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Abstract 

 

 

 Ukraine-Russian geopolitical relations over the years have experienced periods of tranquility 

and violence with conflicts since 1917, including the events of the 2014 annexation of Crimea and 

the 2022 Russian invasion of the entirety of Ukraine. These conflicts remain developmental threats 

as their ramifications extend beyond battleground casualties and their assessment requires multi-

perspective analysis. Understanding the spatial dimensions of such conflicts and their 

consequences on physical and social spaces at varying scales could provide credible scientific 

impetuses on which targeted post-conflict remediations could be built. This study therefore takes 

advantage of the capabilities of satellite remote sensing, to provide quick and effective 

spatiotemporal analysis of agricultural landcover change in eastern Ukraine from 2021 to 2023 

while exploring patterns of civilian casualty, and dynamics of information flow on social media 

by examining Twitter #tags to uncover the network of social groups and interrelationships that 

emerged amidst the Russian-Ukrainian war.   
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Chapter 1: Introduction 

 

 

1.1.Background 

 
Ukraine-Russian geopolitical relations over the years have alternatively experienced periods 

of tranquility and swift chaos with violent conflicts dating as far back as the Ukraine-Soviet 

insurgency of 1917 to the most recent conflicts of the 2014 Russian annexation of Crimea and the 

2022 Russian invasion of the entirety of Ukraine. Current major attacks have been reported across 

Ukraine, including the capital, Kyiv, and multiple other urban spaces while the pre-existing 

hostilities in the Donetsk and Luhansk oblasts (states) have significantly intensified (UNHCR 

2022), settling into largely recognizable patterns as other past conflicts of the region. These 

conflicts have remained multidimensional with complex causative factors which interact in 

multifarious fashions, the analysis of which is further complicated by the intensive informational 

wars that accompany them (Mandel 2016; Khaldarova and Pantti 2016).  

Many of these recurrent conflicts in the contemporary era (Aalto 2006; Haukkala 2015) have 

been in part due to an attempt to lock Russia into an institutionalized post-sovereign arrangement 

with the view of creating an essentially unipolar Europe based on the European Union’s liberal 

norms and values. This, however, has been contradictorily met by Russia’s evolving radically 

unfavorable responses to that project, which alternatively aimed at restoring dissolved Soviet 

Union legacies (Haukkala 2015) and reasserting Russian power and influence abroad, particularly 

in the post-Soviet space (Larrabee 2022), since accustomed to being a superpower, the Russian 

Federation found it herculean to imbibe the new normal which seeks to suggest that both its 

importance and influence in global affairs had fallen and that its voice in foreign policy no longer 

conveys much impact (Larrabee 2022).  
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Within these dynamics, Ukraine emerges pivotal in the sociopolitical stability of Europe and 

is of sacrosanct geopolitical interest to both Russia and the West (D’Anieri, Kravchuk, and Kuzio 

1999). To Russia, Ukraine remains a buffer against a possible invasion by the North Atlantic 

Treaty Organization (NATO) (Talabi et al. 2022) owing to its considerable expansion into the 

post-Soviet space, while to the West, an independent Ukraine creates a strong, sovereign state 

through which Russia would have to penetrate before it could renew its threat to regions west (of 

Ukraine) (D’Anieri, Kravchuk, and Kuzio 1999). As symbolized in Figure 1 below, historical 

Soviet Republics such as Estonia, Latvia and Lithuania have become members of NATO, 

sanctioning membership after the collapse of the Soviet Union (NATO 2022). Similarly, such 

countries as Albania, Bulgaria, Romania, Czechloslovakia (Czech and Slovakia), Hungry and 

Poland which were member states of the Warsaw Pact, a historical ‘Russian version’ of NATO, 

are currently members of NATO, with Finland joining in April, 2023 as the thirty-first ally of the 

NATO defense alliance. This eastward expansion is visualized by Russia as a threat to its national 

security, that, which ought to be either curtailed or erased even by radical violence to prevent the 

remaining ‘safe-zone’ post-soviet space, Ukraine, Moldova, Georgia and Belarus, from joining 

NATO.  

 

 

 

 

 



 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The conduct of a political agenda in Ukraine therefore would be for tipping this political 

equilibrium usurping favor for any of these blocks which initiates it. It is therefore unimaginative 

if Russian hostility in Ukraine is regarded as fighting for a version of Ukraine that is subservient 

to Russia's idea of what Ukraine should be: a buffer under a Russian hegemony, where Ukraine's 

national identity, nationhood, ideals, and interpretation of history can be vetted, sanctioned and 

Figure 1: NATO within Ukraine-Russian relations and Eastern European Geopolitics||Source: Deutsche_Welle, 

2023 https://www.dw.com/en/how-russias-invasion-of-ukraine-threatens-geopolitical-order/a-60904451.” 
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vetoed by the Russian State (Knott 2022). It is essential to clarify that, NATO being a collective 

security clique, a case in which an attack on any member state is regarded as an attack on all and 

warrants a collective military action (NATO 2022), Ukraine’s membership and attachment denies 

the Russian Federation its de facto control and military influences in Ukraine (Kuzio 2018).  

The current conflict has been characterized by the functional utility of explosive weaponry 

with varying effects in populated and other areas, including heavy artillery and multiple-launch 

rocket systems (UNHR 2022), with reports of Ukrainian armed force’s equally responsive shelling 

of populated areas in territories controlled by Russian affiliated armed groups in the Donetsk and 

Luhansk oblasts (UNHR 2022). This chaos has drawn a global spectacle and the world has been 

watching its multivariate impacts with concern, as several thousands of civilians were reportedly 

killed and schools among other social facilities so far destroyed (Júnior et al. 2022).  

These violent conflicts remain a developmental issue as their resultant ramifications 

usually are complexly deleterious and extend beyond recorded direct battleground casualties 

(Gates et al. 2012). Military and other forms of armed operations usually target and transpire within 

the physical environment, and thus entail adverse environmental outcomes such as vegetation 

defoliation, structural deterioration, environmental damage, water contamination, land use/land 

cover (LU/LC) modifications (Yin et al. 2019), habitat destruction and fragmentation (George et 

al. 2021) and other impacts. As indicated in Figure 2 below, the ensuing conflict is pragmatically 

associated with destruction of industrial, airport and military facilities, incidents at facilities with 

radioactive materials, attacks on strategic resource control locations, deterioration of port facilities, 

damages to natural and protected areas, among others. As these dissensions may significantly 

fragment economic space (Bar-Nahum et al. 2020), truncate local and macro food supply chains 

and influence both society and the environment (Yin et al. 2019; Baumann and Kuemmerle 2016), 
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they also ignite agricultural land abandonment (Yin et al. 2019) and labor switch, inducing food 

insecurity (Brück and d’Errico 2019) and other unexpected outcomes.  

Other significant imprints of the current conflict have been assessed in relation to energy 

costs, household consumption expenditures, global remittance flow, healthcare, food security, 

vaccine diplomacy, stock market returns and internet universality. The continuous ascendance of 

energy prices, dwindling confidence in the economy including financial markets plagued with bold 

international sanctions were for instance opined by (Liadze et al. 2022) as the main impacts of the 

conflict on the world economy. The works of Boubaker et al. (2022) pointed negative cumulative 

returns for global stock market indices as an impact of the escalating conflict, while Roborgh et 

al. (2022) maintains the position that the conflict has created another 21st-century humanitarian 

disaster. Similarly, Bluszcz and Valente (2022) cited both civilian casualties and 15.1 percent per 

capita of GDP foregone as imprints of the conflict just as Kismödi and Pitchforth (2022) espoused 

forced migration, sexual and reproductive health as well as human right crisis as issues in the 

context of the Russian-Ukraine war for Ukraine, on which international attention must focus. 
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Despite growing studies on the multifaceted impacts of this conflict, there is yet a study to 

be conducted specifically on its impacts on agricultural landcover in Eastern Ukraine, limiting 

insights into the susceptibility of agricultural space in this region to evolution amidst geopolitical 

chaos. This study therefore employed a socio-geospatial methodology, integrating remote sensing 

spatiotemporal landcover analysis with Sentinel-2 constellation datasets, and Social Network 

Analysis (SNA) with Twitter data to explore the impacts of the 2022 Russian-Ukrainian war on 

landcover and crop fields in Eastern Ukraine while assessing online colloquial social structures 

and patterns of information flow that emanated during the period. Specifically, the study 

Figure 2: Map of environmental issues stemming from Russia's invasion of Ukraine. This map was produced by Zoï 

Environment Network www.zoinet.org and published on March 2nd, 2022. 
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investigated what LC underwent the most drastic change in the Kharkiv and Luhansk Oblasts 

during June 2021, June 2022 and June 2023, examined the spatial extent and rate of decline of 

agricultural vegetation in Luhansk and Kharkiv, explored spatial patterns of civilian casualty, and 

conducted a social network analysis to uncover social clusters and relations on the communication 

of war information from February 2022 to October 2023. 

 

1.2.Study Area 

 
The Kharkiv and Luhansk oblasts in Eastern Ukraine as shown in Figure 3 are two of the 

country’s five proximal oblasts sharing boundaries with the Russian Federation. Located at 49 5̊9ʹ 

33ʺ, 36 ̊13ʹ52ʺ at the confluence of the Uda, Lopan, and Kharkiv rivers (Britannica 2022a), the 

Kharkiv oblast extends to a total surface area of 31,400km² covering about 5.23 percent of the 

county’s land surface of 600,000 km² (GeoHack 2022b) while Luhansk encompasses a surface 

area of 26, 684 km² (4.45% of Ukraine) and is located at the confluence of the Vilkhivka and 

Luhanka rivers (Internet Encyclopedia of Ukraine, 2022) at 48˚ 55ʹ 12ʺ, 39˚ 1ʹ 12ʺ (GeoHack 

2022a). Both oblasts together cover the longest segment of Ukraine’s eastern national land 

boundary with Russia, with Donetsk to the southwest, and Russia to the southeast, east, and north, 

rendering them two of the five most spatially proximate oblasts to Russia. These oblasts together 

with Donestk territorially comprise Ukraine’s Eastern sub-region, a section of which is 

colloquially known as the Donbas, an enclave plagued with repeated violent chaos and Russian 

infiltration. As a prominent fraction of the region remains under separatists' control since 2014 

(ICJ 2018), state structures had also become benumbed initiating the region into a quasi-state 

(Aljukov 2019).  
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With its capital, Kharkiv, the Kharkiv Oblast hosts a 2022 population of 2.6 million inhabitants 

(City Population 2022) and has a humid continental climate with long, cold, snowy winters, warm 

to hot summers, and average rainfall totals of 519mm (20in) per year, with the most rainfalls 

recorded in June and July. The oblast has a topographic range of 93m to 218m with an average of 

148m above sea level. Its capital, Kharkiv, was founded around 1655 as a military stronghold for 

protecting Russia’s southern borderlands (Britannica, 2022) and grew to become a major center of 

industry, trade, and Ukrainian culture. The Luhansk Oblast on the other hand has a total population 

of about 2.1 million people and a 2022 population density of 78.81 per kilometer square (City 

Figure 3: Study Area; Map of Ukraine, with the Kharkiv and Luhansk Oblasts in Perspective. 
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Population 2022) 87% of which is urban (Internet Encyclopedia of Ukraine 2022). Having a 

temperate-continental climate with dry and hot summers and cold winters, the oblast experiences 

an annual precipitation range of about 500 to 550 mm (19.69 to 21.65 in) with moisture deficits 

notably in the south, where dry winds and dust storms commonly present themselves in the spring 

(Internet Encyclopedia of Ukraine 2022). Cropland areas account for approximately half of the 

region’s spatial extent and was a leading producer in gross regional product until 2014 when it 

experienced a 59% decrease in total regional output compared to 2015 figures (Britannica, 2022).  

1.3.Study Objectives 

 

The aim of this study is to assess the impacts of the 2022 Russian-Ukrainian war on landcover 

and agricultural fields in Eastern Ukraine while assessing social structures that emanated from 

online communication and war information dissemination during the period. The specific 

objectives of the study are as follows: 

• Investigate the spatial evolution of landcover, and rate of decline in agricultural vegetation 

in the Kharkiv and Luhansk Oblasts between 2001 and 2023. This objective stems from 

the hypothesis that, there has been a rampant deterioration of crop fields and unharvested 

crops in Ukraine and this forms one of the most pronounced effects of the conflict for 

Ukraine, severing global food supply chain and spiking food crisis. 

• Examine the flow of social media information, social structures and networks that emerged 

on Twitter during the conflict period. It is hypothesized that the current conflict is 

characterized by intense communications framing and selective reportage, with social 

media users’ engagement with and acceptance of information dependent on which political 

block they are affiliated to.  
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• Assess the spatial pattern of civilian casualty in Kharkiv and Luhansk during the conflict 

period. This objective emerged from the hypothesis that the closer a location is to an urban 

space, the severe its recorded casualties. 

1.4.Research Questions 

 

• How did conflict modify the geospatial character of landcover and agricultural fields in 

Eastern Ukraine between June 2021 and June 2023? 

• What social networks and structures emerged from online communication and war 

information dissemination during the 2022 Russian-Ukrainian war? 

• What is the spatial pattern of civilian casualty in Kharkiv and Luhansk during the 2022 

Russian-Ukrainian war? 

1.5.Outline of the Study 

 
This study is sectioned into five chapters, incorporating remote sensing, spatial analysis and 

social network analysis to explore the conflict and its impacts on landcover and agricultural fields 

while examining the spatial patterns of civilian casualty and social media information flow.  

Chapter One provides a comprehensive background on Eastern European geopolitics and 

political dynamics for Ukraine amidst its relations with NATO and the Russian Federation. This 

chapter also sets out the objectives of the study, hypotheses, questions, the study area, thesis outline 

and significance. 

Chapter Two provides a detailed review of related literature on Ukrainian agriculture, remote 

sensing applications and technologies in LU/LC change and conflict assessment, social media in 

Ukraine and social network analysis. 
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Chapter Three details a section of the thesis accepted for publication in the Special Issue; Earth 

from Above: AmericaView, Remote Sensing, and Geospatial Technology in The Geographical 

Bulletin. This chapter includes the aspect of the thesis that focused on remote sensing 

spatiotemporal environmental change and detection of agricultural land declination and 

abandonment. The chapter consisted of an introduction on post-Soviet geopolitics in Ukraine, 

remote sensing of conflict, agriculture in Ukraine and breadbasket in Europe, an overview of the 

study area, study methodology, results and discussions, and conclusion. 

Chapter Four consists of the social network analysis of Twitter information flow during the 

2022 Russian invasion of Ukraine. The chapter recapitulates the role of social media in the visual 

framing of conflict, dissemination of information and propaganda, contribution of both spatial and 

sociological data for research, and social network analysis. This chapter also provides 

comprehensive information on the varying datasets used for this section of the study, processing 

methods, results and discussions as well as conclusion. 

Chapter Five provides a comprehensive summary of the study and elucidates conclusions 

specific to each study objective while drawing out the importance of the research and its 

contributions to academic literature on the explored topics. 

1.6.Significance of the Study 

 
Armed conflicts remain an active driver of geo-environmental change, imposing varying 

socioeconomic and physical implications, the understanding of which mostly remains partial. This 

research provides practical evidence on the immediate impacts of conflict on landcover in general 

and agricultural fields in specifics. By focusing on Eastern Ukraine, the study accentuates the 

importance of remote sensing as a valuable tool for monitoring and analyzing environmental 

evolution in conflict zones while adding to the broader discourse on the environmental 
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consequences of armed conflicts, enriching the field of environmental security and conflict studies. 

The statistical explorations quantifying rates and extents of change in landcover classes, especially 

the decline in agricultural vegetation and land abandonment shed light on the vulnerability of 

agricultural spaces to warfare. While confirming some findings of pre-existing literature, 

discoveries from the spatial analysis and social network analysis can inform policymakers and 

international organizations on the immediate environmental repercussions of Russia’s invasion of 

Ukraine, emphasizing the need for targeted interventions and aid in post-conflict reconstruction 

efforts. Understanding these impacts could facilitate the development of effective strategies for 

mitigating environmental degradation and promote sustainable recovery.  

While highlighting the gaps in the understanding of conflict-induced landcover trajectories, 

this study also sets the stage for future investigations into the 2022 Russian-Ukrainian war that 

could delve deeper into the temporal continuum of post-conflict landcover changes, integrating 

socio-environmental impacts such as population displacement, water contamination, and 

agricultural disruptions. This paves the way for comprehensive studies addressing the full 

spectrum of conflict-induced environmental ramifications even in other regions. In essence, this 

study offers valuable insights into the immediate effects of conflict on agricultural landcover 

through remote sensing techniques, laying the groundwork for further research and informing 

policies aimed at mitigating the environmental impact of conflicts on land systems and livelihoods. 
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Chapter 2: Literature Review 

 

2.1. Agriculture in Ukraine and Breadbasket in Europe 

 

Following the collapse of the Union of Soviet Socialist Republics (USSR) in December 1991 

(Strayer 1998) and the subsequent independence of Ukraine, the country’s agriculture has been 

uniquely evolutionary (Sheldon 2022). State and collective farm systems were dismantled, farm 

properties and land shares were divided among farm workers and these shareholders subleased 

their newly acquired parcels of land to newly formed private agricultural associations (WDC-

Ukraine 2020). About 71 percent of the country's land surface area was subjected to intensive 

agriculture with a primary focus on food crops such as barley, wheat, corn, rice, sugar beets, 

soybeans, and potatoes, as about eighty percent of these lands were chiefly arable (Advameg 2023) 

and have agriculturally conducive climate (Khalatur 2017). Crop production was actively 

complemented by husbandry in the first seven years of Ukraine’s independence and the production 

of beef, veal, lamb, pork, chicken, horse, and rabbit generated $1.898 billion in gross national 

income and a total of $899 million in balance of payments for 1998 alone (Advameg 2023). Within 

this period, leading consumer crops such as potatoes, sugar beets and wheat recorded 

macroeconomic aggregates of 15.4 million metric tons, 13.89 million metric tons and 13.47 million 

metric tons respectively. Pork production totaled 668,000 tons, chicken with 194,500 tons while 

beef and veal collectively generated 786,000 metric tons (Advameg 2023) drifting Ukraine 

towards a regional export economy. 

The subsequent introduction of intensive technologies of precision agriculture, irrigation, 

mechanization, increased scientific breeding including the creation of genetically modified 

varieties of crops facilitated a new level of agricultural development (Demydenko et al. 2018; 
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Orekhivskyi 2019) operated both by enterprises and individual households (Fileccia et al. 2014). 

Ukraine remains a leading exporter of agricultural products and plays a critical role in the global 

market supply of grains and oilseeds (USDA 2022) to about 146 countries globally in 2020 alone 

(WITS 2020) while controlling a significant global market share of 50 percent in sunflower oil 

(Lee 2022), 15 percent in corn, 13 percent in barley, 10 percent in wheat (Sheldon 2022) and is 

still regarded as the breadbasket of Europe (Osborne and Trueblood 2002; Lee 2022). Jointly with 

Russia, Ukraine between 1988 and 1990 contributed more than 70 percent of the total USSR 

agricultural outputs including meats and grains, a pattern that still holds for the post-soviet space 

and Eastern Europe today (Osborne and Trueblood 2002). Prior to the current conflict, Ukraine 

(together with Russia) provided 30 percent of the world’s wheat and one-fifth of maize exports, 

with at least 50 other nations relying on both for about 33 percent of their wheat imports (FAO, 

2022a; Yazbeck et al. 2022), while accounting for 19 and 4 percent of global output of barley and 

maize respectively between the 2016/17 and 2020/21 fiscal years (FAO 2022b). 

The current state of agriculture in Ukraine is however characterized by deep crisis resulting 

from the combined effects of the general economic character, inadequacies in agricultural policy 

(Khalatur 2017), and war (Berkhout, Bergevoet, and van Berkum 2022). Despite promising 

prospects for recently produced crops in Ukraine, the ensuing conflict has truncated farmers’ 

access to crop fields for harvesting (Yazbeck, et al. 2022), disturbing shipping and export, supply 

and pricing (Hassen and Bilali 2022). About 20 to 30 percent of crops remain unharvested during 

the 2022/23 season while yields are expected to decline as well (FAO 2022b). Military actions on 

critical transport infrastructure particularly on port facilities and railroads dwindled Ukraine’s 

ability to transport agricultural products both for exports and domestic market distribution. About 

95 percent of grain exports in Ukraine are transported through the ports of Odessa, Mariupol, and 
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Kherson (Hassen and Bilali 2022), all of which have experienced significant levels of deterioration 

while all Black Sea ports have also been blocked (Hassen and Bilali 2022). As the conflict 

continues to ensue between these major agricultural powers, it evidently imposes significant 

negative implications on the general socio-economy and food security of not only the region but 

the global economy (Hassen and Bilali 2022). Global prices for food, fertilizer and fuel have 

surged significantly in recent months in response to market fallouts from the conflict in Ukraine 

and sanctions on Russia (Abay et al. 2022) while long-term market disruptions are still expected 

for grains, especially wheat, maize and soybeans (Wall Street Journal 2022; Benton et al. 2022).  

The interactivity between violent conflicts and agriculture manifests in several dimensions 

(Zurayk, Woertz, and Bahn 2018). Violent conflicts impact agricultural lands either directly 

through the destruction and burning of crop fields or indirectly through water contamination, soil 

acidification, and declination of farm inputs (Yin et al. 2019), and may induce changes in 

vegetation similar to the effects of drought (Beurs and Henebry 2008). These similarly influence 

micro-agricultural and labor markets, transaction costs, agricultural networks (Justino 2011), and 

in the presence of non-state actors could consequently dictate consumption patterns, especially to 

households (George, Adelaja, and Awokuse 2021). 

Land systems, social, economic, and agricultural systems remain susceptible to pronounced 

evolutions, particularly in conflict-afflicted spaces (Baumann and Kuemmerle 2016) with conflict 

engineering biophysical transformations both via the displacement of human populations and 

agricultural land desertions which in some cases cause the reduction of farmlands and increased 

forest cover (Eklund, Persson, and Pilesjö 2016). As changes in agricultural land use represent the 

largest impact of some wars on the landscape, the detection of trends in the intensity and 

agglomeration of vegetative biomes via the utility of satellite imagery and other photogrammetric 
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data play functional roles in identifying and quantifying the impact of such wars both on the spatial 

extent and output of agricultural lands (Witmer 2008). 

2.2. Remote Sensing of conflict 

 

The emergence of robust imaging technologies, classifier algorithms, computational devices, 

and simulations in contemporary geospatial science inquiry has advanced the remote observation 

of geographic phenomena in space in temporal fashions, facilitating not only the monitoring of 

their evolutionary patterns through time but also the assessment of both their instantaneous and 

incessant domino effects over time. The evaluation of the spatial signature of violent conflicts is 

by no means an exception, even in geo-urban enclaves. The utility of remotely sensed imagery to 

detect the effects of violent conflicts has experienced a dramatic increase in recent years (Witmer 

2015) with specific concerns on the urban dimensions of such conflicts  (Höglund et al. 2016). 

Understanding the spatial dimensions of these conflicts (and for that matter, wars) involves the 

task of digging into the complexity of space, which requires multidimensional methodologies of 

analysis to which urban mapping as a primary method of spatial analysis is essentially relevant 

(Ristic 2018). As geographic technologies have made significant contributions to military 

effectiveness, the preparation for war and the valuation of the geographic extent of the physical 

impacts of war provided the impetus for the rapid redevelopment of geographic technologies 

(Corson and Palka 2004; Witmer 2015). To this effect, remote sensing technology has been driven 

by these military applications, with the use of satellite imagery and aerial reconnaissance tied to 

improving the effectiveness of military operations (Witmer 2008). 

The relevance of the comprehension of the spatial dimensions and consequences of violent 

conflicts has been highlighted in a growing body of scholarship from the fields of geography, urban 
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design, architecture, history, politics, and sociology, with a series of concepts emerging to theorize 

the relationship between geo-urban space and warfare (Ristic 2018). The continuous 

improvements in the spectral, spatial, and temporal resolution of satellite imagery, aerial photos, 

and other digital photogrammetric products in recent times have made it possible to apply very 

high-resolution geospatial data for the assessment of the aftermaths of war, (Witmer 2008) 

including LU/LC change, structural damage, (Witmer 2015) vegetation dynamics, (Mao et al. 

2012), and a variety of global land processes, (Tucker et al. 2005). As existing geospatial science 

literature dug into the complexity of these aftermaths of armed conflicts, further research assessed 

which change detection and classifier algorithms are best suited for specific aftermaths under 

study. Witmer (2008) proposed that the literature which seeks to consider the footprints of war 

using satellite imagery can be grouped into two categories; of those focusing on direct impacts 

resulting from bomb detonations, military movements, and minefields, and of those considering 

indirect impacts that result from displaced persons and their environmental imprints (both 

internally displaced populations and refugees). There seems, however, an emerging additional 

(third) category that aims at testing and enhancing the remote sensing technologies and science 

used in studying Witmer’s two categories. This category of the geospatial science literature focuses 

its attention on what kind of sensor product best presents a suitable resolution(s) for the better 

study of the specific aftermath, as well as what analytic algorithm (machine learning, cellular 

automata, neural networks, etc.) best presents high accuracy results for a specific issue. These 

visual interpretations of pre and post-crisis fine-resolution satellite imagery have become the most 

straightforward method for discriminating the spatial footprints of violent conflicts (Al-Khudhairy, 

Caravaggi, and Giada 2005a) and remote sensing and aerial photogrammetry play significant 

leading roles in providing necessary data for spatiotemporal analysis (Kaplan et al. 2022), as well 
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as LU/LC products for large areas at regular intervals (Zeng et al. 2010; Nyamekye et al. 2020; 

Friedl, Brodley, and Strahler 1999) for such purposes. 

Civil war and other forms of violent conflicts that displace human populations are influential 

underlying drivers of LU/LC change (Geist and Lambin 2002; Gbanie, Griffin, and Thornton 

2018) as are such other causal mechanisms as urban expansion and agrarian extensification 

(Nyamekye, et al. 2020). Land cover in its most definitive conceptualization is described as the 

observed (bio) physical cover of the earth’s surface (Gregorio 2005) which is a “critical descriptor 

of the earth’s terrestrial surface” (Wulder et al. 2018). In geo-urban spaces, anthropogenic 

engagements subject LC to rapid evolution (Phiri et al. 2020; Kursah et al. 2023) and is therefore 

a chief functional consequence of general man-land interrelationships. These interrelationships are 

characteristically reflexive of the human employment of the land (Meyer and Turner 1996), that 

is, the function to which a land parcel within the defined space is put. As such, land use (LU) 

determines both the type and character of land cover (LC) within space while the LU permitted 

within this space is also dependent in part on the pre-existing LC within the space and the 

environmental possibilism technology and capital sanction in the space, within time. There is 

therefore a repeated, ongoing cyclical relationship between LC and LU, moderated by man with 

the aid of technology and liquid capital, over time. Post this period, the effigy(ies) of the LU 

becomes the LC and/or determines and shapes the LC while this resultant LC in return bears 

influences on what other future LU occurs within the space.  

Drivers of land cover change are distinguished into proximate and underlying causes (Lambin 

et al. 2001; Wilson and Wilson 2013). As proximate causes directly modify land cover, underlying 

causes operate at scales encompassing national, regional, and global levels, exhibiting complex 

interactions and may include social, political, economic, demographic, technological, cultural, and 
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biophysical factors (Wilson and Wilson 2013). Changes to LU and LC typically take months to 

years to manifest, following a period of violent conflict. While violent conflict is the underlying 

causal factor, typically one or multiple proximate causes such as displacement/relocation, livestock 

decline, economic recession, security restrictions or landmine placement may also be responsible, 

(Witmer 2015). While qualitative sampling may aid in uncovering the proximate factor(s) at play, 

remote sensing and GIS help detect the geospatial extent of the underlying causal mechanism—

violent conflict.  

2.3. Pixel-based Classification 

 
Image classification is a commonly utilized method for extracting LU/LC information from 

satellite data and many classification algorithms have been experimented in such investigations 

(Gao and Mas 2008). The classification and extraction of LU/LC information from remotely 

sensed data can be categorized into the two general approaches of pixel-based classification and 

object-based classification (Duro, Franklin, and Dubé 2012) otherwise referenced as Geographic 

Object-based Image Analysis (GeoBIA). As machine and deep learning algorithms could be 

applied in both methods and verified with confusion matrices and/or kappa statistics to quantify 

the quality and accuracy of results (McIver and Friedl 2001), both approaches have been proven 

to achieve varying levels of exactitude and precision (Whiteside, Boggs, and Maier 2011; Weih 

and Riggan 2010; Estoque, Murayama, and Akiyama 2015; G. Chen et al. 2018; Thomas Blaschke 

et al. 2014; Al-Khudhairy, Caravaggi, and Giada 2005; Jones et al. 2019). Earth observation 

information usually useful for such inquiries are captured by panchromatic sensors, synthetic 

aperture radar, and lidar, hyperspectral and multispectral scanners with a minimum of two sensors 

operating at red and near-infrared wavelengths (Belward and Skøien 2015) at varying spatial, 

temporal and radiometric resolutions. Since these imagery data consist of rows and columns of 
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pixels, typical LC analysis has been based on single pixels (Gao and Mas 2008) using spectral 

reflectance stored as digital numbers in the satellite data (Gao and Mas 2008).  

Conventional classification algorithms are pixel-based (Jixian and Zhengjun 2005), 

analyzing the spectral properties of each pixel, creating pixel-level clusters and such classification 

methods as k-means, neural networks, support vector machines, random forest, etc., which are 

widely applicable for 10-30 meter spatial resolution images (Guo et al. 2018). The overall 

objective of these classifiers therefore is to automatically categorize each pixel in an image into 

specific land cover classes (Jixian and Zhengjun 2005) using a typical workflow that includes a 

decision on the sensor product and algorithm, developing a classification scheme, training samples, 

feature extraction, image pre-processing, classification, precision validation and change detection 

(Varma et al. 2016).  

2.4. Geographic Object-based Image Analysis 

 
 Remote sensing technologies have not only made possible the study of physical changes 

and patterns but also made available a great deal of LU/LC information as well as the necessary 

tools for studying and understanding these changes within space and over time, (Babalola and 

Akinsanola 2016). This has facilitated the temporal comparison of phenomena in space over 

varying durations of time and across space within a specific duration of time. Analyzing the 

trajectories of LU/LC can occur at fine temporal scales of less than a year, to broader scales of half 

a decade or more, and can be conducted within urban, rural, local, regional and global scales, 

(Wilson and Wilson 2013), presenting an uncommon perspective of the spatial and temporal 

dynamics of LU/LC processes (Gregorio 2005; Kafi, Shafri, and Shariff 2014). In such contexts, 

pixel-based classifiers received appropriate acceptability and were widely applied in many remote-

sensing investigations (Emran et al. 2020) but the proliferation of high-resolution imagery with 
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their associated high-frequency intra-class heterogeneity and horizontal layovers introduced 

further sophistications in image processing (Im et al. 2008) which pixel-based classifiers cannot 

handle without the introduction of considerable errors (Blaschke et al. 2014a). This initiated a shift 

from this category of classifiers toward a new paradigm that incorporates not only pixels but also 

the contextual attributes of the associated neighborhood.  

Geographic Object-Based Image Analysis (GeOBIA) entails a set of digital image analysis 

approaches in remote sensing that study spatial phenomena by extracting and analyzing visually 

perceptible objects in space (Castilla and Hay 2008; Blaschke 2010; Chen et al. 2018), replicating 

human interpretation of remotely sensed data in automated/semi-automated approaches that 

facilitate, iteration, repeatability and re-production, while reducing subjectivity, labor and time 

costs (Hay and Castilla 2006). GeoBIA builds on older segmentation, edge-detection, feature 

extraction, and classification concepts that have been historically used in remote sensing image 

analysis for decades (Blaschke et al. 2014b), but has nevertheless provided a new, critical bridge 

between the spatial concepts applied in multiscale landscape analysis (Wu 1999). GeOBIA is 

essentially useful for remote sensing land cover analysis (Lizarazo and Elsner 2009) and has 

created a novel and robust paradigm for analyzing high spatial resolution imagery with advanced 

object-based models in a wide variety of real-world applications (G. Chen et al. 2018). As assumed 

that groups of raster pixels contained in imagery are in tune with geographic objects of the 

corresponding physical space, GeOBIA delineates clusters of these similar neighboring pixels that 

share a common landcover attribute into image objects and holds these image objects as the basic 

unit of the analysis (G. Chen et al. 2018). The use of GeOBIA, however, is not limited to images 

with small-resolution cells ( Blaschke et al. 2014a) and its evolutionary algorithms lay out the 
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relationship between the spatial resolution and the object under consideration, thereby overcoming 

challenges associated with pixel-based classifiers (Blaschke 2010; Ma et al. 2017).  

GeoBIA incorporates both the spectral information of color and tone as well as spatial 

attributes of size, shape, texture, and neighborhood associations (Laliberte et al. 2004) and 

therefore accounts for homogeneity, pattern, shape, position, and other conditions of a complex 

and high-resolution satellite data (Emran, Marzen, and King 2020), getting closer to human visual 

image interpretation (Laliberte et al. 2004). In considering the information contained in satellite 

data as spatial, it is more appropriate to analyze objects georeferenced to space; a region of interest, 

as opposed to pixel reflectance, because landscapes consist of patches and objects that are spatially 

detectible (Laliberte et al. 2004).  

2.4.1. Image Segmentation 

 
Image segmentation is the fragmentation of a raster dataset into image primitives (Jones et 

al. 2019) and acts as the fundamental step on which a GeOBIA workflow is dependent (G. Chen 

et al. 2018). The process of segmentation partitions an image into non-overlapping spatially 

continuous regions termed segments (Blaschke et al. 2014b) which are designated as categorical 

land cover classes (Lizarazo and Elsner 2009) on the basis of homogeneity (Blaschke 2010) 

spectral property, shape, texture, size and associated topological objects (Im et al. 2008). Computer 

vision algorithms in image classification are less able for instance to distinguish between rivers 

and canals as a human eye would, since both have the same spectral signature as contained in 

pixels but segmentation in GeOBIA groups these pixels together as digitized vector objects and 

replicates how a human eye would visualize them; as objects (GISGeography 2014). As these 

image objects are merged with other image primitives, they produce hierarchies that though 

spatially continuous, retain statistically discrete properties which can be used for advanced analysis 
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(Lang 2008; Jones et al. 2019). These consequent analyses result in image objects that could be 

attributed with class labels that correspond to such spatial phenomena as land cover classes or 

categories of vegetative biomes (Jones et al. 2019). This shift from pixel spectral signatures to 

meaningful objects in space permits rule-based image analysis (Hay and Castilla 2006; Jones et al. 

2019) and caters for the high-accuracy limitations associated with pixel-based classifiers.  

As explicated by Benz et al. (2004), these image objects, otherwise referred to as segments, 

become the basic processing units of GeOBIA and within each of these segments, pixels are 

homogenic and correspond to actual-ground objects (Weng 2010). Several segmentation 

techniques are applicable in GeOBIA and may include the multi-resolution segmentation (MRS), 

spectral differenced segmentation (SDS), multi-threshold, contrast filter, contrast split, chessboard 

and quadtree based segmentation, among others. As such, the appropriate segmentation technique 

needs to be selected and executed with caution as under-segmentation results in a mixture of 

different features, while over-segmentation creates divided features (Weng 2010).  

Multi-resolution segmentation is a region-based algorithm (Y. Chen, Chen, and Jing 2021) 

that locally minimizes the average heterogeneity of segments for a given resolution. It segments 

images with a homogeneity threshold which usually is a provided scale parameter while exporting 

the segmented polygons. It usually is used as an initial step in LU/LC and change detection 

workflows as it generates segments with optimum geographical significance and strong 

adaptability (Hay et al. 2003; Y. Chen et al. 2021) and therefore remains one of the most successful 

image segmentation algorithms in the GeOBIA framework (Aguilar et al. 2016). With the multi-

resolution segmentation, however, scale, shape, and compactness become fundamental parameters 

available to the analyst, which may affect the performance of the algorithm (Aguilar et al. 2016) 

as large scales could result in small segments being covered by larger segments—under-
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segmentation—whereas small scales could create fragmentary segments—over-segmentation as 

depicted in Figure 4. It is therefore essential to utilize optimal scales for this algorithm as this will 

enhance the accuracy of the classification and change detection (Y. Chen et al., 2021).  

These three primary constants of scale, compactness and shape basically influence MRS 

(Liu et al. 2012; Emran et al. 2020) and despite its suitability for generating meaningful segments 

adaptable to the spatial pattern of land cover distribution (Mugiraneza et al.,  2019), it uses user‐

defined constants (Emran et al. 2020). Adjusting these parameters produces varying results. The 

determination of optimal parameters for segment delineation therefore is dependent upon repeated 

trials and pretests by the researcher to decide which provides the most suitable contextual 

information for the study area (Jones et al. 2019). Figure 5 below for instance indicates six 

consecutive MRS scale parameters tested with the default shape and compactness values of 0.1 

and 0.5 respectively with each multispectral band weight of 1 except NIR which was given the 

weight of 2 due to its depiction of vegetative information (Elvidge and Chen 1995).  

Figure 4: Relationship between segmentation scale and evaluation index. Source: Y. Chen et al., (2021). 



 34 

 

Scale parameters below 20 (b:10, c:15) well segmented the south-east swift flowing river, 

while a:5 created over-segmented objects with hardly discernible boundaries. However, they all 

hindered the visual inspection of segments depictive of crop fields. Parameters above 20 (e:35, 

f:60) both performed better at segmenting crop fields but grouped pixels of different LCs into the 

same segments in regions southwest. The scale parameter of 20 (d) resolved this error but based 

 

Figure 5: Determination of scale parameter, shape, and compactness. 
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on its handling of crop fields would need to be combined with other segmentation algorithms in a 

hierarchical multi-level bottom-up segmentation ruleset as suggested by (Liu et al. 2012; Benz et 

al. 2004) for a subset of the region as experimented in (Jones et al. 2019)  and reapplied on the 

entire region of interest. These rulesets allow for the hierarchical link within image objects, as 

previously created segments are linked with other objects and attributes created from them 

(Mugiraneza, Nascetti, and Ban 2019). This algorithm will be utilized in a future study to further 

explore insights uncovered in this study by the pixel-based classifiers.  

2.5. Social Media in Ukraine 

 
 Social media has created a conversational territory for the visual framing of conflict and 

conflict narratives and has become an integral part of contemporary warfare, affecting not only the 

public perception of conflict but also policy decisions about these conflicts and how their history 

is captured by historians (Makhortykh and Sydorova 2017). It has by far reshaped the dynamics 

of war reportage both in Ukraine and around the world (Suciu 2022). In Ukraine, much of the 

conflict period communication was more about identity and media (Dyczok 2014) with social 

media becoming important information sources which were often picked up and disseminated by 

mainstream and global media outlets (Dyczok 2014). Government institutions, civilians and the 

armed forces engaged social media platforms in communicating both their successes and the losses 

of opposing forces (Suciu 2022). These include both authentic and completely imaginative 

storylines, notable of which was “the computer versions of a combat flight simulator—The Ghost 

of Kyiv” (Mallick 2022; Galey 2022).  

Social media discourse and public opinion are inextricable parallel systems of constructing 

meaning, creating and presenting interpretive packages for relevant issues and events (Gamson 

and Modigliani 1989). The use of social media has contemporarily become increasingly prevalent, 
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and its influences have been felt in many facets of human life, including war, and in the context of 

the Russian-Ukrainian conflict, has been used to inform, recruit fighters, disseminate propaganda 

and shape public opinion (Hoskins 2022; Mallick 2022; Alberti and Serio 2020). With the onset 

of the Crimean crisis and its subsequent annexation, the sole official structure for the resolution 

and management of conflict in Ukraine has been the Minsk Agreements clinched between Ukraine 

and Russian-backed separatists, with Russia, Germany and France as guarantors (Rojansky 2016) 

which have nonetheless been unable to remedy the reality of Russia’s de facto control over Crimea 

and the recurrent violent conflicts in Ukraine’s Donbas (Rojansky 2016). Evident within these 

insurgencies were the important roles played by social media in mobilizing civil society 

(Pospieszna and Galus 2019), constructing visual frames by both pro-Ukrainian and pro-Russian 

online communities (Makhortykh and Sydorova 2017), instigating regime changes (Brantly 2019), 

active disinformation campaigns (Mallick 2022; Mejias and Vokuev 2017), diffusion of 

information, compounding and facilitation of pre-existing social network ties (Onuch 2015) as 

well as the facilitation of the exchange of psychological contents in support of and opposition to 

protest activities (Jost et al. 2018).  

Nonetheless, social media has equally provided a universal communication infrastructure 

for seeking help by war-affected populations during the Ukrainian conflict (Talabi et al. 2022), 

created a rostrum for in-person first-hand self-expression by affected persons about the impact of 

the war on their lives (Zasiekin et al. 2022), alleviated social isolation during active warfare (Singer 

and Brooking 2018), cataloged digital evidence of potential war crimes (Goujard 2022) while 

providing a means of social media-based music, art and drama therapies to aid the active 

remediation of war-induced post-traumatic stress disorder symptoms (Gever et al. 2023) and 

depression among affected populations (Ahmad et al. 2022). This has proffered useful alternatives 
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for delivering interventions and eliminating barriers that must have otherwise truncated them 

(Gever et al. 2023). 

About 30 million Ukrainians are subscribed to active social media (Dzyubenko 2022; Kemp 

2022; Alberti and Serio 2020) notably including Yandex, VKontakte, Facebook, Pinterest, 

Instagram, YouTube, Twitter, Reddit, LinkedIn, TikTok, among others (GlobalStats 2023), 

generating open source social information even for research purposes. Social media data including 

videos and photographs provide both big-picture details and micro-details, revealing spatial and 

other attributes in aid of geolocation and spatial attributions (Toler 2022). Geolocation techniques 

facilitate the conclusive confirmation of where these images and videos were taken. Big-picture 

details such as the angular perspective of buildings both from streets and aerial photos inform what 

locations to look at in the preliminary phase of geolocation. Additionally, micro details such as 

floor cracks, paint patterns, building columns, adjacent road signs, door, window and stairway 

structures as well as general architecture as contained in the captured video/photograph facilitate 

positive identification of the actual locations where these social media information were first 

generated to which x,y coordinates could be attributed to provide ground references (Toler 2022). 

Consequently, such spatial data could be integrated into spatial and other forms of analysis, 

especially in remote sensing and GIS applications.  



 38 

 

 

2.6. Social Network Analysis 

 
Social Network Analysis (SNA) has attracted considerable interest from social and behavioral 

research with a critical focus on the interrelationships among social actors as well as the patterns 

and implications of these interrelationships (Wasserman and Faust 1994). It is the study of 

structure within and among social groups based on theoretical constructs of sociological and 

mathematical foundations of graph theory (Columbia Mailman School of Public Health 2016). The 

network consists of a set of people and other social entities connected by a set of social attributes 

that could be patterned, visualized, and interpreted with the aid of computational modeling (Jamali 

and Abolhassani 2006). The patterning of these relationships is undertaken based on the 

assumption, among other things that,  network structure and the properties of that structure have 

significant implications on the outcome of interests investigated (Columbia Mailman School of 

Public Health 2016). Social network analysis attributes networked structures as vertices (points or 

nodes) and links (or edges). As individuals or groups within the network structure are 

Figure 6: Social Media Subscriber Statistics in Ukraine. Data source: GlobalStats 2023 
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conceptualized as nodes, the observed relations evident between and among them are characterized 

as edges (Scott 2012), complementarily engineering patterns of points and lines that can be 

explored mathematically or visually, in order to assess their effects on the entities that constitute 

the formed network.  

The origins of the approaches to social structure with explicit attention on social network 

stemmed from sociological traditions, with emphasis on the formal properties of social interaction 

in which investigators could configure social relations through the interweaving of social 

encounters (Scott 2011). Nevertheless, SNA evolved into an interdisciplinary endeavor, 

developing from social theory, statics and computational methodologies while its central concepts 

of relation, network and structure emerged from the social and behavioral sciences (Wasserman 

and Faust 1994) with wide applications in the biological sciences and information systems 

(Crnovrsanin, Correa, and Ma 2009). Considering these focuses, its application especially in open-

source and social media investigation requires ethical and methodological imperatives as 

prerequisites for guaranteeing the accuracy, quality and higher confidence of both the networked 

datasets, procedures and overall investigation outcomes (UN Human Rights Center 2022).  

Social media were invented to enable individual members of the public connect with one 

another and interact with ease, and have therefore also become platforms for interaction during 

disasters, war and emergencies (Daga 2017). As such, they have generated substantial amounts of 

information on social interaction on a range of social issues and topics (Ahmed and Lugovic 

2018a), the nature and dynamics of which could be better comprehended using SNA (Daga 2017). 

The challenge however in incorporating social media into geolocation and spatial investigation is 

dealing with the discovery and verification of relevant material within an increasing volume of 

online information, especially photographs and videos captured on smartphones and other mobile 
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devices, some of which could be characteristically subjected to compromise and misattribution 

(UN Human Rights Center 2022). As large-scale vulnerability, war crimes and displacements 

however intensify in times of armed conflicts, there is a heightened need for common standards in 

investigative mechanisms for spatial research, particularly for the acquisition, preservation, and 

analysis of open-source information (UN Human Rights Center 2022).  With the aid of SNA, the 

resultant patterns of these social interactions and networks emanating from such conflicts could be 

investigated to provide specific social insights alongside the stated spatial analyses. 

2.6.1. Visualization of Social Networks in NodeXL 

 
Network Overview for Discovery and Exploration in Excel (NodeXL) is an open-source SNA 

plug-in for Microsoft (Bonsignore et al. 2009) that simplifies basic network analysis tasks and 

supports the analysis of social media networks (Smith 2013) similar to other network visualization 

tools such as Pajek, UCINet, and Gephi (Ramachandran et al. 2013). By design, NodeXL 

facilitates the import of network data from multiple media including Twitter, Facebook, YouTube, 

Flickr, email, blogs, wikis, and the world wide web (Smith 2013), enhancing cleaning,  analysis 

and visualization in Excel while extending existing spreadsheet graph features with added network 

charts to alleviate historical bottlenecks associated with computer-based visualization of social 

networks (Smith et al. 2009). Recognized as an efficient substitute for other network analysis 

software that demand complex computer programing skills, NodeXL offers a flexible, interactive 

and effective exploratory interface for network analysis (Jagals and Van der Walt 2016). Farmed 

network datasets could be directly imported into NodeXL and graphically displayed, and as such 
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positioned to support network analysts without stepping through complex programming interfaces 

(Bonsignore et al. 2009).  

 

 
 
 
 
 

 

 
 
 
 
 
 
 

Figure 7: NodeXL interface.  
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Chapter 3: A Remote Sensing Investigation of the 2022 Invasion of Eastern Ukraine on 

Agricultural Landcover 

 

3.1. Introduction 

 
Ukraine-Russian geopolitical relations over the years have seen alternate periods of tranquility 

and swift chaos with violent conflicts dating as far back as the Ukraine-Soviet insurgency of 1917 

to the most recent conflicts of the 2014 Russian annexation of Crimea and the 2022 Russian 

invasion of the entirety of Ukraine. Current major attacks have been reported across Ukraine, 

including the capital, Kyiv, and multiple other urban spaces while the pre-existing hostilities in the 

Donetsk and Luhansk oblasts (states) have significantly intensified (UNHCR 2022), settling into 

largely recognizable patterns as other past conflicts of the region. These conflicts have remained 

multidimensional with complex causative factors that interact in multifarious fashions, the analysis 

of which is further complicated by the intensive informational wars that accompany them (Mandel 

2016; Khaldarova and Pantti 2016).  

Many of these recurrent conflicts in the contemporary era (Aalto 2006; Haukkala 2015) have 

been in part due to an attempt to lock Russia into an institutionalized post-sovereign arrangement 

with the view of creating an essentially unipolar Europe based on the European Union’s liberal 

norms and values. This, however, has been contradictorily met by Russia’s evolving radically 

unfavorable responses to that project, which alternatively aimed at restoring dissolved Soviet 

Union legacies (Haukkala 2015) and reasserting Russian power and influence abroad, particularly 

in the post-Soviet space (Larrabee 2022), since accustomed to being a superpower, the Russian 

Federation found it herculean to imbibe the new normal which seeks to suggest that both its 

importance and influence in global affairs had fallen and that its voice in foreign policy no longer 

conveys much impact (Larrabee 2022).  
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Within these dynamics, Ukraine emerges pivotal in the sociopolitical stability of Europe 

and is of sacrosanct geopolitical interests to both Russia and the West (D’Anieri, Kravchuk, and 

Kuzio 1999). To Russia, Ukraine remains a buffer against a possible invasion by the North Atlantic 

Treaty Organization (NATO) (Talabi et al. 2022) owing to its considerable expansion into the 

post-Soviet space, while to the West, an independent Ukraine creates a strong, sovereign state 

through which Russia would have to penetrate before it could renew its threat to regions west (of 

Ukraine) (D’Anieri, Kravchuk, and Kuzio 1999). As symbolized in Figure 1, historical Soviet 

Republics such as Estonia, Latvia and Lithuania have become members of NATO, sanctioning 

membership after the collapse of the Soviet Union (NATO 2022). Similarly, such countries as 

Albania, Bulgaria, Romania, Czechloslovakia (Czech and Slovakia), Hungry and Poland which 

were member states of the Warsaw Pact, a historical ‘Russian version’ of NATO, are currently 

members of NATO, with Finland joining in April 2023 as the thirty-first ally of the NATO defense 

alliance. This eastward expansion is visualized by Russia as a threat to its national security, that, 

which ought to be either curtailed or erased even by radical violence to prevent the remaining ‘safe 

zone’ post-soviet space, Ukraine, Moldova, Georgia and Belarus, from joining NATO.  

The conduct of a political agenda in Ukraine therefore would be for tipping this political 

equilibrium to usurp favor for any of these blocks which initiates it. It is therefore unimaginative 

if Russian hostility in Ukraine is regarded as fighting for a version of Ukraine that is subservient 

to Russia's idea of what Ukraine should be: a buffer under a Russian hegemony, where Ukraine's 

national identity, nationhood, ideals, and interpretation of history can be vetted, sanctioned and 

vetoed by the Russian state (Knott 2022). It is essential to clarify that, NATO being a collective 

security clique, a case in which an attack on any member state is regarded as an attack on all and 
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warrants a collective military action (NATO 2022), Ukraine’s membership and attachment denies 

the Russian Federation its de facto control and military influences in Ukraine (Kuzio 2018).  

The current conflict has been characterized by the functional utility of explosive weaponry 

with varying effects in populated and other areas, including heavy artillery and multiple-launch 

rocket systems (UNHR 2022), with reports of Ukrainian armed force’s equally responsive shelling 

of populated areas in territories controlled by Russian affiliated armed groups in the Donetsk and 

Luhansk oblasts (UNHR 2022). This chaos has drawn a global spectacle and the world has been 

watching its multivariate impacts with concern, as several thousands of civilians were reportedly 

killed and schools among other social facilities so far destroyed (Júnior et al. 2022).  

These violent conflicts remain a developmental issue as their resultant ramifications 

usually are complexly deleterious and extend beyond recorded direct battleground casualties 

(Gates et al. 2012). Military and other forms of armed operations usually target and transpire within 

the physical environment, and thus entail adverse environmental outcomes such as vegetation 

defoliation, structural deterioration, environmental damage, water contamination, land use/land 

cover (LU/LC) modifications (Yin et al. 2019), habitat destruction and fragmentation (George et 

al. 2021) and other impacts. As these dissensions may significantly fragment economic space (Bar-

Nahum et al. 2020), truncate local and macro food supply chains and influence both society and 

the environment (Yin et al. 2019; Baumann and Kuemmerle 2016), they also ignite agricultural 

land abandonment (Yin et al. 2019) and labor switch, inducing food insecurity (Brück and d’Errico 

2019) and other unexpected outcomes.  

Other significant imprints of the current conflict have been assessed in relation to energy 

costs, household consumption expenditures, global remittance flow, healthcare, food security, 

vaccine diplomacy, stock market returns and internet universality. The continuous ascendance of 
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energy prices, dwindling confidence in the economy including financial markets plagued with bold 

international sanctions were for instance opined by (Liadze, et al. 2022) as the main impacts of the 

conflict on the world economy. The works of (Boubaker, et al. 2022) pointed negative cumulative 

returns for global stock market indices as an impact of the escalating conflict, while (Roborgh, et 

al. 2022) maintains the position that the conflict has created another 21st-century humanitarian 

disaster. Similarly, (Bluszcz and Valente 2022) cited both civilian casualties and 15.1 percent per 

capita of GDP foregone as imprints of the conflict just as (Kismödi and Pitchforth 2022) espoused 

forced migration, sexual and reproductive health as well as human right crisis as issues in the 

context of the Russian-Ukraine war for Ukraine, on which international attention must focus. 

Despite growing studies on the multifaceted impacts of this conflict, there is currently very 

limited study conducted specifically on its impacts on agricultural landcover in Eastern Ukraine. 

This study, therefore, employs remote sensing and spatiotemporal landcover analysis with 

Sentinel-2 constellation datasets in both supervised maximum likelihood classification and 

unsupervised ISODATA algorithm to explore the impact of the 2022 Russian-Ukrainian war on 

land cover and crop fields in Eastern Ukraine between June 2021 and June 2023. Specifically, the 

study investigated what LC underwent the most drastic change in the Kharkiv Oblast between 

2021 and 2023, and examined the spatial extent and rates of decline in agricultural vegetation in 

both Kharkiv and Luhansk Oblasts between 2001 and 2023. 

3.2. Agriculture in Ukraine and Breadbasket in Europe 

 
Following the collapse of the Union of Soviet Socialist Republics (USSR) in December 1991 

(Strayer 1998) and the subsequent independence of Ukraine, the country’s agriculture has been 

uniquely evolutionary (Sheldon 2022). State and collective farm systems were dismantled, farm 

properties and land shares were divided among farm workers and these shareholders subleased 
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their newly acquired parcels of land to newly formed private agricultural associations (WDC-

Ukraine 2020). About 71 percent of the country's land surface area was subjected to intensive 

agriculture with a primary focus on food crops such as barley, wheat, corn, rice, sugar beets, 

soybeans, and potatoes, as about eighty percent of these lands were chiefly arable (Advameg 2023) 

and have agriculturally conducive climate (Khalatur 2017). Crop production was actively 

complemented by husbandry in the first seven years of Ukraine’s independence and the production 

of beef, veal, lamb, pork, chicken, horse, and rabbit generated $1.898 billion in gross national 

income and a total of $899 million in balance of payments for 1998 alone (Advameg 2023). Within 

this period, leading consumer crops such as potatoes, sugar beets and wheat recorded 

macroeconomic aggregates of 15.4 million metric tons, 13.89 million metric tons and 13.47 million 

metric tons respectively. Pork production totaled 668,000 tons, chicken with 194,500 tons while 

beef and veal collectively generated 786,000 metric tons (Advameg 2023) drifting Ukraine 

towards a regional export economy. 

The subsequent introduction of intensive technologies of precision agriculture, irrigation, 

mechanization, increased scientific breeding including the creation of genetically modified 

varieties of crops facilitated a new level of agricultural development (Demydenko et al. 2018; 

Orekhivskyi 2019) operated both by enterprises and individual households (Fileccia et al. 2014). 

Ukraine remains a leading exporter of agricultural products and plays a critical role in the global 

market supply of grains and oilseeds (USDA 2022) to about 146 countries globally in 2020 alone 

(WITS 2020) while controlling a significant global market share of 50 percent in sunflower oil 

(Lee 2022), 15 percent in corn, 13 percent in barley, 10 percent in wheat (Sheldon 2022) and is 

still regarded as the breadbasket of Europe (Osborne and Trueblood 2002; Lee 2022). Jointly with 

Russia, Ukraine between 1988 and 1990 contributed more than 70 percent of the total USSR 
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agricultural outputs including meats and grains, a pattern that still holds for the post-soviet space 

and Eastern Europe today (Osborne and Trueblood 2002). Prior to the current conflict, Ukraine 

(together with Russia) provided 30 percent of the world’s wheat and one-fifth of maize exports, 

with at least 50 other nations relying on both for about 33 percent of their wheat imports (FAO, 

2022a; Yazbeck et al. 2022), while accounting for 19 and 4 percent of global output of barley and 

maize respectively between the 2016/17 and 2020/21 fiscal years (FAO 2022b). 

The current state of agriculture in Ukraine is however characterized by deep crisis resulting 

from the combined effects of the general economic character, inadequacies in agricultural policy 

(Khalatur 2017), and war (Berkhout, Bergevoet, and van Berkum 2022). Despite promising 

prospects for recently produced crops in Ukraine, the ensuing conflict has truncated farmers’ 

access to crop fields for harvesting (Yazbeck, et al. 2022), disturbing shipping and export, supply 

and pricing (Hassen and Bilali 2022). About 20 to 30 percent of crops remain unharvested during 

the 2022/23 season while yields are expected to decline as well (FAO 2022b). Military actions on 

critical transport infrastructure particularly on port facilities and railroads dwindled Ukraine’s 

ability to transport agricultural products both for exports and domestic market distribution. About 

95 percent of grain exports in Ukraine are transported through the ports of Odessa, Mariupol, and 

Kherson (Hassen and Bilali 2022), all of which have experienced significant levels of deterioration 

while all Black Sea ports have also been blocked (Hassen and Bilali 2022). As the conflict 

continues to ensue between these major agricultural powers, it evidently imposes significant 

negative implications on the general socio-economy and food security of not only the region but 

the global economy (Hassen and Bilali 2022). Global prices for food, fertilizer and fuel have 

surged significantly in recent months in response to market fallouts from the conflict in Ukraine 
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and sanctions on Russia (Abay et al. 2022) while long-term market disruptions are still expected 

for grains, especially wheat, maize and soybeans (Wall Street Journal 2022; Benton et al. 2022).  

The interactivity between violent conflicts and agriculture manifests in several dimensions 

(Zurayk, Woertz, and Bahn 2018). Violent conflicts impact agricultural lands either directly 

through the destruction and burning of crop fields or indirectly through water contamination, soil 

acidification, and declination of farm inputs (Yin et al. 2019), and may induce changes in 

vegetation similar to the effects of drought (Beurs and Henebry 2008). These similarly influence 

micro-agricultural and labor markets, transaction costs, agricultural networks (Justino 2011), and 

in the presence of non-state actors could consequently dictate consumption patterns, especially to 

households (George, Adelaja, and Awokuse 2021). 

Land systems, social, economic, and agricultural systems remain susceptible to 

pronounced evolutions, particularly in conflict-afflicted spaces (Baumann and Kuemmerle 2016) 

with conflict engineering biophysical transformations both via the displacement of human 

populations and agricultural land desertions which in some cases cause the reduction of farmlands 

and increased forest cover (Eklund, Persson, and Pilesjö 2016). As changes in agricultural land 

use represent the largest impact of some wars on the landscape, the detection of trends in the 

intensity and agglomeration of vegetative biomes via the utility of satellite imagery and other 

photogrammetric data play functional roles in identifying and quantifying the impact of such wars 

both on the spatial extent and output of agricultural lands (Witmer 2008). 

3.3. Remote Sensing of conflict 

 
The emergence of robust imaging technologies, classifier algorithms, computational devices, 

and simulations in contemporary geospatial science inquiry has advanced the remote observation 
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of geographic phenomena in space in temporal fashions, facilitating not only the monitoring of 

their evolutionary patterns through time but also the assessment of both their instantaneous and 

incessant domino effects over time. The evaluation of the spatial signature of violent conflicts is 

by no means an exception, even in geo-urban enclaves. The utility of remotely sensed imagery to 

detect the effects of violent conflicts has experienced a dramatic increase in recent years (Witmer 

2015) with specific concerns on the urban dimensions of such conflicts  (Höglund et al. 2016). 

Understanding the spatial dimensions of these conflicts (and for that matter, wars) involves the 

task of digging into the complexity of space, which requires multidimensional methodologies of 

analysis to which urban mapping as a primary method of spatial analysis is essentially relevant 

(Ristic 2018). As geographic technologies have made significant contributions to military 

effectiveness, the preparation for war and the valuation of the geographic extent of the physical 

impacts of war provided the impetus for the rapid redevelopment of geographic technologies 

(Corson and Palka 2004; Witmer 2015). To this effect, remote sensing technology has been driven 

by these military applications, with the use of satellite imagery and aerial reconnaissance tied to 

improving the effectiveness of military operations (Witmer 2008). 

The relevance of the comprehension of the spatial dimensions and consequences of violent 

conflicts has been highlighted in a growing body of scholarship from the fields of geography, urban 

design, architecture, history, politics, and sociology, with a series of concepts emerging to theorize 

the relationship between geo-urban space and warfare (Ristic 2018). The continuous 

improvements in the spectral, spatial, and temporal resolution of satellite imagery, aerial photos, 

and other digital photogrammetric products in recent times have made it possible to apply very 

high-resolution geospatial data for the assessment of the aftermaths of war, (Witmer 2008) 

including LU/LC change, structural damage, (Witmer 2015) vegetation dynamics, (Mao et al. 
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2012), and a variety of global land processes, (Tucker et al. 2005). As existing geospatial science 

literature dug into the complexity of these aftermaths of armed conflicts, further research assessed 

which change detection and classifier algorithms are best suited for specific aftermaths under 

study. Witmer (2008) proposed that the literature which seeks to consider the footprints of war 

using satellite imagery can be grouped into two categories; of those focusing on direct impacts 

resulting from bomb detonations, military movements, and minefields, and of those considering 

indirect impacts that result from displaced persons and their environmental imprints (both 

internally displaced populations and refugees). There seems, however, an emerging additional 

(third) category that aims at testing and enhancing the remote sensing technologies and science 

used in studying Witmer’s two categories. This category of the geospatial science literature focuses 

its attention on what kind of sensor product best presents a suitable resolution(s) for the better 

study of the specific aftermath, as well as what analytic algorithm (machine learning, cellular 

automata, neural networks, etc.) best presents high accuracy results for a specific issue. These 

visual interpretations of pre and post-crisis fine-resolution satellite imagery have become the most 

straightforward method for discriminating the spatial footprints of violent conflicts (Al-Khudhairy, 

Caravaggi, and Giada 2005a) and remote sensing and aerial photogrammetry play significant 

leading roles in providing necessary data for spatiotemporal analysis (Kaplan et al. 2022), as well 

as LU/LC products for large areas at regular intervals (Zeng et al. 2010; Nyamekye et al. 2020; 

Friedl, Brodley, and Strahler 1999) for such purposes. 

Civil war and other forms of violent conflicts that displace human populations are 

influential underlying drivers of LU/LC change (Geist and Lambin 2002; Gbanie, Griffin, and 

Thornton 2018) as are such other causal mechanisms as urban expansion and agrarian 

extensification (Nyamekye, et al. 2020). Land cover in its most definitive conceptualization is 
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described as the observed (bio) physical cover of the earth’s surface (Gregorio 2005) which is a 

“critical descriptor of the earth’s terrestrial surface” (Wulder et al. 2018). In geo-urban spaces, 

anthropogenic engagements subject LC to rapid evolution (Phiri et al. 2020; Kursah et al. 2023) 

and is therefore a chief functional consequence of general man-land interrelationships. These 

interrelationships are characteristically reflexive of the human employment of the land (Meyer and 

Turner 1996), that is, the function to which a land parcel within the defined space is put. As such, 

land use (LU) determines both the type and character of land cover (LC) within space while the 

LU permitted within this space is also dependent in part on the pre-existing LC within the space 

and the environmental possibilism technology and capital sanction in the space, within time. There 

is therefore a repeated, ongoing cyclical relationship between LC and LU, moderated by man with 

the aid of technology and liquid capital, over time. Post this period, the effigy(ies) of the LU 

becomes the LC and/or determines and shapes the LC while this resultant LC in return bears 

influences on what other future LU occurs within the space.  

Drivers of land cover change are distinguished into proximate and underlying causes 

(Lambin et al. 2001; Wilson and Wilson 2013). As proximate causes directly modify land cover, 

underlying causes operate at scales encompassing national, regional, and global levels, exhibiting 

complex interactions and may include social, political, economic, demographic, technological, 

cultural, and biophysical factors (Wilson and Wilson 2013). Changes to LU and LC typically take 

months to years to manifest, following a period of violent conflict. While violent conflict is the 

underlying causal factor, typically one or multiple proximate causes such as 

displacement/relocation, livestock decline, economic recession, security restrictions or landmine 

placement may also be responsible, (Witmer 2015). While qualitative sampling may aid in 
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uncovering the proximate factor(s) at play, remote sensing and GIS help detect the geospatial 

extent of the underlying causal mechanism—violent conflict.  

3.4. Study Area 

 
The Kharkiv and Luhansk oblasts in Eastern Ukraine as shown in Figure 3.0., are two of the 

country’s five proximal oblasts sharing boundaries with the Russian Federation. Located at 49 5̊9ʹ 

33ʺ, 36 ̊13ʹ52ʺ at the confluence of the Uda, Lopan, and Kharkiv rivers (Britannica 2022a), the 

Kharkiv oblast extends to a total surface area of 31,400km² covering about 5.23 percent of the 

county’s land surface of 600,000 km² (GeoHack 2022b) while Luhansk encompasses a surface 

area of 26, 684 km² (4.45% of Ukraine) and is located at the confluence of the Vilkhivka and 

Luhanka rivers (Internet Encyclopedia of Ukraine, 2022) at 48˚ 55ʹ 12ʺ, 39˚ 1ʹ 12ʺ (GeoHack 

2022a). Both oblasts together cover the longest segment of Ukraine’s eastern national land 

boundary with Russia, with Donetsk to the southwest, and Russia to the southeast, east, and north, 

rendering them two of the five most spatially proximate oblasts to Russia. These oblasts together 

with Donestk territorially comprise Ukraine’s Eastern sub-region, a section of which is 

colloquially known as the Donbas, an enclave plagued with repeated violent chaos and Russian 

infiltration. As a prominent fraction of the region remains under separatists' control since 2014 

(ICJ 2018), state structures had also become benumbed initiating the region into a quasi-state 

(Aljukov 2019).  

With its capital, Kharkiv, the Kharkiv Oblast hosts a 2022 population of 2.6 million inhabitants 

(City Population 2022) and has a humid continental climate with long, cold, snowy winters, warm 

to hot summers, and average rainfall totals of 519mm (20in) per year, with the most rainfalls 

recorded in June and July. The oblast has a topographic range of 93m to 218m with an average of 

148m above sea level. Its capital, Kharkiv, was founded around 1655 as a military stronghold for 
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protecting Russia’s southern borderlands (Britannica 2022) and grew to become a major center of 

industry, trade, and Ukrainian culture. The Luhansk Oblast on the other hand has a total population 

of about 2.1 million people and a 2022 population density of 78.81 per kilometer square (City 

Population 2022) 87% of which is urban (Internet Encyclopedia of Ukraine 2022). Having a 

temperate-continental climate with dry and hot summers and cold winters, the oblast experiences 

an annual precipitation range of about 500 to 550 mm (19.69 to 21.65 in) with moisture deficits 

notably in the south, where dry winds and dust storms commonly present themselves in the spring 

(Internet Encyclopedia of Ukraine 2022). Cropland areas account for approximately half of the 

region’s spatial extent and was a leading producer in gross regional product until 2014 when it 

experienced a 59% decrease in total regional output compared to 2015 figures (Britannica 2022).  

3.5. Datasets 

 
A commonly employed technique for the temporal transition and sequential change analysis 

of LU/LC classes is the bi-temporal change detection technique (Gbanie, Griffin, and Thornton 

2018) using information from multiple remote-sensing images of the same area at different times, 

comparing and analyzing them through mathematical statistics or artificial intelligence methods to 

obtain ground change information in the area (Wang, et al. 2022). For the purposes of temporal 

juxtaposition, this study utilized bitemporal satellite imagery of the Kharkiv and Luhansk Oblasts 

from the European Space Agency’s (ESA) Sentinel 2 Copernicus Open Access Hub for June 2021 

and June 2023 in the targeted geo-investigation. These are images obtained by the Multi-Spectral 

Instrument (MSI) aboard the Sentinel-2A/B constellation (ESA 2023b). This constellation 

captures earth observation products in 13 spectral bands at varying spatial resolutions of 10, 20 

and 60 meters (ESA 2023c; GISGeography 2019). Spectral bands with the finest spatial resolution 

(10 meters); red (R) band (B4) with the central wavelength of 665 nm, green (G) band (B3) with 
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the central wavelength of 560 nm, blue (B) band (B2) with the central wavelength of (493 nm) and 

the visible/near-infrared (VNIR) band (B8) with the central wavelength of 833 nm (ESA 2023a; 

GISGeography 2019) were focused on (Table 1). 

MSI Band 

Designation 

Spatial 

Resolution in 

meters 

MSI Band Description Central 

Wavelength in 

nm (Sentinel 

2A) 

Central 

Wavelength in 

nm (Sentinel 

2B) 

Band 1 60 Coastal Aerosol 442.7 442.3 

Band 2 10 Blue 492.7 492.3 

Band 3 10 Green 559.8 558.9 

Band 4 10 Red 664.6 664.9 

Band 5 20 Vegetative Red edge 704.1 703.8 

Band 6 20 Vegetative Red edge 740.5 739.1 

Band 7 20 Vegetative Red edge 782.8 779.7 

Band 8 10 Visible Near Infrared 832.8 832.9 

Band 8a 20 Narrow Near Infrared 864.7 864.0 

Band 9 20 Water Vapor 945.1 943.2 

Band 10 60 Shortwave Infrared 

Cirrus 

1373.5 1376.9 

Band 11 60 Shortwave Infrared 1613.7 1610.4 

Band 12 20 Shortwave Infrared 2202.4 2185.7 

Table 1: Spectral bands and wavelengths of the Sentinel-2A/B MSI. Sources: (ESA 2023a, 2023c; Montoya 2017; 

GISGeography 2019). 

Anniversary June images of the targeted years were obtained for analysis as June marks the 

end of a growing season after which July initiates the onset of a harvest period within this region 

(FAO 2022a); a period after which the elimination of vegetation on a crop field could be attributed 

to harvesting, not deterioration via a violent conflict, burning,  bomb detonation or abandonment. 

Winter crops are often grown in September and October of the preceding year and bloom in early 
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spring after a brief period of dormancy in winter, and are typically harvested in July (Skakun et al. 

2019). Summer crops are usually planted in April and May and harvested in August–September 

(Skakun et al. 2019). June, therefore, marks an agricultural midpoint when both winter and summer 

crops could be observed from remote sensors. Since these oblasts of interest transcend the 

boundaries of a single Sentinel scene, multiple images were obtained for the period under study 

and mosaicked for continuous spatial coverage. As June 2021 datasets were targeted as pre-war 

data, June 2022 and 2023 datasets were treated as war period data with transitionary insights from 

2022. The obtained datasets were already (prior to download) corrected for geometric and 

radiometric errors along with orthorectification to generate highly accurate geolocated products 

and had less than 10% cloud infestation. They are therefore suitable for the purpose of this study. 

3.6. Data Processing 

 
The visible R, G, B and VNIR corresponding to bands 4, 3, 2 and 8 respectively for each scene 

were extricated, stacked in nearest neighbor, and mosaicked to generate June 2021, June 2022 and 

June 2023 subsets for Kharkiv and Luhansk as separate regions of interest (ROI). This process was 

intended to obtain high-resolution optical landcover images at 10-meter spatial resolution for each 

region as R, G, B and VNIR possess the high optical abilities for revealing landcover information 

both in natural color (4, 3, 2) and false color (8, 4, 3) (Addabbo et al. 2016) at 10 meters. Similar 

to (Tzepkenlis, Marthoglou, and Grammalidis 2023) and (Garnot et al. 2020), the other spectral 

bands were exempted from this combination since they either contain coastal aerosol or cirrus 

cloud with the potential of introducing atmospheric noise (band 1; ultra blue) or possess spatial 

resolutions (20 meters and 60 meters) that are incapable of providing useful landcover information 

at 10 meters (bands 5 to 7, 8a, 9 to 12) (Addabbo et al. 2016). Each ROI was visually inspected at 

natural color and composed into false color composites to enhance near-infrared surface 
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reflectance signatures to facilitate the spectral discrimination of vegetation from other land cover 

categories. Preliminary exploratory analysis was conducted in the Kharkiv oblast using 

unsupervised ISODATA classification of 50 classes with a maximum of 15 iterations and recoded 

into targeted classes for further statistical and spatial analysis. Heavy spectral conflict was noted 

in areas south-west of the Kharkiv region (region aʹ) and were further “subset” and resubjected to 

further classification and cluster blustering to enhance spectral differentiation of the seemingly 

identical but different spectral signatures. This pretest was intended to uncover the evolutionary 

rate of various landcover classes during the study period. As vegetation was revealed as the most 

impacted landcover, the study further explored what exact vegetation type underwent this change 

in order to ascertain impacts on agricultural vegetation during this period. Also, based on the 

accuracy results of the ISODATA pretest, the study adopted supervised maximum likelihood 

classification (MLC) in the further analysis similar to (Patil, Desai, and Umrikar 2012; Sisodia, 

Tiwari, and Kumar 2014a) as MLC has been proven as a robust algorithm for pixel-based 

landcover classification with very little chances of misclassification (Sisodia, Tiwari, and Kumar 

2014a), produces better accuracy results than unsupervised classifiers (Domadia, Department, and 

Zaveri 2011) and compared to parallelepiped, minimum distance, mahalanobis and fisher (linear 

discrimination) classifiers (Akgün, Eronat, and Türk 2004; Sisodia, Tiwari, and Kumar 2014b), is 

found to be more reliable for satellite image classification purposes.    

Targeted land cover classes for the preliminary unsupervised classification included the 

technosphere—"the mass of all human-made objects, including the mass of buildings, 

transportation networks, and communication infrastructure” (Turner 2023), bare ground, 

vegetation and waterbody. At this stage of the study, it was hypothesized that the deterioration of 

built spaces was the most rampant effect of the war in Ukraine. This was, however, proven untrue 
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as vegetation was revealed as the most impacted landcover. At the second stage of analysis, 

therefore, the vegetation class was broken into agricultural vegetation and non-agricultural 

vegetation to ascertain which vegetation type changed the most—if crop fields were in jeopardy 

during the period under study or other vegetation types were the biomes at risk. While the 

technosphere class consisted of urban centrosomes, dispersed sprawling areas, roads and other 

built isolated structures, the waterbody class included rivers, streams, ponds, and other observed 

hydrological enclaves. The vegetation class comprised crop fields, dense and heavy course-

textured foliage as well as fine-textured low-lying green covers while bare ground consisted of 

surfaces devoid of vegetative biome, exposing the soil. 

After the conduct of the preliminary exploratory tests and associated spatial statistics, 

supervised MLC was conducted on the two oblasts to examine impacts on agricultural vegetation 

from June 2021 to June 2023. It is of interest to note that this study explored different methods 

across the region in examining the impacts of conflict on LC in general and specifically on 

agricultural vegetation. 

The preprocessed dataset of the Kharkiv and Luhansk Oblasts were subjected to supervised 

classification with the maximum likelihood parametric rule. Training data were created from the 

false color infrared datasets and re-examined in Google Earth Pro with sampled coordinates from 

the Imagine inquire tools, for agricultural vegetation and non-agricultural vegetation while all 

other non-vegetative LCs were trained as other. It was hypothesized at this stage of the study that 

of all vegetative covers in the study area, agricultural vegetation was the most impacted. This 

vegetation class was therefore separated from all other forms of vegetation for closer observation. 

As agricultural vegetation consisted of crop fields, non-agricultural vegetation comprised of dense 

and heavy course-textured foliage and forests, as well as isolated patches of green cover evidenced 
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by shape, site, and texture as non-agricultural vegetation. The other class consisted of water bodies, 

built spaces and bare ground surfaces. The rate of landcover change/evolution described in this 

study as percentage change (Ϫ) over the two periods was computed as follows: 

Ϫ =
𝑴−𝑰

𝑰
× 𝟏𝟎𝟎%,  

Where, M = Reference years (2022 and 2023) 

    I = Base year (2021) 

   Ϫ = Percentage change,  

Ϫ =
2022 − 2021

2021
× 𝟏𝟎𝟎% 

3.6.1. Accuracy Assessment and Post-classification Change Detection 

 
The process of investigating the accuracy of classified datasets usually follows the standard 

method of comparing a set of sampled pixels from a classified image with a referenced dataset 

(Estoque, Murayama, and Akiyama 2015). This assessment was conducted for 2021, 2022 and 

2023 both in Kharkiv and Luhansk. Twenty stratified random points were generated in a confusion 

matrix from each classified dataset for pixel-to-pixel comparison, class verification, and ground-

truthing. Original false color infrared datasets and UTM WGS coordinates in Google Earth Pro 

were used as reference data, while accuracy was reported both in kappa statistics and overall 

accuracy. This was intended to evaluate how representative the classifications are of the real-life 

geospatial character of the study area and to verify the confidence level of each result. For the 

purposes of change detection and quantification, post-classification comparison was conducted 

with the aid of a change detection matrix applied to the classified bi-temporal datasets. This was 
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intended to produce a from-to differenced-raster-image to ascertain the scope and magnitude of 

changes within the respective classes over the said duration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Summary of Methods. 
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3.7. Results and Discussion 

 

3.7.1. Preliminary Exploratory Test  

 
Figure 8 indicates proportions of the Kharkiv Oblast occupied by each landcover class 

between 2021 and 2022 while Figure 9 a and b show their spatial distribution. Over the said period, 

bare grounds increased remarkably from 732.8 square miles to about 4,438.6 square miles while all 

other landcover classes experienced spatial decline including built space which reduced from 388.7 

square miles to 380.6 square miles. Vegetative cover dominated the study area over the period of 

consideration, while bare ground and technosphere followed closely as second and third dominant 

landcovers respectively. Waterbody was the least prominent landcover in Kharkiv. As technosphere 

concentrated around areas of the city of Kharkiv, Krasnohrad KpacHorpaЛ, Izyum, and 

Bohodukhiv, vegetation concentrated in remote spaces of the Oblast while bare ground and water 

traversed both built and remote spaces.  Within Kharkiv, all landcover classes, with the exception 

of bare ground, experienced a spatial decline with built space declining from 388.7 square miles to 

380.6 square miles between 2021 and 2022, (Table 2). The total built space lost during the period 

of study was 8.108 miles square, representing -2.09% of the spatial decline in one year.  
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Over the said period, built space experienced -2.09% growth rate, together with vegetation 

and water which both declined by 34.1% and 3.7% respectively. This disproved the presumed 

hypothesis that the most impacted landcover in Kharkiv was built space. Bare ground as the only 

positively growing space expanded by 505.7% (Table 2). Each landcover class under study had 

experienced some form of growth over time, registering either an increase or a decline. 

Technosphere which consists of such built spaces as urban centrosomes, dispersed sprawling spaces, 

isolated structures as well as paved surfaces such as car lots and tiled roads decreased by 2.09% 

from 388.671 square miles in 2021 to 380.563 square miles in 2022. This spatial loss was quantified 

as 8.108 miles square presumed as built space either blasted into remnant debris reclassified as bare 

space, or built space blasted, deserted, and taken over by vegetative cover. This presumption 

however requires field observation to ascertain whether they were actually due to detonations or 

other locally contingent causal factors were at play.  

 

 

 

Class Name 

Area (miles2) 
Coverage gained/lost 

(miles2) 

 

Percentage change 2021 2022 

Technosphere 388.671 380.563 -8.108          (lost) -2.0861    

Vegetation 1,0822.5 7,133.04 -3689.46      (lost) -34.0906    

Bare Ground 732.813 4,438.64 3,705.827    (gained) 505.6989    

Water 198.109 190.851 -7.258           (lost) -3.6636 
   

Table 2: Surface area of landcover gained or lost. 
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As 4,158,019 pixels of 2021 classified as built space changed to bare ground in 2022, 

4,805,681 changed into vegetative cover over the same period (Fig. 5). As the spatial magnitude 

of these changes were outlined in the results of this study, no direct causal mechanisms was 

evidenced by remotely sensed data as responsible for such changes. Inferences drawn at this stage 

were based entirely on the current geopolitics of the study area and needs to be authenticated by 

qualitative sampling in a further study. The landcover class registering the highest spatial loss, 

however, was vegetative cover. Vegetation in the Kharkiv Oblast declined from the spatial extent 

of 10,822.5 miles square in 2021 to 7,133.04 miles square in 2022. Constituents of this landcover 

included forested lands, grass, and crop fields. It was observed that many cultivated and freshly 

harvested 2021 crop fields were bare in 2022 while a couple of others remained unchanged based 

on their respective spectral signatures. Total spatial loss of vegetative landcover was quantified as 

3, 689.46 miles square which was 32.01% higher than spatial loss experienced by built space. It is 

therefore thought by this study that between 2021 and 2022, vegetative ecology was more 

massively impacted than built space and any other LC in Kharkiv. This finding was retested across 

the entire study area using supervised MLC with focus on vegetation to check what exact 

Figure 10 a and b: Spatial distribution of landcover classes in 2021 and 2022. 
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vegetation type suffered this change and to explore specific impacts on crop fields, i.e., agricultural 

vegetation in eastern Ukraine (Kharkiv and Luhansk oblasts).  

3.7.2. Temporal Character of Agricultural Land Cover in Kharkiv and Luhansk between  

  2021 and 2022 

 
Agricultural landcover change in Kharkiv as investigated by supervised MLC followed 

similar trajectories declining from an overall spatial extent of 9,758.16 miles square in 2021 to 

3,828.52 miles square in 2022. Spatial decline for this LC class was quantified as -5,929.64 miles 

square representing 60.77% of loss from June 2021 to June 2022 alone (Table 3). As shown in 

Figure 12 a and b, agricultural vegetation being the principal landcover in 2021 transitioned into 

the second least class in 2022. It is interesting to note that this being a June dataset, a month of 

agricultural midpoint in the study area where both winter and summer crops should have been 
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blossoming (Skakun et al. 2019) and easily detectable to remote sensors, this dynamics is rather 

alarming as this depicts 60.77% decline of crops/agricultural vegetation on crop fields. Similarly, 

the confusion matrix kappa coefficient and overall accuracy indicated 0.76 and 90% respectively 

for 2021 MLC and 0.70 and 83% respectively for 2022 MLC, increasing the confidence levels of 

these statistics over the unsupervised ISODATA pretest results.  

Class Name 

  

Area (miles2) 

Coverage 

gained/lost 

(miles2) Percentage change  

2021 2022 

Agricultural Vegetation 9,758.16 3,828.52 -5,929.64 -60.77 

Non-Agricultural Vegetation 1,204.62 6,333.65 5,129.03 425.78 

Other 1,181.51 1,982.12 800.61 67.76 

Table 3: Percentage change of landcover classes between 2021 and 2022 (Kharkiv). 

 

Similarly in Luhansk, agricultural vegetation diminished remarkably from a total surface 

coverage of about 5,529.81 square miles to 1,760.97 square miles while all other landcover classes 

Figure 12 a and b: MLC spatial distribution of Kharkiv landcover classes in 2021 and 2022. 
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experienced spatial increase over the said period. Agricultural vegetation which was established 

as the dominant landcover in 2021 transitioned into the least landcover in 2022 (Fig. 8), declining 

by 3,768 square miles, representing a negative growth of 68.15% (Table 4). Non-agricultural 

vegetation which comprised of dense and heavy course-textured foliage and forests, as well as 

isolated patches of low-lying green cover dominated the study area in 2022 both in Kharkiv and 

Luhansk, growing by 425.78% in Kharkiv from a total surface area of 1,204.62 square miles to 

6,333.65 square miles in 2022 and by 270.17% in Luhansk from a surface coverage of 1,363.56 

square miles in 2021 to 5,047.53 square miles in 2022.  

Class Name 

Area (miles2) Coverage 

gained/lost 

(miles2) Percentage change 2021 2022 

Agricultural vegetation 5,529.81 1,760.97 -3,768.84 (lost) -68.15 

Non-agricultural vegetation 1,363.56 5,047.53 3,683.97 (gained) 270.17 

Other  3,551.52 3,636.39 84.87 (gained) 2.39 

Table 4: Percentage change of landcover classes between 2021 and 2022 (Luhansk). 

It is intriguing to note that the apparent spatial decline of agricultural vegetation spread 

across the entirety of the two oblasts with notable concentrations at regions north and southwest 

of Luhansk (Fig. 13 b) and everywhere else in Kharkiv (Fig. 12 b). The spatial differentials 

identified in Tables 3 and 4 were rendered valid by the post-classification change matrix in Figure 

14 a and b and Table 5. The totals of unchanged and lost agricultural vegetation in Table 5 equates 

to the spatial extent of 2021 agricultural vegetation in Tables 3 and 4. Here, agricultural vegetation 

classes that remained unchanged throughout the period were recoded as unchanged agriculture 

while those that changed into other classes were recoded as lost agriculture. Non-agricultural 
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classes that transitioned into agricultural classes were recoded as agricultural gain while the other 

class was recoded as non-agricultural. 

 

In Luhansk, agricultural vegetation diminished remarkably by -68.16% from a total surface 

coverage of about 5,529.81 square miles to 1,760.97 square miles, while non-agricultural 

vegetation and other land cover classes increased in area at rates of 270.17% and 2.39% 

respectively as shown in Table 4. Similar trends were seen in Kharkiv as illustrated in Table 3. 

The spatial loss of agricultural landcover was quantified as 60.77% in Kharkiv and 68.15% in 

Luhansk which represents croplands uncultivated and (or) abandoned in 2022. This non-

cultivation is attributed either to desertion and flee to safety by farm labor or the occupational 

mobility of agricultural labor to civilian army, joining the fight to defend the territory. It is 

intriguing to note that the spatial loss of agricultural vegetation was pronounced throughout the 

Figure 13a and b: MLC spatial distribution of Luhansk landcover classes in 2021 and 2022 
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two oblasts. As this occurred during a conflict period, there is specifically no evidence from 

satellite imagery that these changes were absolutely caused by the ongoing conflict, but this 

inference is a huge possibility considering the geopolitics of the region. A quantitative field survey 

is therefore required as a complementary methodology to ascertain the contribution of conflict 

amidst other sociopolitical and economic factors at play in the region. This will equally verify the 

perceived mechanisms through which some pieces of landcovers changed into agricultural 

vegetation in Table 5. 

 

  

Table 5: Spatial change in Kharkiv and Luhansk 2022. 

Landcover Kharkiv spatial extent 

(miles2) 

Luhansk spatial extent (miles2) 

Unchanged Agriculture 3,063.01 1,532.13 

Gained Agricultural space 768.31 228.84 

Lost Agriculture 6,693.32 3,997.68 

Non-agricultural space 1,617.47 4,686.24 

Figure 14 a and b: 2022 post classification landcover change a. Kharkiv, b. Luhansk. 
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3.7.3. 2023 Land Cover Character in Kharkiv and Luhansk 

 

Agricultural space in 2023 was severely invaded by vegetative biomes indicative of non-

agricultural green and newly sprouting surface regrowth both in Kharkiv and Luhansk while 

herbaceous life near water bodies thickened and increased in spectral reflectance throughout the 

study area. Within Kharkiv, agricultural vegetation which used to occupy the surface area of about 

9,758.16 miles square in 2021 shrunk to 265.44 miles square while Luhansk’s 2021 agricultural 

space of 5,529.81 miles square shrunk to 235.05 miles square as shown in Figure 15. Non-

agricultural vegetation in both oblasts grew significantly, occupying spaces previously 

characteristic of farming activity and bare ground. In Kharkiv, the spatial extent of non-agricultural 

vegetation grew to 11, 308.25 miles square in 2023 while increasing to 9792.05 miles square in 

Luhansk. Landover classes classified as Other similarly shrank significantly in 2023 as many 2022 

bare grounds were captured by newly sprouting non-agricultural vegetation. The post-

classification change quantification as shown in Table 6 and Figure 16 a and b indicated that 

 

Figure 15: 2023 landcover distribution 
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between 2021 and 2023, 9,568.66 miles square and 5,425.42 miles square of agricultural space 

were lost in Kharkiv and Luhansk respectively.  

 Landcover 

Kharkiv spatial extent 

(miles2) 

Luhansk spatial extent 

(miles2) 

Unchanged Agriculture 189.17 103.94 

Gained Agricultural space 76.27 129.98 

Lost Agriculture 9,568.66 5,425.42 

Non-agricultural space 2,309.8 4,784.71 

Table 6: Spatial change in Kharkiv and Luhansk 2023 

 

 

3.7.4. Accuracy Assessment 

 

The resultant confusion matrix and kappa accuracy coefficients indicated that the 

unsupervised pretest ISODATA image classification of both the 2021 and 2022 Kharkiv datasets 

Figure 16 a and b: 2021 to 2023 post classification landcover change a. Kharkiv, b. Luhansk. 
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recorded overall accuracy levels of 85% each with the average kappa of 0.515. With supervised 

MLC however, the overall accuracy of 2021 Kharkiv result stood at 90% with kappa statistic of 

0.76 while 2022 results recorded the overall accuracy of 83% with the kappa of 0.70. Overall 

accuracy in Luhansk was 80% and 75% for 2021 and 2022 respectively with the average kappa of 

0.62. Overall accuracy for the 2023 Kharkiv MLC classification stood at 100% with a kappa 

statistic of 1.00 while Luhansk recorded an overall accuracy of 96.67% with the kappa of 0.79. 

Based on the kappa coefficients in this study therefore, supervised maximum likelihood 

classification exhibited higher accuracy and produced results with higher levels of confidence than 

unsupervised ISODATA classification. This solidifies the propositions of ( Li, Liu, and Huang 

2020) that the maximum likelihood method in supervised classification is relatively high in 

accuracy than both ISODATA and K-means. Similarly, (Shanmugam, Ahn, and Sanjeevi 2006) 

discovered that maximum likelihood classification produced maps with higher accuracy than 

ISODATA classification in their comparison of the classification of wetland characteristics by 

linear spectral mixture modelling and traditional hard classifiers on multispectral remotely sensed 

imagery in southern India.  

3.8. Conclusion 

 
This study explored the impacts of the 2022 Russian-Ukrainian war on landcover and crop 

fields in Eastern Ukraine via remote sensing and spatiotemporal landcover analysis with Sentinel-

2 constellation data in both supervised and unsupervised classification. Landcover classes that 

underwent the most drastic changes in the Kharkiv and Luhansk oblasts between June 2021 and 

June 2023 were examined. Spatial extents and rates of change were computed. The Kharkiv Oblast 

recorded a geospatial loss both in its built space and agricultural vegetation. Massive decline in 

agricultural vegetation was detected, making vegetative ecology and agricultural vegetation for 
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that matter the most impacted LC in Kharkiv during the period under study. As indicated by 

(Baumann and Kuemmerle 2016), warfare and armed conflicts are among the most drastic and 

globally frequent shocks. Yet, the understanding of where armed conflict affects land systems, 

how land-use patterns are impacted, and how far-reaching and persistent these changes are, is 

partial. This study used a spatially detailed dataset on armed conflict to explore these questions. A 

number of key insights emerged from this study: (1, armed conflicts affect landcover and land 

systems regardless of the dominating land use (Baumann and Kuemmerle 2016). (2, Both 

agricultural and forested non-agricultural vegetative biomes are susceptible to some sort of change 

during armed conflicts. However, as the former experiences massive rates of declination, the latter 

captures the space cleared off of the former. War therefore is an active driver of land use/ landcover 

(LU/LC) change, and agricultural regions are the most susceptible to those types of changes 

(Gibson, Campbell, and Wynne 2012) and (3, warfare and armed conflicts are among the most 

drastic drivers of geo-environmental evolution and globally frequent shocks.  

Similar changes were seen in Luhansk in terms of decline in agricultural vegetation. The 

Luhansk region of Ukraine recorded a geospatial declination of 68.15% in its agricultural 

landcover in 2022 alone, representing the most impacted LC as well in this region, which however 

worsened in 2023. Uncultivated crop fields sprang across the region while non-agricultural 

vegetation grew over many areas across the oblast. Agricultural land abandonment was therefore 

seen in Luhansk reiterating (Eklund et al. 2017) and (Yin et al. 2019) that violent conflicts entail 

adverse environmental outcomes such as vegetative defoliation, LU/LC modifications and 

agricultural land abandonments. This similarly corresponds to the findings of (Wilson and Wilson 

2013) maintaining that non-agricultural vegetation and forest cover during periods of war exhibit 

growth while going through reduction during periods of peace. The study, however, assessed these 
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impacts only within a two-year temporal duration and treated 2023 data as war period data. 

Landcover trajectories after the war are therefore unseen in this study. This is in part attributed to 

the still unfolding continuity of the conflict as post-war data is yet unavailable for the study area. 

A future study is therefore recommended to assess landcover transformations for the entire lifespan 

of the conflict (pre, during and post) with an expanded focus to integrate such other socio-

environmental impacts as water contamination, air pollution, population displacements, 

agricultural exports, food supply relative to conflict regimes (pre, during and post), visual framing 

of conflict, among others. As seen in these findings, remote sensing has facilitated the assessment 

of the impacts of war. Although data from this technology are incapable of comprehensive 

environmental assessment of conflict impacts, they provide valuable information on changes in 

vegetation which when integrated with social and environmental impacts could provide a better 

understanding of how these complex systems interrelate (Witmer 2008).  
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Chapter 4: Social Network Analysis of Twitter Information Flow During The 2022 Russian 

Invasion of Ukraine 

 

4.1. Introduction 

 
 Social media has created a conversational territory for the visual framing of conflict and 

conflict narratives and has become an integral part of contemporary warfare, affecting not only the 

public perception of conflict but also policy decisions about these conflicts and how their history 

is captured by historians (Makhortykh and Sydorova 2017). It has by far reshaped the dynamics 

of war reportage both in Ukraine and around the world (Suciu 2022). In Ukraine, much of the 

conflict period communication was more about identity and media (Dyczok 2014) with social 

media becoming important information sources which were often picked up and disseminated by 

mainstream and global media outlets (Dyczok 2014). Government institutions, civilians and the 

armed forces engaged social media platforms in communicating both their successes and the losses 

of opposing forces (Suciu 2022). These include both authentic and completely imaginative 

storylines, notable of which was “the computer versions of a combat flight simulator—The Ghost 

of Kyiv” (Mallick 2022; Galey 2022).  

Social media discourse and public opinion are inextricable parallel systems of constructing 

meaning, creating and presenting interpretive packages for relevant issues and events (Gamson 

and Modigliani 1989). The use of social media has contemporarily become increasingly prevalent, 

and its influences have been felt in many facets of human life, including war, and in the context of 

the Russian-Ukrainian conflict, has been used to inform, recruit fighters, disseminate propaganda 

and shape public opinion (Hoskins 2022; Mallick 2022; Alberti and Serio 2020). With the onset 

of the Crimean crisis and its subsequent annexation, the sole official structure for the resolution 

and management of conflict in Ukraine has been the Minsk Agreements clinched between Ukraine 
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and Russian-backed separatists, with Russia, Germany and France as guarantors (Rojansky 2016) 

which have nonetheless been unable to remedy the reality of Russia’s de facto control over Crimea 

and the recurrent violent conflicts in Ukraine’s Donbas (Rojansky 2016). Evident within these 

insurgencies were the important roles played by social media in mobilizing civil society 

(Pospieszna and Galus 2019), constructing visual frames by both pro-Ukrainian and pro-Russian 

online communities (Makhortykh and Sydorova 2017), instigating regime changes (Brantly 2019), 

active disinformation campaigns (Mallick 2022; Mejias and Vokuev 2017), diffusion of 

information, compounding and facilitation of pre-existing social network ties (Onuch 2015) as 

well as the facilitation of the exchange of psychological contents in support of and opposition to 

protest activities (Jost et al. 2018).  

Nonetheless, social media has equally provided a universal communication infrastructure 

for seeking help by war-affected populations during the Ukrainian conflict (Talabi et al. 2022), 

created a rostrum for in-person first-hand self-expression by affected persons about the impact of 

the war on their lives (Zasiekin et al. 2022), alleviated social isolation during active warfare (Singer 

and Brooking 2018), cataloged digital evidence of potential war crimes (Goujard 2022) while 

providing a means of social media-based music, art and drama therapies to aid the active 

remediation of war-induced post-traumatic stress disorder symptoms (Gever et al. 2023) and 

depression among affected populations (Ahmad et al. 2022). This has proffered useful alternatives 

for delivering interventions and eliminating barriers that must have otherwise truncated them 

(Gever et al. 2023). 

About 30 million Ukrainians are subscribed to active social media (Dzyubenko 2022; Kemp 

2022; Alberti and Serio 2020) notably including Yandex, VKontakte, Facebook, Pinterest, 

Instagram, YouTube, Twitter, Reddit, LinkedIn, TikTok, among others (GlobalStats 2023), 
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generating open source social information even for research purposes. Social media data including 

videos and photographs provide both big-picture details and micro-details, revealing spatial and 

other attributes in aid of geolocation and spatial attributions (Toler 2022). Geolocation techniques 

facilitate the conclusive confirmation of where these images and videos were taken. Big-picture 

details such as the angular perspective of buildings both from streets and aerial photos inform what 

locations to look at in the preliminary phase of geolocation. Additionally, micro details such as 

floor cracks, paint patterns, building columns, adjacent road signs, door, window and stairway 

structures as well as general architecture as contained in the captured video/photograph facilitate 

positive identification of the actual locations where these social media information were first 

generated to which x,y coordinates could be attributed to provide ground references (Toler 2022). 

Consequently, such spatial data could be integrated into spatial and other forms of analysis, 

especially in remote sensing and GIS applications.  

4.2. Social Network Analysis 

 
 Social Network Analysis (SNA) has attracted considerable interest from social and 

behavioral research with a critical focus on the interrelationships among social actors as well as 

the patterns and implications of these interrelationships (Wasserman and Faust 1994). It is the 

study of structure within and among social groups based on theoretical constructs of sociological 

and mathematical foundations of graph theory (Columbia Mailman School of Public Health 2016). 

The network consists of a set of people and other social entities connected by a set of social 

attributes that could be patterned, visualized, and interpreted with the aid of computational 

modeling (Jamali and Abolhassani 2006). The patterning of these relationships is undertaken based 

on the assumption, among other things that,  network structure and the properties of that structure 

have significant implications on the outcome of interests investigated (Columbia Mailman School 



 76 

of Public Health 2016). Social network analysis attributes networked structures as vertices (points 

or nodes) and links (or edges). Individuals within the network structure are conceptualized as 

nodes. In a Twitter network, therefore, nodes seen within the structure are indicative of individual 

Twitter accounts (Twitter users). The social groups formed by these nodes based on interactivity 

are characterized as clusters while the observed relations evident between and among them are 

characterized as edges (Scott 2012), complementarily engineering patterns of points and lines that 

can be explored mathematically or visually, in order to assess their effects on the entities that 

constitute the formed network.  

The origins of the approaches to social structure with explicit attention on social network 

stemmed from sociological traditions, with emphasis on the formal properties of social interaction 

in which investigators could configure social relations through the interweaving of social 

encounters (Scott 2011). Nevertheless, SNA evolved into an interdisciplinary endeavor, 

developing from social theory, statistics and computational methodologies while its central 

concepts of relation, network and structure emerged from the social and behavioral sciences 

(Wasserman and Faust 1994) with wide applications in the biological sciences and information 

systems (Crnovrsanin, Correa, and Ma 2009). Considering these focuses, its application especially 

in open-source and social media investigation requires ethical and methodological imperatives as 

prerequisites for guaranteeing the accuracy, quality and higher confidence of both the networked 

datasets, procedures and overall investigation outcomes (UN Human Rights Center 2022).  

Social media were invented to enable individual members of the public connect with one 

another and interact with ease, and have therefore also become platforms for interaction during 

disasters, war and emergencies (Daga 2017). As such, they have generated substantial amounts of 

information on social interaction on a range of social issues and topics (Ahmed and Lugovic 
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2018a), the nature and dynamics of which could be better comprehended using SNA (Daga 2017). 

The challenge however in incorporating social media into geolocation and spatial investigation is 

dealing with the discovery and verification of relevant material within an increasing volume of 

online information, especially photographs and videos captured on smartphones and other mobile 

devices, some of which could be characteristically subjected to compromise and misattribution 

(UN Human Rights Center 2022). As large-scale vulnerability, war crimes and displacements 

however intensify in times of armed conflicts, there is a heightened need for common standards in 

investigative mechanisms for spatial research, particularly for the acquisition, preservation, and 

analysis of open-source information (UN Human Rights Center 2022).  With the aid of SNA, the 

resultant patterns of these social interactions and networks emanating from such conflicts could be 

investigated to provide specific social insights alongside the stated spatial analyses. 

4.2.1. Visualization of Social Networks in NodeXL 

 
Network Overview for Discovery and Exploration in Excel (NodeXL) is an open-source SNA 

plug-in for Microsoft (Bonsignore et al. 2009) that simplifies basic network analysis tasks and 

supports the analysis of social media networks (Smith 2013) similar to other network visualization 

tools such as Pajek, UCINet, and Gephi (Ramachandran et al. 2013). By design, NodeXL 

facilitates the import of network data from multiple media including Twitter, Facebook, YouTube, 

Flickr, email, blogs, wikis, and the world wide web (Smith 2013), enhancing cleaning,  analysis 

and visualization in Excel while extending existing spreadsheet graph features with added network 

charts to alleviate historical bottlenecks associated with computer-based visualization of social 

networks (Smith et al. 2009). Recognized as an efficient substitute for other network analysis 

software that demand complex computer programing skills, NodeXL offers a flexible, interactive 
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and effective exploratory interface for network analysis (Jagals and Van der Walt 2016). Farmed 

network datasets could be directly imported into NodeXL and graphically displayed, and as such 

positioned to support network analysts without stepping through complex programming interfaces 

(Bonsignore et al. 2009).  

4.3. Datasets 

4.3.1. Twitter #tags 

 
Social media data used in this study consist of tweets, replies and retweets of the Russian-

Ukrainian war-related hashtags (#tags) farmed from the Twitter (X) microblogging space from the 

official onset of the conflict on February 24, 2022, to October 15, 2023. The choice of October 15, 

2023, was dependent on the timeline of this study. Hashtags are topical keywords preceded by ‘#’ 

to brand conversations on social media handles (Small 2011), functioning as tools for sorting and 

aggregating social media information according to topics (Laucuka 2018). They have therefore 

become an increasingly popular means for sharing and organizing web resources, leading to a huge 

amount of user-generated metadata (Bischoff et al. 2008). Prior to #tag farming, twenty randomly 

sampled popular #tags captioned on the conflict were collected from Twitter. Each #tag was pulled 

and tested to verify their relevance and connectedness to the current conflict, frequency of usage 

and accessorial contents carried within their conversation threads. The verification included direct 

reading and checking of contents tweeted, topical keywords reflected in the tweet and whether 

such tweets were made on or after February 24, 2022. Tested #tags that generated valid content 

were input into the Twitter search network in NodeXL Pro, while those not meeting the said criteria 

were considered invalid and rejected. Such #tags as #deathinukraine2022, #putin2022, 

#russiainvadesukraine2022, #zilenskiukraine2022, #zelenskyy2022, #bombblastukraine2022, 

#natovsrussia2022, #natorussia2022, #volodymyrzelenskyy2022, #russiafightsukraine2022, 
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#ukraineweeps2022, #ukraineweeps and #vladimir2022 were considered invalid and rejected after 

this preliminary verification. These #tags generated no search results and within the Twitter search 

network in NodeXL Pro, they had neither vertices nor edges. #vladimir2022 yielded three tweets 

that were largely unrelated to the conflict. As the first was a reply to a musical tweet by @atlztico, 

the second was a sports commentary by @kakog94 while the last was a reply to a currently deleted 

May 2019 post. #putin2022 generated non-war diplomacy content while #ukraineweeps had only 

two vertices.  

Some other #tags which were originally not included in the sampled list were later 

discovered (#putinisawarcriminal, #russianwarcrimes and #putinisaloser). #putinisaloser and 

#russianwarcrimes were rejected. The contents of #putinisaloser were chiefly comic and unrelated 

to the topic under study while #russianwarcrimes generated less than 130 vertices. 

#putinisawarcriminal was included as a valid and accepted #tag based on its 4161 farmed vertices 

and resultant contents. Such other #tags as #ukrainewar2022, #warinukraine2022, #putinswar and 

#standwithukraine were valid, accepted and captured for farming. Limited to 5,000 tweets, each 

valid #tag was farmed from 6:00 a.m. on the onset day of the conflict, February 24, 2022, to 6:00 

p.m. of October 15, 2023, with specific attributes as shown in Table 7. below. #vladimirputin2022, 

#russiainvassion2022 and #russiaukraine2022 were also rejected. Even though preliminary test 

results indicate they were valid #tags for the purpose of this study, #russiainvassion2022 had 

neither vertices nor edges, #vladimirputin2022 generated only three vertices while 

#russiaukraine2022 had only five vertices within its network presenting a statistically insignificant 

sample for analysis.  

#tag Nature of Content Accepted/Rejected Number of Vertices 
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#russiainvassion2022 Valid Rejected 0 

#ukrainewar2022 Valid Accepted 235 

#warinukraine2022 Valid Accepted 3279 

#vladimirputin2022 Valid Rejected 3 

#russiaukraine2022 Valid Rejected 5 

#putinswar Valid Accepted 1889 

#standwithukraine Valid Accepted 4005 

#ukraineweeps Valid Rejected 2 

#deathinukraine2022 No result Rejected  

#putin2022 Invalid Rejected  

#russiainvadesukraine2022 No result Rejected  

#zilenskiukraine2022 No result Rejected  

#zelenskyy2022 No result Rejected  

#bombblastukraine2022 No result Rejected  

#natovsrussia2022 No result Rejected  

#natorussia2022 No result Rejected  

#volodymyrzelenskyy2022 No result Rejected  

#russiafightsukraine2022 No result Rejected  

#ukraineweeps2022 No result Rejected  

#vladimir2022 Invalid Rejected  

#putinisawarcriminal Valid Accepted 4161 
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#putinisaloser Invalid Rejected  

#russianwarcrimes Valid Rejected 123 

Table 7: Twitter Search Network 3.0 SNA Data. 

 

4.3.2. Bellingcat Civilian Harm Data 

 
Twitter data was complemented by Bellingcat geotagged spatial data obtained from the 

civilian casualty Timemap. These data highlight incidents of civilian injury and casualty during 

the onset of the conflict to date, posted on social media handles as videos and photos. Bellingcat 

is an independent social investigative journalism network consisting of “researchers, investigators, 

and citizen journalists who employ open source and social media investigative methodologies to 

probe a variety of subjects including the tracking of the use of chemical weapons, military violence 

against civilian populations and conflicts worldwide” (Bellingcat 2022). Datasets from this source 

are videos and pictures extracted from social media handles as reported by civilians who have had 

first-hand encounters with such occurrences during the Russian-Ukrainian war, including 

instances in Figure 17, where civilian areas and infrastructure have been damaged, instances of 

visible civilian injuries and the presence of immobile civilian bodies (Bellingcat 2022).  



 82 

The collection of these incidences commenced on February 24, 2022, and subjected to 

geolocation techniques to extract conclusive spatial and temporal attributes with mapped spatial 

coordinates. These datasets were extracted, preprocessed (by Bellingcat) and composed on the 

Forensic Architecture’s Timemap platform according to the legal frameworks, professional, 

ethical, and methodological principles of the Office of the United Nations High Commissioner for 

Human Rights (OHCHR) as espoused in the Berkeley Protocol (United Nations 2022), for the 

purposes of reporting and prosecuting human right infractions, and intended to be a living 

infrastructure that will continue to be updated as long as the conflict persists (Bellingcat 2022). 

Such contents whose originality and conclusive spatial location could not be authenticated were 

omitted from the database and is therefore a collection of confirmable incidents only, rather than 

a comprehensive catalog. 

Figure 17: Rescue of a wounded person in central Kharkiv, northeastern Ukraine, on March 1, 2022. (Photo by 

Vyacheslav Madiyevskyy/Ukrinform/NurPhoto). Source: Bellingcat 2022. 
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4.4. Data Processing 

4.4.1. Twitter #tags 

 
The investigation of social networks and clusters in this study focused on centrality and 

edge analysis of tweets, replies, retweets and mentions of the pretested, valid and accepted #tags 

with the Clauset-Newman-Moore (CNM) cluster algorithm and the Harel-Koren Fast Multiscale 

(HKFM) graph layout similar to (Ahmed et al. 2020). Overall network metrics, clusters and 

relationships were first explored in each #tag with specific graph metrics such as nodes, vertices, 

network density and diameter as well as in-degrees, out-degrees, betweenness centrality, and 

eigenvector centrality. As a vertex’s in-degree measures the number of times it is 

referred/connected to, out-degree indicates its reference to others while eigenvector measures its 

importance within the network. The measure of betweenness centrality was used to detect unique 

Twitter users serving as potential ‘bridge-nodes’ within each network. This metric (betweenness 

centrality) measures how much an identified vertex is the only means of connection from one part 

of the network to another and is a sociometric proxy for influence and reputation within the 

network (Social Media Research Foundation 2023). It is a measure of others’ dependence on the 

given node for information (Brandes, Borgatti, and Freeman 2016) and quantifies the frequency 

of the node’s occurrence along the shortest path between two other nodes, while potentially 

bridging those nodes that may essentially belong to different clusters within the network. These 

vertices lie on fractions of the relatively shortest paths connecting others and as such, information 

flowing to and from those other nodes would have to pass through them (Brandes 2001). As 

indicated by (Newman 2005; Freeman 1977; Brandes 2001), such vertices control the flow of 

information between and among other actors within the network. A user/vertex/node with high 

betweenness centrality is therefore said to be highly connected to other users and has much 
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influence within the network, and if associatively records high in-degree centrality, their tweets 

are highly retweeted and highly circulated within the network. Therefore, a vertex with both high 

(above average) betweenness centrality and high in-degree is regarded as a principal figure in this 

study. The size and connectivity of each network was explored in relation to density and 

modularity as proposed by (Himelboim et al. 2017) while principal figures identified by 

betweenness centrality and in-degree in each network were further observed.  

The exploration of density was to ascertain the degree of information fluidity by 

distinguishing seemingly cohesive from obviously sparse networks. Density in NodeXL is 

automatically calculated in overall metrics as the ratio of the number of actual links to the number 

of potential links of the network and ranges between 0 and 1 (Bhattacharya et al. 2023). This 

compares the counts of edges in the network graph with the maximum count of edges it would 

have had if all vertices were linked, excluding duplicates and self-loops (Social Media Research 

Foundation 2023). As actual links are present within the network as edges, potential links are 

connections that could possibly exists between two nodes within the network (Bhattacharya et al. 

2023). According to (Himelboim et al. 2017; Henneman and Riddle 2005), the extent to which a 

network is densely interconnected affects the rate of information flow within it. However, a dense 

network may as well, based on its modularity, be either unified or divided. Highly modular 

networks are highly divided and have many groups separated from each other with limited 

connections among them (Himelboim et al. 2017). Similar to density, modularity ranges between 

0 and 1, with high values indicating high modularity and distinctiveness or division while low 

modularity indicates high interconnection (Himelboim et al. 2017). Highly dense networks with 

low modularity scores are therefore highly interconnected networks with very little divisions 

within them while less dense networks with high modular values are less interconnected and 
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heavily separated. Information flow within this type of network is heavily fragmented with clusters 

of ‘pro’ and ‘anti’ opinions existing within the same network with little flow of information across 

clusters. In the exploration of density therefore, network modularity ought to be associatively 

explored as both metrics can provide relevant insights into the levels of connectivity within a 

cluster and relations of those cluster nodes to other groups (Himelboim et al. 2017). 

Each network was graphed in the HKFM layout for preliminary visualization and the 

overall graph metrics, in-degree, out-degree, eigenvector, closeness and betweenness centralities 

were computed in the NodeXL Pro Graph Metrics box. Though clustering was graphically 

evidenced for each network, modularity coefficients were inapplicable, indicating that in the 

explored contexts, modularity was not meaningful. Clusterization was therefore investigated for 

each network using the CNM cluster function as an agglomerative algorithm, as CNM is an 

effective cluster methodology for big data analysis (Yum 2020) and practically proves better in 

cluster detection (Makris, Pispirigos, and Simos 2020). This generated identifiable groups within 

each network which were re-diagramed as directed graphs in HKFM, with each group laid out in 

its separate box. The optimized graph metrics were regenerated together with modularity 

coefficients as shown in Table 8 below.  

4.4.2. Analysis of Principal Figures 

 

The determination of principal figures was achieved on the basis of betweenness centrality 

and in-degree, similar to (Cha et al. 2012; Milani, Weitkamp, and Webb 2020; Chatfield and 

Brajawidagda 2012; Ahmed and Lugovic 2018). These metrics respectively indicate nodes who 

control information flow the most within each network by virtue of their influential bridge-node 

centrality and those who have the greatest number of followers who actually engaged with the 
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posted Twitter content. Thresholds were determined for betweenness centrality and in-degree, and 

vertices/nodes with such coefficients above their network mean were classified as principal 

figures. Qualified betweenness centrality nodes within this threshold have the highest connections 

to other nodes both within and outside their cluster. Information flowing into the cluster passes 

through them (Brandes 2001) while information flowing within the cluster most potentially is 

taken from them (Newman 2005; Freeman 1977; Brandes 2001). The in-degree principal figure 

nodes potentially have the highest visibility within the network as their Twitter posts/tweets are 

referred to, the most, and therefore generated the most engagements either by comment, like, 

mention or repost/retweet. Thirty principal figures were sampled from each network and subjected 

to further observation to ascertain whether they are pro-war or anti-war as proposed in (Milani, 

Weitkamp, and Webb 2020), in other words, whether their propagation of news and Twitter 

engagements are in justification of the ensuing violence or in condemnation of the war. Focusing 

on words used in their tweets and which side of the warring factions they support, the 150 principal 

figures were grouped into anti and pro categories. Such tweets/posts as  

“there will be no impunity for Russian war crimes in Ukraine. The EU supports the 

International Criminal Court with €7.25 million to increase its investigation capacity into war 

crimes committed under Russian occupation. #StandWithUkraine”,  

“The illegal annexation proclaimed by Putin won’t change anything. All territories 

illegally occupied by Russian invaders are Ukrainian land” and  

“#PutinsWar and the deaths of tens of thousands of innocents have consequences!”  

were codified as anti-war. The inclination of these nodes against the conflict was directly extracted 

from sentiments demonstrated in their tweets/posts. Similarly, such tweets/posts as  

“We stand in solidarity with African nations' demands for the complete liberation of Africa from 

the last vestiges of colonial legacy. ?? Russia has played a leading role in decolonisation and in 

consolidating decolonisation processes.” and  
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“#Ukraine? #WarInUkraine2022 #Iran #Syrie #Russians @EmmanuelMacron @vonderleyen 

@CharlesMichel @cavousf5 @Cdanslair ALL these people who HATE OUR western countries, 

culture and way of life but come to Europe and USA when they face problems in their countries, 

should be refused”  

appeared pro-Russian and in opposition to aid for Ukrainian refugees. Such posts and their likes 

were coded as pro-war. Many other tweets were non-English and hardened the classification 

process. Categorizing them was however achieved using the auto-detect features of google 

translator, to first and foremost translate these tweets/posts into English language for easy 

comprehension, then categorization. A couple of other tweets do not directly reflect either a pro or 

anti orientation. At first sight, they seem neutral but a further exploration of their Twitter profiles 

and images included in these posts as shown in Figure 18 generated secondary information to 

determine where these belong. Additionally, nodes such as Potus, nato, un, zelenskyyua, 

emmanuelmacron and joebiden were notably anti while kremlinrussia_e, mfa_russia and 

russianembassy were notably pro.  

The principal figures by betweenness centrality was computed as; 

𝑷𝑩𝑪 = 𝑹𝟏𝟓 ∗
∑𝒃𝑪

𝒏
 ,  

(source: Author’s construct),  

where 𝑃𝐵𝐶 is principal figure by betweenness centrality, 𝑅15 is first 15 nodes in descending order 

above the network mean, 𝑏𝐶 is betweenness centrality coefficient of each node within the network 

and 𝑛 is the number of nodes in the network. Principal figure by in-degree centrality was computed 

as; 
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 𝑷𝒊𝒅 = 𝑹𝟏𝟓 ∗
∑𝒊𝒅𝑪

𝒏
 , (source: Author’s construct), where 𝑃𝑖𝑑 is principal figure by in-degree and 

𝑖𝑑𝐶 is the in-degree coefficient of each node within the network.  

 

 

4.4.3. Civilian Harm and Spatial Patterns 

 

 The spatial patterns of civilian harm incidents were explored via the combination of spatial 

autocorrelation (SA) and the Gertis-Ord Gi* spatial statistic. Spatial autocorrelation is the measure 

of the relationship among values of a variable in relation to their respective locational positions on 

a two-dimensional surface (Griffith 2005; Legendre 1993; Anselin 1995; ESRI 2023; Monzur 

2015). Based on Tobler’s first law of geography (Miller 2004), that, “everything is related to 

 

Figure 18: Secondary information for the classification of anti and pro principal figures 
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everything else, but near things are more related than distant things” (Waters 2017), SA as a 

geographic variant of conventional correlation (Griffith 2005) measures the relationship with 

neighboring spatial observations based on both the location of these observations and associated 

attributes (ESRI 2023) while returning a global indicator of spatial association, a correlation 

coefficient, as a Global Moran's I index value with both a z-score and p-value that aid the 

evaluation of the significance of the spatial autocorrelation index (Anselin 1995; Rey and Anselin 

2007).  

Given a set of features and associated attributes, SA evaluates whether there is an 

observable geographic pattern within them and whether the observed pattern expressed is 

clustered, dispersed, or random (ESRI 2023). SA is usually indicative of a form of spatial 

relationship (positive vs negative) in the mapped data (Haining 2015) as well as the degree of the 

said relationship (Fischer and Getis 2010). Positive SA is evident where adjacent observations 

have similar data values whereas adjacent contrasting values denote negative SA (Haining 2015). 

In the event of closely proximate dissimilar values, the spatial process(es) responsible for the 

observed pattern of values is random chance (Gimond 2023). The presence of SA in a 

geographically referenced data is worthy of exploration as it may reveal unique spatial 

characteristics of interest in the distribution of the observed variable (Haining 2015), which may 

warrant further investigation to unveil insights into probable spatial and other causations. The 

targeted SA exploration in this study was to ascertain the spatial pattern of civilian harm in the 

Kharkiv and Luhansk Oblasts and implications of such patterns for Eastern Ukraine. As SA could 

detect the said spatial relationships, it is incapable of determining the location of detected spatial 

clusters, if any. With the detection of spatial randomness, Gertis-Ord Gi was explored to detect 

outliers that may be potential hot spots and cold spots of civilian harm.  
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Geotagged social media point data from the Bellingcat civilian harm Timemap were 

obtained, cleaned to correspond to the spatial extent of the study area and subjected to spatial join 

with level 3 administrative regions otherwise known as hromadas (Dudley and Wissenschaft 

2019). This was intended to create a valid count of reported casualties in each hromada for 

geovisualization, SA and potential hotspot exploration by aid of the Gertis-Ord Gi* spatial statistic.  

The Gertis-Ord Gi* spatial statistic identifies local patterns of spatial association by determining 

statistically significant spatial clusters of hot spots and cold spots (Anselin 1995; ESRI 2023) while 

calculating GiZScore, GiPValue and confidence level bin (GiBin) values for each feature within 

the input feature class to ascertain significance and statistical levels of confidence (ESRI 2023). 

For statistically significant positive z-scores, the larger the z-score, the more intense the clustering 

of high values (hot spot) while for statistically significant negative z-scores, the smaller the z-

score, the more intense the clustering of low values (cold spot) (ESRI 2023). 

The Gertis-Ord Gi* is computed as  

 

 

 

 

where xj is the attribute value for feature j, wi,j is the spatial weight between feature i and j, n is 

equal to the total number of features,     is the mean of the corresponding attribute and: 

 

 

  while   

(source: ESRI 2023) 
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4.5. Results and Discussion 

4.5.1. Overall Network Metrics 

The propagation and flow of information among Twitter users create structures and 

interconnectivities, the nature and scope of which could be comprehensively explored to map and 

measure social relationships (Johnson et al. 2013; South et al. 2022), detect social information 

hubs (Ahmed et al. 2020), identify patterns of disinformation (South et al. 2022) and social 

opportunity (Cha et al. 2012). Thirteen thousand, five hundred and fifty-nine (13,559) tweets, 

replies, retweets and mentions from valid topical #tags on the 2022 Russian-Ukrainian war were 

collected from 6:00 AM of February 24, 2022, to 6:00 PM of October 15, 2023, cleaned and 

visualized in network graphs with CNM and HKFM as described above. These included 233 

unique searches on #ukrainewar2022, 3277 on #warinukraine2022, 1887 on #putinswar, 4003 on 

#standwithukraine and 4159 on #putinisawarcriminal. As indicated in Figure 19 to 23, each 

network community demonstrated varying levels of clustering of users with a loosely dense inter-

cluster connectivity in highly modular structures.  

Total number of connected components in #putinisawarcriminal was 482 out of a total 

number (N) of 4159 vertices with a maximum geodesic distance (diameter) of 16 nodes and 3176 

vertices in connected components. With a modularity index of 0.55, this network community 

registered a density of 0.0003 suggesting a highly disconnected network within which information 

is not easily flowing across the varying groups. Within each separate group however, there is also 

a very limited local cohesion as suggested by the mean clustering coefficient of 0.20. This network 

spanned across a very wide array of Twitter users who are not very much discussive on Twitter’s 

#putinisawarcriminal on an individual level. Their connections are driven by a more centralized 

“bridge-node”, gerashchenko_en, who has an in-degree of 152. The average in-degree for the 4059 
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Twitter users in this network was 1.43 with less than 7 users having in-degrees above 50. This very 

high in-degree of gerashchenko_en within a network of this character suggests its unmatched 

reference, relevance, influence and importance within the network. A very large number of users 

rely on gerashchenko_en for information on the Russian-Ukrainian war, while other users within 

this network who come across these pieces of information most likely obtain them from Twitter 

users who have either made a like, replied to, commented on or retweeted posts from 

gerashchenko_en.  

Popular discourse by this node within the network include;  

“BREAKING: Putin commented on the recently increased attacks of the Russian troops in 

Ukraine. According to him, Russia's current actions are "active defense". So, coming to a foreign 

country, occupying part of it, killing its civilians is "active defense. https://t.co/vYWjHBNPqW”. 

 

 This post generated 292, 400 views, 4,448 likes, 1247 reposts, 92 quotes and 37 bookmarks. This 

is the official Twitter account of a Ukrainian member of Government whose account profile 

describes him as “Ukrainian patriot. Advisor to the Minister of Internal Affairs of Ukraine. 

Founder of the Institute of the Future. Official enemy of Russian propaganda”, while having 

528,700 followers and following 1005 other users. The top five referenced nodes in this network 

included visegrad24 who had the in-degree of 73, mfa_russia (in-degree, 70), elonmusk (in-degree, 

68), zelenskyyua (in-degree, 63) and mauricemartin01 with an in-degree of 53.  

https://t.co/vYWjHBNPqW
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Interestingly, the original post each of these users engaged with was gerashchenko_en’s. 

This is similarly denoted by his eigenvector centrality of 0.4 which is more than 0.39 above the 

network’s average of 0.0045. It is important to note that as eigenvector measures the 

importance/influence of a node within a network, gerashchenko_en’s eigenvector (0.4) and 

betweenness centrality which was 226, 785,0.133 above the network average is worth noting. The 

second most referenced node, visegrad24, was the official Twitter handle of the Visegrád Group, 

the official cultural and political alliance forum of the Czech Republic, Hungary, Poland and 

Slovakia for European integration (Braun 2020). Mfa_russia’s account profile describes itself as 

Figure 19: Network structure of #putinisawarcriminal, with each group laid in a separate box. Top 10 users with highest 

betweenness centrality shown in images and grey lines with arrowheads depict edges. 
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“Ministry of Foreign Affairs of Russia, (Official account)| Country’s account @Russia| Πο-pyccκи 

@MID_FR| Espanňol@MAE_Rusia| Arabic - @russia_ar”, thus, the controllers of information 

flow within this network were government officials and government institutions. While the density 

of this network suggests a limited and slow flow of information within it, majority of the network’s 

vertices/nodes who relate to any sort of conflict information on #putinisawarcriminal do so by 

connecting to these very small number of vertices for the majority of information, resulting in a 

concentration of power in the hands of these very few network actors.  

Similar structures were visualized in all other #tags/networks in Figures 20 to 23, with 

#standwithukraine recording 162 connected components (N=4003) in a diameter of 12 nodes and 

the maximum of 3597 vertices in a connected component. #putinswar had 500 connected 

components (N=1887) and a diameter of 14 nodes, #warinukraine2022 had 1550 (N=3277) in a 

diameter of 16 nodes and #ukrainewar2022 had 157 connected components (N=233) in a diameter 

of 3 nodes. The maximum vertices in a connected component for #putinswar stood at 1116, 

#warinukraine had 931 while #ukrainewar2022 recorded 9 as its maximum vertices in a connected 

component.  
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Figure 20: Network structure of #standwithukraine, with each group laid in a separate box. Top 10 users with highest betweenness 

centrality shown in images and grey lines with arrowheads depict directional edges. 
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Figure 21: Network structure of #putinswar, with each group laid in a separate box. Top 10 users with highest betweenness 

centrality shown in images and grey lines with arrowheads depict directional edges. 
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Figure 22: Network structure of #warinukraine2022, with each group laid in a separate box. Top 10 users with highest 

betweenness centrality shown in images and grey lines with arrowheads depict directional edges. 
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Figure 23: Network structure of #ukrainewar2022, with each group laid in a separate box. Top 10 users with highest 

betweenness centrality shown in images and grey lines with arrowheads depict directional edges. 
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4.5.2. Network Densities and Modularity 

 
The recorded coefficients as shown in Table 8 suggest that networks sampled for this study 

had varying levels of modularity and density, however, with significantly low densities ranging 

between 0.0014 and 0.0005. #putinisawarcriminal recorded a density of 0.0003 in a network of 

4159 vertices. This network is 0.03% full (connected) with only about one out of every thousand 

possible connections present. Maximum betweenness centrality within this network however 

ranged between 2,279,261.430 and 423,169.676 with in-degree connections of 152 to 28. A 

relatively small number of nodes in this network were connected to many other nodes with 

exceptionally high coefficients of importance and influence. This type of network is typically 

described by (Barabási 2012) as a ‘scale free’ network where power over information flow and 

importance within the network reside in a very few actors only, while users connect only with 

politically like-minded persons (Conover et al. 2021; Himelboim et al. 2017). These nodes have 

exceptionally high number of in-degree connections to other nodes, whereas the majority of those 

other nodes have very few connections (Hevey 2018). The clusters within this network are as well 

fairly disconnected as indicated by the modularity of 0.55, spreading across a maximum geodesic 

distance (diameter) of 16 nodes. #standwithukraine exhibited similar characteristics, recording a 

density of 0.0003 in a network of 4003 vertices while having a modularity of 0.67. The clusters 

are fairly intra-connected and less connected to other clusters (Himelboim et al. 2017). It is 

essential to reiterate that information circulated within a cluster in these networks emanated from 

very few highly influential nodes, while being highly modular, the nodes consuming these pieces 

of information do not connect with nodes in other clusters and therefore do not take information 

from them. #warinukraine2022 though having similar network features, also has a massive 

aggregation of isolate nodes and self-loops as shown in Figure 22. As isolates do not connect with 
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other nodes within the network and have no influence on the flow of information, they reduce the 

density of the network by rendering it less interconnected. The self loops could be described as 

prolific broadcasters who only tweet and throw up information into the network but are not 

connected to anyone but themselves, iterating a repeated self-referential behavior. They liked, 

commented, mentioned and retweeted/reposted only their own original tweets/posts. The low 

modularity score of 0.27 for #putinswar seems to suggest a more unified network, but its density 

of 0.0005 indicated that it is rather a disconnected network which is 0.05% full and having only 

about one out of every thousand possible connections present, similar to #putinisawarcriminal, 

#standwithukraine, #warinukraine2022 and #ukrainewar2022, while the structure of 

#ukrainewar2022 suggests a rather random network with nodes having approximately the same 

number of connections (Hevey 2018) and no predominantly visible cluster.  

Table 8: Network Density and Modularity 

 

4.5.3. Principal Figures 

 

 Important influencers of information within the studied networks comprised of government 

officials, government institutions, international humanitarian and political organizations as well as 

individual actors whose Twitter engagements promoted campaign against violence, civilian 

casualty, geopolitical hegemony and pro-life sentiments. Majority (135 out of 150) of these 

#tag/network Density Modularity Groups # of 

connected 

components 

Diameter Vertices 

#putinisawarcriminal 0.0003 0.55 318 482 16 4159 

#standwithukraine 0.0003 0.67 121 162 12 4003 

#putinswar 0.0005 0.27 175 500 14 1887 

#warinukraine2022 0.0002 0.40 454 1550 16 3277 

#ukrainewar2022 0.0014 0.32 47 157 3 233 
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principal figures were anti-war influencers. Eighty-three percent of #putinisawarcriminal’s 

principal figures promoted contents that were either in solidarity with Ukraine or generated 

sympathy for Ukraine while seventeen percent supported the war. Out of the network’s anti-war 

influencers, fifty-two percent were most visible within the network and had the most significant 

content followership as indicated by the network’s 𝑷𝒊𝒅 while forty-eight percent as shown by the 

network’s 𝑷𝑩𝑪 had significant influence over the flow of information within the network. Within 

#putinisawarcriminal alone, gerashchenko_en, visegrad24, mfa_russia, elonmusk, zelenskyyua, 

nexta_tv and defenceu were principal both by reference and content engagement ( 

𝑃𝑖𝑑) and by power over information ( 𝑃𝐵𝐶) as shown in Table 9 below. While commanding huge 

audiences within the network, they barely refer to other vertices within the network, as indicated 

by their respective out-degrees.  

Vertex (Twitter 

User) 

In-Degree 

(Pid) Out-Degree  

Betweenness 

Centrality (PBC) 

Type of Principal 

Figure 

gerashchenko_en 152 1 2,279,261 𝑃𝑖𝑑 

visegrad24 73 3 1,271,111 𝑃𝑖𝑑 

mfa_russia 70 1 711,272 𝑃𝑖𝑑 

elonmusk 68 1 1,237,197 𝑃𝑖𝑑 

zelenskyyua 63 1 1,449,075 𝑃𝑖𝑑 

mauricemartin01 53 4 402,968 𝑃𝑖𝑑 

nexta_tv 51 1 617,991 𝑃𝑖𝑑 

guffanti_marco 50 1 306,302 𝑃𝑖𝑑 

iaponomarenko 49 1 412,891 𝑃𝑖𝑑 

kardinal691 37 8 304,032 𝑃𝑖𝑑 

russianembassy 37 1 97,513 𝑃𝑖𝑑 

defenceu 36 5 428,265 𝑃𝑖𝑑 

jayinkyiv 31 2 230,066 𝑃𝑖𝑑 

marionmarechal 28 1 325 𝑃𝑖𝑑 

niikseen 27 23 256,409 𝑃𝑖𝑑 

gerashchenko_en 152 1 2,279,261 𝑃𝐵𝐶 

zelenskyyua 63 1 1,449,074 𝑃𝐵𝐶 

paxchristi1961 0 94 1,383,330 𝑃𝐵𝐶 

visegrad24 73 3 1,271,111 𝑃𝐵𝐶 

elonmusk 68 1 1,237,197 𝑃𝐵𝐶 

mfa_russia 70 1 711,272 𝑃𝐵𝐶 

ow_my_back_ 2 37 667,637 𝑃𝐵𝐶 
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nexta_tv 51 1 617,991 𝑃𝐵𝐶 

ukemonde 1 21 449,810 𝑃𝐵𝐶 

defenceu 36 5 428,264 𝑃𝐵𝐶 

lci 5 1 428,052 𝑃𝐵𝐶 

paxidental 1 36 426,222 𝑃𝐵𝐶 

mve_it 0 30 423,897 𝑃𝐵𝐶 

domingo4ever1 5 32 423,169 𝑃𝐵𝐶 

bundeskanzler 26 0 416,471 𝑃𝐵𝐶 

Table 9:#putinisawarcriminal’s principal figures 

 

Vertex (Twitter 

User) 

In-Degree 

(Pid) Out-Degree  

Betweenness 

Centrality (PBC) 

Type of Principal 

Figure 

olex_scherba 1375 11 8,372,138 𝑃𝑖𝑑 

albafella1 322 2 2,415,350 𝑃𝑖𝑑 

mariana_betsa 280 1 1,840,965 𝑃𝑖𝑑 

defencehq 268 3 2,022,176 𝑃𝑖𝑑 

faccinimyriam 182 9 1,292,569 𝑃𝑖𝑑 

kyivpost 96 1 181,831 𝑃𝑖𝑑 

malcolmnance 90 5 127,635 𝑃𝑖𝑑 

chattjazz 89 6 129,714 𝑃𝑖𝑑 

georgeartwell 78 4 554,814 𝑃𝑖𝑑 

badbradrsr 73 0 53,964 𝑃𝑖𝑑 

fpwellman 68 0 49,211 𝑃𝑖𝑑 

uatv_en 66 7 425,186 𝑃𝑖𝑑 

defensiemin 65 1 419,854 𝑃𝑖𝑑 

defactohumanity 62 1 317,800 𝑃𝑖𝑑 

1annat 58 11 339,199 𝑃𝑖𝑑 

olex_scherba 1375 11 8,372,138 𝑃𝐵𝐶 

albafella1 322 2 2,415,350 𝑃𝐵𝐶 

defencehq 268 3 2,022,176 𝑃𝐵𝐶 

mariana_betsa 280 1 1,840,965 𝑃𝐵𝐶 

maxedlimits 0 35 1,532,809 𝑃𝐵𝐶 

faccinimyriam 182 9 1,292,569 𝑃𝐵𝐶 

georgeartwell 78 4 554,814 𝑃𝐵𝐶 

gerashchenko_en 42 2 490,181 𝑃𝐵𝐶 

uatv_en 66 7 425,186 𝑃𝐵𝐶 

defensiemin 65 1 419,854 𝑃𝐵𝐶 

suevisa 44 23 414,705 𝑃𝐵𝐶 

sunnymica 45 17 405,597 𝑃𝐵𝐶 

votejohnsond1sc 1 36 368,407 𝑃𝐵𝐶 

1annat 58 11 339,199 𝑃𝐵𝐶 
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defactohumanity 62 1 317,800 𝑃𝐵𝐶 

Table 10: #standwithukraine's principal figures 

Within #standwithukraine, all principal figures both by Pid  and Pid were actively anti-war with no 

presence of pro-war influence. As seen in Table 10 above, olex_scherba, albafella1, 

mariana_betsa, defencehq, faccinimyriam, georgeartwell, defensiemin, defactohumanity and 

1annat appeared as principal, both by in-degree and betweenness centrality. These Twitter Users 

had heavy visibility and influence within the network and that was driven to promote peace and 

harness sympathy and support for Ukraine. As #standwithukraine had no pro-war principal figure, 

both #putinswar and #warinukraine2022 recorded ninety percent anti and 10 percent pro while 

#ukrainewar2022 had eighty-seven percent anti and thirteen percent pro-war principal figures. 

These majority of Twitter users within all the studied networks who had either in-degree or 

betweenness centrality well above the network mean directed much of their influence and 

engagements towards support for Ukraine as indicated in Figure 24.  

Figure 24: Anti and Pro Principal network Figures 
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gerashchenko_en 27 1 152,186 𝑃𝑖𝑑 

zelenskyyua 17 2 95,912 𝑃𝑖𝑑 

igorsushko 10 8 33,698 𝑃𝑖𝑑 

nato 10 0 33,300 𝑃𝑖𝑑 

kyivindependent 9 1 36,378 𝑃𝑖𝑑 

elonmusk 9 1 33,735 𝑃𝑖𝑑 

visegrad24 9 1 25,111 𝑃𝑖𝑑 

kremlinrussia_e 9 0 23,183 𝑃𝑖𝑑 

potus 8 0 68,644 𝑃𝑖𝑑 

wartranslated 8 1 35,740 𝑃𝑖𝑑 

mfa_russia 8 0 19,722 𝑃𝑖𝑑 

nexta_tv 8 1 16,786 𝑃𝑖𝑑 

repmtg 8 1 15,486 𝑃𝑖𝑑 

un 7 0 36,145 𝑃𝑖𝑑 

noelreports 7 1 28,411 𝑃𝑖𝑑 

ironhorsey2000 1 337 717,493 𝑃𝐵𝐶 

matisaksk 2 95 227,329 𝑃𝐵𝐶 

citizenrevere 0 69 154,314 𝑃𝐵𝐶 

gerashchenko_en 27 1 152,186 𝑃𝐵𝐶 

chilternbear11 1 55 145,042 𝑃𝐵𝐶 

sunjayjk 1 46 123,762 𝑃𝐵𝐶 

reuters 6 1 102,204 𝑃𝐵𝐶 

zelenskyyua 17 2 95,912 𝑃𝐵𝐶 

sigvoice 1 45 81,471 𝑃𝐵𝐶 

davidcbarron 0 29 78,025 𝑃𝐵𝐶 

hebawi 1 18 71,600 𝑃𝐵𝐶 

potus 8 0 68,644 𝑃𝐵𝐶 

jacksonhinklle 6 0 66,285 𝑃𝐵𝐶 

bfs465 1 24 61,321 𝑃𝐵𝐶 

alvisharding 1 28 60,924 𝑃𝐵𝐶 

Table 11: #putinswar's principal figures 

 

Vertex (Twitter 

User) 

In-Degree 

(Pid) Out-Degree  

Betweenness 

Centrality (PBC) 

Type of Principal 

Figure 

youtube 32 0 111,173 𝑃𝑖𝑑 

zelenskyyua 26 1 156,352 𝑃𝑖𝑑 

nato 23 0 119,163 𝑃𝑖𝑑 

kyivindependent 19 1 110,574 𝑃𝑖𝑑 

potus 18 0 83,419 𝑃𝑖𝑑 

nexta_tv 14 1 73,338 𝑃𝑖𝑑 

un 14 0 46,142 𝑃𝑖𝑑 
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emmanuelmacron 14 0 43,444 𝑃𝑖𝑑 

mfa_russia 12 1 81,528 𝑃𝑖𝑑 

reuters 11 2 39,458 𝑃𝑖𝑑 

eu_commission 10 1 62,718 𝑃𝑖𝑑 

nytimes 10 1 44,506 𝑃𝑖𝑑 

iaponomarenko 10 1 43,176 𝑃𝑖𝑑 

defenceu 10 1 36,368 𝑃𝑖𝑑 

joebiden 10 0 24,317 𝑃𝑖𝑑 

zelenskyyua 26 1 156,352 𝑃𝐵𝐶 

rgolubev 1 27 129,638 𝑃𝐵𝐶 

pamartbe 1 55 128,717 𝑃𝐵𝐶 

nato 23 0 119,163 𝑃𝐵𝐶 

youtube 32 0 111,173 𝑃𝐵𝐶 

kyivindependent 19 1 110,575 𝑃𝐵𝐶 

betobarbo 0 16 98,664 𝑃𝐵𝐶 

ur_king09835997 2 17 86,538 𝑃𝐵𝐶 

potus 18 0 83,419 𝑃𝐵𝐶 

mfa_russia 12 1 81,528 𝑃𝐵𝐶 

_kyiv_sky_ 1 30 79,336 𝑃𝐵𝐶 

vonderleyen 9 1 77,714 𝑃𝐵𝐶 

nexta_tv 14 1 73,338 𝑃𝐵𝐶 

olgatokariuk 8 1 69,681 𝑃𝐵𝐶 

dayanaaash 0 18 64,417 𝑃𝐵𝐶 

Table 12: #warinukraine2022's principal figures 

 

Vertex (Twitter 

User) 

In-Degree 

(Pid) Out-Degree  

Betweenness 

Centrality (PBC) 

Type of Principal 

Figure 

youtube 8 0 56.000 𝑃𝑖𝑑 

potus 2 0 8.000 𝑃𝑖𝑑 

telegraph 2 2 4.000 𝑃𝑖𝑑 

r1ght_now 2 1 0.000 𝑃𝑖𝑑 

smetanatborschu 2 1 0.000 𝑃𝑖𝑑 

basedpoland2 2 1 0.000 𝑃𝑖𝑑 

thenaveena 2 1 0.000 𝑃𝑖𝑑 

peng 2 1 0.000 𝑃𝑖𝑑 

jimsciutto 2 1 0.000 𝑃𝑖𝑑 

k_loukerenko 2 1 0.000 𝑃𝑖𝑑 

mattia_n 2 1 0.000 𝑃𝑖𝑑 

teachertwit2 2 1 0.000 𝑃𝑖𝑑 

npr 2 1 0.000 𝑃𝑖𝑑 

afp 2 1 0.000 𝑃𝑖𝑑 
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middleeastmnt 2 1 0.000 𝑃𝑖𝑑 

youtube 8 0 56.000 𝑃𝐵𝐶 

davadudeart 0 4 18.000 𝑃𝐵𝐶 

potus 2 0 8.000 𝑃𝐵𝐶 

cbs_herridge 1 2 6.000 𝑃𝐵𝐶 

pricemike565 1 4 6.000 𝑃𝐵𝐶 

nlvoa 0 3 6.000 𝑃𝐵𝐶 

sai_ktrs 0 3 6.000 𝑃𝐵𝐶 

telegraph 2 2 4.000 𝑃𝐵𝐶 

aravanady 0 2 4.000 𝑃𝐵𝐶 

dora_cactus 1 3 2.000 𝑃𝐵𝐶 

deanccurry 0 2 2.000 𝑃𝐵𝐶 

fireisborn3 0 2 2.000 𝑃𝐵𝐶 

lucianaborsatti 0 2 2.000 𝑃𝐵𝐶 

kcengel 0 2 2.000 𝑃𝐵𝐶 

kevinbturner 0 2 2.000 𝑃𝐵𝐶 

Table 13: #ukrainewar2022's principal figures 

 

4.5.4. Pattern of Civilian Casualty 

 
 The spatial autocorrelation results as shown in Figure 25 indicate that the pattern observed 

for the reported incidents of civilian casualty between February 2022 and October 2023 does not 

appear to be significantly different than a random occurrence. This was evidenced by the low z-

score of 0.3 for the Moran Index of -0.0059 and a p-value 0.76. Majority of the mapped incidents 

were distributed at the center of the bell curve inclining them towards a random distribution than 

one would expect for either a clustered or dispersed distribution. This result seemed affirmed by 

the Geritis-Ord Gi which indicated that there was no significant clustering within this dataset. 

However, it indicated Kharkivska within the Kharkiv oblast as a hotspot with 99% confidence. 

Except for Kharkivska therefore, civilian harm during this period of the conflict is more likely to 

have occurred all over the study area with little or no concentration in any particular hromada. A 

detailed further observation however indicated that, many locations recorded very little to no 
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reported casualty while regions within and around central Kharkiv to the northern border with the 

Russian Federation, as well as regions west of Luhansk, to the border with Donetsk recorded the 

most reported casualties within the study area.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Spatial pattern of civilian harm in the study area. 

 
Figure 26: Spatial pattern of civilian harm in the study area. 

 
Figure 27: Spatial pattern of civilian harm in the study area. 

 
Figure 28: Spatial pattern of civilian harm in the study area. 

 
Figure 29: Incidents of civilian harm in the Kharkiv and Luhansk oblasts.Figure 

30: Spatial pattern of civilian harm in the study area. 

 
Figure 31: Spatial pattern of civilian harm in the study area. 

 
Figure 32: Spatial pattern of civilian harm in the study area. 

 
Figure 33: Spatial pattern of civilian harm in the study area. 
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As symbolized in four quartiles in Figure 26, these regions experienced not less than ten 

casualties, with highest frequencies occurring in Kharkivska at a total of 226 incidents of civilian 

harm. Some critical locations seemed to be of more interest and were attacked than others. Within 

the Kharkiv oblast, Kharkivska, Kupianska, Iziumska recorded the maximum casualties with 226, 

21 and 14 incidents respectively while Vovchanska, Chuhuivska, Borivska, Derhachivska, 

Merefianska, Zolochivska, Vilkhivska, Malodanylivska and Pisochynska recorded about 9 to 4 

casualties each.  

 

Within the Luhansk region, the maximum casualty occurred within Lysychanska (15 incidents), 

Sievierodonetska (14 incidents) and Rubizhanska (7 incidents). Popasnianska, Hirska, Alchevska, 

Starobilska, Kadiivska, Luhanska, Shchastynska about two to six incidents while both Kreminska 

Figure 26: Incidents of civilian harm in the Kharkiv and Luhansk oblasts. 

 
Figure 34: Incidents of civilian harm in the Kharkiv and Luhansk oblasts. 

 
Figure 35: Incidents of civilian harm in the Kharkiv and Luhansk oblasts. 

 
Figure 36: Incidents of civilian harm in the Kharkiv and Luhansk oblasts. 

 
Figure 37: Incidents of civilian harm in the Kharkiv and Luhansk oblasts. 

 
Figure 38: Incidents of civilian harm in the Kharkiv and Luhansk oblasts. 
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and Novopskovska had only one incident each of reported civilian casualty. All other hromadas 

within the Luhansk region were incident-free, reporting no casualty. In the Kharkiv oblast, regions 

around Bohodukhivska, Oskilska, Shevchenkivska, Bezliudivska, Starosaltivska, Balakliiska, 

Dvorichanska, Kurylivska, Lozivska, Pervomaiska and Slobozhanska had minimal incidents of 

reported harm with incidents ranging between three (for the first five areas) and two for the rest, 

respectively. All other areas within the oblast were incident-free except for Vysochanska, 

Liubotynska, Solonytsivska and Pechenizka which recorded an incident each. Total count of 

incidents within the oblast stood at three hundred and forty-three with the average of 6.125 while 

all affected regions in the Kharkiv oblast collectively experienced less than fifty-two percent of 

casualties recorded for Kharkivska alone. Comparatively, the Luhansk oblast had fewer incidents 

totaling to sixty-one incidents, compared to Kharkiv’s three hundred and forty-three. The average 

count of civilian harm in Luhansk stood at 1.65 incidents. While Lysychanska was the most 

impacted area in Luhansk, Kharkivska was the most affected region in Kharkiv.  

4.6. Conclusion 

 

 This study explored, via social networks, the flow of social media information on Twitter 

from February 2022 to October 2023 using five pretested and valid popular Russian-Ukrainian 

war #tags and examined the patterns of reported civilian casualty in the Kharkiv and Luhansk 

oblasts in eastern Ukraine. Principal network figures in terms of Twitter users with the most 

visibility and content engagement as well as their pro and anti-war orientation, and degrees of 

power/influence over information flow were examined. Notable Twitter #tags that generated 

massive networks and conversation during this period included #putinisawarcriminal, 

#standwithukraine, #putinswar, #warinukraine2022 and #ukrainewar2022. Other #tags were 

actively present on Twitter but a good number of these generated less engagements, the exploration 
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of which may have very little statistical significance. Such #tags include #russianwarcrimes, 

#ukraineweeps, #russiaukraine2022, #vladimirputin2022 and #russiainvassion2022. Within the 

valid and explored networks/#tags, Twitter users identified as most visible and having much 

influence over the flow of information consisted of government officials, government institutions, 

international humanitarian bodies, international political organizations and individual actors. A 

good majority (90%) of these people (135 out the sampled 150) vehemently objected the ensuing 

violence, declared and promoted solidarity with Ukraine while advocating aid, sympathy and 

support for Ukrainian people. Pro-war principal figures were chiefly eastern-bloc affiliated 

government institutions whose major Twitter content seemed to trivialize the impacts of the 

conflict and attempted diverting attention from the current geopolitical event to rather focus on the 

vestiges of colonialism in Africa while other pro-war individual actors advocated against the 

reception of internationally displaced war victims into western countries.  

The occurrence of civilian casualty during the period under study was recorded all over the 

study area with little or no concentration in context of both the Kharkiv and Luhansk oblasts. There 

was no visible spatial relationship between closeness to urban areas and count of incidence, 

however, Kharkivska within the Kharkiv oblast suffered extreme damages with severe impacts 

nearing 65% of the reported total casualties in the oblast. Some regions and critical locations 

seemed of much interest for attack than other regions. The Luhansk oblast had fewer incidents of 

civilian casualty compared to Kharkiv while both oblasts had some identified safe zones, devoid 

of civilian harm.  
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Chapter 5: Summary and Conclusion 

 

 

 Following the conflicts in Crimea and its subsequent annexation in 2014, repeated chaos 

engulfed Ukraine’s eastern territories and the Donbas for more than eight years (Dijkstra et al. 

2022). Beyond the humanitarian and other crisis emanating from these conflicts, the current 

violence and war have present renewed challenges not only erasing solutions achieved for 

curtailing the impacts of historical conflicts, but actively presenting a plethora of new multifaceted 

developmental and social dilemmas the region would have to embrace for additional number of 

years. Similar conflicts in other regions were evidenced to have ignited significant structural 

disturbances and modifications to urban areas (Lisa et al. 2021; Pech and Lakes 2017), imposed 

detrimental psychological impacts on affected groups (Betancourt and Khan 2008; Bahgat et al. 

2017), significant health consequences and living condition challenges for women (Jolof et al. 

2022), state failure (Büscher 2012), food insecurity (Li et al. 2022; Yazbeck et al. 2022; Gibson, 

Campbell, and Wynne 2012) and protracted labor supply (Odozi and Oyelere 2021). In contexts 

of the environment, violent conflicts induce significant structural and environmental damage, 

LU/LC change (Witmer 2015), landscape fragmentation (Gbanie, Griffin, and Thornton 2018) and 

widespread environmental degradation (Bergius et al. 2020). The assessment of the impacts of 

violent conflicts on Ukraine indicated that, war has created heterogeneous impacts for equity 

markets (Boubaker et al. 2022), reproductive health and justice crisis (Kismödi and Pitchforth 

2022) declination of food supply (Berkhout, Bergevoet, and van Berkum 2022) with associated 

consequences for food prices and global food security (Hassen and Bilali 2022; Benton et al. 2022) 

coupled with extreme environmental (Pereira et al. 2022), security, economic and health issues. 

This study in contribution to these pre-existing assessments, explored the spatial evolution 

of landcover and rates of decline in agricultural vegetation specifically in the Kharkiv and Luhansk 
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oblasts, while examining the flow of social media information via the social network analysis of 

Twitter communities and patterns of civilian casualty in Kharkiv and Luhansk to facilitate a rasp 

comprehension of the spatial dimensions of the conflicts for Ukraine’s east and evolving social 

media powerplays. Several key insights emerged from this study; 1). Armed conflicts induce 

changes in landcover and land systems regardless of the dominating land use (Baumann and 

Kuemmerle 2016). 2). Both agricultural and forested non-agricultural vegetative biomes are 

susceptible to some sort of change during armed conflicts. However, as the former experience 

massive rates of declination, the latter captured the additional space cleared off of the former. This 

affirms the propositions of (Witmer 2015) and (Wilson and Wilson 2013) that non-agricultural 

vegetation and forest cover during periods of war exhibit growth while going through reduction 

during periods of peace. Similar to (Gibson, Campbell, and Wynne 2012), war was seen as an 

active driver of land use/ landcover (LU/LC) change and is among the most drastic drivers of geo-

environmental evolution and globally frequent shocks. Ceteris paribus, agricultural regions are the 

most susceptible to those types of changes. 3). The ensuing conflict modified landcover in the 

study area by facilitating the abandonment of agricultural fields and aiding growth of non-farm 

vegetation as farm labor either flee farmwork for safety or quit farm work for a plethora of reasons 

qualitative survey would help to explore. As seen in these findings, remote sensing has facilitated 

the assessment of the impacts of war. Although data from this technology are incapable of 

comprehensive environmental assessment of conflict impacts, they provide valuable information 

on changes in vegetation which when integrated with social and environmental impacts could 

provide a better understanding of how these complex systems interrelate (Witmer 2008). 

Further insights indicated that reported incidents of civilian casualty between February 

2022 and October 2023 do not have any spatially significant pattern of clustering as of October 15 
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2023. Reported civilian casualty had a random occurrence, with no visible relationship between 

closeness to urban areas and count of incidence, however, out of 343 reported cases in the Kharkiv 

oblast, 66% (226) occurred in Kharkivska alone. Luhansk underwent less casualties than Kharkiv 

while many other regions within the two oblasts were safe, recording no casualty as of October 

15, 2023. Furthermore, the dissemination of conflict information as themed in Twitter #tags, was 

significantly dominated by government officials, government institutions, international 

humanitarian bodies, international political organizations and individual actors, majority of whom 

were anti-war and pro Ukraine. Social clusters on Twitter for the explored networks were not very 

interconnected and information circulating within these social groups emanated from very few 

highly influential Twitter users within whom power over information flow and importance within 

the network heavily resided. Other users consuming these pieces of information from these users 

do not connect with nodes in other clusters and therefore do not take information from them, 

indicating exclusive connection only with politically like-minded persons.  

 

5.1. Recommendation and Future Study 

 
To provide a comprehensive insight into the overall nature and scope of the impact of war 

on eastern Ukraine, this study suggests a future study to assess landcover transformations for the 

entire lifespan of the conflict with an expanded focus to integrate such other socio-environmental 

impacts as water contamination, air pollution, population displacements, agricultural exports and 

food supply relative to conflict regimes (pre, during and post), among others. Other robust analytic 

algorithms such as GeoBIA and deep learning are recommended to be utilized in a future study to 

further explore insights uncovered in this study by the pixel-based classifiers. The study also 
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recommends further studies into the Twitter clusters to investigate the roles and impacts of the 

dominating principal figures on the visual framing of the conflict. 
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