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Abstract

An H-decomposition of a graph G is a partition of the edge set E(G) such that each

element of the partition induces a subgraph isomorphic to H. A packing or cover of λKn

(with triples) is an ordered pair (V,B) where V is an n-element set and B is a set of 3-element

subsets of V called blocks such that each 2-element subset of V appears in at most λ blocks

or at least λ blocks respectively. Define E(B) = {{x, y}, {x, z}, {y, z} | {x, y, z} ∈ B}. The

leave of a packing is defined to be the multiset of edges L = E(λKn)−E(B) and the excess

or padding of a cover is defined to be the multiset of edges P = E(B)− E(λKn).

In this dissertation, necessary and sufficient conditions for the existence of K3-

decompositions of K = λ1Km ∨λ2 λ1Kn are found when λ1 ≥ λ2, vastly generalizing the

results in the literature on K3-decompositions of K. In a specific case of this problem

(namely when n = 2), it is useful to know for which simple quadratic subgraphs Q of Kn

(so Q cannot have 2-cycles) do there exist a K3-decomposition of λKn − E(Q) (that is, a

packing of λKn with leave equal to E(Q)). A complete solution to this question is provided;

in addition to being useful in proving the first result, it is also significant in that it extends

a classic result of Colbourn and Rosa who answered the same question when λ = 1.

In terms of the quadratic leave problem, the previous result, while short and simple,

has a gap in that it does not allow Q to have 2-cycles; the next result resolves this issue.

In a packing of 2Kn, the neighborhood graph of a vertex v is defined to be the graph

induced by the multiset of edges {{a, b} | {a, b, v} ∈ B}. In a maximum packing of 2Kn,

the neighborhood graph of a vertex is a 2-regular graph on either n − 1 or n − 2 vertices.

Colbourn and Rosa provided a chararterization of which 2-regular graphs on n− 1 or n− 2

vertices can be the neighborhood graph of a vertex in some maximum packing of 2Kn when

n ≡ 0 or 1 (mod 3); this dissertation provides such a characterization in the case where
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n ≡ 2 (mod 3). This result along with the Colbourn and Rosa result (n ≡ 0 or 1 (mod 3))

is used to find necessary and sufficient conditions for a K3-decomposition of λKn − E(Q)

where Q is any 2-regular graph on at most n vertices (so Q can have 2-cycles).

Finally, having already found necessary and sufficient conditions for Q to be a 2-regular

leave of λKn, the problem of when a quadratic graph Q has edge set equal to the excess of a

cover of λKn is considered, and necessary and sufficient conditions for a K3-decomposition

of λKn + E(Q) appear in the dissertation.
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Chapter 1

Introduction

This dissertation will focus on two main problems. First, it will look at finding K3-

decompositions of a specific family of graphs. Second, it will look at structure within packings

and covers of λKn. This introduction will first give a number of very general definitions in

Section 1.1, and then discuss some previously solved problems related to the results in this

dissertation in Section 1.2. The remaining chapters of this dissertation will be devoted to

proving the results I have obtained over the past five years.

1.1 Definitions

A graph G is an ordered pair (V (G), E(G)) where V (G) is a set of elements called

vertices and E(G) is a multiset of unordered pair of vertices; the elements of E(G) are called

edges. When |V (G)| = n, for notational purposes, it is often convenient to let V (G) = Zn =

{0, 1, . . . , n − 1}. A graph H is said to be a subgraph of a graph G if V (H) ⊂ V (G) and

E(H) ⊂ E(G). Two particular graphs that appear extensively in this dissertation are λKn,

which is the graph with n vertices in which every pair of vertices is joined by λ edges, and

λ1Kn ∨λ2 λ1Km, which is the graph in which the vertex set is partitioned into two parts M

and N where |M | = m, |N | = n, and each pair of vertices is joined by λ1 edges if they are in

the same part and is joined by λ2 edges if they are in different parts. Two vertices u and v

are said to be adjacent if {u, v} ∈ E(G). If u and v are adjacent, we write u ∼ v. The edge

{u, v} is said to be incident with the vertices u and v. The degree of a vertex v, denoted by

degG(v) = deg(v), is the number of edges incident with v. A k-cycle is a graph on k vertices

in which every vertex has degree 2. When a cycle C is considered as a subgraph of Kn, C

is said to be a Hamilton cycle if |V (C)| = |V (Kn)| = n and C is said to be a near-Hamilton
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cycle if |V (C)| = n− 1. Figures 1.1,1.2, and 1.3 show the graphs 2K9, λ1Km ∨λ2 λ1Kn, and

C8 respectively.

Figure 1.1: 2K9

λ1

λ2

λ1

Figure 1.2: λ1Km ∨λ2 λ1Kn

Figure 1.3: C8

1.2 History

An H-decomposition of a graph G is a partition of the edge set E(G) such that each

element of the partition induces a subgraph isomorphic to H. In this dissertation, K3-

decompositions of graphs will be studied. Perhaps the most famous problem related to this

topic is finding necessary and sufficient conditions for the existence of a K3-decomposition

of Kn. This problem was solved by Kirkman who showed in [19] that there exists a K3-

decomposition of Kn if and only if n ≡ 1 or 3 (mod 6). A natural extension of this problem

is to find necessary and sufficient conditions for the existence of a K3-decomposition of λKn.

This was solved by Hanani in [17] where it was shown that there exists a K3-decomposition

of λKn if and only if λ(n − 1) is even, λ(n)(n − 1) is divisible by 3, and n 6= 2. A λ-fold

triple system is an ordered pair (V,B) where V is a n-element set and B is a set of 3-element

subsets of V called blocks such that each 2-element subset of V appears in λ blocks of B.

The blocks of B are also called triples. It is straightforward to see that a λ-fold triple system

is equivalent to a K3-decomposition of λKn.
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With the necessary and sufficient conditions for aK3-decomposition of λKn well-established,

there are a few natural directions to go, three of which are as follows:

1. What are necessary and sufficient conditions for K3-decompositions of more general

graphs G?

2. What type of structure is present in K3-decompositions of λKn?

3. What are some natural notions of closeness to K3-decompositions of λKn, and when

can they be achieved?

These three questions are the main focus of the work in this dissertation. The first ques-

tion is studied almost exclusively in Chapter 2; hence terminology specific to that question

will appear in Chapter 2. The other questions are studied throughout the dissertation, and

hence the rest of this introduction will provide some definitions and history related to the

last two questions.

The two most natural notions of closeness to a K3-decomposition of a graph G are

packings and coverings. For the purposes of this dissertation, a packing of a graph G is a

K3-decomposition of a subgraph H of G. In the case where G = λKn, a packing is sometimes

referred to as a partial (λ-fold) triple system. If (V,B) is a (partial) triple system, define the

set of edges E(B) = {{x, y}, {x, z}, {y, z} | {x, y, z} ∈ B}. If (V,B) is a packing of λKn, then

the leave of the packing is defined to be the multiset of edges L = E(λKn)\E(B). It will cause

no confusion to also refer to the leave as being the subgraph induced by E(λKn) \E(B). In

particular, in the special case where L = {{a, b}, {a, b}}, L is expressed as the 2-cycle (a, b).

A vertex v is said to be in the leave if there is some edge in the leave that is incident with v. A

maximum packing is a packing such that among all packings the number of edges in its leave

is as small as possible (with respect to the graph G). On the other hand, a cover of a graph

G is a K3-decomposition of E(G) +P where P is a multiset of edges with underlying vertex

set V (G); in this dissertation, the topic of covers will only appear when G = λKn. If (V,B)

is a cover of λKn, define the set of edges E(B) = {{x, y}, {x, z}, {y, z} | {x, y, z} ∈ B}; the
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excess or padding of the cover is defined to be E(B) \ E(λKn). Much like with leaves, it is

commonplace to look at the subgraph induced by the excess as opposed to the excess itself.

A minimum cover is a cover such that among all covers the number of edges in its excess is

as small as possible (with respect to the graph G).

Maximum packings and minimum covers have also been well studied, and the leaves of

all maximum packings of λKn and the excesses of all minimum covers of λKn have been

found; for instance, see [23]. In this dissertation, quadratic leaves and excesses will be

studied, but before getting to this problem, a related problem is considered.

In any partial triple system (V,B) of 2Kn, the neighborhood of a vertex v ∈ V is the

graph induced by {{x, y} | {v, x, y} ∈ B}. If (V,B) is a maximum packing of 2Kn then the

neighborhood of each vertex is a 2-regular graph, also called a quadratic graph. It will cause

no confusion to also refer to the neighborhood as a set of cycles, each being a component

of the neighborhood. It is natural to ask for which quadratic graphs Q does there exist

a maximum packing (V,B) of 2Kn in which there exists a vertex v ∈ V for which the

neighborhood of v is Q? Colbourn and Rosa came up with a large part of the answer in [9].

Theorem 1.1. [9] Suppose n ≡ 0 or 1 (mod 3). A 2-regular graph Q on n − 1 vertices is

the neighborhood of a vertex in a 2-fold triple system on n vertices if and only if (n,Q) /∈

{(6, C2 ∪ C3), (7, C3 ∪ C3)}.

One purpose of looking at this structure within 2-fold triple systems is that it helps

determine when 2-fold triple systems are not isomorphic. The dissertation extends this

result by proving an analogous result for n ≡ 2 (mod 3); this result appears in Chapter 3.

A simpler proof of this result that also subsumes the Colbourn and Rosa result appears in

Chapter 4.

This structure problem seems unrelated to the earlier topic of quadratic leaves and

excesses, but in fact, the topic of quadratic leaves is related to this structure problem. In

most cases, deleting a vertex in a maximum packing of 2Kn induces a packing of 2Kn−1

where the leave induces a quadratic graph. For quadratic excesses, there is perhaps not as
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clear a motivation for studying them, but they do form a natural complement to quadratic

leaves and are hence discussed. In terms of quadratic leaves and excesses, the only explicit

results prior to this dissertation are for λ = 1 and are as follows:

Theorem 1.2. [11] Let Q be a 2-regular (quadratic) simple graph. There exists a K3-

decomposition of Kn − E(Q) if and only if

1. n is odd,

2. |E(Kn)| − |E(Q)| is divisible by 3, and

3. (n,Q) /∈ {(7, C3 ∪ C3), (9, C4 ∪ C5)}.

Theorem 1.3. [10] Let Q be a quadratic graph on n vertices. Then Q is the excess of a

cover of Kn if and only if

1. n is odd, and

2. |E(Q)|+ |E(Kn)| ≡ 0 (mod 3).

In this dissertation, both of these results are extended to the case where λ > 1, although

it should be mentioned that part of the the quadratic leave result for when λ = 2 is a direct

consequence of Theorem 1.1. The result for quadratic leaves appears in Chapter 3 although

a partial result is mentioned in Chapter 2, while the result for quadratic excesses appears in

Chapter 5.

More specific terminology will be introduced in the chapters as it is needed and the

dissertation now goes into the specific results obtained over the last five years.
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Chapter 2

Group Divisible Designs with Two Associate Classes and Quadratic Leaves of Triple

Systems

2.1 Introduction

A group divisible design with two associate classes GDD(v, {g1, ..., gn}, k, λ1, λ2) is an

ordered triple (V,G,B) where V is a v-set of symbols, G is a partition of V into n sets

(called groups) of sizes g1, ..., gn (possibly gi = gj for some i 6= j so {g1, ..., gn} is regarded

as a multiset), and B is a set of k-element subsets of V known as blocks, such that any two

distinct elements of V appear together in λ1 blocks if they are in the same group and λ2

blocks otherwise. In the special case where λ1 = 0, λ2 = 1, and k = 3, it is common to use

GDD(v, {g1, ..., gn}) instead of GDD(v, {g1, ..., gn}, 3, 0, 1), and the design is called a group

divisible design.

Bose and Shimamoto were among the first to classify such designs [2]. Fu, Rodger, and

Sarvate solved the existence of these designs for k = 3 when all groups have the same size

[15, 16]. A more general problem is to settle the existence question for k = 3 when the

groups have different sizes. In general this is a difficult problem, perhaps the most difficult

case being when there are exactly two groups. Pabhapote and Punnim solved the existence

in this case under the assumptions that λ2 = 1 and that neither m nor n is 2 [25]. In this

chapter, their result is generalized with a different proof, completely solving the interesting

case where one of the two groups has size 2 (see Section 2.5) and also solving the case where

λ2 ≤ λ1 (see Section 2.3). These results are stated in the major theorem of the chapter (see

Theorem 2.2).

The problem can be approached in terms of an equivalent graph decomposition problem.

Let K = K(M,N, λ1, λ2) = λ1Km ∨λ2 λ1Kn where |M | = m and |N | = n be a graph on the
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vertex set M ∪N (M and N are called the parts) in which for each x, y ∈M ∪N with x 6= y,

there exist λ1 edges between x and y if x and y are in the same part and λ2 edges between x

and y otherwise. An edge e = {x, y} is said to be pure if x and y lie in the same part and is

said to be mixed otherwise. A K3-decomposition of a graph G is an ordered pair (V (G), B)

where B is a partition of E(G) into sets, each of which induces a K3; in this chapter focus

will be placed on the case where G = K. Sometimes the copies of K3 are called triples and

the K3-decomposition of K is called a triple system of K. It is straightforward to see that

such a graph decomposition is equivalent to a GDD(v = m+ n, {m,n}, 3, λ1, λ2). To begin,

some obvious necessary conditions for the existence of this K3-decomposition of K are given.

Some of these conditions appear in other papers (such as [13]), but the proof is included here

for completeness.

Lemma 2.1. Let K = λ1Km ∨λ2 λ1Kn with |M | = m and |N | = n. Assume that n = 2 only

if m = 2. The following conditions are necessary for the existence of a K3-decomposition of

K.

1. 3 divides λ1(
(
m
2

)
+
(
n
2

)
) + λ2mn,

2. 2 divides λ1(m− 1) + λ2n and 2 divides λ1(n− 1) + λ2m,

3. 2λ1(
(
m
2

)
+
(
n
2

)
) ≥ λ2mn,

4. if m = 2 then λ1 ≤ λ2n, and

5. if m = 2 and n ≤ 2 then λ1 = λ2.

Proof. The first and second conditions are necessary since the total number of edges must

be divisible by 3 and the degree of each vertex must be divisible by 2 respectively. The last

three conditions come from looking at the types of triples that can be chosen. Note that

every triple that contains a mixed edge must use precisely two mixed edges and a pure edge;

thus, the third condition is necessary. If m = 2 then each triple that uses a pure edge in M ,
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must also use two mixed edges; thus, the fourth condition is necessary. Finally, if m = 2 and

n is less than or equal to 2 then every triple must use a pure edge and two mixed edges, so

the fifth condition is necessary.

Note that under the assumption that λ1 ≥ λ2, the third necessary condition simplifies

to requiring that either m > 1 or n > 1.

It seems reasonable to conjecture that the conditions of Lemma 2.1 are sufficient as

well. As noted earlier, this conjecture is proved in the case where m = 2 (see Section 2.5:

Theorem 2.14) and where λ1 ≥ λ2 (see Section 2.3: Theorem 2.11). These proofs culminate

in the following result.

Theorem 2.2. Let K = λ1Km ∨λ2 λ1Kn with m = 2 if n = 2. Let λ1 ≥ λ2 if m 6= 2. There

exists a K3-decomposition of K if and only if

1. 3 divides λ1(
(
m
2

)
+
(
n
2

)
) + λ2mn,

2. 2 divides λ1(m− 1) + λ2n and 2 divides λ1(n− 1) + λ2m,

3. 2λ1(
(
m
2

)
+
(
n
2

)
) ≥ λ2mn,

4. if m = 2 then λ1 ≤ λ2n, and

5. if m = 2 and n ≤ 2 then λ1 = λ2.

Another valuable result in this chapter is the generalization of the classic result by

Colbourn and Rosa establishing necessary and sufficient conditions for the existence of a

K3-decomposition of Kn−E(Q) where Q is a 2-regular subgraph of Kn (see Theorem 2.12).

In Section 2.4, the generalization of this problem to λKn − E(Q) is completely solved as

long as Q is simple, the necessary and sufficient conditions depending on n,Q, and λ (see

Theorem 2.13). This result is then used in the proof of Lemma 2.18, thus helping to settle

the m = 2 case (see Theorem 2.14).
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2.2 Terminology

The following terminology will be used throughout the chapter so it is defined here

and complements the terminology given in Chapter 1. In Kv with vertex set Zv, define the

difference of an edge joining two vertices i and j as d(i, j) = min{|i− j|, v − |(i− j)|}. For

each D ⊂ {1, ..., v− 1}, let Gv(D) be the graph with vertex set Zv and edge set consisting of

all edges of differences in D. A difference d is said to be good if v
gcd(v,d)

is even. A difference

triple is a triple (a, b, c) of unique integers from the set {1, ..., v − 1}, such that a+ b = c or

a+ b+ c = v.

For i ∈ {1, 3, 5}, let Fi(V (G)) be a graph with vertex set V (G) in which one vertex has

degree i and the rest have degree 1; these graphs are known as 1-factors, 3-poles (tripoles),

and 5-poles when i = 1, 3, and 5 respectively.

A graph G is said to be evenly equitable if each vertex of G has even degree and for all

u, v ∈ V (G), |d(u)− d(v)| ≤ 2.

2.3 The Case where K has no parts of size 2

In this section, Theorem 2.2 is proved in the case where neither part has size 2 (see

Theorem 2.11). First some lemmas that are used in the proof of the theorem are given. The

first addresses the well-known existence of maximum packings and minimum covers of µKv

with triples.

Theorem 2.3. [17, 23] Let µ ≥ 1 and v ≥ 3. Let P (or L) be any multigraph with the least

number of edges in which all vertices have degree congruent to µ(v − 1) (mod 2) and with

|E(P )| + µv(v−1)
2
≡ 0 (mod 3) (or µv(v−1)

2
− |E(L)| ≡ 0 (mod 3) respectively). Then there

exists a K3-decomposition of µKv ∪ E(P ) (or µKv − E(L) respectively).

A latin square L of order n is an n×n array containing the symbols 0, 1, . . . , n− 1 such

that each symbol appears exactly once in each row and each column. If L is a latin square,
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we refer to the symbol in cell (a, b) as being a ◦ b. With the operation ◦, the latin square is

referred to as a quasigroup; the quasigroup is denoted by (L, ◦). A quasigroup is said to be

idempotent if i◦i = i for every i ∈ {0, 1, . . . , n−1}. The next lemma shows that quasigroups

can be constructed so that they are not commutative; this result will be used later to build

a triple system with a desired property.

Lemma 2.4. For all n ≥ 4, there exists an idempotent quasigroup of order n that is not

commutative. That is, for all n ≥ 4, there exists an idempotent quasigroup of order n in

which there exist a and b such that a ◦ b 6= b ◦ a.

Proof. If n is even, then the result follows since in every idempotent quasigroup, each symbol

appears once on the main diagonal and hence appears off the main diagonal an odd number

of times. If n is odd, then define i◦ i = i and (i+1)◦ (j+2) = i◦ j for 0 ≤ i, j < n (reducing

sums modulo n). Since 2 is relatively prime to n, this product defines a quasigroup. Since

n ≥ 4, cells (1, 0) and (0, 1) contain different symbols.

The following useful observation is easily proved.

Observation 2.5. For any m,n, λ ≥ 1, if the number of edges in both λKn and λKm are

not congruent (mod 3), then the number of edges in one of the parts is congruent to 0 (mod

3).

Proof. If neither |E(λKm)| nor |E(λKn)| is divisible by 3, then |E(Km)| ≡ |E(Kn)| ≡ 1

(mod 3) and then |E(λKm)| ≡ |E(λKn)| ≡ λ (mod 3) which proves the claim.

The next lemma is also easily proved and helps to eliminate cases in the proof of Theorem

2.11.

Lemma 2.6. Let λ1, λ2,m, and n be positive integers. Furthermore, suppose that 3 divides

(λ1(
(
m
2

)
+
(
n
2

)
) + λ2mn). If m + n ≡ 2 (mod 3) and λ2 ≡ 1 or 2 (mod 3), then either m or

n is congruent to 0 (mod 3).
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Proof. Assume that m ≡ n ≡ 1 (mod 3). Then
(
m
2

)
≡
(
n
2

)
≡ 0 (mod 3). But none

of λ2,m, n is congruent to 0 (mod 3). So λ2mn is not congruent to 0 (mod 3) and thus

(λ1(
(
m
2

)
+
(
n
2

)
) + λ2mn) is not divisible by 3, a contradiction.

Lemma 2.7. Let v ≡ 0 or 1 (mod 3), λ be even, and v ≥ 12. Then there exists a K3-

decomposition (V, T (z0, z1, z2, z3, z4)) of λKv containing the following triples: {z0, z1, z2},

{z0, z1, z3}, and {z2, z3, z4}.

Proof. Since v ≡ 0 or 1 (mod 3) and λ − 2 is even, by Theorem 2.3, let (V,B0) be a K3-

decomposition of (λ−2)Kv. Let ε ∈ {0, 1} with ε ≡ v (mod 3). Let V = (Z v−ε
3
×Z3)∪I where

I = {∞} if ε = 1 and I = ∅ otherwise. Let (L, ◦) be a non-commutative latin square of order

v−ε
3
≥ 4 (see Lemma 2.4). For each x ∈ Z v−ε

3
let ({x} × Z3, Bx) or ({∞} ∪ ({x} × Z3), Bx)

be a K3-decomposition of 2K3+ε if ε = 0 or 1 respectively. Let B′={{(i, l), (j, l), (i ◦ j, l +

1)}, {(i, l), (j, l), (j ◦ i, l + 1)} | 0 ≤ i < j ≤ v−ε
3
, 0 ≤ l ≤ 2} where l + 1 = 0 when l = 2. Let

B = ∪x∈Z v−ε
3

Bx ∪B′. Then (V,B) is a K3-decomposition of 2Kv. Furthermore, since a ◦ b 6=

b◦a for some a, b ∈ Z v−ε
3

, define (z0, ..., z4) = ((a, 0), (b, 0), (a◦b, 1), (b◦a, 1), ((a◦b)◦(b◦a), 2)).

The result is then seen in (V,B0 ∪B).

To settle two small cases in Lemma 2.10 (see below), the two following well-known

results are needed, with one on 1-factorizations of difference-induced subgraphs, and the

other on the existence of GDDs.

Theorem 2.8. [20] Let D be a set of differences. Then Gv(D) has a 1-factorization if and

only if D contains at least one good difference.

The second theorem is proved in much greater generality in the original paper, but for

the purposes of this chapter, it states the following:

Theorem 2.9. [8] There exists a GDD(6k, {12, 6, 6, ..., 6}) for all k ≥ 5.
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The following lemma is useful in a couple of cases in the proof of the main theorem of

this chapter.

Lemma 2.10. Let λ2 = 1. Let v ≡ 0 or 4 (mod 6) with v ≥ 12 and let z(v) ∈ {3, 4} with

z(v) ≡ v (mod 3). Then there exists a K3-decomposition of λ2Kv−E(L) where L is a graph

on v vertices with z(v) vertices of degree 3 and the rest of degree 1 such that no two vertices

of degree 3 are adjacent.

Proof. The cases v = 12 and v = 16 are handled first and are also used in the next paragraph.

For v = 12, the result is seen in (Z4 × Z3, B12 = {{(i, 0), (j, 1), (i + j, 2)} | 0 ≤ i, j ≤

3} ∪ {{(1, j), (2, j), (3, j)} | j ∈ Z3}) where i + j is reduced (mod 4). For v = 16, consider

(Z16, B
′ = {{i, i + 2, i + 5}, {i, i + 6, i + 7} | 0 ≤ i ≤ 15}) where addition is done (mod 16).

Note that these triples contain all edges of differences 1, 2, 3, 5, 6, and 7. Now note that the

differences of 4 and 8 form four disjoint copies of K4. Let B′′ consist of one triple from each

K4. Then (Z16, B16 = B′∪B′′) is the required K3-decomposition. For each v ∈ {12, 16}, the

leave L′v consists of z(v) vertex-disjoint stars.

Now assume v ≥ 30 and let ε ∈ {0, 4} with ε ≡ v (mod 6). Let δ = v−ε−12
6

; hence,

δ ≥ 3. By Theorem 2.9, let (V,B) be a GDD with δ groups of size 6 on the vertex

sets G1, ..., Gδ and one group of size 12 with vertex set G0. Let I = {∞1,∞2,∞3,∞4}

if v ≡ 4 (mod 6) and I = ∅ otherwise. If v ≡ 4 (mod 6), then for 1 ≤ i ≤ δ, let

Bi = {{∞j, x, y} | 1 ≤ j ≤ 4, {x, y} ∈ Hj,i, {H1,i, ..., H5,i} is a 1-factorization of K6 on the

vertex set Gi} and let Li = H5,i. If v ≡ 0 (mod 6), then for 1 ≤ i ≤ δ, let Bi consist of

the triples of a maximum packing on the vertex set Gi with leave the 1-factor Li. For each

v ∈ {12, 16}, let (G0 ∪ I, B0) be a K3-decomposition of Kv − L0 where L0 is isomorphic to

L′v (as defined in the previous paragraph). Then (∪i∈Zδ+1
Gi ∪ I,∪i∈Zδ+1

Bi) is the required

K3-decomposition with leave ∪i∈Zδ+1
Li.

It remains to settle the result for v ∈ {18, 22, 24, 28}.
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Let v ∈ {22, 28}, and let I = {∞1, ...,∞v−16}. By Theorem 2.8, there exists a 1-

factorization {F1, ..., Fv−16} of G16({2, 3, 5}) and G16({1, 2, 3, 5, 6, 7}) if v = 22 or 28 respec-

tively (since 3 is a a good difference). Let B′ = {{i, i + 6, i + 7} | 0 ≤ i ≤ 15} (where

addition is done modulo 16) if v = 22 and B′ = ∅ if v = 28. Let B′′ be the set of triples of a

maximum packing on the vertex set I (with leave a 1-factor in both cases (see Theorem 2.3)).

Let B = B′∪B′′∪{{4 + i, 8 + i, 12 + i} | i ∈ Z4}∪{{x, y,∞j} | {x, y} ∈ Fj, 1 ≤ j ≤ v−16}.

Then (Z16 ∪ I, B) is the required packing.

Let v = 18. Consider the vertex set {∞1, ...,∞6}∪Z12. By Theorem 2.8, let {F1, ..., F6}

be a 1-factorization of G12({1, 2, 5}). Let ({∞1, ...,∞6}, B1) be a maximum packing of K6

with leave the 1-factor L. Let B = B1∪{{x, y,∞j} | {x, y} ∈ Fj, 1 ≤ j ≤ 6}∪{{i, i+4, i+8} |

0 ≤ i ≤ 3} ∪ {{i + 3, i + 6, i + 9} | 0 ≤ i ≤ 2} where addition is done modulo 12. Then

({∞1, ...,∞6} ∪ Z12, B) is the required decomposition with leave consisting of L together

with 3 vertex disjoint stars joining vertex i to vertices i+ 3, i+ 6, and i+ 9 for each i ∈ Z3.

Let v = 24. Consider the vertex set {∞1, ...,∞10}∪Z14. By Theorem 2.8, let {F1, ..., F9}

be a 1-factorization of G14({3, 4, 5, 6, 7}) (with good difference 3). Now, let F10 = {{13, 11},

{12, 0}, {1, 3}, {2, 4}, {5, 7}, {6, 8}, {9, 10}}. This matching along with the set of triples

{{3i, 3i+ 1, 3i+ 2} | 0 ≤ i ≤ 1} ∪ {{3i+ 1, 3i+ 2, 3i+ 3} | 2 ≤ i ≤ 3}, the star joining 13 to

0, 1, and 12, and the star joining 6 to 4, 5, and 7 use up all edges of difference 1 and 2 except

{2, 3}, {8, 10}, and {9, 11}. Let ({∞1, ...,∞10}, B1) be a maximum packing of K10 with leave

L a tripole. Let B = B1 ∪ {{x, y,∞j} | {x, y} ∈ Fj, 1 ≤ j ≤ 10} ∪ {{3i, 3i+ 1, 3i+ 2} | 0 ≤

i ≤ 1} ∪ {{3i + 1, 3i + 2, 3i + 3} | 2 ≤ i ≤ 3}. Then ({∞1, ..,∞10} ∪ Z14, B) is the required

decomposition with leave consisting of L, the star joining 13 to 0, 1, and 12, the star joining

6 to 4, 5, and 7, and the independent edges {2, 3}, {8, 10}, and {9, 11}.

The next theorem is the main result of this section.
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Theorem 2.11. Let λ1 and λ2 be positive integers with λ1 ≥ λ2. Let m and n be positive

integers not equal to 2. Then there exists a K3-decomposition of λ1Kn ∨λ2 λ1Km if and only

if

1. 3 divides λ1(
(
m
2

)
+
(
n
2

)
) + λ2mn,

2. 2 divides λ1(m− 1) + λ2n and 2 divides λ1(n− 1) + λ2m, and

3. either m 6= 1 or n 6= 1.

Proof. The necessity of Conditions (1−3) was shown in Lemma 2.1. To prove the sufficiency,

regular use of Theorem 2.3 will be made with µ = λ2 and v = m + n; this is possible since

λ2 ≥ 1 by assumption and since m+ n ≥ 3 by Condition 3. Several cases and subcases will

be considered in turn.

Case 1: Suppose that λ2(m+n−1) is even (so each vertex of λ2Km+n has even degree).

This will be broken into two subcases.

Case 1.1: Suppose the number of edges of λ2Km+n is divisible by 3.

By Theorem 2.3, let (M ∪ N, T1) be a K3-decomposition of λ2Km+n. Now applying

Observation 2.5 with λ = λ1 − λ2 along with Condition (1) shows that the number of edges

in each of (λ1 − λ2)Km and (λ1 − λ2)Kn is divisible by 3. The second condition shows that

each vertex of (λ1−λ2)Km and of (λ1−λ2)Kn has even degree. Hence, by Theorem 2.3 there

exist K3-decompositions (M,T2) and (N, T3) of (λ1−λ2)Km and of (λ1−λ2)Kn respectively.

Then (M ∪N,∪3i=1Ti) is the required K3-decomposition. Note Case 1.1 settles the existence

for Case 1 unless both λ2 6≡ 0 (mod 3) and m+ n ≡ 2 (mod 3).

Case 1.2: Suppose λ2 ≡ 1 or 2 (mod 3) and that (m+ n) ≡ 2 (mod 3).

By Lemma 2.6, one of m and n is divisible by 3, say m ≡ 0 (mod 3). So by Condition 1,

λ1 ≡ 0 (mod 3). By Theorem 2.3, let (M ∪N, T1) be a maximum packing of λ2Km+n with

leave L being a double edge joining two vertices n1 and n2 in N if λ2 ≡ 1 (mod 3) and being

the four cycle (n1, n2, n3, n4) in N if λ2 ≡ 2 (mod 3). (In this case, since n+m ≡ 2 mod 3,
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since m ≡ 0 mod 3, and since n 6= 2, n ≥ 5.) By Condition 2, each vertex of (λ1−λ2)Km and

of (λ1−λ2)Kn +E(L) has even degree. By Theorem 2.3, let (M,T2) be a K3-decomposition

of (λ1 − λ2)Km. Finally, by Theorem 2.3, let (N, T3) be a minimum cover of (λ1 − λ2)Kn

with padding P = L, (recall that λ1 ≡ 0 (mod 3)). Then (M ∪ N,∪3i=1Ti) is the required

K3-decomposition.

Case 2: Now suppose that λ2(m + n − 1) is odd. Note that Condition 2 implies that

m,n, and λ1 are all even. This is broken into four subcases.

Case 2.1: Suppose that:

1. m,n ≡ 0 (mod 6),

2. m ≡ 0 (mod 6) and n ≡ 4 (mod 6), or

3. m,n ≡ 4 (mod 6).

By Theorem 2.3, there exists a maximum packing, (M ∪N, T1), of λ2Km+n with leave

L = F1(M) ∪ F1(N), F1(M) ∪ F3(N), F3(M) ∪ F3(N) in cases (1), (2), and (3) respectively

(note that both |M | and |N | are even so that each edge of the leave can lie entirely within

M or N). By Theorem 2.3 let (M,T2) be a minimum cover of (λ1 − λ2)Km with padding

L[M ] (the subgraph of L induced by M). By Theorem 2.3, let (N, T3) be a minimum cover

of (λ1−λ2)Kn with padding L[N ]. Then (M ∪N,∪3i=1Ti) is the required K3-decomposition.

Case 2.2: Let m ≡ 0 (mod 6) and n ≡ 2 (mod 6).

Note that the necessary conditions imply that λ1 ≡ 0 (mod 6) (Condition 1 implies

λ1 ≡ 0 (mod 3) and Condition 2 implies λ1 is even.) By Theorem 2.3, let (M ∪N, T1) be a

maximum packing of λ2Km+n with leave F (M) ∪ F (N), F (M) ∪ F3(N), or F (M) ∪ F5(N)

for λ2 ≡ 1, 3, or 5 (mod 6) respectively. By Theorem 2.3, let (M,T2) be a minimum cover of

(λ1 − λ2)Km with padding F (M). Note that (λ1 − λ2) ≡ 5, 3, or 1 (mod 6) respectively. By

Theorem 2.3, let (N, T3) be a minimum cover of (λ1− λ2)Kn with padding F (N), F3(N), or

F5(N) respectively. Then (M ∪N,∪3i=1Ti) is the required K3-decomposition.
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For the next two subcases, the structure from Lemmas 2.7 and 2.10 are useful here.

Case 2.3: Let m,n ≡ 2 (mod 6).

In Case 2.3, two cases are considered at first and then merged at the end.

First suppose λ2 = 1. Since 2 /∈ {m,n}, m,n ≥ 8, so since in this subcase m + n ≡ 4

(mod 6), by Lemma 2.10 there exists a K3-decomposition (M ∪N, T ′1) of Km+n− (E(LM)∪

E(LN)) where LM and LN are spanning subgraphs of M and N respectively, each consisting

of two vertex disjoint copies of K1,3 and a matching on the remaining vertices.

Since λ2 is odd in Case 2, we can now suppose that λ2 ≥ 3. By Lemma 2.7, there exists a

K3-decomposition (M ∪N, T (m1,m2, n1, n2, n3)) of (λ2−1)Km+n, where {m1,m2} ⊂M and

{n1, n2, n3} ⊂ N . By Theorem 2.3, there exists a maximum packing (M ∪ N, T ∗1 ) of Km+n

with leave F (M)∪F3(N); name them so they contain the edges {m1,m2}, {n1, n2}, {n3, n6},

{n3, n5}, and {n3, n4}. Let T1 = T ′1 ∪ T ∗1 ∪ {{n1, n2,m1}, {n1, n2,m2}}\{{n1, n2, n3},

{m1,m2, n1}, {m1,m2, n2}}. Then (M ∪N, T1) is a packing of λ2Km+n with leave LM ∪ LN

where LM contains three copies of the edge {m1,m2} and a matching on the remaining

vertices and LN is a five-pole with n3 being the vertex of degree 5.

In either case, triples are added to (M ∪ N, T1) as follows: Let (M,T2) and (N, T3)

be minimum covers of M and N with padding LM and LN respectively (see Theorem 2.3).

Then (M ∪N,∪3
i=1Ti) is the required K3-decomposition.

Case 2.4: Let m ≡ 4 (mod 6) and n ≡ 2 (mod 6).

First suppose λ2 = 1. Since in this subcase m + n ≡ 0 (mod 6) and since n 6= 2 so

n ≥ 8 and m + n ≥ 12, by Lemma 2.10 there exists a K3-decomposition (M ∪ N, T ′1) of

Km+n − (E(LM) ∪E(LN)) where LM is a spanning subgraph of M consisting of a K1,3 and

a matching on the remaining vertices and LN is a spanning subgraph of N consisting of two

vertex disjoint copies of K1,3 (recall that we observed that n ≥ 8) and a matching on the

remaining vertices.

Again since λ2 is odd in Case 2, we can now suppose that λ2 ≥ 3. By Lemma 2.7, there

exists a K3-decomposition (M∪N, T (m1,m2, n1, n2, n3)) of (λ2−1)Km+n, where {m1,m2} ⊂

16



M and {n1, n2, n3} ⊂ N . By Theorem 2.3, there exists a maximum packing (M ∪N, T ∗1 ) of

Km+n with leave F (M)∪F (N); name them so they contain the edges {m1,m2} and {n1, n2}.

Let T1 = T ′1 ∪ T ∗1 ∪ {{n1, n2,m1}, {n1, n2,m2}}\{{n1, n2, n3}, {m1,m2, n1}, {m1,m2, n2}}.

Then (M ∪ N, T1) is a packing of λ2Km+n with leave LM ∪ LN where LM contains three

copies of the edge {m1,m2} and a matching on the remaining vertices and LN is a tripole.

In either case, triples are added to (M ∪ N, T1) as follows. Let (M,T2) and (N, T3)

be minimum covers of M and N with padding LM and LN respectively (see Theorem 2.3).

Then (M ∪N,∪3
i=1Ti) is the required K3-decomposition.

2.4 Quadratic Leaves

In this section, the following strong result of Rosa and Colbourn is generalized to all

values of λ. Not only is this of interest in its own right, but it will also be useful in Section

2.5.

A graph is said to be quadratic if each vertex has either degree 2 or degree 0.

Theorem 2.12. [11]

1. Let Q be a quadratic (simple) graph on n ≡ 3 (mod 6) vertices and c ≡ 0 (mod 3)

edges. Then Q is the leave of a packing of Kn unless n = 9 and Q = C4 ∪ C5.

2. Let n ≡ 1 or 5 (mod 6), and let Q be a quadratic graph on c < n edges with c ≡ n− 1

(mod 3). Then Q is the leave of a packing of Kn unless n = 7 and Q = C3 ∪ C3.

The next result is the main result of the section. A portion of the result for λ = 2 was

proved in [9].

Theorem 2.13. Let n > 2 and let Q be a quadratic simple graph on at most n vertices.

Then Q is the leave of a packing of λKn if and only if:

1. Either λ is even or n is odd,
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2. 3 divides |E(λKn)| − |E(Q)|, and

3. (a) if λ = 1 and n = 7, then Q 6= C3 ∪ C3,

(b) if λ = 1 and n = 9, then Q 6= C4 ∪ C5, and

(c) if λ = 2 and n = 6, then Q 6= C3 ∪ C3.

Proof. Suppose there exists a packing of λKn−E(Q). Since each vertex of Q has even degree

and each vertex of λKn −E(Q) must have even degree, each vertex of λKn must have even

degree so Condition 1 is necessary. Since the edges of λKn −E(Q) are partitioned into sets

of size 3, Condition 2 is necessary.

Conditions 3(a) and 3(b) follow from Theorem 2.12. Condition 3(c) follows from the fact

that the only K3-decomposition of 2K6 (up to isomorphism) does not contain two disjoint

triples. Thus Condition 3 is necessary.

The proof of the sufficiency is broken into several cases, based on the congruence classes

(mod 6) of n. Let n, λ, and Q satisfy Conditions (1 − 3). Theorem 2.12 handles the case

where λ = 1, so assume λ > 1, Also, if |E(Q)| = 0, then by Theorem 2.3, there exists a

K3-decomposition of λKn, which proves the result. Hence, assume |E(Q)| ≥ 3. (Note that

no simple quadratic graph has 1 or 2 edges.)

If n ≡ 1 (mod 6) or n ≡ 3 (mod 6), Condition 2 is satisfied if and only if |Q| ≡ 0 (mod

3). So, unless λ > 1 and (n,Q) ∈ {(7, C3 ∪ C3), (9, C4 ∪ C5)}, the result follows by taking a

triple system of Kn −E(Q) (see Theorem 2.12) together with a triple system of (λ− 1)Kn.

If λ > 1 and (n,Q) = (7, C3 ∪ C3), then by Theorem 2.3, the vertices of two triple

systems of K7 with vertex set V can be named to contain the triples T1 = {a1, b1, c1} and

T2 = {a2, b2, c2} respectively, with T1∩T2 = ∅; let B1 be the union of the triples of these triple

systems with Q = T1 ∪ T2 removed. If λ > 1 and (n,Q) = (9, C4 ∪ C5), then by Theorem

2.12, let (V,B′1) be a triple system of K9−L1 where L1 is the nine-cycle (0, 1, 2, 3, 4, 5, 6, 7, 8)

and let (V,B′′1 ) be a triple system of K9 − L2 where L2 is the six-cycle (0, 3, 6, 4, 8, 7). Let
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B1 = B′1∪B′′1 ∪{{3, 4, 6}, {0, 7, 8}}. In either case, let (V,B2) be a triple system of (λ−2)Kn.

Then (V,B1 ∪B2) is the required decomposition.

Suppose n ≡ 5 (mod 6). Let ε ∈ {1, 2, 3} with ε ≡ λ (mod 3). By Theorem 2.3,

let (V,B1) be a K3-decomposition of (λ − ε)Kn. The three ε values are now considered

separately.

Suppose ε = 1. By Theorem 2.12, let (V,B2) be a K3-decomposition of Kn − E(Q).

Suppose ε = 2. Let Q′ be formed from Q by replacing one cycle, c = (0, 1, ..., x), of

length x+ 1 ≥ 4 in Q with the cycle (1, ..., x) (by Condition 2, |E(Q)| ≡ |E(2Kn)| ≡ 2 (mod

3) and hence there must be a cycle of length at least 4). By Theorem 2.12, let (V,B′2) be a

K3-decomposition of Kn − E(Q′). Let (V,B′′2 ) be a K3-decomposition of Kn − E(L) where

L is the 4-cycle (0, 1, 2, x). Let B2 = B′2 ∪B′′2 ∪ {{1, 2, x}}.

Finally, suppose ε = 3. By Condition 2, |V (G[Q])| ≤ n − 2 so say 0 /∈ V (G[Q]). Let

c = (1, 2, ..., x) be any cycle in Q and set c′ = (0, 1, ..., x). Form Q′ from Q by replacing c

with c′. Also by Condition 2, |E(Q)| ≡ |E(λKn)| ≡ 0 (mod 3), so |E(Q′)| ≡ 1 ≡ |E(Kn)|

(mod 3). So by Theorem 2.12, let (V,B′2) be a K3-decomposition of Kn−E(Q′). By Theorem

2.3, let (V,B′′2 ) be a K3-decomposition of 2Kn −E(L) where L consists of two copies of the

edge {1, x}. Let B2 = B′2 ∪B′′2 ∪ {{0, 1, x}}.

In each case, (V,B1 ∪B2) is the required K3-decomposition.

Suppose n ≡ 4 (mod 6). First suppose (n,Q) 6= (10, C4 ∪ C5). By Condition 1, λ is

even. By Theorem 2.3, let (V,B1) be a K3-decomposition of (λ − 2)Kn. By Condition 2,

|V (G[Q])| ≤ n − 1 so say 0 /∈ V (G[Q]). Let G = G[V (Kn)\{0}]. By Theorem 2.12, let

(V ∗, B2) be a K3-decomposition of G − E(Q). Let (V,B3) be a maximum packing of Kn

with leave L, a tripole, that includes the edges {0, 1}, {1, 2}, and {1, 3}. Finally, let B4 =

{{x, y, 0} | {x, y} is an independent edge in L}∪{{0, 1, 2}, {0, 1, 3}}. Then (V,∪4i=1Bi) is the

required decomposition. Now suppose (n,Q) = (10, C4 ∪ C5). Let (Z10, B1) be a maximum

packing ofK10 with leave consisting of the edges {0, 1}, {0, 8}, {0, 9}, {2, 3}, {4, 5}, and {6, 7},

and let (Z10, B2) be a maximum packing with leave consisting of the edges {0, 3}, {1, 2},
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{5, 6}, {4, 8}, {7, 8}, {8, 9}. Then (V,B1 ∪ B2 ∪ {{0, 8, 9}}) is the required packing of 2K10

and can be combined with a K3-decomposition of (λ − 2)Kn to get the result for higher

values of λ.

Suppose n ≡ 2 (mod 6). Note that n 6= 2. By Condition 1, λ is even. Let ε ∈ {2, 4, 6}

and set ε ≡ λ (mod 6). By Theorem 2.3, let (V,B1) be a K3-decomposition of (λ− ε)Kn.

Suppose ε = 2.

First suppose that Q contains a cycle of length at least 5. Let Q′ be formed from Q

by replacing a cycle, c = (0, 1, ..., x), of length x + 1 ≥ 5 in Q with the cycle c′ = (2, ..., x).

Note that 0 /∈ V (G[Q′]). Let G = G[V (Kn)\{0}]. Since λ ≡ 2 (mod 6) (since ε = 2

in this subcase), then |E(Q)| ≡ |E(λKn)| ≡ 2 (mod 3), and hence |E(Q′)| ≡ 0 (mod 3).

Further, n − 1 ≡ 1 (mod 6) so by Theorem 2.12, let (V ∗, B2) be a K3-decomposition of

G − E(Q′). Now let (V,B3) be a maximum packing of Kn with leave L, a 1-factor, with

{1, 2} and {0, x} as edges in the 1-factor. Finally, let B4 consist of the following triples:

{{x, y, 0} | {x, y} ∈ (L\{{1, 2}, {0, x}})} ∪ {{0, 2, x}}. Then (V,∪4i=1Bi) is the required

decomposition.

Now suppose Q contains only three and four cycles. There are at least two four cycles;

name them (0, 1, 2, 3) and (4, 5, 6, 7). Let Q′ be formed from Q by removing these two

four cycles and replacing them with the six-cycle (2, 3, 4, 5, 6, 7). Note that 0 /∈ V (G[Q′]).

Let G = G[V (Kn)\{0}]. By the above argument, let (V ∗, B2) be a K3-decomposition of

G − E(Q′). Now let (V,B3) be a maximum packing of Kn with leave L, a 1-factor, with

{1, 2}, {4, 7} and {0, 3} as edges in the 1-factor. Finally, let B4 consist of the following triples:

{{x, y, 0} | {x, y} ∈ (L\{{1, 2}, {0, 3}, {4, 7}})} ∪ {{0, 2, 7}, {0, 3, 4}}. Then (V,∪4
i=1Bi) is

the required decomposition.

Suppose ε = 4. By Condition 2, |V (G[Q])| ≤ n − 1 so say 0 /∈ V (G[Q]). Let c =

(1, 2, ..., x) be any cycle in Q and set c′ = (0, 1, ..., x). Form Q′ from Q by replacing c with

c′. By the above case for ε = 2, let (V,B2) be a packing of 2Kn with leave Q′. By Theorem
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2.3, let (V,B3) be a maximum packing of 2Kn with leave the double edge {1, x}. Then

(V,∪3i=1Bi ∪ {{0, 1, x}}) is the required decomposition.

Suppose ε = 6. By Condition 2, |V (G[Q])| ≤ n − 2 so say 0 /∈ V (G[Q]). Let c =

(1, 2, ..., x) be any cycle in Q and set c′ = (0, 1, ..., x). Form Q′ from Q by replacing c with

c′. By the above case for ε = 4, let (V,B2) be a packing of 4Kn with leave Q′. By Theorem

2.3, let (V,B3) be a maximum packing of 2Kn with leave the double edge {1, x}. Then

(V,∪3i=1Bi ∪ {0, 1, x}) is the required decomposition.

Finally, suppose n ≡ 0 (mod 6). The proof is similar to the case where n ≡ 2 (mod

6) with ε = 2 unless Q consists entirely of 3-cycles. It is first assumed that Q contains a

5-cycle, then two edges are removed from a cycle of length at least 5, a vertex is deleted, and

then the leave is modified just as in the case where n ≡ 2 (mod 6) with ε = 2. If there are

no five cycles, but at least one four cycle, then there are necessarily three four cycles since

|E(Q)| ≡ 0 (mod 3). Take two of the four cycles and then proceed in the same manner as

in the case where n ≡ 2 (mod 6) with ε = 2. Finally, if there are only 3-cycles, note that

n ≥ 12 (by assumption) and take a K3-decomposition of λKn that contains a parallel class

(n
3

disjoint triples; take the Bx from Lemma 2.7 for example).

2.5 The case where m = 2

A proof of Theorem 2.2 in the case where m = 2 is given in this section. The proof

relies on results which follow it, but is worth reading first before all the details potentially

cloud the idea.

Theorem 2.14. Let m = 2. Let λ1, λ2, and n be positive integers. Then there exists a

K3-decomposition of λ1Kn ∨λ2 λ1K2 if and only if

1. 3 divides λ1(
(
m
2

)
+
(
n
2

)
) + λ2mn,

2. 2 divides λ1(m− 1) + λ2n and 2 divides λ1(n− 1) + λ2m,

3. 2λ1(
(
m
2

)
+
(
n
2

)
) ≥ λ2mn,
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4. λ1 ≤ λ2n, and

5. if n ≤ 2 then λ1 = λ2.

Proof. The necessity of Conditions (1− 5) has been shown in Lemma 2.1, so the sufficiency

is now proved. Let M = {m0,m1}.

For both n = 1 and n = 2, Condition 5 requires λ1 = λ2. If n = 1, then the sufficiency

follows from taking λ2 copies of a triple system on 3 vertices. If n = 2, then Condition 2

implies that λ1 is even. Thus, the sufficiency follows from taking λ1
2

copies of a 2-fold triple

system of 2K4.

Suppose n ≥ 3. The following three steps are taken, although they are dependent upon

lemmas provided afterwards.

Step 1: Since m = 2, the number of mixed edges incident with each vertex of N is

even. Together with Condition 2, this implies that each vertex in λ1Kn has even degree. Let

(N,B1) be a K3-decomposition of λ1Kn − E(L) where L is a subgraph of Kn such that:

(a) |E(L)| = λ2n− λ1,

(b) the subgraph induced by E(L) is connected, and

(c) each vertex of L has even degree less than or equal to 2λ2.

The existence of L is shown in Lemma 2.18, but at least it is noted here that λ2n− λ1 ≥ 0

by Condition 3.

Step 2: Since the subgraph of K induced by E(L), G = K[E(L)], is connected (by (b))

and since all vertices in G have even degree (by (c)), there exists an Euler circuit E of G.

Alternately color the edges of E with colors 0 and 1. By Condition 2, λ2n−λ1 is even, so E

has even length, so for each vertex w in G, the number of edges in G incident with w colored

0 equals the number colored 1. Let B2 = {{mi, w, u} | {w, u} ∈ E(L) is colored i, i ∈ Z2}.

Then for each i ∈ Z2 and each n ∈ N , the number of triples containing the pair {mi, n} is

dG(n)
2

.
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Step 3: By (c), λ2 − dG(n)
2

is a nonnegative integer for each n ∈ N . So let B3 be the

multiset of triples formed as follows: for each n ∈ N , let B3 contain λ2 − dG(n)
2

copies of the

triple {m0,m1, n}.

By (a),
∑

n∈N(λ2 − dG(n)
2

) = nλ2 − |E(L)| = λ1, so λ1 triples in B3 contain the pair

{m0,m1}. Therefore (M ∪N,∪3i=1Bi) is the required decomposition.

So the result form = 2 is proved provided that it can be shown that theK3-decomposition

of λ1Kn−E(L) in Step 1 actually exists. Conditions 3 and 1 imply that the number of edges

in λ1Kn − E(L) is nonnegative and divisible by 3 respectively. It is now show how the K3-

decomposition from Step 1 can be achieved. However, before showing the existence of L, a

powerful result due to Simpson is given along with a corollary that will frequently be used

in showing the existence of L.

A Langford sequence of order n and defect d with n > d is a sequence L = (l1, l2, ..., l2n)

of 2n integers satisfying the conditions

(a) for every k ∈ {d, d+ 1, ..., d+n−1}, there exist exactly two elements li, lj ∈ L such that

li = lj = k, and

(b) if li = lj = k, then |i− j| = k.

A hooked Langford sequence of order n and defect d with n > d is a sequence L =

(l1, l2, ..., l2n, l2n+1) of 2n integers satisfying the conditions

(a) l2n = 0

(b) for every k ∈ {d, d + 1, ..., d + n − 1}, there exist exactly two elements li, lj ∈ L \ {l2n}

such that li = lj = k, and

(c) if li = lj = k, then |i− j| = k.

Theorem 2.15. [29]

1. A Langford sequence of order n and defect d exists if and only if
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(a) n ≥ 2d− 1 and

(b) n ≡ 0, 1 (mod 4) and d is odd, or n ≡ 0, 3 (mod 4) and d is even.

2. A hooked Langford sequence of order n and defect d exists if and only if

(a) n(n− 2d+ 1) + 2 ≥ 0 and

(b) n ≡ 2, 3 (mod 4) and d is odd, or n ≡ 1, 2 (mod 4) and d is even.

Corollary 2.16. Let n ≥ 3, w ≥ d + 3n, 0 ≤ δ ≤ n, and D1 ⊂ {d + i | i ∈ Zn} with

|D1| = n − δ. If there exists a Langford sequence or a hooked Langford sequence of order n

and defect d, then there exists D ⊂ {d+ i | i ∈ Z3n} with |D| = 3δ and D1∩D = ∅ such that

there exists a set of triples B′ such that B = {b+ j | b ∈ B′, j ∈ Zw} is a K3-decomposition

of Gw(D).

The triples in B′ are said to generate the K3-decomposition of Gw(D).

Proof. Let L = (l1, ..., l2n) or (l1, ..., l2n−1, 0, l2n+1). Let B′ = {{0, i+n, j+n} | li = lj, li /∈ D′}

so that the triple {0, i+ n, j + n} contains edges of differences n+ i, j + i and d(i, j). Then

(Zw, B) is the required decomposition.

The following useful result will also be used in the proof of Lemma 2.18.

Theorem 2.17. [27] For n 6= 2 there exists an equitable partial triple system containing v

triples for any 1 ≤ v ≤ µ(n, λ) where

µ(n, λ) =


bn
3
bλ(n−1)

2
cc − 1

if n ≡ 2 (mod 6) and λ = 4 (mod 6)

if n ≡ 5 (mod 6) and λ = 1 or 4 (mod 6)

bn
3
bλ(n−1)

2
cc otherwise

The following lemma shows the existence of the decomposition described in Step 1 of

the proof of the main theorem of this section.
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Lemma 2.18. Let m = 2 and suppose the following five conditions hold:

1. 3 divides λ1(
(
m
2

)
+
(
n
2

)
) + λ2mn,

2. 2 divides λ1(m− 1) + λ2n and 2 divides λ1(n− 1) + λ2m,

3. 2λ1(
(
m
2

)
+
(
n
2

)
) ≥ λ2mn,

4. λ1 ≤ λ2n, and

5. if n ≤ 2 then λ1 = λ2.

Then there exists a subgraph L of λ1Kn with λ2n − λ1 edges which is evenly equitable and

connected for which there exists a K3-decomposition of λ1Kn − E(L).

Proof. This lemma is proved in several cases. The vertex set of Kn will be Zn. First small

values of λ are considered before a general construction is provided. For the small cases,

Corollary 2.16 is consistently used.

Case 1: First, suppose λ1 = 1. Note that L being evenly equitable and having λ2n−λ1

edges is equivalent to requiring that every vertex in the leave have degree 2λ2 except for a

single vertex which has degree 2λ2− 2; the exceptional vertex in the following constructions

will be vertex 0, 1 or 2. Conditions 1 and 2 imply that n ≡ 1, 5 (mod 6) and λ2 ≡ 1 (mod

6). It can be assumed that λ2 > 1 since otherwise, the problem simplifies to simply looking

for a K3-decomposition of K6x+3 or K6x+1 which are both known to exist. Set λ2 = 6z + 1

with z ≥ 1.

Suppose n ≡ 5 (mod 6). It can be assumed that n ≥ 17, since if n = 5 or 11, then

Condition 3 in conjunction with the fact that λ2 ≡ 1 (mod 6) implies that λ2 = 1. For

n = 6k + 5 ≥ 17, using edges of only differences 1 and 2, let B1 = {{3i, 3i + 1, 3i + 2} |

0 ≤ i ≤ 2k + 1}, where addition is done (mod 6k + 5). Note that every symbol ex-

cept 0 appears in exactly one triple; 0 appears in two. If n = 17, 23, 29, or 35, let B′2 =

{{0, 3, 8}, {0, 4, 10}}, {{0, 3, 9}, {0, 4, 11}, {0, 5, 13}}, {{0, 4, 14}, {0, 7, 16}, {0, 3, 8}{0, 6, 17}},
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or {{0, 3, 17}, {0, 5, 11}, {0, 7, 20}, {0, 9, 19}, {0, 4, 12}} respectively. Otherwise, by Corol-

lary 2.16, let B′2 be a set of triples that generate a K3-decomposition of Gn(D) where

D = {3, 4, ..., 3k + 2}.

First note that k ≥ 2z, since by Condition 3, 2 +n(n− 1) ≥ 2λ2n = (12z+ 2)n, so since

n− 1 is an integer and n > 2 it follows that n− 1 ≥ 12z + 2, so 6k+ 4 ≥ 12z + 2 so k ≥ 2z.

Therefore, B2 can be formed by removing 2z ≥ 2 triples from B′2, one of which contains the

difference 4. So |B2| = |B′2| − 2z = k − 2z ≥ 0. Then (Zn, B1 ∪ {b + j | j ∈ Zn, b ∈ B2}) is

the required K3-decomposition, since if v ∈ Zn \ {0}, then dL(v) = (n− 1)− 2− 6(k− 2z) =

12z + 2 = 2λ2 and dL(0) = (n− 1)− 4− 6(k − 2z) = 2λ2 − 2. So L is evenly equitable with

λ2n− λ1 edges. Since all edges of difference 4 are in L, L is connected.

Suppose n ≡ 1 (mod 6). It can be assumed that n ≥ 19, since if n = 7 or 13, then

Condition 3 in conjunction with the fact that λ2 ≡ 1 (mod 6) implies that λ2 = 1. For

n = 6k + 1 ≥ 19, using edges of only differences 1, 2, and 3, form triples as follows. Let

ε ∈ {1, 4, 7} with ε ≡ n (mod 9). Let n = 9j + ε and B′1 = {{9i, 9i+ 1, 9i+ 3}, {9i+ 1, 9i+

2, 9i+4}, {9i+2, 9i+3, 9i+5}, {9i+4, 9i+6, 9i+7}, {9i+5, 9i+7, 9i+8}, {9i+6, 9i+8, 9i+9} |

0 ≤ i ≤ j−1}. Note that symbols 0 and 9j appear in one triple; symbols 1, ..., 9j−1 appear

in two.

If ε = 1, then let B′′1 = {{9j, 0, 2}}. If ε = 4, then let B′′1 = {{9j, 9j + 1, 9j + 3}, {9j +

1, 9j + 2, 0}, {9j + 2, 9j + 3, 1}}. If ε = 7, then let B′′1 = {{9j, 9j + 1, 9j + 3}, {9j + 1, 9j +

2, 9j + 4}, {9j + 2, 9j + 3, 9j + 5}, {9j + 4, 9j + 6, 0}, {9j + 5, 9j + 6, 1}}.

In any case, set B1 = B′1 ∪B′′1 . Note that every symbol except y appears in exactly two

triples; y appears in three triples, where y = 2 if ε = 1 and y = 1 if ε = 4 or 7.

If n ≥ 25, then there exists a set B′2 of triples that generates a K3-decomposition of

Gn(D = {4, 5, ..., 3k}). This follows from Corollary 2.16 if n ≥ 49. If n = 25, 31, 37, or 43, let

B′2 = {{0, 4, 13}, {0, 7, 15}, {0, 5, 11}}, {{0, 5, 11}, {0, 4, 17}, {0, 9, 19}, {0, 7, 15}}, {{0, 4, 17},

{0, 7, 18}, {0, 6, 14}, {0, 5, 15}, {0, 9, 21}}, or {{0, 11, 23}, {0, 7, 22}, {0, 4, 13}, {0, 6, 16},

{0, 5, 19}, {0, 8, 25}} respectively.
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Now use B′2 to define B2. First note that k−1 ≥ 2z, since by Condition 3, 2+n(n−1) ≥

2λ2n = (12z + 2)n, so since n− 1 is an integer and n > 2 it follows that n− 1 ≥ 12z + 2, so

6k ≥ 12z+ 2, so k−1 ≥ 2z. Therefore if n ≥ 25, then B2 can be formed by removing 2z ≥ 2

triples from B′2, one of which contains the difference 4. So |B2| = |B′2|−2z = (k−1)−2z ≥ 0.

If n = 19, then λ2 ∈ {1, 7} so it can be assumed that λ2 = 7; this means that k − 1 = 2z

so define B2 = ∅ in this case. Then for n ≥ 19, (Zn, B1 ∪ {b + j | j ∈ Zn, b ∈ B2}) is the

required K3-decomposition, since if v ∈ Zn \{y}, then dL(v) = (n−1)−4−6((k−1)−2z) =

12z + 2 = 2λ2 and dL(y) = (n− 1)− 6− 6((k− 1)− 2z) = 2λ2− 2. So L is evenly equitable

with λ2n− λ1 edges. Since all edges of difference 4 are in L, L is connected.

Case 2: Now suppose λ1 = 2. Then n ≡ 1, 2, 4, or 5 (mod 6). If λ2 = 2, the result

follows from Theorem 2.3, so assume λ2 > 2. Note that L being evenly equitable and having

λ2n−λ1 edges is equivalent to requiring that every vertex in the leave have degree 2λ2 except

for two vertices each of which has degree 2λ2 − 2.

Suppose n ≡ 1 or 5 (mod 6). Conditions 1 and 2 imply that λ2 ≡ 2 (mod 6). It can be

assumed that n ≥ 11 since if n = 5 or 7, then Condition 3 in conjunction with the fact that

λ2 ≡ 2 (mod 6) implies that λ2 = 2.

First suppose n ≥ 17. By Case 1, there exists aK3-decomposition (Zn, B1) ofKn−E(L1)

where L1 is a subgraph of Kn with (λ2 − 1)n− (λ1 − 1) edges which is evenly equitable and

connected. By Theorem 2.12, there exists a K3-decomposition (Zn, B2) of Kn − E(L2)

where L2 is a subgraph of Kn consisting of a n − 1 cycle such that the vertex not in the

cycle has maximum degree in L1. Then (Zn, B1 ∪ B2) is the required decomposition with

L = G[E(L1) ∪ E(L2)].

Suppose n = 11 or 13. Condition 3 implies that λ2 = 2 or 8, so it can be assumed that

λ2 = 8. For n = 11, let B = {{3i+j, 3i+1+j, 3i+2+j} | 0 ≤ i ≤ 3, 0 ≤ j ≤ 1}. Then (Zn, B)

is the required K3-decomposition, since if v ∈ Zn \{0, 1}, then dL(v) = 2(10)−4 = 16 = 2λ2

and dL(0) = dL(1) = 2(10) − 6 = 2λ2 − 2. So L is evenly equitable with λ2n − λ1 edges.

Since all edges of difference 4 are in L, L is connected. For n = 13, let B = {{0 + j, 1 + j, 3 +
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j}, {1+j, 2+j, 4+j}, {2+j, 3+j, 5+j}, {4+j, 6+j, 7+j}, {5+j, 7+j, 8+j}, {6+j, 8+j, 9+

j}, {9+j, 10+j, 12+j}, {10+j, 11+j, 0+j}, {11+j, 12+j, 1+j} | 0 ≤ j ≤ 1}. Then (Zn, B)

is the required K3-decomposition, since if v ∈ Zn \{1, 2}, then dL(v) = 2(12)−8 = 16 = 2λ2

and dL(1) = dL(2) = 2(12) − 10 = 2λ2 − 2. So L is evenly equitable with λ2n − λ1 edges.

Since all edges of difference 4 are in L, L is connected.

Now assume n ≡ 2 or 4 (mod 6). In this case, the half-difference is present and used

only once. Instead of thinking of the differences as 1, 2, ..., n
2
, 1, 2, ..., n

2
− 1, it is useful to

think of them as 1, 2, ..., n − 1 since, for instance, the difference 1 can be thought of as a

difference n− 1. In both cases, by Condition 1, λ2 ≡ 2 (mod 3), so let λ2 = 3z + 2.

Suppose n ≡ 2 (mod 6) with n > 2, and let n = 6k+ 2. Although, it seems unnecessary

at this point, λ2 = 2 is allowed for cases where n ≡ 2 (mod 6) (see Cases 4 and 5 for the

use of this result). Using only differences 1, 2, and n − 1 = 1, let B1 = {{i, i + 1, i + 2} |

0 ≤ i ≤ n − 1, i ≡ 0, 1 (mod 3)}. Then each vertex has degree 4 from the triples in B1

except 0 and 1 which have degree 6. Now assume n ≥ 20. Consider the differences in

D′ = {3, 4, ..., n − 2}. Then |D′| ≡ 1 (mod 3). Let v = n − 2 or n − 3 if n−5
3
≡ 0, 1

(mod 4) or 2, 3 (mod 4) respectively. By Corollary 2.16, there exists a set of triples B′2

that generates a K3-decomposition of Gn(D = D′ \ {v}). Note that 2k − 1 ≥ z, since by

Condition 3, 4 + 2n(n − 1) ≥ 2λ2n = (6z + 4)n, so since n − 1 is an integer and n > 2,

(n − 1) ≥ (3z + 2), so 6k + 1 ≥ 3z + 2, so 2k − 1 ≥ z. Therefore, B2 can be formed

by removing z ≥ 0 triples from B′2; if z ≥ 1, choose one that contains the difference 3.

So |B2| = |B′2| − z = 2k − 1 − z ≥ 0. For n = 8, by Condition 3, λ2 = 2 or 5. If

λ2 = 2, let B2 = {{0, 2, 5}}, and if λ2 = 5 and let B2 = ∅. For n = 14, by Condition

3, λ2 = 2, 5, 8, or 11. If λ2 = 2, let B2 = {{0, 2, 6}, {0, 3, 6}, {0, 4, 9}}. If λ2 = 5, let

B2 = {{0, 4, 9}, {0, 6, 13}}. If λ2 = 8, let B2 = {{0, 4, 9}}. If λ2 = 11, let B2 = ∅. Then

for n ≥ 8, (Zn, B1 ∪ {b + j | j ∈ Zn, b ∈ B2}) is the required K3-decomposition, since

if v ∈ Zn \ {0, 1}, then dL(v) = (2n − 2) − 4 − 6((2k − 1) − z) = 6z + 4 = 2λ2 and

dL(0) = dL(1) = (2n − 2) − 6 − 6((2k − 1) − z) = 2λ2 − 2. So L is evenly equitable with
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λ2n − λ1 edges. So it remains to show that L is connected. If λ2 ≥ 5 or if n ≥ 20 and

(λ2, v) ∈ (z, n− 3), then since all edges of difference 3 are in L, L is connected. For n ≥ 8,

the edges of difference 1, 2, and n−1 not used in B1 form n−2
3

vertex-disjoint 3-cycles, namely

L′ = {(i, i+ 1, i+ 2) | i ≡ 2 (mod 3), 2 ≤ i ≤ n− 3}. If n ≥ 20 and (λ2, v) = (2, n− 2), then

since Gn({n − 2}) has two components (induced by odd and even vertices), L is connected

since it also contains (2, 3, 4) ∈ L′. If n ∈ {8, 14}, then L is formed from L′ by adding

E(Gn({n
2
})), so is easily seen to be connected.

Suppose n ≡ 4 (mod 6) and let n = 6k+4. If n ≥ 10, then using only differences 1 and 2,

let B1 = {{i, i+1, i+2} | 0 ≤ i ≤ n−4, i ≡ 0 (mod 3)}∪{{n−2, n−1, 0}}. Then each vertex

has degree 2 from the triples in B1 except vertices 0 and n − 2 which have degree 4. Now

further assume n ≥ 22. Consider the differences in D′ = {3, 4, ..., n−1}. Then |D′| ≡ 1 (mod

3). Let v = n− 1 or n− 2 if n−4
3
≡ 0, 1 (mod 4) or 2, 3 (mod 4) respectively. By Corollary

2.16, there exists a set of triples B′2 that generates a K3-decomposition of Gn(D = D′ \{v}).

Note that 2k ≥ z, since by Condition 3, 4 + 2n(n − 1) ≥ 2λ2n = (6z + 4)n, so since n − 1

is an integer and n > 2, (n − 1) ≥ (3z + 2), so 6k + 3 ≥ 3z + 2, so 2k ≥ z. Therefore, B2

can be formed by removing z ≥ 1 triples from B′2, one of which contains the difference 3. So

|B2| = |B′2|−z = 2k−z ≥ 0. For n = 10, by Condition 3, λ2 = 2, 5, or 8 so assume λ2 = 5 or

8. If λ2 = 5, let B2 = {{0, 4, 9}}, and if λ2 = 8, let B2 = ∅. For n = 16, λ2 = 2, 5, 8, 11 or 14,

so assume λ2 ∈ {5, 8, 11, 14}. If λ2 = 5, let B2 = {{0, 4, 15}, {0, 6, 13}, {0, 5, 14}}. If λ2 = 8,

let B2 = {{0, 4, 15}, {0, 6, 13}}. If λ2 = 11, let B2 = {{0, 4, 15}}. If λ2 = 14, let B2 = ∅.

Then for n ≥ 10, (Zn, B1 ∪ {b + j | j ∈ Zn, b ∈ B2}) is the required K3-decomposition,

since if v ∈ Zn \ {0, n − 2}, then dL(v) = (2n − 2) − 2 − 6(2k − z) = 6z + 4 = 2λ2 and

dL(0) = dL(n − 2) = (2n − 2) − 4 − 6(2k − z) = 2λ2 − 2. So L is evenly equitable with

λ2n− λ1 edges. Since all edges of difference 3 are in L, L is connected.

Finally, if n = 4, Condition 3 implies λ2 = 2 so the result follows from Theorem 2.3.
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Before proceeding to the general case, because of the limitations of Theorem 2.13, three

more special cases need to be handled, namely where λ1 = 3 and n ≡ 5 (mod 6) and the two

cases where n ≡ 2 (mod 6) and λ1 = 4 or 6.

Case 3: Suppose λ1 = 3 and n ≡ 5 (mod 6). Conditions 1 and 2 imply that λ2 ≡ 3

(mod 6). First suppose n ≥ 11. By Case 2, there exists a K3-decomposition (Zn, B1) of

2Kn−E(L1) where L1 is a subgraph of 2Kn with (λ2− 1)n− (λ1− 1) edges which is evenly

equitable and connected. By Theorem 2.12, there exists a K3-decomposition (Zn, B2) of

Kn − E(L2) where L2 is a subgraph of Kn consisting of an n − 1 cycle; name the vertices

so that the vertex not in the cycle has maximum degree in L1. Then (Zn, B1 ∪ B2) is the

required decomposition with L = G[E(L1) ∪ E(L2)]. Now suppose n = 5. Then Condition

3 in conjunction with the fact that λ2 ≡ 3 (mod 6) implies λ2 = 3 so the result follows by

Theorem 2.3.

Case 4: Suppose λ1 = 4 and n ≡ 2 (mod 6) with n > 2. Conditions 1 and 2 imply

that λ2 ≡ 1 (mod 3). By Case 2, there exist K3-decompositions (Zn, B1) and (Zn, B2) of

2Kn − E(L1) and 2Kn − E(L2) respectively where L1 is a subgraph of 2Kn with (λ2 −

2)n − (λ1 − 2) edges which is evenly equitable and connected, and L2 is a subgraph of

2Kn with 2n− 2 edges which is evenly equitable and connected. Name the vertices so that

G[E(L1)∪E(L2)] is also evenly equitable. Then (Zn, B1∪B2) is the required decomposition

with L = G[E(L1) ∪ E(L2)].

Case 5: Suppose λ1 = 6 and n ≡ 2 (mod 6) with n > 2. Conditions 1 and 2 imply that

λ2 ≡ 0 (mod 3). By Cases 4 and 2, there exist K3-decompositions (Zn, B1) and (Zn, B2)

of 4Kn − E(L1) and 2Kn − E(L2) respectively where L1 is a subgraph of 4Kn with (λ2 −

2)n − (λ1 − 2) edges which is evenly equitable and connected, and L2 is a subgraph of

2Kn with 2n− 2 edges which is evenly equitable and connected. Name the vertices so that

G[E(L1)∪E(L2)] is also evenly equitable. Then (Zn, B1∪B2) is the required decomposition

with L = G[E(L1) ∪ E(L2)].
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To this point, the theorem is proved if λ1 ∈ {1, 2} and if (λ1, n) ∈ {(3, 5 (mod 6)), (4, 2

(mod 6)), (6, 2 (mod 6))}. So now consider the remaining cases. A two-step approach is

taken in each of three cases, making use of Theorems 2.13 and 2.17.

Case 1: Suppose n ≡ 0, 1, 3, or 4 (mod 6). Let λ′ ∈ {1, 2} with λ′ ≡ n (mod 2).

Set λ∗ = λ1 − λ′. Since either n or n − 1 is divisible by 3 in this case, λ1
n(n−1)

2
≡ 0 (mod

3). Also, λ1
n(n−1)

2
− (λ2n − λ1) = λ1(1 + n(n−1)

2
) − λ2n = λ1(

m(m−1)
2

+ n(n−1)
2

) − λ2n ≡

λ1(
m(m−1)

2
+ n(n−1)

2
) + 2λ2n (mod 3) ≡ 0 (mod 3) where the last step follows from Condition

1. Therefore, λ2n− λ1 is divisible by 3 . By Condition 2, λ2n− λ1 is even. Since n ≡ 0, 1, 3

or 4 (mod 6), λ′ n(n−1)
2

is divisible by 3.

First, suppose λ2n − λ1 ≤ n. By Theorem 2.13, there exists a packing (V,B1) of λ′Kn

with leave a cycle on λ2n − λ1 vertices. By Condition 1 and by definition, both λ1 and λ′

respectively are even when n is even; hence λ∗ is even when n is even. Since n ≡ 0, 1 (mod

3) and λ∗ is even when n is even, by Theorem 2.3, there exists a K3-decomposition (V,B2)

of λ∗Kn. Then (V,B1 ∪B2) is the required packing.

Now suppose λ2n − λ1 > n. By Theorem 2.13, let (V,B1) be a packing of λ′Kn with

leave a cycle on ε = n vertices when n ≡ 0 (mod 3) and ε = n− 1 vertices when n ≡ 1 (mod

3). Again λ∗ is even if n is even so bλ
∗(n−1)

2
c = λ∗(n−1)

2
. Further, since in this case either

n or n − 1 is divisible by 3, bn
3
λ∗(n−1)

2
c = n

3
λ∗(n−1)

2
. So by Theorem 2.17, there exists an

evenly equitable partial triple system (V,B2) of λ∗Kn with
λ∗ n(n−1)

2
−(λ2n−λ1−ε)
3

triples; this is

an integral number of triples since each of λ∗ n(n−1)
2

, λ2n−λ1, and ε is divisible by 3. Finally,

if n ≡ 1 (mod 3), then name the symbols in (V,B2) so that the vertex left out of the n− 1

cycle gets maximum degree in the leave of (V,B2). Then (V,B1∪B2) is the required packing

since |E(L)| = ε + (λ∗ n(n−1)
2
− 3(

λ∗ n(n−1)
2
−(λ2n−λ1−ε)
3

)) = λ2n − λ1 and L is easily seen to be

evenly equitable and connected.

Case 2: Suppose n ≡ 5 (mod 6) and λ1 > 3. Let λ′ ∈ {1, 2, 3} with λ′ ≡ λ1 (mod 3).

Let λ∗ = λ1 − λ′. By the same argument as when n ≡ 0 or 1 (mod 3), Condition 1 implies
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that λ1
n(n−1)

2
− (λ2n− λ1) is divisible by 3. Since λ1 ≡ λ′ (mod 3), λ′ n(n−1)

2
− (λ2n− λ1) is

also divisible by 3.

First suppose that λ2n − λ1 ≤ n. By Theorem 2.13, there exists a packing (V,B1) of

λ′Kn with leave a cycle on λ2n− λ1 vertices. Since λ∗ ≡ 0 (mod 3), by Theorem 2.3, there

exists a K3-decomposition (V,B2) of λ∗Kn. Then (V,B1 ∪B2) is the required packing.

Now suppose λ2n − λ1 > n. Since n ≡ 5 (mod 6), mn = 2n ≡ 1 (mod 3) and

m(m−1)
2

+ n(n−1)
2
≡ 2 (mod 3); hence, by Condition 1, λ1 ≡ λ2 (mod 3). Since n ≡ 2 (mod 3)

in this case, and since λ1 ≡ λ2 (mod 3), λ2n ≡ 2λ1 (mod 3) so λ2n−λ1 ≡ λ1 (mod 3). Also,

since n(n−1)
2
≡ 1 (mod 3), λ′ n(n−1)

2
≡ λ′ (mod 3). By Theorem 2.13, there exists a packing

(V,B1) of λ′Kn with leave a cycle on ε = n − 1, n, or n − 2 vertices when λ′ = 1, 2 or 3

respectively. In this case, (n− 1) is even and λ∗ is divisible by 3, so bn
3
bλ

∗(n−1)
2
cc = n

3
λ∗(n−1)

2
.

So by Theorem 2.17, there exists an equitable partial triple system (V,B2) of λ∗Kn with

λ∗ n(n−1)
2
−(λ2n−λ1−ε)
3

triples; this is an integral number of triples since λ∗ is divisible by 3 and

λ2n−λ1 ≡ λ1 ≡ λ′ ≡ ε (mod 3). Finally, if ε = n−1 or n−2, then name the symbols of (V,B2)

so that each vertex not in the n−1 or n−2 cycle gets no smaller degree in the leave of (V,B2)

than any vertex in the cycle. Then (V,B1 ∪ B2) is the required packing, since L is clearly

evenly equitable and connected and |E(L)| = ε+(λ∗ n(n−1)
2
−3(

λ∗ n(n−1)
2
−(λ2n−λ1−ε)
3

)) = λ2n−λ1.

Case 3: Finally, suppose n ≡ 2 (mod 6). By Condition 2, λ1 is even, so it can be

assumed λ1 > 6 (since all smaller cases were handled previously). Recall that n > 2. Let

λ′ ∈ {2, 4, 6} with λ′ ≡ λ1 (mod 6). Set λ∗ = λ1− λ′. By the same argument as when n ≡ 0

or 1 (mod 3), Condition 1 implies that λ1
n(n−1)

2
− (λ2n− λ1) is divisible by 3. Since λ1 ≡ λ′

(mod 3), λ′ n(n−1)
2
− (λ2n− λ1) is also divisible by 3.

First suppose that λ2n − λ1 ≤ n. By Theorem 2.13, there exists a packing (V,B1) of

λ′Kn with leave a cycle on λ2n− λ1 vertices. Since λ∗ ≡ 0 (mod 6), by Theorem 2.3, there

exists a K3-decomposition (V,B2) of λ∗Kn. Then (V,B1 ∪B2) is the required packing.

Suppose λ2n−λ1 > n. Since n ≡ 2 (mod 6), mn = 2n ≡ 1 (mod 3) and m(m−1)
2

+n(n−1)
2
≡

2 (mod 3); hence, by Condition 1, λ1 ≡ λ2 (mod 3). Since n ≡ 2 (mod 3) in this case, and
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since λ1 ≡ λ2 (mod 3), λ2n ≡ 2λ1 (mod 3) so λ2n− λ1 ≡ λ1 (mod 3). Also, since n(n−1)
2
≡ 1

(mod 3), λ′ n(n−1)
2
≡ λ′ (mod 3). By Theorem 2.13, there exists a packing (V,B1) of λ′Kn

with leave a cycle on ε = n, n− 1, or n− 2 vertices when λ′ = 2, 4 or 6 respectively. In this

case, λ∗ is even and divisible by 3, so bn
3
bλ

∗(n−1)
2
cc = n

3
λ∗(n−1)

2
. So by Theorem 2.17, there

exists an equitable partial triple system (V,B2) of λ∗Kn with
λ∗ n(n−1)

2
−(λ2n−λ1−ε)
3

triples; this

is an integral number of triples since λ∗ is divisible by 3 and λ2n − λ1 ≡ λ1 ≡ λ′ ≡ ε (mod

3). Finally, if ε = n− 1 or n− 2, then name the symbols of (V,B2) so that each vertex not

in the n− 1 or n− 2 cycle gets no smaller degree in the leave of (V,B2) than any vertex in

the cycle. Then (V,B1 ∪B2) is the required packing, since L is clearly evenly equitable and

connected and |E(L)| = ε+ (λ∗ n(n−1)
2
− 3(

λ∗ n(n−1)
2
−(λ2n−λ1−ε)
3

)) = λ2n− λ1.
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Chapter 3

Neighborhoods in Maximum Packings of 2Kn and Quadratic Leaves of Triple Systems

3.1 Introduction

In this chapter, the quadratic leave problem is considered again, this time with the focus

of allowing 2-cycles in the leave. To do this, a characterization of the possible neighborhood

graphs in maximum packings of 2Kn is given which in turn will be used to solve the quadratic

leave problem. As mentioned in the introduction, in [9], Colbourn and Rosa characterized

the possible neighborhood graphs in a 2-fold triple system on n vertices when n ≡ 0 or 1

(mod 3). (A 2-fold triple system is equivalent to a maximum packing in these two cases.) In

this chapter, a characterization of the possible neighborhood graphs of vertices in a maximum

packing of 2Kn for n ≡ 2 (mod 3) is given (see Theorem 3.9). When n ≡ 2 (mod 3) the leave

of a maximum packing (V,B) of 2Kn is the 2-cycle (a, b) for some a, b ∈ V (with a 6= b); see

Lemma 3.2. So in this case an additional interesting aspect of finding the neighborhood of

a vertex v in a maximum packing of 2Kn arises; the neighborhood is a 2-regular graph on

n − 2 vertices if v ∈ {a, b} and is a 2-regular graph on n − 1 vertices otherwise. The proof

technique in this chapter builds on modern observations recently made independently in two

papers [3, 22] concerning the existence of leaves of partial hamilton cycle decompositions of

Kn.

Bryant, Horsley, and Maenhaut have some results which relate to Theorem 3.10. In

[4], they show that Kn can be decomposed into 2-regular subgraphs of orders m1, . . . ,mt

provided that n is odd, 3 ≤ mi ≤ n for 1 ≤ i ≤ t, and
∑
mi =

(
n
2

)
. Note that specifying

m1,m2, . . . ,mj (j < t) to be the lengths of the cycles described in Theorem 3.10 is not

sufficient to force the 2-regular subgraphs to be cycles, nor to force the cycles in the quadratic

graph to be vertex disjoint. In [6], Bryant and Horsley extend their first result by showing
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that Kn can be decomposed into cycles of orders m1, . . . ,mt provided that n is odd, 3 ≤

mi ≤ n for 1 ≤ i ≤ t, and
∑
mi =

(
n
2

)
whenever n is sufficiently large. Note that Theorem

3.10 cannot be obtained from this result in the special case where λ = 1 and n is large

enough since the cycles in the quadratic graph are not forced to be vertex disjoint.

Maximal cycle systems have also been of interest from another perspective. Rather

than study the structure of the leave, several papers have considered its size, addressing the

spectrum question of finding the set S of integers for which there exists a partial k-cycle

system with leave of size l for each l ∈ S. Cycles of length 3 and hamilton cycles have been

of particular interest (see for instance [12, 8, 28]).

For any multiset D with elements chosen from {1, 2, . . . , n − 1}, let Gn({D}) be the

multigraph with vertex set Zn and edge multiset {{v, v + d} | d ∈ D, v ∈ Zn} reducing

sums modulo n. Note that with this definition Gn({d}) = Gn({n − d}) and is a 2-regular

graph regardless of the value of d (if d = n
2

then each component is a 2-cycle). The edges in

Gn({d}) are said to have difference d. This definition is slightly non-standard since edges are

allowed to have difference d > n
2
, but this approach is very useful when decomposing 2Kn.

If {a, b, c} is a triple on the vertex set Zn then define {a, b, c}+ j = {a+ j, b+ j, c+ j},

reducing sums modulo n. Similarly, if (a0, a1, . . . , an) is a cycle on the vertex set Zn then

define (a0, a1, . . . , an) + j = (a0 + j, a1 + j, . . . , an + j), reducing sums modulo n.

Throughout the chapter, λ and n are assumed to be positive integers.

3.2 Preliminary Results

To start, a well-known result on quasigroups is given.

Lemma 3.1. [27] There exists an idempotent quasigroup of order n for all n 6= 2.

The following is a specific case of well-known results on packings of λKn, and is sufficient

for the purposes of this chapter.
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Lemma 3.2. [14] Suppose λ ≥ 1 and n 6= 2. There exists a K3-decomposition of λKn if and

only if λ is divisible by

1. 2 if n ≡ 0 or 4 (mod 6),

2. 3 if n ≡ 5 (mod 6), and

3. 6 if n ≡ 2 (mod 6).

Furthermore, there exists a maximum packing of λKn with leave L where:

1. L is a 4-cycle if λ = 4 and n ≡ 2 (mod 3) or λ = 1 and n ≡ 5 (mod 6), and

2. L is a 2-cycle if λ = 2 and n ≡ 2 (mod 3).

The next result is a neat way to be able to deal with the many possibilities for Q.

Lemma 3.3. For any quadratic multigraph Q on n vertices, there exists a subgraph of

Gn({1, 1, 2}) which is isomorphic to Q.

Proof. For each l with 2 ≤ l ≤ n, define the cycle c(l) of length l in Gn({1, 1, 2}) as follows.

If l = 2 then let c(l) = (0, 1). If l = 2x > 2 then let c(l) = (0, 2, 4, 6, . . . , 2x− 2, 2x− 1, 2x−

3, 2x− 5, . . . , 1). Finally, if l = 2x− 1 then let c(l) = (0, 2, . . . , 2x− 2, 2x− 3, 2x− 5, . . . , 1).

Suppose that Q is the disjoint union of t cycles of lengths l1, . . . , lt (possibly li = 2). For

1 ≤ i ≤ t let si =
∑i

j=1 lj, and let ci = c(li) + si−1, defining s0 = 0. Then
⋃t
i=1 ci is a

subgraph of Gn({1, 1, 2}) and is isomorphic to Q.

The following result was proved by Petersen.

Lemma 3.4. [26] Let H be any 2k-regular multigraph. There exists a 2-factorization of H.

In constructing maximum packings, it will always be first assumed that the desired

neighborhood contains a small cycle, the size of which will depend upon the current case.

The following lemma is a well-known approach that will allow for the extension of these

constructions to cases where the prescribed small cycle is not present by combining two

cycles in the neighborhood of a vertex v into a single cycle.
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Lemma 3.5. Let (V, S) be a partial 2-fold triple system, and let v ∈ V . Suppose that {a, b}

and {c, e} are edges in disjoint cycles in the neighborhood of v, and further suppose that there

is some w ∈ V with w 6= v such that {{a, c, w}, {b, e, w}} ⊂ S. Then there exists a partial

2-fold triple system (V, S ′) such that

1. E(S) = E(S ′),

2. the neighborhood of v in S ′ is obtained from the neighborhood of v in S by replacing

one copy of the edges {a, b} and {c, e} with one copy of the edges {a, c} and {b, e}.

Proof. Define S ′ = (S \ {{v, a, b}, {v, c, e}, {w, a, c}, {w, b, e}})

∪{{v, a, c}, {v, b, e}, {w, a, b}, {w, c, e}}.

The next lemma settles cases that will be used in Section 3 for the general construction,

and includes a proof of Theorem 3.9 when n ∈ {5, 8}. When n ∈ {4, 6}, the results follow

from the results of Colbourn and Rosa but are included here for completeness.

Lemma 3.6. Let S = {(4, C3), (6, C5), (5, C3), (5, C4), (8, C3 ∪C3), (8, C2 ∪C4), (8, C2 ∪C2 ∪

C2), (8, C6), (8, C4 ∪ C3), (8, C2 ∪ C5), (8, C2 ∪ C2 ∪ C3), (8, C7)}. For each (n,Q) ∈ S, there

exists a maximum packing of 2Kn such that the neighborhood of some vertex is Q.

Proof. Let the vertex set of Kn be V = {a, b} ∪ Zn−2. In each case, a maximum packing

is formed with leave the 2-cycle (a, b) if n ∈ {5, 8} and the empty leave if n ∈ {4, 6}. All

addition in the following is defined modulo n − 2. In each case, the set of blocks defined

produce a maximum packing of 2Kn.

Let n = 4. Define B = {{a, b, 0}, {a, b, 1}, {a, 0, 1}, {b, 0, 1}}. Then the neighborhood

of a is C3.

Let n = 6. Define B = {{a, b, 0}, {a, b, 1}, {a, 0, 2}, {a, 1, 3}, {a, 2, 3}, {b, 0, 3}, {b, 1, 2},

{b, 2, 3}, {0, 1, 2}, {0, 1, 3}}. Then the neighborhood of a is C5.

Let n = 5. Define B = {{j, i, i + 1} | j ∈ {a, b}, 0 ≤ i ≤ 2}. Then the neighborhood of

a is C3 and the neighborhood of 0 is C4.
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Let n = 8. Define B1 = {{i, i + 1, i + 3}, {a, i, i + 2}, {b, i, i + 1} | i ∈ Z6}, B2 =

{{i, i+ 1, i+ 2}, {a, i, i+ 3}, {b, i, i+ 2} | i ∈ Z6}, B3 = {{0, 2, 4}, {0, 2, 5}, {0, 3, 5}, {1, 2, 4},

{1, 3, 4}, {1, 3, 5}, {b, 0, 3}, {b, 0, 4}, {b, 1, 2}, {b, 1, 5}, {b, 2, 3}, {b, 4, 5}, {a, 0, 1}, {a, 0, 1},

{a, 2, 3}, {a, 3, 4}, {a, 4, 5}, {a, 2, 5}}, andB4 = {{a, 0, 1}, {a, 0, 1}, {0, 2, 3}, {0, 2, 3}, {0, 4, 5},

{0, 4, b}, {0, 5, b}, {a, 2, 4}, {a, 2, 5}, {a, 3, 4}, {a, 3, 5}, {1, 2, 4}, {1, 2, b}, {1, 3, 5}, {1, 3, b},

{1, 4, 5}, {2, 5, b}, {3, 4, b}}. In B1, the neighborhood of a is C3∪C3 and of b is C6. In B2, the

neighborhood of a is C2 ∪C2 ∪C2. In B3, the neighborhood of a is C2 ∪C4, of 0 is C2 ∪C5,

and of 2 is C7. In B4, the neighborhood of 0 is C2 ∪ C2 ∪ C3. Finally, using an approach

similar to Lemma 3.5, the neighborhood of 0 in (B4 \{{0, 1, a}, {0, 2, 3}{a, 2, 5}, {1, 3, 5}})∪

{{a, 0, 2}, {0, 1, 3}, {a, 1, 5}, {2, 3, 5}} is C4 ∪ C3.

Before proceeding to the main theorem of this chapter, the powerful result on Langford

sequences that was proved over a series of papers is given again (see for example [29]).

A Langford sequence of order m ≥ 1 and defect δ ≥ 1 is a sequence L = (l1, l2, . . . , l2m)

of 2m positive integers satisfying the conditions

(a) for every k ∈ {δ, δ + 1, . . . , δ + m − 1}, there exist exactly two integers li, lj in L such

that li = lj = k, and

(b) if li = lj = k, then |i− j| = k.

A hooked Langford sequence of order m ≥ 1 and defect δ ≥ 1 is a sequence L =

(l1, l2, . . . , l2m, l2m+1) of 2m+ 1 nonnegative integers satisfying the conditions

(a) l2m = 0

(b) for every k ∈ {δ, δ + 1, . . . , δ + m − 1}, there exist exactly two integers li, lj in L such

that li = lj = k, and

(c) if li = lj = k, then |i− j| = k.

For emphasis, a Langford sequence is sometimes called a perfect Langford sequence.
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Theorem 3.7. [29] A Langford sequence of order m and defect δ exists if and only if

1. m ≥ δ − 1, and

2. either m ≡ 0, 1 (mod 4) and δ is odd, or m ≡ 0, 3 (mod 4) and δ is even.

A hooked Langford sequence of order m and defect δ exists if and only if

3. m(m− 2δ + 1) + 2 ≥ 0, and

4. either m ≡ 2, 3 (mod 4) and δ is odd, or m ≡ 1, 2 (mod 4) and δ is even.

Remark: Notice that every pair of integers m and δ satisfies either Condition 2 or

Condition 4. Also, if δ = 2 then Conditions 1 and 3 are satisfied for all m ≥ 1 when

Conditions 2 and 4 respectively are satisfied.

The following well-known result is the purpose of introducing these sequences.

Lemma 3.8. If there exists a Langford sequence or a hooked Langford sequence of order

m and defect δ then, for each n > δ + 3m, there exists a K3-decomposition of Gn({δ, δ +

1, . . . , δ + 3m− 1}) or of Gn({δ, δ + 1, . . . , δ + 3m− 2, δ + 3m}) respectively.

Proof. Let (l1, . . . , l2m) or (l1, . . . , l2m+1) be a Langford sequence or a hooked Langford se-

quence respectively. Define B = {{0, δ+m− 1 + i, δ+m− 1 + j}+ t | li = lj, t ∈ Zn}. Then

(Zn, B) is the required decomposition.

3.3 Neighborhoods for 2K3x+2

The first of the two main results of this chapter is now stated and proved.

Theorem 3.9. Let n ≡ 2 (mod 3) with n > 2, and let Q be a 2-regular multigraph on either

n − 2 or n − 1 vertices. Then there exists a maximum packing of 2Kn with leave a 2-cycle

such that the neighborhood graph of some vertex is Q if and only if (n,Q) 6= (5, C2 ∪ C2).
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Proof. If there exists a maximum packing of 2K5 such that the neighborhood of some vertex

is C2 ∪ C2, then deleting the triples containing this vertex leaves the graph 2K2,2 which

contains no K3; so this case is not possible.

The sufficiency is now proved. So let Q be a 2-regular graph on n− 2 or n− 1 vertices,

n ≡ 2 (mod 3), and (n,Q) 6= (5, C2 ∪ C2). Let |V (Q)| = n − 2 + ε with ε ∈ {0, 1}. In each

case, a maximum packing (V,B) of 2Kn is produced in which the neighborhood of the vertex

∞0 is Q. If n ∈ {5, 8} then the result follows from Lemma 3.6, so it can be assumed that

n = 3k + 5 ≥ 11.

Note that if |V (Q)| = n − 2 then ∞0 must be in the leave, so the maximum packing

will be constructed with leave the 2-cycle (∞0,∞1). If |V (Q)| = n − 1 then ∞0 cannot be

in the leave, so for notational convenience the maximum packing will be constructed with

leave the 2-cycle (∞1,∞3).

Case 1: Suppose that Q contains a cycle c of length 3 + ε. Let V =
⋃4
i=0{∞i} ∪ Z3k

and name the cycle c = (∞2−ε,∞3−ε, . . . ,∞4). By Lemma 3.6, let ({∞i | i ∈ Z5}, B0) be

a maximum packing of 2K5 with leave the 2-cycle (∞1,∞3ε) in which the neighborhood of

∞0 is the (3 + ε)-cycle c.

By Lemma 3.3, let G0 be a subgraph of G3k({1, 3k − 2, 3k − 1}) isomorphic to Q \ {c}.

Since G3k({1, 3k − 2, 3k − 1}) − E(G0) is a 4-regular graph, by Lemma 3.4 it has a 2-

factorization {G1, G2}. Let d = 3k − 4 if k − 2 ≡ 0 or 3 (mod 4) and let d = 3k − 5 if

k− 2 ≡ 1 or 2 (mod 4). By Lemma 3.4 let {G3, G4} be a 2-factorization of G3k({3k− 3, d}).

Let B1 = {{∞i, y, z} | {y, z} ∈ E(Gi), 0 ≤ i ≤ 4}. So the neighborhood of ∞0 is Q, and all

that remains to do is to partition the edges of G3k({2, 3, . . . , 3k− 4} \ {d}) into triples; note

that if k = 2 then this graph has no edges, so it can be assumed that k ≥ 3. By the remark

following Theorem 3.7, there exists either a perfect or a hooked Langford sequence of order

k − 2 ≥ 1 and defect 2, so the choice of d ensures that by Corollary 3.8 there exists a K3-

decomposition (Z3k, B2) of G3k({2, 3, . . . , 3k−4}\{d}). Then ({∞i | i ∈ Z5}∪Z3k,
⋃2
i=0Bi)

is the required decomposition.
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Case 2: Suppose that Q contains a cycle c0 of length x + 4 + ε ≥ 5 + ε. Let V =⋃4
i=0{∞i} ∪ Z3k and name the cycle c0 = (0, 1, . . . , x − 1,∞2−ε,∞3−ε, . . . ,∞4, x). Define

the cycles c′0 = (∞2−ε,∞3−ε, . . . ,∞4) and c′′0 = (0, 1, 2, . . . , x − 1, x) (so if x = 1 then c′′0 is

a 2-cycle). Let Q′ be formed from Q by replacing c0 with c′0 ∪ c′′0. Since Q′ contains a cycle

of length exactly 3 + ε, the argument in Case 1 can be used to produce a packing (V,B0) of

2Kn−5 with leave
⋃4
i=0Gi where G0 = Q′ \{c′0} and {G1, . . . , G4} is a 2-factorization of G′ =

G3k({1, 3k−1, 3k−2, 3k−3, d})−E(G0) with d ∈ {3k−4, 3k−5}. Note that {x−1, x} ⊂ V (c′′0)

and that x+1 /∈ V (c′′0) since x+4+ε ≤ |V (Q)| = n−2+ε = 3k+2+ε implies that x ≤ 3k−2

(so x + 1 6= 0). Therefore G′ contains two copies of the edge {x, x + 1} (one of difference 1

and one of difference 3k−1) and one copy of the edge {x−1, x+ 1} (of difference 3k−2), so

one copy of the edge {x, x+ 1} must be in a different 2-factor than the edge {x− 1, x+ 1};

say these 2-factors are G4 and G2−ε respectively. By Lemma 3.6, let ({∞i | i ∈ Z5}, B1) be

a maximum packing of 2K5 with leave the 2-cycle (∞1,∞3ε) such that the neighborhood of

∞0 is the (ε+3)-cycle c′0. Then ({∞i | i ∈ Z5}∪Z3k, B0∪B1∪{{∞i, a, b} | {a, b} ∈ E(Gi)})

is a maximum packing of 2Kn such that the neighborhood of ∞0 is Q′. Finally, by applying

Lemma 3.5 to this maximum packing with v =∞0, w = x+1, a =∞2−ε, b =∞4, c = x−1,

and e = x, a maximum packing of 2Kn in which the neighborhood of ∞0 is Q is produced.

Case 3: Suppose that ε = 1 and each cycle in Q is a 2-cycle. Then n is odd so let n =

6l+5 with l ≥ 1. Let V = {∞0}∪(Z3l+2×Z2). By Lemma 3.1, let (Z3l+2, ◦) be an idempotent

quasigroup. By Lemma 3.2, there exists a maximum packing (Z3l+2×{1}, B1) of 2K3l+2 with

leave a 2-cycle c. Then ({∞0} ∪ Z3l+2 × Z2, B1 ∪ {{(a, 0), (b, 0), (a ◦ b, 1)}, {(a, 0), (b, 0), (b ◦

a, 1)} | 0 ≤ a < b ≤ 3l + 1} ∪ {{∞0, (a, 0), (a, 1)}, {∞0, (a, 0), (a, 1)} | a ∈ Z3l+2}) is the

required decomposition with leave c.

Case 4: In view of Cases 1 and 2, suppose that if ε = 0 then each cycle in Q has length

2 or 4, and if ε = 1 then each cycle in Q has length 2, 3, or 5. In view of Case 3, if ε = 1

then also assume that Q contains at least one cycle of length 3 or 5.
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Case 4.1: Assume that n ≥ 17. In this subcase it is convenient to redefine k so that

n = 3k + 8; so k ≥ 3. Let V = {∞i | i ∈ Z8} ∪ Z3k.

Suppose ε = 0. If Q contains only 4-cycles then let Q′ be formed from Q be replacing

one 4-cycle, say (1,∞6,∞7, 2), with the two 2-cycles (∞6,∞7) and (1, 2), and if Q contains

a 2-cycle, say (∞6,∞7), then let Q′ = Q. We can assume that either Q′ contains both

the 4-cycle c1 = (∞2,∞3,∞4,∞5) and the 2-cycle c2 = (∞6,∞7), or Q′ contains the three

2-cycles c1 = (∞2,∞3), c2 = (∞4,∞5), and c3 = (∞6,∞7); let c∗ = {c1, c2} or {c1, c2, c3}

respectively.

Suppose ε = 1 (and hence |V (Q)| = n − 1 ≡ 1 (mod 3)). Since |V (Q)| ≡ 1 (mod

3), Q contains at least two cycles of length 2 (mod 3). If Q contains two 5-cycles then let

them be (0, 1,∞6,∞7, 2) and c1 = (∞1,∞2,∞3,∞4,∞5); form Q′ from Q be replacing the

first 5-cycle with the two cycles c2 = (∞6,∞7) and c3 = (0, 1, 2), and let c∗ = {c1, c2}. If

Q contains exactly one 5-cycle and a 2-cycle then let them be c1 = (∞1,∞2,∞3,∞4,∞5)

and c2 = (∞6,∞7); let Q′ = Q and c∗ = {c1, c2}. If Q contains no 5-cycles then it must

contain two 2-cycles and a 3-cycle (in view of Case 3), say c1 = (∞1,∞2), c2 = (∞6,∞7),

and c3 = (∞3,∞4,∞5); let Q′ = Q and c∗ = {c1, c2, c3}.

In either case, by Lemma 3.6 let ({∞i | i ∈ Z8}, B0) be a maximum packing of 2K8

with leave the 2-cycle (∞1,∞3ε) such that the neighborhood of ∞0 is c∗.

By Lemma 3.3, let G0 be a subgraph of G3k({1, 3k− 2, 3k− 1}) isomorphic to Q′ \ {c∗}.

Let d = 3k − 7 if k − 3 ≡ 0 or 3 (mod 4) and let d = 3k − 8 if k − 3 ≡ 1 or 2 (mod 4).

Since G = G3k({1, 3k − 1, 3k − 2, 3k − 3, 3k − 4, 3k − 5, 3k − 6, d}) − E(G0) is a 14-regular

graph, by Lemma 3.4 it has a 2-factorization {G1, G2, . . . , G7}. Note that if Q′ 6= Q, then

Q′ \ c∗ contains either the cycle (1, 2) or the cycle (0, 1, 2), which implies that G0 does not

contain any copies of the edge {1, 3} or {2, 3} and hence that G contains two copies of the

edge {2, 3} and one copy of the edge {1, 3}. Thus one copy of the edge {2, 3} must be in a

different 2-factor than the edge {1, 3}; say these 2-factors are G7 and G6 respectively. Let

B1 = {{∞i, y, z} | {y, z} ∈ E(Gi), 0 ≤ i ≤ 7}. So the neighborhood of ∞0 is Q′, and all
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that remains to do is to partition the edges of G3k({2, 3, . . . , 3k − 7} \ {d}) into triples; to

do so, note that this graph is graph is empty if k = 3, so we can assume that k ≥ 4. There

exists either a perfect or a hooked Langford sequence of order k − 3 ≥ 1 and defect 2, so

the choice of d ensures that by Corollary 3.8 there exists a K3-decomposition (Z3k, B2) of

G3k({2, 3, . . . , 3k − 7} \ {d}). Then ({∞i | i ∈ Z8} ∪ Z3k,
⋃2
i=0Bi) is a maximum packing of

2Kn such that the neighborhood of∞0 is Q′. If Q′ 6= Q then apply Lemma 3.5 with v =∞0,

w = 3, a =∞6, b =∞7, c = 1, and e = 2 to produce a maximum packing of 2Kn in which

the neighborhood of ∞0 is Q.

Case 4.2: Assume that n = 14, |V (Q)| = 13, and Q contains a 5-cycle, c. By Lemma

3.6, let ({∞i | i ∈ Z6}, B1) be a K3-decomposition of 2K6 such that the neighborhood of

∞0 is the 5-cycle c ∈ Q. By Lemma 3.3, let G0 be a subgraph of G8({1, 6, 7}) isomorphic to

Q\{c}. Since G8({1, 6, 7})−E(G0) is a 4-regular graph, by Lemma 3.4 it has a 2-factorization

{G1, G2}. Let B2 = {{0, 2, 5}, {1, 3, 6}}. Then (G8({2, 3, 4, 5})) \ (E(B2)∪ {4, 7} ∪ {4, 7}) is

a 6-regular graph so it has a 2-factorization {G3, G4, G5}. Then ({∞i | i ∈ Z6} ∪ Z8, B1 ∪

B2 ∪ {{a, b,∞i} | {a, b} ∈ E(Gi), 0 ≤ i ≤ 5}) is the required decomposition (with leave the

2-cycle (4, 7)).

Case 4.3: Assume that n = 14, |V (Q)| = 13, and Q contains a 3-cycle, c. By Lemma 3.6,

let ({∞i | i ∈ Z4}, B1) be a K3-decomposition of 2K4 such that the neighborhood of∞0 is the

3-cycle c ∈ Q. By Lemma 3.3, let G0 be a subgraph of G10({1, 8, 9}) isomorphic to Q \ {c}.

Since G10({1, 8, 9}) − E(G0) is a 4-regular graph, by Lemma 3.4 it has a 2-factorization

{G1, G2}. LetB2 = {{0, 2, 5}, {0, 5, 7}, {1, 3, 6}, {1, 6, 8}, {2, 4, 7}, {2, 7, 9}, {3, 5, 8}, {0, 3, 8},

{0, 4, 6}, {1, 5, 9}, {0, 3, 7}, {1, 4, 7}, {1, 4, 8}, {3, 6, 9}, {2, 6, 9}, {2, 5, 8}}∪{{∞3, i, i+4} | i ∈

Z10}. Then ({∞i | i ∈ Z4} ∪ Z10, B1 ∪ B2 ∪ {{a, b,∞i} | {a, b} ∈ E(Gi), 0 ≤ i ≤ 2}) is the

required decomposition (with leave the 2-cycle (4, 9)).

Case 4.4: Assume that n = 14, |V (Q)| = 12, and Q contains α 4-cycles where 0 ≤ α ≤ 3.

Let B = ({{i, i + 3, i + 4}, {i, i + 2, i + 5}, {i, i + 4, i + 5}, {∞0, i, i + 6}, {∞1, i, i + 2} | i ∈

Z12} \ {{j, j + 3, j + 4}, {j + 4, j + 6, j + 9}, {∞0, j, j + 6}, {∞0, j + 3, j + 9} | 1 ≤ j ≤
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α}) ∪ {{j, j + 4, j + 6}, {j + 3, j + 4, j + 9}, {∞0, j, j + 3}, {∞0, j + 6, j + 9} | 1 ≤ j ≤ α}.

Then (Z12∪{∞0,∞1}, B) is a maximum packing of 2K14 with leave (∞0,∞1) such that the

neighborhood of ∞0 consists of α 4-cycles and 12−4α
2

2-cycles as required.

Case 4.5: Assume that n = 11. It is impossible for |Q| = 9 and to have Q consist only of

2-cycles and 4-cycles, so assume that |Q| = 10. Let B = {{∞0, 0, 1}, {∞0, 0, 1}, {∞0, 2, 3},

{∞0, 2, 3}, {∞0, 4, 5}, {∞0, 4, 6}, {∞0, 5, 6}, {∞0, 7, 8}, {∞0, 7, 9}, {∞0, 8, 9}, {0, 2, 4},

{0, 2, 7}, {0, 3, 5}, {0, 3, 8}, {1, 2, 6}, {1, 2, 9}, {1, 3, 4}, {1, 3, 7}, {0, 4, 8}, {0, 5, 9}, {0, 6, 7},

{0, 6, 9}, {1, 4, 9}, {1, 5, 7}, {1, 5, 8}, {1, 6, 8}, {2, 4, 8}, {2, 5, 8}, {2, 5, 9}, {2, 6, 7}, {3, 4, 9},

{3, 5, 7}, {3, 6, 8}, {3, 6, 9}, {4, 5, 6}, {7, 8, 9}}. Then (V = {∞0} ∪ Z10, B) is a maximum

packing of 2K11 with leave (4, 7) in which the neighborhood of∞0 is C2∪C2∪C3∪C3. Since

the triples {0, 4, 8}, {1, 5, 8} ∈ B, apply Lemma 3.5 to (V,B) with v = ∞0, w = 8, a = 0,

b = 1, c = 4, and e = 5, to replace the cycles (0, 1) and (4, 5, 6) in the neighborhood of ∞0

with the cycle (0, 1, 5, 6, 4), so in the resulting maximum packing (V,B′) the neighborhood

of ∞0 is C5 ∪C2 ∪C3. Finally, since the triples {2, 7, 6}, {3, 9, 6} ∈ B′, apply Lemma 3.5 to

(V,B′) with v =∞0, w = 6, a = 2, b = 3, c = 7, and e = 9, to replace the cycles (2, 3) and

(7, 8, 9) in the neighborhood of ∞0 with the cycle (2, 3, 9, 8, 7), so in the resulting maximum

packing (V,B′′) the neighborhood of ∞0 is C5 ∪ C5.

3.4 Quadratic Leaves

Having proved Theorem 3.9, it can now be used along with the corresponding Colbourn

and Rosa result (see [9]) to assist in proving the second main result of this chapter.

Theorem 3.10. Let Q be a quadratic graph in λKn. There exists a K3-decomposition of

λKn − E(Q) if and only if

1. λ(n− 1) is even,

2. |E(λKn)| − |E(Q)| is divisible by 3,

3. (λ, n,Q) /∈ {(1, 7, C3 ∪ C3), (1, 9, C4 ∪ C5), (2, 6, C3 ∪ C3), (2, 5, C2 ∪ C3)}, and
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4. if λ 6= 2 then n 6= 2.

Proof. To see the necessity of Conditions (1 − 4) consider the following. If (λ, n,Q) ∈

{(1, 7, C3 ∪ C3), (1, 9, C4 ∪ C5)} then by the Colbourn and Rosa result (see Theorem 1.2),

there is no K3-decomposition of Kn − E(Q). If (λ, n,Q) ∈ {(2, 5, C2 ∪ C3), (2, 6, C3 ∪ C3)}

and if there exists a K3-decomposition (Zn, B1) of 2Kn −E(Q) then (Zn+1, B1 ∪ {{n, a, b} |

{a, b} ∈ E(Q)}) is a K3-decomposition of 2Kn+1 in which the neighborhood of n is Q; but

this contradicts Theorem 1.1. This proves the necessity of Condition (3). The necessity of

Conditions (1) and (2) follows since each vertex in each triple has even degree and each triple

contains 3 edges respectively. The necessity of Condition (4) is clear since λK2 contains no

copies of K3.

To prove the sufficiency, the result is clear if n ≤ 2, and the result follows from Theorem

1.2 if λ = 1, so assume that n ≥ 3 and λ ≥ 2. Let Q be a quadratic graph such that

Conditions (1− 3) are satisfied.

Case 1: Suppose λ = 2.

If (n,Q) ∈ {(5, C2), (6, C3)} then the result follows in each case from Lemma 3.2 by

taking a maximum packing of 2Kn, then removing any one triple if n = 6. By Condition

2, |E(Q)| ≡ n − ε (mod 3) where ε = 1 if n ≡ 1 (mod 3) and ε = 0 otherwise. Form the

2-regular graph Q′ on n− ε vertices by adding n−|E(Q)|−ε
3

3-cycles to Q (by Condition (2) this

is an integral number of 3-cycles). Let B = {{x, y, z} | (x, y, z) ∈ Q′ \Q}. It can be assumed

that (n+1, Q′) /∈ {(7, C3∪C3), (6, C2∪C3)} since (n+1, Q′) ∈ {(7, C3∪C3), (6, C2∪C3)} only

if (n,Q) ∈ {(5, C2), (6, C3), (5, C2 ∪C3), (6, C3 ∪C3)}, where the first two are handled at the

beginning of this case and the last two are prohibited by Condition 3. So by either Theorem

1.1 or 3.9 there exists a maximum packing (Zn+1, B
′) of 2Kn+1 in which the neighborhood

of the vertex n is Q′. Then (Zn, (B′ \ {b ∈ B′ | n ∈ b}) ∪B) is the required decomposition.

Case 2: Suppose λ > 2 and n ≡ 0 or 1 (mod 3). First suppose that (n,Q) 6= (6, C3∪C3).

By Condition 2, |E(Q)| ≡ 0 (mod 3) regardless of the value of λ. By the result of Case 1,

let (Zn, B0) be a K3-decomposition of 2Kn − E(Q). Let (Zn, B1) be a K3-decomposition of
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(λ − 2)Kn; this exists by Lemma 3.2 since n ≡ 0 or 1 (mod 3) and since if n is even then

λ − 2 is even by Condition (1). Then (Zn, B0 ∪ B1) is the required decomposition. Using

Lemma 3.2, if (n,Q) = (6, C3 ∪ C3) then let (Z6, B1) and (Z6, B2) be K3-decompositions of

2K6 such that {0, 1, 2} ∈ B1 and {3, 4, 5} ∈ B2, and let (Z6, B3) be a K3-decomposition of

(λ− 4)K6. Then (Z6, B1 ∪B2 ∪B3 \ {{0, 1, 2}, {3, 4, 5}}) is the required decomposition.

Case 3: Suppose λ > 2 and n ≡ 2 (mod 3). Let V (Q) ⊂ Zn. By Condition (4), n 6= 2.

First suppose that n 6= 5. Let δ ≡ λ (mod 3) with δ ∈ {2, 3, 4} if n ≡ 5 (mod 6) and

δ ∈ {2, 4, 6} if n ≡ 2 (mod 6). By Lemma 3.2 and Conditions (1) and (2) there exists a

K3-decomposition (Zn, B0) of (λ− δ)Kn.

If δ = 2 then by Condition (2) |E(Q)| ≡ 2 (mod 3), so by Case 1 let (Zn, B1) be a

K3-decomposition of 2Kn − E(Q).

If δ = 4 then by Condition (2) |E(Q)| ≡ 1 (mod 3) so |E(Q)| ≤ n− 1, so say 0 /∈ V (Q)

and that (1, . . . , x) is a cycle in Q. Form Q′ from Q by replacing the cycle (1, . . . , x) in Q with

the cycle (0, 1, . . . , x). By Case 1 there exists a K3-decomposition (Zn, B′1) of 2Kn −E(Q′).

By Lemma 3.2 let (Zn, B′′1 ) be a maximum packing of 2Kn with leave the 2-cycle (1, x). Let

B1 = B′1 ∪B′′1 ∪ {0, 1, x}.

If δ ∈ {3, 6} then by Condition (2) |E(Q)| ≡ 0 (mod 3), so say 0, 1 /∈ V (Q). Form

Q′ from Q by adding the 2-cycle (0, 1). By Case 1 let (Zn, B′1) be a K3-decomposition of

2Kn − E(Q′). By Lemma 3.2 let (Zn, B′′1 ) be a maximum packing of (δ − 2)Kn with leave

the 4-cycle (2, 0, 3, 1). Let B1 = B′1 ∪B′′1 ∪ {{0, 1, 2}, {0, 1, 3}}.

Then for each δ ∈ {2, 3, 4, 6}, (Zn, B0 ∪B1) is the required decomposition.

Finally, suppose that n = 5. Based on the above argument, it suffices to find packings

of λK5 with leave Q for (λ,Q) ∈ {(2, C5), (3, C3), (4, C4), (4, C2∪C2), (5, C2∪C3)}. (λ,Q) =

(2, C5) was handled in Case 1. When (λ,Q) = (3, C3), by Lemma 3.2 let (Z5, B) be a K3-

decomposition of 3K5 and let b ∈ B; then (Z5, B \ b) is the required decomposition. When

(λ,Q) = (4, C4) the result follows from Lemma 3.2 by taking a maximum packing of 4K5.

When (λ,Q) = (4, C2∪C2), by Lemma 3.2 let (Z5, B1) and (Z5, B2) be maximum packings of
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2K5 with leaves (0, 1) and (2, 3) respectively; then (Z5, B1∪B2) is the required decomposition.

Finally, when (λ,Q) = (5, C2 ∪ C3), by Lemma 3.2 let (Z5, B1) be a K3-decomposition of

3K5 that contains the triple {0, 1, 2}, and let (Z5, B2) be a maximum packing of 2K5 with

leave the 2-cycle (3, 4); then (Z5, B1 ∪B2 \ {0, 1, 2}) is the required decomposition.
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Chapter 4

Neighborhoods in Maximum Packings of 2Kn- A Second Version

4.1 Introduction

Having completed the solution to the neighborhood graph problem in the last chapter

by solving the case where n ≡ 2 (mod 3), this chapter focuses on finding a unified proof

for the neighborhood graph problem. While the proof technique used in the last chapter

for n ≡ 2 (mod 3) is similar in principle to the proof technique used in the corresponding

Colbourn and Rosa result, it does not seem that the techniques used in either proof can be

used to readily obtain the other result, even if one “allows” extreme cases (such as the case

when each cycle in the neighborhood has length two) to be handled using alternate methods.

In this chapter, a new, simpler, and unified proof that obtains both results is provided (see

Theorem 4.5). However, this new proof relies heavily on a major result, namely a recent

and quite powerful result due to Bryant, Horsley, and Pettersson (see Theorem 4.3). Section

4.2 will begin with some well-known lemmas that are useful in handling extreme cases of

Theorem 4.5. The theorem of Bryant, Horsley, and Pettersson will then be given and used

to establish a lemma that will be used in several cases of the proof of the main theorem.

Finally, Section 4.3 contains the new proof of the main theorem.

4.2 Preliminary Results

To begin this section, two well-known results are given, one being on idempotent quasi-

groups and the other on maximum partial triple systems. These lemmas will be used to

handle extreme cases of the main theorem (specifically the cases where n ≡ 1 or 5 (mod 6)

and Q contains only 2-cycles).
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Lemma 4.1. [27] There exists an idempotent quasigroup of order n for all n 6= 2.

The second lemma is more extensive than what appears below; however, what appears

below is sufficient for this chapter.

Lemma 4.2. [14] The leave of a maximum partial triple system of λKn is

1. ∅ if λ = 2 and n ≡ 0, 1 (mod 3),

2. a 2-cycle if λ = 2 and n ≡ 2 (mod 3),

3. a K1,3 and n−4
2

independent edges if λ = 1 and n ≡ 4 (mod 6), and

4. a 1-factor if λ = 1 and n ≡ 2 (mod 6).

The powerful cycle-decomposition theorem of Bryant, Horsley, and Petterson from [5]

appears next.

Theorem 4.3. [5]

1. Let n be odd. There exists a decomposition of Kn into cycles of length m1, . . . ,mt if

and only if

(a) 3 ≤ mi ≤ n for 1 ≤ i ≤ t and

(b)
∑t

i=1mi =
(
n
2

)
.

2. Let n be even. There exists a decomposition of Kn into cycles of length m1, . . . ,mt and

a 1-factor F if and only if

(a) 3 ≤ mi ≤ n for 1 ≤ i ≤ t and

(b)
∑t

i=1mi =
(
n
2

)
− n

2
.

This result provides the backbone of the proof technique used in this chapter, estab-

lishing that Kn minus the edges of a certain set of cycles and possibly a 1-factor can be

decomposed into triples.
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The full power of this result is not needed for the main theorem, since at most three

cycle lengths are chosen for any particular case. However, while older and more basic results

can be used in many of the cases, it does not seem like older results are sufficient to handle all

cases in the proof of the theorem (for instance, the case in which Kn needs to be decomposed

into a 1-factor, a Hamilton cycle, a near Hamilton cycle, and triples.)

A lemma that will be used in multiple cases in the proof of Theorem 4.5 is now given.

The lemma and the proof of it will look quite similar to the proofs that appear in the cases

of the proof of the main theorem; this lemma is stated here however since it is used in several

cases of the main theorem.

Lemma 4.4. Let n ≡ 0 (mod 3) and let Q be a 2-regular graph on n vertices. Then for any

integer 2 ≤ k ≤ n− 1, there exists a decomposition of 2Kn into triples and k 2-factors, one

of which is Q.

Proof. Let ε ∈ {0, 1} with ε ≡ n (mod 2). Let Q = {c0, . . . , cq−1}, where for each i ∈ Zq,

the cycle ci = (ci,1, . . . , ci,li) has length li. Since n ≡ 0 (mod 3), the number of edges in any

Hamilton cycle of Kn and any 1-factor of Kn is a multiple of 3. Further, since |E(Kn)| ≡ 0

(mod 3), by Theorem 4.3, Kn can be decomposed into j Hamilton cycles for 0 ≤ j ≤ n−2+ε
2

,

1− ε 1-factors, and triples. So let (Zn, B1) be a K3-decomposition of Kn−E(G1), where G1

consists of the h = min{k − 1, n−2+ε
2
} Hamilton cycles H1, . . . , Hh, along with the 1-factor

F0 if ε = 0. In particular, let H1 = (c0,1, . . . , c0,l0 , c1,1, . . . , c1,l1 , . . . , cq−1,1, . . . , cq−1,lq−1).

Let (Zn, B2) be a K3-decomposition of Kn − E(G2) where G2 contains the k − h − 1 + ε

Hamilton cycles Hh+2−ε, . . . , Hk, along with the 1-factor F1 if ε = 0. Note that if ε = 1,

then k − h − 1 + ε = k − h ≥ k − (k − 1) = 1 so G2 contains a Hamilton cycle in this

case. If ε = 1 then let Hh+1 = (c0,1, c0,l0 , c1,1, c1,l1 , . . . , cq−1,1, cq−1,lq−1 , v1, . . . , vn−2q) where

v1, . . . , vn−2q are arbitrarily named. If ε = 0 then name the vertices so that q of the edges in

F1 are in {{ci,1, ci,li} | i ∈ Zq} and let Hh+1 = F0 ∪ F1.

Let H ′1 be the 2-factor induced by (E(H1)∪{{ci,1, ci,li} | i ∈ Zq})\{{ci,li , ci+1,1} | i ∈ Zq}

reducing the sum in the subscript modulo q. Then H ′1 ≡ Q. The graph H ′h+1 induced by
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E(H1)∪E(Hh+1)−E(H ′1) is a 2-factor. Finally, for i ∈ {1, 2, . . . , k}\{1, h+1}, let H ′i = Hi.

Then (Zn, B1 ∪B2 ∪ ∪i∈ZkH ′i) is the required decomposition.

4.3 Main Result

The main theorem is now stated and proved. The theorem was previously proved by

Colbourn and Rosa in [9] when n ≡ 0 or 1 (mod 3) and in Chapter 3 when n ≡ 2 (mod 3).

Theorem 4.5. [7, 9] Suppose n 6= 2. Let Q be a 2-regular multigraph on n− 1− α vertices

with α ∈ {0, 1}. Then there exists a maximum packing of 2Kn (possibly the leave is empty)

such that the neighborhood graph of some vertex is Q if and only if

1. α = 0 if n ≡ 0 or 1 (mod 3) and

2. (n,Q) /∈ {(5, C2 ∪ C2), (6, C2 ∪ C3), (7, C3 ∪ C3)}.

Proof. If n ≡ 0 or 1 (mod 3), then a maximum packing of 2Kn is a 2-fold triple system, so

the neighborhood graph of every vertex will be a 2-regular graph on n− 1 vertices so α = 0

in these cases, which shows the first condition is necessary.

If (n,Q) = (5, C2∪C2), (6, C2∪C3), or (7, C3∪C3) and there exists a maximum packing

of 2Kn such that the leave of some vertex v is Q, then deleting the triples containing v leaves

the graph K2

∨
2K2, K2

∨
2K3, or K3

∨
2K3 respectively. So each graph can be thought of

as a graph with two parts with 2 edges joining each pair of vertices in different parts. In

each case, any triple that contains an edge with its incident vertices in different parts (a

mixed edge) contains 2 such edges and 1 edge whose incident vertices lie in the same part (a

pure edge). But in each case, there are more than twice as many mixed edges as pure edges

remaining. Hence these cases are not possible.

To prove the sufficiency, two extreme cases (Case 1) will be followed by 9 main cases.

While this is a large number of cases, most follow from Lemma 4.4 or from similar ideas.

Let Q be a 2-regular multigraph on n− 1− α vertices (with the size of Q specified in each

case) such that (n,Q) /∈ {(5, C2 ∪ C2), (6, C2 ∪ C3), (7, C3 ∪ C3)}.
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Case 1: Suppose n ≡ 1 or 5 (mod 6) and that Q consists entirely of 2-cycles (so since

n is odd then α = 0). By assumption (n,Q) 6= (5, C2 ∪ C2), and the case where n = 1 is

trivial. So it can be assumed that n ≥ 7; let n = 6l + 1 + ε with l ≥ 1 and ε ∈ {0, 4}.

Let V = {∞1} ∪ (Z3l+ ε
2
× Z2). By Lemma 4.1, let (Z3l+ ε

2
, ◦) be an idempotent quasigroup

(l ≥ 1, so 3l + ε
2
≥ 3, so the quasigroup exists). By Lemma 4.2, there exists a maximum

packing (Z3l+ ε
2
× {1}, B1) of 2K3l+ ε

2
with leave c where c is a 2-cycle if ε = 4 and c = ∅

otherwise. Then ({∞1}∪ (Z3l+ ε
2
×Z2), B1∪{{(a, 0), (b, 0), (a◦b, 1)}, {(a, 0), (b, 0), (b◦a, 1)} |

0 ≤ a < b ≤ 3l−1+ ε
2
}∪{{∞1, (a, 0), (a, 1)}, {∞1, (a, 0), (a, 1)} | a ∈ Z3l+ ε

2
}) is the required

decomposition with leave c.

Case 2: Suppose n ≡ 2 (mod 3) with α = 1. A maximum packing is constructed on

the vertex set Zn−2 ∪ {∞1,∞2} where the neighborhood of ∞1 is Q = {c0, . . . , cq−1}, the

q-cycles being defined on the vertex set Zn−2; so the leave of the maximum packing will be

(∞1,∞2).

In this case, w = n − 2 ≡ 0 (mod 3) and 2 ≤ w − 1 (since n ≡ 2 (mod 3) and n 6= 2).

So by Lemma 4.4, there exists a K3-decomposition (Zn−2, B) of 2Kn−2 − (E(H ′1) ∪ E(H ′2))

where H ′1 and H ′2 are 2-regular graphs and H ′1 ≡ Q.

Then (Zn−2 ∪ {∞1,∞2}, B ∪ {{∞i, ai, bi} | {ai, bi} ∈ E(H ′i), 1 ≤ i ≤ 2}) is the required

maximum packing.

Case 3: Suppose n ≡ 2 (mod 3), α = 0, and that Q has a cycle of length at least 5− ε

where ε ∈ {0, 1} with ε ≡ n (mod 2).

A maximum packing of 2Kn with leave a 2-cycle will be constructed on the vertex set

Zn−2 ∪ {∞1,∞2} such that the neighborhood of the vertex ∞1 is Q.

Let Q = {c0, ..., cq−1} where for each i ∈ Zq, the cycle ci = (ci,1, . . . , ci,li) has length

li, cj,k ∈ Zn−2 unless (j, k) = (0, 3), c0,3 = ∞2, and l0 ≥ 5 − ε. Since n − 2 ≡ 0 (mod

3), the number of edges in any Hamilton cycle of Kn−2 and any 1-factor of Kn−2 is a

multiple of 3. Further, since |E(Kn−2)| ≡ 0 (mod 3), by Theorem 4.3, Kn−2 can be

decomposed into 0 or 1 Hamilton cycles, 1 − ε 1-factors, and triples. So let (Zn−2, B1)
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be a K3-decomposition of Kn−2 − E(G1), where G1 consists of the Hamilton cycle H1 =

(c0,1, c0,2, c0,4, . . . , c0,l0 , c1,1, . . . , c1,l1 , . . . , cq−1,1, . . . , cq−1,lq−1) (c0,3 = ∞2 /∈ Zn−2), along with

the 1-factor F0 if ε = 0. If ε = 1 then let (Zn−2, B2) be a K3-decomposition of Kn−2−E(H2)

where H2 is the Hamilton cycle H2 = (c0,2, c0,4, c0,1, c0,l0 , c1,1, c1,l1 , . . . , cq−1,1, cq−1,lq−1 , v1, . . . ,

v(n−2)−2−2q) with v1, . . . , v(n−2)−2−2q arbitrarily named if l0 ≥ 5; if l0 = 4, drop the extra

occurrence of c0,l0 after c0,1 and have one more arbitrarily named vertex at the end of H2. If

ε = 0 then let (Zn−2, B2) be a K3-decomposition of Kn−2−E(F1) where F1 is a 1-factor named

so that {c0,2, c0,4} is an edge and q of the remaining edges in F1 are in {{ci,1, ci,li} | i ∈ Zq}.

(Note that l0 ≥ 5 if ε = 0 so c0,l0 6= c0,4.) If ε = 0, let H2 = F0 ∪ F1. Finally, observe that

the edge {c0,2, c0,4} appears in both E(H1) and E(H2).

Let H ′1 be the graph induced by (E(H1)∪{{ci,1, ci,li} | i ∈ Zq}) \ {{ci,li , ci+1,1} | i ∈ Zq}

reducing the sum in the subscript modulo q. Let H ′2 be the graph induced by (E(H1) ∪

E(H2)) \ E(H ′1). Then H ′1 and H ′2 are each 2-regular spanning subgraphs of Kn−2, and the

set of cycles formed by the components in H ′1 contains the cycles c1, ..., cq−1 and the cycle c′0

where c′0 is formed from c0 by deleting the edges {c0,2, c0,3} and {c0,3, c0,4} and adding the

edge {c0,2, c0,4} . Note that the edge {c0,2, c0,4} appears in both E(H ′1) and E(H ′2).

Then (Zn−2 ∪ {∞1,∞2}, (B1 ∪ B2 ∪ {{∞i, ai, bi} | {ai, bi} ∈ E(H ′i), 1 ≤ i ≤ 2} \

{{∞i, c0,2, c0,4} | i ∈ {1, 2}}) ∪ {{∞1,∞2, c0,i} | i ∈ {2, 4}}) is the required maximum

packing (with leave (c0,2, c0,4)).

Case 4: Suppose that n ≡ 5 (mod 6), α = 0, and that Q contains a 3-cycle.

A maximum packing will be constructed on the vertex set Zn−4 ∪ {∞j | 1 ≤ j ≤ 4}

where the neighborhood of∞1 is Q = {c0, . . . , cq−1}, where c0 = (∞2,∞3,∞4), and the q−1

other cycles are defined on the vertex set Zn−4 with l1 being odd (since n − 1 − α is even,

and Q contains a 3-cycle, Q must contain some other cycle of odd length). The leave of the

maximum packing will be (∞2, c1,2), where c1,2 is defined below.

For each i ∈ Zq \ {0}, let ci = (ci,1, . . . , ci,li) where li is the length of ci. In this case,

n − 4 ≡ 1 (mod 6) and thus
(
(n−4)

2

)
− 3(n − 4) and

(
(n−4)

2

)
− (n − 4 − 1) are both divisible
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by 3. Further, Q cannot contain a 3-cycle in this case if n = 5, so n − 4 ≥ 7, so both

quantities are also nonnegative. So by Theorem 4.3, let (Zn−4, B1) be a K3-decomposition of

Kn−4−(E(H1)∪E(H3)∪E(H4)) and let (Zn−4, B2) be a K3-decomposition of Kn−4−E(H2)

where H1, H3, and H4 are Hamilton cycles and H2 is a near-Hamilton cycle with H1 and H2

named as follows: Let H1 = (c1,1, . . . , c1,l1 , c2,1, . . . , c2,l2 , . . . , cq−1,1, . . . , cq−1,lq−1). Let H2 be

defined by H2 = (c1,1, c1,l1 , c2,1, c2,l2 , . . . , cq−1,1, cq−1,lq−1 , v1, . . . , vn−3−2q) where v1, . . . , vn−3−2q

exclude c1,2 and are otherwise arbitrarily named (note that c1,2 is omitted from H2 altogether

since l1 is odd and hence c1,2 6= c1,ll).

Let H ′1 be the graph induced by (E(H1)∪{{ci,1, ci,li} | i ∈ Zq\{0}})\({{ci,li , ci+1,1} | i ∈

Zq\{0, q−1}}∪{{cq−1,lq−1 , c1,1}}). Let H ′2 be the graph induced by (E(H1)∪E(H2))\E(H ′1).

Then H ′1 and H ′2 are 2-regular spanning subgraphs of Kn−4 and Kn−5 respectively, with the

set of cycles formed by the components in H ′1 being Q \ c0. Let H ′3 = H3 and H ′4 = H4.

Let ({∞j | 1 ≤ j ≤ 4}, B3) be a K3-decomposition of 2K4 (where the neighborhood of

∞1 is the 3-cycle (∞2,∞3,∞4)).

Then (Zn−4 ∪ {∞j | 1 ≤ j ≤ 4}, B1 ∪ B2 ∪ B3 ∪ {{∞i, ai, bi} | {ai, bi} ∈ E(H ′i)}) is the

required packing.

Case 5: Suppose that n ≡ 2 (mod 6), α = 0 and that Q contains a 3-cycle.

First suppose n = 8. Let B = {{∞1, 0, 1}, {∞1, 0, 1}, {∞1, 2, 3}, {∞1, 2, 3}, {∞1, 4, 5},

{∞1, 4, 6}, {∞1, 5, 6}, {0, 2, 4}, {0, 2, 5}, {0, 3, 4}, {0, 3, 5}, {1, 2, 4}, {1, 2, 6}, {1, 3, 5},

{1, 3, 6}, {1, 4, 5}, {2, 5, 6}, {3, 4, 6}}. Then (Z7 ∪ {∞1}, B) is a maximum packing of 2K8

with leave (0, 6) such that the neighborhood of∞1 is C2∪C2∪C3. Finally, (Z7∪{∞1}, (B \

{{∞1, 0, 1}, {∞1, 2, 3}, {0, 2, 5}, {1, 3, 5}}) ∪ {{∞1, 0, 2}, {∞1, 1, 3}, {0, 1, 5}, {2, 3, 5}}) is a

maximum packing of 2K8 such that the neighborhood of ∞1 is C4 ∪ C3.

For n > 8, a maximum packing is constructed on the vertex set Zn−4∪{∞j | 1 ≤ j ≤ 4}

where the neighborhood of∞1 is Q = {c0, . . . , cq−1}, where c0 = (∞2,∞3,∞4), and the q−1

other-cycles are defined on the vertex set Zn−4. The maximum packing will be constructed

so that the leave will be (∞3, a), where a is defined below.
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For each i ∈ (Zq \ {0}), let ci = (ci,1, . . . , ci,li) where li is the length of ci. In this case,

n−4 ≡ 4 (mod 6) and≥ 10 and thus
(
(n−4)

2

)
−(n−4)−n−4

2
−(n−4−1) and

(
(n−4)

2

)
−(n−4)−n−4

2

are both divisible by 3 and nonnegative. So by Theorem 4.3, let (Zn−4, B1) be a K3-

decomposition of Kn−4−(E(H1)∪E(H3)∪E(F1)) and let (Zn−4, B2) be a K3-decomposition

of Kn−4 − (E(H2) ∪ E(F2)) where H1 and H2 are Hamilton cycles, H3 is a near-Hamilton

cycle with arbitrarily named vertex a ∈ Zn−4 omitted, F1 and F2 are 1-factors, and H1 and

H2 are named as follows: Let H1 = (c1,1, . . . , c1,l1 , c2,1, . . . , c2,l2 , . . . , cq−1,1, . . . , cq−1,lq−1). Let

H2 = (c1,1, c1,l1 , c2,1, c2,l2 , . . . , cq−1,1, cq−1,lq−1 , v1, . . . , vn+2−2q) where v1, . . . , vn+2−2q are arbi-

trarily named.

Let H ′1 be the graph induced by (E(H1)∪{{ci,1, ci,li} | i ∈ Zq\{0}})\({{ci,li , ci+1,1} | i ∈

Zq\{0, q−1}}∪{{cq−1,lq−1 , c1,1}}). Let H2 be the graph induced by (E(H1)∪E(H2))\E(H ′1).

Then H ′1 and H ′2 are 2-regular spanning subgraphs of Kn−4, with the set of cycles formed

by the components in H ′1 being Q \ c0. Let H ′3 = H3 and H ′4 be the graph induced by

E(F1) ∪ E(F2).

Let ({∞j | 1 ≤ j ≤ 4}, B3) be a K3-decomposition of 2K4 (where the neighborhood of

∞1 is the 3-cycle (∞2,∞3,∞4)).

Then (Zn−4 ∪ {∞j | 1 ≤ j ≤ 4}, B1 ∪ B2 ∪ B3 ∪ {{∞i, ai, bi} | {ai, bi} ∈ E(H ′i)}) is the

required decomposition.

Case 6: Suppose n ≡ 0 (mod 3), α = 0, and that Q has a 2-cycle.

A maximum packing is constructed on the vertex set Zn−3 ∪ {{∞j} | 1 ≤ j ≤ 3}

where the neighborhood of ∞1 is Q = {c0, . . . , cq−1}, where c0 = (∞2,∞3), and the q − 1

other-cycles are defined on the vertex set Zn−3.

Note that n 6= 6, since otherwise Q = C2 ∪C3 and (n,Q) 6= (6, C2 ∪C3) by assumption.

The case n ≡ 3 is trivial. Otherwise w = n − 3 ≡ 0 (mod 3) and 3 ≤ w − 1, so by Lemma

4.4, there exists a K3-decomposition (Zn−3, B) of 2Kn−3 − (E(H ′1) ∪E(H ′2) ∪E(H ′3)) where

H ′1, H
′
2, and H ′3 are 2-regular graphs and H ′1 ≡ Q \ c0.
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Let ({{∞j} | 1 ≤ j ≤ 3}, B3) be a K3-decomposition of 2K3 (where the neighborhood

of ∞1 is the 2-cycle (∞2,∞3)).

Then (Zn−3 ∪ {{∞j} | 1 ≤ j ≤ 3}, B1 ∪ B2 ∪ B3 ∪ {{∞i, ai, bi} | {ai, bi} ∈ E(H ′i)}) is

the required decomposition.

Case 7: Suppose n ≡ 0 (mod 6), α = 0, and that Q has no cycles of length 2 (and hence

one of length at least 4).

First, suppose n = 6. Define B = {{∞1, 5, 0}, {∞1, 5, 1}, {∞1, 0, 2}, {∞1, 1, 3},

{∞1, 2, 3}, {5, 0, 3}, {5, 1, 2}, {5, 2, 3}, {0, 1, 2}, {0, 1, 3}}. Then (Z5∪{∞1}, B) is a maximum

packing of 2K6 such that the neighborhood of ∞1 is C5.

Otherwise for n ≥ 12, a maximum packing is constructed on the vertex set Zn−2 ∪

{{∞j} | 1 ≤ j ≤ 2} where the neighborhood of ∞1 is Q = {c0, . . . , cq−1}.

For each i ∈ Zq, let ci = (ci,1, . . . , ci,li) where li is the length of ci, cj,k ∈ Zn−2 for all

(j, k) 6= (0, 2), and c0,2 =∞2. In this case, n−2 ≡ 4 (mod 6) and thus
(
(n−2)

2

)
−n−2

2
−(n−2−3)

and
(
(n−2)

2

)
− n−2

2
−1 are both divisible by 3, and since n−2 ≥ 10, both quantities are nonneg-

ative. So by Theorem 4.3, let (Zn−2, B1) be a K3-decomposition of Kn−2− (E(H1)∪E(F1))

and by Lemma 4.2, let (Zn−2, B2) be a K3-decomposition of Kn−2−E(H2) where H1 is a n−5

cycle, H2 consists of a K1,3 and (n−2)−4
2

independent edges, F1 is a 1-factor, and H1 and H2 are

named as follows: If l0 = 4, let H1 = (c1,1, . . . , c1,l1 , c2,1, . . . , c2,l2 , . . . , cq−1,1, . . . , cq−1,lq−1) (so

that c0,1, c0,3, and c0,4 are omitted) and if l0 ≥ 5, let H1 = (c0,4, c0,5, . . . , c0,l0 , c1,1, . . . , c1,l1 , c2,1,

. . . , c2,l2 , . . . , cq−1,1, . . . , cq−1,lq−1−1) (so that c0,1, c0,3, and cq−1,lq−1 are omitted). If l0 = 4, let

H2 be defined to contain the edges {ci,1, ci,li} for each i ∈ Zq as well as the edges {c0,4, c0,3}

and {c0,4, c1,2} (note that c1,2 6= c1,l1 since all cycles have length greater than 2 and note that

c0,4 is the vertex of degree 3 in H2) and finally (n−2)−4−2(q−1)
2

arbitrarily named edges. If

l0 ≥ 5, let H2 be defined to contain the edges {ci,1, ci,li} for each i ∈ Zq as well as the edges

{c0,3, c0,4}, {cq−1,lq−1 , cq−1,lq−1−1}, and {cq−1,lq−1 , c1,2} (note that c1,2 6= c1,l1 since all cycles

have length greater than 2, c0,4 6= c0,l0 since l0 ≥ 5, and cq−1,lq−1 is the vertex of degree 3 in

H2) and finally (n−2)−4−2q
2

arbitrarily named edges.
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Note that in each case ∪q−1i=1E(ci)∪E(c′0) ⊂ E(H1)∪E(H2) where c′0 is formed from c0 by

removing the edges {c0,1, c0,2} and {c0,2, c0,3}. Let H ′1 be the graph induced by ∪q−1i=1E(ci) ∪

E(c′0) and let H ′2 be the graph induced by (E(H1)∪E(H2)) \E(H ′1). Then every vertex has

degree 2 in H ′1 and H ′2 except c0,1 and c0,3 both of which have degree 1 in both H ′1 and H ′2.

Then (Zn−2 ∪ {{∞j} | 1 ≤ j ≤ 2}, B1 ∪ B2 ∪ {{∞i, ai, bi} | {ai, bi} ∈ E(H ′i)} ∪

{{∞1,∞2, c0,l} | l ∈ {1, 3}}) is the required decomposition.

Case 8: Suppose n ≡ 1 or 3 (mod 6), α = 0, and that Q has a cycle of length at least 4.

A K3-decomposition of 2Kn will be constructed on the vertex set Zn−2∪{∞1,∞2} such

that the neighborhood of the vertex ∞1 is Q.

Let Q = {c0, ..., cq−1} where for each i ∈ Zq, the cycle ci = (ci,1, . . . , ci,li) has length li,

cj,k ∈ Zn−2 unless (j, k) = (0, 2), c0,2 = ∞2, and l0 ≥ 4. Since n − 2 ≡ 1 or 5 (mod 6), by

Theorem 4.3, there exists a decomposition of Kn−2 into triples and a near-Hamilton cycle.

So let (Zn−2, B1) be a K3-decomposition of Kn−2 − E(H1), where H1 is a near-Hamilton

cycle named so that H1 = (c0,3, c0,4, c0,5, . . . , c0,l0 , c1,1, . . . , c1,l1 , . . . , cq−1,1, . . . , cq−1,lq−1) (so

c0,1 is omitted). Let (Zn−2, B2) be a K3-decomposition of Kn−2 − E(H2), where H2 is the

near-Hamilton cycle H2 = (c0,1, c0,l0 , c1,1, c1,l1 , . . . , cq−1,1, cq−1,lq−1 , v1, . . . , v(n−2)−1−2q) where

v1, . . . , v(n−2)−1−2q omit c0,3 and are otherwise arbitrarily named. (Note that c0,3 6= c0,l0 since

l0 ≥ 4.) Then c0,1 has degree 2 in H2 and degree 0 in H1, c0,3 has degree 2 in H1 and degree

0 in H1, and every other vertex in Zn−2 has degree 2 in both H1 and H2.

Let H ′1 be the graph induced by (E(H1)∪{{ci,1, ci,li} | i ∈ Zq})\({{ci,li , ci+1,1} | i ∈ Zq}∪

{{c0,3, cq−1,lq−1}}) reducing the sum in the subscript modulo q. (Note that {c0,1, cq−1,lq−1} /∈

E(H1) so this edge is not removed). Note that in H ′1 every vertex in Zn−2 has degree 2

except c0,1 and c0,3, both of which have degree 1. Let H ′2 be the graph induced by (E(H1)∪

E(H2)) \ E(H ′1). Note that in H ′2, every vertex in Zn−2 has degree 2 except c0,1 and c0,3,

both of which have degree 1. The set of cycles formed by the components in H ′1 contains

the cycles c1, ..., cq−1 and c′0 where c′0 is formed from c0 by deleting the edges {c0,1, c0,2} and

{c0,2, c0,3}.
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Then (Zn∪{∞1,∞2}, B1∪B2∪{{∞i, ai, bi} | {ai, bi} ∈ E(H ′i), 1 ≤ i ≤ 2}∪{{∞1,∞2, c0,l} |

l ∈ {1, 3}}) is the required K3-decomposition.

Case 9: Suppose n ≡ 1 (mod 3), α = 0, and that Q has a 3-cycle.

A maximum packing is constructed on the vertex set Zn−4 ∪ {{∞j} | 1 ≤ j ≤ 4} where

the neighborhood of ∞1 is Q = {c0, . . . , cq−1}, where c0 = (∞2,∞3,∞4), and the q − 1

other-cycles are defined on the vertex set Zn−4.

When n = 4, the result is trivial, and Q cannot have a 3-cycle when n = 1 (obviously)

or when n = 7 (since then Q = C3 ∪C3, and (n,Q) 6= (7, C3 ∪C3) by assumption). So it can

be assumed that n ≥ 10. Then w = n − 4 ≡ 0 (mod 3) and 4 ≤ w − 1. So by Lemma 4.4,

there exists a K3-decomposition (Zn−4, B) of 2Kn−4 − (E(H1) ∪ E(H2) ∪ E(H3) ∪ E(H4))

where H1, H2, H3, and H4 are 2-regular graphs and H1 ≡ Q \ c0.

Let ({{∞j} | 1 ≤ j ≤ 4}, B3) be a K3-decomposition of 2K4 (where the neighborhood

of ∞1 is the 3-cycle (∞2,∞3,∞4)).

Then (Zn−4 ∪ {{∞j} | 1 ≤ j ≤ 4}, B ∪ B3 ∪ {{∞i, ai, bi} | {ai, bi} ∈ E(Hi), 1 ≤ j ≤ 4}

is the required decomposition.

Case 10: Suppose n ≡ 4 (mod 6), α = 0, and that Q has a cycle of length at least 5.

A maximum packing is constructed on the vertex set Zn−2 ∪ {{∞j} | 1 ≤ j ≤ 2} where

the neighborhood of ∞1 is Q = {c0, . . . , cq−1}.

For each i ∈ Zq, let ci = (ci,1, . . . , ci,li) where li is the length of ci, l0 ≥ 5, cj,k ∈

Zn−2 for all (j, k) 6= (0, 2), and c0,2 = ∞2. In this case, n − 2 ≡ 2 (mod 6) and thus(
(n−2)

2

)
− n−2

2
− (n − 2 − 2) and

(
(n−2)

2

)
− n−2

2
are both divisible by 3, and since n − 2 ≥ 8,

both quantities are nonnegative. So by Theorem 4.3, let (Zn−2, B1) be a K3-decomposition

of Kn−2 − (E(H1) ∪ E(F1)) and let (Zn−2, B2) be a K3-decomposition of Kn−2 − (E(F2))

where H1 is a n− 4 cycle, F1 and F2 are 1-factors, and H1 and F2 are named as follows: Let

H1 = (c0,4, c0,5, . . . , c0,l0 , c1,1, . . . , c1,l1 , c2,1, . . . , c2,l2 , . . . , cq−1,1, . . . , cq−1,lq−1) (so that c0,1 and

c0,3 are omitted). Let F2 be defined to contain the edges {ci,1, ci,li} for each i ∈ Zq as well
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as the edge {c0,3, c0,4} and finally n−2−2q−2
2

arbitrarily named edges. (Note that c0,4 6= c0,l0

since l0 ≥ 5.)

Note that ∪q−1i=1E(ci)∪E(c′0) ⊂ E(H1)∪E(H2) where c′0 is formed from c0 by removing

the edges {c0,1, c0,2} and {c0,2, c0,3}. Let H ′1 be the graph induced by ∪q−1i=1E(ci) ∪E(c′0) and

let H ′2 be the graph induced by (E(H1) ∪ E(H2)) \ E(H ′1). Then every vertex has degree 2

in H ′1 and H ′2 except c0,1 and c0,3 both of which have degree 1 in both H ′1 and H ′2.

Then (Zn−2 ∪ {{∞j} | 1 ≤ j ≤ 2}, B1 ∪ B2 ∪ {{∞i, ai, bi} | {ai, bi} ∈ E(H ′i)} ∪

{{∞1,∞2, c0,l} | l ∈ {1, 3}}) is the required decomposition.

Note that this covers all the cases since Q must contain an odd cycle when n ≡ 2 (mod

6) and α = 0, Q cannot contain all 3-cycles when n ≡ 0 (mod 3) (|Q| = 2 (mod 3)), and Q

cannot consist entirely of even cycles when n ≡ 4 (mod 6).
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Chapter 5

Quadratic Excesses or Paddings of Covers with Triples of λKn

5.1 Introduction

Having found a solution to the quadratic leave problem (completed in Chapter 3), this

chapter will focus on the quadratic excess problem. As mentioned in the introduction,

Colbourn and Rosa found necessary and sufficient conditions for a quadratic graph to be the

excess of a cover of λKn when λ = 1 (see [10]). In this chapter, their results are extended to

all λ (see Theorem 5.2).

5.2 Results

In this section, the main result of the chapter is given, namely necessary and sufficient

conditions for a quadratic graph to be the excess of a cover of λKn (naturally it is assumed

that λ ≥ 1 in this chapter). However, to begin a very well known theorem on maximum

packings and minimum covers of λKn (packings and covers for which the leave and excess

have as few edges as possible) is given.

Theorem 5.1. [14, 23] Let λ ≥ 1 and n 6= 2. Let P (or L) be any multigraph with the least

number of edges in which all vertices have degree congruent to λ(n − 1) (mod 2) and with

|E(P )| + λn(n−1)
2

≡ 0 (mod 3) (or λn(n−1)
2
− |E(L)| ≡ 0 (mod 3) respectively). Then there

exists a K3-decomposition of λKn ∪ E(P ) (or λKn − E(L) respectively).

The statement and proof of the main theorem are now given.

Theorem 5.2. Let Q be a quadratic graph on n vertices. Then Q is the excess of a cover

of λKn if and only if
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1. λ(n− 1) is even,

2. |E(Q)|+ |E(λKn)| ≡ 0 (mod 3), and

3. n 6= 2.

Proof. The necessity of Conditions (1) and (2) follows since each vertex in each triple has

even degree and each triple contains 3 edges respectively. The necessity of Condition (3) is

clear since λK2 + E(Q) contains no copies of K3.

To prove the sufficiency, suppose that (1−3) hold. Several cases are considered in turn.

Case 1: n ≡ 1, 3 (mod 6)

By Theorem 5.1, let (V,B1) be a K3-decomposition of (λ − 1)Kn (with L = ∅). By

Condition (2) and Theorem 1.3, let (V,B2) be a cover of Kn with excess Q. Then (V,B1∪B2)

is the required cover.

Case 2: n ≡ 5 (mod 6)

Let ε ∈ {1, 2, 3} with ε ≡ λ (mod 3). Note that |E(εKn)| ≡ |E(λKn)| (mod 3). Since

n ≡ 5 (mod 6), by Theorem 5.1, there exists a K3-decomposition (V,B1) of (λ− ε)Kn.

If ε = 1 then by Condition (2) and Theorem 1.3, let (V,B2) be a cover of Kn with excess

Q.

Suppose ε = 2. By Condition (2), |E(Q)| ≡ 1 (mod 3). Since n ≡ 2 (mod 3), some vertex

in V has degree 0 inQ, say x. Let c = (c0, c1, ..., ci) be a cycle inQ and let c′ = (c0, x, c1, ..., ci).

Form Q′ from Q by replacing c with c′. Q′ is quadratic on the vertex set V and |E(Q′)| ≡ 2

(mod 3), so by Theorem 1.3, let (V,B′2) be a cover of Kn with excess Q′. By Theorem 5.1,

let (V,B′′2 ) be a maximum packing of Kn with leave the 4-cycle (c0, x, c1, d) where d is any

vertex in V other than c, x0, and x1 (this exists since in this case n ≡ 5 (mod 6) so n ≥ 5).

Let B2 = B′2 ∪B′′2 ∪ {{c0, c1, d}}.

If ε = 3 then by Condition 2 |E(Q)| ≡ 0 (mod 3). Since n ≡ 2 (mod 3), some vertex in

V has degree 0 in Q, say x. Let c = (c0, c1, ..., ci) ∈ Q and let c′ = (c0, x, c1, ..., ci). Form Q′

from Q by replacing c with c′. Q′ is quadratic on the vertex set V and |E(Q′)| ≡ 1 (mod 3),
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so by the previous case in this proof when ε = 2, let (V,B′2) be a cover of 2Kn with excess Q′.

By Theorem 5.1, let (V,B′′2 ) be a maximum packing of Kn with leave the 4-cycle (c0, x, c1, d)

where d is any vertex in V other than x, c0, and c1. Let B2 = B′2 ∪B′′2 ∪ {{c0, c1, d}}.

Then in each subcase (ε = 1, 2, and 3), (V,B1 ∪B2) is the required cover.

Case 3: n ≡ 4 (mod 6)

Since n ≡ 4 (mod 6), by Condition (1), λ is even. By Theorem 5.1, let (V,B1) be a

K3-decomposition of (λ− 2)Kn.

By Condition (2), |E(Q)| ≡ 0 (mod 3). Hence, Q also satisfies the conditions for an

excess for v = n − 1 and λ = 1. So let x ∈ V be an isolated vertex in Q (in this case

|V (Q)| ≡ 1 (mod 3) and |E(Q)| ≡ 0 (mod 3) so such an x exists) and let (V \ {x}, B2) be a

cover of Kn−1 with excess Q. By Theorem 5.1, let (V,B3) be a maximum packing of Kn with

leave Q′ consisting of a K1,3 and n−4
2

independent edges, where the vertex set of the K1,3 is

{w, x, y, z} ⊂ V with y being the vertex of degree 3. Then (V,B1 ∪ B2 ∪ B3 ∪ {{x, ai, bi} |

{ai, bi} is an independent edge in Q′} ∪ {{x, y, z}, {x, y, w}}) is the required decomposition.

Case 4: λ = 2 and n ≡ 0, 2 (mod 6)

First suppose Q consists entirely of 2-cycles and isolated vertices. Hence |E(Q)| is even,

and by Condition (2), |E(Q)| ≡ 0 or 1 (mod 3) when n ≡ 0 or 2 (mod 6) respectively (recall

λ = 2 in this case). Hence |E(Q)| ≡ 0 or 4 (mod 6) when n ≡ 0 or 2 (mod 6) respectively

and thus the number of isolated vertices in Q is equivalent to 0 or 4 (mod 6) when n ≡ 0 or 2

(mod 6) respectively. If Q contains no isolated vertices (so n ≡ 0 (mod 6)), then by Theorem

5.1, for each k ∈ {1, 2} let (V,Bk) be a minimum cover of Kn with the same 1-factor excess.

Then (V,B1 ∪ B2) is the required cover. Otherwise Q contains at least 4 isolated vertices,

and this case is handled below by using the observation in the next paragraph.

Note that if Q is a quadratic graph in which there are three isolated vertices, say a, b,

and c, in Q, then Q is a quadratic excess if and only if Q∪{{a, b}, {a, c}, {b, c}} is a quadratic

excess. If Q contains at least 3 isolated vertices, then add a cycle of length 3 on three of the

isolated vertices to Q.
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In light of the last two paragraphs, to complete the proof of Case 4 it now suffices to

consider the situation where Q has a cycle c = (v0, v1, ..., vx) of length x + 1 ≥ 3. Form Q′

from Q by replacing c with c′ = (v1, v2, ..., vx). Note that |E(Q′)| ≡ 2 (mod 3) and 0 (mod 3)

when n ≡ 0 and 2 (mod 6) respectively. Further note that v0 /∈ V (Q′) and that Q′ satisfies

the conditions for an excess when λ = 1 and n′ = n− 1 ≡ 5 (mod 6) and for an excess when

λ = 1 and n′ = n− 1 ≡ 1 (mod 6). So by Theorem 1.3, let (V \ {v0}, B1) be a cover of Kn−1

with excess Q′.

By Theorem 5.1, let (V,B2) be a maximum packing of Kn with leave a 1-factor F

named to contain the edges {v1, vx} and {v0, d} where d is a vertex for which {v1, vx, d} ∈

B1. Then (V, (B1 ∪ B2 \ {{v1, vx, d}}) ∪ {{v0, ai, bi} | {ai, bi} ∈ F \ {{v1, vx}, {v0, d}}} ∪

{{v0, v1, d}, {v0, v1, vx}, {v0, vx, d}}) is the required cover.

Case 5: λ > 2 and n ≡ 0 (mod 6)

By Condition (1), λ is even. Hence, by Theorem 5.1, let (V,B1) be a K3-decomposition

of (λ − 2)Kn. By Condition (2), |E(Q)| ≡ 0 (mod 3). Hence, by Case 4, let (V,B2) be a

cover of 2Kn with excess Q. Then (V,B1 ∪B2) is the required cover.

Case 6: λ > 2 and n ≡ 2 (mod 6)

By Condition 1, λ is even. Let ε ∈ {2, 4, 6} with ε ≡ λ (mod 6). Note that |E(λKn)| ≡

|E(εKn)| (mod 3) and ε ≡ λ (mod 2) so Q satisfies the necessary conditions for an excess of

λKn precisely when it satisfies the necessary conditions for an excess of εKn. By Condition

(3), n ≥ 8, so by Theorem 5.1, let (V,B1) be a K3-decomposition of (λ− ε)Kn.

If ε = 2, by Case 4, let (V,B2) be a cover of 2Kn with excess Q.

If ε = 4 then by Condition 2 |E(Q)| ≡ 2 (mod 3). First suppose Q consists only of

2-cycles and isolated vertices. Since |E(Q)| ≡ 4 ≡ n (mod 6), the number of isolated vertices

in Q must be a multiple of 6. If Q has no isolated vertices, then let Q′ consist of two of the

2-cycles and Q′′ consist of the remaining n
2
− 2 ≥ 2 2-cycles (n ≥ 8 in this case). Note that

|E(Q′)| ≡ |E(Q′′)| ≡ 1 (mod 3) so by Case 4, let (V,B′2) be a cover of 2Kn with excess Q′
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and (V,B′′2 ) be a cover of 2Kn with excess Q′′. Let B2 = B′2 ∪B′′2 . Otherwise Q has at least

6 isolated vertices; add a 3-cycle on three of the isolated vertices to Q.

It remains to consider the case where Q has a cycle c = (v0, v1, ..., vx) of length x+1 ≥ 3.

Form Q′ from Q by replacing c with c′ = (v1, v2, ..., vx). Note |E(Q′)| ≡ 1 (mod 3) so by Case

4, let (V,B′2) be a cover of 2Kn with excess Q′. By Theorem 5.1, let (V,B′′2 ) be a packing of

2Kn with leave {{c1, cx}, {c1, cx}}. Let B2 = B′2 ∪B′′2 ∪ {{c0, c1, cx}}.

If ε = 6 then |E(Q)| ≡ 0 (mod 3). Since n ≡ 2 (mod 6), there are at least two vertices,

say v0 and v1 such that v0, v1 /∈ V (Q). Form Q′ from Q by adding the 2-cycle (v0, v1). Note

|E(Q′)| ≡ 2 (mod 3), so by the previous case where ε = 4, let (V,B′2) be a cover of 4Kn with

excess Q′. By Theorem 5.1, let (V,B′′2 ) be a packing of 2Kn with leave {{v0, v1}, {v0, v1}}.

Let B2 = B′2 ∪B′′2 .

In each case, (V,B1 ∪B2) is the required cover, so the result is proved.
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Chapter 6

Conclusion

To conclude this dissertation, it seems appropriate to mention some applications of

the work done as well as some future directions of research. Some of the mathematical

applications of the results in this dissertation (such as telling when two 2-fold triple systems

are isomorphic) were already discussed, so at this point, a couple of applications of the

general topic of graph decompositions and structure within them are mentioned in relation

to other topics. One useful application of graph decompositions involves scheduling problems.

For instance, a 1-factorization of K12 would correspond to an 11 week football schedule in

which each team plays each other team exactly once. A structure question related to this

application is whether the schedule could be made so that six fixed games, say rivalry games,

appear on the last week of the season. (Incidentally, this can be done.) In terms of more

scientific applications, there is the following application. In research on viruses, a method

known as the Ouchterlony method tests how antigens interact. Around the edge of a Petri

dish, v of n antigens are placed where they can diffuse, and then the interaction of neighboring

antigens is observed. For research purposes, it may be beneficial to have each pair of antigens

appear as neighbors on exactly λ Petri dishes. This can be modeled mathematically as a v-

cycle-decomposition of λKn. In terms of the research in this dissertation, the topics covered

in Chapter 2 directly correspond to a slight variant of the Ouchterlony method. Suppose

now that there are n + m antigens which are to be placed into two groups, one of size m

and one of size n (for instance one group may share a specific trait while the other group

may share a different trait). It may be desirable to see how two antigens in the same group

interact λ1 times while only seeing how antigens in different groups interact λ2 times. This
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corresponds to a decomposition of the graph λ1Kn ∨λ2 λ1Km that was discussed in Chapter

2.

In terms of future research, several problems seem interesting. An original topic for

this dissertation involved finding necessary and sufficient conditions for a gregarious K3-

decomposition of λ1Km ∨λ2 λ1Kn, where in this setting gregarious simply means that each

triple contains two mixed edges and one pure edge. In [13], El-Zanati, Punnim, and Rodger

solved this problem when λ1 = 1 and λ2 = 2. Little other work has been done on the

subject, although some minor results have been obtained. This would be an interesting

problem to consider, as would the problem of finding necessary and sufficient conditions

for a K3-decomposition (not necessarily gregarious) of λ1Km ∨λ2 λ1Kn when λ1 < λ2; both

problems seem difficult.
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