1)=1$ so G_{2} contains a Hamilton cycle in this case. If $\epsilon=1$ then let $H_{h+1}=\left(c_{0,1}, c_{0, l_{0}}, c_{1,1}, c_{1, l_{1}}, \ldots, c_{q-1,1}, c_{q-1, l_{q-1}}, v_{1}, \ldots, v_{n-2 q}\right)$ where $v_{1}, \ldots, v_{n-2 q}$ are arbitrarily named. If $\epsilon=0$ then name the vertices so that q of the edges in F_{1} are in $\left\{\left\{c_{i, 1}, c_{i, l_{i}}\right\} \mid i \in \mathbb{Z}_{q}\right\}$ and let $H_{h+1}=F_{0} \cup F_{1}$.

Let H_{1}^{\prime} be the 2-factor induced by $\left(E\left(H_{1}\right) \cup\left\{\left\{c_{i, 1}, c_{i, l_{i}}\right\} \mid i \in \mathbb{Z}_{q}\right\}\right) \backslash\left\{\left\{c_{i, l_{i}}, c_{i+1,1}\right\} \mid i \in \mathbb{Z}_{q}\right\}$ reducing the sum in the subscript modulo q. Then $H_{1}^{\prime} \equiv Q$. The graph H_{h+1}^{\prime} induced by
$E\left(H_{1}\right) \cup E\left(H_{h+1}\right)-E\left(H_{1}^{\prime}\right)$ is a 2-factor. Finally, for $i \in\{1,2, \ldots, k\} \backslash\{1, h+1\}$, let $H_{i}^{\prime}=H_{i}$. Then $\left(\mathbb{Z}_{n}, B_{1} \cup B_{2} \cup \cup_{i \in \mathbb{Z}_{k}} H_{i}^{\prime}\right)$ is the required decomposition.

4.3 Main Result

The main theorem is now stated and proved. The theorem was previously proved by Colbourn and Rosa in [9] when $n \equiv 0$ or $1(\bmod 3)$ and in Chapter 3 when $n \equiv 2(\bmod 3)$.

Theorem 4.5. [7, 9] Suppose $n \neq 2$. Let Q be a 2 -regular multigraph on $n-1-\alpha$ vertices with $\alpha \in\{0,1\}$. Then there exists a maximum packing of $2 K_{n}$ (possibly the leave is empty) such that the neighborhood graph of some vertex is Q if and only if

$$
\begin{aligned}
& \text { 1. } \alpha=0 \text { if } n \equiv 0 \text { or } 1(\bmod 3) \text { and } \\
& \text { 2. }(n, Q) \notin\left\{\left(5, C_{2} \cup C_{2}\right),\left(6, C_{2} \cup C_{3}\right),\left(7, C_{3} \cup C_{3}\right)\right\} \text {. }
\end{aligned}
$$

Proof. If $n \equiv 0$ or $1(\bmod 3)$, then a maximum packing of $2 K_{n}$ is a 2 -fold triple system, so the neighborhood graph of every vertex will be a 2 -regular graph on $n-1$ vertices so $\alpha=0$ in these cases, which shows the first condition is necessary.

If $(n, Q)=\left(5, C_{2} \cup C_{2}\right),\left(6, C_{2} \cup C_{3}\right)$, or $\left(7, C_{3} \cup C_{3}\right)$ and there exists a maximum packing of $2 K_{n}$ such that the leave of some vertex v is Q, then deleting the triples containing v leaves the graph $\overline{K_{2}} \bigvee_{2} \overline{K_{2}}, \overline{K_{2}} \bigvee_{2} K_{3}$, or $K_{3} \bigvee_{2} K_{3}$ respectively. So each graph can be thought of as a graph with two parts with 2 edges joining each pair of vertices in different parts. In each case, any triple that contains an edge with its incident vertices in different parts (a mixed edge) contains 2 such edges and 1 edge whose incident vertices lie in the same part (a pure edge). But in each case, there are more than twice as many mixed edges as pure edges remaining. Hence these cases are not possible.

To prove the sufficiency, two extreme cases (Case 1) will be followed by 9 main cases. While this is a large number of cases, most follow from Lemma 4.4 or from similar ideas. Let Q be a 2-regular multigraph on $n-1-\alpha$ vertices (with the size of Q specified in each case) such that $(n, Q) \notin\left\{\left(5, C_{2} \cup C_{2}\right),\left(6, C_{2} \cup C_{3}\right),\left(7, C_{3} \cup C_{3}\right)\right\}$.

Case 1: Suppose $n \equiv 1$ or $5(\bmod 6)$ and that Q consists entirely of 2 -cycles (so since n is odd then $\alpha=0)$. By assumption $(n, Q) \neq\left(5, C_{2} \cup C_{2}\right)$, and the case where $n=1$ is trivial. So it can be assumed that $n \geq 7$; let $n=6 l+1+\epsilon$ with $l \geq 1$ and $\epsilon \in\{0,4\}$. Let $V=\left\{\infty_{1}\right\} \cup\left(\mathbb{Z}_{3 l+\frac{\epsilon}{2}} \times \mathbb{Z}_{2}\right)$. By Lemma 4.1, let $\left(\mathbb{Z}_{3 l+\frac{\epsilon}{2}}, \circ\right)$ be an idempotent quasigroup ($l \geq 1$, so $3 l+\frac{\epsilon}{2} \geq 3$, so the quasigroup exists). By Lemma 4.2, there exists a maximum packing $\left(\mathbb{Z}_{3 l+\frac{\epsilon}{2}} \times\{1\}, B_{1}\right)$ of $2 K_{3 l+\frac{\epsilon}{2}}$ with leave c where c is a 2-cycle if $\epsilon=4$ and $c=\varnothing$ otherwise. Then $\left(\left\{\infty_{1}\right\} \cup\left(\mathbb{Z}_{3 l+\frac{\epsilon}{2}} \times \mathbb{Z}_{2}\right), B_{1} \cup\{\{(a, 0),(b, 0),(a \circ b, 1)\},\{(a, 0),(b, 0),(b \circ a, 1)\} \mid\right.$ $\left.\left.0 \leq a<b \leq 3 l-1+\frac{\epsilon}{2}\right\} \cup\left\{\left\{\infty_{1},(a, 0),(a, 1)\right\},\left\{\infty_{1},(a, 0),(a, 1)\right\} \left\lvert\, a \in \mathbb{Z}_{3 l+\frac{\epsilon}{2}}\right.\right\}\right)$ is the required decomposition with leave c.

Case 2: Suppose $n \equiv 2(\bmod 3)$ with $\alpha=1$. A maximum packing is constructed on the vertex set $\mathbb{Z}_{n-2} \cup\left\{\infty_{1}, \infty_{2}\right\}$ where the neighborhood of ∞_{1} is $Q=\left\{c_{0}, \ldots, c_{q-1}\right\}$, the q-cycles being defined on the vertex set \mathbb{Z}_{n-2}; so the leave of the maximum packing will be $\left(\infty_{1}, \infty_{2}\right)$.

In this case, $w=n-2 \equiv 0(\bmod 3)$ and $2 \leq w-1($ since $n \equiv 2(\bmod 3)$ and $n \neq 2)$. So by Lemma 4.4 , there exists a K_{3}-decomposition $\left(\mathbb{Z}_{n-2}, B\right)$ of $2 K_{n-2}-\left(E\left(H_{1}^{\prime}\right) \cup E\left(H_{2}^{\prime}\right)\right)$ where H_{1}^{\prime} and H_{2}^{\prime} are 2-regular graphs and $H_{1}^{\prime} \equiv Q$.

Then $\left(\mathbb{Z}_{n-2} \cup\left\{\infty_{1}, \infty_{2}\right\}, B \cup\left\{\left\{\infty_{i}, a_{i}, b_{i}\right\} \mid\left\{a_{i}, b_{i}\right\} \in E\left(H_{i}^{\prime}\right), 1 \leq i \leq 2\right\}\right)$ is the required maximum packing.

Case 3: Suppose $n \equiv 2(\bmod 3), \alpha=0$, and that Q has a cycle of length at least $5-\epsilon$ where $\epsilon \in\{0,1\}$ with $\epsilon \equiv n(\bmod 2)$.

A maximum packing of $2 K_{n}$ with leave a 2 -cycle will be constructed on the vertex set $\mathbb{Z}_{n-2} \cup\left\{\infty_{1}, \infty_{2}\right\}$ such that the neighborhood of the vertex ∞_{1} is Q.

Let $Q=\left\{c_{0}, \ldots, c_{q-1}\right\}$ where for each $i \in \mathbb{Z}_{q}$, the cycle $c_{i}=\left(c_{i, 1}, \ldots, c_{i, l_{i}}\right)$ has length $l_{i}, c_{j, k} \in \mathbb{Z}_{n-2}$ unless $(j, k)=(0,3), c_{0,3}=\infty_{2}$, and $l_{0} \geq 5-\epsilon$. Since $n-2 \equiv 0(\bmod$ 3), the number of edges in any Hamilton cycle of K_{n-2} and any 1-factor of K_{n-2} is a multiple of 3 . Further, since $\left|E\left(K_{n-2}\right)\right| \equiv 0(\bmod 3)$, by Theorem 4.3, K_{n-2} can be decomposed into 0 or 1 Hamilton cycles, $1-\epsilon$ 1-factors, and triples. So let $\left(\mathbb{Z}_{n-2}, B_{1}\right)$
be a K_{3}-decomposition of $K_{n-2}-E\left(G_{1}\right)$, where G_{1} consists of the Hamilton cycle $H_{1}=$ $\left(c_{0,1}, c_{0,2}, c_{0,4}, \ldots, c_{0, l_{0}}, c_{1,1}, \ldots, c_{1, l_{1}}, \ldots, c_{q-1,1}, \ldots, c_{q-1, l_{q-1}}\right)\left(c_{0,3}=\infty_{2} \notin \mathbb{Z}_{n-2}\right)$, along with the 1-factor F_{0} if $\epsilon=0$. If $\epsilon=1$ then let $\left(\mathbb{Z}_{n-2}, B_{2}\right)$ be a K_{3}-decomposition of $K_{n-2}-E\left(H_{2}\right)$ where H_{2} is the Hamilton cycle $H_{2}=\left(c_{0,2}, c_{0,4}, c_{0,1}, c_{0, l_{0}}, c_{1,1}, c_{1, l_{1}}, \ldots, c_{q-1,1}, c_{q-1, l_{q-1}}, v_{1}, \ldots\right.$, $\left.v_{(n-2)-2-2 q}\right)$ with $v_{1}, \ldots, v_{(n-2)-2-2 q}$ arbitrarily named if $l_{0} \geq 5$; if $l_{0}=4$, drop the extra occurrence of $c_{0, l_{0}}$ after $c_{0,1}$ and have one more arbitrarily named vertex at the end of H_{2}. If $\epsilon=0$ then let $\left(\mathbb{Z}_{n-2}, B_{2}\right)$ be a K_{3}-decomposition of $K_{n-2}-E\left(F_{1}\right)$ where F_{1} is a 1-factor named so that $\left\{c_{0,2}, c_{0,4}\right\}$ is an edge and q of the remaining edges in F_{1} are in $\left\{\left\{c_{i, 1}, c_{i, l_{i}}\right\} \mid i \in \mathbb{Z}_{q}\right\}$. (Note that $l_{0} \geq 5$ if $\epsilon=0$ so $c_{0, l_{0}} \neq c_{0,4}$.) If $\epsilon=0$, let $H_{2}=F_{0} \cup F_{1}$. Finally, observe that the edge $\left\{c_{0,2}, c_{0,4}\right\}$ appears in both $E\left(H_{1}\right)$ and $E\left(H_{2}\right)$.

Let H_{1}^{\prime} be the graph induced by $\left(E\left(H_{1}\right) \cup\left\{\left\{c_{i, 1}, c_{i, l_{i}}\right\} \mid i \in \mathbb{Z}_{q}\right\}\right) \backslash\left\{\left\{c_{i, l_{i}}, c_{i+1,1}\right\} \mid i \in \mathbb{Z}_{q}\right\}$ reducing the sum in the subscript modulo q. Let H_{2}^{\prime} be the graph induced by $\left(E\left(H_{1}\right) \cup\right.$ $\left.E\left(H_{2}\right)\right) \backslash E\left(H_{1}^{\prime}\right)$. Then H_{1}^{\prime} and H_{2}^{\prime} are each 2-regular spanning subgraphs of K_{n-2}, and the set of cycles formed by the components in H_{1}^{\prime} contains the cycles c_{1}, \ldots, c_{q-1} and the cycle c_{0}^{\prime} where c_{0}^{\prime} is formed from c_{0} by deleting the edges $\left\{c_{0,2}, c_{0,3}\right\}$ and $\left\{c_{0,3}, c_{0,4}\right\}$ and adding the edge $\left\{c_{0,2}, c_{0,4}\right\}$. Note that the edge $\left\{c_{0,2}, c_{0,4}\right\}$ appears in both $E\left(H_{1}^{\prime}\right)$ and $E\left(H_{2}^{\prime}\right)$.

Then $\left(\mathbb{Z}_{n-2} \cup\left\{\infty_{1}, \infty_{2}\right\},\left(B_{1} \cup B_{2} \cup\left\{\left\{\infty_{i}, a_{i}, b_{i}\right\} \mid\left\{a_{i}, b_{i}\right\} \in E\left(H_{i}^{\prime}\right), 1 \leq i \leq 2\right\} \backslash\right.\right.$ $\left.\left.\left\{\left\{\infty_{i}, c_{0,2}, c_{0,4}\right\} \mid i \in\{1,2\}\right\}\right) \cup\left\{\left\{\infty_{1}, \infty_{2}, c_{0, i}\right\} \mid i \in\{2,4\}\right\}\right)$ is the required maximum packing (with leave $\left(c_{0,2}, c_{0,4}\right)$).

Case 4: Suppose that $n \equiv 5(\bmod 6), \alpha=0$, and that Q contains a 3 -cycle.
A maximum packing will be constructed on the vertex set $\mathbb{Z}_{n-4} \cup\left\{\infty_{j} \mid 1 \leq j \leq 4\right\}$ where the neighborhood of ∞_{1} is $Q=\left\{c_{0}, \ldots, c_{q-1}\right\}$, where $c_{0}=\left(\infty_{2}, \infty_{3}, \infty_{4}\right)$, and the $q-1$ other cycles are defined on the vertex set \mathbb{Z}_{n-4} with l_{1} being odd (since $n-1-\alpha$ is even, and Q contains a 3 -cycle, Q must contain some other cycle of odd length). The leave of the maximum packing will be $\left(\infty_{2}, c_{1,2}\right)$, where $c_{1,2}$ is defined below.

For each $i \in \mathbb{Z}_{q} \backslash\{0\}$, let $c_{i}=\left(c_{i, 1}, \ldots, c_{i, l_{i}}\right)$ where l_{i} is the length of c_{i}. In this case, $n-4 \equiv 1(\bmod 6)$ and thus $\binom{(n-4)}{2}-3(n-4)$ and $\binom{(n-4)}{2}-(n-4-1)$ are both divisible
by 3 . Further, Q cannot contain a 3 -cycle in this case if $n=5$, so $n-4 \geq 7$, so both quantities are also nonnegative. So by Theorem 4.3, let $\left(\mathbb{Z}_{n-4}, B_{1}\right)$ be a K_{3}-decomposition of $K_{n-4}-\left(E\left(H_{1}\right) \cup E\left(H_{3}\right) \cup E\left(H_{4}\right)\right)$ and let $\left(\mathbb{Z}_{n-4}, B_{2}\right)$ be a K_{3}-decomposition of $K_{n-4}-E\left(H_{2}\right)$ where H_{1}, H_{3}, and H_{4} are Hamilton cycles and H_{2} is a near-Hamilton cycle with H_{1} and H_{2} named as follows: Let $H_{1}=\left(c_{1,1}, \ldots, c_{1, l_{1}}, c_{2,1}, \ldots, c_{2, l_{2}}, \ldots, c_{q-1,1}, \ldots, c_{q-1, l_{q-1}}\right)$. Let H_{2} be defined by $H_{2}=\left(c_{1,1}, c_{1, l_{1}}, c_{2,1}, c_{2, l_{2}}, \ldots, c_{q-1,1}, c_{q-1, l_{q-1}}, v_{1}, \ldots, v_{n-3-2 q}\right)$ where $v_{1}, \ldots, v_{n-3-2 q}$ exclude $c_{1,2}$ and are otherwise arbitrarily named (note that $c_{1,2}$ is omitted from H_{2} altogether since l_{1} is odd and hence $c_{1,2} \neq c_{1, l_{l}}$).

Let H_{1}^{\prime} be the graph induced by $\left(E\left(H_{1}\right) \cup\left\{\left\{c_{i, 1}, c_{i, l_{i}}\right\} \mid i \in \mathbb{Z}_{q} \backslash\{0\}\right\}\right) \backslash\left(\left\{\left\{c_{i, l_{i}}, c_{i+1,1}\right\} \mid i \in\right.\right.$ $\left.\left.\mathbb{Z}_{q} \backslash\{0, q-1\}\right\} \cup\left\{\left\{c_{q-1, l_{q-1}}, c_{1,1}\right\}\right\}\right)$. Let H_{2}^{\prime} be the graph induced by $\left(E\left(H_{1}\right) \cup E\left(H_{2}\right)\right) \backslash E\left(H_{1}^{\prime}\right)$. Then H_{1}^{\prime} and H_{2}^{\prime} are 2-regular spanning subgraphs of K_{n-4} and K_{n-5} respectively, with the set of cycles formed by the components in H_{1}^{\prime} being $Q \backslash c_{0}$. Let $H_{3}^{\prime}=H_{3}$ and $H_{4}^{\prime}=H_{4}$.

Let $\left(\left\{\infty_{j} \mid 1 \leq j \leq 4\right\}, B_{3}\right)$ be a K_{3}-decomposition of $2 K_{4}$ (where the neighborhood of ∞_{1} is the 3 -cycle $\left(\infty_{2}, \infty_{3}, \infty_{4}\right)$).

Then $\left(\mathbb{Z}_{n-4} \cup\left\{\infty_{j} \mid 1 \leq j \leq 4\right\}, B_{1} \cup B_{2} \cup B_{3} \cup\left\{\left\{\infty_{i}, a_{i}, b_{i}\right\} \mid\left\{a_{i}, b_{i}\right\} \in E\left(H_{i}^{\prime}\right)\right\}\right)$ is the required packing.

Case 5: Suppose that $n \equiv 2(\bmod 6), \alpha=0$ and that Q contains a 3 -cycle.
First suppose $n=8$. Let $B=\left\{\left\{\infty_{1}, 0,1\right\},\left\{\infty_{1}, 0,1\right\},\left\{\infty_{1}, 2,3\right\},\left\{\infty_{1}, 2,3\right\},\left\{\infty_{1}, 4,5\right\}\right.$, $\left\{\infty_{1}, 4,6\right\},\left\{\infty_{1}, 5,6\right\},\{0,2,4\},\{0,2,5\},\{0,3,4\},\{0,3,5\},\{1,2,4\},\{1,2,6\},\{1,3,5\}$, $\{1,3,6\},\{1,4,5\},\{2,5,6\},\{3,4,6\}\}$. Then $\left(\mathbb{Z}_{7} \cup\left\{\infty_{1}\right\}, B\right)$ is a maximum packing of $2 K_{8}$ with leave $(0,6)$ such that the neighborhood of ∞_{1} is $C_{2} \cup C_{2} \cup C_{3}$. Finally, $\left(\mathbb{Z}_{7} \cup\left\{\infty_{1}\right\},(B \backslash\right.$ $\left.\left.\left\{\left\{\infty_{1}, 0,1\right\},\left\{\infty_{1}, 2,3\right\},\{0,2,5\},\{1,3,5\}\right\}\right) \cup\left\{\left\{\infty_{1}, 0,2\right\},\left\{\infty_{1}, 1,3\right\},\{0,1,5\},\{2,3,5\}\right\}\right)$ is a maximum packing of $2 K_{8}$ such that the neighborhood of ∞_{1} is $C_{4} \cup C_{3}$.

For $n>8$, a maximum packing is constructed on the vertex set $\mathbb{Z}_{n-4} \cup\left\{\infty_{j} \mid 1 \leq j \leq 4\right\}$ where the neighborhood of ∞_{1} is $Q=\left\{c_{0}, \ldots, c_{q-1}\right\}$, where $c_{0}=\left(\infty_{2}, \infty_{3}, \infty_{4}\right)$, and the $q-1$ other-cycles are defined on the vertex set \mathbb{Z}_{n-4}. The maximum packing will be constructed so that the leave will be $\left(\infty_{3}, a\right)$, where a is defined below.

For each $i \in\left(\mathbb{Z}_{q} \backslash\{0\}\right)$, let $c_{i}=\left(c_{i, 1}, \ldots, c_{i, l_{i}}\right)$ where l_{i} is the length of c_{i}. In this case, $n-4 \equiv 4(\bmod 6)$ and ≥ 10 and thus $\binom{(n-4)}{2}-(n-4)-\frac{n-4}{2}-(n-4-1)$ and $\binom{(n-4)}{2}-(n-4)-\frac{n-4}{2}$ are both divisible by 3 and nonnegative. So by Theorem 4.3 , let $\left(\mathbb{Z}_{n-4}, B_{1}\right)$ be a $K_{3^{-}}$ decomposition of $K_{n-4}-\left(E\left(H_{1}\right) \cup E\left(H_{3}\right) \cup E\left(F_{1}\right)\right)$ and let $\left(\mathbb{Z}_{n-4}, B_{2}\right)$ be a K_{3}-decomposition of $K_{n-4}-\left(E\left(H_{2}\right) \cup E\left(F_{2}\right)\right)$ where H_{1} and H_{2} are Hamilton cycles, H_{3} is a near-Hamilton cycle with arbitrarily named vertex $a \in \mathbb{Z}_{n-4}$ omitted, F_{1} and F_{2} are 1-factors, and H_{1} and H_{2} are named as follows: Let $H_{1}=\left(c_{1,1}, \ldots, c_{1, l_{1}}, c_{2,1}, \ldots, c_{2, l_{2}}, \ldots, c_{q-1,1}, \ldots, c_{q-1, l_{q-1}}\right)$. Let $H_{2}=\left(c_{1,1}, c_{1, l_{1}}, c_{2,1}, c_{2, l_{2}}, \ldots, c_{q-1,1}, c_{q-1, l_{q-1}}, v_{1}, \ldots, v_{n+2-2 q}\right)$ where $v_{1}, \ldots, v_{n+2-2 q}$ are arbitrarily named.

Let H_{1}^{\prime} be the graph induced by $\left(E\left(H_{1}\right) \cup\left\{\left\{c_{i, 1}, c_{i, l_{i}}\right\} \mid i \in \mathbb{Z}_{q} \backslash\{0\}\right\}\right) \backslash\left(\left\{\left\{c_{i, l_{i}}, c_{i+1,1}\right\} \mid i \in\right.\right.$ $\left.\left.\mathbb{Z}_{q} \backslash\{0, q-1\}\right\} \cup\left\{\left\{c_{q-1, l_{q-1}}, c_{1,1}\right\}\right\}\right)$. Let H_{2} be the graph induced by $\left(E\left(H_{1}\right) \cup E\left(H_{2}\right)\right) \backslash E\left(H_{1}^{\prime}\right)$. Then H_{1}^{\prime} and H_{2}^{\prime} are 2-regular spanning subgraphs of K_{n-4}, with the set of cycles formed by the components in H_{1}^{\prime} being $Q \backslash c_{0}$. Let $H_{3}^{\prime}=H_{3}$ and H_{4}^{\prime} be the graph induced by $E\left(F_{1}\right) \cup E\left(F_{2}\right)$.

Let $\left(\left\{\infty_{j} \mid 1 \leq j \leq 4\right\}, B_{3}\right)$ be a K_{3}-decomposition of $2 K_{4}$ (where the neighborhood of ∞_{1} is the 3 -cycle $\left.\left(\infty_{2}, \infty_{3}, \infty_{4}\right)\right)$.

Then $\left(\mathbb{Z}_{n-4} \cup\left\{\infty_{j} \mid 1 \leq j \leq 4\right\}, B_{1} \cup B_{2} \cup B_{3} \cup\left\{\left\{\infty_{i}, a_{i}, b_{i}\right\} \mid\left\{a_{i}, b_{i}\right\} \in E\left(H_{i}^{\prime}\right)\right\}\right)$ is the required decomposition.

Case 6: Suppose $n \equiv 0(\bmod 3), \alpha=0$, and that Q has a 2-cycle.
A maximum packing is constructed on the vertex set $\mathbb{Z}_{n-3} \cup\left\{\left\{\infty_{j}\right\} \mid 1 \leq j \leq 3\right\}$ where the neighborhood of ∞_{1} is $Q=\left\{c_{0}, \ldots, c_{q-1}\right\}$, where $c_{0}=\left(\infty_{2}, \infty_{3}\right)$, and the $q-1$ other-cycles are defined on the vertex set \mathbb{Z}_{n-3}.

Note that $n \neq 6$, since otherwise $Q=C_{2} \cup C_{3}$ and $(n, Q) \neq\left(6, C_{2} \cup C_{3}\right)$ by assumption. The case $n \equiv 3$ is trivial. Otherwise $w=n-3 \equiv 0(\bmod 3)$ and $3 \leq w-1$, so by Lemma 4.4, there exists a K_{3}-decomposition $\left(\mathbb{Z}_{n-3}, B\right)$ of $2 K_{n-3}-\left(E\left(H_{1}^{\prime}\right) \cup E\left(H_{2}^{\prime}\right) \cup E\left(H_{3}^{\prime}\right)\right)$ where $H_{1}^{\prime}, H_{2}^{\prime}$, and H_{3}^{\prime} are 2-regular graphs and $H_{1}^{\prime} \equiv Q \backslash c_{0}$.

Let $\left(\left\{\left\{\infty_{j}\right\} \mid 1 \leq j \leq 3\right\}, B_{3}\right)$ be a K_{3}-decomposition of $2 K_{3}$ (where the neighborhood of ∞_{1} is the 2 -cycle $\left(\infty_{2}, \infty_{3}\right)$).

Then $\left(\mathbb{Z}_{n-3} \cup\left\{\left\{\infty_{j}\right\} \mid 1 \leq j \leq 3\right\}, B_{1} \cup B_{2} \cup B_{3} \cup\left\{\left\{\infty_{i}, a_{i}, b_{i}\right\} \mid\left\{a_{i}, b_{i}\right\} \in E\left(H_{i}^{\prime}\right)\right\}\right)$ is the required decomposition.

Case 7: Suppose $n \equiv 0(\bmod 6), \alpha=0$, and that Q has no cycles of length 2 (and hence one of length at least 4).

First, suppose $n=6$. Define $B=\left\{\left\{\infty_{1}, 5,0\right\},\left\{\infty_{1}, 5,1\right\},\left\{\infty_{1}, 0,2\right\},\left\{\infty_{1}, 1,3\right\}\right.$, $\left.\left\{\infty_{1}, 2,3\right\},\{5,0,3\},\{5,1,2\},\{5,2,3\},\{0,1,2\},\{0,1,3\}\right\}$. Then $\left(\mathbb{Z}_{5} \cup\left\{\infty_{1}\right\}, B\right)$ is a maximum packing of $2 K_{6}$ such that the neighborhood of ∞_{1} is C_{5}.

Otherwise for $n \geq 12$, a maximum packing is constructed on the vertex set $\mathbb{Z}_{n-2} \cup$ $\left\{\left\{\infty_{j}\right\} \mid 1 \leq j \leq 2\right\}$ where the neighborhood of ∞_{1} is $Q=\left\{c_{0}, \ldots, c_{q-1}\right\}$.

For each $i \in \mathbb{Z}_{q}$, let $c_{i}=\left(c_{i, 1}, \ldots, c_{i, l_{i}}\right)$ where l_{i} is the length of $c_{i}, c_{j, k} \in \mathbb{Z}_{n-2}$ for all $(j, k) \neq(0,2)$, and $c_{0,2}=\infty_{2}$. In this case, $n-2 \equiv 4(\bmod 6)$ and thus $\binom{(n-2)}{2}-\frac{n-2}{2}-(n-2-3)$ and $\binom{(n-2)}{2}-\frac{n-2}{2}-1$ are both divisible by 3 , and since $n-2 \geq 10$, both quantities are nonnegative. So by Theorem 4.3, let $\left(\mathbb{Z}_{n-2}, B_{1}\right)$ be a K_{3}-decomposition of $K_{n-2}-\left(E\left(H_{1}\right) \cup E\left(F_{1}\right)\right)$ and by Lemma 4.2, let $\left(\mathbb{Z}_{n-2}, B_{2}\right)$ be a K_{3}-decomposition of $K_{n-2}-E\left(H_{2}\right)$ where H_{1} is a $n-5$ cycle, H_{2} consists of a $K_{1,3}$ and $\frac{(n-2)-4}{2}$ independent edges, F_{1} is a 1-factor, and H_{1} and H_{2} are named as follows: If $l_{0}=4$, let $H_{1}=\left(c_{1,1}, \ldots, c_{1, l_{1}}, c_{2,1}, \ldots, c_{2, l_{2}}, \ldots, c_{q-1,1}, \ldots, c_{q-1, l_{q-1}}\right)$ (so that $c_{0,1}, c_{0,3}$, and $c_{0,4}$ are omitted) and if $l_{0} \geq 5$, let $H_{1}=\left(c_{0,4}, c_{0,5}, \ldots, c_{0, l_{0}}, c_{1,1}, \ldots, c_{1, l_{1}}, c_{2,1}\right.$, $\ldots, c_{2, l_{2}}, \ldots, c_{q-1,1}, \ldots, c_{q-1, l_{q-1}-1}$) (so that $c_{0,1}, c_{0,3}$, and $c_{q-1, l_{q-1}}$ are omitted). If $l_{0}=4$, let H_{2} be defined to contain the edges $\left\{c_{i, 1}, c_{i, l_{i}}\right\}$ for each $i \in \mathbb{Z}_{q}$ as well as the edges $\left\{c_{0,4}, c_{0,3}\right\}$ and $\left\{c_{0,4}, c_{1,2}\right\}$ (note that $c_{1,2} \neq c_{1, l_{1}}$ since all cycles have length greater than 2 and note that $c_{0,4}$ is the vertex of degree 3 in H_{2}) and finally $\frac{(n-2)-4-2(q-1)}{2}$ arbitrarily named edges. If $l_{0} \geq 5$, let H_{2} be defined to contain the edges $\left\{c_{i, 1}, c_{i, l_{i}}\right\}$ for each $i \in \mathbb{Z}_{q}$ as well as the edges $\left\{c_{0,3}, c_{0,4}\right\},\left\{c_{q-1, l_{q-1}}, c_{q-1, l_{q-1}-1}\right\}$, and $\left\{c_{q-1, l_{q-1}}, c_{1,2}\right\}$ (note that $c_{1,2} \neq c_{1, l_{1}}$ since all cycles have length greater than $2, c_{0,4} \neq c_{0, l_{0}}$ since $l_{0} \geq 5$, and $c_{q-1, l_{q-1}}$ is the vertex of degree 3 in H_{2}) and finally $\frac{(n-2)-4-2 q}{2}$ arbitrarily named edges.

Note that in each case $\cup_{i=1}^{q-1} E\left(c_{i}\right) \cup E\left(c_{0}^{\prime}\right) \subset E\left(H_{1}\right) \cup E\left(H_{2}\right)$ where c_{0}^{\prime} is formed from c_{0} by removing the edges $\left\{c_{0,1}, c_{0,2}\right\}$ and $\left\{c_{0,2}, c_{0,3}\right\}$. Let H_{1}^{\prime} be the graph induced by $\cup_{i=1}^{q-1} E\left(c_{i}\right) \cup$ $E\left(c_{0}^{\prime}\right)$ and let H_{2}^{\prime} be the graph induced by $\left(E\left(H_{1}\right) \cup E\left(H_{2}\right)\right) \backslash E\left(H_{1}^{\prime}\right)$. Then every vertex has degree 2 in H_{1}^{\prime} and H_{2}^{\prime} except $c_{0,1}$ and $c_{0,3}$ both of which have degree 1 in both H_{1}^{\prime} and H_{2}^{\prime}.

Then $\left(\mathbb{Z}_{n-2} \cup\left\{\left\{\infty_{j}\right\} \mid 1 \leq j \leq 2\right\}, B_{1} \cup B_{2} \cup\left\{\left\{\infty_{i}, a_{i}, b_{i}\right\} \mid\left\{a_{i}, b_{i}\right\} \in E\left(H_{i}^{\prime}\right)\right\} \cup\right.$ $\left.\left\{\left\{\infty_{1}, \infty_{2}, c_{0, l}\right\} \mid l \in\{1,3\}\right\}\right)$ is the required decomposition.

Case 8 : Suppose $n \equiv 1$ or $3(\bmod 6), \alpha=0$, and that Q has a cycle of length at least 4 .
A K_{3}-decomposition of $2 K_{n}$ will be constructed on the vertex set $\mathbb{Z}_{n-2} \cup\left\{\infty_{1}, \infty_{2}\right\}$ such that the neighborhood of the vertex ∞_{1} is Q.

Let $Q=\left\{c_{0}, \ldots, c_{q-1}\right\}$ where for each $i \in \mathbb{Z}_{q}$, the cycle $c_{i}=\left(c_{i, 1}, \ldots, c_{i, l_{i}}\right)$ has length l_{i}, $c_{j, k} \in \mathbb{Z}_{n-2}$ unless $(j, k)=(0,2), c_{0,2}=\infty_{2}$, and $l_{0} \geq 4$. Since $n-2 \equiv 1 \operatorname{or} 5(\bmod 6)$, by Theorem 4.3, there exists a decomposition of K_{n-2} into triples and a near-Hamilton cycle. So let $\left(\mathbb{Z}_{n-2}, B_{1}\right)$ be a K_{3}-decomposition of $K_{n-2}-E\left(H_{1}\right)$, where H_{1} is a near-Hamilton cycle named so that $H_{1}=\left(c_{0,3}, c_{0,4}, c_{0,5}, \ldots, c_{0, l_{0}}, c_{1,1}, \ldots, c_{1, l_{1}}, \ldots, c_{q-1,1}, \ldots, c_{q-1, l_{q-1}}\right)$ (so $c_{0,1}$ is omitted). Let $\left(\mathbb{Z}_{n-2}, B_{2}\right)$ be a K_{3}-decomposition of $K_{n-2}-E\left(H_{2}\right)$, where H_{2} is the near-Hamilton cycle $H_{2}=\left(c_{0,1}, c_{0, l_{0}}, c_{1,1}, c_{1, l_{1}}, \ldots, c_{q-1,1}, c_{q-1, l_{q-1}}, v_{1}, \ldots, v_{(n-2)-1-2 q}\right)$ where $v_{1}, \ldots, v_{(n-2)-1-2 q}$ omit $c_{0,3}$ and are otherwise arbitrarily named. (Note that $c_{0,3} \neq c_{0, l_{0}}$ since $l_{0} \geq 4$.) Then $c_{0,1}$ has degree 2 in H_{2} and degree 0 in $H_{1}, c_{0,3}$ has degree 2 in H_{1} and degree 0 in H_{1}, and every other vertex in \mathbb{Z}_{n-2} has degree 2 in both H_{1} and H_{2}.

Let H_{1}^{\prime} be the graph induced by $\left(E\left(H_{1}\right) \cup\left\{\left\{c_{i, 1}, c_{i, l_{i}}\right\} \mid i \in \mathbb{Z}_{q}\right\}\right) \backslash\left(\left\{\left\{c_{i, l_{i}}, c_{i+1,1}\right\} \mid i \in \mathbb{Z}_{q}\right\} \cup\right.$ $\left\{\left\{c_{0,3}, c_{q-1, l_{q-1}}\right\}\right\}$) reducing the sum in the subscript modulo q. (Note that $\left\{c_{0,1}, c_{q-1, l_{q-1}}\right\} \notin$ $E\left(H_{1}\right)$ so this edge is not removed). Note that in H_{1}^{\prime} every vertex in \mathbb{Z}_{n-2} has degree 2 except $c_{0,1}$ and $c_{0,3}$, both of which have degree 1 . Let H_{2}^{\prime} be the graph induced by $\left(E\left(H_{1}\right) \cup\right.$ $\left.E\left(H_{2}\right)\right) \backslash E\left(H_{1}^{\prime}\right)$. Note that in H_{2}^{\prime}, every vertex in \mathbb{Z}_{n-2} has degree 2 except $c_{0,1}$ and $c_{0,3}$, both of which have degree 1 . The set of cycles formed by the components in H_{1}^{\prime} contains the cycles c_{1}, \ldots, c_{q-1} and c_{0}^{\prime} where c_{0}^{\prime} is formed from c_{0} by deleting the edges $\left\{c_{0,1}, c_{0,2}\right\}$ and $\left\{c_{0,2}, c_{0,3}\right\}$.

Then $\left(\mathbb{Z}_{n} \cup\left\{\infty_{1}, \infty_{2}\right\}, B_{1} \cup B_{2} \cup\left\{\left\{\infty_{i}, a_{i}, b_{i}\right\} \mid\left\{a_{i}, b_{i}\right\} \in E\left(H_{i}^{\prime}\right), 1 \leq i \leq 2\right\} \cup\left\{\left\{\infty_{1}, \infty_{2}, c_{0, l}\right\} \mid\right.\right.$ $l \in\{1,3\}\})$ is the required K_{3}-decomposition.

Case 9: Suppose $n \equiv 1(\bmod 3), \alpha=0$, and that Q has a 3 -cycle.
A maximum packing is constructed on the vertex set $\mathbb{Z}_{n-4} \cup\left\{\left\{\infty_{j}\right\} \mid 1 \leq j \leq 4\right\}$ where the neighborhood of ∞_{1} is $Q=\left\{c_{0}, \ldots, c_{q-1}\right\}$, where $c_{0}=\left(\infty_{2}, \infty_{3}, \infty_{4}\right)$, and the $q-1$ other-cycles are defined on the vertex set \mathbb{Z}_{n-4}.

When $n=4$, the result is trivial, and Q cannot have a 3 -cycle when $n=1$ (obviously) or when $n=7$ (since then $Q=C_{3} \cup C_{3}$, and $(n, Q) \neq\left(7, C_{3} \cup C_{3}\right)$ by assumption). So it can be assumed that $n \geq 10$. Then $w=n-4 \equiv 0(\bmod 3)$ and $4 \leq w-1$. So by Lemma 4.4, there exists a K_{3}-decomposition $\left(\mathbb{Z}_{n-4}, B\right)$ of $2 K_{n-4}-\left(E\left(H_{1}\right) \cup E\left(H_{2}\right) \cup E\left(H_{3}\right) \cup E\left(H_{4}\right)\right)$ where H_{1}, H_{2}, H_{3}, and H_{4} are 2-regular graphs and $H_{1} \equiv Q \backslash c_{0}$.

Let $\left(\left\{\left\{\infty_{j}\right\} \mid 1 \leq j \leq 4\right\}, B_{3}\right)$ be a K_{3}-decomposition of $2 K_{4}$ (where the neighborhood of ∞_{1} is the 3 -cycle $\left.\left(\infty_{2}, \infty_{3}, \infty_{4}\right)\right)$.

Then $\left(\mathbb{Z}_{n-4} \cup\left\{\left\{\infty_{j}\right\} \mid 1 \leq j \leq 4\right\}, B \cup B_{3} \cup\left\{\left\{\infty_{i}, a_{i}, b_{i}\right\} \mid\left\{a_{i}, b_{i}\right\} \in E\left(H_{i}\right), 1 \leq j \leq 4\right\}\right.$ is the required decomposition.

Case 10: Suppose $n \equiv 4(\bmod 6), \alpha=0$, and that Q has a cycle of length at least 5 .
A maximum packing is constructed on the vertex set $\mathbb{Z}_{n-2} \cup\left\{\left\{\infty_{j}\right\} \mid 1 \leq j \leq 2\right\}$ where the neighborhood of ∞_{1} is $Q=\left\{c_{0}, \ldots, c_{q-1}\right\}$.

For each $i \in \mathbb{Z}_{q}$, let $c_{i}=\left(c_{i, 1}, \ldots, c_{i, l_{i}}\right)$ where l_{i} is the length of $c_{i}, l_{0} \geq 5, c_{j, k} \in$ \mathbb{Z}_{n-2} for all $(j, k) \neq(0,2)$, and $c_{0,2}=\infty_{2}$. In this case, $n-2 \equiv 2(\bmod 6)$ and thus $\binom{(n-2)}{2}-\frac{n-2}{2}-(n-2-2)$ and $\binom{(n-2)}{2}-\frac{n-2}{2}$ are both divisible by 3 , and since $n-2 \geq 8$, both quantities are nonnegative. So by Theorem 4.3 , let $\left(\mathbb{Z}_{n-2}, B_{1}\right)$ be a K_{3}-decomposition of $K_{n-2}-\left(E\left(H_{1}\right) \cup E\left(F_{1}\right)\right)$ and let $\left(\mathbb{Z}_{n-2}, B_{2}\right)$ be a K_{3}-decomposition of $K_{n-2}-\left(E\left(F_{2}\right)\right)$ where H_{1} is a $n-4$ cycle, F_{1} and F_{2} are 1-factors, and H_{1} and F_{2} are named as follows: Let $H_{1}=\left(c_{0,4}, c_{0,5}, \ldots, c_{0, l_{0}}, c_{1,1}, \ldots, c_{1, l_{1}}, c_{2,1}, \ldots, c_{2, l_{2}}, \ldots, c_{q-1,1}, \ldots, c_{q-1, l_{q-1}}\right)$ (so that $c_{0,1}$ and $c_{0,3}$ are omitted). Let F_{2} be defined to contain the edges $\left\{c_{i, 1}, c_{i, l_{i}}\right\}$ for each $i \in \mathbb{Z}_{q}$ as well
as the edge $\left\{c_{0,3}, c_{0,4}\right\}$ and finally $\frac{n-2-2 q-2}{2}$ arbitrarily named edges. (Note that $c_{0,4} \neq c_{0, l_{0}}$ since $l_{0} \geq 5$.)

Note that $\cup_{i=1}^{q-1} E\left(c_{i}\right) \cup E\left(c_{0}^{\prime}\right) \subset E\left(H_{1}\right) \cup E\left(H_{2}\right)$ where c_{0}^{\prime} is formed from c_{0} by removing the edges $\left\{c_{0,1}, c_{0,2}\right\}$ and $\left\{c_{0,2}, c_{0,3}\right\}$. Let H_{1}^{\prime} be the graph induced by $\cup_{i=1}^{q-1} E\left(c_{i}\right) \cup E\left(c_{0}^{\prime}\right)$ and let H_{2}^{\prime} be the graph induced by $\left(E\left(H_{1}\right) \cup E\left(H_{2}\right)\right) \backslash E\left(H_{1}^{\prime}\right)$. Then every vertex has degree 2 in H_{1}^{\prime} and H_{2}^{\prime} except $c_{0,1}$ and $c_{0,3}$ both of which have degree 1 in both H_{1}^{\prime} and H_{2}^{\prime}.

Then $\left(\mathbb{Z}_{n-2} \cup\left\{\left\{\infty_{j}\right\} \mid 1 \leq j \leq 2\right\}, B_{1} \cup B_{2} \cup\left\{\left\{\infty_{i}, a_{i}, b_{i}\right\} \mid\left\{a_{i}, b_{i}\right\} \in E\left(H_{i}^{\prime}\right)\right\} \cup\right.$ $\left.\left\{\left\{\infty_{1}, \infty_{2}, c_{0, l}\right\} \mid l \in\{1,3\}\right\}\right)$ is the required decomposition.

Note that this covers all the cases since Q must contain an odd cycle when $n \equiv 2(\bmod$ $6)$ and $\alpha=0, Q$ cannot contain all 3 -cycles when $n \equiv 0(\bmod 3)(|Q|=2(\bmod 3))$, and Q cannot consist entirely of even cycles when $n \equiv 4(\bmod 6)$.

Chapter 5

Quadratic Excesses or Paddings of Covers with Triples of λK_{n}

5.1 Introduction

Having found a solution to the quadratic leave problem (completed in Chapter 3), this chapter will focus on the quadratic excess problem. As mentioned in the introduction, Colbourn and Rosa found necessary and sufficient conditions for a quadratic graph to be the excess of a cover of λK_{n} when $\lambda=1$ (see [10]). In this chapter, their results are extended to all λ (see Theorem 5.2).

5.2 Results

In this section, the main result of the chapter is given, namely necessary and sufficient conditions for a quadratic graph to be the excess of a cover of λK_{n} (naturally it is assumed that $\lambda \geq 1$ in this chapter). However, to begin a very well known theorem on maximum packings and minimum covers of λK_{n} (packings and covers for which the leave and excess have as few edges as possible) is given.

Theorem 5.1. [14, 23] Let $\lambda \geq 1$ and $n \neq 2$. Let P (or L) be any multigraph with the least number of edges in which all vertices have degree congruent to $\lambda(n-1)(\bmod 2)$ and with $|E(P)|+\frac{\lambda n(n-1)}{2} \equiv 0(\bmod 3)\left(\right.$ or $\frac{\lambda n(n-1)}{2}-|E(L)| \equiv 0(\bmod 3)$ respectively). Then there exists a K_{3}-decomposition of $\lambda K_{n} \cup E(P)$ (or $\lambda K_{n}-E(L)$ respectively).

The statement and proof of the main theorem are now given.

Theorem 5.2. Let Q be a quadratic graph on n vertices. Then Q is the excess of a cover of λK_{n} if and only if

1. $\lambda(n-1)$ is even,
2. $|E(Q)|+\left|E\left(\lambda K_{n}\right)\right| \equiv 0(\bmod 3)$, and
3. $n \neq 2$.

Proof. The necessity of Conditions (1) and (2) follows since each vertex in each triple has even degree and each triple contains 3 edges respectively. The necessity of Condition (3) is clear since $\lambda K_{2}+E(Q)$ contains no copies of K_{3}.

To prove the sufficiency, suppose that $(1-3)$ hold. Several cases are considered in turn.
Case 1: $n \equiv 1,3(\bmod 6)$
By Theorem 5.1, let $\left(V, B_{1}\right)$ be a K_{3}-decomposition of $(\lambda-1) K_{n}$ (with $L=\emptyset$). By Condition (2) and Theorem 1.3, let $\left(V, B_{2}\right)$ be a cover of K_{n} with excess Q. Then $\left(V, B_{1} \cup B_{2}\right)$ is the required cover.

Case 2: $n \equiv 5(\bmod 6)$
Let $\epsilon \in\{1,2,3\}$ with $\epsilon \equiv \lambda(\bmod 3)$. Note that $\left|E\left(\epsilon K_{n}\right)\right| \equiv\left|E\left(\lambda K_{n}\right)\right|(\bmod 3)$. Since $n \equiv 5(\bmod 6)$, by Theorem 5.1, there exists a K_{3}-decomposition $\left(V, B_{1}\right)$ of $(\lambda-\epsilon) K_{n}$.

If $\epsilon=1$ then by Condition (2) and Theorem 1.3, let $\left(V, B_{2}\right)$ be a cover of K_{n} with excess Q.

Suppose $\epsilon=2$. By Condition $(2),|E(Q)| \equiv 1(\bmod 3)$. Since $n \equiv 2(\bmod 3)$, some vertex in V has degree 0 in Q, say x. Let $c=\left(c_{0}, c_{1}, \ldots, c_{i}\right)$ be a cycle in Q and let $c^{\prime}=\left(c_{0}, x, c_{1}, \ldots, c_{i}\right)$. Form Q^{\prime} from Q by replacing c with c^{\prime}. Q^{\prime} is quadratic on the vertex set V and $\left|E\left(Q^{\prime}\right)\right| \equiv 2$ $(\bmod 3)$, so by Theorem 1.3, let $\left(V, B_{2}^{\prime}\right)$ be a cover of K_{n} with excess Q^{\prime}. By Theorem 5.1, let $\left(V, B_{2}^{\prime \prime}\right)$ be a maximum packing of K_{n} with leave the 4 -cycle $\left(c_{0}, x, c_{1}, d\right)$ where d is any vertex in V other than c, x_{0}, and x_{1} (this exists since in this case $n \equiv 5(\bmod 6)$ so $\left.n \geq 5\right)$. Let $B_{2}=B_{2}^{\prime} \cup B_{2}^{\prime \prime} \cup\left\{\left\{c_{0}, c_{1}, d\right\}\right\}$.

If $\epsilon=3$ then by Condition $2|E(Q)| \equiv 0(\bmod 3)$. Since $n \equiv 2(\bmod 3)$, some vertex in V has degree 0 in Q, say x. Let $c=\left(c_{0}, c_{1}, \ldots, c_{i}\right) \in Q$ and let $c^{\prime}=\left(c_{0}, x, c_{1}, \ldots, c_{i}\right)$. Form Q^{\prime} from Q by replacing c with $c^{\prime} . Q^{\prime}$ is quadratic on the vertex set V and $\left|E\left(Q^{\prime}\right)\right| \equiv 1(\bmod 3)$,
so by the previous case in this proof when $\epsilon=2$, let $\left(V, B_{2}^{\prime}\right)$ be a cover of $2 K_{n}$ with excess Q^{\prime}. By Theorem 5.1, let $\left(V, B_{2}^{\prime \prime}\right)$ be a maximum packing of K_{n} with leave the 4-cycle $\left(c_{0}, x, c_{1}, d\right)$ where d is any vertex in V other than x, c_{0}, and c_{1}. Let $B_{2}=B_{2}^{\prime} \cup B_{2}^{\prime \prime} \cup\left\{\left\{c_{0}, c_{1}, d\right\}\right\}$.

Then in each subcase $(\epsilon=1,2$, and 3$),\left(V, B_{1} \cup B_{2}\right)$ is the required cover.
Case 3: $n \equiv 4(\bmod 6)$
Since $n \equiv 4(\bmod 6)$, by Condition (1), λ is even. By Theorem 5.1, let $\left(V, B_{1}\right)$ be a K_{3}-decomposition of $(\lambda-2) K_{n}$.

By Condition $(2),|E(Q)| \equiv 0(\bmod 3)$. Hence, Q also satisfies the conditions for an excess for $v=n-1$ and $\lambda=1$. So let $x \in V$ be an isolated vertex in Q (in this case $|V(Q)| \equiv 1(\bmod 3)$ and $|E(Q)| \equiv 0(\bmod 3)$ so such an x exists) and let $\left(V \backslash\{x\}, B_{2}\right)$ be a cover of K_{n-1} with excess Q. By Theorem 5.1 , let $\left(V, B_{3}\right)$ be a maximum packing of K_{n} with leave Q^{\prime} consisting of a $K_{1,3}$ and $\frac{n-4}{2}$ independent edges, where the vertex set of the $K_{1,3}$ is $\{w, x, y, z\} \subset V$ with y being the vertex of degree 3. Then $\left(V, B_{1} \cup B_{2} \cup B_{3} \cup\left\{\left\{x, a_{i}, b_{i}\right\} \mid\right.\right.$ $\left\{a_{i}, b_{i}\right\}$ is an independent edge in $\left.\left.Q^{\prime}\right\} \cup\{\{x, y, z\},\{x, y, w\}\}\right)$ is the required decomposition.

Case 4: $\lambda=2$ and $n \equiv 0,2(\bmod 6)$
First suppose Q consists entirely of 2-cycles and isolated vertices. Hence $|E(Q)|$ is even, and by Condition $(2),|E(Q)| \equiv 0$ or $1(\bmod 3)$ when $n \equiv 0$ or $2(\bmod 6)$ respectively (recall $\lambda=2$ in this case $)$. Hence $|E(Q)| \equiv 0$ or $4(\bmod 6)$ when $n \equiv 0$ or $2(\bmod 6)$ respectively and thus the number of isolated vertices in Q is equivalent to 0 or $4(\bmod 6)$ when $n \equiv 0$ or 2 $(\bmod 6)$ respectively. If Q contains no isolated vertices $(\operatorname{so} n \equiv 0(\bmod 6))$, then by Theorem 5.1, for each $k \in\{1,2\}$ let $\left(V, B_{k}\right)$ be a minimum cover of K_{n} with the same 1-factor excess. Then $\left(V, B_{1} \cup B_{2}\right)$ is the required cover. Otherwise Q contains at least 4 isolated vertices, and this case is handled below by using the observation in the next paragraph.

Note that if Q is a quadratic graph in which there are three isolated vertices, say a, b, and c, in Q, then Q is a quadratic excess if and only if $Q \cup\{\{a, b\},\{a, c\},\{b, c\}\}$ is a quadratic excess. If Q contains at least 3 isolated vertices, then add a cycle of length 3 on three of the isolated vertices to Q.

In light of the last two paragraphs, to complete the proof of Case 4 it now suffices to consider the situation where Q has a cycle $c=\left(v_{0}, v_{1}, \ldots, v_{x}\right)$ of length $x+1 \geq 3$. Form Q^{\prime} from Q by replacing c with $c^{\prime}=\left(v_{1}, v_{2}, \ldots, v_{x}\right)$. Note that $\left|E\left(Q^{\prime}\right)\right| \equiv 2(\bmod 3)$ and $0(\bmod 3)$ when $n \equiv 0$ and $2(\bmod 6)$ respectively. Further note that $v_{0} \notin V\left(Q^{\prime}\right)$ and that Q^{\prime} satisfies the conditions for an excess when $\lambda=1$ and $n^{\prime}=n-1 \equiv 5(\bmod 6)$ and for an excess when $\lambda=1$ and $n^{\prime}=n-1 \equiv 1(\bmod 6)$. So by Theorem 1.3 , let $\left(V \backslash\left\{v_{0}\right\}, B_{1}\right)$ be a cover of K_{n-1} with excess Q^{\prime}.

By Theorem 5.1, let $\left(V, B_{2}\right)$ be a maximum packing of K_{n} with leave a 1-factor F named to contain the edges $\left\{v_{1}, v_{x}\right\}$ and $\left\{v_{0}, d\right\}$ where d is a vertex for which $\left\{v_{1}, v_{x}, d\right\} \in$ B_{1}. Then $\left(V,\left(B_{1} \cup B_{2} \backslash\left\{\left\{v_{1}, v_{x}, d\right\}\right\}\right) \cup\left\{\left\{v_{0}, a_{i}, b_{i}\right\} \mid\left\{a_{i}, b_{i}\right\} \in F \backslash\left\{\left\{v_{1}, v_{x}\right\},\left\{v_{0}, d\right\}\right\}\right\} \cup\right.$ $\left.\left\{\left\{v_{0}, v_{1}, d\right\},\left\{v_{0}, v_{1}, v_{x}\right\},\left\{v_{0}, v_{x}, d\right\}\right\}\right)$ is the required cover.

Case 5: $\lambda>2$ and $n \equiv 0(\bmod 6)$
By Condition (1), λ is even. Hence, by Theorem 5.1, let (V, B_{1}) be a K_{3}-decomposition of $(\lambda-2) K_{n}$. By Condition $(2),|E(Q)| \equiv 0(\bmod 3)$. Hence, by Case 4 , let $\left(V, B_{2}\right)$ be a cover of $2 K_{n}$ with excess Q. Then $\left(V, B_{1} \cup B_{2}\right)$ is the required cover.

Case 6: $\lambda>2$ and $n \equiv 2(\bmod 6)$
By Condition $1, \lambda$ is even. Let $\epsilon \in\{2,4,6\}$ with $\epsilon \equiv \lambda(\bmod 6)$. Note that $\left|E\left(\lambda K_{n}\right)\right| \equiv$ $\left|E\left(\epsilon K_{n}\right)\right|(\bmod 3)$ and $\epsilon \equiv \lambda(\bmod 2)$ so Q satisfies the necessary conditions for an excess of λK_{n} precisely when it satisfies the necessary conditions for an excess of ϵK_{n}. By Condition (3), $n \geq 8$, so by Theorem 5.1, let $\left(V, B_{1}\right)$ be a K_{3}-decomposition of $(\lambda-\epsilon) K_{n}$.

If $\epsilon=2$, by Case 4 , let $\left(V, B_{2}\right)$ be a cover of $2 K_{n}$ with excess Q.
If $\epsilon=4$ then by Condition $2|E(Q)| \equiv 2(\bmod 3)$. First suppose Q consists only of 2-cycles and isolated vertices. Since $|E(Q)| \equiv 4 \equiv n(\bmod 6)$, the number of isolated vertices in Q must be a multiple of 6 . If Q has no isolated vertices, then let Q^{\prime} consist of two of the 2 -cycles and $Q^{\prime \prime}$ consist of the remaining $\frac{n}{2}-2 \geq 2$-cycles ($n \geq 8$ in this case). Note that $\left|E\left(Q^{\prime}\right)\right| \equiv\left|E\left(Q^{\prime \prime}\right)\right| \equiv 1(\bmod 3)$ so by Case 4 , let $\left(V, B_{2}^{\prime}\right)$ be a cover of $2 K_{n}$ with excess Q^{\prime}
and $\left(V, B_{2}^{\prime \prime}\right)$ be a cover of $2 K_{n}$ with excess $Q^{\prime \prime}$. Let $B_{2}=B_{2}^{\prime} \cup B_{2}^{\prime \prime}$. Otherwise Q has at least 6 isolated vertices; add a 3 -cycle on three of the isolated vertices to Q.

It remains to consider the case where Q has a cycle $c=\left(v_{0}, v_{1}, \ldots, v_{x}\right)$ of length $x+1 \geq 3$. Form Q^{\prime} from Q by replacing c with $c^{\prime}=\left(v_{1}, v_{2}, \ldots, v_{x}\right)$. Note $\left|E\left(Q^{\prime}\right)\right| \equiv 1(\bmod 3)$ so by Case 4 , let $\left(V, B_{2}^{\prime}\right)$ be a cover of $2 K_{n}$ with excess Q^{\prime}. By Theorem 5.1, let $\left(V, B_{2}^{\prime \prime}\right)$ be a packing of $2 K_{n}$ with leave $\left\{\left\{c_{1}, c_{x}\right\},\left\{c_{1}, c_{x}\right\}\right\}$. Let $B_{2}=B_{2}^{\prime} \cup B_{2}^{\prime \prime} \cup\left\{\left\{c_{0}, c_{1}, c_{x}\right\}\right\}$.

If $\epsilon=6$ then $|E(Q)| \equiv 0(\bmod 3)$. Since $n \equiv 2(\bmod 6)$, there are at least two vertices, say v_{0} and v_{1} such that $v_{0}, v_{1} \notin V(Q)$. Form Q^{\prime} from Q by adding the 2 -cycle $\left(v_{0}, v_{1}\right)$. Note $\left|E\left(Q^{\prime}\right)\right| \equiv 2(\bmod 3)$, so by the previous case where $\epsilon=4$, let $\left(V, B_{2}^{\prime}\right)$ be a cover of $4 K_{n}$ with excess Q^{\prime}. By Theorem 5.1, let $\left(V, B_{2}^{\prime \prime}\right)$ be a packing of $2 K_{n}$ with leave $\left\{\left\{v_{0}, v_{1}\right\},\left\{v_{0}, v_{1}\right\}\right\}$. Let $B_{2}=B_{2}^{\prime} \cup B_{2}^{\prime \prime}$.

In each case, $\left(V, B_{1} \cup B_{2}\right)$ is the required cover, so the result is proved.

Chapter 6

Conclusion

To conclude this dissertation, it seems appropriate to mention some applications of the work done as well as some future directions of research. Some of the mathematical applications of the results in this dissertation (such as telling when two 2-fold triple systems are isomorphic) were already discussed, so at this point, a couple of applications of the general topic of graph decompositions and structure within them are mentioned in relation to other topics. One useful application of graph decompositions involves scheduling problems. For instance, a 1-factorization of K_{12} would correspond to an 11 week football schedule in which each team plays each other team exactly once. A structure question related to this application is whether the schedule could be made so that six fixed games, say rivalry games, appear on the last week of the season. (Incidentally, this can be done.) In terms of more scientific applications, there is the following application. In research on viruses, a method known as the Ouchterlony method tests how antigens interact. Around the edge of a Petri dish, v of n antigens are placed where they can diffuse, and then the interaction of neighboring antigens is observed. For research purposes, it may be beneficial to have each pair of antigens appear as neighbors on exactly λ Petri dishes. This can be modeled mathematically as a v -cycle-decomposition of λK_{n}. In terms of the research in this dissertation, the topics covered in Chapter 2 directly correspond to a slight variant of the Ouchterlony method. Suppose now that there are $n+m$ antigens which are to be placed into two groups, one of size m and one of size n (for instance one group may share a specific trait while the other group may share a different trait). It may be desirable to see how two antigens in the same group interact λ_{1} times while only seeing how antigens in different groups interact λ_{2} times. This
corresponds to a decomposition of the graph $\lambda_{1} K_{n} \vee_{\lambda_{2}} \lambda_{1} K_{m}$ that was discussed in Chapter 2.

In terms of future research, several problems seem interesting. An original topic for this dissertation involved finding necessary and sufficient conditions for a gregarious $K_{3^{-}}$ decomposition of $\lambda_{1} K_{m} \vee_{\lambda_{2}} \lambda_{1} K_{n}$, where in this setting gregarious simply means that each triple contains two mixed edges and one pure edge. In [13], El-Zanati, Punnim, and Rodger solved this problem when $\lambda_{1}=1$ and $\lambda_{2}=2$. Little other work has been done on the subject, although some minor results have been obtained. This would be an interesting problem to consider, as would the problem of finding necessary and sufficient conditions for a K_{3}-decomposition (not necessarily gregarious) of $\lambda_{1} K_{m} \vee_{\lambda_{2}} \lambda_{1} K_{n}$ when $\lambda_{1}<\lambda_{2}$; both problems seem difficult.

Bibliography

[1] A. Bialostocki and J. Schönheim, Packing and Covering of the Complete Graph with 4-cycles, Canadian Mathematical Bulletin 18 (5) (1975), 703-708.
[2] R.C. Bose and T. Shimamoto, Classification and analysis of partially balanced incomplete block designs with two associate classes, Journal of the American Statistical Association 47 (1952) 151 - 184.
[3] D. Bryant, Hamilton cycle rich two-factorizations of complete graphs, Journal of Combinatorial Designs 12 (2) (2004), $147-155$.
[4] D. Bryant, D. Horsley and B. Maenhaut, Decompositions into 2-regular subgraphs and equitable partial cycle decompositions, Journal of Combinatorial Theory. Series B 93 (1) (2005), $67-72$.
[5] D. Bryant, D. Horsley, and W. Pettersson, Cycle decompositions V: Complete graphs into cycles of arbitrary lengths, submitted.
[6] D. Bryant and D. Horsley, An asymptotic solution to the cycle decomposition problem for complete graphs, Journal of Combinatorial Theory. Series A 117 (8) (2010), 1258 1284.
[7] J. Chaffee and C.A. Rodger, Neighborhoods in Maximum Packings of $2 K_{n}$ and Quadratic Leaves of Triple Systems, Jounral of Combinatorial Designs, to appear.
[8] C.J. Colbourn, D.G. Hoffman and R. Rees, A new class of group divisible designs with block size three, Journal of Combinatorial Theory Series A 59 (1) (1992) 73 - 89.
[9] C.J. Colbourn and A. Rosa, Element neighbourhoods in twofold triple systems, Journal of Geometry 30 (1) (1987), $36-41$.
[10] C.J. Colbourn and A. Rosa, Quadratic excesses of coverings by triples, Ars Combinatoria 24 (1987), 23-30.
[11] C.J. Colbourn and A. Rosa, Quadratic leaves of maximal partial triple systems, Graphs and Combinatorics 2 (4) (1986), 317-337.
[12] C.J. Colbourn, A. Rosa, and S. Znám, The spectrum of maximal partial Steiner triple systems, Designs, Codes and Cryptography. An International Journal 3 (3), (1993), 209-219.
[13] S.I. El-Zanati, Narong Punnim, C.A. Rodger, Gregarious GDDs with two associate classes, Graphs and Combinatorics, 26 (6) (2010), 775-780.
[14] M.K. Fort Jr. and G.A. Hedlund, Minimal coverings of pairs by triples, Pacific Journal of Mathematics 8 (1958), $709-719$.
[15] H.L. Fu and C.A. Rodger, Group divisible designs with two associate classes: $n=2$ or $m=2$, Journal of Combinatorial Theory A 83 (1) (1998) 94-117.
[16] H.L. Fu, C.A. Rodger and D.G. Sarvate, The existence of group divisible designs with first and second associates, having block size 3, Ars Combinatoria 54 (2000) $33-50$.
[17] Haim Hanani, The existence and construction of balanced incomplete block designs, Annals of Mathematical Statistics, 32 (1961), 361-386.
[18] D.G. Hoffman, C.A. Rodger, and A. Rosa, Maximal sets of 2-factors and Hamiltonian cycles, Journal of Combinatorial Theory. Series B 57 (1) (1993), 69 - 76.
[19] Thomas P. Kirkman, On a problem in combinations, Cambridge and Dublin Math, J 2 (1847), 191-204.
[20] H. Lenz and G. Stern, Steiner triple systems with given subspaces; another proof of the Doyen-Wilson-Theorem, Unione Matematica Italiana. Bollettino. A (5), 17 (1) (1980) 109-114.
[21] C.C. Lindner and C.A. Rodger, Design theory, CRC Press, Boca Raton, FL, 2009.
[22] L. McCauley and C.A. Rodger, Hamilton cycle rich 2-factorizations of complete multipartite graphs, Graphs and Combinatorics 24 (1) (2008), $47-52$.
[23] E. Mendelsohn, N. Shalaby and H. Shen, Nuclear designs, Ars Combinatoria 32 (1991), 225-238.
[24] S. Milici, Minimum coverings of the complete graph with 5-cycles, Journal of Combinatorial Mathematics and Combinatorial Computing, 57 (2006), 33-46
[25] N. Pabhapote and N. Punnim, Group divisible designs with two associate classes and $\lambda_{2}=1$, International Journal of Mathematics and Mathematical Sciences (2011).
[26] J. Petersen, Die Theorie der regulären graphs, Acta Mathematica 15 (1) (1891), 193 220.
[27] C.A. Rodger and S.J. Stubbs, Embedding partial triple systems, Journal of Combinatorial Theory Series A 44 (2), (1987) 241 - 252.
[28] E.A. Severn, Maximal Partial Triple Systems, Computer Science Technical Report 172/84, University of Toronto (1984).
[29] J.E. Simpson, Langford sequences: perfect and hooked, Discrete Math 44 (1) (1983) 97-104.

