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Chapter 1

Introduction

1.1 Definitions

An m-cycle system of a graph G is a set of m-cycles, the edges in which partition the

edge set of G. The line graph of a graph G = (V,E) is the graph L(G) = (E,E1) where

E1 is the set of edges that join two vertices if and only if the corresponding edges in G

are adjacent. The complete multipartite graph K(a1, a2, . . . , ap) is the graph with vertex

set partitioned into parts {V1, V2, . . . , Vp}, with |Vi| = ai, in which two vertices in E are

adjacent if and only if they are in different parts. By solving this problem we investigate

the existence of 4-cycle systems of L(K(a1, a2, . . . , ap)).

1.2 History

There is a long history of problems in this area. In a more general context, Dudeney [3]

posed the following problem of seating n people at a dinner table on consecutive evenings so

that no person was ever to have the same pair of neighbors more than once. Any solution to

this problem is equivalent to finding a set of hamilton cycles of Kn with the property that

each 2-path in Kn occurs in exactly one hamilton cycle. This problem was solved when n is

even by Kobayashi, Kiyasu-Zen’iti and Nakamura[7], and some results exist when n is odd.

And this set S of 4-cycles is known as the Dudeney set. This result was extended further

by looking at the case when each pair of people is a neighbor twice. Which was equal to
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finding a set of hamilton cycles of Kn such that each two path in Kn occurs in exactly two

hamilton cycles. And this was solved by Midori, Mutoh, Kiyasu-Zen’iti and Nakamura[9].

It is quite conceivable that the restaurant has many tables of a small size, say m, instead

of just one big table. So it is natural to solve the related problem of finding a set of 2-factors

in Kn, each cycle in each 2-factor having length m, such that each 2-path in Kn occurs in

exactly one m-cycle. This problem was solved by Kobayashi and Nakamura when k = 4

[8]. Notice that in any solution to such a problem, taking the line graph of each 4-cycle

produces a 4-cycle system of L(Kn). In [6], Henrich and Nonay removed the requirement

that the set of 4-cycles be resolvable (partitionable into 2-factors), finding necessary and

sufficient conditions for the existence of a set of 4-cycles such that each 2-path is in exactly

one 4-cycle; this provides a 4-cycle system of L(Kn) with the property that every 4-cycle

in L(Kn) corresponds to a 4-cycle in Kn.

In the same spirit Colby and Rodger[2] found necessary and sufficient conditions for the

existence of a 4-cycle system of L(Kn); when n ≡ 1 (mod 8) no solutions can correspond to

the existence of set of 4-cycles in Kn such that each 2-path in Kn is in exactly one 4-cycle.

The reader may be interested in a related problem posed by Dudeney [3].Twelve meme-

bers of a club arranged to play bridge of eleven evenings, but no player was ever to have the

same partner more than once or the same opponent more than twice. And the question was

to find a scheme of seating them at three tables every evening. By dropping the require-

ment that each player partner each other player atmost once, the solution was equivalent

to finding a set S of 4-cycles of K12 with the property that each 2-path in K12 occurs in

exactly two 4-cycles. And taking the line graph of each 4-cycle in S produces a 4-cycle

system of 2L(K12).
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In this paper, we extend these results in the literature by investigating the existence of

a 4-cycle system of K(a1, a2, . . . , ap).

1.3 Notation

Throughout this paper, let G = K(a1, a2, . . . , ap). For 1 ≤ i ≤ p let Vi = {vi,1, vi,2, . . . , vi,ai}.

So the vertex set of L(G) is {{vi,x, vj,y} | 1 ≤ x ≤ ai, 1 ≤ y ≤ aj , 1 ≤ i < j ≤ p}. Define

n =
∑

1≤i≤p ai to be the number of vertices in G. It will be useful to define âiaj = n−ai−aj .
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Chapter 2

Necessary Conditions

In this chapter we investigate some neat necessary conditions which we conjecture are

sufficient.

Lemma 2.1 If there exists a 4-cycle system of L(G) then

1. ai ≡ aj (mod 2) for 1 ≤ i < j ≤ p, and

2. If ai is odd for 1 ≤ i ≤ p then,

(a) p ≡ 1(mod 8) if p is odd, and

(b) p ≡ n(mod 8) if p is even.

Proof. The degree of each vertex in L(G) is clearly

d({vi,x, vj,y}) = ai + aj − 2 + 2âiaj

since in G there are aj − 1 + âiaj edges incident with vi,x and ai − 1 + âiaj edges incident

with vj,y. Since we are assuming that a 4-cycle system of L(G) exists, each vertex in L(G)

must have even degree. Therefore, we conclude that ai ≡ aj (mod 2) and so condition (1)

is necessary.

Now suppose that ai is odd for 1 ≤ i ≤ p. We consider the cases where p is odd and

even in turn.

Case (1) If p is odd then clearly n is odd, being the sum of an odd number of odd

numbers. Since there exists a 4-cycle system of L(G), the number of edges in L(G) must
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be divisible by 4. Each vertex in Vi in G is incident with n − ai edges. By considering,

adjacent pairs of edges at each vertex in G in turn it follows that

|E(L(G))| =
p∑

i=1

(ai(n− ai)(n− ai − 1))/2.

So, 8 must divide

2|E(L(G))| =
p∑

i=1
(ain

2)− 2
p∑

i=1
(na2

i ) +
p∑

i=1
(a3

i ) +
p∑

i=1
(a2

i )−
p∑

i=1
(nai)

= n3 − (2n− 1)
p∑

i=1
(a2

i ) +
p∑

i=1
(a3

i )− n2. (∗)

Notice that, since ai is odd we can write

ai = 8z + l for some l ∈ {1, 3, 5, 7}

so, a2
i = 64z2 + 16zl + l2,

so, a2
i ≡ 1 (mod 8)

This also implies that a3
i = a2

i ai ≡ ai (mod 8). Similarly, since n is also odd we can see

that n2 ≡ 1(mod 8) and n3 ≡ n (mod 8). Thus from (*), we can say that mod 8:

0 ≡ 2|E(L(G))| ≡ (n− (2n− 1)p + n− 1) = ((2n− 1)(1− p)).

So clearly p ≡ 1 (mod 8). Hence condition (2a) is necessary.

Case (2) Now supose that p is even and therefore, n is also even. Clearly n3 ≡ 0 (mod

8).

Again we know that 2|E(L(G))| is divisible by 8 and so, from (*) we have mod 8:
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0 ≡ 2|E(L(G))|

≡ (0− (2n− 1)p + n− n2)

≡ (−(2n− 1)p− n)

≡ (p− n)

which implies that p ≡ n (mod 8), thus proving that condition (2b) is necessary.
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Chapter 3

all parts even

all parts odd: odd number of parts

In this chapter, we first show that the necessary conditions in Lemma 2.1 are sufficient

when all vertices in G have even degree. Then we deal with the case when all parts are odd

and there is an odd number of parts.

We begin with some useful decompositions. In [10] Sajna proved the necessary and

sufficient conditions for the even length cycle decomposition of Kn when n is odd. Also,

in [11] Sotteau proved a result regarding even length cycle decompositions of the complete

graph Kx,y These results were a more general solution to the following lemma, which is easy

to obtain for 4-cycles.

Lemma 3.1 There exists a 4-cycle system of:

1. Kn if and only if n ≡ 1 (mod 8), and

2. Of the complete bipartite graph Kx,y if and only if x and y are even.

In [1] Cavenagh and Billington investigated the necessary and sufficient conditions for

the existence of an edge-disjoint decomposition of any complete multipartite graph into

4-cycles. The next result is again part of a more general result, and again follows quite

readily from Lemma 3.1.

Theorem 3.1 [1] There exists a 4-cycle system of G if and only if

1. All parts have even size, or
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2. All parts have odd size and p ≡ 1 (mod 8).

The last result we need now is well known, but easy to prove here. Let K − F be the

graph formed from the graph K by removing the edges in F .

Lemma 3.2 There exists a 4-cycle system of Kn − F for any even n and any 1-factor F .

Proof. Let n = 2x. Let the vertex set of Kn be {1, 2, . . . , x} × {1, 2}. The following

4-cycles form the required 4-cycle system:

{((a, 1), (b, 1), (a, 2), (b, 2)) | 1 ≤ a < b ≤ x}.

Figure 3.1: 4-cycle system

We are now ready to consider 4-cycle systems of L(G).

Theorem 3.2 There exists a 4-cycle system of L(G) if

1. ai is even for 1 ≤ i ≤ p, or
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2. ai is odd for 1 ≤ i ≤ p and p ≡ 1(mod 8).

Proof. The edges of L(G) can be partitioned into sets that induce complete graphs,

namely the complete graphs K(vi,x) with vertex set {{vi,x, vj,y} | 1 ≤ y ≤ aj and 1 ≤ j ≤

p, j 6= i} for each vertex vi,x in V (G). So the edges in K(vi,x) correspond to all the 2-paths

in G with middle vertex vi,x.

By Theorem 3.1, there exists a 4-cycle system B of G. Consider the set of 4-cycles S

in L(G) formed by taking the line graph of each 4-cycle in B. For each vertex vi,x in V (G),

the edges in K(vi,x) contained in 4-cycles in S form a 1-factor F (vi,x) of K(vi,x) (to see

this, observe that the 4-cycles in P pair the edges incident with vi,x in V (G), and each such

pair produces an edge in K(vi,x) which is vertex-disjoint from the other such pairs).

Also, each such complete graph has even order, so by Lemma 3.2 there exists a 4-cycle

system T (vi,x) of K(vi,x)− F (vi,x).

So the union of the T (vi,x) over all the vertices vi,x in V (G) together with the 4-cycles

in S produce the required 4-cycle system.

9



Chapter 4

All parts odd:even number of parts

4.1 Line Graphs of Kn −Ku

In this chapter we make progress in tackling the difficult last case, solving a problem

that is of interest in its own right. Much progress solving existence problems for graph

designs has been made by using decompositions of complete graphs with holes; that is, of

Kn − Ku. Such decompositions are now of interest in their own right. This is a graph in

the family we are considering in this paper, namely the graph G with ap = u, and ai = 1

for 1 ≤ i ≤ p− 1, and p = n−u+1. We begin with a result by Henrich and Nonay referred

to in the introduction. Throughout this chapter we deal with the case where ai is odd for

1 ≤ i ≤ p and p is even.

Theorem 4.1 [6] Let p be even. There exists a 4-cycle system of L(Kp).

We shall also use some of the results by Fu, Fu and Rodger regarding 4-cycle systems

of Kn - E(F) and 2Kn - E(F) for all 2 regular subgraphs F.

Theorem 4.2 [4, 5] There exists a 4-cycle system of Kz −P for any graph P of maximum

degree at most 3 if and only if

1. z is odd,

2. the number of edges in Kz − P is divisible by 4, and

3. if z = 8x+1 then P is not one of two exceptional graphs, both of which are 3-regular.

10



We will use this result several times, including the following corollary. Let Cz denote

a cycle of length z.

Corollary 4.1 There exists a 4-cycle system of Kz − P if:

1. z ≡ 1 (mod 8) and P = ∅,

2. z ≡ 3 (mod 8) and P = C3,

3. z ≡ 5 (mod 8), z 6= 5, and P = C6, and

4. z ≡ 7 (mod 8) and P = C5.

Our final preparatory result is needed just for the case when p = 6. Form the graph

G ∨H from G ∪H by joining each vertex in G to each vertex in H.

Lemma 4.1 There exists a set F = {F (1), . . . , F (4)} of four 1-factors in K8x for which

there exists a 4-cycle system of (K8x − F ) ∨K1.

Proof. Let the vertex set be (Z4 × Z2 × Zx) ∪ {v}. The required cycle system can be

formed by taking:

1. F (k) = {{(j, 0, i), (j + k, 1, i)} | j ∈ Z4, i ∈ Zx} for each k ∈ {1, 2, 3},

2. F (4) = {{(j, k, i), (j + 2, k, i)} | j, k ∈ Z2, i ∈ Zx},

3. B(1) = {((0, 0, i), (1, 0, i), (2, 0, i), (3, 0, i)), (v, (j, 0, i), (j, 1, i), (j + 1, 1, i)) | j ∈ Z4,

i ∈ Zx}, and

4. A 4-cycle system B(y, z) of K8,8 with bipartition {{Z4 × Z2 × {y}}, {Z4 × Z2 × {z}}

for 0 ≤ y < z < x (see Lemma 3.1).

11



Figure 4.1: F(1): 1 factor of K8x

Figure 4.2: F(2): 1 factor of K8x
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Figure 4.3: F(3): 1-factor of K8x

Figure 4.4: F(4): 1-factor of K8x
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We are now ready to find 4-cycle systems of L(Kn−Ku), which we state in the following

form. By Lemma 2.1, u ≡ 1 (mod 8) is a necessary condition when p is even. The case

where p is odd is handled in the previous chapter.

4.2 4-cycle system of L(K(1,1,. . . ,1,8x + 1)), p 6= 6

Theorem 4.3 There exists a 4-cycle system of L(G) if p is even, ai = 1 for 1 ≤ i ≤ p− 1

and ap = 8x + 1.

Proof. Let Vj = {t(j)} for 1 ≤ j ≤ p − 1 and let Vp = {t(0), s(i) | 1 ≤ i ≤ 8x}. For

each vertex w ∈ V (G), let K(w) be the complete subgraph of L(G) induced by the vertex

set {{w,w′} | w′ ∈ V (G) \ {w}}. So K(w) contains p − 1 vertices if w ∈ Vp, and K(w)

contains p + 8x − 1 vertices otherwise. For 1 ≤ j ≤ p − 1 it will also be useful to define

K ′(t(j)) to be the subgraph of K(t(j)) induced by the vertices in {{t(j), s(i)} | 1 ≤ i ≤ 8x}.

If p = 2 then L(G) is isomorphic to K8x+1, and if x = 0 then L(G) is isomorphic to

K1, so the result follows from Lemma 2.1.

Now assume that x ≥ 1 and p ≥ 4. We will handle the case p = 6 last, so for now

assume that p 6= 6. Let F = {F (i) | 1 ≤ i ≤ 3} be a set of 3 edge disjoint 1-factors in K8x

defined on the vertex set {1, 2, . . . , 8x}. The construction contains 5 types of 4-cycles.

Type 1. Let B(1) be a 4-cycle system of L(Kp) in which Kp is defined on the vertex

set {t(j) | 0 ≤ j ≤ p− 1}. This exists by Theorem 4.1.

Type 2. For 1 ≤ i ≤ 8x let B(2, i) be a 4-cycle system of K(s(i)) − C(s(i)), where

C(s(i)) is the cycle ({s(i), t(1)}, {s(i), t(2)}, . . . , {s(i), t(α)}), and where α = 0, 3, 6 or 5

14



when p − 1 ≡ 1, 3, 5 or 7 (mod 8) respectively. Such a 4-cycle system exists by Corollary

4.1. Notice that since p 6= 6, p− 1 ≥ α, so K(s(i))− C(s(i)) is well defined.

Type 3. If α > 0 then define the following 4-cycle systems. For 1 ≤ i ≤ 8x, al-

ternately color the edges of C(s(i)) with 1 and 2, except if α is odd then the last edge

{{s(i), t(1)}, {s(i), t(α)}} is colored 3; so the same proper edge-coloring is used on each of

the 8x cycles. For each edge {{s(i), t(j)}, {s(i), t(j +1)}} (reducing j +1 mod α) in C(s(i))

colored k, form the 4-cycle ({s(i), t(j)}, {s(i), t(j +1)}, {s(i1), t(j +1)}, {s(i1), t(j)}), where

{i, i1} is the edge incident with vertex i in F (k). (This same 4-cycle is defined again when

i1 is used instead of i, but we only use it once, of course, in the following union.) Let B(3)

be the union of all such 4-cycles. Note that the edges in the 4-cycles in B(3) contain:

1. All the edges in C(s(i)) for 1 ≤ i ≤ 8x, and

2. The edges in a 2-factor R(t(j)) of K ′(t(j)) for 1 ≤ j ≤ α.

The second property holds since, when j ≤ α, for each vertex {t(j), s(i)} in K ′(t(j)), the two

4-cycles containing the edges {{s(i), t(j−1)}, {s(i), t(j)}}, and {{s(i), t(j)}, {s(i), t(j+1)}}

(reducing sums mod α) colored say a and b also contain the 2 edges {{t(j), s(i)}, {t(j), s(ia)}},

and {{t(j), s(i)}, {t(j), s(ib)}} where {i, ia} and {i, ib} are edges in F (a) and F (b) respec-

tively. So by this explanation, in fact R(t(j)) is isomorphic to F (a) ∪ F (b). If j > α or if

p− 1 ≡ 1 (mod 8) (this is the case where α = 0) then define R(t(j)) = ∅.

Type 4. For 1 ≤ j ≤ p − 1, let B(4, j) contain the 4-cycles in a 4-cycle system

of K8x+1 − R(t(j)) defined on the vertex set V (K ′(t(j))) ∪ {{t(j), t(0)}}. This exists by

Theorem 4.2 since:

1. Each vertex has degree 8x or 8x− 2 which is even,

15



2. The number of edges is (8x + 1)4x if R(t(j)) = ∅ and is (8x + 1)4x− 8x = (8x− 1)4x

otherwise, so is divisible by 4, and

3. R(t(j)) for 1 ≤ j ≤ α is not one of the exceptional graphs since it is 2-regular.

Type 5. For 1 ≤ j ≤ p − 1 let B(5, j) be a 4-cycle system of the complete bipar-

tite graph Kp−2,8x with bipartition of the vertex set {{{t(j), t(z)} | 1 ≤ z ≤ p − 1, z 6=

j}, V (K ′(t(j)))}. This exists by condition (2) of Lemma 3.1.

Then

B(1) ∪ (∪1≤i≤8xB(2, i)) ∪B(3) ∪ (∪1≤j≤p−1B(4, j)) ∪ (∪1≤j≤p−1B(5, j))

provides the required 4-cycle system.

4.3 4-cycle system of L(K(1,1,. . . ,1,8x + 1)), p = 6

Finally, suppose that p = 6. The difficulty here is that the Type 2 4-cycles must be

different because it is impossible to fit a 6-cycle in a graph with only 5 vertices. This can be

overcome by the use of 4 1-factors in K ′(t(1)), for example. Nevertheless, the construction

is very similar, so a brief description follows, again defining the five types of 4-cycles in turn.

If the same set of cycles is used, we simply state that. In this case, let {F (1), . . . , F (4)} be

a copy of the 4 1-factors defined in Lemma 4.1 on the vertex set {1, 2, . . . , 8x}.

Type 1. Same as before.
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Type 2. Let B(2) = {({s(i), t(2)}, {s(i), t(4)}, {s(i), t(3)}, {s(i), t(5)}) | 1 ≤ i ≤ 8x}.

Let C(s(i)) be the set of 6 edges occurring in no 4-cycle in B(2) (these edges induce two

copies of K3 with one vertex in common).

Type 3. For 1 ≤ i ≤ x, properly color the edges of C(s(i)) with the 4 colors in

{1, 2, 3, 4}. For each edge {{s(i), v1}, {s(i), v2}} in C(s(i)) colored k, form the 4-cycle

({s(i), t(j)}, {s(i), t(j + 1)}, {s(i1), t(j + 1)}, {s(i1), t(j)}), where {i, i1} is the edge incident

with vertex i in F (k). These 4-cycles use the edges forming:

1. a 4-factor R(t(1)) isomorphic to ∪1≤k≤4F (k) in K ′(t(1)), and

2. for 2 ≤ j ≤ 5 a 2-factor R(t(j)) in K ′(f(j)), each being isomorphic to the union of

two of these four 1-factors.

Type 4. For 1 ≤ j ≤ p − 1, let B(4, j) contain the 4-cycles in a 4-cycle system of

K8x+1 − R(t(j)) defined on the vertex set V (K ′(t(j))) ∪ {{t(j), t(0)}}. This exists by

Lemma 4.1 if j = 1 and by Theorem 4.2 otherwise.

Type 5. Same as before.
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Chapter 5

Conclusion

By pooling all the results in this thesis we see that there exists a 4-cycle system of the

line graph of G for the following cases:

1. All parts are even.

2. All parts are odd and

(a) p ≡ 1 (mod 8), when p is odd

(b) ai = 1 for 1 ≤ i ≤ p− 1 and ap = 8x +1, when p is even,

Finally, we conjecture the following:

Conjecture 5.1 There exists a 4-cycle system of the line graph of G for the following case:

1. All parts are odd and p is even.
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