
Scalable, Self-Healing, and Real-Time Network Services for

Directed Diffusion

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This

dissertation does not include proprietary or classified information.

Kenan L. Casey

Certificate of Approval:

Min-Te Sun
Assistant Professor
Computer Science and
Software Engineering

Alvin S. Lim, Chair
Associate Professor
Computer Science and
Software Engineering

David Umphress
Associate Professor
Computer Science and
Software Engineering

Yu Wang
Assistant Professor
Computer Science and
Software Engineering

George Flowers
Interim Dean
Graduate School

Scalable, Self-Healing, and Real-Time Network Services for

Directed Diffusion

Kenan L. Casey

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
August 9, 2008

Scalable, Self-Healing, and Real-Time Network Services for

Directed Diffusion

Kenan L. Casey

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at

their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

iii

Vita

Kenan Luke Casey, son of Jerry and Paula Casey, was born January 8, 1982, in

Louisville, Kentucky. He graduated from Jeffersonville High School as salutatorian in

2000. He earned his Bachelor’s degree in Computer Science and Mathematics from Freed-

Hardeman University, Henderson, Tennessee in 2004. In 2007, he completed his Master’s

degree in Computer Science at Auburn University.

iv

Dissertation Abstract

Scalable, Self-Healing, and Real-Time Network Services for

Directed Diffusion

Kenan L. Casey

Doctor of Philosophy, August 9, 2008
(M.S., Auburn University, 2007)

(B.S., Freed-Hardeman University, 2004)

157 Typed Pages

Directed by Alvin S. Lim

Directed diffusion is a data-centric publish-subscribe routing protocol for sensor net-

works. We have proposed three network services which increase the capabilities of directed

diffusion. Our protocols build on the inherent strengths of diffusion and lessen its weak-

nesses. The system architecture emphasizes efficient communication, local route repair, and

real-time response. Our suite of network services significantly improves the performance of

directed diffusion by addressing the fundamental challenges of sensor networks: energy-

efficiency, dynamic environments, and scalability. Our design increases the efficiency of

flooding, improves packet delivery rates in the presence of node failure, and decreases the

number of packets that miss their deadlines. We evaluate the performance of our improved

diffusion in terms of routing overhead, delivery effectiveness, and deadline achievement.

Our results demonstrate the benefits of the network services in all three respects. We in-

crease the efficiency of flooding by 48%, improve packet delivery rates in the presence of

node failure by up to 28%, and decrease the number of packets that miss their deadlines by

30-60%.

v

Acknowledgments

I would like to express my appreciation to Dr. Alvin Lim for the guidance he has

provided throughout my study at Auburn. I would also like to express my gratitude to the

advisory committee members, Dr. Min-Te Sun, Dr. David Umphress, and Dr. Yu Wang.

Several fellow students have made significant contributions to this research including

Raghu Neelisetti, Qing Yang, and Philip Sitton. I am thankful for their help and their

friendship. Above all, I am grateful to my wife, Ashley, whose love and support have made

this work possible. I thank her for her patience and encouragement during the long research

process. Her companionship is my greatest joy.

vi

Style manual or journal used Journal of Approximation Theory (together with the style

known as “aums”). Bibliograpy follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically LATEX)

together with the departmental style-file aums.sty.

vii

Table of Contents

List of Figures xi

1 Introduction 1

2 Motivations, Objectives, and Applications 5
2.1 Motivations . 5

2.1.1 Efficient Flooding . 6
2.1.2 Route Repair . 7
2.1.3 Real-Time Communication . 10

2.2 Objectives . 11
2.2.1 Efficient Flooding . 11
2.2.2 Route Repair . 12
2.2.3 Real-Time Communication . 12

2.3 Applications . 13
2.3.1 Emergency Medical Response . 13
2.3.2 Business Alerts . 14
2.3.3 Meteorological Command and Control 14

3 Related Work 19
3.1 Sense-and-Respond Systems . 19
3.2 Directed Diffusion . 20

3.2.1 Directed Diffusion Architecture . 20
3.2.2 Strengths of Diffusion . 22
3.2.3 Weaknesses of Diffusion . 24
3.2.4 Route Repair Mechanisms . 25

3.3 Efficient Flooding . 27
3.3.1 Heuristic-based . 27
3.3.2 Topology-based . 31

3.4 Route Repair . 35
3.4.1 WAR . 36
3.4.2 ADMR . 37
3.4.3 SWR . 38
3.4.4 SHORT . 38
3.4.5 RDMAR . 39
3.4.6 ABR . 40
3.4.7 TORA . 41
3.4.8 AODV-LRQT . 42

viii

3.4.9 PATCH . 43
3.5 Real-Time Communication . 43

3.5.1 RAP . 43
3.5.2 SPEED . 46
3.5.3 Other Protocols . 48

4 Network Services Architecture 50
4.1 Clustering Mechanism (PCDD) . 53

4.1.1 Passive Clustering Overview . 53
4.1.2 Protocol Details . 56
4.1.3 Adaptation to Diffusion . 61

4.2 Repair Mechanism (LRDD) . 62
4.2.1 Break Detection . 62
4.2.2 Break Localization . 63
4.2.3 Localized Gradient Repair . 63

4.3 Real-Time Communication Mechanism (RTDD) 66
4.3.1 SVM and DVM . 68
4.3.2 SAT and DAT . 69
4.3.3 SRT and DRT . 70

5 Network Services Design 73
5.1 Design Principles . 73

5.1.1 Energy-efficient . 73
5.1.2 Scalable . 74
5.1.3 Localized . 74
5.1.4 Distributed . 75
5.1.5 Real-Time . 75
5.1.6 Reactive . 76

5.2 Design Decisions . 76
5.2.1 Clustering Mechanism (PCDD) . 76
5.2.2 Repair Mechanism (LRDD) . 77
5.2.3 Real-time Communication Mechanism (RTDD) 79

6 Network Services Implementation 82
6.1 Clustering Mechanism (PCDD) . 82

6.1.1 Passive Clustering Attribute . 82
6.1.2 Passive Clustering Filters . 84

6.2 Repair Mechanism (LRDD) . 86
6.2.1 LRDD Attribute . 87
6.2.2 LRDD Filters . 87
6.2.3 Local Flooding . 90

6.3 Real-Time Communication Mechanism . 91

ix

6.3.1 RTDD Attributes . 91
6.3.2 RTDD Filters . 93
6.3.3 Prioritized Queue . 96

7 Performance Evaluation 98
7.1 Simulation Setup . 98
7.2 Clustering Mechanism (PCDD) . 99

7.2.1 Experiment Setup . 99
7.2.2 Flooding Efficiency . 100
7.2.3 Delivery Effectiveness . 104
7.2.4 End-to-End Delay . 106
7.2.5 Disconnection Probability . 108

7.3 Repair Mechanism (LRDD) . 110
7.3.1 Experiment Setup . 111
7.3.2 Simulation Results . 114

7.4 Real-Time Communication Mechanism (RTDD) 125
7.4.1 Simulation Setup . 125
7.4.2 Simulation Results . 127

8 Conclusions and Future Work 136

Bibliography 139

x

List of Figures

2.1 Global Route Repair . 8

2.2 Ideal Local Route Repair . 9

2.3 DART 2 System Architecture . 18

3.1 Regional Flooding (Region Filter) . 30

3.2 Relative Distance Micro-Discovery . 41

3.3 RAP Communication Architecture . 44

3.4 SPEED Architecture . 47

4.1 Layered Architecture . 51

4.2 Detailed Architecture . 52

4.3 Example PC Topology . 54

4.4 Full Gateway . 58

4.5 Distributed Gateway . 59

4.6 PC Transition State Diagram . 60

4.7 Local Repair for Directed Diffusion . 64

7.1 Number of MAC-layer interest messages versus number of nodes (1 flow) . . 102

7.2 Number of Routing-layer interest messages versus number of nodes (1 flow) 103

7.3 Number of MAC-layer interest messages versus number of nodes (2 flows) . 104

7.4 Number of Routing-layer interest messages versus number of nodes (2 flows) 105

7.5 Number of MAC-layer exploratory data messages versus number of nodes (2
flows) . 106

xi

7.6 Number of Routing-layer exploratory data messages versus number of nodes
(2 flows) . 107

7.7 Number of MAC-layer exploratory data messages versus number of nodes (2
flows) . 108

7.8 Number of Routing-layer exploratory data messages versus number of nodes
(2 flows) . 109

7.9 Average energy consumed per node versus number of nodes (1 flow) 110

7.10 Average energy consumed per node versus number of nodes (2 flows) 111

7.11 Delivery ratio versus number of nodes (2 Flows) 112

7.12 Delivery ratio versus number of nodes (2 Flows) 113

7.13 End-to-end delay versus number of nodes (1 Flow) 114

7.14 End-to-end delay versus number of nodes (2 Flows) 115

7.15 Disconnection probability versus number of nodes (1 Flow) 116

7.16 Disconnection probability versus number of nodes (2 Flows) 117

7.17 Packets delivered for each repair and flooding algorithm 118

7.18 Total flooded packets for each repair and flooding algorithm 120

7.19 Average energy consumed per node for each repair and flooding algorithm . 121

7.20 Total flooded packets per data packet delivered for each repair and flooding
algorithm . 123

7.21 Average energy consumed per data packet delivered for each repair and flood-
ing algorithm . 124

7.22 Topology 1: 2 Flows . 126

7.23 Topology 1: 3 Flows . 126

7.24 Delivery Ratio of Flow 1 (Topology 1) . 128

7.25 Delivery Ratio of Flow 2 (Topology 1) . 130

xii

7.26 Average Delivery Ratio of Flows 1 and 2 (Topology 1) 131

7.27 Delivery Ratio of Flow 1 (Topology 2) . 132

7.28 Delivery Ratio of Flow 2 (Topology 2) . 133

7.29 Delivery Ratio of Flow 3 (Topology 2) . 134

7.30 Average Delivery Ratio of Flows 1, 2, and 3 (Topology 2) 135

xiii

Chapter 1

Introduction

In 1991, Mark Weiser challenged computer scientists to consider a new model of com-

puting, a model in which computers are interwoven into the “fabric of everyday life until

they are indistinguishable from it” [1]. Weiser’s vision, now called ubiquitous computing,

emphasizes intuitive interaction with pervasive computer resources. Proactive computing

is a branch of ubiquitous computing which focuses on autonomous and environmentally-

based devices. Three fundamental goals for proactive computing have been proposed: get

physical, get real, and get out [2]. The first goal is to connect computers to the physical

world. Such computers are typically small sensors and actuators which collect data over

a large physical environment and communicate it over a wireless network. The second

goal emphasizes the need for real-time performance. Proactive computing systems should

be faster than real-time so that feedback can be provided to automated control loops for

future predictions. The final goal is to remove humans from the interactive loop in order

to allow for faster-than-human response times. This change essentially shifts computation

from human-centered to human-supervised.

Sensor networks have emerged in response to these lofty goals. Sensor networks are

large-scale, wireless networks of resource-constrained sensor devices. They most clearly

support the first goal of proactive computing, connecting the physical and virtual worlds

though sensors. In reference to the second and third goals, sensor networks allow for rapid

and automated response to environmental stimuli. They allow faster-than-human response

1

by taking humans out of the loop. Sensor devices, called nodes, consist of a processor, en-

vironmental sensors, a wireless communication device (usually a radio), and a power source

(usually a battery). Current sensor devices are the size of a quarter, but the goal is to

further reduce their size and cost. The SmartDust project [3], for example, envisions de-

vices one cubic millimeter in size and capable of being suspended in air. A wide range of

applications for sensor networks has been proposed. Examples include environmental mon-

itoring, military surveillance, and medical monitoring. Sensor networks are most noticeably

differentiated from other types of networks by their large size, limited energy source, and

dynamic nature. Sensor deployment is almost always ad-hoc due to the sheer number of

sensors. Potential deployment methods include being launched by artillery shelling, scat-

tered by ground vehicles, or dropped by airplanes. The small size of sensor devices puts

severe limits on the amount of available energy so all operations are energy-efficient. Sensor

networks are characterized by robustness in handling the inevitable failures which occur in

the field. The system must continue to function after devices fail, die, or are destroyed.

While a great deal of sensor network research has been conducted, the inherent char-

acteristics of sensor networks provide ample challenges for system researchers. Three of

the most compelling challenges of sensor networks are their immense scale, their resource

scarcity, and their dynamic topologies. Sensor networks aim to include tens of thousands

to millions of nodes. To support networks of this size, communication mechanisms must be

incredibly scalable. The hardware of sensor devices also provides significant challenges. Sen-

sor devices have very limited processing, storage, and communication capabilities. Perhaps

most critical is the limited energy budget available to sensor nodes. Since batteries may not

2

be replaced in the field, all sensor network algorithms must conserve energy whenever pos-

sible. Consequently, networking protocols must maintain high computation and communi-

cation efficiency. Communication is particularly expensive in terms of energy (transmitting

1 bit consumes as much power as executing 800-1000 instructions [4]) so minimizing the

number of transmissions (and receptions) is a paramount goal. Another challenge is the

dynamic nature of sensor network topologies. Since sensor networks are typically deployed

in an ad hoc fashion, the network must first configure itself and then maintain a working

configuration in the presence of adverse environmental effects which may result in node

failure. In the face of anticipated node failure, the network should continue to function

normally by taking advantage of node redundancy.

The overall goal of our research is to mask the fundamental challenges of the sensor

network from high level applications and application developers. Ideally, the application

programmer should not know about the scale, energy, or dynamics of the sensor network.

The lower layer protocols should transparently support any size network, adapt to changing

energy levels, and perform dynamic reconfiguration in response to topology changes. Ap-

plications should not have to worry about such details. To address this issue, we propose

three mechanisms which shield the application from the network level challenges. First, we

present an efficient flooding scheme to increase the scalability of the network. Secondly,

we address the dynamic nature of sensor networks through a route repair algorithm which

reconfigures the network after node failure. Lastly, we propose a protocol for real-time

communication which gives application developers control over data flow priorities so that

time-critical messages can be delivered satisfactorily. Together, the three network services

compose a new layer in the network protocol stack which applications can easily, even

3

transparently, utilize to gain improved network performance. The network services reside

slightly above the network layer but have access to the inner workings of the routing pro-

tocol. The low-level implementation of these services provides significant benefits to all

the layers above the network level (i.e., transport and application). By taking advantage

of the network services, any software running at higher layers will be capable of increased

scalability, reactive self-healing, and real-time communication.

In Chapter 2, we discuss the motivations for our network services and describe relevant

applications of sense and response systems. Chapter 3 gives background information about

directed diffusion and an overview of research related to our three protocols. We describe

the architecture of the proposed system in Chapter 4 and the design principles in Chapter

5. In Chapter 6, we give an overview of the implementation of the three protocols. The

simulation performance of each protocol is described in Chapter 7. We conclude in Chapter

8 with a summary of our contributions and areas for future work.

4

Chapter 2

Motivations, Objectives, and Applications

In this chapter we discuss the motivations for our enhancements to directed diffusion.

We also present several existing and potential applications of sense and response (S&R)

sensor networks. Our protocols are particularly relevant to such systems since they require

efficient and robust data collection as well as timely response to events.

2.1 Motivations

Although directed diffusion is generally well-suited to sensor networks, it has several

apparent weaknesses. Its reliance on flooding incurs a significant penalty on communication

and energy efficiency. Furthermore, diffusion also handles node failure rather poorly with its

use of periodic global flooding. Finally, diffusion lacks any support for time-critical message

delivery. We propose three network services to augment and extend directed diffusion to

handle these issues. First, we propose an efficient flooding scheme to increase the energy

efficiency and scalability of the network. Secondly, we address the dynamic nature of sensor

networks through a route repair algorithm that reconfigures the network after node failure.

Lastly, we present a protocol for real-time communication which gives application developers

control over data flow priorities so that time-critical messages can be delivered satisfactorily.

In the subsequent sections we give specific motivations for each of these mechanisms.

5

2.1.1 Efficient Flooding

Flooding is a packet delivery process that delivers a packet to every connected node

in the network [5]. Typically, flooding requires each node to rebroadcast every flooded

packet so that every node is guaranteed to receive the message at least once. This type

of flooding has been called blind flooding [6] and simple flooding [7]. Efficient flooding

algorithms attempt to reduce the number of redundant packet transmissions through the

use of heuristics or information about the network topology. Such techniques increase

algorithm complexity for the sake of communication efficiency.

Flooding has frequently been used in both proactive and reactive routing protocols.

Proactive routing protocols often rely on flooding for route advertisement. In this case,

every node in the network must know the current status of a link in order to maintain

correct routing tables. Efficient flooding techniques are often utilized by link-state protocols

since extensive neighbor information is gathered and propagated by such routing protocols

[5]. By using topology information, a node can forward flooded packets to a reduced set of

neighbors without affecting the global reception of the packet.

In reactive protocols, which are generally more appropriate for sensor networks, the

principle reason for flooding is route discovery. Unlike proactive protocols, reactive protocols

typically use blind flooding. Reactive protocols must flood initial route creation packets

because no prior topology information is known. The path to an unknown host is found

by flooding the network in search of the destination. Directed diffusion relies strongly on

flooding since both interests and exploratory data are flooded during the gradient setup

phase. After routes are discovered, diffusion performs route maintenance using the same

two-phase flooding mechanism.

6

Due to its simplicity, blind flooding has often been implemented in reactive protocols [8]

[9]. Although this naive approach to flooding simplifies the design, it results in inefficiency

since nodes may rebroadcast packets that all their neighbors have already received. In blind

flooding, a node may receive duplicate copies of the same flooded packet from multiple

neighbors. The performance of blind flooding is inversely related to the average number

of neighbors (neighbor degree) per node. As the neighbor degree increases, blind flooding

results in greater redundant packets (network layer), greater probability for collision (MAC

layer), and greater congestion of the wireless medium (physical layer) [10].

In dense networks it is not necessary for every node to forward each flooded packet. If

only a subset of the nodes is chosen as relays, the flooding efficiency can be significantly

improved. The underlying problem is to select a dominant set of nodes to relay flooded

packets. More formally, we wish to find the minimal subset of forwarding nodes sufficient to

deliver a flooded packet to every other node in the system [5]. This is typically accomplished

with algorithms that use topology information or heuristics to identify nodes that should

forward packets as discussed in Section 3.3.

2.1.2 Route Repair

Because of the dynamic nature of sensor networks, node and link failures are expected

occurrences. When links fail, the routing protocol may attempt to repair from the breakage

in one of two ways: end-to-end error recovery or local error recovery. End-to-end repair

protocols initiate the recovery process by either explicitly alerting the source node of the

problem with a negative acknowledgment or by implicitly informing the source with the ab-

sence of a positive acknowledgment. In the former case, the node which detects a break will

7

take no action so that the sender will timeout while waiting for a positive acknowledgment.

In the latter case, a negative acknowledgment will be sent from the intermediate node to

the source node, reporting the link failure. Diffusion essentially uses the implicit approach

(positive acknowledgment) in that the protocol defines no explicit error message depending

instead on periodic route re-discovery to repair broken links.

The problem with end-to-end repair is the high cost of network-wide flooding. This

has serious implications on the performance of a system in terms of scalability, energy

consumption, and latency. Protocols which depend on global error recovery mechanisms

do not scale well with network size. Moreover, since every node must forward the flooded

packet, each node consumes energy repairing a route which is possibly very distant. Latency

of end-to-end repair mechanisms also suffers since routes are completely rediscovered from

the source to the sink. Figure 2.1 graphically illustrates the high cost of global route repair

in two-phase pull directed diffusion. Notice the global flood of interests and exploratory

data messages in both directions. Also notice that the repaired path is only a few hops

different than the original data path.

Figure 2.1: Global Route Repair

8

When a node relatively far away from the source fails, it makes little sense to involve the

source (and other distant nodes) in the error recovery process. Ideally, only nodes around

the link failure should be involved in the repair process. In cases where the repaired path is

only a few hops different from the original path, such as in the previous figure, the localized

approach greatly reduces the overhead associated with repair. Figure 2.2 shows an ideal

case for local route repair where distant nodes are not involved in the recovery process at

all. Nodes in the immediate vicinity of the break participate in the repair algorithm. Note

that neither the source nor the sink are involved in the recovery process.

Figure 2.2: Ideal Local Route Repair

The advantages of the local repair approach include increased scalability, increased

flooding efficiency, and decreased latency of repair. Since only a portion of the nodes are

involved in local repair, the protocol scales more gracefully with network size and consumes

less overall system energy. The localized nature of the recovery also lends itself to faster

route repair since the complete (source to sink) route does not have to be traversed. In their

analytical comparison of local and end-to-end recovery mechanisms, Aron and Gupta [11]

show that with end-to-end recovery the probability of successfully delivering a packet on

9

the first attempt rapidly degrades with increasing network size. In summary, local repair

improves the scalability, efficiency, and latency of a network protocol. Additionally, the

amount of resources consumed per packet is several orders of magnitude larger for end-to-

end repair than for local repair. In summary, local repair improves the scalability, efficiency,

and latency of a network protocol.

2.1.3 Real-Time Communication

The general objective of sensor networks is distributed micro-sensing, i.e. to sense,

monitor, and control physical environments. Examples include acoustic surveillance systems

for monitoring homes, biometric sensors which detect harmful bio-agents in airports, and

stress sensors which monitor the structural integrity of buildings during earthquakes. In

many applications, data messages have time constraints in the form of end-to-end deadlines

specifying an upper bound on the communication delay of a packet. Application-specific

deadlines, for example, allow packets associated with important events to take priority

over periodic monitoring packets. Surveillance systems may require the position of an

intruder to be reported to the command center within 15 seconds of detection while the bio-

detection system at the airport may need to respond within 1 second. Data in monitoring

systems often has an interval of validity after which it is no longer useful. The validity

interval of a home surveillance system, for example, will be much shorter than that of a

temperature monitoring system since the presence of an intruder will be of much greater

interest immediately after his detection, but may be useless 30 minutes later.

10

To support this time-critical property of physical environments, sensor network proto-

cols must implement real-time communication mechanisms. The goal of real-time commu-

nication is to minimize the number of packets which miss their end-to-end deadlines. This

is typically accomplished by prioritizing packets by their deadlines so that more urgent mes-

sages are sent first. Essentially, less urgent packets are delayed so that more urgent packets

can reach their destinations on time. The challenge for real-time communication over sen-

sor networks is the multi-hop nature of sensor networks. Although it is reasonable to give

priority to packets with shorter deadlines, prioritization should also be given to packets

that are farther away from their destination. In order to meet its deadline, a packet with

a relatively long deadline may need to be prioritized higher than a packet with a shorter

deadline, if the long-deadline packet travels twice as many hops. Thus, both the deadline

of a packet and the distance it must travel should be considered when packet prioritization

is performed.

2.2 Objectives

In this section, we discuss the specific objectives of our three protocols. We explain

the overall goal for each protocol and highlight the improvement that will be achieved by

our design.

2.2.1 Efficient Flooding

Performing efficient flooding in sensor networks is challenging for several reasons. First,

the communication overhead necessary to collect topology information represents a signif-

icant energy expenditure. Typically, Hello packets are exchanged among all neighboring

11

nodes, thus incurring significant packet (and energy) overhead. Secondly, such packet ex-

changes occur periodically, thus incurring overhead regardless whether the network has

data to transmit. The objective of our approach is to dynamically and reactively per-

form efficient flooding. We will use a passive clustering technique that uses ongoing traffic

to create a clustered structure which allows nodes that should drop forwarded packets to

identify themselves. Our approach avoids additional packet exchanges by piggybacking the

clustering information on existing packets. Finally, the network performs efficient flooding

reactively instead of proactively. As a reactive protocol, unnecessary transmissions are re-

duced. The dynamic and reactive characteristics of our approach promote energy efficiency

by reducing communication.

2.2.2 Route Repair

The goal of our route repair approach is to quickly repair broken data paths in a highly

localized fashion. Reactive repair is vital so that the network can quickly recover from the

failure. Repair time should be kept to a minimum so that latency and delivery effectiveness

are not harmed. Localized repair is essential in order to minimize the overhead associated

with path repair. Thus, our route repair protocol aims to achieve localized and timely repair

without impeding the scalability, efficiency, or timeliness of the network.

2.2.3 Real-Time Communication

Our goal with respect to real-time communication is to develop a real-time communi-

cation protocol which considers both distance and deadline for directed diffusion. This will

allow application developers to add deadline information to a data flow and have confidence

that the network will maximize the number of packets which meet their deadlines. The

12

development of a real-time communication protocol for directed diffusion will significantly

broaden the applicability of directed diffusion. Typically diffusion is limited to simple data

gathering applications. This enhancement will allow diffusion networks to support complex

applications which may involve timely data reporting or time-critical system response.

2.3 Applications

The emergence of pervasive computing has expanded the frontier for S&R systems.

Although the S&R architecture is broadly applicable to various fields, its potential utility

has not been fully realized. We present a summary of the applications of previous S&R

systems and propose several new areas well-suited to the S&R paradigm.

2.3.1 Emergency Medical Response

One very compelling application of S&R systems is in the field of healthcare. The

authors of [12] have developed a sensor-based emergency medical response system. At the

lowest level, sensors worn by patients report vital signs and location information to local

command centers (e.g. ambulances) via 802.15.4. From there, information is forwarded over

a cellular or satellite link to a global command center where the data is managed as a web

service. The goal of the system is to provide greater situational awareness about patient

condition and arrival time so that doctors can make more informed decisions. Our real-time

communication model is particularly relevant to this type of application. Since information

about vital signs is being communicated, timely response of the system is critical to the care

of patients. Given the large size of many hospitals, efficient flooding is also an important

mechanism for satisfactory performance of S&R systems in healthcare.

13

2.3.2 Business Alerts

Many business applications for S&R systems have also been proposed [13] [14] [15].

[13] describes a unified event stream processing system to monitor, analyze, and detect

critical business events. The objective is to improve efficiency, reduce cost, and enable

the enterprise to react quickly. The Event Stream Processor calculates metrics based on

event messages received from a variety of sources such as complaint databases or real-time

production statistics. A domain expert creates rules based on the metrics to provide alerts

for important business situations. Specific applications of this system include inventory

replenishment, product behavior, and retail performance. Our networking improvements

are also beneficial in the business domain. The real-time communication mechanism is well

suited to the time-critical nature of many phenomena that lead to immediate response.

2.3.3 Meteorological Command and Control

S&R systems have also been developed for hazardous weather detection. Our enhanced

communication protocols are especially relevant to meteorological applications where sensor

failure is expected. The route repair mechanism allows the system to perform in challenging

environments such as tornadoes and tsunamis. The redundant nature of the sensor network

is used to overcome unavoidable node failure. Efficient flooding reduces congestion due

to network flooding. This is relevant in the context of energy efficiency and network la-

tency. Since hazardous weather detection systems will be constantly in use but infrequently

activated, it is important to efficiently utilize the energy resources of the sensor devices. Ef-

ficient flooding saves energy by reducing the redundant packet transmissions. This section

describes the research in the areas of tornado detection and tsunami detection.

14

Tornado Detection

NetRad [16] is a Distributed Adaptive Collaborative Sensing (DACS) system for early

tornado detection. The goal of NetRad is to detect a tornado within 60 seconds of formation

and track its centroid within a 60-second temporal region. NetRad is composed of a dense

network of low-powered radars that collaborate to accurately predict tornado formation.

The radars report atmospheric readings to the System Operations and Control Center

(SOCC) where a merged version of the data is analyzed to detect meteorological features.

Radars are re-tasked every 30 seconds based on the utility of the features identified. Thus,

sensing can be focused on areas nearest to recently detected meteorological features so that

a better picture of the tornado can be obtained.

The NetRad system is somewhat different from the S&R sensor network system we

proposed. Unlike our S&R system, the NetRad system uses a high-bandwidth, highly-

structured, wired network to connect the sensors. Our system is designed to communicate

over relatively low speed, ad-hoc, wireless networks. We also emphasize fast response time

on the order of subseconds, as opposed to the 30-second turnaround time of NetRad.

Tsunami Detection

Our S&R system has specifically been applied to the tsunami detection problem. In

this section we describe the current tsunami warning system used by the United States and

a modified system which we have proposed for better detection and response to this type

of disaster.

Current System The current tsunami warning system is composed of ten buoys in the

Pacific and five in the Atlantic/Caribbean. The Deep-ocean Assessment and Reporting of

15

Tsunamis (DART) project is maintained by the National Oceanic and Atmospheric Admin-

istration and serves as part of a tsunami warning system for the United States [17] [18] [19].

Figure 2.3 illustrates the architecture of the current system.

The DART stations consist of two parts: an anchored seafloor bottom pressure recorder

called a tsunameter and a companion moored surface buoy. The tsunameter detects subtle

pressure changes which indicate tsunami waves. An acoustic modem transmits data from

the tsunameter to the buoy, which then relays the information via satellite to land-based

warning centers. The goal of the DART system is to provide accurate and early warning

for tsunamis. This includes avoiding false alarms and unnecessary evacuations.

Proposed System Our proposed system is similar to the current system, but incorpo-

rates two major modifications. First, we suggest using a multi-hop sensor network connected

by radio frequency (RF) links instead of a single-hop satellite communication scheme. Al-

though this modification necessitates a greater number of devices, it also leads to significant

savings in terms of latency, energy, and cost per device. Since satellite transmission delays

are avoided, the latency of communication will be improved. Shorter range radio broadcasts

will result in longer battery life and greater sensor lifetime. Improved latency and energy-

efficiency represent significant advantages of our design. The use of a sensor network will

result in greater accuracy of detection with respect to resolution. This allows for more

localized tsunami detection and prediction.

Secondly, we propose the addition of a tsunami mitigation system that responds to

tsunamis. We assume it is feasible to build an artificial barrier reef strong enough to

withstand the force of tsunamis and reduce its strength before it hits the shoreline. The

barrier may be engaged (or fired) when a tsunami event is detected and be disengaged

16

otherwise. Although such a barrier system would be expensive to construct, the cost may

be justified for protecting particularly valuable areas (e.g. nuclear reactors). The proposed

system is similar to the Thames Barrier, a series of movable gate structures which protect

London from tidal floods [20], and the gate system currently being developed to shield the

city of Venice from dangerously high tides [21] [22] [23].

Although the focus of our work is on the networking and analysis aspects of the system,

we have also given some consideration to the design of the barrier system. We envision a

defense network inspired by the concept of air bags for automobiles. The basic idea is to

create a series of artificial islands which impede the progress of the wave. We propose an

underwater deployment of inflation devices which are connected by wire to ballasts on the

seafloor. When given the command to fire, the barriers will inflate and float to the surface

while remaining tethered to the ballast. We propose using a layered series of barriers that

successively attenuate the wave. Our proposed barrier system is similar to the breakwater

coastal defense systems described in [24] [25]. By using advanced prediction techniques, we

hope to engage the series of barriers that most effectively obstructs the wave.

17

Figure 2.3: DART 2 System Architecture

18

Chapter 3

Related Work

3.1 Sense-and-Respond Systems

Chandy [26] presents a high-level summary of sense and respond (S&R) systems in the

context of IT issues. On the most basic level, sense and respond systems simply sense the

environment and respond appropriately. Rules in S&R systems can be defined using when-

then semantics. The when-clause corresponds to the detection of an event, and the then-

clause describes the execution of the response. The cost of an S&R system can be broken

into three parts: the cost of false positives, the cost of false negatives, and the incremental

costs of running the system. Chandy [26] outlines several important characteristics of S&R

applications in order to categorize the application space. He presents the following S&R

application properties:

• Response Type: Is the response human-centered or automated?

• Response Time: Is the response executed in minutes or sub-seconds?

• Event Rate: Are events generated a few per second or thousands per second?

• Condition Complexity: Are when-clauses based on a single event or a history of events?

Are when-clauses based on a single stream or the fusion of multiple streams?

• Data Structure: Is the data structured in well defined schema or generally unstruc-

tured?

• Query Structure: Are queries structured or unstructured?

19

Our network services support S&R systems of fairly high complexity according to this

taxonomy. We support an automated response time on the order of sub-seconds. Events

may be generated at high rates and may compose several distinct streams of historical data

that must be fused. The only exception to the trend of higher complexity is that our system

utilizes structured data and structured queries.

3.2 Directed Diffusion

Directed diffusion [8] [27] is a sensor network routing protocol based on the publish-

subscribe communication model. Its development was guided by the principle of data-centric

routing. This is in contrast to traditional address-centric protocols which route packets

based on host information. Diffusion also emphasizes in-network processing and localized

interactions in order to promote energy efficiency and scalability.

3.2.1 Directed Diffusion Architecture

Protocol Overview

The objective of directed diffusion is to perform multipoint-to-multipoint communica-

tion using named data. All routing is based on named data in the form of attribute-value

tuples instead of host information like address-centric protocols (e.g. IP [28], DSR [9], or

AODV [29]). Diffusion is also characterized by its emphasis on localized routing. Each

node stores routing information only about its immediate (i.e., 1-hop) neighbors; no global

information is required.

Diffusion sets up subscriptions by flooding interest messages throughout the network.

Nodes with matching data publish it by flooding exploratory data messages back through the

20

network to the interested node. The subscribing node then reinforces its fastest neighbor by

sending it a reinforcement message. Subsequent nodes recursively forward the reinforcement

message to their fastest neighbor until the lowest latency path back to the publishing node

has been reinforced. After a reinforced path has been established, reinforced data messages

flow from publisher to subscriber via unicast or efficient multicast. After the two-phase

setup algorithm is complete, data is, in essence, “pulled” from source to sink along the

reinforced gradients.

Protocol Details

Diffusion uses four types of messages to establish paths within a network. A sink node

subscribes to a data flow by flooding the network with interest messages that name the

type of data the sink wants to receive. Intermediate nodes store the interest and record

the neighbor from which it was sent. This saved path leading to the sink is known as a

gradient. Nodes with data matching the interest will publish it by transmitting exploratory

data along the gradients previously created. These publishing nodes are known as source

nodes. When the exploratory data arrives at the sink, the sink will reinforce its single

fastest neighbor (i.e., the neighbor that delivered the first exploratory data message) by

sending it a reinforcement message. Any node receiving a reinforcement message will, in

turn, reinforce its fastest upstream neighbor until a reinforced path all the way back to the

source is established. Slower paths may be negatively reinforced to remove them from the

gradient tables. Subsequent data emanating from the source, known as reinforced data, will

be unicast or multicast over the reinforced path to the sink. This two-phase process results

in the creation of a multipoint-to-multipoint distribution tree.

21

3.2.2 Strengths of Diffusion

Data-Centricity

Directed diffusion has generally proven to be well-suited to sensor networks. Its data-

centric model is more appropriate for many sensor network applications. It performs more

efficiently and provides more useful services for many types of sensor network applications

(e.g., query processing). The use of named data provides an energy efficient mechanism for

routing data, which avoids the unnecessary complexity of host information. Since data is

the primary concern it makes sense to use it as the routing criterion instead of host address,

a property largely unimportant in sensor networks.

Reactive Nature

The reactive nature of diffusion also supports the goal of energy efficiency. Directed

diffusion belongs to a class of protocols that creates routes in response to the application’s

needs instead of proactively finding routes in advance. The reactive property is particularly

relevant to senor networks since they may remain inactive for long periods of time waiting

for events of interest.

Localized Interactions

One of the most notable characteristics of diffusion is its fully localized nature. Nodes

only require knowledge about their 1-hop neighbors to create gradients. No global informa-

tion, whether end-to-end or multi-hop, is needed for routing. This means that the routing

table scales with the number of neighbors as opposed to the total number of nodes in the

network. Node density, not network size, is the determining factor in the gradient table

22

size. This improves the scalability of the protocol with respect to space complexity. The

localized nature of diffusion also simplifies the routing protocol since global information is

not required to make routing decisions.

Aggregation

Another strength of the diffusion protocol is its support for in-network processing

or aggregation. Since each node understands the attribute-value tuples that compose a

data message, any intermediate node may perform data aggregation. While this essentially

pushes application level data down to the network layer, the resulting benefits are significant.

Aggregation essentially trades communication overhead for latency by consolidating the

data from multiple packets into one packet. It has been demonstrated that significant

energy savings (up to 42% in [27]) can be achieved by the use of aggregation in diffusion.

Multipoint-to-Multipoint Links

A final strong point for diffusion is its support for various types of communication

paradigms. Unlike other network protocols which only provide unicast (1→1) capabilities,

diffusion inherently supports multicast (1→N) communication. Additionally, diffusion’s

publish-subscribe model can create gather distribution trees (N→1) and multipoint-to-

multipoint (N→M) dissemination paths. Other protocols may support these modes of

communication with high-level protocols, but diffusion’s relatively simple architecture in-

herently supports all four classes of links.

23

3.2.3 Weaknesses of Diffusion

Flooding

Perhaps the greatest weakness of directed diffusion is its reliance on flooding for path

creation and maintenance. In the case of standard diffusion (the two-phase pull model),

both interest and exploratory data messages are flooded throughout the network whenever

gradients are established. This results in a huge amount of network traffic every time a new

path is established or an old path is refreshed.

Scalability

The cost of flooding rises with the size of the network, so scalability is significantly

affected. Diffusion does not effectively support networks with multiple hundreds of nodes

because of the huge overhead imposed by flooding across so many nodes. Although its

localized nature supports scalability, diffusion’s dependence on flooding severely limits the

practical size of a network.

Latency of Global Repair

To deal with broken paths, diffusion periodically re-creates routes by performing the

same procedure used to initially find routes: global flooding. This mechanism is described

in Section 3.2.1. Since diffusion handles failure and mobility with global repair mechanisms,

the costs incurred for repair are significant. To reduce the energy costs of global repair, the

path maintenance mechanism is performed on a relatively infrequent schedule (e.g. every 60

seconds). In the worst case, data may be delayed an entire refresh interval before a broken

24

path is repaired. While this may be adequate for some applications, it may be completely

unacceptable for others, e.g., time-critical and real-time systems.

Lack of Real-Time Communication Support

Many applications have time deadlines which should be recognized by the network and

handled differently. Directed diffusion routes packets in a first come, first serve fashion –

no preference is given to higher priority flows. While not an inherent weakness, diffusion’s

lack of support for real-time communication is a deficiency nonetheless.

3.2.4 Route Repair Mechanisms

Standard directed diffusion includes two mechanisms for path repair. Diffusion was

designed to handle path failure primarily by the periodic re-creation of gradients using a

global mechanism. The designers of diffusion also mention a local repair procedure, but

fail to adequately deal with the route repair problem. This section summarizes the costly

global repair mechanism and the primitive local repair algorithm proposed by the original

designers of the diffusion protocol.

Global Gradient Repair

The standard and currently implemented method of handling broken links in diffusion

is global gradient repair. In this method, the sink periodically refreshes the path to the

source by flooding the network with interest messages. The source also periodically floods

exploratory data back to the sink in order to reinforce the path that is currently fastest.

Although this mechanism provides the most optimal paths, it comes at a high cost

in terms of energy and latency. Global repair results in network-wide flooding of interest

25

and exploratory data messages. To lessen this cost, global repair is performed at a fairly

infrequent interval. As a result, links may remain broken for an entire gradient refresh

interval. This means that a data flow may fail to report an event for 60 seconds (by

default) in the worst case since no effort is made to repair the link until the next gradient

refresh.

Local Gradient Repair

In [30], the designers of diffusion describe a local gradient repair strategy for the pro-

tocol. In this method, intermediate nodes may participate in reinforcement. When a node

detects degradation in link quality, it can discover a new path to the source and negatively

reinforce the degraded path. The problem with this scheme, as pointed out by the authors,

is that every node downstream from the break will attempt to find a new path, resulting

in a significant waste of resources. The authors suggest that the first nodes after the break

“interpolate” data events so that downstream nodes continue to “perceive” a high quality

path and do not initiate unnecessary local repair.

This method is far from ideal. It can hardly be considered local repair if intermediate

nodes upstream from the break forward reinforcement messages all the way back to the

source. On average, the intermediate node must reinforce half the distance between source

and sink. In the worst case, the break would be 1-hop away from the sink and the so-called

“local” repair would be only 1 hop different from global repair. Furthermore, without some

mechanism on the part of the first node downstream from the failure, all the downstream

nodes will perform local repair. The interpolation mechanism proposed to solve this problem

is somewhat nebulous and largely unspecified.

26

3.3 Efficient Flooding

Due largely to its simplicity, blind flooding is prevalent among reactive protocols; how-

ever, because blind flooding often results in duplicate packet delivery, many resources can be

conserved if a more intelligent approach to flooding is utilized. Efficient flooding techniques

use topological information or heuristics to decrease the number of redundant packets trans-

mitted during a flood. There are a variety of approaches to this problem, but we divide

them into the two types proposed in [6]: heuristic-based and topology-based. Heuristic-

based protocols use some sort of rule to determine whether a flooded packet should be

forwarded. The topology-based algorithms make use of connectivity information to deduce

which nodes need to act as packet forwarders and which nodes can drop flooded messages.

We further divide the heuristic-based protocols into four subcategories and the topology-

based protocols into three subcategories. In the following sections we examine each family

of efficient flooding protocols and describe a few of their most important examples.

3.3.1 Heuristic-based

One approach to efficient flooding is to use heuristics to reduce the number of rebroad-

casts. Heuristics based on probabilities, counters, distance, and location have been proposed

[10] [31]. The main advantage of the heuristic approach is its simplicity. The primary dis-

advantage is the challenge of appropriately setting the parameters of the heuristic.

Probabilistic

The probabilistic scheme [10] is similar to flooding, except that nodes rebroadcast

flooded packets according to some pre-determined probability p. Thus, nodes will forward

27

flooded packets with probability p and drop flooded packets with probability 1−p. In blind

flooding, p is always 100%. In sufficiently dense networks, lower forwarding probabilities

may be used without adversely affecting delivery effectiveness. In sparse networks, however,

a greater probability is required for every node to receive the message.

The Fireworks protocol [32] slightly modifies the simple probabilistic scheme just de-

scribed. When nodes receive a flooded packet, they broadcast it to all their neighbors with

probability p and unicast it to c of their N neighbors (c < N) with probability 1− p. This

modification allows for greater delivery effectiveness and finer grained control than the naive

probabilistic scheme.

Counter-based

The counter-based approach [10] is another simple heuristic used to limit the forwarding

of flooded packets. A counter c keeps track of the number of times a redundant broadcast

message is received during some time interval. A counter threshold C is chosen as the

maximum number of times a redundant message will be rebroadcast. Whenever c ≥ C,

the rebroadcast is inhibited. If the threshold has not been exceeded, the packet will be

forwarded. The compelling features of this approach are its simplicity and adaptability

to varying network densities. In dense areas of the network, some nodes will refrain from

rebroadcasting while in sparse regions all nodes may forward the message.

Distance-based

The distance-based scheme uses relative distance between nodes as the criteria for

deciding whether or not to rebroadcast. If two nodes are relatively close to each other, then

the coverage area of another rebroadcast will largely overlap with the original broadcast

28

region, and few new nodes will receive the message. However, if a node receives a message

from a distant node, a rebroadcast will, for the most part, cover a different region (and

therefore should reach a different set of nodes). The obvious disadvantage of this scheme is

the requirement of distance estimation capabilities between each node. Ni et al. [10] claim

that this may be achieved without a Global Positioning System (GPS) by the use of signal

strength.

Location-based

As an improvement on the distance-based scheme, a location-based approach has also

been proposed [10]. In this scheme, exact (i.e. GPS) location is used to compute a precise

calculation of the additional coverage area provided by a rebroadcast. When a node sends

a flooded packet, it adds its own location to the packet header. Upon reception of a flooded

packet, a node calculates the additional coverage obtained by a rebroadcast and rebroadcasts

if this value exceeds a coverage threshold. Otherwise, the packet is dropped. A problem

with this approach is that a circle is typically used to model the communication range. Due

to various environmental phenomena, this simple coverage model is rarely accurate.

Another location-based approach to efficient flooding is regional flooding [33]. In this

scheme, the flooding of route discovery packets in directed diffusion is limited to a region

encompassing both the source and sink. By adding the location of the source and sink

to flooded messages, packets can easily be dropped when they traverse outside the region

defined around the two nodes. For example, two circular regions with radii slightly greater

than the half the distance between the source and sink may be defined around the source

29

and sink as shown in Figure 3.1. This scheme has been implemented in previous research

[33] as a filter using the directed diffusion filter API.

Figure 3.1: Regional Flooding (Region Filter)

Another location-based approach is the Geographic Adaptive Fidelity algorithm (GAF)

[34]. The primary objective of GAF is to identify “equivalent” nodes so that some of them

can be put in an energy-conserving sleep mode. From a routing perspective, nodes are

equivalent when a constant routing fidelity can be maintained with only one representative

node awake. Node equivalence is determined using a virtual grid which overlays the net-

work. The grid is created with dimensions such that nodes in adjacent grids are able to

30

communicate with each other. Since only one node per grid must be awake to maintain

connectivity, nodes in the same grid are equivalent. Thus, all the nodes except one may en-

ter a sleep state. Although not specifically an efficient flooding technique, GAF is designed

to save energy throughout every phase of the routing protocol, not just route discovery.

3.3.2 Topology-based

In contrast to heuristic-based efficient flooding protocols, topology-based algorithms

exploit topological information about the network to identify the best set of forwarding

nodes. Most topology-based schemes use Hello message exchanges to collect topological

information from neighboring nodes. Other algorithms construct a source-tree rooted at the

source node and restrict leave nodes from forwarding flooded messages. A third topology-

based approach involves grouping nodes into clusters in which only one member, the cluster

head, is responsible for forwarding flooded packets to other cluster members.

Neighbor Knowledge-based

The neighbor knowledge-based schemes use 1- or 2-hop neighbor topology information

to build a well-covered mesh of forwarding nodes. Perhaps the simplest neighbor knowledge

method is Flooding with Self Pruning [35]. This protocol requires 1-hop neighbor informa-

tion to be exchanged with periodic Hello packets. Each broadcast packet contains a list

of the sending node’s 1-hop neighbors in the header. If the receiving node cannot reach

any additional nodes by a rebroadcast (i.e., its 1-hop neighbors are a subset of the set of

nodes listed in the received packet), it will refrain from rebroadcasting the packet. More

advanced protocols utilize 2-hop information to achieve greater flooding efficiency. The

Scalable Broadcast Algorithm (SBA) [36] uses 2-hop neighbor information and the identity

31

of the previous hop to determine if any new nodes will be reached by rebroadcasting. This

may easily be determined since 2-hop connectivity is known. Dominant Pruning [35], like

SBA, uses 2-hop neighbor information to make forwarding decisions. Unlike SBA, how-

ever, Dominant Pruning requires forwarding nodes to explicitly choose which of their 1-hop

neighbors will be forwarding nodes. The protocol uses a Greedy Set Cover algorithm to

recursively choose 1-hop neighbors which cover the most 2-hop neighbors until all the 2-hop

neighbors are reached.

Multipoint Relaying (MPR) [37] is similar to Dominant Pruning in that upstream nodes

explicitly notify a subset of their 1-hop neighbors to rebroadcast, but it differs in the way

these forwarding nodes are selected. The only nodes allowed to rebroadcast a packet are

those chosen as Multipoint Relays (MPRs). In turn, MPRs must choose a subset of their

1-hop neighbors as MPRs. The algorithm for choosing MPRs is outlined below:

1. Select all 2-hop neighbors that can only be reached by one 1-hop neighbor.

2. Select the 1-hop neighbor which covers the most 2-hop neighbors.

3. Repeat 2 until all 2-hop neighbors are covered.

MPR has been incorporated into various network protocols to improve flooding effi-

ciency. The Open Link State Routing protocol (OLSR) [38] is a proactive link-state routing

protocol designed for MANETS. By utilizing Multipoint Relays, OLSR is able to minimize

the number of control messages flooded in the network and the size of messages since only

links between a node and its MPR must be reported. As a link-state protocol, OLSR is

capable of computing optimal routes (in terms of hop distance). Its designers claim that

OLSR is appropriate for large and dense networks [38].

32

Simplified Multicast Routing and Forwarding (SMURF) [39] also implements MPR to

help improve flooding performance. SMURF is a modular flooding component designed to

complement any protocol. The MPR protocol is slighted extended to identify a connected

dominating set (CDS) of nodes. A node remains in the flooding backbone (the CDS) if and

only if

1. The node’s ID is less than all its neighbors’ IDs (or)

2. The node is the multipoint relay of its neighbor with the smallest ID.

Another protocol similar to MPR is Span. Span [40] selects a set of coordinating

(forwarding) nodes that covers all 2-hop neighbors but does so in a different fashion. If a

node detects insufficient neighboring coordinator nodes, it will proactively declare itself to be

a coordinator to alleviate the shortage. A node’s aggressiveness in becoming a coordinator

is directly related to the number of neighbors it connects and its current energy level.

Like GAF (Section 3.3.1), Span attempts to construct a forwarding backbone so that other

(redundant) nodes can enter an energy-saving sleep mode.

Source-Tree-based

The source-tree approach involves creating a source tree with the maximal number

of leaf nodes [41] [42]. The Adaptive Link-State Protocol (ALP) [41] is an example of

source-tree based protocols for flooding efficiency. Unlike traditional link-state protocols,

ALP does not require the state of each link to be flooded to the entire network. It uses

a tree structure to disseminate link state information to only those links along paths used

to reach destinations. Another source-tree-based protocol is Topology Broadcast Based on

Reverse-Path Forwarding (TBRPF) [42]. TBRPF is a proactive, link-state routing protocol

33

for mobile ad-hoc networks. A node rebroadcasts a flooded packet only if it is not a leaf

node in the spanning-tree formed by the minimum-hop paths from all nodes to the source

node. Constructing and maintaining the tree requires significant overhead. Nodes update

their tree status with each received packet and also periodically perform blind flooding.

Cluster-based

A third topology-based approach to efficient flooding is to divide the network into

a clustered structure. A representative from each group serves as a cluster head. Nodes

belonging to two or more clusters at the same time are called gateways. Other nodes are

called ordinary nodes. A cluster is defined by the transmission radius of the cluster head.

Efficient flooding is achieved by restricting rebroadcasting to non-ordinary nodes (cluster

heads and gateways).

The general concept of network clustering was first introduced by Ephremides et al. as

the linked cluster algorithm (LCA) [43]. Cluster heads are usually elected using the Lowest

ID algorithm (LID) or the Highest Degree algorithm (HD) [44]. In general, there are two

approaches to clustering: active and passive.

Active In active clustering, clusters are created whether or not data transmissions are

occurring. Typically, non-trivial computation and communication overhead is required to

identify cluster heads and gateways. Each node must broadcast its ID (or degree) for

cluster head election and compare it to the IDs (or degrees) of all of its neighbors. Periodic

packet exchanges are often used to maintain the clustered structure. Communication is

also necessary for gateway selection. To increase flooding efficiency, the number of potential

gateways must be reduced using some gateway selection mechanism. The Flooding Gateway

34

Selection protocol (FGS) [45], for example, selects the best gateways using a greedy set cover

algorithm and then explicitly notifies the forwarding gateways of their status.

Passive Another approach to clustering is to compose groups passively by the use of on-

going data traffic. Passive clustering (PC) is a cluster formation mechanism designed to

increase flooding efficiency in mobile and ad-hoc networks [46] [5]. The protocol reactively

constructs and adaptively maintains a clustered architecture to increase flooding efficiency.

Unlike the active clustering protocols described previously, PC achieves flooding reduction

on the fly, without explicit signaling and cluster setup packets. PC piggybacks cluster status

information on data packets and constructs the cluster structure as a by-product of ongoing

user traffic.

PC uses the piggybacked cluster information to deduce the role of a node as one of

the three states: cluster head, gateway, or ordinary node. Cluster heads broadcast flooded

packets to their neighboring nodes. Gateway nodes forward flooded packets between cluster

heads. Ordinary nodes drop all flooded packets. (Their neighbors have already received

the packet from a cluster head or gateway). By utilizing on-going packets to share cluster

information instead of explicit control messages, PC significantly reduces communication

overhead and the latency of cluster setup [5]. We describe passive clustering more thoroughly

in Section 4.1.

3.4 Route Repair

In this section we summarize several protocols proposed to handle route repair in mobile

ad-hoc and sensor networks. Since our emphasis is on route repair, we describe the portion

35

of the protocol that performs path repair and omit general routing aspects of the protocol

whenever possible.

3.4.1 WAR

Aron and Gupta propose the Witness Aided Routing protocol (WAR) [11] which is

very similar to DSR but incorporates local correction mechanisms to recover from route

failures. One of the primary goals of WAR is to avoid costly end-to-end error recovery with

local repair mechanisms. WAR differs from DSR in two respects: unidirectional routing

and error handling. WAR uses witness hosts to perform promiscuous route maintenance.

Witness hosts are essentially routers that act on behalf of other nodes when they detect

possible packet loss. For example, if host X sends to host Y and is overheard by W1 and

W2 then W1 and W2 are witness hosts. If W1 and W2 do not hear Y forward the packet to

host Z (the next hop), one of them will attempt to deliver the packet to host Z. Secondly,

WAR uses a localized error recovery mechanism to repair broken paths without involving

the source. When a link error occurs, the node upstream from the break broadcasts a copy

of the original message with a recovery flag set. Like many other repair methods, WAR’s

route recovery message is constrained to a hop limited region around the repair initiator.

The hop limit, denoted as the Recovery Depth, is appended to the packet. To successfully

repair the link, route recovery messages must find a path to a downstream node that was

on the original path. Downstream nodes can identify themselves by searching for their

own ID to the route listed in the packet header. Analytical results show that as network

size and route length increase, the performance of end-to-end error recovery mechanisms,

36

degrades rapidly [11]. Hence, the local repair mechanisms of WAR support greater network

scalability.

3.4.2 ADMR

An Adaptive Demand-Driven Multicast Routing (ADMR) protocol [47] is chiefly con-

cerned with delivering packets to a multicast group in an on-demand fashion (instead of

continuously maintaining the multicast group structure). ADMR routes messages through a

tree structure from the source (root) to each group member (leaf or branch). When forward-

ing nodes or receiving members become disconnected from the multicast forwarding tree,

ADMR invokes a local subtree repair algorithm to detect and repair the path. Each node

maintains a disconnection timer for each group based on the inter-packet arrival time. If

no packet is received within this time interval, ADMR assumes disconnection has occurred.

Nodes that detect disconnection initiate local repair by sending a repair notification packet

to nodes below them in the subtree (downstream). After sending a Repair Notification,

nodes wait for repair delay period of time. If a Repair Notification is received within

this time interval, the node will cancel its local repair (since it is further downstream from

the break). No Repair Notification will be received by the node whose parent has failed

so it will identify itself using this procedure and initiate local repair. This node will flood

a hop-limited Reconnect packet in the neighborhood around itself. When nodes along

the original path receive Reconnect packets, they forward them without incrementing

the hop count. Thus, Reconnect packets can travel back to the source along the original

path. If the original path is found by the hop-limited flood, the source will respond with

37

a Reconnect Reply packet which will be unicast back to the repair node along the re-

verse path the reconnect message took. In this way, a path from the source (root) to the

destination around the broken link will be reconstructed.

3.4.3 SWR

A Single path With Repair routing scheme (SWR) is proposed in [48]. This protocol

is motivated by the desire to avoid source-initiated path repair. In SWR, the pivot node,

located immediately upstream from the break, searches for alternate paths around the

broken link. It does so by broadcasting a Help Request (HREQ) to its neighbors. Upon

reception of an HREQ message, nodes use previously stored information about the topology

of the network to create an alternate path around the failed node with Help Response

(HREP) packets. SWR maintains topological knowledge of the network by the use of

cost information transmitted in each data packet. This procedure is recursively repeated

upstream back to the source if the original pivot node is unable to find an alternate path.

3.4.4 SHORT

A framework of Self-Healing and Optimizing Routing Techniques (SHORT) is presented

in [49]. Unlike other repair mechanisms, SHORT attempts to find new routes constantly,

even when connectivity is present. In some sense, it attempts to heal broken links before

they break by constantly searching for better paths. SHORT can be applied on top of

existing mobile ad-hoc routing protocols (e.g. DSR or AODV) to increase performance by

optimizing existing routes when a better local sub-path becomes available. Two algorithms

are described which optimize proactive repair based on path length (Path Aware-SHORT)

or energy level (Energy Aware-SHORT). The primary goal of this approach is to discover

38

short-cut routing paths. Short-cuts result from the mobility of nodes in the ad hoc network.

Although connectivity may still be intact, the shortest path from source to destination may

change after its initial discovery. SHORT continually seeks and takes advantage of such

short-cuts. This is accomplished through the use of a hop count (HC) field on each packet.

Nodes maintain a hop comparison array for each data flow to identify short-cuts. The

addition of SHORT improved the performance of DSR and AODV in terms of both path

optimality and message delivery rate [49].

3.4.5 RDMAR

Relative Distance Micro-discovery Ad Hoc Routing (RDMAR) [50] localizes flooding

of route discovery queries by estimating the relative distance between the source and desti-

nation. This approach to limiting route discovery and repair floods is the distinctive char-

acteristic of RDMAR. By assuming a maximum velocity and average transmission range of

all mobile nodes, RDMAR calculates the maximum number of hops separating two nodes.

RDMAR requires each node to maintain a routing table with information about every other

host in the network. This includes the following fields:

• Default Router - Neighbor indicating the next hop for this destination host.

• Relative Distance - Estimate of the relative distance (in hops) to this destination host.

• Time of Last Update - Time last update was received from this destination host.

• Route Timeout - Time remaining before route is considered invalid.

• Route Active - Flag indicating whether the route is currently active.

39

RDMAR uses the Time of Last Update to compute a time interval of uncertainty

designated as tmotion. Assuming a velocity Micro V elocity and a transmission range

Micro Range, the source and destination nodes can estimate their minimum and maxi-

mum radius of movement during time period tmotion as shown in Figure 3.2. This distance

is divided by the Micro Range to compute the number of hops that should be traversed in

the route discovery flood. RDMAR utilizes the same Micro-Discovery mechanism for route

repair except that it is initiated by an intermediate node instead of the source. Upon detec-

tion of a link failure, an intermediate node will flood route requests to the destination using

relative distance information from its routing table to set the number of hops appropriately.

In this way, route requests will be restricted to the region between the intermediate node

and the destination.

3.4.6 ABR

Associativity-Based Routing (ABR) [51] [52] defines a routing metric called degree of

association stability used to make routing decisions. Association stability is related to the

connection stability of one node with respect to another node over time and space. The

destination examines association stability of potential routes and chooses the one which is

most stable and contains the fewest number of hops. ABR is divided into three phases:

route discovery, route re-construction, and route deletion. The second phase, route re-

construction, deals with route repair in a manner very similar to SWR (Section 3.4.3).

The node immediately upstream from a break broadcasts local (hop-limited) queries that

perform partial route discovery. This process is repeated recursively upstream toward the

source. The backtracking process is discontinued if the node currently performing the repair

40

Figure 3.2: Relative Distance Micro-Discovery

is more than half the distance (in hops) from the destination to the source. In this case,

global route discovery is performed instead of localized repair.

3.4.7 TORA

TORA (Temporally-Ordered Routing Algorithm) [53] is a source-initiated routing pro-

tocol based on the concept of link reversal. Routes are created using a height metric to

establish a Directed Acyclic Graph (DAG) rooted at the destination. Links are assigned a

direction (either upstream or downstream) based on their relative height. In order to create

this structure, nodes need information about their 1-hop neighbors. TORA incorporates

41

a route maintenance mechanism that supports localized route repair. The node immedi-

ately upstream from the link failure generates a new reference level, which is propagated

by neighboring nodes and causes nodes to adjust to the new height. When a node has

no downstream links, it reverses the direction of its links. This link reversal propagates

upstream until a new route to the destination can be found.

3.4.8 AODV-LRQT

Pan et al. [54] present an extension to the local repair mechanism for the Ad-hoc

Distance Vector (AODV) routing protocol called AODV-LRQT. The modified protocol

limits the extent to which the repair mechanism is applied along two network dimensions:

depth and breadth. Both approaches limit the scope and cost of flooding. Decreasing the

depth means limiting the number of times a node can forward a repair route request. This

is similar to the counter-based efficient flooding technique discussed in Section 3.3.1. To

reduce the breadth of repair, route repair packets are given a hop count, or time to live

(TTL), which localizes the scope of potential new paths to some n-hop neighborhood around

the broken link. These mechanisms are implemented using two algorithms: repair quota and

adaptive TTL. Each node has a repair quota (RQ) to control the breadth of repairs. When

the RQ has been met, a node will no longer forward route request packets. Depth reduction

is implemented with an adaptive TTL. The algorithm assumes knowledge of the network

topology and transmission range in order to find a hop count which is half the length of the

longest path in the network. Simulation showed that, in AODV, constraining the breadth

(repair quota) of route request floods provided a greater performance improvement than

constraining the depth (adaptive TTL) [54].

42

3.4.9 PATCH

Proximity Approach To Connection Healing (PATCH) [55] is another local recovery

mechanism proposed for DSR. It aims to reduce the control overhead and achieve fast,

localized recovery. When an intermediate node detects a broken link, it floods a local

recovery request in the two-hop region around itself, looking for downstream nodes on the

path (i.e. those closer to the destination). It does so by including in its header a list of all

the nodes between the intermediate node and the destination. If one of the nodes included

in the header receives the local recovery request, it sends a local recovery reply to the source

so that the new route will be used in future communication. If no route is found within

some recovery interval, the source will initiate the end-to-end error recovery process.

3.5 Real-Time Communication

3.5.1 RAP

RAP is a real-time communication architecture for large scale wireless sensor networks

proposed in [56]. The goal of RAP is to provide a scalable and lightweight communication

service that maximizes the number of packets meeting end-to-end deadlines. The network

stack for the RAP protocol suite is shown in Figure 3.3.

On the top layer, a query-event service allows application developers to easily monitor

events and submit queries to the sensor network. Queries are registered beforehand and

triggered when an event occurs. When an event that matches the attributes of interest

occurs in the geographic area of interest, a message stamped with the timing constraint is

sent to the base station at the registered location. Queries are written and registered using

the following API:

43

Figure 3.3: RAP Communication Architecture

• query(attributes, area, timing constraints, base station location)

– attributes - Attributes of interest.

– area - Geographic area of interest.

– timing constraints - Timing constraints for event, i.e., end-to-end deadline.

– base station location - Location of base station which will receive event data.

• register event(event, area, query)

– event - Name of event.

– area - Geographic area of interest.

– query - Query associated with event.

The Location-Addressed Protocol is a transport layer similar to UDP except that it uses

location information instead of IP addresses for identifying hosts. Routing is handled by

44

Geographic Forwarding (GF), a simple but robust network protocol which forwards packets

based on location information. GF greedily forwards packets to the neighbor closest to the

packet’s destination. GPSR is used to route packets around the perimeter of a void region.

The heart of RAP is Velocity Monotonic Scheduling (VMS), the layer that provides

support for real-time communication. VMS is the packet scheduling policy that determines

the order in which incoming packets are forwarded. Typically, ad hoc networks forward

packets in FCFS order but this policy performs poorly in networks where data flows have

different end-to-end deadlines. In contrast, RAP prioritizes packets based on their “local

urgency.” VMS considers both the temporal deadline and the geographic distance when

scheduling packets. Thus, VMS is both deadline-aware and distance-aware. This means

that packets with shorter deadlines and packets with longer distances to the destination will

have higher priorities. VMS defines the velocity of a packet as the quotient of the distance

to the destination and the time deadline. By assigning priorities based on the velocity, VMS

is able to accurately quantify the “urgency” of a packet and thereby meet more deadlines.

Two priority assignment policies are defined in VMS: static velocity monotonic (SVM) and

dynamic velocity monotonic (DVM). SVM calculates a fixed velocity once at the source

before the packet is transmitted. SVM computes the velocity using Equation 3.1 where

psrc = (xsrc, ysrc) and pdst = (xdst, ydst) are the locations of the source and destination

respectively, ‖·‖ is the distance between two points, and Tdeadline is the end-to-end deadline.

V =
‖psrc − pdst‖
Tdeadline

(3.1)

DVM re-computes the velocity at each intermediate hop using Equation 3.2. Note

that Ti represents the time elapsed for the packet to reach intermediate hop i. Initially,

45

Ti = T0 = 0 and pi = psrc at the source node. By updating the priority at each node, a

packet that is progressing more slowly than its velocity may dynamically increase its priority.

Likewise, a packet traveling more quickly than its requested velocity may be slowed down

to give way to more urgent packets.

V =
‖pi − pdst‖
Tdeadline − Ti

(3.2)

To implement VMS, the network must use a prioritized queue. RAP prioritizes at two

levels to maximize performance. Prioritization based on the velocity is performed at the

network layer and at the MAC layer. The network layer places packets in a queue ordered by

velocity (higher velocity first). Additionally, RAP extends the IEEE 802.11 MAC protocol

to adapt the wait time (DIFS) and backoff window (CW) based on the priority of the packet.

RAP has been shown to significantly reduce the deadline miss ratio when compared

to traditional FCFS mechanisms. When compared to DSR over standard IEEE 802.11,

RAP reduced deadline miss ratio from 90.0% to 17.9% [56]. Despite its simplicity, RAP

significantly increases the real-time performance.

3.5.2 SPEED

SPEED [57] is another real-time protocol for sensor networks. SPEED employs feed-

back control and stateless algorithms to support soft real-time communication. The proto-

col’s design also emphasizes load balancing, localized behavior, and minimized dependence

on the MAC layer. Like RAP, SPEED uses a location-based routing protocol to forward

packets. The organization of the SPEED protocol suite is illustrated in Figure 3.4.

46

Figure 3.4: SPEED Architecture

At the top layer, SPEED provides an API that supports three types of communication

modes: unicast, area-multicast, and area-anycast. While unicast follows the familiar 1-1

communication model, multicast and anycast are somewhat unconventional modes based

on geographic constraints. Area-multicast delivers a packet to each node in a circular region

defined by a center position and radius. Area-anycast is designed for applications in which

it is sufficient for one node in some area to respond for that region. Like other geographic

routing protocols, every node in SPEED participates in a periodic beacon exchange with

its neighbors to share location information. Two on-demand beacons, a delay estimate

beacon and a backpressure beacon, are also employed by the protocol. By timestamping

each data packet and ACK, the single hop delay to each neighbor can be calculated. Instead

of using queue size to gauge congestion, SPEED uses this single hop delay as a metric to

approximate load in the network.

Routing in SPEED is handled by Stateless Non-deterministic Geographic Forwarding

(SNGF), a modified version of simple Geographic Forwarding (GF). SNGF defines the

forwarding candidate set, FSi, of node i as the set of neighbors of node i that are closer to

the destination. Relay Speed, Speed, is computed by dividing the gain in distance to node

47

j by the estimated time delay to node j. Formally,

Speedj
i =
‖ ~pdest − ~pi‖ − ‖ ~pdest − ~pj‖

HopDelayj
i

(3.3)

where pdest is the location of the destination, pi is the location of node i, ‖·‖ is the distance

between two points, and HopDelayj
i is the estimated delay from node i to node j. Packets

are forwarded to nodes in FSi based on their relay speed. The node with the maximum

relay speed is chosen as the next hop if the relay speed is greater than some Ssetpoint, a

system parameter. Otherwise, the packet is probabilistically forwarded to the neighbor with

the highest relay speed. If the packet is not forwarded, backpressure rerouting is initiated.

This algorithm works with the neighborhood feedback loop (NFL) to adapt the network

layer to congestion. When congestion is detected by NFL, backpressure beacons will be sent

upstream to find routes around the congested area. SPEED uses this same mechanism to

discover routes around network voids. Although SPEED is somewhat more complex than

RAP, it provides several advanced real-time and congestion-avoidance features not offered

by RAP. In some sense, SPEED is a heavyweight approach to real-time communication

while RAP is more a lightweight protocol.

3.5.3 Other Protocols

MMSPEED [58] is an extension of SPEED which provides support for different levels

of timeliness and reliability. Timeliness is achieved using the required delivery speed algo-

rithm defined in SPEED and reliability is maintained by probabilistic multipath forwarding.

DEED, a soft real-time communication protocol for sensor networks, considers both energy

48

and end-to-end delay [59]. To do so, DEED builds a dynamic delay-constrained minimum-

energy dissemination tree. Like RAP and SPEED, it also assumes location information for

each node. A Real-Time Power-Aware Routing protocol (RPAR) is proposed in [60]. It

makes routing decisions based on real-time performance and energy efficiency. RPAR as-

sumes each nodes knows its location and is capable of dynamically adjusting its transmission

power.

49

Chapter 4

Network Services Architecture

Directed diffusion serves as the baseline network protocol for our S&R system. We

have developed three improvements for diffusion to lessen its weaknesses and enhance its

strengths. We first describe in detail passive clustering for directed diffusion (PCDD). Next,

we explain a route repair mechanism for directed diffusion which emphasizes localization of

repair (LRDD). Thirdly, we outline the architecture of a real-time communication protocol

for directed diffusion (RTDD) which improves the on-time delivery performance of diffusion.

The network services improve efficiency, robustness, and timeliness of delivery for directed

diffusion. More generally, the purpose of the enhanced communication services is to enable

developers to easily utilize the power of the distributed sensor environment without its

inherent complexities. The improved network communication mechanisms allow the system

to function in challenging environments, which may have previously hindered functionality.

PCDD reduces congestion resulting from network flooding. Flooding reduction is especially

relevant in the context of energy efficiency and network latency. LRDD is crucial for reliable

operation of the system in the face of node failures. It provides an efficient method of

route healing to cope with node failure. Also critical to the performance of the system

is timely response to detected events. To this end, RTDD performs packet prioritization

and, thereby, reduces the number of packets that miss deadlines. RTDD is similar to

RAP [56], but has been adapted to the two-phase pull model of directed diffusion. It has

also been extended to support location-unaware networks. The distributed services, the

lookup service, composition service, and adaptation service, may also be used in the S&R

50

architecture for greater system usability and reliability. Figure 4.1 shows a layered overview

of the S&R architecture.

Figure 4.1: Layered Architecture

Note that the distributed services reside above the proposed network services. The

distributed services can take advantage of the lower level services provided by the network

services (i.e., efficient flooding, route repair, and real-time communication). A more detailed

illustration of the architecture of the system is shown in Figure 4.2. This diagram shows

the interactions among the distributed services and among the network services. Also

illustrated is the abstraction of the underlying routing protocol. Although applications

and distributed services see diffusion as the routing entity, in actuality the diffusion core,

gradient, and all three network services are working to deliver packets. Thus, the network

services transparently benefit applications.

51

Figure 4.2: Detailed Architecture

52

4.1 Clustering Mechanism (PCDD)

As a result of the high cost of flooding and diffusion’s strong reliance on it, we chose

to implement a clustering mechanism for efficient flooding. We selected passive clustering

(PC) for this purpose because its design objectives are very compatible with diffusion. In

this section, we give an overview of passive clustering and describe the detailed workings

of the protocol. Finally, we describe the minor modifications necessary to adapt passive

clustering to diffusion, i.e., to create PCDD.

4.1.1 Passive Clustering Overview

The distinctive characteristic of passive clustering is its use of on-going data traffic to

initiate cluster formation and communicate cluster-related information among the nodes.

Using promiscuous packet reception, nodes gather cluster status information about all their

1-hop neighbors and adjust their own cluster state accordingly. Passive clustering creates

clusters by assigning one of three states to a node. Nodes may be cluster head (CH),

gateway (GW) or ordinary nodes (OR). CHs serve as leader nodes for their clusters and

forward flooded packets to each member of the cluster. GWs connect two or more CHs

together, thus serving as cluster relays. ORs receive flooded packets from CHs but do not

forward the packet to their neighbors. Passive clustering results in a clustered structure

similar to the topology shown in Figure 4.3. The circles represent cluster boundaries.

Corresponding to the three node states, PC defines three fundamental rules for oper-

ation: first cluster head declaration wins, gateway selection heuristic, and ordinary nodes

drop flooded packets.

53

Figure 4.3: Example PC Topology

First Declaration Wins

Perhaps the most distinctive PC rule is its cluster head election rule. PC selects cluster

heads by allowing the first node that declares itself CH to become CH. This is known as the

first declaration wins rule. If a node has not heard from another CH, it claims itself to be

CH and rules the rest of the nodes in its radio range. The first declaration wins rule provides

several advantageous properties. Unlike many conventional clustering schemes, PC requires

no waiting period or neighbor checking requirement to elect a CH. A node becomes CH as

soon as it declares itself to be CH. The first declaration wins approach is also less likely

to result in chain re-clustering [46]. In traditional clustering protocols, when two cluster

heads move within transmission range of each other, one of them must defer to the other.

This can trigger cluster head changes that propagate throughout the network [61]. The

first declaration wins rule reduces this effect. Thirdly, PC creates a clustering that more

54

closely resembles the data flow in the network. By creating cluster heads based on traffic,

PC achieves a better correlation between traffic flow and resulting clustered topology.

Gateway Selection Heuristic

If too many nodes become gateways, the flooding efficiency decreases since such a

large number of nodes forward flooded data. If too few nodes become gateways, network

connectivity may be adversely affected. The goal is to choose a sufficient number of gateways

to preserve connectivity, but very few more. To make this trade-off dynamically, PC defines

a gateway selection heuristic. The gateway selection heuristic limits the number of nodes

that become gateways without breaking the passive nature of PC. A node becomes a gateway

according to the number of cluster heads and gateways it has overheard. Whenever a non-

cluster head node hears a packet from a cluster head or gateway, the node becomes a

gateway if Equation 4.1 is true. Otherwise, the node will become an ordinary node.

α · num(GW) + β > num(CH) (4.1)

Note that in Equation 4.1, num(GW) is the number of neighbors known to be gateways,

num(CH) is the number of neighbors known to be cluster heads, and α and β are tunable

parameters (α, β ≥ 0). The values of α andβ should be chosen based on factors such as

channel quality, noise level, and traffic patterns [5]. They may be locally adjusted to provide

better adaptability and flexibility. This gateway selection procedure is fully distributed and

requires only local information. It relies on overheard packets instead of active packet

exchanges (e.g. cluster head-list exchanges). The disadvantage of this approach is that

55

network connectivity may be affected for wrong values of the parameters. If the parameters

are too aggressive in reducing the number of gateways, the topology may be partitioned.

Ordinary Nodes Drop Flooded Packets

The behavior of ordinary nodes lies at the heart of flooding reduction. A node that is

neither a cluster head nor a gateway becomes an ordinary node. When a node identifies itself

as an ordinary node, it no longer forwards flooded packets. All flooded packets received

by an ordinary node can safely be dropped because neighboring nodes will have already

received the packet (either from a CH or a GW). Hence, flooding efficiency is dependent

on the number of ordinary nodes that can be found. In a sufficiently dense network, a

relatively large number of ordinary nodes should be found.

4.1.2 Protocol Details

PC defines seven clustering states for nodes: two internal states and five external

states. Internal states are entered when a packet is received and serve as a tentative role

for the node while the packet is being processed. The two internal states are Gateway-

Ready (GW READY) and Cluster Head-Ready (CH READY). Nodes enter external states

when a packet is sent. These are externally visible states which are communicated to

neighboring nodes and used in making adjustments of node state. The external states are

Initial (IN), Cluster Head (CH), Full Gateway (FULL GW), Ordinary Node (OR), and

Distributed Gateway (DIST GW).

56

Initial

On startup, nodes enter the Initial state. A node in Initial state does not belong to any

cluster. Nodes move from the Initial state to one of the two internal states when a packet

is received. PC maintains soft-state clusters using an implicit timeout scheme. If a node

does not receives any packets within time interval tclustertimeout, it reverts back to Initial

state. Upon future reception of packets, the node will restart the clustering algorithm.

Cluster Head-Ready

Cluster Head-Ready is the internal state of potential cluster heads. A node in Initial

state changes its state to CH READY only when it has received a packet from a non-CH

node. Simultaneous cluster head can sometimes occur due to topology changes and packet

delay. To resolve these conflicts, PC uses a Lowest ID algorithm to select the node with the

lowest ID to serve as cluster head. If a cluster head receives a packet from another cluster

head with a lower ID, it gives up its role and enters the Gateway-Ready state. The node

which loses the LID completion sends a CH Give-Up message to its neighbors informing

them of the change in status.

Gateway-Ready

The Gateway-Ready state is the internal state of potential gateways (both full and

distributed). A node enters GW READY state when it receives a packet from a CH. A

GW READY node will become a gateway or an ordinary node depending on the gateway

selection heuristic. A node will change from gateway-ready to FULL GW or DIST GW if

an insufficient number of its neighbors are already gateways.

57

Cluster Head

The Cluster Head state is the external state of cluster heads. A node enters the CH

state from the CH READY state if it wins the Lowest ID competition or if it has not

overheard any other cluster heads.

Full Gateway

Nodes in the state Full Gateway directly connect two cluster heads. A full gateway

is thus a member of two clusters. Full gateways announce the IDs of the two CHs that

they connect. A node that is reachable from two CHs may declare its role as FULL GW

only if it has not heard from another FULL GW node announcing the same pair of IDs.

In this way, gateways also follow the first declaration wins rule. If two nodes concurrently

declare themselves as FULL GW for the same pair of CHs, the node with the lowest ID

will win and the loser will become an ordinary node. Full gateways are in the external state

FULL GW. Figure 4.4 illustrates a full gateway.

Figure 4.4: Full Gateway

Distributed Gateway

A node that is in the Distributed Gateway state connects two clusters, but is not

directly connected to one of the cluster heads. A distributed gateway is composed of two

nodes working together to serve as a gateway between two clusters. This allows cluster

58

heads that are two hops apart to be connected. Figure 4.5 illustrates a distributed gateway.

Notice both the full and distributed gateways in the example topology in Figure 4.3.

Figure 4.5: Distributed Gateway

Ordinary Node

Ordinary nodes are nodes that do not forward packets. A node enters the OR state

from the GW READY state based on the gateway selection heuristic. A node changes from

GW READY to OR if enough of its neighbors are gateways as determined by the gateway

selection heuristic. When a node can hear from more than two CHs and every pair of

announced CHs is connected by a FULL GW it will become an OR.

Incoming Packet Processing

The transition state diagram shown in Figure 4.6 summarizes the passive clustering

algorithm. When a packet is received at a node, the state of the node will be changed to

one of the two internal states: CH READY or GW READY. An Initial node will change its

state to CH READY if the packet is from a non-CH (1). If the packet is from a gateway or

an initial node, the node will enter the GW READY state (5). CHs revert to CH READY

(3) and GWs (9) and ORs (8) revert to GW READY upon each incoming packet. The

receiving node always updates its neighbor lists based on the state of the sending node

which is contained in the message. By stepping back to the GW READY state (8, 9, and

11), nodes can adjust their state dynamically. For example, if the number of gateways

59

has changed, an ordinary node may promote itself to gateway. When the soft-state of

PC expires, nodes in each state revert back to Initial (12, 13, 14, and 15). As a result,

new clusters may be composed in response to subsequent packet flooding. This potential

for re-structuring is beneficial for sensor networks since cluster head responsibilities will

be handled by different nodes throughout the life of the system, thus distributing energy

consumption.

Figure 4.6: PC Transition State Diagram

Outgoing Packet Processing

When a packet is ready to be sent, the node changes its PC state from an internal

state to one of the five external states. If it has not heard from any other CHs, a candidate

60

CH (CH READY) will change its state to CH (2) when it has packets to send. Otherwise

it will change to GW READY. Nodes in the GW READY state will become FULL GW,

DIST GW, or OR. If the number of known CHs is greater than one and there is no gateway

connecting any two CHs, the node becomes a FULL GW (7). If a DIST GW has announced

another cluster not known by the current node and no FULL GW connects them, then the

node becomes a DIST GW (10). Otherwise, it becomes OR (6). If the number of known

CHs equals one, then the node becomes either a DIST GW or an OR. If a node hears a

DIST GW announce a CH other than its CH or if there is no DIST GW in the cluster, it

will become a DIST GW (10). Otherwise, the node will become an ordinary node (6).

4.1.3 Adaptation to Diffusion

PC state information must be appended to all flooded packets. To apply PC on a

diffusion network, the state information is added to interests and exploratory data. Recall

that diffusion creates gradients and periodically refreshes them. After this initial setup

phase, flooding is no longer necessary since data flows over reinforced paths. Since PC

piggybacks cluster status information only on flooded packets, PC creates the clustered

structure during the initial setup phase of the gradient cycle. For the remainder of the

cycle, no PC state information is transmitted, so PC is essentially inactive. PC is only

active during period gradient refresh when diffusion floods the network with interests and

exploratory data.

Since PC affects the route setup, it is possible for suboptimal routes to be discovered.

The structured topology created by PC may exclude the optimal route between source and

sink. This end-to-end route from source to sink will only include nodes identified to be

61

cluster heads and gateways – no ordinary nodes will be on this path. This potential for

suboptimal routes is one of the inherent trade offs of PC as compared to global flooding.

PC will improve flooding efficiency but may result in slightly longer routes.

4.2 Repair Mechanism (LRDD)

To deal with the shortcomings in diffusion’s ability to adapt to failure and mobility,

we have developed a mechanism to efficiently handle route repair. We call our local repair

protocol for directed diffusion LRDD. Our solution emphasizes truly localized repair in

order to reduce latency and energy expenditure. Its basic structure is similar to the local

repair algorithm used in ADMR [47], but its methods noticeably differ from ADMR since it

is tailored to directed diffusion. We divide the local repair problem into three phases: break

detection, break localization, and localized gradient repair. We will describe how LRDD

handles each of these phases in this section.

4.2.1 Break Detection

The first step in adapting to node failure or mobility is detecting the link breakage.

This may be accomplished in a variety of ways. We assume that appropriate algorithms

may be used to reliably detect a link breakage. Our focus is on handling the break after it

is detected not adaptively detecting path breakage. For our experiments, we used a fixed

event rate known a priori to detect breaks. We identified a link as broken when no data

was received from a flow after an entire event interval had elapsed.

62

4.2.2 Break Localization

Once a break has been detected, the break localization phase begins. The goal of

this phase is to identify the node immediately downstream from the broken path. This

node will initiate the localized gradient repair algorithm described in the next section. All

intermediate nodes that detect a break will send a repair notification message to their 1-hop

downstream neighbors along the gradients for the missing data. Every intermediate node

downstream from the break should send a repair notification, and every intermediate node

except the one nearest to the break should also receive a repair notification. If a node does

not receive a repair notification within trepair seconds after sending one, it must be the

nearest node, so it initiates the localized gradient repair.

4.2.3 Localized Gradient Repair

The heart of LRDD is the localized gradient repair phase. The goal of this phase

is to find and create new gradients in the area near the break by using the same basic

mechanisms as global gradient repair. We first describe several potential mechanisms for

restricting flooding to a localized region and then explain the inner workings of the repair

process itself. Figure 4.7 illustrates the break localization and localized gradient repair

phases of the algorithm.

Local Flooding

In order to restrict the flooding required to find new paths, we limit the packet for-

warding in one of several ways. Possible methods include simple hop-limited flooding or

63

Figure 4.7: Local Repair for Directed Diffusion

limiting the reconnect packets to the 1-hop neighbors of the failed node. The most com-

mon approach to localized flooding among repair protocols is hop-limited flooding. In this

approach, a hop count (or time to live) field is incremented on each hop. When the hop

count exceeds a threshold value, the flooded packets are dropped. Another straightforward

approach is to limit the flooding to 1-hop neighbors of the failed node. This can be easily

implemented by including the ID of the failed node on the repair packets and restricting

flooding to nodes who have overheard packets from that failed node. A third and more

sophisticated strategy is to limit flooding to nodes in the one or two clusters around the

failed node.

Reconnect Interests

The first step in localized gradient repair is the local flooding of reconnect interest mes-

sages. These interest messages for the broken data flow are essentially searching for nodes

64

upstream from the break which are still receiving data. Reconnect interests are only trans-

mitted in a limited neighborhood (as defined by the localized flooding algorithm) around

the node nearest to the break (identified during the localization phase). This originator

node acts like the sink in global gradient repair. For this reason, we label it the proxy

sink in local gradient repair. Nodes outside the area determined by the local flooding al-

gorithm will drop reconnect interests, enforcing the region boundaries. Reconnect interests

are flooded in the region near the break in search of upstream nodes still connected to the

dataflow.

Reconnect Exploratory Data

In response to reconnect interests, upstream nodes on the data path that are still re-

ceiving data transmit reconnect exploratory data messages to neighbors that send reconnect

interests. Reconnect exploratory data is exploratory data that is sent back to the proxy

sink. In order to perform the most localized repair, the node directly upstream from the

break should be found. This node will act like the source in global gradient repair, so we call

it the proxy source in local gradient repair. To achieve this behavior, reconnect exploratory

data messages are only sent from nodes that have not overheard reconnect exploratory data.

Thus, the first node to send reconnect exploratory data will become the proxy source. In

summary, only nodes along the original path can send reconnect exploratory data. The

node nearest upstream to the break should be identified as the proxy source since it should

be the first node along the existing path to receive reconnect interests. LRDD will still

function if another node further upstream from the break is identified as the proxy source.

65

The proxy source will send reconnect exploratory data back to the interest initiator (the

proxy sink).

Reconnect Reinforcement

In global gradient repair, the sink reinforces the fastest path over which the exploratory

data is received. Correspondingly, in the case of local repair, the proxy sink sends reconnect

reinforcement messages to the first neighbor that delivers a reconnect exploratory data. In

turn, this neighbor node will reinforce its fastest neighbor all the way back to the proxy

source. While this path is probably not optimal, it serves as a temporary fix until the next

global gradient refresh. Since the search for the new path was restricted to a relatively

small region, it is almost identical to the original optimal path found by diffusion except for

a few hops where the repair was performed. As a result, the repaired path should provide

a reasonably low-latency route from source to sink.

4.3 Real-Time Communication Mechanism (RTDD)

To support timely communication, we have developed a real-time communication ser-

vice for directed diffusion similar to RAP [56]. Recall from Section 3.5.1 that the RAP

architecture defines a five-layer network stack. Many of the layers in the RAP network

stack are handled natively by diffusion. The top layer of RAP, a query-event service that

allows events to be registered and triggered, is inherently provided by the data-centric,

publish-subscribe nature of diffusion. Diffusion operates without a transport layer, so RAP’s

Location-Addressed Protocol is unnecessary in diffusion. Diffusion also handles the respon-

sibilities assigned to Geographic Forwarding in RAP since diffusion routing is based on

66

attribute vectors. Although routes in diffusion are more costly to establish due to global

flooding, no location information is required. RAP, in contrast, requires each node to know

its own location requiring costly GPS hardware on every node. The core component of RAP

is Velocity Monotonic Scheduling (VMS), the distance-aware and deadline-aware scheduling

policy. VMS prioritizes messages by computing a velocity based on the packet’s distance

to its destination and its temporal deadlines. Although packets are prioritized at the MAC

and network levels in RAP, our implementation only performs prioritization at the network

layer. While this may decrease the ability of RTDD to prioritize packets, it provides a clean

separation of layers (i.e., RTDD, a network-layer protocol does not require changes in the

MAC layer).

The two-phase pull model of directed diffusion may be easily extended to support real-

time data flows. The primary additions to diffusion required for RTDD are a prioritized

queue and a scheduling policy. We have developed both static and dynamic scheduling

policies for RTDD equivalent to SVM and DVM in RAP. In addition, we have extended the

protocol to compute priority without requiring each node to possess location information.

We call these protocols Static Absolute Time (SAT) and Dynamic Absolute Time (DAT)

since they are based on absolute time. We have also developed protocols based on relative

time differences: Static Relative Time (SRT) and Dynamic Relative Time (DRT). The

advantage of using relative time is a decreased dependence on global time synchronization.

RTDD can use any of the six algorithms for computing priority: SVM, DVM, SAT, DAT,

SRT, or DRT. If location information is known by each node, SVM or DVM may be used

to prioritize packets. Otherwise, one of the time-based protocols will be utilized.

67

4.3.1 SVM and DVM

To provide support for deadlines, RTDD simply adds a few new attributes to a data

flow. Before interests are flooded from the sink node, the location of the sink is added to

the packet as a new attribute/value tuple. Exploratory data then flows back to the sink

from the source. Next, reinforcements are sent along the fastest path between sink and

source. As the data is published at the source, RTDD computes the priority of the packet

based on the deadline (supplied by the application) and the location of the sink (supplied

by the interest packet). The priority is computed as the distance between the source and

sink divided by the deadline (Equation 4.2).

V =
‖psrc − pdst‖
Tdeadline

(4.2)

For DVM, this value is updated at each intermediate hop based on the current progress of

the packet (Equation 4.3).

V =
‖pi − pdst‖
Tdeadline − Ti

(4.3)

To enable this dynamic calculation, the source must timestamp the data packets before they

are transmitted. This allows the intermediate nodes to compute the time expired since the

packet was sent (Ti in Equation 4.3). Packets are then queued in priority order at each

hop and retransmitted in prioritized order. Note that DVM requires intermediate nodes

to know their location so that the updated priority may be computed. Also notice that

DVM assumes global time synchronization in order to compute time differences at each

intermediate node.

68

4.3.2 SAT and DAT

If location information is not available, a time-based approach is used to estimate

the distance from source to sink. Instead of appending location information to interest

messages, nodes add timestamps to the packets. Since diffusion creates routes using a two-

phase packet exchange, the time delay between source and sink can be estimated without

introducing significant overhead. When reinforcement messages are received at the source,

the time delay between the source sending the exploratory data and the sink sending the

reinforcement message is computed. We assume this time difference is proportional to the

distance from source to sink. Note that this approach also assumes time synchronization

among the nodes. Several time synchronization protocols for sensor networks have been

proposed [62] [63] [64] [65], so this requirement is not infeasible. Like the location-based

protocols, two versions of the absolute-time-based algorithm are also defined. The priority

may be calculated statically at the source (SAT) or dynamically at each hop (DAT) based

on absolute time. In the former case, the priority is computed according to Equation 4.4.

P =
tsink − tsource

Tdeadline
(4.4)

In this equation, tsource is the time the exploratory data packet was sent from the source,

tsink is the time the reinforcement message was sent from the sink, and Tdeadline is the

deadline of the data flow (in units of time, not a timestamp). The time-based protocols

compute a priority value that is a ratio of times.

In the dynamic case, the priority of a packet is re-calculated at each hop. If the source

timestamps exploratory data messages and the sink timestamps reinforcement messages,

69

then each node along the reinforced path can calculate the time delay from itself to the sink.

Each node along the data path must cache the delay between the most recent exploratory

data and the reinforcement message in order to support distance awareness. Data messages

must also be timestamped by the source so that intermediate nodes can calculate elapsed

time for a given packet. The elapsed time is subtracted from the deadline to gauge the

deadline urgency of the message. DAT calculates this priority value using Equation 4.5.

P =
tsink − ti

Tdeadline − Telapsed,i
(4.5)

In this case, ti represents the time the exploratory data packet was sent from the

intermediate node i, tsink is the time the reinforcement message was sent from the sink,

Tdeadline is the deadline of the data flow, and Telapsed,i is the time elapsed in sending the

data packet to hop i. Elapsed time, Telapsed,i, is computed as Telapsed,i = tnow − tdata where

tnow is the current time and tdata is the time the data packet was sent from the source.

To simplify the protocol, we estimate the delay between intermediate node and sink (the

numerator of Equation 4.5) as the total end-to-end delay minus the elapsed time, or more

formally, tsink − ti ≈ tsink − tsource − Telapsed,i. Thus, Equation 4.5 becomes

P =
tsink − tsource − Telapsed,i

Tdeadline − Telapsed,i
(4.6)

4.3.3 SRT and DRT

As an improvement upon SAT/DAT, we have also developed variants of RTDD which

compute priorities based on relative time differences. The static and dynamic versions of

the relative time difference protocols are SRT and DRT. The primary advantage of using

70

relative time is the reduced dependency on time synchronization. SRT and DRT use the

round trip time as a measure of path length (as opposed to end-to-end delay in SAT/DAT).

In SRT, the source stores timestamps when it sends exploratory data and when it receives

the reinforcement message. Since both time measurements are taken at the source, global

time synchronization is not be necessary. Similar to SAT, the priority of packets in SRT is

computed statically at the source as the quotient of the round-trip delay and the deadline

as shown in Equation 4.7.

P =
treinforcement, source − texp. data, source

Tdeadline
(4.7)

DRT computes the priority dynamically at each hop based on the round-trip time and

the elapsed time. At hop i, the priority is computed according to Equation 4.8

P =
(treinforcement, source − texp. data, source)− Telapsed,i

Tdeadline − Telapsed,i
(4.8)

Note that in Equations 4.7 and 4.8, treinforcement, source−texp. data, source represents the

time between when the source sends exploratory data and when it receives a reinforcement,

i.e., the round trip time. Again, also note that all the dynamic versions of RTDD (DVM,

DAT, and DRT) require time synchronization in order to calculate the elapsed time.

The time-based protocols significantly enhance the applicability of RTDD for various

network environments. The time-based techniques achieve the same goal, packet priori-

tization based on both distance and deadline, but do so without the strong localization

requirement of SVM and DVM. The numerators in Equations 4.4 - 4.8 correlate to distance

71

awareness, and the denominators encapsulate deadline awareness. Although our location-

free design requires more communication overhead than the location-based algorithms, the

communication is essentially free since the timestamp information is piggybacked on the

packets involved in diffusion’s two-phase path discovery protocol. No additional packets

are required, only a slightly increased packet size. This trade-off may be advantageous for

applications where location information is not available but time synchronization is possible.

72

Chapter 5

Network Services Design

5.1 Design Principles

In designing the network services, we were guided by several principles. Our primary

design goals were energy-efficiency, scalability, localization, distributability, real-time com-

munication, and reactivity. Notice that our design principles are strongly correlated to the

strengths of directed diffusion. In this section, we describe each of these design goals and

explain their implications on our design decisions.

5.1.1 Energy-efficient

Power consumption is of paramount importance in sensor networks since devices usually

cannot easily be recharged. Consequently, our design incorporates several features that

promote energy-efficiency. The primary purpose of PCDD and the local flooding involved

in LRDD is to save energy by minimizing communication. Communication is the primary

energy expense in sensor networks, so reduced transmissions equate to saved energy. The

energy required to transmit one bit is several orders of magnitude larger than the energy

needed to perform one operation. According to [66] one ground to ground transmission of

1 kb over 100 m expends as much energy as processing 300 million instructions. Hence,

reducing unnecessary communication is essential for sensor networks. PCDD accomplishes

this by reducing the number of messages involved in route creation. LRDD reduces the

number of messages required for route maintenance. The design of RTDD also emphasizes

energy-efficiency in that no new communication overhead is required. Data for setting up

73

the real-time protocol is piggybacked on top of the standard two-way message exchange

used by diffusion for route discovery/refresh. Thus, all three network services work toward

the goal of energy-efficiency.

5.1.2 Scalable

Another general goal of our system and all sensor networks is scalability. Protocols

should scale up to networks with large numbers of nodes. The reliance of standard directed

diffusion on global flooding greatly limits the scalability of the protocol since flooding is so

costly for large networks. PCDD and LRDD both address the goal of scalability by reducing

unnecessary transmissions. As the network size increases, these unneeded communications

lead to network congestion. In sufficiently large networks, flooding-induced congestion can

completely cripple the network. Hence, efficient flooding is vital to the robust operation

of large-scale networks. The flooding reduction mechanisms incorporated into PCDD and

LRDD support the goal of scalability.

5.1.3 Localized

Localized protocols maintain information about one-hop neighbors. This significantly

reduces the amount of state information that must be stored and hence, improves the scal-

ability and simplicity of the algorithm. By decreasing the complexity of an algorithm, the

principle of localization simplifies the design and implementation. One of the best proper-

ties of directed diffusion is its completely localized nature. Since our network services are

deeply integrated into diffusion, they by design complement its localized aspects. Specifi-

cally, PCDD exhibits this localized nature in that nodes choose their state based only upon

the states of their one-hop neighbors; two-hop neighbor information is not required. This

74

avoids the continual exchange of Hello messages, greatly reducing the communication

overhead of PCDD compared to other efficient flooding algorithms. LRDD also supports

the goal of localized interactions by localizing its repair work to the area immediately sur-

rounding the failed node. Thus, the advantages of localized interactions are preserved by

our algorithms.

5.1.4 Distributed

The distributed nature of sensor networks is one of their most challenging and powerful

characteristics. The goal is to fully distribute algorithms over all the nodes in the network, in

contrast to typical algorithms which utilize the client/server model. Our protocols address

this challenge by distributing tasks among all the nodes. This is particularly evident in

PCDD where the clustered structure is created dynamically according to the first declaration

wins rule. Unlike many traditional algorithms, cluster formation in PCDD is completely

distributed. Similarly, in LRDD, any node may potentially detect and repair a breakage. In

this sense, all nodes act as adaptation servers forming a completely distributed adaptation

service. LRDD distributes the responsibility for repair among all the nodes. The design of

our protocols emphasizes distributed operation.

5.1.5 Real-Time

Timely communication is an important goal for many applications. RTDD aims to

achieve the goal of real-time communication. The prioritized queue gives preference to

more urgent packets, helping them meet their deadlines. RTDD supports hard deadlines by

dropping packets when their deadline has been exceeded. This further reduces congestion

and gives other packets a greater chance of meeting their deadlines. RTDD significantly

75

enhances the capabilities of directed diffusion, allowing the network to support time-critical

data flows.

5.1.6 Reactive

Our final design goal is to develop reactive protocols and mechanisms. In general, reac-

tive protocols are more suitable to sensor networks than proactive protocols since they are

more energy efficient. Reactive protocols respond to events instead of proactively maintain-

ing state information ahead of time. In energy-constrained systems, it makes little sense

to continuously maintain routes if no data is being transferred over those routes. This is

especially relevant in sensor systems which infrequently detect events of interest.

PCDD and LRDD particularly incorporate reactive features in their designs. PCDD

reactively creates clusters in response to and through the use of ongoing packet trans-

missions. Since packets are not exchanged beforehand, no energy is consumed until it is

necessary. LRDD responds to repair broken links by reactively repairing them. Unlike

standard directed diffusion which periodically repairs broken links, LRDD is fundamen-

tally a reactive technique. In actuality, LRDD is a reactive version of diffusion’s own route

discovery algorithm but is performed locally instead of globally.

5.2 Design Decisions

5.2.1 Clustering Mechanism (PCDD)

The compatibility of passive clustering and diffusion was recognized by Handziski et.

al [67] who first implemented passive clustering over directed diffusion. Passive clustering is

especially well-suited to sensor networks due to its localized, reactive, and fully distributed

76

nature. All state changes are made using local knowledge gained by overhearing neighboring

nodes. Passive clustering’s reactive cluster formation is well-matched to diffusion’s reactive

publish-subscribe model. Furthermore, the fully distributed nature of passive clustering

maps nicely to any sensor network routing protocol, especially diffusion. No client/server

message exchanges are needed. Passive clustering does not need periodic messages, but

instead takes advantage of existing packets. Finally, the protocol is very resource-efficient

regardless of the size or density of the network.

5.2.2 Repair Mechanism (LRDD)

Break Detection

While break detection was not the focus of our research, we considered several potential

methods for detecting a broken link. One approach is to calculate an expected time for data

events to be received from each neighbor. The source may monitor its output and calculate

an outgoing event rate for each gradient. It will then append this event rate to each data

packet. Intermediate nodes need only to store the data rate of the packet and the time it

was received. If the interval has been exceeded, a break will be detected. Another strategy

for break detection is for intermediate nodes to calculate expected receive times based on

incoming packet reception rates. Event intervals are calculated by monitoring the input

from each neighbor at intermediate nodes. The advantage of this approach is that it is

completely localized and distributed. Another possibility is to use physical layer metrics

(e.g. signal strength, or SNR) to detect failing links. Given event rate Tr, we detected

link breakage when a packet was not received in 1.5 · Tr. More complex event interval

determination algorithms should be investigated for production systems.

77

Break Localization

Break localization may be carried out differently depending on the break detection

scheme used. If physical layer metrics are used to identify breakages, then our break local-

ization scheme may be completely unnecessary. Our design assumes no access to physical

layer information and no explicit network layer acknowledgments. Instead, our scheme uti-

lizes an implicit timeout procedure to detect link failure. The advantage of this approach is

that it may be broadly used regardless of physical or MAC layer differences. Since no phys-

ical or MAC layer assumptions are made, our repair protocol will support a wide variety of

architectures.

Local Gradient Repair

In order to restrict the flooding required to find new paths during local gradient repair,

we restrict packet forwarding in one of several ways. Flooding boundaries may be found

using the clusters created through the passive clustering protocol, a hop-limited flood, or

the failed node ID. These mechanisms restrict the flooding of interest and exploratory data

to a limited area.

Our design separates the local flooding algorithm from LRDD. By decoupling the local

flooding mechanism from the repair protocol, we gain several benefits. First, from a software

engineering perspective, the modularized software is easier to write, debug, and maintain.

Secondly, our repair algorithm can be paired with any local flooding strategy. Thus, our

design may easily be extended by more complex local flooding algorithms. Thirdly, the

decoupling allows multiple local flooding algorithms to be used simultaneously. Multiple

algorithms could be stacked on top of each other or used in different regions of the same

78

network. For example, an algorithm could be adaptively chosen based on local conditions,

e.g., network density or congestion.

5.2.3 Real-time Communication Mechanism (RTDD)

The prioritized queue is the essential component of RTDD. Implementing it proved to

be a challenging task because several different approaches were possible. We recognized

three options for the implementation of a prioritized queue in the diffusion API.

1. Delay-Based: Set event delay times in proportion to priority levels.

2. Block-Based: Prioritize all events that have expired during the receiving period.

3. Timer-Based: Send the highest priority packet after the expiration of a recurring send

timer.

The delay-based scheme uses priority to compute the delay time associated with a

particular packet. The delay time is inversely proportional to the priority. Hence, high

priority packets have a lower delay while low priority packets are assigned a longer delay

time. The second option is to prioritize blocks of packets that have expired timers. Diffusion

switches from receiving and sending when there are no packets to receive. It then processes

all expired timers, i.e., all packets in the event queue with expired send times. This block

of packets is usually sent in the order it was received. Using the block-based approach, the

block of expired packets will be sent in priority order. Finally, the timer-based approach

uses a timer to repeatedly send one packet every ttimer milliseconds. When packets are

received, they are added to a queue in priority order. In a separate thread, a recurring

timer sends the highest priority packet each time the timer expires.

79

The delay-based approach has one major drawback – it delays low priority packets when

there are no high priority packets to be sent. Hence, low priority packets are penalized

unnecessarily and experience greater latency as a result. The block-based scheme also

presents significant difficulties. It prioritizes within very small blocks of packets because

the network so frequently switches between send and receive mode. This leads to a very

small granularity of prioritization which may be almost imperceptible to the application.

The prioritization occurs at such a minute level that it provides no benefit whatsoever.

Because of these problems, we chose to implement the timer-based algorithm. While this

results in the addition of a timeout parameter, it is superior to the other two approaches

since it effectively prioritizes packets without unnecessarily delaying low priority packets.

We describe the implementation this approach in more detail in Section 6.3.3.

The time-based protocols compute priority based on the deadline as given by the appli-

cation and the distance from source to sink as estimated by communication delay. Although

several message exchanges occur in diffusion route creation, we choose to measure the time

delay of the exploratory data message as it is sent from source to sink. We chose this

message transmission because it follows the same path and direction as the actual data.

DAT and DRT re-calculate the priority of a packet at each intermediate node based on

the elapsed time. As the most complicated cases, they posed the most design options. The

primary problem was in calculating the time to the sink (the numerators in Equation 4.5 and

4.8). We considered two approaches: stateful and stateless. In the stateful approach each

intermediate node along the path from sink to source must maintain a time value for every

data flow passing through it. The value may be computed by storing tnow − tsink for each

reinforcement message received. This represents the time from node i to the sink. These

80

values should also be indexed by data flow. In the stateless approach, all the information

needed to compute priority is stored within each data packet. Using this strategy, the time

to the sink is estimated by subtracting the elapsed time from the total end-to-end time,

tnow − tsink − Telapsed. This gives an approximation for the time from the intermediate

node to the sink. The stateful approach is more complex and requires greater storage

requirements per node. However, it provides a better estimate of the time to the sink. The

stateless algorithm is simpler to implement and more scalable but may be less accurate.

We chose the stateless approach due to its simplicity and scalability. It provides sufficient

accuracy, especially over longer durations.

81

Chapter 6

Network Services Implementation

6.1 Clustering Mechanism (PCDD)

We implemented passive clustering using the Filter API provided by ISI diffusion [68].

This required the creation of a new diffusion attribute and a program with two filters. The

attribute was used to relay information about the passive clustering state of each node to

neighboring nodes. The filters intercept packets and update state information based on the

PC state of the previous hop.

6.1.1 Passive Clustering Attribute

In order to communicate information about the passive clustering state of each node,

we defined the class PCInfo t to encapsulate all the passive clustering status information

including state, node ID, and the cluster information. The PCInfo t class is defined and

explained below.

class PCInfo_t \{
int nodeID;
int state;
int CH1;
int CH2;
timeval ts;

void fromAttr(NRSimpleAttribute<void *> *attr)
};

• nodeID - The diffusion ID of the node

82

• state - An integer representing the external passive clustering state of the node

• CH1 - The ID of the node’s primary cluster head

• CH2 - The ID of the node’s secondary cluster head; For CH and OR nodes, CH2=-1

• ts - A timestamp corresponding to the last received message from the node

• void fromAttr(NRSimpleAttribute<void *> *attr) - Converts attribute attr to

a PCInfo t object.

To transport the PC information in diffusion packets, we pack the PCInfo t object into

a PC attribute and push the attribute onto the attribute vector of the message. The PC

attribute is defined as follows:

#define PC_STATE_KEY 5000
NRSimpleAttributeFactory<void *> PCAttrFactory(PC_STATE_KEY,

NRAttribute::BLOB_TYPE);

Upon reception of packets with this attribute, nodes unpack the data into a PCInfo t

object using its fromAttr() method. Nodes maintain a table containing PC information

about each of their neighbors. The neighbor state table is updated on the reception of

every flooded packet. The neighbor table is implemented in the class PCNodeList as shown

below. The PCNodeList class stores information about the passive clustering state of neigh-

boring nodes as an STL list of PCInfo t objects. The core functionality provided by the

class includes adding/updating neighbors as well as counting the number of neighbors in a

particular state. The PCNodeList class also has helper methods that analyze the neighbor

list to determine appropriate state changes.

83

class PCNodeList{
list<PCInfo_t> neighbors;

/* Core methods */
void update(int nodeID, PCInfo_t pcInfo);
int count(int state);

/* Helper method */
bool anyTwoCHsNotConnected(int &ch1, int &ch2);

};

• update(int nodeID, PCInfo t pcInfo) - Adds/updates PC information of node

nodeID with PC status pcInfo to the neighbor list

• count(int state) - Returns the number of nodes in state state in the neighbor list

• anyTwoCHsNotConnected(int &ch1, int &ch2) - Returns true if any pair of known

CHs are not connected by a GW and false if all pairs are connected. If a disconnected

pair exists, ch1 and ch2 are set to their IDs.

6.1.2 Passive Clustering Filters

The PCInfo t and PCNodeList classes are extensively used in the implementation of

the passive clustering filter program. Our implementation utilized two filters in one program

to intercept messages before and after the gradient filter. In the pre-gradient filter, nodes

update their internal state to CH READY or GW READY according to the state of their

neighbors. If no other CHs have been overheard, a node will enter CH READY. Otherwise,

it will enter GW READY. Algorithm 1 summarizes the internal state update process that

is executed when packets are received.

84

Algorithm 1: Incoming Packet Processing for Passive Clustering
Input: Message, Neighbor State Array, MyState
Output: Internal State
switch MyState do

case INITIAL
if num(CH) = 0 then

InternalState = CH READY
else

InternalState = GW READY
break

case CH
if Message.State!=CH then

InternalState = CH READY
else

if myID < Message.ID then
InternalState = CH READY

else
InternalState = GW READY

break
case FULL GW

InternalState = GW READY
break

case CH READY
InternalState = GW READY
break

end

In the post-gradient filter, the external state of the node is determined and added to the

outgoing packet. Nodes in CH READY become CHs if they have not heard from any other

CHs. Nodes in GW READY enter FULL GW or OR depending on the number of CHs

and GWs among their neighbors. Algorithm 2 concisely summarizes the outgoing packet

processing.

85

Algorithm 2: Outgoing Packet Processing for Passive Clustering
Input: Internal State, Neighbor State Array
Output: External State
if InternalState = CH READY then

if num(CH) = 0 then
ExternalState = CH

else if InternalState = GW READY then
InternalState = GW READY

if InternalState = GW READY then
if num(CH) > 1 then

if Any two CHs are not connected by any known gateway then
ExternalState = FULL GW

else
if α · numCH + β < numGW then

ExternalState = FULL GW
else

ExternalState = OR

If the external state has been determined to be OR, then the interest or exploratory data

packet will be dropped. This is accomplished in the Filter API by simply not forwarding

the message back to the diffusion core. Thus, only nodes in the state CH or FULL GW are

allowed to forward interests and exploratory data. Nodes in OR will receive and process

packets, but not forward them. Note that our implementation does not utilize distributed

gateways. This simplifies the protocol without significantly harming its performance.

6.2 Repair Mechanism (LRDD)

The path repair mechanism, LRDD, is implemented using new attributes and the Filter

API. LRDD is one program, but the local flooding mechanism is implemented separately.

86

This decoupling allows any local flooding algorithm to be used in combination with the core

repair protocol. In this section, we describe the attributes used by LRDD and explain the

details of its implementation.

6.2.1 LRDD Attribute

We define two new attributes that correspond to the new messages introduced by our

protocol. The Repair Notification attribute marks a data packet as a repair notification.

The Reconnect attribute is added to reconnect interests and reconnect exploratory data

to differentiate them from standard route discovery packets created by diffusion. The new

attributes are listed below.

#define REPAIR_NOTIFICATION_KEY 4500
#define RECONNECT_KEY 4501

NRSimpleAttributeFactory<char *> RepairNotificationAttr(
REPAIR_NOTIFICATION_KEY, NRAttribute::STRING_TYPE);

NRSimpleAttributeFactory<int> ReconnectAttr(RECONNECT_KEY,
NRAttribute::INT32_TYPE);

6.2.2 LRDD Filters

The majority of local repair is implemented in one program with two filters: a pre-

gradient filter and a post-gradient filter. The pre-gradient filter handles the bulk of the

work. It sets data timeouts after each data packet is received. If the data timeout expires

without receiving a new data packet, repair notifications are sent one-hop downstream, and

a repair notification timer is set. If it expires and no repair notification is received, the

node becomes the proxy sink and floods interest messages with a reconnect attribute set

87

to the failed node ID. The post-gradient filter maintains a list of upstream neighbors and

downstream neighbors in order to detect link breakages. This filter also drops reconnect

exploratory data at the proxy sink and reconnect reinforcements at the proxy source.

Interests and exploratory data are normally created by the diffusion routing (dr) object.

To support reactive repair we added the following two new methods to the dr class:

• int reconnectPublish(NRAttrVec *attrs)

• int reconnectSubscribe(NRAttrVec *attrs)

These methods allow us to send reconnect packets when a break is detected. The

LRDD filter at the proxy sink invokes reconnectSubscribe() to send reconnect interests,

and the proxy source invokes reconnectPublish() to transmit reconnect exploratory data

in response to reconnect interests. The proxy sink sends a reconnect reinforcement mes-

sage to the first neighbor that sent it a reconnect exploratory data message. Algorithm 3

summarizes the logic involved in the pre-gradient filter.

88

Algorithm 3: Pre-Gradient Processing for LRDD
if Repair Notification then

Update State as Not Proxy Sink
else if Data Message then

Update Receive Data Time
Reset Expected Data Timer

else if Reconnect Interest then
if On Original Data Path and Still Receiving Data then

Become Proxy Source
Flood Reconnect Exploratory Data

else
Forward Reconnect Interest

else if Reconnect Exploratory Data then
if ProxySink then

if ! Received Reconnect Exploratory Data then
Send Reconnect Reinforcement

else if Received Reconnect Interests then
Forward Reconnect Exploratory Data

else
Drop Reconnect Exploratory Data

else
Forward Message

Algorithm 4 shows the logic involved in the post-gradient filter. Notice that outgoing

packets require much less processing. The post-gradient LRDD filter stores the neighbor in-

formation for upstream and downstream nodes along the data path. It also drops reconnect

exploratory data and reconnect reinforcement packets when appropriate.

89

Algorithm 4: Post-Gradient Processing for LRDD
if Data Message then

Save Next Hop in Downstream Neighbor Table
Save Previous Hop in Upstream Neighbor Table

else if Reconnect Exploratory Data then
Drop Message

else if Reconnect Reinforcement then
if ProxySource then

Drop Message

else
Forward Message

6.2.3 Local Flooding

LRDD makes no attempt to restrict the flooding of reconnect packets. To handle this

task, we have written two additional programs. The node ID filter creates a list of neighbors

from which a node has received any message. It drops flooded reconnect messages that

contain a reconnect attribute with a failed node ID not in the list of known neighbors.

This essentially restricts reconnect messages to the one-hop neighbors of the failed node.

In a sufficiently dense network, a path back to the data flow may be found in this group of

nodes. In sparse networks, ID-based local flooding may restrict flooding to such a degree

that repair is impossible.

A second simple method to limit the flooding of reconnect messages is to limit the

number of hops a packet may travel. The hop filter appends a hop attribute containing

the maximum number of hops that the packet may travel. Packets from foreign hosts are

dropped if the decremented hop count reaches zero. Otherwise, messages are forwarded with

a decremented hop count. This approach works in sparse networks as long as a sufficiently

large initial hop count is used. The main disadvantage of the hop-count algorithm is the

90

difficulty in selecting an appropriate value for the maximum number of hops. In dense

networks, a large hop count may result in “local” flooding which is very expensive.

6.3 Real-Time Communication Mechanism

Like the other network services, the real-time communication protocol, RTDD, was

implemented in the diffusion API using attributes and filters.

6.3.1 RTDD Attributes

We defined several new attributes for RTDD. These include attributes for deadline,

priority, DVM, SAT, DAT, SRT, and DAT. SVM only needs a priority value so no explicit

SVM attribute is necessary. To utilize RTDD, applications simply add a deadline attribute

to their publication definition. The deadline is an integer representing the deadline in

milliseconds. The definition of the deadline attribute is shown below.

#define TIME_DEADLINE_KEY 7001
NRSimpleAttributeFactory<int> TDeadlineAttr(TIME_DEADLINE_KEY,

NRAttribute::INT32_TYPE);

Several other attributes are necessary for the functioning of RTDD itself. We defined

one attribute for each variant of RTDD. These attributes encapsulate the data that must

be communicated by each version of the protocol. RTDD uses the state information in each

version’s attribute to compute the priority and write it to the priority attribute. Thus, the

priority attribute is used by all six versions of RTDD. These RTDD attribute definitions

are shown below.

91

#define PRIORITY_KEY 7002
#define DVM_KEY 7003
#define SAT_KEY 7004
#define DAT_KEY 7005
#define SRT_KEY 7006
#define DRT_KEY 7007

/* SVM, DVM, SAT, DAT, SRT, DRT */
NRSimpleAttributeFactory<float> PriorAttr(PRIORITY_KEY,

NRAttribute::FLOAT32_TYPE);
/* DVM */
NRSimpleAttributeFactory<void *> DVMAttr(DVM_KEY,

NRAttribute::BLOB_TYPE);
/* SAT */
NRSimpleAttributeFactory<void *> SATAttr(SAT_KEY,

NRAttribute::BLOB_TYPE);
/* DAT */
NRSimpleAttributeFactory<void *> DATtAttr(DAT_KEY,

NRAttribute::BLOB_TYPE);
/* SRT */
NRSimpleAttributeFactory<void *> SRTAttr(SRT_KEY,

NRAttribute::BLOB_TYPE);
/* DRT */
NRSimpleAttributeFactory<void *> DRTAttr(DRT_KEY,

NRAttribute::BLOB_TYPE);

As the simplest case, SVM requires only one floating point number to be calculated

at the source and sent to the destination – no state information is needed. The other

five protocols use the priority attribute to store the calculated priority but also require

another attribute to communicate state information. The DVM attribute contains the

time the data packet was sent from the source. The SAT attribute holds a structure with

the two timestamps used to compute end-to-end delay. The DAT attribute contains three

timestamps representing the end-to-end delay timestamps and the time the data packet

was sent. The SRT attribute stores the two timestamps taken by the source to compute

the round trip time. Finally, DRT stores the three timestamps needed to compute the

92

round trip time and the elapsed time. The definitions of the structures for the time-based

protocols are shown below.

typedef struct RAP_SAT {
EventTime ts_src_expdata;
EventTime ts_snk_reinforcement;

}RAPSAT;

typedef struct RAP_DAT {
EventTime ts_src_expdata;
EventTime ts_snk_reinforcement;
EventTime ts_src_data;

}RAPDAT;

typedef struct RAP_SRT {
EventTime ts_src_expdata;
EventTime ts_src_reinforcement;

}RAPSRT;

typedef struct RAP_DRT {
EventTime ts_src_expdata;
EventTime ts_src_reinforcement;
EventTime ts_src_data;

}RAPDRT;

6.3.2 RTDD Filters

Similar to PCDD and LRDD, RTDD is implemented using a pre-gradient filter and a

post-gradient filter. Each variant essentially performs the same three steps. We explain the

differing details of each version in the following subsections.

1. Add RTDD information to packets at source/sink.

2. Extract RTDD information from packets at source.

93

3. Compute priority and append it to outgoing data packets.

SVM

In SVM, the sink adds its location information (latitude and longitude) to outgoing

interest packets. The source extracts the location information and uses it along with the

deadline supplied by the application to compute the priority according to Equation 3.1.

This priority is stored in the priority attribute by the source and used to prioritize the data

packet at each intermediate hop.

DVM

In DVM, the sink adds its location information to outgoing interest packets. The

source extracts the location information and uses it along with the deadline supplied by the

application to compute the priority according to Equation 3.2. The source also timestamps

the packet so that intermediate nodes can compute the elapsed time. Upon receiving a data

packet, intermediate nodes extract the location of the sink and the timestamp. They use

this information along with their location to update the priority again using Equation 3.2.

SAT

In SAT, the source adds a timestamp to outgoing exploratory data and the sink adds

a timestamp to outgoing reinforcement messages. When the source is ready to send data,

it computes the difference of these two timestamps and divides it by the deadline to find

the priority (Equation 4.4). The priority is stored in the priority attribute and used at each

intermediate hop for queue prioritization.

94

DAT

In DAT, the source adds a timestamp to outgoing exploratory data and the sink adds

a timestamp to outgoing reinforcement messages. The source appends a timestamp to the

data packet corresponding to the time it was sent. The time difference and deadline are

used to compute the initial priority, which is written to the priority attribute. Intermediate

nodes subtract the elapsed time from the end-to-end delay and deadline to update the

priority at each hop (Equation 4.6).

SRT

In SRT, the source stores a timestamp when exploratory data is transmitted and then

saves another timestamp when the first reinforcement message is received. When the source

is ready to send data, it computes the difference of these two timestamps and divides it

by the deadline to find the priority (Equation 4.7). The priority is stored in the priority

attribute and used at each intermediate hop for queue prioritization.

DRT

In DRT, the source stores a timestamp when exploratory data is transmitted and the

saves another timestamp when the first reinforcement message is received. The source

appends a timestamp to the data packet corresponding to the time it was sent. The time

difference and deadline are used to compute the initial priority, which is written to the

priority attribute. Intermediate nodes subtract the elapsed time from the round trip delay

and deadline to update the priority at each hop (Equation 4.8).

95

6.3.3 Prioritized Queue

We implemented the priority queue using the timer-based approach introduced in Sec-

tion 5.2.3. The implementation involved changing the typical behavior of diffusion filters

that forward messages from the receive thread. Instead, we added each received message

to a priority queue. The queue was implemented as a linked list of PriorityQueueEvent

objects as defined below.

class PriorityQueueEvent{

public:
Message *msg;
handle h;
double priority;
PriorityQueueEvent *next;

};

Each data message received by the receive thread of the RTDD filter was added to

the queue using the insert() method. The run() method of the RTDD filter invoked the

send() method that served as the sending thread. It dequeued the first element in the

priority queue (the highest priority message), sent it, and re-scheduled another send event

in ttimer milliseconds. The definition of the PriorityQueue class is shown below. Besides

the basic, insert, and dequeue operations, we also wrote several utility methods isEmpty(),

print(), and length().

class PriorityQueue {
PriorityQueueEvent *head_;

public:
PriorityQueue();

96

void insert(Message *msg, int handle, double priority) ;
PriorityQueueEvent * dequeue();
bool isEmpty();
void print();
int length();

};

After the highest priority packet has been sent, the send() method waits for ttimer

milliseconds before sending another packet. The value of ttimer determines the granularity

of prioritization and affects the maximum bandwidth of the network. Larger values result

in greater amounts of prioritization at the cost of throughput. Smaller values of ttimer

allow more packets to be sent, but also reduce the amount of prioritization possible. An

appropriate value should be set based on the bandwidth needed for the application.

97

Chapter 7

Performance Evaluation

7.1 Simulation Setup

We used ns-2.29 to simulate all three network protocols. We used the 802.11 MAC layer

with directed diffusion version 3 which is supplied with ns2. Table 7.1 shows the specific

settings used in our ns2 simulations. Simulation parameters unique to each protocol are

explained in their respective sections.

Table 7.1: ns2 Channel Parameters

Parameters Value
Channel Channel/WirelessChannel

Propagation Model Propagation/TwoRayGround
Physical Medium Phy/WirelessPhy

MAC Layer Mac/802 11
Queue Type Queue/DropTail/PriQueue
Link Layer LL
Antenna Antenna/OmniAntenna

Our energy model follows the standard energy usage model for ns2. The parameters

and values are shown in Table 7.2.

Table 7.2: ns2 Channel Parameters

Parameters Value
Transmission Power 0.660

Reception Power 0.395
Idle Power 0.035

98

7.2 Clustering Mechanism (PCDD)

We evaluated our implementation of PCDD using several metrics. Since the major

goal of passive clustering is to improve flooding performance, the primary metric of interest

is flooding efficiency. We measured this in terms of the total number of flooded packets

transmitted and the average energy consumed per node. We also measured the delivery

ratio, the end-to-end delay, and the probability of disconnection for each simulation.

Our results show that PCDD significantly reduces the number of interests and ex-

ploratory data messages transmitted while also providing high delivery ratios and low

end-to-end delays. The packet reduction results in a better average energy consumption,

especially in dense topologies. The only disadvantage of PCDD is a slightly increased prob-

ability of disconnection. However, this probability is acceptable given the greatly improved

network performance.

7.2.1 Experiment Setup

To test the performance of PCDD, we generated topologies with n nodes randomly

dispersed over a 1000 m x 1000 m field. The nodes had a transmission radius of 250m. The

number of nodes n ∈ {25, 50, 75, 100, 175, 250}. Five topologies were generated for each

value of n. Each topology was used in 30 independent simulation runs of 1000 seconds. In

our results, we computed the average of the 30 runs and then averaged the 5 means for the

n-node topology. Hence, every data point is a result of 150 (30 * 5) runs of the simulator.

Since the area was held constant and the number of nodes varies, we are effectively changing

network density.

99

The application used for testing was a constant bit rate sender which sent one 1024 B

packet every 5 seconds to the receiver for the entirety of the simulation time. We tested

two cases: a scenario with one data flow and a scenario with two data flows. For the 1-flow

case, we selected node 1 to be the sender and node n to be the receiver. In the 2-flow

case, we also choose node 2 to be a sender and node n − 1 as the receiver (for the second

flow). Since the topologies are randomly generated, this procedure essentially creates two

one-to-one data flows which are randomly located. In our results, we plot the average of

Flow 1 and Flow 2 results.

We compare PCDD to the worst case flooding scenario (blind flooding), the near best

case scenario (a near optimal connected dominating set), and another local knowledge-based

efficient flooding protocol (probabilistic flooding). Blind flooding, performed by standard di-

rected diffusion, represents the worst case since no effort is made to reduce redundant trans-

missions. To find the near best case flooding scenario, we used an evolutionary approach

to find the minimal set of nodes needed for complete connectivity, a connected dominating

set (CDS), for a given topology. We also compared PCDD to probabilistic flooding. Like

PCDD, probabilistic flooding only utilizes information about 1-hop neighbors and operates

on-line (i.e., it does not require set up ahead of time). Thus, we evaluated the performance

of PCDD relative to the near best and worst possible efficient flooding algorithms as well

as an equivalent efficient flooding technique.

7.2.2 Flooding Efficiency

Primarily, PCDD provides improved flooding performance by reducing the number of

redundant transmissions of flooded packets. To evaluate flooding efficiency, we measured

100

the total number of interest and exploratory data packets transmitted during the simula-

tion. The total number of interest packets transmitted during the simulation is plotted

against the number of nodes (n) for both the MAC layer (Figure 7.1) and Routing layer

(Figure 7.2). While not as good as the CDS and probabilistic algorithms, PCDD provided

a significant improvement over standard diffusion in every case. PCDD does not perform

as well as probabilistic flooding in terms of interests because PCDD uses interests to learn

the clustered structure of the network. Exploratory data receives the benefit from this

“learning” phase of PCDD. Furthermore, probabilistic flooding, in this case, has an unfair

advantage over PCDD in that we tuned the flooding parameter offline. Hence, we choose

the lowest forwarding probability based on empirical tests run beforehand. PCDD had no

such foreknowledge.

Figures 7.3 and 7.4 shows the number of interests transmitted in the 2-flow scenarios.

These results follow the same trends as the 1-flow scenarios previously described. PCDD

outperforms standard diffusion by about 20% while CDS and probabilistic flooding perform

significantly better. This performance advantage does not carry over to exploratory data,

however.

The exploratory data packets show an even more dramatic reduction with PCDD.

Figures 7.5 and 7.6 depict the number of exploratory data messages transmitted at the

MAC layer and Routing layer respectively for the 1-flow scenario.

The 2-flow scenarios exhibit the same behavior. PCDD soundly outperforms all the

other protocols. These results are shown in Figurse 7.7 and 7.8 for MAC and Routing layers.

PCDD provides dramatically increased flooding efficiency on the order of 46% fewer

flooded routing-layer packets and 86% fewer MAC-layer flooded packets over all network

101

Figure 7.1: Number of MAC-layer interest messages versus number of nodes (1 flow)

sizes in the 1-flow scenarios. On average, the number of interest packets was reduced by

22% and the number of exploratory data messages was reduced by 98%. In the 2-flow cases,

the number of interest packets was reduced 24% and exploratory data was reduced 99%.

The total number of flooded packets was reduced 48% (MAC) and 87% (Routing). Since

PCDD learns the clustered structure of the network during the interest flooding phase of

route discover, it is able to restrict the flooding of exploratory data more efficiently. This

allows PCDD to perform much better during the second phase of flooding (exploratory

data).

102

Figure 7.2: Number of Routing-layer interest messages versus number of nodes (1 flow)

This flooding reduction directly correlates to energy savings since fewer transmissions

mean less power is consumed. Figure 7.9 shows the average energy consumed per node

over different topology sizes for the 1-flow scenarios. Due to the large number of packets

transmitted by blind flooding, standard directed diffusion performs poorly with increasingly

dense networks. PCDD and CDS maintain almost constant energy consumption while

probabilistic flooding has a slight increase in the larger topologies.

Once again, the 2-flow scenarios follow the same general trends as the 1-flow results.

Standard diffusion performs worst, while CDS performs best, closely followed by PCDD,

and probabilistic flooding.

103

Figure 7.3: Number of MAC-layer interest messages versus number of nodes (2 flows)

7.2.3 Delivery Effectiveness

The packet delivery rates may be adversely affected by the congestion caused by flood-

ing. Since PCDD reduces flooding-induced congestion, delivery rates can be improved when

efficient flooding is performed. Thus, a secondary benefit of PCDD is increased delivery

effectiveness in large, highly-connected networks. To measure delivery rates, we computed

the delivery ratio, i.e., the number of packets received versus the number of packets sent.

The delivery ratio for varying numbers of nodes n is shown in Figure 7.11.

Not surprisingly, the near optimal CDS produced the best delivery ratios, all better

than 99%. PCDD closely followed this performance with delivery ratios greater than 98%

104

Figure 7.4: Number of Routing-layer interest messages versus number of nodes (2 flows)

even in the densest topologies. The performance of standard directed diffusion, in contrast,

decreases as the number of nodes increases due to the effects of congestion. In the densest

networks, diffusion only delivered 93% of the packets. Probabilistic flooding was the worst

performer, however, with delivery ratios ranging from 79% to 90%.

The results of the 2-flow scenarios are shown in Figure 7.12. Like the 1-flow results, CDS

performs the best, followed closely by PCDD. Directed diffusion has acceptable performance

at low densities, but suffers from congestion in the large topologies. Probabilistic flooding

again performs the worst with delivery ratios between 80% and 92%.

105

Figure 7.5: Number of MAC-layer exploratory data messages versus number of nodes (2
flows)

PCDD returned very high delivery ratios on par with optimal CDS based flooding.

Thus, passive clustering provides significant advantages in terms of both flooding efficiency

and delivery effectiveness. These results imply greater potential for scalability of the network

and greater robustness of performance. Our results corroborate with previous work with

PC over diffusion [67] in terms of improved flooding efficiency and delivery effectiveness.

7.2.4 End-to-End Delay

We also measured end-to-end delay of data packets. This metric gives another per-

spective on the effects of flooding-induced congestion. The average end-to-end delay of

106

Figure 7.6: Number of Routing-layer exploratory data messages versus number of nodes (2
flows)

data packets for each set of 1-flow topologies is plotted in Figure 7.13. Notice that PCDD

again closely follows the performance of the CDS algorithm. Standard diffusion suffered

from incredibly high delays in the large topologies (n = 250) with average delays of over

500ms. Probabilistic flooding also performed poorly in terms of delay. Its average delay

times increased with increasing network density.

The delays for the 2-flow scenarios (Figure 7.14) reflect similar trends as their 1-flow

counterparts. CDS and PCDD are the best performers while probabilistic flooding is slightly

worse. Notice that standard directed diffusion suffers from massive delays (>2000ms) in

the largest topologies.

107

Figure 7.7: Number of MAC-layer exploratory data messages versus number of nodes (2
flows)

7.2.5 Disconnection Probability

One of the main disadvantages of PCDD is the possibility of disconnecting the network.

If the gateway selection heuristic is overly aggressive, the network may be partitioned. This

occurs because too many nodes are made ordinary nodes (i.e., removed from the flooding

backbone). Figure 7.15 shows the average probability of disconnection for each network

size. None of the other efficient flooding algorithms partitioned the network. PCDD,

however, had a small probability of disconnecting the smaller topologies. For n = 25,

108

Figure 7.8: Number of Routing-layer exploratory data messages versus number of nodes (2
flows)

PCDD disconnected 8.7% of the runs. In the larger topologies, disconnection was not a

problem.

In the 2-flow scenarios, disconnection presented more of a problem. As shown in Fig-

ure 7.16, PCDD suffered from small levels of disconnectivity across all topology sizes. Once

again, the smaller topologies were more prone to this problem with disconnection probabil-

ities of 8.7% in the 25-node networks. This behavior occurs because the increased number

of data flows creates more “critical” nodes, i.e., nodes that cannot be ordinary without

interrupting the data flow. Hence, PCDD has more opportunity to interrupt a data flow by

109

Figure 7.9: Average energy consumed per node versus number of nodes (1 flow)

wrongly identifying a critical node as ordinary. Although this behavior is disappointing, its

relatively small rate of occurrence helps to mitigate the problem.

7.3 Repair Mechanism (LRDD)

We evaluated the performance of LRDD by measuring the delivery ratio for data pack-

ets and the overhead associated with local flooding. Since diffusion has no reactive repair

mechanism, our addition provided significant gains in terms of delivery effectiveness. The

cost of repair was generally low given the restricted flooding strategies we employed. We

110

Figure 7.10: Average energy consumed per node versus number of nodes (2 flows)

explain the experimental scenario and discuss the performance of LRDD in terms of delivery

effectiveness and overhead.

7.3.1 Experiment Setup

To test LRDD, we used a constant bit rate application that sent one 1024 B packet

each second to one receiver application. We used five topologies with 250 nodes randomly

deployed over a 2000 m x 2000 m field. To simulate the failures necessary to test LRDD,

we generated failure scenarios consisting of a series of node failures over the course of the

simulation. The node failures were drawn from an exponential distribution to model failures

111

Figure 7.11: Delivery ratio versus number of nodes (2 Flows)

during the normal useful-life phase the system [69]. The mean time between failures for the

exponential distribution was β where β ∈ {2.5, 5, 10, 15, 25 }. Five failure scenarios were

generated for each value of β.

Our metrics were computed over a period of 300 simulated seconds for each topology

and failure scenario pair. For each of the 25 pairs, we ran five runs of the simulation with

different initial seeds of the random number generator. Hence, each data point represents

125 runs of the simulation. We collected several metrics. First, we measured the number of

data packets delivered to the sink. We also measured the network traffic involved in each

run of the simulation. We were specifically interested in the flooded packets (interests and

112

Figure 7.12: Delivery ratio versus number of nodes (2 Flows)

exploratory data) since they are most relevant to gradient repair. We calculated the average

energy consumed per node. Finally, we computed two metrics to evaluate the normalized

overhead involved in LRDD: flooded packets per data packet and energy per data packet.

We compare five versions of LRDD to standard directed diffusion. In LRDD with

global flooding (LRDD-GF), reconnect packets were not restricted in any way and thus

were flooded throughout the entire network. LRDD with ID-based local flooding (LRDD-

ID) corresponds to the localized flooding strategy in which reconnect packets are only

forwarded by nodes that are 1-hop neighbors of the failed node. We also tested LRDD with

hop-based flooding (LRDD-Hop) with three different hop radii: 3, 4, and 5. In the figures,

113

Figure 7.13: End-to-end delay versus number of nodes (1 Flow)

we denote the hop-limited protocols by appending the hop radius to the protocol name (i.e.,

LRDD-Hop3 means reconnect packets were forwarded in a 3-hop region).

7.3.2 Simulation Results

Packets Received

To measure LRDD’s ability to recover from failures, we measured the number of data

packets delivered during the course of the 300 simulated seconds. Figure 7.17 shows the

average number of data packets received by the sink for the five topologies and five failure

scenarios. As expected, LRDD-GF performs the best since it has the best chance of repairing

114

Figure 7.14: End-to-end delay versus number of nodes (2 Flows)

broken routes, albeit at a high cost (global flooding). ID-based LRDD performs second best

followed closely by hop-based LRDD. ID-based LRDD performs better because it localizes

the flooding to a region centered at the node which has failed. The hop-based protocols

center their flooding at the proxy source and proxy sink and thus, have a lower probability

of finding an alternate route around the failed node.

We have summarized the packet reception data in Table 7.3. It contains the average

number of packets delivered by each protocol over all values of β. LRDD-GF performs

best, followed by LRDD-ID. The hop-based protocols perform incrementally better with

increasing hop size, and standard diffusion performs worst.

115

Figure 7.15: Disconnection probability versus number of nodes (1 Flow)

Flooded Packets

The next metric we evaluated was the total number of flooded packets transmitted.

This metric gauges the overhead associated with the algorithms. This number includes the

additional reconnect interests and exploratory data created by LRDD, thus it measures the

cost incurred by reactive repair. Figure 7.18 summarizes the average number of flooded

packets for each value of β. In this case, LRDD-GF is the worst performer since it produces

the largest number of reconnect packets and does not attempt to restrict their transmission.

The next worst performers are the hop-based local flooding algorithms in decreasing hop

116

Figure 7.16: Disconnection probability versus number of nodes (2 Flows)

size. The ID-based flooding has very similar performance as the 3-hop flooding. Directed

diffusion is, naturally, the best performer since it transmits no additional reconnect packets.

Table 7.4 shows the average number of flooded packets across all values of β. The same

trends are apparent as in Figure 7.18. Diffusion has the lowest overhead and LRDD-GF

has the highest. Notice that LRDD-ID narrowly outperforms LRDD-Hop3 in terms of the

overall average.

117

Figure 7.17: Packets delivered for each repair and flooding algorithm

Energy

Next, we evaluated LRDD in terms of energy consumption. We computed the average

energy consumed per node over the simulation time. Figure 7.19 contains the results across

varying values of β for each algorithm. These results necessarily correlate to the total flooded

packets results discussed in the previous section. DD has the lowest energy consumption

because it transmits the fewest number of packets. LRDD-GF performs worst, since it

transmits the largest number of additional reconnect packets. The hop-based protocols

perform slightly worse than the ID-based protocol except for a hop size of 3 where their

performance is almost identical.

118

Table 7.3: Average packets delivered for all values of β

Repair and Flooding Algorithm Packets Delivered
DD 213.10

LRDD-GF 237.18
LRDD-ID 233.62

LRDD-Hop3 216.47
LRDD-Hop4 219.03
LRDD-Hop5 221.14

Table 7.4: Average packets delivered for all values of β

Repair and Flooding Algorithm Flooded Packets
DD 32088

LRDD-GF 63183
LRDD-ID 35664

LRDD-Hop3 35944
LRDD-Hop4 37682
LRDD-Hop5 39827

Table 7.5 shows the average energy consumption for each protocol over all failure

scenarios. Diffusion has the lowest, followed by LRDD-Hop3 and LRDD-ID. LRDD-Hop4

and LRDD-Hop5 have slightly higher energy consumption and LRDD-GF has the highest.

Normalized Overhead

In order to gain an understanding of the trade-offs associated with the additional

overhead created by LRDD, we have computed several other derived metrics using the

previously discussed measurements. First, we calculate the total number of flooded packets

per data packet delivered. This essentially normalizes the additional cost by the additional

benefit. Figure 7.20 shows the number of flooded packets per data packet successfully

delivered to the sink. LRDD-GF has the worst performance. This means that the excessive

119

Figure 7.18: Total flooded packets for each repair and flooding algorithm

flooding costs far outweigh the additional packets delivered. The hop-based versions of

LRDD perform better than LRDD-GF, but not as well as LRDD-ID and standard diffusion.

LRDD-ID outperformed standard directed diffusion at the lowest values of β (β = 2.5 and

β = 5), but not at the larger β values. Surprisingly, diffusion performs quite well despite

its low packet delivery rate. Its strong performance is due to its low overhead. LRDD-ID

had superior performance at high failure rates (low β values), but at lower failure rates,

the benefit of route repair did not outweigh the cost of flooding. However, if recovery time

is considered, diffusion’s performance would not be strong since it only periodically repairs

120

Figure 7.19: Average energy consumed per node for each repair and flooding algorithm

broken paths. On average, diffusion will take 30 seconds to repair a broken path (since each

refresh cycle is 60 seconds). In contrast, LRDD recovers from repairs in 2-3 seconds.

Table 7.6 summarizes the normalized flooded packet overhead for all values of β.

LRDD-ID and DD have very similar performance (0.4% difference). The hop-based versions

of LRDD have slightly greater cost (11%-17% worse than directed diffusion). LRDD-GF

has the worst peformance with almost twice the number of flooded packets per each data

packet delivered.

Lastly, we computed the average energy consumed per node per data packet delivered.

Like the previous metric, energy consumed per data packet gives an understanding of the

121

Table 7.5: Average packets delivered for all values of β

Repair and Flooding Algorithm Energy Consumed Per Node (Joules)
DD 10.19

LRDD-GF 13.93
LRDD-ID 10.80

LRDD-Hop 3 10.72
LRDD-Hop4 11.07
LRDD-Hop5 11.40

Table 7.6: Average flooded packets per data packet for all values of β

Repair and Flooding Algorithm Flooded Packets Per Data Packet
DD 45549

LRDD-GF 80247
LRDD-ID 45776

LRDD-Hop 3 50300
LRDD-Hop4 51828
LRDD-Hop5 54220

trade-offs associated with LRDD. In this case, we can evaluate the cost in terms of energy

for the additional data packets delivered by LRDD. Figure 7.21 illustrates the average

energy consumed per node per each data packet delivered to the sink. Generally, the

worst performer was LRDD-GF since its overhead was so high. At the highest failure

rate (lowest β), however, it gave the second best performance behind LRDD-ID. Overall,

however, the best performers were LRDD-ID and DD. Once again, LRDD-ID bested DD at

the two highest failure rates (β = 2.5 and β = 5) but not at the other rates. LRDD-Hop3

gave strong performance at all but the lowest value of β. The larger hop radii had worse

performance however. To summarize, LRDD-ID had significantly better normalized energy

consumption than diffusion at the higher failure rates and only slightly worse performance at

122

Figure 7.20: Total flooded packets per data packet delivered for each repair and flooding
algorithm

the lower failure rates. LRDD-Hop3 was a close third place followed by the other hop-based

protocols.

Table 7.7 contains the average energy consumed per data packet across all failure rates.

LRDD-ID is the best performer followed by DD. The hop-based protocols are next best in

increasing hop size. LRDD-GF is unequivocally the worst.

To summarize, LRDD significantly improves the delivery rate in the presence of node

failures, however, a price must be paid for this improved behavior. We have developed

several simple localized flooding techniques to reduce the cost of the protocol overhead.

Our results show that the ID-based algorithm has the lowest overhead. On average, the

123

Figure 7.21: Average energy consumed per data packet delivered for each repair and flooding
algorithm

ID-based localized flooding gave the best or near best performance when normalized with

respect to data packets delivered. The hop-based ooding also improves packet delivery

rates but at a slightly higher cost than LRDD-ID. LRDD-GF offers the best packet delivery

rates but at unreasonably high cost due to global flooding. Overall, LRDD offers improved

delivery rates with acceptable overhead.

124

Table 7.7: Average energy consumed per data packet delivered for all values of β

Repair and Flooding Algorithm Energy Consumed Per Data Packet
DD 14.64

LRDD-GF 17.59
LRDD-ID 13.94

LRDD-Hop 3 15.18
LRDD-Hop4 15.36
LRDD-Hop5 15.62

7.4 Real-Time Communication Mechanism (RTDD)

To evaluate the effectiveness of RTDD, we measured the on-time delivery ratio of

packets received at the sinks. RTDD shows significant improvement over standard diffusion

in terms of timely delivery during congestion. In this section, we describe the experimental

setup and compare the on-time delivery rates for directed diffusion and RTDD.

7.4.1 Simulation Setup

RTDD shows significant improvement over standard diffusion in terms of timely delivery

during congestion. We tested RTDD using the bottleneck topologies shown in Figures 7.22

and 7.23. In these topologies, two or three data flows shared the same three bottleneck

nodes. The bottleneck topology was chosen in order to exaggerate the effects of congestion.

The metric used to evaluate RTDD was delivery ratio. Since late packets were actively

dropped, packet delivery ratio corresponds to on-time delivery ratio.

The sources ran a constant bit rate application that generated one 1024 byte packet

every T milliseconds where T is a constant interval parameter summed with a 20% jitter

term (T = t ± j). In Topology 1 t ∈ {38, 48, 54, 60, 69, 89, 125}, and in Topology 2 t ∈

125

Figure 7.22: Topology 1: 2 Flows

Figure 7.23: Topology 1: 3 Flows

{40, 45, 50, 75, 100, 125, 150, 200}. In both topologies j ∈ [−0.2 · t, 0.2 · t]. We introduced the

jitter term j in order to introduce randomness in the arrival rate. The source data rates r

correspond to sending one 1024 byte packet every t milliseconds on average. For the tested

values of t in Topology 1, r ∈ {8.2, 11.5, 14.8, 17.1, 19.0, 21.3, 26.9} KBps. For the values of t

in Topology 2, r ∈ {5.1, 6.8, 8.2, 10.2, 13.7, 20.5, 22.8, 25.6} KBps. Each simulation was run

for 1000 simulated seconds. We ran each experiment 30 times to gain statistical confidence

in the results. We report the average and the standard error of the 30 runs.

126

The RTDD filter queued all incoming packets and sent the highest priority packet every

ttimer milliseconds. The ttimer parameter of the priority queue was set to 50 milliseconds for

all the experiments. RTDD dropped packets that had missed their deadlines. This allows

the network to avoid wasting bandwidth on packets which are already late. In order to make

equivalent comparisons, we implemented a filter to delay standard directed diffusion packets

the same amount as the RTDD filter delayed its packets. The delay filter was identical to

the RTDD filter except that a priority of 0.0 was assigned to all packets, thus enforcing a

FCFS ordering of the queue.

The deadlines for Flow 1 and 2 in Topology 1 were 500 ms and 625 ms respectively.

For Topology 2, the deadlines were set to 500 ms, 625 ms, and 750 ms for Flows 1, 2, and 3

respectively. The lowest value (500 ms) was selected because it provided a realistic estimate

of the end-to-end delay. Thus, it was possible to meet the lowest deadline in a lightly loaded

network. The other deadline values were computed as 25% and 50% more than the baseline

deadline.

7.4.2 Simulation Results

Since RTDD dropped packets that were late, the delivery ratio represents the percent-

age of packets that were delivered to the sink on-time. Packets that were not delivered were

either dropped due to their lateness or lost. The overwhelming majority of the packets not

delivered were actively dropped because of their lateness. Thus, the delivery ratio measures

the effectiveness of the prioritization in helping packets meet their deadlines. Figures 7.24

and 7.25 show the delivery ratios of Topology 1 for Flows 1 and 2 respectively for increasing

source transmission rates. The error bars represent one standard error. Notice in Figure

127

7.24 that at the lowest data rate (8 KBps) all seven protocols delivered over 85% of the

packets on time. Past this rate, the performance of standard directed diffusion sharply

dropped to almost 0%. For Flow 1, SVM and DVM maintained high delivery ratios until

the transmission rates exceeded 19 KBps. Among the time-based protocols, the dynamic

variants (DAT and DRT) generally performed better than their static counterparts in the

intermediate region (from 11KBps to 19 KBps). At the two highest data transmission rates,

none of the protocols were able to successfully deliver packets because congestion was so

high.

Figure 7.24: Delivery Ratio of Flow 1 (Topology 1)

128

Figure 7.25 shows the delivery ratio for Flow 2, the low priority flow. RTDD essentially

delays packets from this flow to give preference to the high priority packets in Flow 1 (Figure

7.24). Notice that standard directed diffusion and SVM have the worst performance, closely

followed by SAT and SRT. These results are expected for the static protocols since packet

priorities are set once at the source. The dynamic protocols, however, update the priority

of the packets at each hop. This allows initially low priority packets to be given greater

preference if they are excessively penalized. From 11 KBps to 17 KBps DVM is the best

performer but at the higher data rates DAT and DRT deliver more packets on time. At such

high data rates, however, only about 5-10 % of the packets can be delivered successfully.

Figure 7.26 shows the average delivery ratio of both flows in Topology 1. All of the

versions of RTDD provide a significant improvement over standard diffusion in the interme-

diate region (11 KBps to 19 KBps). The performance of the RTDD protocols falls into three

classes. DVM is the best performer with a 5-15% advantage over the dynamic time-based

protocols (DAT and DRT) by 5-15%. Although DVM outperforms the dynamic time-based

algorithms, SVM did not outperform the static time-based protocols (SAT and SRT). Their

average performance was not appreciably different (except at 19 KBps where SVM did 9%

better).

Notice that the performance of the dynamic protocols gracefully degrades with increas-

ing congestion while the static algorithms have a much sharper drop in performance. Also

interesting is the performance similarity among the static protocols. SRT can perform just

as well as SAT and nearly as well as SVM. Thus, we can achieve acceptable performance

without location knowledge or time synchronization. The dynamic case is not quite as

encouraging, however. Without location knowledge, DAT and DRT perform significantly

129

Figure 7.25: Delivery Ratio of Flow 2 (Topology 1)

worse than DVM. In summary, dynamic prioritization outperforms static, and dynamic,

location-based prioritization is preferable to dynamic, time-based.

Figures 7.27 - 7.29 depict the delivery ratios for Flows 1-3 for Topology 2. As expected,

the greatest performance improvement occurs in the high priority flow. As in Topology

1, RTDD significantly outperforms standard directed diffusion at all but the highest and

lowest data rates (congestion levels). For Flow 1 (Figure 7.27), the location-based algorithms

(SVM and DVM) outperform the time-based protocols by 10-20% in the intermediate region

130

Figure 7.26: Average Delivery Ratio of Flows 1 and 2 (Topology 1)

(8 KBps to 20 KBps). The time-based protocols perform very similarly in this region,

delivering 65-85% of the packets on time.

Figure 7.28 shows the performance of Flow 2, the middle priority flow. Again, diffusion

has the worst performance, sharply dropping at 7 KBps. DVM is the overall best performer

across all data rates. SVM has strong performance at the lower data rates (7 KBps to 13

KBps). The time-based protocols have almost identical performance from 7 KBps to 13

KBps, but DAT and DRT provide better delivery ratios than their static counterparts at

the higher data rates.

131

Figure 7.27: Delivery Ratio of Flow 1 (Topology 2)

Figure 7.29 summarizes the performance of the low priority flow (Flow 3). Directed

diffusion and SVM had almost identical performance. DVM also had poor performance

on this flow. Interestingly, the time-based versions of RTDD performed better than SVM

and DVM. The dynamic time-based protocols (DAT and DRT) returned the best delivery

ratios.

Figure 7.30 shows the average delivery of all three flows in Topology 2. The supe-

rior performance of RTDD versus standard diffusion is clearly shown. Among the RTDD

protocols, DVM maintains a small but consistent performance advantage. SVM narrowly

132

Figure 7.28: Delivery Ratio of Flow 2 (Topology 2)

edges out the SAT and SRT. As in Topology 1, SAT and SRT have no appreciable per-

formance difference, implying that relative time differences can safely be used instead of

absolute time differences. Likewise, DAT and DRT have similar performance to each other

and slightly better performance than the static algorithms. Interestingly, the performance

difference between the static and dynamic protocols is relatively small. This suggests that

static protocols, despite their simplicity, are capable of providing good delivery rates dur-

ing moderate levels of congestion. Furthermore, the small performance advantage of the

location-basd protocols implies that time-based protocols may be used in networks without

133

Figure 7.29: Delivery Ratio of Flow 3 (Topology 2)

localization capabilities. This significantly reduces the hardware and software requirements

of the system.

134

Figure 7.30: Average Delivery Ratio of Flows 1, 2, and 3 (Topology 2)

135

Chapter 8

Conclusions and Future Work

We have proposed, implemented, and evaluated three network services for directed

diffusion. These network services improve and augment the standard directed diffusion

protocol. They improve flooding efficiency, provide localized route repair, and support

real-time packet delivery.

The primary contributions of our work are

• The implementation and evaluation of passive clustering for directed diffusion.

• The design, implementation, and evaluation of a reactive and localized route repair

mechanism for directed diffusion.

• The design, implementation, and evaluation of a real-time communication protocol for

directed diffusion that requires neither location knowledge nor time synchronization.

The three network services support the overall goals of sensor networks. Flooding

efficiency and localized repair promote energy conservation by reducing unneeded trans-

missions. The reactive route repair mechanism improves the robustness of the network by

efficiently adapting to node failure. Both PCDD and LRDD improve the scalability of the

sensor network since they reduce the cost and scope of flooding. RTDD gives application

developers greater control over time-critical communication, easing application develop-

ment. All three network services shield high-level applications from the complexities of

the underlying sensor network. By leveraging the strengths of diffusion and minimizing

136

its weaknesses, the network services significantly improve its utility as a general purpose

routing protocol.

One of the most interesting directions for future research is in considering the possible

interactions among the network services. For example, LRDD could use the clusters created

by PCDD to limit the flooding of repair packets. In this way, repair packets would be

restricted to the clusters adjacent to the failed node. The problem with this approach is

that the PC clusters may be too small to allow for successful repair.

Another possible interaction is between LRDD and RTDD. If RTDD is extended to

include a congestion detection algorithm, LRDD could be used to find routes around con-

gested regions. Repair would be performed proactively in order to improve the throughput

of slow links with the same mechanism used to reactively repair node failure. The challenge

of this modification is in handling the additional congestion produced by LRDD’s localized

flood. This mechanism will, at least temporarily, create more congestion in order to reduce

congestion. Depending on the saturation of the network and the length of the new route,

LRDD may not be able to improve on-time packet delivery performance. In fact, LRDD’s

proactive repair process may make the network congestion worse.

Finally, RTDD and PCDD could interact with each other to compose better clusters.

If congestion data is maintained at each node by RTDD, then it could be used to influence

the creation of clusters. A node prone to congestion might refrain from becoming a cluster

head in order to reduce its workload. Although providing slight improvement, this strategy

requires significant overhead in terms of state information stored by each node. Thus, the

benefits do not seem to justify the cost in this instance of interaction.

137

Our three network services provide significant enhancements to directed diffusion in

several respects. We have increased the flooding efficiency of diffusion by augmenting it

with PCDD. LRDD improves the robustness of diffusion in the face of node failure without

excessive flooding overhead. We have also enhanced diffusion by adding a distance and

deadline-aware real-time communication protocol. By leveraging the strengths of diffusion

and minimizing its weaknesses, the network services significantly improve the utility of

directed diffusion as an routing protocol.

138

Bibliography

[1] Mark Weiser. The computer for the twenty-first century. Scientific American, pages
94–10, September 1991.

[2] David Tennenhouse. Proactive computing. Commun. ACM, 43(5):43–50, 2000.

[3] B. Warneke, M. Last, B. Liebowitz, and K.S.J. Pister. Smart dust: communicating
with a cubic-millimeter computer. Computer, 34(1):44–51, January 2001.

[4] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and Kristofer
S. J. Pister. System architecture directions for networked sensors. In Architectural
Support for Programming Languages and Operating Systems, pages 93–104, 2000.

[5] Taek Jin Kwon, M. Gerla, V.K. Varma, M. Barton, and T.R. Hsing. Efficient flooding
with passive clustering-an overhead-free selective forward mechanism for ad hoc/sensor
networks. Proceedings of the IEEE, 91(8):1210–1220, Aug. 2003.

[6] Yungjung Yi, M. Gerla, and Taek Jin Kwon. Efficient flooding in ad hoc networks: a
comparative performance study. In Communications, 2003. ICC ’03. IEEE Interna-
tional Conference on, volume 2, pages 1059–1063vol.2, 11-15 May 2003.

[7] Brad Williams and Tracy Camp. Comparison of broadcasting techniques for mobile ad
hoc networks. In MobiHoc ’02: Proceedings of the 3rd ACM international symposium
on Mobile ad hoc networking & computing, pages 194–205, New York, NY, USA, 2002.
ACM Press.

[8] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffu-
sion: a scalable and robust communication paradigm for sensor networks. In Mobile
Computing and Networking, pages 56–67, 2000.

[9] David B Johnson and David A Maltz. Dynamic source routing in ad hoc wireless
networks. In Imielinski and Korth, editors, Mobile Computing, volume 353. Kluwer
Academic Publishers, 1996.

[10] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu. The broadcast
storm problem in a mobile ad hoc network. In MobiCom ’99: Proceedings of the
5th annual ACM/IEEE international conference on Mobile computing and networking,
pages 151–162, New York, NY, USA, 1999. ACM Press.

[11] D. Aron and Sandeep K. S. Gupta. Analytical comparison of local and end-to-end
error recovery in reactive routing protocols for mobile ad hoc networks. In MSWIM

139

’00: Proceedings of the 3rd ACM international workshop on Modeling, analysis and
simulation of wireless and mobile systems, pages 69–76, New York, NY, USA, 2000.
ACM Press.

[12] Nada Hashmi, Dan Myung, Mark Gaynor, and Steve Moulton. A sensor-based, web
service-enabled, emergency medical response system. In EESR ’05: Proceedings of the
2005 workshop on End-to-end, sense-and-respond systems, applications and services,
pages 25–29, Berkeley, CA, USA, 2005. USENIX Association.

[13] Mitchell A. Cohen, Jakka Sairamesh, and Mao Chen. Reducing business surprises
through proactive, real-time sensing and alert management. In EESR ’05: Proceed-
ings of the 2005 workshop on End-to-end, sense-and-respond systems, applications and
services, pages 43–48, Berkeley, CA, USA, 2005. USENIX Association.

[14] S. Kapoor, K. Bhattacharya, S. Buckley, P. Chowdhary, M. Ettl, K. Katircioglu,
E. Mauch, and L. Phillips. A technical framework for sense-and-respond business
management. IBM Syst. J., 44(1):5–24, 2005.

[15] S. Haeckel. Adaptive Enterprise: Creating and Leading Sense-and-Respond Organiza-
tions. Harvard Business School Press, Cambridge, MA, 1999.

[16] Michael Zink, David Westbrook, Sherief Abdallah, Bryan Horling, Vijay Lakamraju,
Eric Lyons, Victoria Manfredi, Jim Kurose, and Kurt Hondl. Meteorological com-
mand and control: an end-to-end architecture for a hazardous weather detection sensor
network. In EESR ’05: Proceedings of the 2005 workshop on End-to-end, sense-and-
respond systems, applications and services, pages 37–42, Berkeley, CA, USA, 2005.
USENIX Association.

[17] C. Meinig, S.E. Stalin, A.I. Nakamura, F. Gonzelez, and H.G. Milburn. Technology
developments in real-time tsunami measuring, monitoring and forecasting. In Oceans
2005 MTS/IEEE, Washington, D.C., September 2005.

[18] C.Meinig, S.E. Stalin, A.I. Nakamura, and H.B. Milburn. Real-time deep-ocean
tsunami measuring, monitoring, and reporting system: The noaa dart ii description
and disclosure. Technical report, NOAA, 2005.

[19] F.I. Gonzelez, E.N. Bernard, C. Meifg, M. Eble, H.O. Mofjeld, and S. Stalin. The
nthmp tsunameter network. National Hazards, 35(1):25–39, 2005.

[20] Donna Casey. The thames barrier: Flood defence for london. Website,
http://www.environment-agency.gov.uk /regions/thames/323150/335688/341764/,
2006.

[21] Nova: Sinking city of venice. Website, http://www.pbs.org/wgbh/
nova/venice/gates.htm, October 2002.

140

[22] Josh McHugh. The lost city of venice. Wired, 11(8), August 2003.

[23] Sammarco Paulo, Hoang H. Tran, and Chiang C. Mei. Subharmonic resonance of
venice gates in waves. Journal of Fluid Mechanics, 349, 1997.

[24] Lee E. Harris. Combined recreational amenities and coastal erosion protection using
submerged breakwaters for shoreline stabilization. Technical report, Florida Instituteof
Technology, September 2005.

[25] Lee Harris. Breakwater wave attenuation.

[26] K. Mani Chandy. Sense and respond systems. In 31st Annual International Conference
of the Association of System Performance Professionals, December 2005.

[27] John S. Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh Govindan, Deb-
orah Estrin, and Deepak Ganesan. Building efficient wireless sensor networks with
low-level naming. In Symposium on Operating Systems Principles, pages 146–159,
2001.

[28] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated by RFC
1349.

[29] C. Perkins. Ad hoc on demand distance vector (AODV) routing. RFC 791 (Experi-
mental), July 2003.

[30] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed
diffusion for wireless sensor networking. Networking, IEEE/ACM Transactions on,
11(1):2–16, Feb. 2003.

[31] Yu-Chee Tseng, Sze-Yao Ni, and En-Yu Shih. Adaptive approaches to relieving broad-
cast storms in a wireless multihop mobile ad hoc network. IEEE Transactions on
Computers, 52(5):545–557, 2003.

[32] L. Orecchia, A. Panconesi, C. Petrioli, and A. Vitaletti. Localized techniques for
broadcasting in wireless sensor networks. In DIALM-POMC ’04: Proceedings of the
2004 joint workshop on Foundations of mobile computing, pages 41–51, New York, NY,
USA, 2004. ACM Press.

[33] Mark Ivester. Interactive and extensible runtime framework for execution and moni-
toring of sensor network services. Master’s thesis, Auburn University, 2005.

[34] Ya Xu, John S. Heidemann, and Deborah Estrin. Geography-informed energy conser-
vation for ad hoc routing. In Mobile Computing and Networking, pages 70–84, 2001.

[35] Hyojun Lim and Chongkwon Kim. Multicast tree construction and flooding in wireless
ad hoc networks. In MSWIM ’00: Proceedings of the 3rd ACM international workshop
on Modeling, analysis and simulation of wireless and mobile systems, pages 61–68, New
York, NY, USA, 2000. ACM Press.

141

[36] Wei Peng and Xi-Cheng Lu. On the reduction of broadcast redundancy in mobile ad
hoc networks. In MobiHoc ’00: Proceedings of the 1st ACM international symposium
on Mobile ad hoc networking & computing, pages 129–130, Piscataway, NJ, USA, 2000.
IEEE Press.

[37] Amir Qayyum, Laurent Viennot, and Anis Laouiti. Multipoint relaying: An efficient
technique for flooding in mobile wireless networks. Technical Report Research Report
RR-3898, INRIA, February 2000.

[38] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR). RFC
3626 (Experimental), October 2003.

[39] C. Perkins. Multicast with minimal congestion using connected dominating sets.
http://tools.ietf.org/html/draft-perkins-manet-smurf-00. IETF Internet Draft, July
2006.

[40] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. Span: An energy-
efficient coordination algorithm for topology maintenance in ad hoc wireless networks.
In Mobile Computing and Networking, pages 85–96, 2001.

[41] J. Luna-Aceves and M. Spohn. Scalable link-state internet routing, 1998.

[42] R. G. Ogier et al. Topology dissemination based on reverse-path forwarding (TBRPF).
RFC 3684 (Experimental), Feb. 2004.

[43] A. Ephremides, J.E. Wieselthier, and D.J. Baker. A design concept for reliable mobile
radio networks with frequency hopping signaling. Proceedings of the IEEE, 75(1):56–73,
1987.

[44] Chunhung Richard Lin and Mario Gerla. Adaptive clustering for mobile wireless net-
works. IEEE Journal of Selected Areas in Communications, 15(7):1265–1275, 1997.

[45] K. Mase, Y. Wada, N. Mori, K. Nakano, M. Sengoku, and S. Shinoda. Flooding schemes
for a universal ad hoc network. In Industrial Electronics Society, 2000. IECON 2000.
26th Annual Confjerence of the IEEE, volume 2, pages 1129–1134, Nagoya, Japan,
2000.

[46] M. Gerla, T. Kwon, and G. Pei. On demand routing in large ad hoc wireless networks
with passive clustering. In Proceedings of the IEEE WCNC, September 2000.

[47] Jorjeta Jetcheva David B. Johnson. Adaptive demand-driven multicast routing in
multi-hop wireless ad hoc networks. In Proceedings of the Second Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc 2001), pages 33 – 44. ACM, Oct 2001.

[48] D. Tian and N.D. Georganas. Energy efficient routing with guaranteed delivery in
wireless sensor networks. IEEE Wireless Communications and Networking, 3:1923–
1929, 2003.

142

[49] C. Gui and P. Mohapatra. A self-healing and optimizing routing technique for ad
hoc networks. In ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MOBIHOC), 2003.

[50] George Aggelou and Rahim Tafazolli. RDMAR: A bandwidth-efficient routing protocol
for mobile ad hoc networks. In WOWMOM, pages 26–33, 1999.

[51] Chai-Keong Toh. Associativity-based routing for ad hoc mobile networks. Wirel. Pers.
Commun., 4(2):103–139, 1997.

[52] E. Royer and C. Toh. A review of current routing protocols for ad-hoc mobile wireless
networks. IEEE Personal Communications, April 1999.

[53] Vincent D. Park and M. Scott Corson. A highly adaptive distributed routing algorithm
for mobile wireless networks. In INFOCOM ’97: Proceedings of the INFOCOM ’97.
Sixteenth Annual Joint Conference of the IEEE Computer and Communications So-
cieties. Driving the Information Revolution, page 1405, Washington, DC, USA, 1997.
IEEE Computer Society.

[54] M. Pan, Sheng-Yan Chuang, and Sheng-De Wang. Local repair mechanisms for on-
demand routing in mobile ad hoc networks. In Dependable Computing, 2005. Proceed-
ings. 11th Pacific Rim International Symposium on, 2005.

[55] Genping Liu, Kai Juan Wong, Bu Sung Lee, Boon Chong Seet, Chuan Heng Foh, and
Lijuan Zhu. PATCH: a novel local recovery mechanism for mobile ad-hoc networks. In
Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, volume 5,
pages 2995–2999, October 2003.

[56] C. Lu, B. Blum, T. Abdelzaher, J. Stankovic, and T. He. Rap: A real-time communi-
cation architecture for large-scale wireless sensor networks. In Proceedings of the IEEE
RTAS, 2002.

[57] Tian He, J.A. Stankovic, Chenyang Lu, and T. Abdelzaher. Speed: a stateless protocol
for real-time communication in sensor networks. In Distributed Computing Systems,
2003. Proceedings. 23rd International Conference on, pages 46–55, 19-22 May 2003.

[58] Emad Felemban, Member-Chang-Gun Lee, and Member-Eylem Ekici. Mmspeed: Mul-
tipath multi-speed protocol for qos guarantee of reliability and timeliness in wireless
sensor networks. IEEE Transactions on Mobile Computing, 5(6):738–754, 2006. Stu-
dent Member-Emad Felemban and Member-Chang-Gun Lee and Member-Eylem Ekici.

[59] Hyung Seok Kim, Tarek F. Abdelzaher, and Wook Hyun Kwon. Dynamic delay-
constrained minimum-energy dissemination in wireless sensor networks. Trans. on
Embedded Computing Sys., 4(3):679–706, 2005.

143

[60] O. Chipara, Zhimin He, Guoliang Xing, Qin Chen, Xiaorui Wang, Chenyang Lu,
J. Stankovic, and T. Abdelzaher. Real-time power-aware routing in sensor networks.
IWQoS 2006. 14th IEEE International Workshop on Quality of Service, pages 83–92,
June 2006.

[61] Y. Chen, A. Liestman, and J. Liu. Clustering algorithms for ad hoc wireless networks.
Ad Hoc and Sensor Networks, 2004.

[62] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync protocol for
sensor networks. In SenSys ’03: Proceedings of the 1st international conference on
Embedded networked sensor systems, pages 138–149, New York, NY, USA, 2003. ACM
Press.

[63] Hui Dai and Richard Han. Tsync: a lightweight bidirectional time synchronization
service for wireless sensor networks. SIGMOBILE Mob. Comput. Commun. Rev.,
8(1):125–139, 2004.

[64] Suyoung Yoon, Chanchai Veerarittiphan, and Mihail L. Sichitiu. Tiny-sync: Tight time
synchronization for wireless sensor networks. ACM Trans. Sen. Netw., 3(2):8, 2007.

[65] Weilian Su and Ian F. Akyildiz. Time-diffusion synchronization protocol for wireless
sensor networks. IEEE/ACM Trans. Netw., 13(2):384–397, 2005.

[66] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Protocols for self-organization of
a wireless sensor network. Personal Communications, IEEE [see also IEEE Wireless
Communications], 7(5):16–27, 2000.

[67] Vlado Handziski, Andreas Koepke, Holger Karl, Christian Frank, and Witold Dry-
tkiewicz. Improving the energy efficiency of directed diffusion using passive clustering.
In EWSN 2004, volume 2920 of LNCS, pages 172–187, 2004.

[68] F. Silva, J. Heidemann, and R. Govindan. Network routing application programmer’s
interface, USC/Information Sciences Institute, December 2002.

[69] Kishor S. Trivedi. Probability and statistics with reliability, queuing and computer
science applications. John Wiley and Sons Ltd., Chichester, UK, UK, 2002.

144

