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Dissertation Abstract
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106 Typed Pages

Directed by Sadasiva M. Rao

Due to an increasing emphasis on fabrication with composite materials, it is important

to be able to model accurately the electromagnetic properties of composite structures. In

this work, we demonstrate a new pair of orthogonal pulse vector basis functions for the

calculation of electromagnetic scattering from arbitrarily-shaped material bodies. These

subdomain basis functions are intended for use with triangular surface patch modeling ap-

plied to a method of moments (MoM) solution. For modeling the behavior of dielectric

materials, several authors have used the same set of basis functions to represent equiva-

lent electric and magnetic surface currents. This practice can result in zero-valued or very

small diagonal terms in the moment matrix and an unstable numerical solution. To pro-

vide a more stable solution, we have developed orthogonally placed, pulse basis vectors:

one for the electric surface current and one for the magnetic surface current. The basis

function for the electric surface current is placed perpendicular to each patch edge, while

the basis function for the magnetic surface current is placed parallel to each patch edge.

This combination, together with appropriate testing functions, ensures strongly diagonal

moment matrices. The basis functions are suitable for implementing solutions using the
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electric field integral equation (EFIE) or the magnetic field integral equation (HFIE.) To

obtain unique solutions at all frequencies, including characteristic frequencies for closed

bodies, the EFIE and HFIE may be expanded with paired pulse vector basis functions

and then arithmetically combined by any of the combined-field methods such as combined

field integral equation (CFIE), Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT), or

Müller formulations. In this work, we describe the numerical implementations of EFIE and

HFIE solutions and show example results for three-dimensional, canonical figures. Those

scattering results obtained by using pulse vector basis functions are compared to results

obtained from an exact method or a more accurate numerical method specialized for a par-

ticular type of geometry, such as a body of revolution. In successive chapters, the numerical

procedures and solutions are shown for perfect conductors (PEC’s), dielectric bodies, and

PEC/dielectric composites. The composite scatterers may contain multiple dielectric and

PEC parts, either touching or non-touching.
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Chapter 1

Introduction

1.1 Overview

In this work we present a new method for calculating the electromagnetic scattering

from arbitrarily shaped, three-dimensional objects in the resonant size [1] range up to a

few wavelengths; the objects may be electrical conductors, dielectrics, or a composite of

materials having different conducting properties. The novelty of the method lies in the

application of new basis functions specially designed for electromagnetic field problems. Two

spatially orthogonal, unit pulse basis vectors are defined in conjunction with flat, triangular

patches on the scattering surfaces. The pulse basis functions represent the unknown electric

and magnetic equivalent surface currents [2] that will be determined by application of

the method of moments (MoM) [3]. The geometric properties of the new basis functions

allow unique and accurate solutions to be obtained for any geometry/material configuration

using any standard combined field formulation such as Combined Field Integral Equation

(CFIE) [4], Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) [5], [6], or the Müller [7]

formulation.

1.2 Background

1.2.1 Scattering Solutions

How can we calculate the radiation from the surface of an object that has been electri-

fied, either by the attachment of a current-carrying wire, or by irradiation from an exterior

or interior source? If the scatterer’s surface geometry conforms to the coordinate surfaces in

one of eleven known orthogonal coordinate systems [8], the Helmholtz equation variables in

each coordinate may be separated and solved for analytically to produce an exact scattering
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solution. This is the case for the sphere [2], the infinite cylinder, the prolate and oblate

spheroids, and a variety of conic sections. However, most scattering objects do not conform

to these geometries, and for other shapes, approximations must suffice.

Balanis [9] and Richmond [10] have given informative reviews of calculation techniques

for PEC and dielectric scatterers, respectively. For electrically large, smooth objects longer

than ten wavelengths, simple analytic solutions are available. The ray-optics, or geometric

optics (GO) method, for example, has been used for dielectric cylinders and spheres [11].

Biggs [12] applied GO to calculate the RCS for a PEC prolate spheroid. According to

Richmond, this method “often provides reasonably accurate results for slightly curved di-

electric shells but is inaccurate for rapidly curving shells and the edge region of a truncated

shell.” The geometric theory of diffraction (GTD), originated by Keller [13], and the phys-

ical theory of diffraction (PTD), originated by Ufimtsev [14], are two further refinements

that incorporate edge diffraction into the ray-optics solutions. Molinet [15] observes that

ray tracing methods have been greatly improved for more complex geometries, and eventu-

ally accurate results can be found for scatterers of about one wavelength if special attention

and methods are applied to all discontinuities such as corners, vertices, edges, and curve

discontinuities.

For scattering problems with no exact solution, perturbation theory and variational

methods are two mathematical approximation methods [2]. Perturbation methods start

from a geometrically similar problem that does have an exact solution and calculate the

change in the solution; Eftimiu [16], [17] used this method to compute scattering from corru-

gated PEC cylinders. Variational methods approximate the desired quantities themselves;

Cohen [18] employed a variational approach for a circular dielectric cylinder. However,

Richmond states that this approach becomes complicated and lengthy for dielectric bodies

of arbitrary shape.

For layered dielectric bodies of revolution (BOR’s) of up to a few wavelengths, iter-

ative methods have been used. In the 1950’s, Rhodes [19] and Andreasen [20] calculated

the scattering from thin dielectric shells. Govind, Wilton, and Glisson [21] later modeled

2



inhomogeneous missile plumes by dividing the plumes into piecewise homogeneous layers.

Their method was an extension of Mei’s unimoment method for BOR’s [22].

For arbitrary geometries in the resonant size range, numerical methods provide a prac-

tical means of obtaining a very good approximation for scattering. Numerical methods

may be classified into integral equation (IE) and differential equation (DE) methods. Using

integral equation methods such as MoM, we solve first for equivalent currents and second

for the scattered fields resulting from those currents. In contrast, using differential equation

methods such as finite element analysis and the finite difference time domain method, we

solve directly for the scattered fields. In our opinion, integral equations provide the most

accurate solutions because they incorporate Green’s functions that enforce the radiation

condition: the scattered fields diminish to zero at infinite distance. If the scattering object

contains regions of homogeneous permittivity ε and permeability μ, it is sufficient to write

boundary equations to express the continuity of the tangential electric and magnetic fields

across the region boundaries. Our work is based on such a technique, the MoM surface

integral equation technique.

1.2.2 Method of Moments

Harrington [23] has written a history of the development of MoM, beginning with

Galerkin’s work with linear matrix equations circa 1915. In his development, Harrington

wove Galerkin’s method together with Rumsey’s reaction concept [24] and the Rayleigh-

Ritz variational method; in a departure from Galerkin’s method, he decided that weighting

and testing functions could be made different from each other in order to facilitate the

speed of calculation. Harrington chose the name “method of moments” to describe his

method because it most closely followed the work of Kantorovich and Akilov [25], who

used that name. Some of the earliest MoM solutions were published in 1963 by Mei and

Van Bladel [26], who calculated scattering from PEC rectangular cylinders. Richmond [10]

in 1965 calculated the fields from a thin dielectric cylinder of arbitrary shape after first

using surface integrals and MoM to find the polarization currents. In 1968, Harrington [3]

3



popularized MoM with his text book, Field Computation by Moment Methods. Since then,

continuous increases in digital computer processing speed and memory size have served to

make numerical methods commonplace tools for electromagnetic analysis and design. Due

to their faster computational speed, surface MoM techniques have remained more popular

than volume integral MoM techniques for solving three-dimensional problems.

Chang and Harrington used fictitious equivalent electric and magnetic surface currents,

a concept described by Schelkunoff [27], to calculate the characteristic modes for two-

dimensional dielectric bodies. We will use the electric field integral equation (EFIE) and

magnetic field integral equation (HFIE) in the form given in their 1977 paper [5] to calculate

the scattered fields from arbitrarily-shaped, three-dimensional dielectric scatterers. For each

region of interest:

EFIE :
[
j ωA + ∇Φ +

1
ε
∇× F

]
tan

=
[
E i

]
tan

(1.1)

HFIE :
[
j ωF + ∇Ψ − 1

μ
∇× A

]
tan

=
[
H i

]
tan

(1.2)

where the magnetic and electric vector potentials, A and F , respectively, are defined in

terms of the equivalent electric and magnetic surface currents JS and MS as

A = μ

∫∫
S

JS G dS′ (1.3)

F = ε

∫∫
S

MS G dS′ , (1.4)

the electric scalar potential Φ is defined as

Φ =
1
ε

∫∫
S

qe
S G dS′ (1.5)

=
j

ωε

∫∫
S
∇ • JS G dS′ , (1.6)

4



the magnetic scalar potential Ψ is defined as

Ψ =
1
μ

∫∫
S

qm
S G dS′ (1.7)

=
j

ωμ

∫∫
S
∇ • MS G dS′ , (1.8)

qe
S is the electric surface charge density related to the electric current density by the equation

∇ • JS = −jω qe
S , (1.9)

qm
S is the magnetic surface charge density related to the magnetic current density by the

equation

∇ • MS = −jω qm
S , (1.10)

the Green’s function G is defined as

G =
e−jkR

4πR
(1.11)

R = |r − r′| , (1.12)

μ and ε are the permeability and permittivity constants of the surrounding medium, S′

denotes the source surface, and k is the wave number. The vectors r and r′ are position

vectors to observation and source points, respectively, from a global coordinate origin. The

left sides of (1.1) and (1.2) represent tangential reflected fields, while the right sides represent

tangential incident fields. The derivation of (1.1) and (1.2) is given in Appendix A.

How can the surface integral method equate the incident and scattered fields at the

surface of a dielectric body? Chang and Harrington write separate equations for the inner

and outer sides of the surface. The total solution is viewed as the superposition of two cases;

in the first case, the inner region has zero field and in the second case, the outer region has

zero field. When both cases are added together, the tangential fields have a nonzero sum in

both inner and outer regions. The equivalent surface currents JS and MS are expressions
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of the actual fields n̂ × H tan and Etan × n̂, rather than actual currents, where n̂ is a unit

vector normal to the surface and pointing into the region of scattering. It is assumed that

the outer and inner equivalent surface currents have opposite direction, and therefore, sum

to zero.

1.3 Statement of the Problem

Maue’s integral equation [29] is commonly employed to expand the portions of (1.1)

and (1.2) containing 1
ε∇× F and 1

μ∇× A. Most often, this equation is seen in the form:

Hs(J) = − 1
μ
∇× A = −∇×

∫∫
S

JS GdS′

= −n̂ × JS

2
−

∫∫
S

��∇G × JS dS′ (1.13)

where the deleted integral symbol
∫∫
�� indicates the principal value. By duality [2],

Es(M) =
1
ε
∇× F = ∇×

∫∫
S

MS GdS′

= n̂ × MS

2
+

∫∫
S

��∇G × MS dS′ . (1.14)

In MoM scattering solutions, (1.13) and (1.14) are usually treated with Rao-Wilton-

Glisson (RWG) [28] basis functions together with triangular patch modeling. In the RWG

method, the testing functions are the same as the basis functions. It may be noted that the

RWG basis functions were originally defined for PEC MoM problems. The application of

these basis functions for dielectric/composite body problems is not entirely satisfactory for

the following reason.

When (1.13) and (1.14) are expanded and tested, unstable and incorrect solutions can

occur if the basis and testing functions are not carefully chosen. For example, if we call

the testing vectors t and �, the expressions � • (−n̂ × JS
2 ) or t • (n̂ × MS

2 ) will tend to

be insignificantly small if, in either expression, the testing vector and the current basis

vector are parallel. Unfortunately, use of the RWG basis functions for both currents JS

6



and MS tends to create this scenario. In the MoM matrix equation, the terms −n̂×JS
2 and

n̂× MS
2 are moment matrix self terms, which lie on the diagonal and should be dominant.

We implement basis and testing functions that will preserve these self term portions as well

as the principal values of the curl terms in (1.1) and (1.2).

At certain frequencies, known as characteristic frequencies, false or spurious mathemat-

ical solutions exist for the EFIE and HFIE for a closed body, whether the body is made of

PEC, dielectric or composite material. Yaghjian [30] has discussed this problem thoroughly.

In order to eliminate these spurious solutions, a number of combined field methods have

been devised, such as CFIE, PMCHWT, and Müller. Each of these methods combines the

EFIE and HFIE in a particular way that obtains correct solutions at all frequencies includ-

ing the characteristic frequencies. The paired pulse basis functions presented in this work

allow the implementation of any of these formulations accurately and efficiently. Use of the

basis and testing functions presented here represents a relatively straightforward approach

and a simpler composite solution, when compared to the methods proposed by Sheng, Jin,

Song et al. [31] or Kishk and Shafai [32].

1.4 The Proposed Method

nth edge

midpoint

centroid

edge node

−
nf+

nf

ng
+

nT
−

nTSn

Figure 1.1: Basis functions fn and gn associated with the nth edge.
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At the outset, we assume a triangular patch model for the given object. Within the

triangular surface mesh, T+
n and T−

n represent two triangles connected to the nth edge as

shown in Fig. 1.1. The edges of each triangle other than the nth edge we will call free edges.

Within each triangle, the surface is planar. We define two mutually orthogonal vector basis

functions associated with the nth edge as

fn(r) =

⎧⎪⎨
⎪⎩

n̂± × gn, r ∈ Sn ,

0, otherwise
(1.15)

and

gn(r) =

⎧⎪⎨
⎪⎩

unit vector ‖ nth edge, r ∈ Sn ,

0, otherwise
(1.16)

where n̂± represents the unit vector normal to the plane of the triangle T±
n . The domain of

the basis functions is Sn, the region whose perimeter is drawn by connecting the mid-points

of the free edges to the centroids of triangles T±
n and to the nodes of edge n. Shown as a

shaded area in Fig. 1.1, Sn is 2/3 of the total triangular patch area. The basis functions

defined in (1.15) and (1.16) are unit pulse functions that are orthogonal to each other. In

dielectric scattering problem solutions, we will use fn to expand JS and gn to expand MS

in the integral equations.

We further define the testing functions associated with edge m as vectors t±m and �m, as

shown in Fig. 1.2. Vector t+
m extends from the triangle T+

m centroid to the edge m midpoint;

t−m extends from the edge m midpoint to the triangle T−
m centroid. Vector �m extends from

the beginning to the end of edge m, in the direction of gm. The testing vector t is used

in conjunction with the EFIE, while the testing vector � is used in conjunction with the

HFIE to solve dielectric problems. Testing the expanded integral equations then results in

the nonzero products t • f , t • (n̂ × g
2 ), � • g, and � • (−n̂ × f

2 ). With this arrangement,

all of the currents are well-tested.

8



mth edge

centroid

+
mt −

mt

mT + mT −

ml

edge node

Figure 1.2: Testing functions tm and �m associated with the mth edge.

1.5 Scope

The example problems we address are frequency domain problems concerning scattering

bodies that may be decomposed into homogeneous regions having real or complex ε. While

the accuracy of a given solution may be somewhat affected by the meshing and integral

evaluation techniques chosen, such questions are not the focus of the paper and are not

dwelt upon. The triangular meshes have been drawn fine enough to produce solutions that

appear to the eye to be reasonably well converged when plotted. Meshes in the example

problems follow the rule of thumb of at least 300 unknowns per square wavelength of

scattering surface area. Also, the meshes have been drawn somewhat irregularly to avoid

a particular type of model-induced error called grid error. The intent of the dissertation

is to make a mathematical argument for the pulse basis pair method and to demonstrate

correct scattering solutions for a number of mostly canonical geometries that can be solved

by another trusted method for comparison. Numerical integrations have been performed

using the Gaussian quadrature method for triangles.
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1.6 Organization

The body of this document contains four chapters that were initially written to be pub-

lished as individual journal articles. They have been reformatted and slightly expanded for

inclusion here. Each chapter is self-contained and may contain some repetition of previous

text. Chapter 2 discusses the f basis function for equivalent electric surface currents in

PEC bodies. Chapter 3 discusses the g basis function, also for equivalent electric surface

currents in PEC bodies. While either basis function may be employed for EFIE or HFIE

solutions for PEC bodies, chapters 2 and 3 present EFIE solutions only. Chapter 4 describes

the use of the f and g basis functions for equivalent electric and magnetic surface currents,

respectively, in dielectric bodies. In chapter 4, EFIE and HFIE solutions are compared for

the same problems; the two solutions can be combined in the appropriate manner to obtain

any of the combined field formulations. In chapter 5, the use of f and g basis functions is

described for the solution of composite scattering bodies. For those examples, EFIE solu-

tions are shown for composites modeled as combinations of open and closed bodies, and an

HFIE solution is shown for a composite modeled as a combination of two closed bodies.

A derivation of the dielectric integral equations may be found in Appendix A. Appendix

B contains an example of the flexibility of the pulse vector basis functions; a PEC sphere

scattering problem is solved four times consecutively by using either f or g basis functions

for the EFIE or HFIE method.
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Chapter 2

New Basis Functions for the Electromagnetic Solution of

Arbitrarily-shaped, Three-dimensional Conducting Bodies

Using Method of Moments

2.1 Overview

In this chapter, we present a new set of basis functions, defined over a pair of planar

triangular patches, for the solution of electromagnetic scattering and radiation problems as-

sociated with arbitrarily-shaped surfaces using the method of moments solution procedure.

The basis functions are constant over the function subdomain and resemble pulse functions

for one- and two-dimensional problems. Further, another set of basis functions, orthogonal

to the first set, is also defined over the same physical space. The primary objective of

developing these basis functions is to utilize them for electromagnetic solutions involving

conducting, dielectric, and composite bodies. The present chapter, however, involves only

conducting bodies along with several numerical results.

2.2 Introduction

The solution of electromagnetic scattering/radiation problems involving arbitrary shapes

and material composition is of much interest to commercial as well as defense industries.

The method of moments (MoM) [2] solutions to these problems generally involve triangular

patch modeling, utilizing Rao-Wilton-Glisson (RWG) [28] basis functions. It may be noted

that the RWG basis functions have been defined for the solution of conducting bodies and

the utilization of the same basis functions for dielectric/composite bodies is less than satis-

factory. The primary difficulty associated with a material body solution is the requirement

of two orthogonal basis functions to express unknown electric and magnetic surface currents
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JS and MS . In our opinion, using the same basis functions for both JS and MS is not a

good idea and invariably results in numerical difficulties. Consequently, a host of techniques

has been developed which involve either tinkering with the basis functions or modifying the

testing procedures to apply for material bodies [31, 33, 34]. Keeping these difficulties in

perspective, in this work, we present two orthogonal sets of basis functions that can be used

for conducting as well as material bodies. The solution of the material body problem will

be presented in due course.

2.3 Description of the Problem

x

y

z

S

PEC θ

ϕ

E
i

Figure 2.1: Arbitrarily-shaped conducting body excited by an incident electromagnetic
plane wave.

Let S denote the surface of an arbitrarily-shaped perfectly conducting body illuminated

by an incident electromagnetic plane wave Ei as shown in Fig. 2.1. We assume S to be open

or closed and orientable, possessing a piecewise continuous normal. S may be composed of

intersecting surfaces. Using the equivalence principle, potential theory, and the free-space

12



Green’s function [2], the electric field integral equation (EFIE) is given by

[jωA + ∇Φ]tan = Ei
tan (2.1)

where the subscript tan refers to the tangential component. In (2.1),

A = μ

∫∫
S

Js G dS′ (2.2)

Φ = ε−1

∫∫
S

qs G dS′ (2.3)

G =
e−jkR

4πR
(2.4)

R = |r − r′| , (2.5)

ε and μ are the permittivity and permeability constants of the surrounding medium, k is

the wave number, and r and r′ represent the position vectors to observation and source

points, respectively, from a global coordinate origin. The unknown surface current density

Js is related to the charge density qs by the continuity equation, given by

∇ • Js = −jω qs . (2.6)

For the numerical solution of (2.1), we apply the method of moments formulation

using planar triangular patch modeling and the basis functions as described in the following

section:

2.4 Description of Basis Functions

Let T+
n and T−

n represent two triangles connected to the edge n of the triangulated

surface model as shown in Fig. 2.2. We define two mutually orthogonal vector basis
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nth edge

midpoint

centroid

edge node

−
nf+

nf

ng
+

nT
−

nTSn

Figure 2.2: Basis function description.

functions associated with the nth edge as

fn(r) =

⎧⎪⎨
⎪⎩

n̂± × �̂, r ∈ Sn ,

0, otherwise
(2.7)

and

gn(r) =

⎧⎪⎨
⎪⎩

�̂, r ∈ Sn ,

0, otherwise
(2.8)

where Sn represents the region obtained by connecting the mid-points of the free edges to

the centroids of triangles T±
n , and to the nodes of edge n. This is shown shaded in Fig. 2.2.

Also, �̂ and n̂± represent the unit vector along the nth edge and the unit vector normal to

the plane of the triangle T±
n , respectively. Note that the basis functions defined in (2.7) and

(2.8) are actually the pulse functions defined over the region Sn. It is well-known that the

pulse functions do not have continuous derivatives but result in delta distributions along

the boundary. This point is crucial in modeling the charge density and the calculation of

scalar potential, which may be accomplished as described in the following section. Also,

note that in this chapter, only perfect electric conductor (PEC) bodies are analyzed and

hence only fn’s are used in the method of moments solution.
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2.5 Numerical Solution Procedure

mth edge

centroid

+c
mr

−c
mr

mT + mT −

mr

edge midpoint

Figure 2.3: Testing paths associated with the mth edge.

As a first step, we consider the testing procedure. Consider the mth interior edge,

associated with triangles T±
m , as shown in Fig. 2.3. We integrate the vector component of

(2.1) parallel to the path from the centroid rc+
m of T+

m to the midpoint of the edge rm and

thence from rm to the centroid of T−
m given by rc−

m . For each section of the path integration,

we approximate A and Ei by their respective values at the mid-points of the path. Thus,

we have,

jωA

(
rm + rc+

m

2

)
• (rm − rc+

m ) + jωA

(
rm + rc−

m

2

)
• (rc−

m − rm)+

[
Φ(rc−

m ) − Φ(rc+
m )

]
= Ei

(
rm + rc+

m

2

)
• (rm − rc+

m )+

Ei

(
rm + rc−

m

2

)
• (rc−

m − rm) (2.9)

for m = 1, 2, 3, · · · , N , where N represents the total number of interior edges in the trian-

gulation scheme, i.e., excluding the edges on the boundary for an open body.

Next, we consider the expansion procedure. Using the basis functions fn defined in

(2.7), we approximate the unknown current JS as

JS =
N∑

n=1

Infn . (2.10)
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Next, substituting the current expansion (2.10) into (2.9) yields an N ×N system of linear

equations which may be written in matrix form as ZI = V , where Z = [Zmn] is an N ×N

matrix and I = [In] and V = [Vm] are column vectors of length N . The elements of Z and

V are given by

Zmn = jω
[
A+

mn • (rm − rc+
m ) + A−

mn • (rc−
m − rm)

]
+ Φ−

mn − Φ+
mn (2.11)

Vm = E+
m • (rm − rc+

m ) + E−
m • (rc−

m − rm) (2.12)

where

A±
mn = μ

∫∫
S

fn
e−jkR±

m

4πR±
m

dS′ (2.13)

Φ±
mn =

−1
jωε

∫∫
S
∇s • fn

e−jkRc±
m

4πRc±
m

dS′ (2.14)

R±
m =

∣∣∣∣rm + rc±
m

2
− r′

∣∣∣∣ (2.15)

Rc±
m = |rc±

m − r′| (2.16)

E±
m = Ei

(
rm + rc±

m

2

)
. (2.17)

The numerical evaluation of the vector potential, shown in (2.13), is straightforward

and may be accomplished by the procedure described in [35]. However, the numerical

evaluation of the scalar potential term, described in (2.14), may be carried out as follows:

Let us define the unknown charge density qS in (2.3) as

qS =
Np∑
i=1

αiPi (2.18)

where NP represents the number of triangular patches in the model, αi is the unknown

coefficient, and

Pi(r) =

⎧⎪⎨
⎪⎩

1, r ∈ Ti ,

0, otherwise .
(2.19)
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Ii2

Ii1

Ii3

Ti

i1l2il

3il

Figure 2.4: Electric charge patch within the T th
i triangle.

Next, consider a triangular patch Ti with associated non-boundary edges, i1, i2, and i3.

Then, using (2.6), the well-known divergence theorem, and simple vector calculus, we have

∫∫
Ti

qSdS =
∫∫

Ti

∇S • JS

−jω
dS

=
j

ω

∮
Ci

JS • n̂�

=
j

ω
[Ii1	i1 + Ii2	i2 + Ii3	i3] (2.20)

where Ci is the contour bounding the triangle Ti, n̂� is the unit vector normal to the contour

Ci in the plane of Ti, and 	ij , j = 1, 2, 3 represent the edge lengths. This scheme is shown

in Fig. 2.4. Also, note that

∫∫
Ti

qSdS =
∫∫

Ti

αidS

= αiAi (2.21)
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where Ai represents the area of the triangle Ti. Lastly, using (2.20) and (2.21), we have

αi =
j

ω

[
Ii1	i1 + Ii2	i2 + Ii3	i3

Ai

]
. (2.22)

Thus, we can write the scalar potential term in (2.14) as

Φ±
mn =

j	n

ωε

[
1

An+

∫∫
T+

n

e−jkRc±
m

4πRc±
m

dS′ +
1

An−

∫∫
T−

n

e−jkRc±
m

4πRc±
m

dS′
]

. (2.23)

Finally, once the matrices Z and V are determined, we may easily solve the system of

linear equations to obtain I.

2.6 Numerical Results

In this section, we present numerical results for a square plate (length = 0.15λ), a

circular disk (diameter = 0.15λ), a sphere (diameter = 0.15λ) and a circular cylinder

(diameter = 0.15λ, length = 0.15λ), and compare with the solutions obtained using the

procedure presented in [28]. Also, for the case of the sphere, the results are compared with

the exact solution. The plate, the disk, the sphere, and the cylinder are modeled with

312, 258, 500, and 320 triangles, respectively. In every case, the body is placed at the

center of the coordinate system and illuminated by an x-polarized plane wave traveling in

the negative direction along the z-axis. Further, the square plate and the circular disk are

oriented parallel to the xy-plane. The bistatic radar cross sections (RCS’s) are presented in

Figs. 2.5–2.8. We note that the results compare well with the other numerical results.

2.7 Summary

In this chapter, we have presented a new set of basis functions, which we called the f

basis functions, for the method of moments solution of electromagnetic scattering by bodies

of arbitrary shape. The f basis functions are vectors perpendicular to the mesh edges.

Another set of basis functions, orthogonal to the first set, has also been presented; these are
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the g basis functions, vectors parallel to the mesh edges. Both of these new basis functions

are pulse vectors defined over adjacent pairs of triangular patches. It is hoped that these

two sets of basis functions, in conjunction with the method of moments solution procedure,

will provide a more stable solution to material problems. However, in the present chapter,

only conducting scatterers were analyzed with the new basis function f and the results were

compared with those from other solution methods. The new basis functions will be applied

to material bodies in chapters 4 and 5.
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Figure 2.5: Bistatic RCS of a square plate of length 0.15λ excited by a plane wave traveling
in the -z direction.
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Figure 2.6: Bistatic RCS of a circular disk of diameter 0.15λ excited by a plane wave
traveling in the -z direction.
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Figure 2.7: Bistatic RCS of a sphere of diameter 0.15λ excited by a plane wave traveling
in the -z direction.
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Figure 2.8: Bistatic RCS of a circular cylinder of diameter 0.15λ and height 0.15λ excited
by a plane wave traveling in the -z direction.
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Chapter 3

An Alternate Set of Basis Functions for the Electromagnetic

Solution of Arbitrarily-Shaped, Three-Dimensional,

Closed Conducting Bodies Using Method of Moments

3.1 Overview

In chapter 2, we introduced two new sets of pulse-type basis functions, each defined

over adjacent pairs of planar triangular patches, to calculate the electromagnetic scatter-

ing/radiation associated with three-dimensional, arbitrarily-shaped material bodies. We

then explored in detail the suitability of one set of basis functions, the f pulse basis vec-

tors, to calculate electromagnetic scattering from arbitrarily-shaped conducting bodies, ei-

ther open or closed. In this chapter, we explore the use of an alternate set of basis functions,

the g pulse basis vectors, which are orthogonal to the f pulse basis functions previously

defined. We describe the numerical solution scheme using g basis vectors and calculate the

perfect electric conductor (PEC) scattering for two canonical closed geometries. The pulse

basis results are then compared with the results calculated by other means.

3.2 Introduction

The primary motivation for this work is to develop an efficient and well-conditioned

method of moments (MoM) [3] solution for dielectric material bodies via a surface integral

equation (SIE) approach [36]. It may be noted that since the SIE approach involves both

electric and magnetic currents as unknowns in the MoM formulation, it is necessary to define

two mutually orthogonal sets of basis functions to generate a well-conditioned moment

matrix. We emphasize here that the mathematical equations appearing in the dielectric
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body SIE formulation are very similar to the equations we encounter in the PEC body

problem; therefore, solving the PEC case provides confidence in the solution methodology.

3.3 Description of the Problem

x

y

z

S

PEC θ

ϕ

E
i

Figure 3.1: Arbitrarily-shaped conducting body excited by an incident electromagnetic
plane wave.

Let S denote the surface of an arbitrarily-shaped, perfectly conducting body illumi-

nated by an incident electromagnetic plane wave Ei as shown in Fig. 3.1. We assume S to

be closed and orientable, possessing a piecewise continuous normal. S may be composed of

intersecting surfaces. Using the equivalence principle, potential theory, and the free-space

Green’s function [2], the electric field integral equation (EFIE) is given by

[jωA + ∇Φ]tan = Ei
tan (3.1)
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where the subscript tan refers to the tangential component. In (3.1),

A = μ

∫∫
S

JS G dS′ (3.2)

Φ = ε−1

∫∫
S

qS G dS′ (3.3)

G =
e−jkR

4πR
(3.4)

R = |r − r′| , (3.5)

ε and μ are the permittivity and permeability constants of the surrounding medium, k is

the wave number, and r and r′ represent the position vectors to observation and source

points, respectively, from a global coordinate origin. The unknown surface current JS is

related to the charge density qS by the continuity equation, given by

∇ • JS = −jω qS . (3.6)

For the numerical solution of (3.1), we apply the method of moments formulation using

planar triangular patch modeling and the basis functions as described in the following:

3.4 Description of Basis Functions

Let T+
n and T−

n represent two triangles connected to the edge n of the triangulated

surface model as shown in Fig. 3.2. We define two mutually orthogonal vector basis

functions associated with the nth edge as

fn(r) =

⎧⎪⎨
⎪⎩

n̂± × �̂, r ∈ Sn ,

0, otherwise
(3.7)

and

gn(r) =

⎧⎪⎨
⎪⎩

�̂, r ∈ Sn ,

0, otherwise
(3.8)
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Figure 3.2: Basis function description.

where Sn represents the region obtained by connecting the mid-points of the free edges

to the centroids of triangles T±
n and to the nodes of edge n. This area is shown shaded

in Fig. 3.2. Also, �̂ and n̂± represent the unit vector along the nth edge and the unit

vector normal to the plane of the triangle T±
n , respectively. Note that the basis functions

defined in (3.7) and (3.8) are actually pulse functions, orthogonal to each other, defined

over the region Sn. The electromagnetic solution procedure using the basis functions fn

was described in the previous chapter, and in this chapter we present a similar solution

using the basis functions gn.

It may also be noted here that the basis functions gn are less versatile than the basis

functions fn. Unlike the basis functions fn, which are applicable to both open and closed

bodies as demonstrated in chapter 2, the basis functions gn are applicable to closed bodies

only. The main reason for this restriction is that the functions gn are defined parallel to

the edges of the planar triangular patches and represent the tangential component of the

current. It is well-known that the tangential component of the surface current is undefined

for an open surface at the boundary. However, our primary motivation to use these functions

is their applicability in the solution of the dielectric body problem, which is always posed

for a closed body. Hence, the basis functions gn do not hinder our purpose.
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3.5 Numerical Solution Procedure

mth edge

mT + mT −

ml

edge node m1

edge node m2

Figure 3.3: Testing path associated with the mth edge.

As a first step, we consider the testing procedure. Consider the mth interior edge,

associated with triangles T±
m . We integrate the vector component of (3.1) along the mth

edge, shown in Fig. 3.3, to obtain

∫
�m

jωA(r) • d� +
∫
�m

∇Φ(r) • d� =
∫
�m

Ei(r) • d� (3.9)

which may be re-written as

∫
�m

jωA(r) • d� + Φm2
n − Φm1

n =
∫
�m

Ei(r) • d� (3.10)

for n = 1, 2, 3, · · · , N , where n represents the source charge region and N represents the

total number of edges in the triangulation scheme. Note that in (3.10), Φm1
n and Φm2

n

represent the scalar potentials evaluated at the nodes connected to the mth edge. Further,

the integrals appearing in (3.10) may be easily evaluated using any accurate numerical

integration algorithm such as the one-point, two-point or four-point trapezoidal rule. In

this work, we choose to use a two-point method.
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Next, we consider the expansion procedure. Using the basis functions gn defined in

(3.8), we approximate the unknown current JS as

JS =
N∑

n=1

In gn . (3.11)

This is followed by a substitution of the current expansion (3.11) into (3.10), yielding an

N ×N system of linear equations which may be written in matrix form as ZI = V , where

Z = [Zmn] is an N ×N matrix and I = [In] and V = [Vm] are column vectors of length N .

The elements of the Z and V are given by

Zmn = jω

∫
�m

An • d� + Φm2
n − Φm1

n (3.12)

Vm =
∫
�m

Ei • d� (3.13)

where

An = μ

∫∫
S

gn
e−jkR

4πR
dS′ (3.14)

Φm1
n =

−1
jωε

∫∫
S
∇s • gn

e−jkRm1
n

4πRm1
n

dS′ (3.15)

Φm2
n =

−1
jωε

∫∫
S
∇s • gn

e−jkRm2
n

4πRm2
n

dS′ (3.16)

R =
∣∣r − r′∣∣ (3.17)

Rm1
n = |rm1 − r′| (3.18)

Rm2
n = |rm2 − r′| (3.19)

and rm1 and rm2 are the position vectors to the nodes m1 and m2, respectively, connected

to the mth edge.

The numerical evaluation of the vector potential, shown in (3.14), is straightforward

and may be accomplished by the procedure described by Wilton et al. [35]. However, the
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Figure 3.4: Electric charge patch around the ith node.

numerical evaluation of the scalar potential terms described in (3.15) and (3.16) may be

carried out as follows:

Let us define the unknown charge density qS in (3.3) as

qS =
Nn∑
i=1

αiPi (3.20)

where Nn represents the total number of nodes (vertices) in the model, αi is an unknown

coefficient, and

Pi(r) =

⎧⎪⎨
⎪⎩

1, r ∈ Si ,

0, otherwise .
(3.21)

In (3.21), Si is the ith charge patch, formed by connecting the centers of the edges and

the centroids of the triangles associated with the node i, as shown by the shaded area in

Fig. 3.4.
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Now, let us consider the ith charge patch. Using (3.6), the well-known divergence

theorem, and simple vector calculus, we have

∫∫
Si

qS dS =
∫

Si

∇s • JS

−jω
dS

=
j

ω

∮
Ci

JS • n̂� d	 (3.22)

where Ci is the contour bounding the charge patch Si, and n̂� is the unit vector normal to

the contour Ci in the plane of the triangle containing the contour segment. By considering

the left hand side of (3.22), we have

∫∫
Si

qS dS =
∫∫

Si

αi dS

= αi ASi (3.23)

where ASi represents the area of the charge patch Si. Considering the right hand side of

(3.22), we have

j

ω

∮
Ci

JS • n̂� d	 =
j

ω

EK∑
j=1

Iij[�̂ij • (n̂+
ij × rc+

ij + n̂−
ij × rc−

ij )] (3.24)

where �̂ij and n̂±
ij, respectively, represent the unit vector along the jth edge connected to

node i and the outward unit vector normal to the plane of the T±
ij triangle associated with

the jth edge connected to node i. As shown in Fig. 3.4, the vector rc−
ij extends from the

centroid of the T−
ij triangle to the center of the jth edge, while rc+

ij extends from the edge

center to the centroid of the T+
ij triangle. Also, EK represents the total number of edges

connected to node i. Using (3.23) and (3.24), we have

αi =
j

ωASi

EK∑
j=1

Iij[�̂ij • (n̂+
ij × rc+

ij + n̂−
ij × rc−

ij )] . (3.25)
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Substituting the basis function g for �̂, we can write the scalar potential terms in (3.15)

and (3.16) as

Φm1
n =

j

ωε

[
gn • (n̂+

n × rc+
n + n̂−

n × rc−
n )

ASn1

∫∫
Sn1

e−jkRm1
n1

4πRm1
n1

dS′

− gn • (n̂+
n × rc+

n + n̂−
n × rc−

n )
ASn2

∫∫
Sn2

e−jkRm1
n2

4πRm1
n2

dS′
]

=
j

ωε
gn • (

n̂+
n × rc+

n + n̂−
n × rc−

n

)
(

1
ASn1

∫∫
Sn1

e−jkRm1
n1

4πRm1
n1

dS′ − 1
ASn2

∫∫
Sn2

e−jkRm1
n2

4πRm1
n2

dS′
)

(3.26)

Φm2
n =

j

ωε

[
gn • (n̂+

n × rc+
n + n̂−

n × rc−
n )

ASn1

∫∫
Sn1

e−jkRm2
n1

4πRm2
n1

dS′

− gn • (n̂+
n × rc+

n + n̂−
n × rc−

n )
ASn2

∫∫
Sn2

e−jkRm2
n2

4πRm2
n2

dS′
]

=
j

ωε
gn • (

n̂+
n × rc+

n + n̂−
n × rc−

n

)
(

1
ASn1

∫∫
Sn1

e−jkRm2
n1

4πRm2
n1

dS′ − 1
ASn2

∫∫
Sn2

e−jkRm2
n2

4πRm2
n2

dS′
)

(3.27)

where rm1, rm2, rn1, and rn2 are the position vectors to nodes m1 and m2 connected to

the edge m, and nodes n1 and n2 connected to the edge n, respectively. Further, Sn1 and

Sn2 are the charge patches associated with the nodes n1 and n2, respectively, as depicted in

Fig. 3.5. The integrals in (3.26) and (3.27) may be evaluated with the procedures described

in [35] .

Finally, once the matrices Z and V are determined, we may easily solve the system of

linear equations to obtain I.

3.6 Numerical Results

In this section, we present numerical results for a PEC sphere (diameter = 0.15λ) and

a cube (length = 0.15λ), and we compare the results with the solutions obtained using the

procedure presented in chapter 2. Also, for the case of the sphere, the results are compared

with the exact solution. The sphere and the cube are modeled with 500 and 960 triangles,
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Figure 3.5: Electric source patches Sn1 and Sn2 for Φmn calculation.

respectively. For both examples, the body is placed symmetrically at the center of the

coordinate system and illuminated by an x-polarized plane wave traveling in the negative

direction along the z-axis. The bistatic radar cross sections are presented in Figs. 3.6 and

3.7. We note that the new basis function results compare well with those determined by

other methods.

3.7 Summary

In this chapter, we have applied a new set of basis functions, which we called the g basis

functions, for the method of moments solution of electromagnetic scattering by conducting

bodies of arbitrary shape. The new basis functions are pulse basis vectors defined over a

pair of triangular patches and tangential to the common edge. We have shown that similar

numerical results are obtained by using the f basis function perpendicular to the edge or

the g basis function tangential to the edge; in order to do this we changed the testing

function as well as the basis function. The present set of basis functions along with the

functions discussed in our previous chapter should prove helpful in obtaining a stable and
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in the -z direction.

0 30 60 90 120 150 180
0

0.01

0.02

0.03

0.04

Theta [degrees]

R
C

S/
λ2

Pulse f
Pulse g

φ = 90°

φ = 0°

z

y

x

φ

θEi

Figure 3.7: Bistatic RCS of a cube of length 0.15 λ excited by a plane wave traveling in the
-z direction.

32



well-conditioned solution to the material body problem. The new basis function pair will

be applied to material bodies in chapters 4 and 5.
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Chapter 4

Electromagnetic Scattering from Arbitrarily-Shaped Dielectric Bodies

Using Paired Pulse Vector Basis Functions and Method of Moments

4.1 Overview

In the previous two chapters, we demonstrated a pair of orthogonal pulse vector basis

functions for the calculation of electromagnetic scattering from arbitrarily-shaped conduct-

ing bodies. In this chapter, we extend the use of the same two basis vectors, f and g,

to solve dielectric body problems. Further, the numerical solution procedures to calculate

scalar and vector potentials for the dielectric case are based upon procedures shown in the

last two chapters. The reason to use an orthogonal basis function pair is now made apparent

by the calculations required for either the electric field integral equation (EFIE) or the mag-

netic field integral equation (HFIE) dielectric solution. The importance of demonstrating

both EFIE and HFIE solutions is to show the suitability of the basis functions for combined

field formulations in order to guarantee unique solutions at all frequencies. In this chapter,

we detail the implementations for EFIE and HFIE formulations and show example results

for canonical figures.

4.2 Introduction

For scattering problems concerning perfect electric conductors (PEC’s) of arbitrary

shape and of electrical size in the resonance region, the method of moments (MoM) has

provided a practical means of solution using surface integral equations [3]. MoM solutions

are particularly advantageous for calculating radar cross sections (RCS’s) when compared to

differential methods such as the finite element method, because the MoM solution incorpo-

rates a Green’s function that, by definition, reduces the scattered field strengths to zero at
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infinite distance. When the scattering objects are PEC or homogeneous dielectric bodies,

the boundary problem can be solved by surface integral equations, resulting in a com-

putational savings compared to volume integral equations. Numerous successful meshing

schemes and basis functions have been employed for surface integral PEC MoM problems.

For example, a popular combination has been triangular patch modeling in combination

with Rao-Wilton-Glisson (RWG) [28] vector basis functions to expand the unknown equiva-

lent electric surface currents [2]. For the more complex case of dielectric scattering, several

authors [37], [38] have represented equivalent electric and magnetic surface currents with a

single basis function. A computational difficulty then arises because the testing functions

and the basis functions are all vectors having the same direction; implementation of the curl

operation in the integral equations results in zero-valued or very small diagonal impedance

matrix terms and an unstable numerical solution.

To provide a more stable solution for dielectric bodies, we use orthogonally placed,

pulse basis vectors defined over each contiguous pair of triangular patches: one for the

equivalent electric surface current JS and one for the equivalent magnetic surface current

MS . This combination ensures strongly diagonal MoM matrices. The basis functions for

MS and JS are placed parallel and perpendicular, respectively, to each edge in the triangu-

lar patch scheme, providing a smooth transition from dielectric areas to conducting areas.

Consequently, the proposed pulse vector basis functions may be used to solve composite

problems. The surface integral technique described here is suitable for dielectric regions

of homogeneous composition and requires the scattering bodies to be modeled as closed

surfaces.

To avoid the ill-conditioned problem associated with characteristic frequencies, the

paired pulse vector basis functions may be used in integral equations for any of the com-

bined field methods. In the past, the combined field integral equation (CFIE) technique

has been used to model conductors [4], while the Poggio-Miller-Chang-Harrington-Wu-Tsai

(PMCHWT) [5], [6] technique or the Müller [39] technique has been used to model dielectric
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bodies. Pulse pair vector basis functions allow the use of any combined field method for

dielectric bodies.

In the following sections, we discuss the integral equations for dielectric scatterers. The

basis and testing functions are defined and implemented for EFIE and HFIE formulations.

Numerical examples are presented to show the calculated RCS for a number of canonical

geometries.

4.3 Integral Equations

E1 ,H1

μ1 ,ε1

E2 ,H2

μ 2 ,ε2

E i

S 1n̂2n̂

Figure 4.1: An arbitrarily-shaped dielectric body with surface S excited by an external
source.

Figure 4.1 shows an arbitrarily-shaped, closed dielectric body with surface S . An

unseen source in region 1 outside the body is radiating at a frequency of ω; the incident

electric field is labeled Ei. For this problem, there is no source inside the body in region 2.

The media in regions 1 and 2 are characterized by μ1 and ε1, μ2 and ε2, respectively. We

write the resulting fields, equivalent surface currents, and their associated potentials as

phasor quantities that are understood to vary at the same frequency ω. Our objective will

be to calculate JS and MS , fictitious surface currents on S that would produce the same

scattered E and H as the actual source. By applying the equivalence principle [2], [5], we
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write the EFIE’s for the dielectric body:

[
j ωA1 + ∇Φ1 +

1
ε1

∇× F 1

]
tan

=
[
E i

1

]
tan

(4.1)[
j ωA2 + ∇Φ2 +

1
ε2

∇× F 2

]
tan

= 0 (4.2)

where the magnetic and electric vector potentials, Ai and F i for i = 1, 2, are defined in

terms of the equivalent currents as

Ai = μi

∫∫
S

JS Gi dS′ (4.3)

F i = εi

∫∫
S

MS Gi dS′ (4.4)

and the electric scalar potential Φi is defined as

Φi =
1
εi

∫∫
S

qe
S Gi dS′ (4.5)

=
j

ωεi

∫∫
S
∇ • JS Gi dS′. (4.6)

The Green’s function Gi is defined as

Gi =
e−jkiR

4πR
(4.7)

R = |r − r′| , (4.8)

μi and εi are the permeability and permittivity constants of the surrounding medium, S′

denotes the source surface, and ki is the wave number for each region. The vectors r and r′

are position vectors to observation and source points, respectively, from a global coordinate

origin. The electric charge density qe
S is related to the unknown surface current JS by the

continuity equation, given by

∇ • JS = −jω qe
S . (4.9)
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By Maue’s integral [29],

−n̂1 ×∇×
∫∫

S
MSG1 dS′ =

MS

2
− n̂1 ×

∫∫
S

��∇G1 × MS dS′ (4.10)

where n̂1 is the unit vector normal to S pointing away from the surface into region 1 and the

deleted integral symbol
∫∫
�� indicates the principal value. The normal n̂1 and its opposite,

n̂2, are shown in Fig. 4.1. Taking the cross product of n̂1 with each side of (4.10), we may

write the curl operation in (4.1) as

1
ε1

∇× F 1 = ∇×
∫∫

S
MS G1 dS′

= n̂1 × MS

2
+

∫∫
S

��∇G1 × MS dS′ . (4.11)

Similarly, for the surface in region 2, we obtain

∇×
∫∫

S
MS G2 dS′ = n̂2 × MS

2
+

∫∫
S

��∇G2 × MS dS′ . (4.12)

Thus, using the modifications presented in (4.11) and (4.12), the EFIE’s for the dielectric

body may be written as

[
j ωA1 + ∇Φ1 + n̂1 × MS

2
+

∫∫
S

��∇G1 × MS dS′
]

tan

=
[
Ei

1

]
tan

(4.13)[
j ωA2 + ∇Φ2 + n̂2 × MS

2
+

∫∫
S

��∇G2 × MS dS′
]

tan

= 0 . (4.14)

Next, again invoking the equivalence principle, we write the HFIE’s for the dielectric

body:

[
j ωF 1 + ∇Ψ1 − 1

μ1
∇× A1

]
tan

=
[
H i

1

]
tan

(4.15)[
j ωF 2 + ∇Ψ2 − 1

μ2
∇× A2

]
tan

= 0 (4.16)
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where the magnetic scalar potential Ψi for i = 1, 2 is defined as

Ψi =
1
μi

∫∫
S

qm
S Gi dS′ (4.17)

=
j

ωμi

∫∫
S
∇ • MS Gi dS′ (4.18)

and qm
S is the magnetic charge density related to the fictitious magnetic current density by

the equation

∇ • MS = −jω qm
S . (4.19)

By reasoning analogous to that used in expanding the EFIE’s, we may rewrite the HFIE’s

for the dielectric body as

[
j ωF 1 + ∇Ψ1 − n̂1 × JS

2
−

∫∫
S

��∇G1 × JS dS′
]

tan

=
[
Hi

1

]
tan

(4.20)[
j ωF 2 + ∇Ψ2 − n̂2 × JS

2
−

∫∫
S

��∇G2 × JS dS′
]

tan

= 0 . (4.21)

Note that for either the EFIE or the HFIE method, the region 1 and region 2 equations

look similar.

When the MoM matrix is calculated for (4.13) and (4.14), the MS/2 terms will be

the dominant terms in the sub-matrix dealing with the E(MS) portion of the evaluation.

Similarly, when the MoM matrix is calculated for (4.20) and (4.21), the JS/2 terms will

dominate the H(JS) portion of the evaluation. It is important that we choose the proper

basis and testing functions so that this dominance is preserved in the numerical solution.

4.4 Basis and Testing Functions

Let us assume that the surface is modeled by a triangular mesh. T+
n and T−

n repre-

sent two triangles connected to the nth edge of the triangulated surface model as shown

in Fig. 4.2. The edges of each triangle other than the nth edge we will call free edges.

Within each triangle, the surface is planar. We define two mutually orthogonal vector basis
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functions associated with the nth edge as

fn(r) =

⎧⎪⎨
⎪⎩

n̂± × gn, r ∈ Sn ,

0, otherwise
(4.22)

and

gn(r) =

⎧⎪⎨
⎪⎩

unit vector ‖ nth edge, r ∈ Sn ,

0, otherwise
(4.23)

where n̂± represents the unit vector normal to the plane of the triangle T±
n . Sn represents

the domain of the basis functions: the region whose perimeter is drawn by connecting the

mid-points of the free edges to the centroids of triangles T±
n and to the nodes of edge n.

Shown as a shaded area in Fig. 4.2, Sn is 2/3 of the total triangular patch area. Note that

the basis functions defined in (4.22) and (4.23) are unit pulse functions orthogonal to each

other. Throughout the problem solution, we will use fn to expand JS and gn to expand

MS .

The testing functions associated with edge m are vectors t±m and �m, for EFIE and

HFIE solutions, respectively, as shown in Fig. 4.3. Vector t+
m extends from the triangle T+

m

centroid to the edge m midpoint; t−m extends from the edge m midpoint to the triangle T−
m

centroid. Vector �m extends from the beginning to the end of edge m, in the direction of

gm.

4.5 Numerical Solution Procedure

We have discretized the surface of interest using a triangular mesh containing a total

of N edges. The MoM solution procedure results in 2N linear equations, written as

⎧⎪⎨
⎪⎩

[Z1(JS)] [Z1(MS)]

[Z2(JS)] [Z2(MS)]

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

[JS]

[MS ]

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

[V 1]

[V 2]

⎫⎪⎬
⎪⎭ (4.24)
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Figure 4.2: Basis functions fn and gn associated with the nth edge.
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Figure 4.3: Testing functions tm and �m associated with the mth edge.
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where [Z1(JS)], [Z1(MS)], [Z2(JS)], and [Z2(MS)] are N×N matrices and the numerical

subscripts refer to the medium in which the matrix elements are evaluated. [JS ] and [MS ]

are column vectors of length N . For the EFIE solution,

[V 1] =
[
Ei

1 Ei
2 · · · Ei

N

]T
, (4.25)

for the HFIE solution,

[V 1] =
[
H i

1 H i
2 · · · H i

N

]T
, (4.26)

and for either solution,

[V 2] = [01 02 · · · 0N ]T . (4.27)

The four Z matrices represent the influence of the incident E and H-fields on edge currents

in regions 1 and 2.

In order to write Zmn in scalar terms, we integrate each of the equations (4.13), (4.14),

(4.20), and (4.21) along the appropriate mth testing vector. Letting n̂1 = −n̂2, we obtain

for the EFIE in region 1:

j ωA1 • tm + Φ−
n − Φ+

n +
(

n̂1 × MS

2

)
• tm

+
(∫∫

S

��∇G1 × MS dS′
)
• tm = E i

1 • tm (4.28)

for the EFIE in region 2:

j ωA2 • tm + Φ−
n − Φ+

n −
(

n̂1 × MS

2

)
• tm

+
(∫∫

S

��∇G2 × MS dS′
)
• tm = 0 (4.29)

42



for the HFIE in region 1:

j ωF 1 • �m + Ψ2
n − Ψ1

n −
(

n̂1 × JS

2

)
• �m

−
(∫∫

S

��∇G1 × JS dS′
)
• �m = H i

1 • �m (4.30)

and for the HFIE in region 2:

j ωF 2 • �m + Ψ2
n − Ψ1

n +
(

n̂1 × JS

2

)
• �m

−
(∫∫

S

��∇G2 × JS dS′
)
• �m = 0 . (4.31)

In (4.28–4.31), n = 1, 2, 3, ..., N identifies the location of the source charge. Expressions of

the form
(∫

tm
∇Φ • tm

)
have been simplified to the form (Φ−

n − Φ+
n ), where Φ−

n and Φ+
n are

the scalar potentials due to charges near the nth edge evaluated at the minus and plus ends

of the testing vector, as defined by the assigned current direction [28]. Areas of magnetic

positive and negative charge have been designated by superscripts 1 and 2, respectively.

Next, we expand the currents JS and MS as

JS =
N∑

n=1

In fn (4.32)

and

MS =
N∑

n=1

IN+n gn (4.33)

where [I] is the column matrix of complex scalar coefficients. Substituting (4.32) and

(4.33) into (4.28-4.31) yields a 2N ×2N system of linear equations which may be written in

matrix form as [Z][I] = [V ], corresponding to the elements of (4.24). For the EFIE solution,
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region 1, the elements Zmn are given by

Zmn(JS) = jωAn • tm + Φ−
n −Φ+

n (4.34)

Zmn(MS) =
(

n̂1 × gn

2

)
• tm +

(∫∫
S

��∇G1 × gn dS′
)
• tm (4.35)

where An and Φn are given by the definitions of A and Φ, (4.3) and (4.6), respectively,

except that fn has replaced JS and the source areas are restricted to the nth source regions.

The elements Zmn for the EFIE solution, region 2, are found in a similar manner. For the

HFIE solution, region 1, the elements Zmn are given by

Zmn(JS) = −
(

n̂1 × fn

2

)
• �m −

(∫∫
S

�� ∇G1 × fn dS′
)
• �m (4.36)

Zmn(MS) = j ωF n • �m + Ψ2
n −Ψ1

n (4.37)

where F n and Ψn are given by the definitions of F and Ψ , (4.4) and (4.18), respectively,

except that gn has replaced MS and the source areas are restricted to the nth source

regions. The elements Zmn for the HFIE solution, region 2, are found in a similar manner.

The calculation of the vector and scalar potentials is detailed in the following three sections.

The elements Vm are given by

V1m = Ei
m • tm, EFIE solution, region 1 (4.38)

V2m = 0, EFIE solution, region 2 (4.39)

V1m = H i
m • �m, HFIE solution, region 1 (4.40)

V2m = 0, HFIE solution, region 2 . (4.41)

Once the matrices [Z] and [V ] have been determined, the unknowns in [I] may be calculated

by matrix algebra. The equivalent surface currents so determined may be used to calculate

fields inside or outside the scattering body, as desired.
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4.5.1 Calculation of A and F

The following discussion applies to both regions 1 and 2, and the subscripts have been

dropped for A, F , ε, μ, and n̂. The vector potentials Amn and F mn are found by numerical

integration of the Green’s function over the nth source region shown shaded in Fig. 4.2.

The observation points r in the Green’s function definition are points chosen on or near

the testing vector; for this work, we obtained good EFIE and HFIE results by using one

T+
m point and one T−

m point. Each test point was the centroid of the smaller triangle whose

nodes were the nth edge nodes and the T triangle centroid. These observation points are

sketched in Fig. 4.4, in which the vector potential observation points are marked by o’s,

the scalar potential observation points by x’s. The final testing equations are written to

incorporate this segmentation of the vector potential, e.g.,

j ωAmn • tm ⇒ j ω
(
A+

mn • t+
m + A−

mn • t−m
)

(4.42)

j ωF mn • �m ⇒ j ω

2
(
F +

mn + F−
mn

) • �m (4.43)

where A+
mn and F +

mn are the vector potentials observed at t+
m due to the nth source region,

and A−
mn and F−

mn are the vector potentials observed at t−m due to the nth source region.

mth edge

+
mt −

mt

mT + mT −

ml
x

x

xx
o o

edge node m1

edge node m2

Figure 4.4: Observation points for mnth vector (o) and scalar (x) potentials.
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4.5.2 Calculation of ∇× F and ∇× A

The dielectric EFIE contains the term ∇ × F , as shown in (4.1) and (4.2). In the

corresponding testing equation,

(
1
ε
∇× F m,n

)
• tm =

(
n̂+ × gn

2

)
• t+

m +
(
n̂− × gn

2

)
• t−m

+
(∫∫

S

�� ∇G+× gndS′
)
• t+

m +
(∫∫

S

�� ∇G−× gndS′
)
• t−m (4.44)

where n̂± denotes the normal to the T±
m field patch and the G superscript also refers to

the T±
m field patch associated with the Green’s function. Because the basis function gn is

constant over the nth source region, it may be moved outside the integral before the cross

product is calculated. The calculation of ∇× Amn is analogous. Thus,

(
− 1

μ
∇×Amn

)
• �m = −

(
n̂+×f+

n

2
+ n̂−×f−

n

2

)
• �m

2

−
(∫∫

S±
�� ∇G+× f±

n dS′ +
∫∫

S±
�� ∇G−× f±

n dS′
)
• �m

2
. (4.45)

4.5.3 Calculation of Φ and Ψ

We have stated in (4.6) that the electric scalar potential Φ is defined as

Φ =
j

ωε

∫∫
S
∇ • JS G dS′ .

Because the basis function fn is a pulse function, direct calculation of ∇•fn would produce

impulse functions at the edges of the source charge region. Rather than integrating impulse

functions, we will use the divergence theorem to calculate
∫∫

S ∇•JS dS′ directly. Assuming

that ∇ • JS is constant over a triangular source area and given that

∫∫
S
∇ • JS dS′ =

∮
C

JS • n̂C dC (4.46)
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L1

I2

I1

I3

L2

L3

Tn
+

nth edge

Figure 4.5: Normal electric current components for Φ calculation.

where n̂C is the unit vector normal to the contour in the plane of surface S′, we may write

Φ for a source triangle (shown in Fig. 4.5) as

Φ =
j (I1L1 + I2L2 + I3L3)

ωεA
∫∫

S
GdS′ (4.47)

where I1, I2, and I3 are the current components of JS normal to the three sides; L1, L2,

and L3 are the side lengths; and A is the triangle area.

The unknown electric charge density qe
S may be defined as

qe
S =

NT∑
i=1

αiPi (4.48)

where NT is the number of triangular patches in the model,

αi =
j

ω

[
Ii1	i1 + Ii2	i2 + Ii3	i3

Ai

]
, (4.49)

and

Pi(r) =

⎧⎪⎨
⎪⎩

1, r ∈ Ti ,

0, otherwise .
(4.50)
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In order to calculate Φmn, we assume that the electric charge associated with Jn is now

spread out from Sn (in Fig. 4.2) over the two larger, triangular regions T±
n . For the mnth

scalar potential term,

Φ+
mn =

j

ωε

(
InLn

A+
f+

n

∫∫
T+

n

G+ dS′ − InLn

A− f−
n

∫∫
T−

n

G+ dS′
)

(4.51)

where the superscript on G indicates that the observation point lies on T+
m , and the poten-

tials associated with T+
n and T−

n have been differenced to obtain a result for the nth edge,

observed from the mth edge. Φ−
mn is similarly calculated with the observation point on T−

m .

Equation (4.51) applies to both regions 1 and 2.

To calculate the scalar magnetic potential, we likewise start by defining areas of mag-

netic charge associated with each edge current Mn. Let us define the unknown charge

density qm
S in (4.17) as

qm
S =

NN∑
i=1

αiPi (4.52)

where NN represents the total number of nodes (vertices) in the model, αi is a scalar to be

determined, and

Pi(r) =

⎧⎪⎨
⎪⎩

1, r ∈ Si ,

0, otherwise .
(4.53)

In (4.53), Si is the ith charge patch, formed by connecting the centers of the edges and

the centroids of the triangles associated with the ith node, as shown by the shaded area in

Fig. 4.6. Again making use of the divergence theorem, we can write Ψ for the ith source

patch as
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E1E6

îjllll

c+
ijr

c-
ijr

jth  edge

Figure 4.6: Magnetic charge source area for Ψ calculation.

Ψ =
j

ωμ

∫∫
S
∇ • MS G dS′ (4.54)

=
j

ωμ

∮
C

MS • n̂C dC

∫∫
S

GdS′ (4.55)

=
j

ωμAi

{NE∑
j=1

Iij

[
�̂ij • (n̂+

ij × rc+
ij + n̂−

ij × rc−
ij )

]}{∫∫
S

GdS′
}

(4.56)

where �̂ij and n̂±
ij, respectively, represent the unit vector along the jth edge connected to

node i and the outward unit vector normal to the plane of the T±
ij triangle associated with

the jth edge connected to node i. The vector rc−
ij extends from the centroid of the T−

ij

triangle to the center of the jth edge, while rc+
ij extends from the edge center to the centroid

of the T+
ij triangle. NE represents the total number of edges connected to node i and Ai is

the area of Si. From (4.56), we see that αi in (4.52) is

αi =
j

ωAi

NE∑
j=1

Iij

[
�̂ij • (n̂+

ij × rc+
ij + n̂−

ij × rc−
ij )

]
. (4.57)
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In order to calculate Ψmn , we will use the positive and negative magnetic charge

patches, designated Sn1 and Sn2 respectively, associated with the nth edge and shown in

Fig. 4.7. We will find the normal components of gn flowing across the mutual boundary,

designated rc+
n and rc−

n in Fig. 4.7. The value of Ψ1
mn , the scalar potential at the nth edge

as observed from end node 1 on the mth edge, is

Ψ1
mn =

j

ωμASn1

gn • (
n̂+

n × rc+
n + n̂−

n × rc−
n

) (∫∫
Sn1

G1dS′
)

− j

ωμASn2

gn • (
n̂+

n × rc+
n + n̂−

n × rc−
n

)(∫∫
Sn2

G1dS′
)

=
j

ωμ
gn • (

n̂+
n × rc+

n + n̂−
n × rc−

n

)
(

1
ASn1

∫∫
Sn1

G1dS′ − 1
ASn2

∫∫
Sn2

G1dS′
)

. (4.58)

In (4.58), the superscript on G refers to the end of the mth edge where the observation is

made. A similar calculation is done to find Ψ2
mn . The equations are the same for regions 1

and 2.

Sn1

Sn2

gn
Tn

+ Tn
-

rn
c+ rn

c-

Figure 4.7: Magnetic source patches Sn1 and Sn2 for Ψmn calculation.
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4.5.4 Testing the Incident Fields

We test the V matrix as follows:

Vm = t+
m • Ei+ + t−m • Ei−, EFIE solution (4.59)

where Ei is evaluated at the vector potential test points, near the midpoints of the test

vectors t.

Vm = �m • H i, HFIE solution (4.60)

where H i is evaluated at the midpoint of the test vector �.

4.6 Numerical Examples

For three dielectric scatterers, a sphere, a cube, and a cone, the bistatic RCS has

been calculated by both EFIE and HFIE solution methods, incorporating pulse basis vector

functions. The MoM solutions are compared to solutions from at least one other calculation

method.

A sphere of radius 0.1 λ and εR = 4 is irradiated by a plane wave traveling in the +z

direction. Its mesh contains 500 patches and 750 edges. The MoM RCS is calculated by

using pulse basis functions and is compared to the Mie series analytic result. The orientation

of the sphere and the cube to the incident wave are shown in Fig. 4.8; the sphere RCS plots

are shown in Figs. 4.10 and 4.11.

A cube of length 0.2 λ and εR = 4 is irradiated by a plane wave traveling in the +z

direction. Its mesh contains 480 patches and 720 edges. The MoM RCS is calculated by

using pulse basis functions and is compared to surface and volume integral results reported

by Sarkar, Arvas, and Ponapalli [40] for the same case. The cube RCS plots are shown in

Figs. 4.12 and 4.13.

A cone of radius 0.1 λ, apex half-angle = 30◦, and εR = 3 is irradiated by a plane wave

traveling in the -z direction. Its mesh contains 606 patches and 909 edges. The MoM RCS
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is calculated by using pulse basis functions and is compared to MoM body of revolution

(BOR) results. The orientation of the cone to the incident wave is shown in Fig. 4.9; the

RCS plots are shown in Figs. 4.14 and 4.15.
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Figure 4.8: Orientation of dielectric sphere and cube to the incident plane wave. Sphere
radius = 0.1 λ; εR = 4. Cube length = 0.2 λ; εR = 4.
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Figure 4.9: Orientation of dielectric cone to the incident plane wave. Cone radius = 0.1 λ;
apex half-angle = 30 ◦; εR = 3.

The RCS plots show good agreement between the pulse vector basis results and the

standards of comparison. There is some difference between the EFIE and HFIE results;

at this time, no generalizations can be made concerning the conditions under which either
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Figure 4.10: Bistatic RCS for a dielectric sphere at φ = 0 ◦, radius = 0.1 λ, εR = 4.
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Figure 4.11: Bistatic RCS for a dielectric sphere at φ = 90 ◦, radius = 0.1 λ, εR = 4.
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Figure 4.12: Bistatic RCS for a dielectric cube at φ = 0 ◦, length = 0.2 λ, εR = 4.
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Figure 4.13: Bistatic RCS for a dielectric cube at φ = 90 ◦, length = 0.2 λ, εR = 4.
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Figure 4.14: Bistatic RCS for a dielectric cone at φ = 0 ◦, radius = 0.1 λ, apex
half-angle = 30 ◦, εR = 3, incident wave traveling toward apex.
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Figure 4.15: Bistatic RCS for a dielectric cone at φ = 90 ◦, radius = 0.1 λ, apex
half-angle = 30 ◦, εR = 3, incident wave traveling toward apex.
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method is superior. Scattering from smoother objects, as expected, is more easily modeled

than from ones with sharp corners or points.

4.7 Summary

In this chapter we have demonstrated the use of a pair of orthogonal pulse vector basis

functions to solve dielectric MoM surface integral problems for closed bodies. We used the

f basis function for electric surface currents and the g basis function for magnetic surface

currents. Together with the pair of pulse basis vectors, we used testing vectors t and �

for EFIE and HFIE solutions, respectively. An important part of the numerical solution

procedure was the expression of the electric and magnetic scalar and vector potentials, which

themselves were expanded in terms of the basis functions. The pulse basis functions may

be used in combined field methods to insure unique solutions at resonant frequencies. Use

of these basis functions will allow reliable and accurate scattering solutions for conductors,

dielectric bodies, or composites of arbitrary shape.
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Chapter 5

Electromagnetic Scattering from Arbitrarily Shaped Composites Using

Paired Pulse Vector Basis Functions and Method of Moments

5.1 Overview

In previous chapters, a pair of orthogonal pulse vector basis functions was demonstrated

for the calculation of electromagnetic scattering from arbitrarily-shaped perfect electric

conductors (PEC’s) (chapters 2 and 3) or dielectric bodies (chapter 4). In this chapter,

the basis functions are applied to dielectric/PEC composites. For the general case, i.e.,

perfect or lossy dielectric surfaces, the f and g pulse vector basis function pair is used to

represent equivalent electric and magnetic surface currents. For the special case of PEC

surfaces, only the f pulse vector basis function is needed to represent the equivalent electric

surface current. The composite scatterer may contain multiple dielectric and PEC parts,

either touching or non-touching. We describe here the scattering solution for a composite

structure and we show example electric field integral equation (EFIE) and magnetic field

integral equation (HFIE) results for several two- or three-part figures.

5.2 Introduction

Due to the increasing development and use of a variety of building materials, metallic

and non-metallic, for all structures large and small, it is very important to be able to

model correctly the scattering behavior of composite structures. For homogeneous regions

in dielectric bodies, we may often calculate electromagnetic scattering more efficiently by

using equivalent surface currents [2] rather than the polarization volume currents. PEC

bodies naturally lend themselves to surface current modeling for another reason: the actual

currents occur in a thin layer near the surface. In the previous chapters, we described a
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surface integral method using orthogonally placed, pulse basis vectors for the method of

moments (MoM) solution of scattering problems involving dielectric bodies [3]. The surface

integral technique described here is suitable for dielectric and PEC regions of homogeneous

composition; a triangular patch scheme is used for the surface mesh [28].

We wish to be able to use a common formulation for both the dielectric and the PEC

components of a closed body composite structure in order to calculate scattering accurately

and efficiently while avoiding the ill-conditioned problem associated with characteristic fre-

quencies. Kishk and Shafai [32] have reviewed a number of available composite formulations.

These include the combined field integral equation (CFIE) [4], the Poggio-Miller-Chang-

Harrington-Wu-Tsai (PMCHWT) [5], [6], and the Müller [7] formulations. For dielectric

problems, the paired pulse basis functions may be used with any of these integral equation

formulations to guarantee unique solutions. However, for a composite problem, only the

CFIE can be used throughout. The paired pulse basis functions allow use of the CFIE for

composite scattering solutions. But, if a portion of the composite structure is described

as an open body, the HFIE cannot be written; consequently, a combined field formulation

cannot be used.

To provide stable EFIE or HFIE solutions for dielectric bodies, we use orthogonally

placed, pulse basis vectors defined over each contiguous pair of triangular patches: one

for the equivalent electric surface current JS and one for the equivalent magnetic surface

current MS . This combination allows correct calculation of the curl terms in the EFIE

and HFIE, ensuring strongly diagonal moment matrices. To solve a composite problem, we

model all surface currents on both the dielectric and the PEC elements with pulse vector

basis functions. For the dielectric elements, we employ the orthogonal basis vector pair; for

the PEC elements we retain only the electric current basis vector.

In the following sections, we discuss solutions for composite dielectric/PEC scatterers.

The basis and testing functions are defined and the matrix equation is explained. Numerical

examples of EFIE and HFIE solutions are presented to show the calculated radar cross

sections (RCS’s) for several canonical geometries, including two non-touching spheres, a
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disk/cone structure, a simplified missile shape, and a cube capped with PEC plates at two

ends.

5.3 Integral Equations

E1 , H1

μ1 , ε1111

E2 , H2

μ 2 , ε2

E i

D1
1n̂

2n̂

C

PEC

D2

Figure 5.1: Arbitrarily-shaped PEC and dielectric bodies with surfaces C , D1 , and D2
excited by an external source.

Figure 5.1 shows two arbitrarily-shaped bodies, one PEC and one dielectric. An unseen

source in region 1 outside the bodies is radiating at a frequency of ω. In region 1, fields

E1 and H1 exist as a result of the incident energy combined with scattering from the

two bodies. Surface C on the conductor exterior marks the boundary between region 1,

characterized by μ1 and ε1, and the interior of the conductor, where no fields exist. Surfaces

D1 and D2 are the two sides of the dielectric body surface separating region 1 from region

2. Region 2 inside the dielectric is characterized by μ2 and ε2 and contains fields E2 and

H2. By applying the equivalence principle [2], [5], we will calculate JC , JD, and MD,

fictitious surface currents on the surfaces that would produce the same scattered E and H

as the actual volume sources. We write the fields, equivalent surface currents, and their

associated potentials as phasor quantities that are understood to vary at the frequency ω.

To solve the scattering problem by either the EFIE or the HFIE surface integral method,

three equations are required. Table I lists the surfaces where the field points and current

sources are located for each equation.
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Table 5.1: Integral Equation Surfaces
Equation Field Point Location Source Current Location

I C C, D1

II D1 C, D1

III D2 D2

The EFIE’s to be solved simultaneously are of the form

− [Es(JC ,JD,MD)]tan =
[
Ei

]
tan

(5.1)

where s denotes scattered and i denotes incident.

EFIE I:

[
j ωA(JC , μ1) + ∇Φ(JC , μ1 , ε1 ) + j ωA(JD1, μ1) + ∇Φ(JD1 , μ1 , ε1 )

+
1
ε1

∇× F (MD1, ε1)
]

tan

=
[
E i

C

]
tan

. (5.2)

EFIE II:

[
j ωA(JC , μ1) + ∇Φ(JC , μ1 , ε1 ) + j ωA(JD1, μ1) + ∇Φ(JD1 , μ1 , ε1 )

+
1
ε1

∇× F (MD1, ε1)
]

tan

=
[
E i

D1

]
tan

. (5.3)

EFIE III:

[
j ωA(JD2, μ2) + ∇Φ(JD2 , μ2 , ε2 ) +

1
ε2

∇ × F (MD2, ε2)
]

tan

=
[
E i

D2

]
tan

. (5.4)
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The magnetic and electric vector potentials, A and F , respectively, are defined in terms of

the equivalent currents as

A = μ

∫∫
S

JS G dS′ (5.5)

F = ε

∫∫
S

MS G dS′ (5.6)

where S represents the source surface of interest. The electric scalar potential Φ is defined

as

Φ =
1
ε

∫∫
S

qe
S G dS′ (5.7)

=
j

ωε

∫∫
S
∇ • JS G dS′ (5.8)

where qe
S is the electric charge density related to the fictitious electric current density by

the equation

∇ • JS = −jω qe
S . (5.9)

The Green’s function G is defined as

G =
e−jkR

4πR
(5.10)

R = |r − r′| , (5.11)

μ and ε are the permeability and permittivity constants of the surrounding medium, S′

denotes the source surface, and k is the wave number. The vectors r and r′ are position

vectors to observation and source points, respectively, from a global coordinate origin.

Using Maue’s integral [29], we express the 1
ε∇× F portion of the EFIE’s as

1
εi
∇× F i = ∇×

∫∫
S

MS Gi dS′

= n̂i × MS

2
+

∫∫
S

��∇Gi × MS dS′ (5.12)
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for i = 1, 2, where n̂i is the unit vector normal to S pointing away from the surface into

region i and the deleted integral symbol
∫∫
�� indicates the principal value. The normal n̂1

and its opposite, n̂2, are shown in Fig. 5.1.

Referring to Table I again, for the same surfaces we may write three simultaneous

HFIE’s of the form

−[Hs(JC ,JD,MD)]tan = [H i]tan . (5.13)

HFIE I:

[
− 1

μ1
∇× A(JC , μ1) − 1

μ1
∇× A(JD1, μ1)

+ j ωF (MD1, ε1) + ∇Ψ(MD1 , μ1 , ε1 )
]

tan

=
[
H i

C

]
tan

. (5.14)

HFIE II:

[
− 1

μ1
∇× A(JC , μ1) − 1

μ1
∇× A(JD1, μ1)

+ j ωF (MD1, ε1) + ∇Ψ(MD1 , μ1 , ε1 )
]

tan

=
[
H i

D1

]
tan

. (5.15)

HFIE III:

[
− 1

μ2
∇ × A(JD2, μ2) + j ωF (MD2, ε2) + ∇Ψ(MD2 , μ2 , ε2 )

]
tan

=
[
H i

D2

]
tan

. (5.16)

The magnetic scalar potential Ψ is defined as

Ψ =
1
μ

∫∫
S

qm
S G dS′ (5.17)

=
j

ωμ

∫∫
S
∇ • MS G dS′ (5.18)
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and qm
S is the magnetic charge density related to the unknown magnetic current density by

the equation

∇ • MS = −jω qm
S . (5.19)

Using Maue’s integral, we express the − 1
μ∇× A portion of the HFIE’s as

− 1
μi

∇× Ai = −∇×
∫∫

S
JS Gi dS′

= −n̂i × JS

2
−

∫∫
S

��∇Gi × JS dS′ (5.20)

for i = 1, 2.

5.4 Basis and Testing Functions

nth edge

midpoint

centroid

edge node

−
nf+

nf

ng
+

nT
−

nTSn

Figure 5.2: Basis functions fn and gn associated with the nth edge.

Let us assume that the surface is modeled by a triangular mesh. T+
n and T−

n repre-

sent two triangles connected to the nth edge of the triangulated surface model as shown

in Fig. 5.2. The edges of each triangle other than the nth edge we will call free edges.

Within each triangle, the surface is planar. We define two mutually orthogonal vector basis
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functions associated with the nth edge as

fn(r) =

⎧⎪⎨
⎪⎩

n̂± × gn, r ∈ Sn ,

0, otherwise
(5.21)

and

gn(r) =

⎧⎪⎨
⎪⎩

unit vector ‖ nth edge, r ∈ Sn ,

0, otherwise
(5.22)

where n̂± represents the unit vector normal to the plane of the triangle T±
n . Sn represents

the domain of the basis functions: the region whose perimeter is drawn by connecting the

mid-points of the free edges to the centroids of triangles T±
n and to the nodes of edge n.

Shown as a shaded area in Fig. 5.2, Sn is 2/3 of the total triangular patch area. Note that

the basis functions defined in (5.21) and (5.22) are unit pulse functions, orthogonal to each

other. Throughout the problem solution, we will use fn to expand JS and gn to expand

MS .

mth edge

centroid

+
mt −

mt

mT + mT −

ml

edge node

Figure 5.3: Testing functions tm and �m associated with the mth edge.

The testing functions associated with edge m are vectors t±m and �m, for the EFIE and

HFIE solutions, respectively, as shown in Fig. 5.3. Vector t+
m extends from the triangle T+

m

centroid to the edge m midpoint; t−m extends from the edge m midpoint to the triangle T−
m
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centroid. Vector �m extends from the beginning to the end of edge m, in the direction of

gm.

5.5 Numerical Solution Procedure

In this section, the EFIE and HFIE solution methods are shown for one PEC body

and one dielectric body. After meshing each surface of interest, we obtain NC edges for the

conductor and ND edges for the dielectric body. The MoM solution procedure results in

NC + 2ND linear equations, written as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[ ZC(JC)] [ZC(JD)] [ZC(MD)]

[ZD1(JC)] [ZD1(JD)] [ZD1(MD)]

[0] [ZD2(JD)] [ZD2(MD)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[JC ]

[JD]

[MD]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[V C ]

[V D1]

[0]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (5.23)

The Z subscripts C, D1, and D2 indicate the conductor, outer dielectric, and inner di-

electric surfaces, respectively, where the field points reside. J and M subscripts C and

D, respectively, indicate the conductor and dielectric surfaces where the source currents

reside. The (3,1) block of the moment matrix contains only zeros because, in the equiva-

lent problem, at the inner dielectric surface, no fields are observed due to currents on the

conductor.

For the EFIE solution, [V C ] and [V D1] are written

[V ] =
[
Ei

1 Ei
2 · · · Ei

N

]T
, (5.24)

for the HFIE solution, [V C ] and [V D1] are written

[V ] =
[
H i

1 H i
2 · · · Hi

N

]T
, (5.25)

and for either solution

[V D2] = [01 02 · · · 0N ]T . (5.26)
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The [V D2] column of the incident field matrix contains only zeros because the incident fields

from the external source in this problem strike only the outer surfaces of each body.

In order to write Zmn in scalar terms, we integrate each of the EFIE’s or HFIE’s along

the appropriate mth testing vector. Thus, we obtain for the EFIE’s:

j ωAi • tm + Φ−
n − Φ+

n +
(

n̂i × MS

2

)
• tm

+
(∫∫

S

��∇Gi × MS dS′
)
• tm = E i

i • tm (5.27)

where the subscripts on A, n̂, G, and E i denote the region into which the source cur-

rent is radiating. Expressions of the form
(∫

tm
∇Φ • tm

)
have been simplified to the form

(Φ−
n − Φ+

n ), where Φ−
n and Φ+

n are the scalar potentials due to charges near the nth edge

evaluated at the minus and plus ends of the testing vector, as defined by the assigned current

direction [28].

Similarly, we obtain for the HFIE’s:

j ωF i • �m + Ψ2
n − Ψ1

n −
(

n̂i × JS

2

)
• �m

−
(∫∫

S

��∇Gi × JS dS′
)
• �m = H i

i • �m . (5.28)

Next, we expand the currents JS and MS as

JS =
N∑

n=1

In fn (5.29)

and

MS =
N∑

n=1

In gn (5.30)

where [I] is a column matrix of complex scalar coefficients. Substituting (5.29) and (5.30)

into equations of the form (5.27) and (5.28) yields a (2NC + ND) × (2NC + ND) system of
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linear equations which may be written in matrix form as [Z][I] = [V ], corresponding to the

elements of (5.23). For the EFIE solution, the elements Zmn are of the form

Zmn(JS) = jωAn • tm + Φ−
n − Φ+

n (5.31)

Zmn(MS) =
(

n̂i × gn

2

)
• tm

+
(∫∫

S

��∇Gi × gn dS′
)
• tm (5.32)

where An and Φn are given by the definitions of A and Φ, (5.5) and (5.8), respectively,

except that fn has replaced JS and the source areas are restricted to the nth source regions.

For the HFIE solution, the elements Zmn are of the form

Zmn(JS) = −
(

n̂i × fn

2

)
• �m

−
(∫∫

S

�� ∇Gi × fn dS′
)
• �m (5.33)

Zmn(MS) = j ωF n • �m + Ψ2
n − Ψ1

n (5.34)

where F n and Ψn are given by the definitions of F and Ψ , (5.6) and (5.18), respectively,

except that gn has replaced MS and the source areas are restricted to the nth source regions.

The calculation of the vector and scalar potentials is detailed in the following three sections.

The elements Vm are given by

Vm = Ei
m • tm, EFIE solution (5.35)

Vm = H i
m • �m, HFIE solution . (5.36)

Once the matrices [Z] and [V ] have been determined, the unknowns in [I] may be calculated

by matrix algebra. The equivalent surface currents so determined may be used to calculate

fields inside or outside the scattering body, as desired.
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5.5.1 Calculation of A and F

The following discussion applies to both regions 1 and 2, and the subscripts have been

dropped for A, F , ε, μ, and n̂. The vector potentials Amn and F mn are found by numerical

integration of the Green’s function over the nth source region shown shaded in Fig. 5.2.

The observation points r in the Green’s function definition are points chosen on or near

the testing vector; for this work, we obtained good EFIE and HFIE results by using one

T+
m point and one T−

m point. Each test point was the centroid of the smaller triangle whose

nodes were the nth edge nodes and the T triangle centroid. These observation points are

sketched in Fig. 5.4, in which the vector potential observation points are marked by o’s,

the scalar potential observation points by x’s.

mth edge

+
mt −

mt

mT + mT −

ml
x

x

xx
o o

edge node m1

edge node m2

Figure 5.4: Observation points for mnth vector (o) and scalar (x) potentials.

The final testing equations are written to incorporate this segmentation of the vector

potential, e.g.,

j ωAmn • tm ⇒ j ω
(
A+

mn • t+
m + A−

mn • t−m
)

(5.37)

j ωF mn • �m ⇒ j ω

2
(
F +

mn + F−
mn

) • �m (5.38)

where A+
mn and F +

mn are the vector potentials observed at t+
m due to the nth source region,

and A−
mn and F−

mn are the vector potentials observed at t−m due to the nth source region.
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5.5.2 Calculation of ∇× F and ∇× A

The dielectric EFIE contains the term ∇ × F , as shown in (5.1) and (5.2). In the

corresponding testing equation,

(
1
ε
∇× F m,n

)
• tm =

(
n̂+ × gn

2

)
• t+

m +
(
n̂− × gn

2

)
• t−m

+
(∫∫

S

�� ∇G+× gndS′
)
• t+

m +
(∫∫

S

�� ∇G−× gndS′
)
• t−m (5.39)

where n̂± denotes the normal to the T±
m field patch and the G superscript also refers to

the T±
m field patch associated with the Green’s function. Because the basis function gn is

constant over the nth source region, it may be moved outside the integral before the cross

product is calculated. The calculation of ∇× Amn is analogous. Thus,

(
− 1

μ
∇×Amn

)
• �m = −

(
n̂+×f+

n

2
+ n̂−×f−

n

2

)
• �m

2

−
(∫∫

S±
�� ∇G+× f±

n dS′ +
∫∫

S±
�� ∇G−× f±

n dS′
)
• �m

2
. (5.40)

5.5.3 Calculation of Φ and Ψ

We have stated in (5.8) that the electric scalar potential Φ is defined as

Φ =
j

ωε

∫∫
S
∇ • JS G dS′ .

Because the basis function fn is a pulse function, direct calculation of the ∇ • fn would

produce impulse functions at the edges of the source charge region. Rather than integrating

impulse functions, we will use the divergence theorem to calculate
∫∫

S ∇ • JS dS′ directly.

Assuming that ∇ • JS is constant over a triangular source area and given that

∫∫
S
∇ • JS dS′ =

∮
C

JS • n̂C dC (5.41)
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where n̂C is the unit vector normal to the contour in the plane of surface S′, we can write

Φ for a source triangle (shown in Fig. 5.5) as

L1

I2

I1

I3

L2

L3

Tn
+

nth edge

Figure 5.5: Normal electric current components for Φ calculation.

Φ =
j (I1L1 + I2L2 + I3L3)

ωεA
∫∫

S
GdS′ (5.42)

where I1, I2, and I3 are the current components of JS normal to the three sides; L1, L2,

and L3 are the side lengths; and A is the triangle area. Let us define the unknown electric

charge density qe
S in (5.7) as

qe
S =

NT∑
i=1

αiPi (5.43)

where NT is the number of triangular patches in the model,

αi =
j

ω

[
Ii1	i1 + Ii2	i2 + Ii3	i3

Ai

]
, (5.44)

and

Pi(r) =

⎧⎪⎨
⎪⎩

1, r ∈ Ti ,

0, otherwise .
(5.45)
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The electric charge associated with Jn is now spread out from Sn (in Fig. 5.2) over the two

larger, triangular regions T±
n ; T+

n is drawn in Fig. 5.5. For the mnth scalar potential term,

Φ+
mn =

j

ωε

(
InLn

A+
f+

n

∫∫
T+

n

G+ dS′ − InLn

A− f−
n

∫∫
T−

n

G+ dS′
)

(5.46)

where the superscript on G indicates that the observation point lies on T+
m , and the poten-

tials associated with T+
n and T−

n have been differenced to obtain a result for the nth edge,

observed from the mth edge. Φ−
mn is similarly calculated with the observation point on T−

m .

Equation (5.46) applies to both regions 1 and 2.

Si

T1

T2

T3

T4

T5

T6

ith  node

E2

E3

E4

E5

E1E6

îjllll

c+
ijr

c-
ijr

jth  edge

Figure 5.6: Magnetic charge source area for Ψ calculation.

To calculate the scalar magnetic potential, we likewise start by defining areas of mag-

netic charge associated with each edge current Mn. Let us define the unknown charge

density qm
S in (5.17) as

qm
S =

NN∑
i=1

αiPi (5.47)
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where NN represents the total number of nodes (vertices) in the model, αi is a scalar to be

determined, and

Pi(r) =

⎧⎪⎨
⎪⎩

1, r ∈ Si ,

0, otherwise .
(5.48)

In (5.48), Si is the ith charge patch, formed by connecting the centers of the edges and

the centroids of the triangles associated with the ith node, as shown by the shaded area in

Fig. 5.6. Again making use of the divergence theorem, we can write Ψ for the ith source

patch as

Ψ =
j

ωμ

∫∫
S
∇ • MS G dS′ (5.49)

=
j

ωμ

∮
C

MS • n̂C dC

∫∫
S

GdS′ (5.50)

=
j

ωμAi

{NE∑
j=1

Iij

[
�̂ij • (n̂+

ij × rc+
ij + n̂−

ij × rc−
ij )

]}
{∫∫

S
GdS′

}
(5.51)

where �̂ij and n̂±
ij, respectively, represent the unit vector along the jth edge connected to

node i and the outward unit vector normal to the plane of the T±
ij triangle associated with

the jth edge connected to node i. The vector rc−
ij extends from the centroid of the T−

ij

triangle to the center of the jth edge, while rc+
ij extends from the edge center to the centroid

of the T+
ij triangle. NE represents the total number of edges connected to node i and Ai is

the area of Si. From (5.51), we see that αi in (5.47) is

αi =
j

ωAi

NE∑
j=1

Iij

[
�̂ij • (n̂+

ij × rc+
ij + n̂−

ij × rc−
ij )

]
. (5.52)

In order to calculate Ψmn , we will use the positive and negative magnetic charge

patches, designated Sn1 and Sn2 respectively, associated with the nth edge and shown in
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Fig. 5.7. We will find the normal components of gn flowing across the mutual boundary,

designated rc+
n and rc−

n in Fig. 5.7. The value of Ψ1
mn , the scalar potential at the nth edge

as observed from node 1 on the mth edge, is

Ψ1
mn =

j

ωμASn1

gn • (
n̂+

n × rc+
n + n̂−

n × rc−
n

) (∫∫
Sn1

G1dS′
)

− j

ωμASn2

gn • (
n̂+

n × rc+
n + n̂−

n × rc−
n

)(∫∫
Sn2

G1dS′
)

=
j

ωμ
gn • (

n̂+
n × rc+

n + n̂−
n × rc−

n

)
(

1
ASn1

∫∫
Sn1

G1dS′ − 1
ASn2

∫∫
Sn2

G1dS′
)

. (5.53)

In (5.53), the superscript on G refers to the end of the mth edge where the observation is

made. A similar calculation is done to find Ψ2
mn . The equations are the same for regions 1

and 2.

Sn1

Sn2

gn
Tn

+ Tn
-

rn
c+ rn

c-

Figure 5.7: Magnetic source patches Sn1 and Sn2 for Ψmn calculation.
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5.5.4 Testing the Incident Fields

We test the V matrix as follows:

Vm = t+
m • Ei+ + t−m • Ei−, EFIE solution (5.54)

where Ei is evaluated at the vector potential test points, near the midpoints of the test

vectors t.

Vm = �m • H i, HFIE solution (5.55)

where H i is evaluated at the midpoint of the test vector �.

5.6 Numerical Examples

The scattering solution using an orthogonal pair of pulse basis vectors is demonstrated

by calculating the bistatic RCS for four composite cases: a dielectric sphere close to a

PEC sphere, a dielectric cone capped with a PEC disk, a missile composed of a dielectric

nose cone and a PEC cylinder, and a cube capped with PEC plates at opposite ends. The

geometries are shown in Figs. 5.8 and 5.13; the EFIE solution method was employed for all

four cases. In addition, the two-spheres problem was also solved by using the HFIE.

In the first problem, a dielectric sphere of radius 0.2 λ and εR = 4 and a PEC sphere

of radius 0.3 λ are situated on the z-axis. There is a gap of 0.1 λ between them, and a

plane wave traveling in the -z direction impinges on the dielectric sphere first. The dielectric

sphere mesh has 324 edges, or ND = 324, while the conducting sphere mesh has 750 edges,

or NC = 750. The bistatic RCS results are shown for the pulse basis MoM EFIE and HFIE

solutions and compared to a body of revolution (BOR) MoM solution in Fig. 5.9. The

vertical axis represents RCS normalized by the region 1 wavelength.

In the second problem, a dielectric cone has height = 0.6 λ, radius = 0.3 λ, and εR = 2.

The circular end of the cone is covered by a PEC disk. Because the EFIE solution was

chosen and the disk was PEC, it was allowable to model the disk as an open body in
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contact with the closed dielectric cone portion of the figure, thus reducing the size of the

required PEC mesh. The results are shown for ND = 741 and NC = 205. For an HFIE

solution, the disk would be modeled as a closed body having a larger mesh. The plane wave

was assumed to be traveling in the -z direction, and the bistatic RCS is shown in Fig. 5.10

for the pulse basis MoM solution, again compared to a BOR MoM solution.

Ex
i,Hy

i

εR=4

PEC

r = 0.2 λ

r = 0.3 λ

0.1 λ

εR = 7.5

PEC

0.9 λ

5.58 λ

r = 0.18 λ

PEC

εR=2

r = 0.3 λ

0.6 λ

a) = Two spheres b) Disk/cone                     c) Missile

Figure 5.8: Geometries for which bistatic RCS was calculated, including a) two spheres, b)
a disk/cone, and c) a missile.

In the third problem, an air-to-air missile shape was selected having a curved dielectric

nose cone with length = 0.9 λ and εR = 7.5. The PEC cylinder has length = 5.58 λ and

radius = 0.18 λ. ND = 483, while NC = 3681. A plane wave was assumed to be traveling

in the -z direction, toward the nose. The bistatic RCS is shown for the pulse basis MoM

EFIE solution in Fig. 5.11. Additional results are shown in Fig. 5.12 for the case where

the incident wave is traveling in the +z direction, toward the tail.

In the fourth problem, a dielectric cube having length = 0.1λ and εR = 4 is sandwiched

between two PEC plates and the structure is irradiated from below as shown in Fig. 5.13.
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Figure 5.9: Bistatic RCS for two nontouching spheres, one dielectric, εR = 4, and one PEC.
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Figure 5.10: Bistatic RCS for a composite disk/cone, cone εR = 2, PEC disk.
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Figure 5.11: Bistatic RCS for a composite missile, nose cone εR = 7.5, PEC cylinder,
incident wave approaching the nose of the missile.
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Figure 5.12: Bistatic RCS for a composite missile, nose cone εR = 7.5, PEC cylinder,
incident wave approaching the tail of the missile.
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Two pulse basis EFIE results are shown for the structure, one obtained by using a coarse

mesh and one using a finer mesh. For the coarse mesh, ND = 144 and for each plate,

NC = 20. For the finer mesh, ND = 909 and for each plate, NC = 136. The normalized

bistatic RCS in dB is shown in Figs. 5.14 and 5.15 and compared with combination volume

integral equation (VIE) and surface integral equation (SIE) results from Sarkar et al. [41].

Their formulation used 192 unknowns for the dielectric volume currents and 32 unknowns

for the PEC plate currents.

0.1 λ

âiE x

PEC

PECx

y

z

φ
θ εR = 4

Figure 5.13: Dielectric cube of length 0.1λ capped with PEC plates, εR = 4.

The graphical results show very good agreement between RCS plots calculated with

orthogonal pulse basis vectors and their corresponding BOR plots. In the example of the

dielectric cube with PEC plates at top and bottom, the pulse basis and VIE/SIE methods

similarly indicate a deep null at θ = 90◦ in the φ = 0◦ RCS curve (Fig. 5.14). Compared

to the finely meshed pulse basis RCS curve (Fig. 5.15), the coarsely meshed pulse basis

RCS curve at φ = 90◦ more closely resembles the VIE/SIE results of Sarkar et al., who also

used a coarse mesh for the PEC plates. Finer meshes show convergence to an almost flat

φ = 90◦ RCS curve.

78



0 30 60 90 120 150 180
-60

-50

-40

-30

-20

-10

0

Theta [degrees]

N
or

m
al

iz
ed

 R
C

S 
[d

B
]

Pulse EFIE, N   = 136
Pulse EFIE, N   = 20
VIE/SIE, N   = 32

C

C

C

Figure 5.14: Bistatic RCS at φ = 0◦ for a dielectric cube of length 0.1λ capped with PEC
plates, εR = 4.
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Figure 5.15: Bistatic RCS at φ = 90◦ for a dielectric cube of length 0.1λ capped with PEC
plates, εR = 4.
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5.7 Summary

We have demonstrated the solution of PEC/dielectric composite scattering problems by

using a pair of orthogonally placed pulse basis vectors. These basis functions, which model

equivalent electric and magnetic surface currents, allow for the correct implementation of

the EFIE and HFIE for dielectric bodies. In addition, the electric current pulse basis vector

allows the implementation of the EFIE and HFIE for PEC bodies. For the example com-

posite EFIE solutions, the EFIE has been implemented with f and n̂× g basis vectors and

t testing vectors. The corresponding composite HFIE solutions for closed bodies required

n̂×f and g basis vectors and � testing vectors. By arithmetically combining the EFIE and

the HFIE expanded with pulse basis vectors, the CFIE may be used to guarantee unique

solutions for composite scattering problems.
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Chapter 6

Conclusion

We have demonstrated a new pair of basis functions for the solution of dielectric scat-

tering problems by the method of moments (MoM) surface integral method. These basis

functions may be used for perfect electric conductor (PEC), dielectric, or composite struc-

tures. They are particularly advantageous for PEC/dielectric composites, offering a simpler

solution method than has been previously published. The basis functions are designed for

use with triangular meshing, which is a convenient way to mesh three-dimensional objects

of arbitrary shape. While there are MoM techniques that offer more accurate solutions

for specialized geometries, we expect that the numerical procure developed here will allow

quite accurate solutions for most shapes of objects. It is therefore a solution of very wide

applicability.

In the surface integral problem solution, an electric surface current J and a magnetic

surface current M are determined for each mesh edge. For the nth mesh edge, Jn is

expanded by the associated f+
n and f−

n basis vectors over a portion of the adjacent triangles,

and Mn is expanded by the associated gn basis vector over the same area. The vectors

f+
n and f−

n are perpendicular to the edge, while gn is parallel to the edge; each basis

function is a unit vector. The orthogonality of the basis function pair within each triangle

and their relationship to the testing vectors is the key to the correct numerical solution

of the dielectric electric field integral equation (EFIE) and magnetic field integral equation

(HFIE). We showed that the pulse basis vectors will correctly solve dielectric and composite

problems in a straightforward manner.

An important part of the development of the numerical procedure was the represen-

tation of the electric and magnetic vector and scalar potentials in the expanded matrix

equations. Each vector potential component was expressed as a surface integral of the basis
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functions over a current source patch; the components were then summed. Each scalar

potential component was expressed as the sum of contour integrals of the normal compo-

nents of the basis functions out of two charge source patches; the components were then

differenced.

Using canonical figures, we showed the numerical method and scattering results for PEC

bodies using f or g basis functions for an EFIE solution. For dielectric bodies, we showed

f and g basis functions used in EFIE and HFIE solutions. Finally, for composite bodies,

we showed f and g basis functions used in EFIE and HFIE solutions. Both methods were

detailed so that the combined field integral equation (CFIE) solution could be implemented

if desired for closed bodies. Application of this method for composites should be more

efficient and accurate than previous surface integral methods.

A future problem to solve with paired pulse basis functions would be a composite

problem where one body is partly embedded in the other. Then, layered or coated bodies

would be a further application of interest.
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Appendix A

Derivation of Dielectric Field Equations

We start with Maxwell’s equations in phasor form. Here, a steadily oscillating source

having frequency ω is assumed and each time varying quantity is written as its complex

peak value, which is understood to be multiplied by ejωt.

∇× E = −M i − jωμH (A-1)

∇× H = J i + J c + Jd = J i + jωεE (A-2)

∇ • E =
qe

ε
(A-3)

∇ • H =
qm

μ
(A-4)

where E and H , J and M are the electric and magnetic fields and electric and magnetic

currents, respectively, i, c, and d denote impressed, conduction, and displacement, respec-

tively, qe is the time-varying electric charge density, qm is the time-varying magnetic charge

density, ε is the complex permittivity, and μ is the complex permeability. In order to de-

scribe currents within a general material that may be a perfect dielectric, a lossy dielectric,

or a perfect conductor, J c and Jd have been combined as follows:

Jc + Jd = jωεE (A-5)

= jω(ε′ +
σ

jω
)E (A-6)

= jω(ε′ − jε′′)E (A-7)

where ε′ and ε′′ are the real and imaginary parts of ε, respectively, ε′′ �
= σ/ω, and σ is

the conductivity. For the problems concerned in this work, the source is distant from the
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scatterer. Therefore, J i = M i = 0, and (A-1) and (A-2) may be simplified to

∇× E = −jωμH (A-8)

∇× H = jωεE . (A-9)

We define the equivalent surface currents JS and MS on surface S as

JS = n̂ × H tan (A-10)

MS = Etan × n̂ (A-11)

where n̂ is a unit vector normal to the surface, pointing into the region on the side of S

where the field is tangent. We further define magnetic vector potential A and electric vector

potential F in relation to the scattered fields such that

Hs(JS) =
1
μ
∇× A (A-12)

Es(MS) = −1
ε
∇× F (A-13)

where s denotes scattered. Applying (A-8) to scattered fields, substituting for Hs, and

rearranging terms, we obtain:

∇× Es(JS) = −jω∇× A (A-14)

∇× Es(JS) + ∇× jωA = 0 (A-15)

∇× [Es(JS) + jωA] = 0 . (A-16)

For the problems treated in this work, we use the vector identity that says that the curl

of a gradient equals 0 and equate Es(JS) + jωA to a gradient −∇Φ. We now invoke the

Lorenz gauge condition to define the scalar electric potential Φ such that

Φ =
−1

jωμε
∇ • A . (A-17)
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Given that

Es(JS) = −jωA −∇Φ , (A-18)

we combine (A-18) with (A-13) to obtain the total scattered E:

Es = Es(JS) + Es(MS) (A-19)

= −jωA −∇Φ − 1
ε
∇× F . (A-20)

Similarly, we apply (A-9) to scattered fields and substitute for Es to obtain

∇× Hs(MS) = −jω∇× F (A-21)

∇× Hs(MS) + jω∇× F = 0 (A-22)

∇× [Hs(MS) + jωF ] = 0 . (A-23)

Defining the scalar magnetic potential Ψ such that

Ψ =
−1

jωμε
∇ • F , (A-24)

we equate Hs(MS) + jωF to the gradient −∇Ψ . Now,

Hs(MS) = −jωF −∇Ψ . (A-25)

Combining (A-25) with (A-12), we obtain the total scattered H :

Hs = Hs(MS) + Hs(JS) (A-26)

= −jωF −∇Ψ +
1
μ
∇× A . (A-27)
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Solving for the vector potentials yields the following:

A = μ

∫∫
S

JS
e−jkR

4πR
dS′ (A-28)

F = ε

∫∫
S

MS
e−jkR

4πR
dS′ (A-29)

where S′ is the source surface, e−jkR/(4πR) is the Green’s function, k is the wave number

2π/λ0, and R is the distance from the potential evaluation point to a source point on S.

Equations (A-20) and (A-27) will be implemented at the boundary surface of the scat-

terer. If the scatterer is a perfect electric conductor, then M= 0 and the field equations

simplify to

Es = Es(JS) = −jωA −∇Φ (A-30)

Hs = Hs(JS) =
1
μ
∇× A . (A-31)

In surface integral problems, the boundary conditions equate the tangential components

of the scattered and incident fields:

[
j ωA + ∇Φ +

1
ε
∇× F

]
tan

=
[
E i

]
tan

(A-32)[
j ωF + ∇Ψ − 1

μ
∇× A

]
tan

=
[
H i

]
tan

. (A-33)

Equations of the form (A-32) and (A-33) are written for each side of the boundary surface,

except in the case of a PEC, where only one side need be considered. More description of

these derivations is given in [2] and [9].
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Appendix B

Pulse Basis Functions in EFIE and HFIE Solutions

Chapters 2 and 3 demonstrated the use of f and g basis vectors to expand the electric

surface currents JS for EFIE PEC solutions. As a point of interest, however, either set of

basis functions could be also used to expand JS for the HFIE solution. Figure B.1 shows

a PEC sphere of diameter 0.18 λ illuminated by a plane wave traveling in the -z direction.

The scattering problem was worked four times using either f or g basis functions in the

EFIE or HFIE solution. The bistatic RCS results are shown in Fig. B.2.

âiE x

0.50

0.5

x y

z

φ

θ

Figure B.1: Bistatic RCS for a PEC sphere, diameter = 0.18 λ.
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Figure B.2: Bistatic RCS for a PEC sphere, diameter = 0.18 λ.
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