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This thesis develops simplified equations to predict a velocity in which vehicle

rollover or tire saturation occur. These equations are functions of different vehicle

parameters that are important to vehicle handling characteristics. Therefore, var-

ious algorithms are developed to estimate parameters such as vehicle tire stiffness,

peak tire force, and center of gravity position on-line. A number of vehicle control

systems have been developed in order to reduce rollover and help maintain vehicle

stability. However, many of these control systems do not take into account chang-

ing vehicle parameters. Therefore using the on-line estimates of these parameters,

the control systems could be more effective in decreasing the number of vehicle

accidents.

The thesis first explains the fundamentals of lateral vehicle dynamics. Basic

vehicle dynamic models are derived and validated to show the effectiveness and

shortcomings of the different models. Many assumptions are used to simplify the
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models. The assumptions lead to simplified equations that predict a velocity in

which vehicle rollover or tire saturation occur. An equation to predict the vehicle

stopping distance is also derived. Experiments are run to control the vehicle speed

to the predictive velocity. This velocity is updated with the identified parameters

from the estimation algorithms. By providing the updated velocity to the steering

controller, a vehicle is able to transverse a maneuver at a safe speed.
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Chapter 1

Introduction

This thesis develops simplified equations to predict a velocity in which vehicle

rollover or tire saturation occur. These equations are functions of different vehi-

cle parameters that are important to vehicle handling characteristics. Therefore,

various algorithms are developed to estimate parameters such as vehicle tire stiff-

ness, peak tire force, and center of gravity position on-line. A number of vehicle

control systems have been developed in order to reduce rollover and help maintain

vehicle stability. However, many of these control systems do not take into account

changes in the vehicle parameters. Therefore using the on-line estimates of these

parameters, the control systems could be more effective in decreasing the number

of vehicle accidents.

The thesis first explains the fundamentals of lateral vehicle dynamics. Basic

vehicle dynamic models are derived and validated to show the effectiveness and

shortcomings of the different models. Many assumptions are used to simplify

the models. The assumptions lead to simplified equations that predict a velocity

in which vehicle rollover or tire saturation occur. An equation to predict the

vehicle stopping distance is also derived. Experiments are conducted to control

the vehicle speed to the predictive velocity. This velocity is updated with the

identified parameters from the estimation algorithms. By providing the updated
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velocity to the speed controller, a vehicle is able to transverse a maneuver at a safe

velocity.

1.1 Motivation

With an increase of vehicles on the road, vehicle safety is becoming more im-

portant each day. Considerable work has been conducted in the past to decrease

the number of vehicle collisions. There is also a rising demand in research of au-

tonomous vehicles. With a rising demand of autonomous vehicles and an increase

of emphasis on vehicle safety, many different vehicle controls systems have been

developed and implemented in today’s cars to assist vehicle safety development.

However, many of these control systems do not take into account changing vehi-

cle parameters. With knowledge of important vehicle parameters, these control

systems could be more effective in decreasing the number of vehicle crashes.

Electronic Stability Control (ESC) is one control method to help reduce the

numbers of crashes on the road. It limits the lateral acceleration, yaw rate, or

sideslip angle by individual wheel braking, steering input, etc. With the results of

early ESC system, NHTSA has required ESC to be installed in all new vehicles by

the 2012 model year [21]. The limits on the ESC systems are generally constant,

however the ESC systems could possibly be improved by updating these limits

based off of important vehicle parameters. When vehicle parameters change, so

does the handling of the car. By taking the changing parameters into account

when setting the ESC limits, the system should show improvement.

2



Many of the active safety systems also need a measurement of sideslip. This

state has proven to be very difficult to estimate. Many researchers have devel-

oped methods to obtain this state using different sensors and estimators. While

most sensors are too expensive to incorporate into every vehicle, one method in-

tegrates noisy and biased sensors to estimate this state [15]. Other researchers

have used model based estimators along with inertial sensors to estimate sideslip

[10]. For methods that used model based estimators to provide an estimate of the

states, vehicle parameters must be known for these systems to provide an accurate

estimate. This thesis presents different methods to estimate critical vehicle pa-

rameters that could be used to update vehicle parameters in different model based

state estimators.

In addition to possibly providing estimated parameters for better accuracy

of vehicle control systems and model based estimators, this thesis also presents

a method to determine safe vehicle speed before it enters a tough maneuver. To

accomplish this, critical velocity equations are developed to provide a safe speed

to enter a turn. The value of speed calculated is then sent to the vehicle’s control

system as the maximum speed. Because the vehicle’s handling depends on certain

vehicle parameters, estimates from the parameter estimation algorithms are sent

to update the critical velocity equations. By controlling the vehicle speed below a

calculated maximum speed, the vehicle will likely already be under the ESC limits

when it gets into the maneuver.
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1.2 Background and Literature Review

Because vehicle safety is so important, many researchers have developed differ-

ent methods to increase the vehicle’s safety performance. However, many of these

methods rely on accurate vehicle parameters to perform satisfactory. Recently, re-

searchers studied the effects different vehicle parameters had on ESC systems [21].

This study proved that different center of gravity positions could effect the perfor-

mance of the ESC systems and may not always prevent rollover or keep the vehicle

sliding off the road. For this reason, many researchers have studied methods to

estimate these critical parameters.

Since many lateral stability control systems need a measurement of sideslip,

there has been much work done in this field. Many systems to estimate this state

use model based estimators. For these to be successful, it is important for the

vehicle parameters to be accurate. One researcher used estimates of tire cornering

stiffness to improve estimation of vehicle states in a model based estimator [1]. Ryu

proposed a method to estimate vehicle parameters that could be used for model

based state estimation during periods of GPS outages [30]. When GPS signals

are available, a simple kinematic filter could be used to update the states and

also estimate important vehicle parameters [30]. When the GPS signal is lost, a

model based approach is used to estimate the vehicle states, in which the estimated

parameters are used in the model. This thesis develops methods to estimate these

needed parameters.
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Many methods have also been developed to estimate different vehicle proper-

ties. Recent work has estimated different tire properties. While some researcher

have used lateral vehicle models to achieve an estimate of tire cornering stiffness

[30, 32], others have used lateral vehicle models along with non-linear tire mod-

els to estimate cornering stiffness and tire road friction simultaneously [6, 16].

Other methods developed by researchers include measurements of the steering

wheel torque to achieve estimates of these two important parameters [17, 20, 23].

By using a non-linear tire model that takes into account both lateral and longi-

tudinal tire models, a method to estimate both the lateral and longitudinal tire

stiffness, as well as peak tire force has been developed, previously published in

[8]. By using this method, the peak tire force can be estimated during periods

of longitudinal or lateral force generation providing more opportunity to estimate

the tire parameters. By knowing these parameters, it is possible to have a better

understanding of the vehicle’s limits and provides many uses to further increase

safety in today’s automobiles.

Other important parameters that a vehicle’s control system should take into

account include the vehicle’s center of gravity, as this heavily influences rollover

and other handling aspects of the vehicle. Past researchers have developed methods

to estimate this parameter. For example, one researcher developed a method that

uses multiple models and switching to estimate the vehicle’s CG position[33, 34].

One estimator, previously published in [9], uses a non-linear estimator to estimate

5



the lateral CG position [9]. To estimate the height of the center of gravity, a

recursive least squares algorithm can be used.

1.3 Contributions

Since vehicle parameters heavily effect the handling and limits of an automo-

bile, they must be taken into account to maximize safety of the vehicle control

systems. This research attempts to develop different methods to obtain important

vehicle parameters on-line and in real-time. By studying different vehicle models,

it is apparent these parameters can be estimated with current sensors. This re-

search develops a method to obtain estimates of peak tire force and lateral and

longitudinal tire stiffness in either a longitudinal or lateral maneuver. This will

greatly increase the chances of obtaining an estimate of the peak tire force, which

highly effects when the vehicle may slide off the road. This thesis also develops a

method to estimate the vehicle’s CG position.

To help increase the safety of regular and autonomous vehicles, a method is

introduced to limit the vehicle’s velocity during certain driving maneuvers. This

method uses predictive velocities, calculated from simplified vehicle models, to

warn the driver or even update the controlled velocity in autonomous vehicles.

These predictive velocities are based off parameters that mostly influence the han-

dling characteristics of the vehicle. When a parameter changes, the parameter

estimation algorithms will recognize this and update the predictive velocity with

a new value. This will help the vehicle’s controllers by limiting the speed of the
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vehicle before the turn instead of trying to limit it when the vehicle has already

reached the ESC limits. In summary, this thesis will attempt to assist current

vehicle safety technology by providing the control system with estimated vehi-

cle parameters on-line and also providing a max speed in which vehicle failure is

eminent.

1.4 Contributions

This thesis develops methods to estimate critical vehicle parameters using

model based estimators. The estimated parameters are then used to determine a

safe traveling speed for the vehicle. In development of the algorithms, the following

contributions were performed:

• An estimator was developed to estimate peak tire force and tire stiffness

during lateral, longitudinal, and combined tire force generation increasing

the chances of getting an estimate of these parameters.

• A method was developed to estimate the vehicles center of gravity position

using an Extended Kalman Filter (EKF)

• A simplified velocity equation was derived to predict tire saturation.

• Predictive velocity equations and parameter estimation algorithms were used

in conjunction to send a desired velocity to the speed controller, creating a

safe traveling speed for the vehicle.
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1.5 Thesis Organization

The remaining chapters in this thesis are organized as follows:

Chapter 2 Vehicle Modeling. Chapter 2 will lay out the basic vehicle models

used to estimate important vehicle parameters in this thesis. Validation plots are

presented to show the effectiveness and shortcomings of the different models.

Chapter 3 Critical Velocity Calculations. In Chapter 3, certain assumptions

are made to the vehicle models to simplify them. From the simplifications, critical

velocity equations are derived to minimize the sideslip, predict rollover, and to

prevent the tire from sliding.

Chapter 4 Estimation Algorithm Development. Chapter 4 develops methods

to estimate parameters that effect vehicle rollover and sliding. The algorithms are

then validated in simulation.

Chapter 5 Experiments and Validation. Chapter 5 is devoted to testing and

validation of the algorithms developed in Chapters 3 and 4. The critical velocities

are updated with the parameter estimates and sent to the velocity controller. By

using the critical velocities in different scenarios, the vehicle control system is

supplied with a safe speed to enter a turn or lane change.

Chapter 6 Conclusions. Chapter 6 will discuss the contributions and findings

of this work. Some suggestions on future work will also be discussed.
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Chapter 2

Vehicle Modeling

2.1 Introduction

In order to develop parameter estimation schemes for controller updates, ac-

curate vehicle models must be developed. Vehicle models are the primary source

of understanding vehicle dynamics. In this chapter, vehicle models are developed

and studied in depth to fully understand how the vehicle reacts to different vehi-

cle inputs. The coordinate system used in this thesis is defined by the Society of

Automotive Engineers (SAE) and is shown in Figure 2.1. This coordinate system

defines the longitudinal axis of the vehicle as ′x′, the lateral axis to be ′y′, and the

vertical axis, ′z′, points toward the ground. The coordinate system also defines the

direction of roll rate ′p′, pitch rate ′q′, and yaw rate ′r′. All models in this chapter

will be based off the basic ”bicycle model.” Other models are developed to capture

dynamics the bicycle model is unable to describe. Also, simplifications are made to

the bicycle model that is valid during certain steady-state maneuvers. The models

developed in this chapter is important in later sections when developing parame-

ter estimation algorithms. Therefore, it is important to know the limitations and

accuracy of each model. The nomenclature used in this chapter can be viewed in

Appendix A.
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Figure 2.1: Vehicle coordinates defined by the SAE [22]

2.2 Lateral Kinematic Model

Under certain assumptions, lateral motion of a vehicle can be described by

certain geometric relationships. These relationships allow for a mathematical de-

scription of the vehicle motion during certain maneuvers. One downside to this

model is the relationships are very simplistic and may produce large errors from

that of the true states during dynamic maneuvers. However, the relationships

described below are very helpful in understanding the lateral motions of a vehicle.

To derive the kinematic relationships of the vehicle, consider the free body

diagram (FBD) shown in Figure 2.2. One assumption of the bicycle model is the

inner and outer tires are represented by one tire at the center of the vehicle’s axle.

This is true for both the front and rear axle. The steering angle of the vehicle

is represented by δ. The slip angle of the vehicle is denoted as β and describes

the angle between the velocity vector and the longitudinal axis of the vehicle. For
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this section, the slip angle and steer angle are assumed to be small. By neglecting

slip angles at the tires, the velocity vector at each tire is assumed to be in the

direction of the respective tire. Note that these assumptions are reasonable for

vehicles traveling at slower speeds.

Figure 2.2: Kinematic Bicycle Model

At low speeds with no lateral tire slip, it can be shown that the perpendicular

line from each tire passes through the same point which is called the center of the

turn. If the steering angle of the front tire reaches zero, the radius of curvature (R)

goes to infinity. If the front wheels are not zero the steering angle can be described

by Equation (2.1), known as the Ackerman Angle.

δ = tan−1

(

L

R

)

≈

(

L

R

)

(2.1)

11



By using simple kinematics, the vehicle’s velocity (V ) can be described as the yaw

rate (r) of the vehicle times the radius of curvature (R). Also with no lateral sliding,

the lateral acceleration, ay, of the vehicle is simply the centripetal acceleration

developed during the turn.

V = Rr (2.2)

ay = V̇y = Rr2 =
V 2

R
= V r (2.3)

Substituting Equation (2.2) into (2.1) results in the expected yaw rate of the

kinematic model, given a steer input and velocity.

r =

(

V

L

)

tan(δ) ≈

(

V

L

)

δ (2.4)

2.3 Lateral Bicycle Model

The Bicycle Model is used widely in vehicle dynamics to mathematically de-

scribe the motion of a vehicle [12, 29, 22] . It is a simple yet accurate way to

estimate lateral vehicle states for vehicles that develop small roll angles. This

model neglects pitch, weight transfer, and, in this section, longitudinal dynamics.
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Another important, although accurate, assumption is the inner and outer slip an-

gles and steer angles are lumped into one tire at the center of the axle similar to

the previous model.

To show a visual picture of the bicycle model, a free body diagram is shown in

Figure 2.3. The front and rear tire slip angles are denoted as αf and αr respectively.

By summing the forces and moments on the free body diagram, a simple set of

dynamic equations can be derived to describe the vehicle’s lateral motion.

ΣFy = mÿ = FyF + FyR (2.5)

ΣM = Izψ = aFyF + bFyR (2.6)

Figure 2.3: Bicycle Model FBD

To describe the front and rear tire forces (FyF,R), a linear tire model will be

used. This model assumes the tire forces remain in the linear region of the tire

and are proportional to the tire’s respective slip angle times the tire’s cornering

stiffness (Cα), shown in Equation (2.7) and (2.8).
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FyF = −Cαfαf (2.7)

FyR = −Cαrαr (2.8)

Because the tire sometimes leaves the linear region, more information on non-linear

tire modeling will be presented in a later section.

Substituting Equations (2.7) and (2.8) into (2.5) and (2.6), a state space

representation of this model can be developed shown by Equation (2.9).







ay

ṙ






=







− C0

mVx
− C1

mVx

− C1

IzVx
− C2

IzVx













Vy

r






+







Cαf

m

Cαf

Iz






δ (2.9)

where,

C0 = Cαf + Cαr

C1 = aCαf − bCαr

C2 = a2Cαf + b2Cαr

(2.10)

With a state space representation, this model can be configured for control or

estimation purposes.

In order to calculate the steady state tire slip, Equations (2.5) and (2.6) are

simplified by assuming yaw acceleration is equal to zero and lateral acceleration is

equal to the centripetal acceleration shown by Equation (2.3). This results in the

following simplified equations for the lateral tire forces.
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m
V 2

R
= FyF + FyR (2.11)

0 = aFyF + bFyR (2.12)

Substituting Equations (2.7-2.8) into the above equations, the steady-state tire slip

can be solved. This results in Equations (2.13-2.14).

αf =
WfV

2

CαfgR
(2.13)

αr =
WrV

2

CαrgR
(2.14)

2.4 Understeer Gradient

In order to develop a better understand of the turning response of a vehicle,

the understeer gradient of the vehicle is defined. Using the steady-state bicycle

model, the understeer gradient can be determined from the weight distribution

and the cornering stiffness [30]. By including slip angles into Figure 2.2, a simple

kinematic equation between the steer angle and tire slip angles can be developed.

δ ≈
L

R
+ αf − αr (2.15)
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Substituting Equations (2.13 - 2.14) into the above equation gives:

δ ≈
L

R
+ (

Wf

Cαf
−
Wr

Cαr
)
V 2

gR
≈
L

R
+Kusay (2.16)

From the above equation, the understeer gradient is labeled as Kus. The under-

steer gradient determines both the magnitude and the direction of the steering

inputs required for a given lateral acceleration [12]. The understeer gradient also

determines if the vehicle is neutral steer, oversteer, or understeer. Figure 2.4 shows

the basic principles with Kus being the slope of each line.

Figure 2.4: Basic Understeer Gradient Plot

2.4.1 Neutral Steer

Neutral steer occurs when the understeer gradient is zero, which results in

the front and rear steady state tire slip angles being equivalent. By studying

16



Equation (2.16), during neutral steer the steer angle required to make the turn is

approximately the Ackerman angle.

2.4.2 Understeer

Understeer occurs when Kus is greater than zero causing larger slip angles to

develop in the front tire than the rear. Because there is more slip at the front

tire, the steer angle must increase to maintain the radius of the curve. During this

condition, the steer angle increases linearly with the speed squared or the lateral

acceleration.

2.4.3 Oversteer

Oversteer is the opposite of understeer. During oversteer, Kus is less than

zero causing the rear tire slip angle to be greater than the front. Because the rear

is sliding more than the front, less steer angle is required to navigate the turn.

2.5 Tire Models

With the exception of aerodynamic forces, all external forces on the vehicle

are developed at the tire’s contact patch. Therefore it is necessary to have full

understanding of the relationship between the tire’s contact patch and the surface

the vehicle is on. The tire serves three basic functions:

1) It supports the vertical load, while cushioning against road shocks.

2) It develops longitudinal forces for acceleration and braking.
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3) It develops lateral forces for cornering.

Figure 2.5 shows typical characteristics of a tire under lateral force generation

modeled by the Fiala tire model. More information on this model will be discussed

later. As shown in the plot, the lateral tire force remains linear with slip angle,

as modeled by Equations (2.7) and (2.8), until the tire becomes saturated. This

model relates peak tire force to the tire-road friction (µ) times the normal force

(Fz), known as the peak tire force. Therefore, the peak tire force increases with

a rise in normal force. The longitudinal tire curve looks similar to the lateral tire

model but instead is linear with the longitudinal tire slip. For this reason, it is

very important to have an accurate estimate of µ in order to reasonably predict

the onset of sliding.
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Vertical forces on the tire are not only important for ride characteristics, but

also help to describe the max longitudinal and lateral forces developed by the

tire. As shown in Figure 2.6, the magnitude of lateral and longitudinal tire force

cannot exceed the peak tire force. When the magnitude of tire force reaches this

point, sliding occurs. By studying the figure, it is obvious that the available drive

force decreases with an increase in lateral force. Because of this effect, both forces

must be taken into account during combined lateral and longitudinal tire force

generation to develop an accurate vehicle model.

Figure 2.6: Circle of Friction for Tire Forces

Several researchers have developed models to describe the generated tire forces.

One of the most well known models, called the Magic Formula tire model, was de-

veloped by Pacejka [27, 26, 25]. This model is an empirical formula capable of

calculating lateral and longitudinal tire forces. Alternatively, the two models used

in this paper are the Fiala and Dugoff tire model. Both models have their pros

and cons and will be discussed in more detail below.
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2.5.1 Fiala Tire Model

The Fiala tire model was originally developed to estimate lateral tire force gen-

eration only [11]. The model was however transformed to take into account both

lateral and longitudinal forces [24]. One assumption to accomplish this transfor-

mation was lateral and longitudinal tire stiffness (Cα, Cσ) are equal. This is not

always true however. The total slip (σ) for this model is simply the magnitude of

the lateral and longitudinal slip (σy, σx), shown by Equation (2.17).

σ =
√

σ2
y + σ2

x (2.17)

To calculate the total slip, the individual values for slip must be known. Both the

longitudinal and lateral slip are found using Equations (2.18) and (2.19) below.

σx =
reffωw−Vx

reff ωw
during acceleration

σx =
reffωw−Vx

Vx
during braking

(2.18)

σy =
Vx

reffωw

tan(α) (2.19)

Both of these values may be calculated using different sensors described in

Chapter 4. By assuming a parabolic pressure distribution on the tire’s contact

patch, Equation (2.20) is used to describe the magnitude of force on the tire, using

the Fiala tire model.
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Ft =











µFz[3θσ − 1
3
(3θσ)2 + 1

27
(3θσ)3] if σ ≤ σm

F = µFz if σ ≥ σm

(2.20)

The variable, σm, is the value of total slip where sliding occurs in the Fiala

tire model. As described by the circle of friction, sliding is assumed to begin when

the maximum tire force is equal to µFz.

σm =
1

θ
=

3µFz

Cα/σ

(2.21)

The individual values of lateral and longitudinal tire force (Fy, Fx) can be

obtained by breaking up the force magnitude (Ft). This is done by multiplying the

force magnitude by the ratio of total slip to each forces respective slip, as shown

in Equation (2.22) and (2.23).

Fx =
σx

σ
F (2.22)

Fy =
σy

σ
F (2.23)

In the case of pure lateral slip, set σy = tan(α) and σx = 0 in the Fiala tire

model. In case of pure longitudinal slip, set σy = 0 [29]. By reducing the combined

force generation model to either lateral or longitudinal force generation, simpler

calculations can be obtained by reducing the amount of noisy measurements.
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2.5.2 Dugoff Tire Model

The Dugoff model is similar to the Fiala model in that is allows for tire force

estimates during combined tire force generation. The main difference is the Dugoff

tire model assumes a uniform vertical pressure distribution on the tire’s contact

patch [7]. This is a simplification from the Fiala’s tire model, but it allows for

individual values of lateral and longitudinal tire stiffness which is shown to be

advantageous in Chapter 4. The longitudinal and lateral tire forces are given by

Equations (2.24) and (2.25), respectively.

Fx = Cσ
σx

1 + σx

f(λ) (2.24)

Fy = Cα
tan(α)

1 + σx
f(λ) (2.25)

where,

λ =
µFz(1 + σx)

2[(Cσσx)2 + (Cα tan(α))2]
1

2

(2.26)

f(λ) =











(2 − λ)λ if λ < 1

1 if λ ≥ 1

(2.27)

Similar to the Fiala tire model, this model has a transition that occurs when

λ = 1. This transition occurs when the tire leaves the linear region and begins the

non-linear region. If the tire is experiencing lateral slip only, the model may be
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reduced by setting σx = 0 or for pure longitudinal force generation simply set α =

0. This helps to simplify the model during driving conditions where only lateral

or longitudinal forces are generated.

2.6 Roll Model

In this section, different vehicle roll models will be described and studied.

It is very important to understand vehicle roll and rollover. Many researchers

have developed models to describe the roll dynamics of vehicles during cornering.

Some models are fairly simple while others are very in depth and require more

parameters. The simpler roll models do not include the springs and dampers of

the suspension and therefore assumes the sprung mass is stationary with the axle.

Other high-fidelity models take into account forces produced by the springs and

dampers.

In order to produce a reliable roll model, a free body diagram (FBD) must

be developed. The FBD in Figure 2.7 shows a two state roll plane model [33, 34].

Three important parameters used in this model include the CG height (hcg), roll

stiffness (Kφ), and roll damping coefficient (Cφ). This model lumps the entire

vehicle mass into the sprung mass. This assumption allows a simplified equation

for the spring and damper torques, shown in Equations (2.28-2.29).
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Tspring = Kφφ (2.28)

Tdamper = Cφφ̇ (2.29)

Notice that both equations also assume the spring and damper torques are linear

with roll (φ) and roll rate (φ̇), respectively.

Figure 2.7: Vehicle Roll FBD

By summing the moments about the roll center on Figure 2.7, a simple equa-

tion is derived to describe the roll dynamics of the vehicle. Equation (2.30) assumes
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the vehicle’s sprung mass rotates about a fixed point at the centerline of the lateral

axis on the ground.

Jeff φ̈+ Cφφ̇+Kφφ = mhcg(aycos(φ) + gsin(φ)) (2.30)

By assuming a steady-state turn and small angles, Equation (2.30) can be

simplified to solve for the roll angle with knowledge of the CG height and the

spring roll stiffness.

φ =
mhcgay

Kφ −mhg
=

mhcgV
2

R(Kφ −mhcgg)
(2.31)

Equation (2.30) may be transformed into a state space representation. The state

space representation is shown in Equation (2.32).







φ̇

φ̈






=







0 1

−
Kφ−mghcg

Jeff
−

Cφ

Jeff













φ

φ̇






+







0

mhcg

Jeff






ay (2.32)

Many other models have also been used to analyze roll dynamics. Some models

developed do not assume the vehicle’s roll center is located at ground height. One

model assumes the roll center is not at ground level and the imaginary roll center

also produces reactionary forces was developed in [36, 37].
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2.7 Vehicle Model Validation

To show the accuracy and limitations of the models, each model is validated

with experimental data. The data is from a G35 sedan at the National Center for

Asphalt Technology (NCAT) test track. More details from the sensor implementa-

tion is discussed in Chapter 4. Carsim, a high-fidelity vehicle simulation software,

is also used throughout this thesis.

With the data gathered at NCAT test track, the kinematic and bicycle model

are validated in MATLAB. The parameter values used in the simulations of the

G35 sedan is listed in Appendix B. By using MATLAB to simulate the dynamic

equations presented in this chapter, Figure 2.8 shows that both the kinematic and

bicycle model matches the recorded data at 2m/s, as would be expected. However

for larger slip angles, the assumptions of the kinematic model break down causing

the model to perform poorly. In the data logged at NCAT, slip angles remained

small enough for both the bicycle and kinematic model to hold true. When vehicles

reach higher speeds, as shown in the next experiment, the simplistic kinematic

model is not the best choice.
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Figure 2.8: Comparison of the Kinematic and Bicycle Model during Slow-Speed
Turning in the G35 Sedan

To show the shortcomings of the kinematic model, data was logged in a G35

sedan at higher speeds around NCAT test track. The inputs were run through both

models in MATLAB and the results are shown in Figure 2.9. Notice the difference

in the kinematic and bicycle models prediction of yaw rate. While cornering at

high speeds with large slip angles, the kinematic model can not accurately predict

the vehicle’s dynamics.
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Figure 2.9: Comparison of the Kinematic and Bicycle Model during High-Speed
Cornering in the G35 Sedan

To illustrate the shortcomings of the bicycle model with a linear tire model,

a maneuver is conducted which saturates the tires enough for the vehicle to begin

sliding. This is a very hard maneuver and is conducted to show a linear tire model

without saturation can not describe the vehicle motion at the limits of handling.

The more advanced model uses the Dugoff tire model to calculate the lateral tire

forces. Figure 2.10 shows the bicycle model with a linear tire failing to match the

data when the vehicle looses control. However, the bicycle model with a non-linear

tire model matches the data fairly well, although there is still some mismatch at

the highest peak. This is most likely due to the fact that the model does not take

into account vehicle roll dynamics.
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Figure 2.10: Comparison of the Bicycle Model with Linear and Non-linear Tire
Models during High-Speed Sliding Experiments in the G35 Sedan

Finally, the two state roll plane model is tested. The vehicle used in this

simulation is a large SUV from Carsim. Carsim is a high fidelity vehicle simulation

tool that can be used to validate simplified vehicle models. Carsim is choose in

this experiment because a vehicle is needed that produces large roll angles, unlike

the G35 sedan used in previous experiments. Appendix B provides the parameter

values used in the roll plane model during this simulation. The large SUV attempts

a double lane change in order to induce large roll rates and angles. The data from

Carsim is used to compare with the simple two state roll plane model, which is

simulated in MATLAB. The data from Carsim matches up well with the simple

roll plane model, given in Equation (2.30), as shown in Figure 2.11.
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Figure 2.11: Roll Plane Model Validation of a Double Lane Change Maneuver in
Carsim

One difference in this model and the Carsim high-fidelity model is the springs

used in the Carsim model are highly non-linear. Shown by Equation (2.28), the

simple roll plane model assumes linear springs. Now that the roll plane has been

validated it can be used to estimate certain unknown parameters that may change

such as the roll height. This parameter is important to know as it is one of the

main factors in vehicle rollover [21].
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2.8 Conclusions on Vehicle Modeling

In this chapter, vehicle models were developed and implemented into Matlab

in order to develop a better understanding of vehicle dynamics. A simplistic kine-

matic model was developed and shown to match the vehicle dynamics at lower

speeds in the Infiniti G35 sedan. For cornering at faster speeds, the kinematic

lateral vehicle model failed to accurately describe this vehicle’s dynamics. How-

ever, the bicycle model developed in Section 2.3 accurately described the vehicle’s

lateral motion. The pros and cons of using a linear tire model versus a non-linear

tire model in the bicycle model was also discussed in this chapter. For model-

ing the roll dynamics of a vehicle, a simple roll plane model was derived. This

model was validated with simulated data in Carsim from a large SUV. Carsim was

used to provide a vehicle with a higher center of gravity position than the G35

sedan. Overall, this chapter showed the effectiveness of describing lateral and roll

dynamics of a vehicle, while also describing the shortcomings of each models.
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Chapter 3

Predictive Velocity Calculations

3.1 Introduction

In this chapter, equations are derived to find a steady-state speed that a

vehicle can safely transverse a curve. The velocities calculated take into account

radius of curvature, rollover, small sideslip angles, and tire-road friction. Several

assumptions are used to simplify equations of motion of the vehicle during different

maneuvers. It is also assumed that the radius of curvature of the road is known

from the path planner or a map database. These velocities are used in Chapter

5 to update the controlled velocity during different maneuvers. Also, a following

distance is calculated for vehicles driving in platoons by taking into account the

maximum braking forces available at the vehicle’s tires. These equations could be

beneficial to autonomous vehicles when traveling alone or in platoons by providing

information about what speeds to travel or how far away to follow another vehicle.

3.2 Predictive Velocity

In order to develop the equations discussed above, several assumptions are

made. Many of the equations used in this section are based off a simplified version

of the bicycle model. The simplified version of the the bicycle model assumes the

vehicle is in steady-state. The steady state sideslip is then calculated. Both the
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zero-sideslip and Dugoff velocity rely on the steady-state bicycle model. Similarly,

the rollover velocity is derived from a simplification of the roll model. To view the

nomenclature used in this chapter, view Appendix A.

3.2.1 Zero-Sideslip Velocity

With the lateral tire slip known at the tires, certain criteria is set to calculate

a look-ahead velocity. One method used by Gillespie [12] is to find the velocity

with zero sideslip at the vehicles center of gravity (CG). As discussed in Chapter 2,

sideslip is simply the angle between the velocity vector and the vehicles longitudinal

axis and can be calculated by Equation (3.1).

β = αr +
b

R
(3.1)

To represent Equation (3.1) as a function of velocity, the above equation is

combined with Equation (2.14). Then by setting the sideslip equal to zero, the

zero sideslip velocity can be calculated with Equation (3.2).

Vβ=0 =

√

bg
Cαr

Wr
(3.2)

The above equation provides for a safe speed in an autonomous vehicle during

cornering or lane change maneuvers. However, this equation is not a function of

33



the turning radius and may provide speeds much lower than desired around larger

radius turns. It also doesnt take into account the friction limits of the driving

surface. Instead this velocity is a only function of the weight split and cornering

stiffness.

3.2.2 Dugoff Velocity

In order to calculate a velocity based off tire-road friction and radius of cur-

vature, the Dugoff tire model is used. This model was discussed more in depth

in Chapter 2. The purpose of using this model is it has a transition when the

tire leaves the tires circle of friction. The basic equations used in this subsection

were described previously by Equations (2.24-2.26). However, for this section the

Dugoff tire model is simplified to lateral force generation only. By making this

assumption, the Dugoff tire model reduces down to the form shown in Equations

(3.3-3.5).

Fy = Cα tan(α)f(λ) (3.3)

where,

λ =
µFz

2Cα tan(α)
(3.4)

f(λ) =











(2 − λ)λ if λ < 1

1 if λ ≥ 1

(3.5)
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Gunter and Sankar developed a friction circle interpretation of the Dugoff

model [13]. It proves that if λ > 1, the tire’s operation point is inside the friction

circle and if λ ≤ 1, the tires operation point is outside the friction circle. Since

longitudinal dynamics are ignored, if the lateral tire force is less than the friction

coefficient times the load on the tire, the tire remains in the circle of friction. This

is used as the criteria to calculate a critical velocity from the Dugoff tire model.

Assuming small angles, the non-equality equation, in Equation (3.6), is derived to

keep the lateral tire force inside the friction circle assuming no longitudinal force

generation and by setting λ = 1 in Equation (3.4).

µFz

2Cαα
> 1 (3.6)

Substituting Equation (2.13) into Equation (3.6), the velocity that ensures the tire

remains inside the friction circle during steady-state turns can be calculated as

shown below.

VDug <

√

µRg

2
(3.7)

The above velocity can be easily determined if the radius of curvature and the

friction coefficient is known. During turning around a large radius of curvature,

this velocity would allow high speed turning without loosing control or sliding
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out. If the tire-road friction coefficient changes during the turn, the vehicle could

however begin to slide out. For this reason, a method to estimate the road’s friction

coefficient will be developed in Chapter 4.

3.2.3 Rollover Velocity

To provide safe speeds for any vehicle, rollover must be taken into account.

This is especially true for vehicles with a a high center of gravity, as these vehicles

are more prone to rollover. Instead of sliding out like the above section describes, a

larger vehicle tends to rollover. Many previous researchers have worked on rollover

prediction formulas [28, 19, 14].

To obtain knowledge of when rollover will occur, a simple rollover prediction

formula is developed previously discussed here [21]. Rollover can be defined as the

point when all the vehicle’s normal force is shifted to one side [21]. By neglecting

the suspension effects, the vehicle can be modeled as a solid mass and transients

from the suspension are ignored. A simple FBD in Figure 3.1 is used to describe

this assumption.
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Figure 3.1: Roll Equation FBD

By summing the vertical and lateral forces as well as the moment on Figure

3.1, the following equations are developed.

∑

Fy = m ∗ ay = Fy (3.8)

∑

Fz = maz = mg − Fz = 0 (3.9)

∑

MCG =
T

2
Fz − hcgFy = 0 (3.10)

By simplifying the above equations, the rollover prediction formula is derived. This

equation is widely used and is shown in Equation (3.11) [14, 12, 21].

VRollover =
Tg

2rhcg
=

√

TRg

2hcg
(3.11)
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Lambert [21] recently developed a method to incorporate weight split and sus-

pension effect into the rollover prediction formula. By studying trends in rollover

data, a scale factor based on the understeer gradient of the vehicle was added to

the formula to take into account weight split. An additional constant (κ) for the

suspension effects was also added as shown in the equation below.

VRollover = κ
Tg

2rhcg
(1 +Kus) = κ

√

TRg

2hcg
(1 +Kus) (3.12)

3.3 Stopping / Following Distance

In order for multiple vehicles to travel together in a fleet, a safe following

distance must be known in order to prevent vehicle accidents. Figure 3.2 shows an

example of a vehicle driving too close and a vehicle at a safe following distance.

Note that the definition of ”too close” is based on braking capability of the vehicle

and the road surface.

Figure 3.2: Safe Following Distance
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For an autonomous vehicle in a fleet, a safe following distance provides many

advantages over a vehicle without any knowledge of safe distance from the vehicle

in front. Many sensors, such as a lidar, can provide a measurement of distance

from one vehicle to the next for control purposes. If a safe following distance is

known, rear-end collisions could be prevented.

In order to calculate a proper following distance, a simple longitudinal vehicle

model is used. Figure 3.3 shows a very simplistic FBD of a longitudinal vehicle

during braking. By summing the forces in the longitudinal direction, a simple

equation is developed to describe the longitudinal motion of the vehicle.

ΣFx = max = −External Forces = −Fxt (3.13)

Where Fxt is the braking force.

Figure 3.3: Longitudinal Free Body Diagram
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In actuality, many forces effect the longitudinal dynamics, such as road slope,

aerodynamic forces, braking and acceleration forces at the tire, and rolling resis-

tance. However, to calculate a stopping distance, in this thesis some forces are

ignored. When the equation is simplified to include only the braking force (Fxt),

the linear deacceleration (Dx) can be described by Equation (3.14).

Dx = −
dV

dt
=
Fxt

m
(3.14)

Assuming that the braking force is constant during the deacceleration, Equation

(3.14) can be integrated to find the time (ts) for a certain change in velocity [12].

ts = (Vo − VF )
m

Fxt
(3.15)

In order to solve for stopping distance, the relation dt = dx
V

can be substituted

into Equation (3.14) for dt. After integrating the equation and assuming the final

velocity is zero, the stopping distance can be determined by Equation (3.16) [12].

SD =
mV 2

o

2Fxt
(3.16)
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The minimum stopping distance occurs when the braking force equals the

peak longitudinal tire force, discussed in Chapter 2. Figure 2.6 shows that the

max available braking force is equal to the friction coefficient times the normal

force when neglecting lateral dynamics. By substituting µFz in for Fxt, a final

equation for stopping distance is created.

SD =
mV 2

o

2µFz

=
V 2

o

2µg
(3.17)

If the applied braking force to the tires is known, Equation (3.16) can be

used to solve for the braking distance. However, if the braking force exceeds the

peak tire force then Equation (3.17) must be used. This is because the tire-road

interaction force can saturate and the tire slides at the peak tire force.

If the vehicle is stopping on a sloped road, the equation can be modified to

take into account the road grade (θ). Assuming road grade and braking are the

only external forces on the vehicle, the deacceleration of the vehicle is described

by Equation (3.18).

Dx = −
dV

dt
=
Fxt

m
+ gsinθ (3.18)

Assuming the road slope does not change with the distance, the relation dt = dx
V

can be substituted into Equation (3.18). By integrating the above equation, a
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stopping distance formula that depends on braking and road slope is developed,

as shown in Equation (3.19).

SD =
V 2

o

2(Fxt

m
+ gsinθ)

=
V 2

o

2g(µ+ sinθ)
(3.19)

By implementing this equation during travel on a hillside, a safer following distance

will be possible, assuming the road slope is known or measured.

3.4 Experiments

To test the critical velocity and stopping distance equations, a series of tests

were run in Carsim. These test were run to determine slideout, rollover, and

stopping distance of a vehicle and how well the simplified equations match up to

the values from a high fidelity simulation in Carsim. Parameters for the G35 sedan

and the large SUV used in the following simulations are found in Appendix B. The

G35 sedan is used in the Dugoff velocity and zero sideslip velocity simulations,

while the rollover experiments are conducted with the large SUV.

3.4.1 Dugoff Velocity

The Dugoff velocity is developed to keep the vehicle’s tires inside the friction

circle. It may also be noted that this equation does not take into account vehicle

roll so during high amounts of roll the vehicle may slide out quicker than the value

calculated from Equation (3.7).
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To test the Dugoff velocity equation, two simulations were run in Carsim.

The simulations consisted of a G35 sedan slowly accelerating around two circles,

one with a radius of 152.4 meters and another with radius of 400 meters. The

experiments consisted of four different simulations per circle. Each simulation

had a different value for tire-road friction to fully test the equation’s accuracy

to predict a slide out. Figure 3.4 shows both the simulations with the asterisks

being the Dugoff velocity calculated from the friction coefficient and the radius

of curvature. Remember, this velocity is used to predict at what speed the tire

reaches its limits.
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Figure 3.4: Predicting Slidout at Radius of 152.5 and 400 meters with the Dugoff
Velocity Equation

Notice as the friction coefficient rises, the accuracy of the equations decrease.

The reason the accuracy is decreasing could likely be from the effects of roll and

weight transfer. During the simulation with a value of tire road friction of 1, nearly

80 percent of the weight was transfered to the outer tire. As the friction coefficient
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rises, more weight is transfered to the outer tire before the vehicle reaches the limit

of adhesion, causing all the vehicle’s weight to be present on one tire instead of

both. By assuming all the weight is on either the inner or outer tire, the steady-

state tire slip angle can be recalculated resulting in a new Dugoff velocity equation.

VDug <

√

µRg

4
(3.20)

This is a very simple change but will provide for safer results during periods

of high roll angles. The experiments were repeated for the new Dugoff velocity

and the results are shown in Figure 3.5 with the circles being the previous values

using Equation (3.7).
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Figure 3.5: Predicting Slidout at Radius of 152.5 and 400 meters with the new
Dugoff Velocity Equation
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3.4.2 Rollover Equation

The rollover prediction formula was developed to help predict rollover during

turning maneuvers. In this section, the formula is tested with different values of

CG height on a 100 meter radius turn. The rollover prediction formula is a function

of additional factors that have been evaluated by Lambert [21].

The first test run in this section is a simulation of a large SUV in Carsim

slowly accelerating around a curve until rollover occurs. The values of this vehicle’s

parameters are shown in Appendix B. It is assumed rollover occurs when the all

the weight of the vehicle is on the outer tires. Table 3.1 shows the simulated

rollover speed versus the calculated rollover speed with each run having a different

CG height. The results of this test show good correlation between the rollover

prediction formula and the simulation’s actual rollover.

Table 3.1 - Rollover Velocity on 100m Radius Turn
CGHeigth VRollover from Sim. (m

s
) VRollover from Eq. (m

s
) % Diff.

1.2 23.06 23.16 0.4 %
1.0 25.72 25.37 1.4 %
0.8 29.08 28.36 2.5 %
0.6 32.92 32.75 0.5 %

3.4.3 Stopping Distance

This section performs braking simulations in Carsim to test the effectiveness

of the minimum stopping distance equation. The simulations consisted of multiple

runs on roads with different tire-road friction (µ) values. All runs will use Carsim’s

45



ABS system to assure quicker braking response and to also simulate how braking

would occur in a real vehicle. Table 3.2 below shows simulated and calculated

stopping distances (SD) for roads with different values of µ.

Table 3.2 - Stopping Distance at Vo=30m
s

µ SD from Sim. (m) SD from Eq. (m) % Diff.
0.25 189.3 183.5 3.06 %
0.5 94.3 91.7 2.76 %
0.75 60.9 61.2 0.49 %
1.0 45.4 45.9 1.10 %

Next, a set of simulations on a -15 degree incline were conducted. The simu-

lations for this test consist of multiple runs on an incline with different µ values.

Table 3.3 shows the predicted and actual value of stopping distances for these sim-

ulations. The simulation with a coefficient of friction of 0.25 is listed as unknown.

This is because the value of sin(θ) is greater than the value of µ causing the vehicle

to slide down the hill without slowing down. The simulation shows similar results

with the vehicle never actually coming to a stop. Therefore, the stopping distance

equation can be used to predict if the road slope is to steep for the vehicle to stop

on. These simulations proves the effectiveness of this simple equation. Therefore,

in platoons of autonomous vehicles these equations would be effective in deciding

a safe following distance from the lead vehicle with a known value of µ. In order

to fully utilize the SD equations, The next chapter will focus on estimation of µ.
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Table 3.3 - Stopping Distance at Vo=30m
s
θ=-15 deg

µ SD from Sim. (m) SD from Eq. (m) % Diff.
0.25 unknown unknown unknown %
0.5 197.3 190.2 3.60 %
0.75 91.9 93.4 1.63 %
1.0 60.1 61.9 2.99 %

3.5 Conclusions

This chapter developed predicted velocities that proved to be effective at pre-

dicting rollover and sliding out even though many simplification were made to

obtain the equations. An equation was also derived to calculate a speed that min-

imizes the siedslip angle at the vehicle’s center of gravity. In order to calculate

the predictive velocities, many important parameters must be known, such as the

friction coefficient and the vehicle’s center of gravity position. Stopping distance

equations were derived and proved very effective at predicting the stopping dis-

tance of the vehicle assuming certain parameters are known, such as µ and θ. The

predictive velocities were then validated with a series of simulations performed in

Carsim. The results of those test showed very good correlation between the true

speed of rollover and sliding out and the predicted values calculated by the pre-

dictive velocity equations derived in this chapter. In the next chapter, algorithms

will be developed to obtain parameters needed for these equations.

47



Chapter 4

Estimation Algorithm Development

4.1 Introduction

This chapter develops parameter estimation algorithms based off of the vehi-

cle models shown in Chapter 2. The most important and difficult parameter to

estimate may be tire-road friction, as it is used for the dugoff velocity and the

stopping distance equations. To estimate this parameter, a non-linear tire model

must be used that describes the tire’s saturation. This chapter uses the Fiala and

Dugoff tire model with a non-linear estimator to obtain an estimate of peak tire

force. Other parameters that need to be estimated include the CG height and

weight split. The weight split is estimated using the bicycle model in a non-linear

estimator. To estimate CG height, a recursive least squares estimator is used.

Estimates of these important parameters are necessary to update the predictive

velocities and stopping distance equations developed in Chapter 3. Validation of

the tire parameter and weight split estimation algorithms is conducted in MAT-

LAB with data from the G35 sedan, discussed in Chapter 2. Simulations with

Carsim’s large SUV are used to validate the CG height estimator since a vehicle

with a taller CG is desired.
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4.2 Tire Parameter Estimates

Many researchers have developed methods to estimate tire parameters. While

some researcher have used lateral vehicle models to achieve an estimate of cornering

stiffness [32, 30], others have used lateral vehicle models along with non-linear

tire models to estimate cornering stiffness and tire road friction simultaneously

[6, 16]. Another method developed by previous researchers includes measurements

of the steering wheel torque to achieve estimates of these two important parameters

[17, 20, 23]. Some researchers have used longitudinal vehicle models to estimate

the tire-road friction [4, 5]. In this section, a method will be developed to estimate

lateral and longitudinal tire parameters using non-linear tire models, previously

published in [8].

To estimate lateral and longitudinal tire stiffness as well as the peak tire force,

some type of estimator must be chosen. Since non-linear tire models are used in

this estimation, an extended Kalman filter (EKF) was selected. A basic Kalman

filter is a recursive algorithm that optimizes the estimate by statistically weighting

the accuracy of each measurement. The extended Kalman filter, shown in Equa-

tions (4.1-4.7),is similar to the basic Kalman filter except the state transition and

observation models need to only be differentiable functions of the state, instead of

linear functions.
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Time Update

x̂k|k−1 = f(x̂k−1|k−1, uk) (4.1)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (4.2)

Measurement Update

ỹk = zk − h(x̂k|k−1) (4.3)

Sk = HkPk|k−1H
T
k +Rk (4.4)

Kk = Pk|k−1H
T
k S

−1
k (4.5)

x̂k|k = x̂k|k−1 +Kkỹk (4.6)

Pk = (I −KkHk)Pk|k−1 (4.7)

Because the system used in this section is non-linear, the H and F matrix will

simply be the Jacobian of the output(h) and state transition model(f) respectively,

as shown below.

Hk =
∂h

∂x
|x̂k|k−1

(4.8)

Fk =
∂f

∂x
|x̂k|k−1,uk

(4.9)
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Using the EKF shown above, it is possible to estimate the three states, lateral,

longitudinal tire stiffness, and peak tire force, discussed earlier by using the Fiala

or Dugoff tire model. The EKF uses a non-linear tire model as the output matrix

meaning the tire forces will need to be used as a measurement to compare against

the model. Therefore, the measurement matrix (z) will consist of the lateral and

longitudinal tire forces per axle. To get these measurements, a simple measurement

transition matrix can be developed from the FBD in Figure 4.1.

Figure 4.1: Tire Force Estimates

This figure is similar to the bicycle model earlier, except it also includes the

longitudinal forces at the tires. All other assumptions used to develop the bicycle

model in Chapter 2 are applicable for the force measurements derivation, shown

in Equation (4.10) and (4.11).
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during acceleration (4.10)
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during braking (4.11)

Inspection of the above equations show, the front longitudinal force is assumed

to be zero during acceleration since the vehicle is rear wheel drive. Another as-

sumption made is the front and rear longitudinal forces are equal during braking,

although this may not always be true if the vehicle has a non 50-50 brake distri-

bution. With an equation to calculate the tire forces, the performance of the EKF

with the Dugoff or Fiala tire model can be further analyzed. The pros and cons of

each tire model in conjunction with the EKF will also be explained in the following

sections.

4.2.1 Tire Stiffness and Peak Tire Force Estimation with Dugoff’s Tire

Model

To develop an extended Kalman filter using the Dugoff Tire Model to estimate

lateral and longitudinal tire stiffness and peak tire force, Equations (2.24-2.27) will

be needed. As shown in the last section, the z matrix must be composed of the

lateral and longitudinal tire forces calculated with the transformation matrix.
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z =







Fx

Fy






(4.12)

The state matrix (x) is composed of the states that are to be identified.

x =















Cσ

Cα

µFz















(4.13)

The measurement matrix in Equation (4.12) can be used for the front or rear

axle depending on which tire’s properties need to be estimated. Since the state

matrix is not changing as a function of time, the extended Kalman filter can be

simplified similarly to the one used by Daily [6]. Because the system is non-linear

with the states, the state transition matrix is simply the Jacobian of the tire force

equations with respect to the states, shown by Equation (4.14).

H =







∂Fx

∂Cσ

∂Fx

∂Cα

∂Fx

∂(µFz)

∂Fy

∂Cσ

∂Fy

∂Cα

∂Fy

∂(µFz)






(4.14)

The Dugoff tire model has a transition when λ = 1, therefore two separate

state matrices must be created. If λ < 1 in the Dugoff tire model, the equations

for the H matrix are listed below in Equations (4.15-4.20).
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∂Fx

∂Cσ
=

µFzσC2

αtan2(α)

((Cσσ)2 + (Cαtan(α))2)3/2
−

σ(1 + σ)(µFz)2(−(Cσσ)2 + (Cαtan(α))2)

4((Cσσ)2 + (Cαtan(α))2)2
(4.15)

∂Fx

∂Cα
= −

µFzσCσCαtan2(α)

((Cσσ)2 + (Cαtan(α))2)3/2
+

Cσσ(1 + σ)(µFz)2Cαtan2(α)

2((Cσσ)2 + (Cαtan(α))2)2
(4.16)

∂Fx

∂(µFz)
=

Cσσ

((Cσσ)2 + (Cαtan(α))2)1/2
−

Cσσ(1 + σ)µFz

2((Cσσ)2 + (Cαtan(α))2)
(4.17)

∂Fy

∂Cσ
= −

µFzσ
2CσCαtan(α)

((Cσσ)2 + (Cαtan(α))2)3/2
+

Cσσ2(1 + σ)(µFz)2Cαtan(α)

2((Cσσ)2 + (Cαtan(α))2)2
(4.18)

∂Fy

∂Cα
=

µFzσ
2Cσtan(α)

((Cσσ)2 + (Cαtan(α))2)3/2
−

tan(α)(1 + σ)(µFz)
2(−(Cσσ)2 + (Cαtan(α))2)

4((Cσσ)2 + (Cαtan(α))2)2
(4.19)

∂Fy

∂(µFz)
=

Cαtan(α)

((Cσσ)2 + (Cαtan(α))2)1/2
−

Cαtan(α)(1 + σ)µFz

2((Cσσ)2 + (Cαtan(α))2)
(4.20)

When the Dugoff Model transitions at λ = 1, the H matrix must be modified.

The equations for the H matrix when λ ≥ 1 are listed in Equations (4.21-4.26).

∂Fx

∂Cσ
=

σ

1 + σ
(4.21)

∂Fx

∂Cα
= 0 (4.22)

∂Fx

∂(µFz)
= 0 (4.23)

∂Fy

∂Cσ
= 0 (4.24)

∂Fy

∂Cα
=

tan(α)

1 + σ
(4.25)

∂Fy

∂(µFz)
= 0 (4.26)

Although the H matrix is very complex when the tire is saturated (λ < 1),

all states are observable. In contrast when the tire is in the linear region (λ ≥ 1),
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the peak tire force is unobservable and cannot be estimated. It can also be seen

that the lateral tire stiffness does not depend on the measurement of longitudinal

tire force and the longitudinal tire stiffness is independent of the lateral tire force

measurement. Because the peak tire force is unobservable, the EKF estimate of

this parameter remains constant when λ ≥ 1. This actually makes sense because

the Dugoff tire model does not depend on the peak tire force to calculate the

tire forces until the tire becomes saturated. Ideally, the peak tire force would be

estimated before the tire becomes saturated to help limit the vehicle from sliding,

but this is not possible using the Dugoff tire model. This leads to one advantage

of using the Fiala tire model, as will be shown in the next section.

4.2.2 Estimation with Fiala’s Tire Model

In addition to the Dugoff tire model, the Fiala model can also be set up for

estimation of certain tire properties. The measurement matrix remains the same

as the one shown in Equation (4.12). Since the Fiala tire model assumes lateral

and longitudinal tire stiffnesses are equal, the state matrix will be composed of

only two states, peak tire force and tire stiffness depending on the maneuver. This

simplification is shown in Equation (4.27).

x =







Cσ/α

µFz






(4.27)
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The H matrix must also be calculated by taking the partial of the Fiala tire

model (given previously in Equations (2.20-2.23)) with respect to the states in the

state matrix. Like the Dugoff model, the Fiala model also has a model transition

requiring two different H matrices depending on the value of σ. Equations (4.28-

4.31) describe the H matrix if the tire is not saturated (σ ≤ σm).

∂Fx

∂Cσ/α

=
σx[9(µFz)

2 − 6Cσ/αµFzσt − C2
σ/ασ

2
t ]

9(µFz)2
(4.28)

∂Fx

∂(µFz)
=

σtσxC
2
σ/α[9µFz − 2Cσ/ασt]

27(µFz)3
(4.29)

∂Fy

∂Cσ/α

=
σy[9(µFz)

2 − 6Cσ/αµFzσt − C2
σ/ασ

2
t ]

9(µFz)2
(4.30)

∂Fy

∂(µFz)
=

σtσyC
2
σ/α[9µFz − 2Cσ/ασt]

27(µFz)3
(4.31)

However, if the tire begins sliding (σ ≥ σm) the H matrix will be composed of

the following equations.

∂Fx

∂Cσ/α

= 0 (4.32)

∂Fx

∂(µFz)
=

σx

σt
(4.33)

∂Fy

∂Cσ/α

= 0 (4.34)

∂Fy

∂(µFz)
=

σy

σt
(4.35)
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Unlike estimation with the Dugoff model, peak tire force can be estimated

before and after the tire begins to slide. This is advantageous because the estimator

may be able to predict the peak tire force before the tire begins to slide. However,

the tire stiffness is unobservable when the tire begins to slide.

To estimate the tire stiffness and peak tire force with both the Fiala and

Dugoff tire models, the Q and R matrix must be identified. The Q matrix is

the process noise covariance matrix and is primarily composed of the standard

deviation of the process noises. In this section the Q matrix acts like a forgetting

factor in a recursive least squares algorithm [6] . The R matrix is the measurement

noise covariance matrix and is composed of values of the noise covariances of the

measurements. In this research, the true value for the process and measurement

noise covariance matrices can not be determined analytically. Therefore, the values

in the matrices were hand chosen to provide a quick rate of convergence. The

matrices for estimation with the Dugoff model can be seen in Equations (4.36) and

(4.37).

Q = 1e−8















(80, 000N)2 0 0

0 (80, 000N/rad)2 0

0 0 (12, 000N)2















(4.36)

R =







(5, 000N)2 0

0 (5, 000N/rad)2






(4.37)
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Since estimation with the Fiala model only has two states, the Q matrix is reduced

to:

Q = 1e−8







(80, 000N/rad)2 0

0 (12, 000N)2






(4.38)

During periods of small excitation, the estimator may perform badly produc-

ing incorrect estimates of the states. One way to account for this is by adjusting

the H matrix. If the vehicle is driving straight and not producing any lateral or

longitudinal excitation, the H matrix can be set to zero. This will effectively hold

all the prior estimates constant. Also during periods of longitudinal excitation

only the elements of the H matrix that effect lateral dynamics can be set to zero to

avoid a bad estimate of lateral tire stiffness, but still provide an accurate estimate

of longitudinal tire stiffness and peak tire force.

4.3 Weight Split Estimation

In order to calculate the zero-sideslip velocity, the distance from the rear axle

to the vehicle’s center of gravity must be known. One method that may provide an

accurate estimate would be using the bicycle model, shown in Equation (2.9), in a

non-linear estimator. Ryu [30] used this model with a total least squares algorithm

to estimate cornering stiffness and yaw moment of inertia simultaneously. The

particular research also attempted to estimate cornering stiffness and weight split

simultaneously using this method but was unsuccessful at converging to the correct

values unless highly excited. A technique, previously published in [9] which uses
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the bicycle model and an EKF, is used in this thesis to update the zero-sideslip

velocity with the weight split estimate.

By augmenting the state space representation of the bicycle model, shown in

Equation (2.9), in an estimator the weight split can be estimated. As discussed

earlier, the bicycle model assumes no weight transfer and the tires are assumed to

be in the linear region. The importance of this assumption will be discussed later.

Because the system is non-linear with respect to the weight split and yaw moment

of inertia, the extended Kalman filter is used. The EKF was earlier presented

in Equations (4.1-4.7). In this algorithm, the states (parameter estimates) are

assumed to be constant; therefore, the differential equations used to describe the

system (f) is simply equal to the process noise (w), shown by Equation (4.39).

f =







ȧ

İz






= w (4.39)

By studying the above equation, the state matrix (x) is composed of the distance

from the front axle to the vehicle’s center of gravity (a) and the yaw moment of

inertia (Iz). The state matrix could also include the distance from the vehicle’s

CG to the rear axle (b), but for simplification purposes this state is replaced by

L− a. To describe the output of the system, Equation 4.40 is used.

z =







ay

ṙ






= H







a

Iz






+ v (4.40)
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The measurements included in this equation is the lateral acceleration (ay) and yaw

angular acceleration (ṙ). The measurements are equal to the observation matrix

(H) times the states plus the measurement noise. The H matrix comes from the

linearization of the bicycle model with respect to the states being estimated. The

observation matrix is shown below in Equation (4.41).

H =







∂ay

∂a

∂ay

∂Iz

∂ṙ
∂a

∂ṙ
∂Iz






(4.41)

where;

∂ay

∂a
=

−(Cαf + Cαr)r

mVx
(4.42)

∂ay

∂Iz
= 0 (4.43)

∂ṙ

∂a
=

−(Cαf + Cαr)Vy

IzVx
+

(−2aCαf + 2(L − a)Cαr)r

IzVx
+

Cαf δ

Iz
(4.44)

∂ṙ

∂Iz
= −

(−aCαf + (L − a)Cαr)Vy

I2
z Vx

−
(−a2Cαf − (L − a)2Cαr)r

I2
z Vx

−
aCαf δ

I2
z

(4.45)

Since the estimator is based off of the bicycle model, this model must accu-

rately capture the actual dynamics in order for the estimated states to converge

to the correct estimate. Therefore, knowledge of all the assumptions used in the

bicycle model becomes critical. If the vehicle develops large roll angles or the ve-

hicle generates large tire slip angles, the bicycle model cannot sufficiently capture

the vehicle motion which will lead to errors in the estimated parameters.
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4.4 CG Height Estimation

One important parameter in rollover prevention is the height of the vehicle’s

center of gravity. With added weight on a vehicle, the CG height can shift up,

increasing the chance of rollover. A recent researcher has investigated methods

to estimate vehicle CG height using multiple models and switching and compared

this method with recursive least squares [33, 34]. For this thesis, a recursive least

squares algorithm is used to estimate the parameter, similar to [34], using the roll

planer model as a measurement comparison. This will provide an estimate of CG

height to update the predicted rollover velocity equation.

To begin the estimation algorithm development, recursive least squares (RLS)

is briefly discussed. One author compared different recursive least squares tech-

niques to estimate road grade and vehicle mass [35]. The methods used include

recursive least squares, recursive least squares with forgetting factors, and recur-

sive least squares with multiple forgetting. Since the parameters estimated in this

section are assumed constant, the basic recursive least squares is used. If the

parameters were changing, a forgetting factor could be used to forget old measure-

ments. The basic least squares provides parameter estimates by minimizing the

sum of the squares of the difference between the actually observed and the com-

puted values [2]. To estimate the parameters on-line, the RLS Equations shown

below are used.
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θ̂k = θ̂k−1 + Lk(yk − ϕT
k θ̂k−1) (4.46)

Lk = Pkϕk = Pk−1ϕk(1 + ϕT
kPk−1ϕk) (4.47)

Pk = (I − Lkϕ
T
k )Pk−1 (4.48)

Equation (4.46) updates the estimate (θ̂k) by adding the previous estimate

to an update gain (Lk) times the error between the model output and the mea-

surement (yk). This method is similar to the Kalman filter, but it does not utilize

a time update thereby assuming the states remain constant. The variable, Pk, is

known as the state estimation error covariance matrix and is usually initialized

with a large value, due to uncertainty in the states. More information on the

derivation and convergence of recursive least squares can be found in [35].

To estimate the CG height, the roll plane model, shown in Equations (2.30),is

used. In order to utilize recursive least squares, the model equations must be

linear. By assuming small angles the roll plane model can be rewritten, shown by

Equation (4.49) [34].

ameas
y = ay + gφ =

1

mhcg

[Jeff φ̈+ Cφφ̇+Kφφ] (4.49)
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Using a lateral acceleration measurement as the model input results in the

state and regression vectors shown in Equations (4.50) and (4.51) respectively.

ϕ =















φ̈

φ̇

φ















(4.50)

θ̂ =















Jeff

mhcg

Cφ

mhcg

Kφ

mhcg















(4.51)

With a known value of roll mass moment of inertia (Jeff), the parameters

hcg, Cφ, and Kφ can easily be solved using simple algebra. The CG height will

most likely change with added weight which will cause Jeff to also change. A

better approach may be to estimate the value of Jeff and use a known value of

Kφ to solve for the CG height since Kφ is less likely to change with added weight.

Using this technique requires the roll dynamics to be excited and therefore must be

conducted during a turning maneuver such as a lane change. Otherwise performing

the estimation during straight driving could result in faulty estimates. The mass

also needs to be known, as stated earlier. The mass can be estimated during

acceleration or braking by [35], but it is assumed to be a known parameter in this

thesis.
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4.5 Experiments and Validation of Estimation Algorithms

To test the estimation algorithms, different experiments were performed in

the Infiniti G35 Sedan and in Carsim. The tests performed help identify the

effectiveness of the parameter estimation algorithms. If the algorithms are effective

at providing accurate estimates, the algorithms can be used to update the vehicle

controllers maximum speed around a curve or possibly even update control gains.

4.5.1 Experimental Setup

As discussed earlier, Carsim and an Infiniti G35 is used to validate the pa-

rameter estimation algorithms. Carsim is used to get realistic measurements to

perform the estimation algorithms. The Infiniti G35 sedan is implemented with a

dual antenna GPS unit, wheel speed sensor, a 6 DOF inertial measurement unit

(IMU), and a optical encoder for steer angle measurements. Testing was performed

at the National Center for Asphalt Technology (NCAT) test track in Opelika, AL.

The IMU and wheel speed sensors provided measurements at 33 Hz, while the dual

antenna GPS provided other necessary measurements at 5 Hz. Each subsection

discusses in further detail the measurements that are important for each estimation

algorithm.

4.5.2 Tire Parameter Estimation Experiments

To validate the tire estimation algorithms developed in Section 4.2, data was

collected on the Infiniti G35 at the NCAT test track. To test the algorithm,

64



maneuvers consisted of pure lateral force generation, pure longitudinal acceleration,

and a maneuver to achieve combined lateral and longitudinal force generation. The

maneuvers are meant to fully saturate the tire to the point of sliding.

To collect the measurements for the measurement matrix, Equation (4.10)

or (4.11) is used depending upon whether the vehicle is accelerating or braking.

Therefore, both the lateral and longitudinal acceleration needs to be measured.

These measurements are taken directly from the 6 DOF IMU. Another measure-

ment needed for the calculation of tire forces is the yaw angular acceleration. This

measurement is obtained by numerically differentiating the yaw rate gyro. Note

that numerical differentiation increases the amount of noise already present in the

yaw gyro.

For components of the H matrix, the lateral and longitudinal tire slips needs to

be calculated. With measurements of wheel speed from the wheel speed sensors and

velocity from the GPS, the longitudinal slip is simply calculated with Equations

(2.18). When the vehicle is experiencing combined longitudinal and lateral force

generation, the vehicle sideslip must be used to divide the velocity measurement

from GPS into the lateral and longitudinal components. There have been many

different studies to estimate the sideslip angle. The sideslip is defined as the

difference between the vehicle heading (ψ) and the vehicle course (ν) or direction

of travel, as given below.
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β = ν − ψ (4.52)

One method to obtain an estimate of sideslip is with a yaw gyro and GPS

receiver. This method integrates the yaw gyro during turning to obtain an esti-

mate of heading, while the yaw gyro bias is estimated during periods of straight

driving [3]. With the estimate of heading, sideslip is easily calculated with Equa-

tion 4.52 if a course measurement is available. The course measurement can be

easily obtained from GPS measurements. This is accomplished by comparing con-

secutive carrier measurements to provide a three dimensional velocity. Note that

comparing consecutive measurements introduces a half sample delay that must be

accounted for when processing the sideslip. Many errors arise from this method

including: integration of a noisy gyro, scale factor errors, and incorrect bias esti-

mates. Another author uses steering torque information to estimate the sideslip

and is valuable during periods when GPS is unavailable [38]. The method used

in this thesis uses a dual GPS antenna to get a measurement of heading. The

dual GPS antenna provides this measurement by comparing carrier measurements

at each antenna [31]. The heading measurement is then be subtracted from the

course measurement, as discussed in the previous method.
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With the sideslip measurement known at the GPS antenna (A), the velocity

magnitude (VGPS) is broken up into lateral and longitudinal components.

V GPS
x = V GPScos(βGPS) (4.53)

V GPS
y = V GPSsin(βGPS) (4.54)

Now the lateral and longitudinal velocities at the antenna are set up in vector form

(V̄A), This vector is easily transferred to the tires using Equation 4.55, where (V̄t)

is the velocity vector at the tire.

V̄t = V̄A + ω̄ × r̄A/t (4.55)

In this equation, ω̄ includes roll, pitch, and yaw angular velocities. The po-

sition vector, rA/t, is defined from the antenna to the front or rear axle. With

the above measurement of velocity at the tires, the longitudinal slip can then be

calculated. Since the tire force calculation needs a value of wheel slip at the center

of the axle, the average from the inner and outer tire is used. This assumption

could be ineffective when the inner tire is experiencing high slip and the outer is

hardly slipping. The lateral slip angle at the front and rear axle is then calculated

from the lateral and longitudinal components of the tire velocity calculation in

Equation (4.55).
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αf = tan−1

(

V f
y

V f
x

)

− δ (4.56)

αr = tan−1

(

V r
y

V r
x

)

(4.57)

In this equation, V f
y is the lateral velocity at the center of the front axle and

V f
x is the longitudinal velocity at the front axle. The subscript, r, denotes the

center of the rear axle.

Estimation during Lateral Dynamics Only Maneuver

The first experiment conducted in the Infiniti G35 sedan includes lateral dy-

namics only. This test determines the effectiveness of using the Fiala and Dugoff

tire models in an EKF by estimating the lateral tire stiffness and the peak tire force

during periods of lateral excitation only. This maneuver consists of high speed cor-

nering and a slalom at speeds ranging from 20 to 30 m/s. Figure 4.2 shows the

experimental data input from the steering encoder and the response from yaw rate

gyroscope.
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Figure 4.2: Lateral Experimental Data in the G35 Sedan used in the Tire Param-
eter Estimator [8]

Parameter estimation could be conducted using lateral force estimates only

because the longitudinal dynamics are assumed to be negligible. However, this sec-

tion is used to test the full algorithm and accounts for longitudinal measurements

also. By simplifying the Dugoff or Fiala tire model to account for only lateral

dynamics, the H matrix becomes much more simple.

With the experimental data at hand, MATLAB is used to conduct the esti-

mation off-line. However, note that the estimation technique could be performed

in real-time. Figure 4.3 shows the lateral tire stiffness and the peak tire force

estimate. The longitudinal tire stiffness is not shown because the maneuver fails

to sufficiently excite the longitudinal dynamics. The values shown are from the

vehicle’s rear axle. The peak tire force settles out in about 20 seconds. Notice for
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estimation with the Dugoff tire model, the estimator does not update the peak tire

force estimate until around 10 seconds. This is because the state is unobservable

until the tire begins to saturate (i.e. λ < 1). As explained earlier, the estimate re-

mains constant until the tire becomes saturated. The lateral tire stiffness estimate

settles out a little faster for estimation with the Fiala tire model, although both

estimates converge closely to the same value. Appendix C shows additional tests

using Carsim to validate the estimator used in this section.
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Figure 4.3: Lateral Tire Stiffness and Peak Tire Force Estimate from G35 Data
during a Lateral Slalom [8]

Estimation during Longitudinal Dynamics Only Maneuver

The EKF will now tested for a maneuver that consists of heavy acceleration

and braking in the test vehicle. The excessive accelerations can be seen in Figure
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4.4 and are meant to reach the peak of the tire curve. Similar to the lateral only

maneuver, this test is also conducted on an asphalt surface. On a lower friction

surface, the maneuver would not need to be as severe to reach the limits of the

tire.
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Figure 4.4: Longitudinal Acceleration in the G35 Sedan used in the Tire Estimator
[8]

Lateral measurements are also included into the estimation, since the lateral

dynamics are not excited the measurements contain mostly noise. Once again, the

lateral dynamics could be left out by reducing the model to longitudinal forces

only, but this section will test to determine if the noisy lateral measurements will

effect the estimates.

As shown in Figure 4.5, the longitudinal tire stiffness settles out rather quickly

and shows similar results using either the Fiala and Dugoff tire models in the tire
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estimation algorithm. However, the estimate of longitudinal tire stiffness is not

the same as the estimate for lateral tire stiffness. Recall that the Fiala tire model

assumes the lateral and longitudinal stiffnesses are equal, therefore this will lead to

errors in a combined maneuver. The peak tire force settles out slightly higher than

the value estimated during lateral experiments in the previous section. Although

the peak tire force for the longitudinal and lateral directions are assumed to be

equal in this thesis, they could in fact be slightly different. Appendix C shows

additional tests using Carsim to validate the estimator used in this section.
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Figure 4.5: Longitudinal Stiffness and Peak Tire force Estimate from G35 Data
during Acceleration and Braking[8]
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Estimation during Combined Lateral/Longitudinal Dynamics

The last maneuver conducted in the test vehicle was to test tire parameter

estimation during a combined lateral/longitudinal maneuver. This test was done

on a skid pad where the vehicle would brake and accelerate through turns. It

highly excited both lateral and longitudinal dynamics. Figure 4.6 shows the output

from the accelerometer and the yaw gyro during the combined lateral/longitudinal

maneuver.
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Figure 4.6: Accelerations and Yaw Rate Measurements for the Combined Lat-
eral/Longitudinal Estimation [8]

As shown in the previous section, the lateral and longitudinal tire stiffness are

not equal. Therefore, the tire estimation technique using the Dugoff tire model is

used in this section. Figure 4.7 shows good correlation with previous plots with the

values of lateral tire stiffness and peak tire force. However, the longitudinal tire
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stiffness estimated shows a value much lower than that of the previous estimate.

This could be due to the inner and outer tires slipping at different rates.
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Figure 4.7: Tire Stiffness and Peak Tire Force Estimate during Lateral and Lon-
gitudinal Excitation of the G35 Sedan [8]

4.5.3 Weight Split Estimation Experiments

The weight split estimator is validated in this section by using data collected

at NCAT test track in the Infiniti G35 sedan. Parameter values from this vehicle

are shown in Appendix B. The measurements needed for this experiment are steer

angle at the tire, lateral acceleration, yaw acceleration, and lateral and longitu-

dinal velocity. These measurements are taken from this vehicle with a dual GPS

receiver, IMU, and a steering encoder. Data was collected for validation of the

weight split estimation algorithm during a 40 m/s turn in the test vehicle. The
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lateral acceleration and yaw rate measurements for the maneuver used to test the

algorithm is shown in Figure 4.8. These measurements are used as inputs to the

estimator, presented in Section 4.3, to produce estimates of the weight split (a or

b) and yaw moment of inertia (Iz).
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Figure 4.8: Cornering Data in the G35 Sedan at NCAT Test Track

Figure 4.9 shows the distance from the vehicle’s CG to the front axle converges

closely to the values from the vehicle’s factory values of weight split. The yaw

moment of inertia never completely settles out, possibly because the vehicle is

performing a steady state turning maneuver with constant speeds and radius of

turn providing little excitation. However, during maneuvers where the vehicle

produces large slip angles, the weight split and yaw moment of inertia will be

highly biased. This is due to the assumptions used to develop the bicycle model,

which is used in the a and Iz estimation algorithm. For example, if the vehicle

produces a large amount of roll the vehicle model will not match the data as well
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as this example. Also if the tires saturate and begin to slide the assumption of a

linear tire model breaks down. However, vehicles generally operate in the linear

region of the tire with limited amounts of weight transfer, such that the algorithm

should perform satisfactorily under normal driving conditions. More tests were

conducted to test the algorithms performance using simulations in Carsim. These

test are shown in Appendix C.
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Figure 4.9: Weight Split, Iz Estimate During Cornering in the G35 Sedan

4.5.4 CG Height Estimate Experiments

Some experiments estimating the CG height has already been published by

[34]. The main difference in the CG height estimation algorithm used in this thesis

is it assumes a known value for roll stiffness (Kφ) where the other work relies on

the roll moment of inertia. One reason Kφ was chosen is because it will not change

with added weight like the roll moment of inertia will. To test this algorithm,
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Carsim is used to provide a vehicle with a larger CG height. The simulations uses

a large SUV that produces larger roll angles, as opposed to the G35 sedan. Values

of the vehicle’s parameters used can be seen in Appendix B.

The Carsim output of lateral acceleration, roll, and roll velocity with the

simulated sensor noise is shown in Figure 4.10. This data is used in the recursive

least squares estimator to estimate the CG height, roll damping, and roll mass

moment of inertia from the state matrix give previously in Equation 4.51. The

vehicle performs a double lane change as can be seen in the figure.
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Figure 4.10: Double Lane Change with Added Noise in Carsim’s Large SUV

After the simulated data is generated in Carsim, Matlab is used to add artifi-

cial noise. Noise values can be found in Appendix B in the simulation parameter

table. The Carsim data, with added noise, is then used as an input to the RLS

algorithm given in Section 4.4. The plots in Figure 4.11 show the results of the
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RLS algorithm including estimates of the CG height, roll damping, and the roll

moment of inertia. The CG height estimate is slightly larger than the true value,

however without injected noise in the simulation the estimate lies right on the

true value. With increased noise levels, the estimate will rise slightly above the

previous value. This is no surprise since it is well known that sensor noise can lead

to biased estimates using RLS [39]. Although the estimate may be slightly off, the

estimated value in this simulation always lies above the true value. Therefore, this

acts as a safety factor when combined with the predictive rollover velocity, actually

predict rollover at a slower speed. Although the roll mass moment of inertia does

not converge to the correct value it is not used in the rollover prediction formula.

The roll damping estimate converges closely to the true value but also is not used

in the roll prediction velocity.
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Figure 4.11: RLS Estimation of Large SUV’s CG Height, Roll Damping, and Roll
Mass Moment of Inertia during a Double Lane Change in Carsim
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4.6 Conclusion

This chapter described three different algorithms to assist in the estimation

of important vehicle parameters. First, an extended Kalman filter was used to

estimate the tire stiffness and peak tire force. The extended Kalman filter was

chosen because the system to describe the saturation of the tire was non-linear.

Two different non-linear tire models, the Fiala and Dugoff tire model, were im-

plemented into the EKF and the pros and cons of estimating the tire parameters

were discussed with each model. Next, an algorithm to estimate the vehicle’s CG

position and yaw moment of inertia was developed. This algorithm implemented

the bicycle model into an EKF to perform the parameter estimation. The param-

eters were assumed to be constant in the derivation of the weight split estimation

algorithm. The last algorithm developed in this chapter estimated CG height, roll

damping, and roll mass moment of inertia. The roll dynamics that described the

system were linear, therefore recursive least squares was chosen. To validate the

tire parameter estimator data was collected in a G35 sedan at the NCAT test track.

The tire parameter estimation algorithm was validated during a lateral, longitu-

dinal, and combined vehicle dynamic maneuver. The weight split estimator was

also validated with data from the G35 sedan, while the CG height estimator was

validated using simulated data from Carsim. The limitations of each algorithm

were also discussed in this chapter.
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Chapter 5

Updated Predictive Velocity Experiments

5.1 Introduction

In this chapter, the predictive velocities are updated with parameter estimates

discussed in the previous chapter in real-time. The experiments conducted provide

safe look-ahead velocities to prevent rollover, sliding out, and also a minimum

sideslip velocity for more dynamic maneuvers such as dodging something in the

road. If the vehicle is following a leader, the parameter estimates could also be

used to update a safe following distance. These experiments will use Carsim and

Simulink together to simulate a true vehicle. This chapter is meant to show the

usefullness of the parameter estimates in real-time. The parameter estimates could

also be used for many other things such as updating control gains or limiting yaw

rates, but in this chapter it will be used to limit the vehicle’s velocity.

5.2 Critical Velocity with Parameter Updates

The experimental setup uses data from Carsim that is exported in real-time

to Simulink. The input into the Carsim model is the vehicle’s desired velocity.

This value is calculated in different sections depending on the maneuver and ve-

hicle. This chapter also uses Carsim’s velocity and steering controllers, but the

desired values are sent directly to the velocity controller based upon the estimated
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parameters and the turning radius. The turning radius is assumed to be known

from the vehicle’s path planner.

5.2.1 Zero Sideslip Velocity

The Zero Sideslip Velocity was derived in Chapter 3 and attempts to keep

the value of sideslip to a minimum. This section will update this velocity with

the estimation of weight split. This velocity is used during maneuvers with abrupt

changes such as a lane change or dodging an object. The same measurements are

needed as described in Section 4.5.3 and are obtainable with real sensors, but in

this chapter the measurements are taken from Carsim on-line.

The first test conducted was a series of lane changes simulating a vehicle

dodging an object. Figure 5.1 shows the path the vehicle attempts to follow at

the desired speed calculated from Equation (3.7). Shown by the plot, the radius of

curvature varies highly throughout the maneuver. The rollover velocity and Dugoff

velocity is a function of radius of curvature, therefore may not be reasonable in this

maneuver, this creates a need for the zero sideslip velocity. As the vehicle begins

the lane change, the weight split, initially set at 50/50, is updated to speed up or

slow down the vehicle. By doing this, the vehicle’s sideslip is kept to a minimum.

The derivation of the zero sideslip velocity assumes steady-state conditions, but

that is not the case for this maneuver, therefore the sideslip cannot be constrained

to zero.
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Figure 5.1: Desired Path for Vehicle Controlled at Zero Sideslip Velocity

Figure 5.2 shows the updated weight split for the vehicle. The estimates stay

constant for about 1 second. This is because there is no input into the system, as

the steering angle is initially zero until the maneuver begins. With this estimate

of weight split, the desired velocity is updated.
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Figure 5.2: Weight Split Estimate in a Lane Change Maneuver at Zero Sideslip
Velocity

Figure 5.3 shows the adaptation of the desired zero sideslip velocity, as it is

updated with the estimate of b. The desired velocity is initially calculated to be

14.12 m/s with a 50/50 weight split. As soon as the vehicle enters the turn, the

weight split estimator begins to estimate b. The updated value of b is used to

update the desired velocity, plotted in 5.3. Carsim’s velocity controller is used to

drive the true speed to the desired speed. There is a little overshoot from the

velocity controller but the vehicle quickly settles out the the desired speed.

83



0 2 4 6 8 10
48

50

52

54

56

58

60

V
e

lo
ci

ty
 (

m
/s

)

Time (s)

Desired Velocity

True Velcoity

Figure 5.3: True and Desired Velocity Calculated from the Zero Sideslip Velocity
in a Lane Change Maneuver in Carsim

Since the objective of this predictive velocity is to keep sideslip to a minimum,

Figure 5.4 shows the values of the vehicle’s sideslip controlled to the updated

speed, shown in Figure 5.3, versus the sideslip from a vehicle without the weight

split update. As discussed earlier, the vehicle is initially assumed to have a 50/50

weight split and travels at a constant speed of 14.12 m/s without the update of

b. The above figure shows that the sideslip is in fact minimized by updating the

zero sideslip velocity with an estimate of b. The sideslip in the plot is actually

very similar until the velocity controller begins to settle out. This plot shows the

effectiveness of this algorithm to minimize the sideslip during maneuvers such as

a lane change.
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5.2.2 Dugoff Velocity

The Dugoff velocity, derived in Equation (3.7), is used in this section to update

the controlled velocity when the radius of curvature is not as variable as in the

lane change. To do this, a method to estimate tire-road friction is used, developed

in [29], to update the Dugoff velocity. The test is conducted in Carsim on a 400

m radius circle with a change in tire road friction. The friction coefficient drops

from .85 to .5 over 100 meters. The updated and true coefficient of friction using

the estimator is shown in Figure 5.5

85



0 10 20 30 40 50 60
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

µ

Time (s)

True µ
Estimated µ

Figure 5.5: Coefficient of Friction Update during 400 Meter Radius Curve in Car-
sim’s G35 Sedan

Notice that the estimate of the coefficient of friction is slightly lower than

the true value. The reason for this may be that the system is not persistently

excited. The maneuver the vehicle performs is at a steady state speed on a constant

radius, therefore the inputs and outputs are very close to the same value until the

coefficient of friction changes. Another problem with this method may be when

the friction coefficient goes from a lower value to a higher value. This will be hard

to detect because the vehicle will be traveling at a lower speed when the coefficient

of friction changes, causing the tires to produce slip angles too small to estimate

the friction coefficient.

As the friction coefficient is estimated, its value is used to calculate a desired

speed from the Dugoff velocity equation. As stated in Section 3.2.2, the Dugoff
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velocity equation is developed to ensure the tires remain inside the friction of

circle during a steady state maneuver. Figure 5.6 provides the desired velocity to

be controlled to and the vehicle’s true velocity. Carsim’s internal velocity controller

is used to drive the true velocity to the desired value.
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Figure 5.6: True and Desired Velocity Calculated from the Dugoff Velocity in a
400 m Radius turn in Carsim

Controlling the vehicle at the Dugoff velocity shows good results and provides

sufficient excitation of the tire slip angles to provide an estimate of µ. Figure

5.7 shows the values of the slip at the tires during this maneuver. Notice as the

friction coefficient changes from a high to low value, the steady-state value of tire

slip angle decreases. This is because with a lower value µ, the roll dynamics are

not effected as much as with the higher value. The effects of vehicle roll on the

Dugoff velocity equation was discussed more in depth in Section 3.4.1. If the newer

version of the Dugoff velocity equation is used, shown in Equation (3.20), the slip
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angles produced at the tires are too small to accurately identify the value of the

friction coefficient in this maneuver. Since it is generally not desired to produce

large slip angles, the zero sideslip velocity could be used but the vehicle would be

traveling at much slower speeds. For vehicle’s with a large CG height, the rollover

velocity must also be taken into account.

0 10 20 30 40 50 60
−2.5

−2

−1.5

−1

−0.5

0

0.5

Time (s)

T
ir
e

 S
lip

 A
n

g
le

 (
d

e
g

)

Front Tire Slip Angle
Rear Tire Slip Angle

Figure 5.7: Tire Slip Angles in a 400 m Radius Turn with a Drop in Road Friction
Coefficient while Controlling Speed at the Dugoff Velocity

With a varying radius of curvature, the velocity would oscillate depending on

how much the radius is changing. During this, the smallest radius of curvature

could be used to calculate a desired velocity. However, this would not ensure high

enough slip angles for an accurate estimate of tire-road friction if the radius was

changing from a high to low value.
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5.2.3 Rollover Velocity

To help prevent rollover, it is beneficial to know minimum safe speeds for a

vehicle to enter a turn. By updating the rollover velocity prediction formula with

an estimate of CG height, this can be accomplished. Since the rollover formula

predicts what velocity the vehicle will rollover, the limit velocity can be determined,

assuming the radius of curvature is known. To test the method of updating the

vehicle’s velocity with a CG height estimate, a large SUV in Carsim will accelerate

around a 200 meter radius turn. The vehicle will accelerate up to 90 % of the

minimum rollover velocity calculated by Equation (3.12). If the vehicle is controlled

to the minimum rollover velocity the vehicle will likely rollover with any controller

overshoot. To reduce the number of parameters needed, the understeer gradient

will be assumed to be equal to 0 (i.e. neutral steer vehicle) and the parameter to

adjust for suspension effects, κ, will be set to .9. While the vehicle is accelerating

up to the rollover velocity, the CG height will be estimated to update the minimum

safe velocity. The algorithm used to estimate the CG height was shown in Section

4.4. Figure 5.8 shows the estimated CG height for this test.
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Carsim’s Large SUV

In Figure 5.9, the desired and true vehicle velocities are shown. As shown by

the plot, the velocity controller causes the true velocity to overshoot the desired

velocity. If the minimum rollover velocity was used in this simulation, the controller

overshoot would likely cause the vehicle to rollover. However, this simulation scaled

down the rollover predictive velocity to 90 % of its true value to account for this.

On roads with small variations in curvature, the roll dynamics would be excited

more, causing a better estimate. In steady-state turns the roll dynamics are not

highly excited.
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5.3 Conclusions

In this chapter, different experiments were conducted to show the usefulness

of estimating important vehicle parameters in real-time. These test are mostly

simple tests and could be conducted during different maneuvers or be used in

different combinations, but are mostly used to show the importance of on-line

parameter estimation. Tests performed included updating a desired velocity based

on information from the path-planner, the vehicle, and the updated parameters.

To be truly effective, a combination of the velocities would need to be included into

the controller. For instance, in a larger vehicle the Dugoff and rollover predictive

velocities would be calculated with the lower velocity being sent to the controller

91



as the desired velocity. Many other test could be performed to show the usefulness

of these on-line estimates and provide an avenue for future work.
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Chapter 6

Conclusions

6.1 Overall Contributions

In this thesis, vehicle models were developed to describe the relationship be-

tween the inputs and outputs of the vehicle. These models were initially validated

to show a match between the predicted outputs and true outputs. The models were

then simplified to predict a velocity in which rollover and sliding occurs. A velocity

equation was also developed to minimize the sideslip in a steady-state turn. By

changing critical vehicle parameters in Carsim, the velocity equations were tested

for accuracy and proved to be effective at predicting rollover and slideout, as well

as minimizing sideslip. Additionally, experiments demonstrated that certain crit-

ical parameters highly effects the speeds at which a vehicle can maneuver a turn

or lane change.

Because certain vehicle parameters have a large effect on vehicle handling,

parameter estimation algorithms were developed. To estimate the tire-road fric-

tion coefficient and tire stiffness, a non-linear tire model was used in an extended

Kalman filter. This method provided an estimate of the friction coefficient dur-

ing periods of longitudinal and lateral tire force generation. Other parameters

estimated included the CG position of the vehicle. Validation of the algorithms

were also performed using different measurements which can be obtained from real

sensors.
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After the parameters were estimated, the critical velocity equations were up-

dated to provide a safe look-ahead traveling speed. These parameters could also

be used to update ESC systems. Simulations were ran to test the algorithms effec-

tiveness during certain maneuvers in the vehicle. These simulations showed that

by adjusting the vehicle speed to stay below the predictive velocity equations could

be very beneficial to the safety of driven or autonomous vehicles.

6.2 Limitations

Several limitations were identified in this thesis. For example, parameters

can only be estimated when the vehicle’s dynamics are being excited. Therefore,

only during certain maneuvers are the predictive velocities able to be updated.

However, during a maneuver that requires a velocity update, such as a turn or

lane change, the vehicle is usually excited enough to get an estimate of various

parameters. Also many of these estimates depend on measurements from a GPS

receiver. These measurements can falter during periods of low satellite visibility.

6.3 Recommendations for Future Work

During the research, it was realized that many other vehicle control systems

could benefit from knowledge of unknown parameters. Certain vehicle control

systems could set limits on vehicle states such as lateral velocity and yaw rate to

reduce sliding out and rollover. With knowledge of changing vehicle parameters,

these limits could be adjusted to take into account these states. By doing this,
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many lives could be saved by reducing the number of accidents due to rollover

and sliding off the road. The control systems also need accurate measurements of

vehicle states such as sideslip. Since sideslip is expensive and difficult to measure,

many researchers have developed model based systems to provide an estimate.

By updating the model based systems with vehicle parameters using methods in

this thesis, the model based state estimators could prove to be more effective in

providing an accurate estimate.

The parameter estimation algorithms presented in this thesis could also be

useful to Unmanned Ground Vehicles (UGVs). When traveling in platoons, it

may be necessary to use the minimum stopping distance, calculated by Equation

(3.19), to set the following distance or control the velocity. Some researchers have

previously implemented throttle and braking controllers to maintain a constant

following distance for vehicles in platoons [18]. By using the minimum stopping

distance equation, the following distance in the platoon could be updated during

maneuvers, such as a braking or turning, that could provide an estimate of tire

road friction.
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Appendix A

Vehicle Nomenclature

Chapter 2
a Length between CG and Front Contact Patch
ay Lateral Acceleration
α Tire Slip Angles
b Length between CG and Rear Contact Patch
β Sideslip Angle
C Roll Damping
CG Center of Gravity
Cα Lateral Tire Stiffness
Cσ Longitudinal Tire Stiffness
Dx Deacceleration
δ Steer Angle
Fy Tire Lateral Force (F, R)
Fz Tire Vertical Force (F, R)
g Acceleration due to Gravity
hCG CG Height
Iz Yaw Moment of Inertia
Jeff Roll Moment of Inertia
K Roll Stiffness
Kus Understeer Gradient
L Length from Front Axle to Rear Axle
m Vehicle Mass
r Yaw Rate
R Radius of Curvature
T Track Width
Tspring Torque from Springs
Tdamper Torque from Dampers
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Chapter 2 cont.
V Vehicle Velocity
Vx Vehicle Longitudinal Velocity
Vy Vehicle Lateral Velocity
µ Tire Road Friction Coefficient
σ Total Vehicle Slip
σm Total Vehicle Slip in which sliding occurs
φ Vehicle Roll Angle
f = front r = rear L = Left R = Right

Chapter 3
Dx Deacceleration
SD Stopping Distance
VDug The Velocity the tire leaves the tire-friction circle
VRollover The Velocity rollover occurs
Vβ=0 The Velocity to minimize sideslip
θ Road Slope

Chapter 4
Hk Jacobian of Output Matix
Kk Kalman Update Gain Matrix
Lk Recursive Least Squares Update Gain
P Covariance Matrix
R Measurement Noise Covariance Matrix
Q Process Noise Covariance Matrix
x State Vector in EKF
z Measurement Matrix in EKF
θk Recursive Least Squares State Matrix
ν Vehicle Course
ψ Vehicle Heading
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Appendix B

Vehicle Properties

Properties of the G35 Sedan

Wheelbase: L 2.8498 m
Vehicle Mass: m 1528.2 kg
Dist. from CG to Front Contact Patch a 1.3679 m
Dist. from CG to Rear Contact Patch b 1.4819 m
Yaw Moment of Inertia Iz 2400 kg ∗m2

Front Tire Cornering Stiffness Cαf 91674 N/rad
Rear Tire Cornering Stiffness Cαr 152788 N/rad
Road Friction Coefficient µ .85

Properties of Carsim’s Large SUV

Vehicle Mass: m 2450 kg
CG Height (Sprung Mass): hCG 1.1 m
Roll Mass Moment of Inertia Jeff 1243 kg ∗m2

Roll Stiffness Kφ 2527.9 N−m
deg

Roll Damping Cφ 152.05 N−m−s
deg

Track Width T 1.62 m
Injected Noise Value on ay σ2

ay
(.1 m/s2)2

Injected Noise Value on φ σ2
φ (.01 rad)2

Injected Noise Value on φ̇ σ2
φ̇

(.005 rad/s)2
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Properties of Carsim’s G35 Sedan

Wheelbase: L 2.85 m
Vehicle Mass: m 940 kg
Dist. from CG to Front Contact Patch a 1.019 m
Dist. from CG to Rear Contact Patch b 1.831 m
Yaw Moment of Inertia Iz 1530 kg ∗m2

Front Tire Cornering Stiffness Cαf 78311 N/rad
Rear Tire Cornering Stiffness Cαr 47033 N/rad
Injected Noise Value on ay σ2

ay
(.1 m/s2)2

Injected Noise Value on r σ2
r (.02 rad/s)2

Injected Noise Value on β σ2
β (.02 rad)2

Injected Noise Value on V σ2
V (.01 m/s)2
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Appendix C

Tire Parameter and Weight Split Estimates using Data from

Carsim

C.1 Tire Parameter Estimator Validation with Carsim’s G35 Sedan

The estimator developed in Section 4.2 is shown in this section to test the its

effectiveness with data from Carsim. In Carsim, it is possible to know the true

values of the vehicle parameters unlike the parameters in the Infiniti G35 Sedan

used earlier to test with. Both the Fiala and Dugoff tire models are once again

used to estimate the tire parameters

C.1.1 Tire Parameter Estimator Testing during Lateral Maneuver

A simulation is ran in Carsim to test the tire parameter estimation algorithm

during a slalom in a G35 sedan. The lateral acceleration and yaw rate from the

simulation is shown in Figure C.1. The vehicle reaches excessive lateral acceleration

in this maneuver, enough so to saturate the tire enough for an estimate of peak

tire force.
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Figure C.1: Slalom in Carsim’s G35 Sedan

The data collected from Carsim is ran through the tire parameter estimator

discussed in Section 4.2 to test the effectiveness of estimating lateral tire stiffness

and peak tire force. Artificial zero mean random noise is added into the measure-

ments to try to produce as real of a situation as possible. Values of the artificial

zero mean random noise used in this simulation is shown in Appendix B along

with the vehicle’s parameters. The true value of lateral tire stiffness is obtained

by interpolating the experimental tire curve used by Carsim. Note that the value

produced depends on what part of Carsim’s tire curve is assumed to be in the

linear region and may fluctuate depending on different models. Since the Fiala

and Dugoff tire models assume saturation of the tire occurs at different points on

the tire curve their values may be different for tire stiffness. The values from from

the estimator are shown in Figure C.2.

106



0 2 4 6 8 10
4

6

8

10
x 10

4

L
a

te
ra

l T
ir
e

 S
tif

fn
e

ss
 (

N
/r

a
d

)

0 2 4 6 8 10
0

5000

10000

P
e

a
k 

T
ir
e

 F
o

rc
e

 (
N

)

Time (s)

Dugoff Model
Fiala Model
True Value

Figure C.2: Estimation of Tire Parameters during Slalom Maneuver

Once again the estimator with the Dugoff tire model does not begin estimating

peak tire force until the tire begins to saturate. When the estimate begins to

converge it lies slightly above the true value of peak tire force. It may also be

noted that the Fiala model does not accurately converge until the tire is saturated,

similarly to the test performed in Section 4.5.2.

C.1.2 Tire Parameter Estimator Testing during Longitudinal Maneu-

ver

The EKF will now tested for a maneuver that consists of heavy acceleration

and braking in Carsim’s G35 sedan. The excessive accelerations can be seen in

Figure C.3 and are meant to reach the peak of the tire curve. Similar to the

lateral only maneuver, this test is also conducted on an asphalt surface. On a

107



lower friction surface, the maneuver would not need to be as severe to reach the

limits of the tire.
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Figure C.3: Acceleration / Braking in Carsim’s G35 Sedan

As shown in Figure C.4, the longitudinal tire stiffness settles out rather quickly

and shows similar results using either the Fiala and Dugoff tire models in the tire

estimation algorithm. However, the estimate of longitudinal tire stiffness is not

the same as the estimate for lateral tire stiffness. Recall that the Fiala tire model

assumes the lateral and longitudinal stiffnesses are equal, therefore this will lead to

errors in a combined maneuver. The peak tire force settles out slightly lower than

the value estimated during lateral experiments in the previous section. Although

the peak tire force for the longitudinal and lateral directions are assumed to be

equal in this thesis, they could in fact be slightly different.
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Figure C.4: Estimation of Tire Parameters during Acceleration / Braking Maneu-
ver

C.2 Weight Split Estimator Validation with Carsim’s G35 Sedan

The weight split estimator will be validated in this section by using data

of a G35 sedan from Carsim. Parameter values from this vehicle are shown in

Appendix B. Simulated experiments are conducted to show the effectiveness of

the estimator to provide information on the weight split, and the shortcomings of

this algorithm are also discussed. The measurements needed for this experiment

are steer angle at the tire, lateral acceleration, yaw acceleration, and lateral and

longitudinal velocity. These measurements can be taken from a real vehicle with

a dual GPS receiver, IMU, and a steering encoder. However in this experiment,

the data is taken directly from Carsim. The maneuver performed in the vehicle is

a simple double lane change that would be performed during obstacle avoidance.

The steering input, lateral acceleration, and yaw rate measurements for the double
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lane change is shown in Figure C.5. Artificial zero mean random noise is added

into the measurements to try to produce as real of a situation as possible. Values of

the artificial zero mean random noise used in this simulation is shown in Appendix

B along with the vehicle’s parameters.
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Figure C.5: Double Lane Change with Added Noise in Carsim

These measurements are used as inputs to the estimator, presented in Section

4.3, to produce estimates of the weight split (a or b) and yaw moment of inertia (Iz).

Figure C.6 shows the distance from the vehicle’s CG to the front axle converges

to within .02 % of the actual CG location. Although the yaw moment of inertia

never completely settles out, it does provide a good estimate of the parameter.
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Figure C.6: Weight Split, Iz Estimate
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