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The limited bandwidth and power resources in underwater sensor networks have 

made geographic routing a favorite choice. While many detouring strategies in 

geographic routing do not work for 3-D underwater network topology, spanning tree 

routing can efficiently find a detour when used for such networks. However, the 

effectiveness of tree routing depends largely on the quality of the pre-constructed 

spanning tree. Most existing spanning tree algorithms build trees in a top-down and 

centralized fashion and do not consider the available bandwidth in the network, and may 

create trees with poor routing performance. In this research, we propose a novel spanning 

tree, named Bandwidth-Aware Routing Tree (BART), that is constructed completely in a 
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bottom-up fashion and with available bandwidth in mind. Simulation results show that 

compared with other spanning trees, BART has much fewer conflicting hulls and higher 

path throughput, thus leads to better routing performance in 3-D underwater sensor 

networks.
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CHAPTER 1  

INTRODUCTION 

 

The research of underwater acoustic sensor networks [2, 24] has recently gained 

increasing attention due to their potential applications, such as ocean environment 

monitoring, tactical military surveillance, target tracking, and undersea navigation [9]. 

Underwater acoustic networks are a special type of wireless sensor network. Due to the 

limitation of each node’s transmission range and the possibility of nodal failure caused by 

the erosive underwater environment, data collected by individual sensor nodes are usually 

sent to a control center through a network of nodes [1]. Thus, appropriate routing 

algorithms are needed to direct data packets from their source to the destination. 

Traditional routing algorithms in wireless sensor networks can be classified into two 

categories: proactive protocols and reactive protocols. In proactive protocols [21, 34], 

each node maintains a routing table by exchanging link state or distance vector control 

packets with neighboring nodes. The advantage of proactive routing is that the routing 

table allows for each node to quickly identify the next hop of a packet. In addition, 

different metrics (including hop count, available bandwidth, and congestion status) can 

be taken into consideration in the construction of the routing table [34]. The major 

disadvantage of proactive routing, however, is that the communication with nodes and 

storage overhead of routing table maintenance grows as quickly as the size of the network 
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increases. In reactive protocols [11, 20], when a node has a packet to send, it floods the 

network with queries to discover a route to the destination. The primary difference among 

various reactive protocols is how the responding path information is cached at 

intermediate nodes and reused. While reactive routing avoids the overhead incurred in 

routing table maintenance, the network-wide query flooding of path discovery is an 

extremely expensive operation and may create additional problems, such as the infamous 

broadcast storm problem [29]. Therefore, while proactive and reactive routing protocols 

do not rely on assumptions of network topology and link characteristics, they incur heavy 

communication and storage overhead, which becomes a serious issue in resource-

constrained underwater sensor networks. 

In recent years, a new class of routing protocols - geographic routing [4, 12, 14, 15] 

have been proposed. Under the assumptions that each node knows the geographic 

locations of itself and its neighbors, as well as the source nodes, and also encodes the 

geographic location of the destination in the packet, geographic routing can determine 

where to forward the packet without maintaining a routing table or flooding the network. 

It makes use of localized geographical location information to route traffic, avoiding a 

large portion of the communication and storage overhead of proactive and reactive 

routing protocols [8, 9]. While GPS signal is not available under the surface of the ocean, 

the relative location of each underwater sensor node can be pinpointed via triangulation 

[18]. Compared with traditional proactive and reactive protocols, geographic routing 

tends to create lower overhead and has been suggested for underwater acoustic sensor 

network in [1, 24]. In general, geographic routing is made up of two parts - greedy 

forwarding and detouring strategy. If a node holding a packet finds some neighbors that 
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are closer to the destination of the packet, the node forwards the packet to the one that is 

the closest to the destination. This is called greedy forwarding. Note that greedy 

forwarding alone has low delivery rate even in a connected network. When a local 

minimum is reached (i.e., no closer neighbor can be found), the geographic routing 

protocol falls back to its detouring strategy to find a detour to leave the local minimum 

and then move toward the destination. Without the help of routing tables, most existing 

non-flooding detouring strategies first reduce the original network topology to a planar 

graph by dropping some edges and then apply one of the heuristics (e.g., perimeter 

routing [12], face routing [14]) to explore the network via links in the planar graph. 

Although the criteria and performance analysis of greedy forwarding for underwater 

sensor networks have been studied in [22], non-flooding detouring strategies have a 

serious flaw that will keep them from working properly in an underwater environment. 

The two strong assumptions used by almost all distributed graph planarization algorithms 

[8, 17, 28] and their routing heuristics are the unit disk link model and the flat (i.e., on a 

2-D plane) network topology. The unit disk link model does not apply to underwater 

acoustic links, which have highly dynamic physical characteristics due to time-varying 

multipath intersymbol interferences and Doppler shifts and spreads [25]. In addition, 

nodes in underwater sensor networks are mostly deployed over 3-D space at different 

depths and on the bottom of the ocean, which is normally not flat. These strong 

assumptions render most existing geographic routing protocols unusable for underwater 

sensor networks. In [13], a planarization algorithm is proposed that relaxes the 

assumption of the unit disk link model, but it introduces a large amount of signaling [15] 

among neighboring nodes, and its heuristic still relies on the 2-D assumption. 
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In [15], a novel geographic routing protocol is proposed with a detouring strategy 

based on a pre-constructed spanning tree. In this protocol, a spanning tree is first 

generated from a root node close to the boundary of the network. Each node keeps a 

convex hull that encloses all nodes in its subtrees. When a packet comes to a local 

minimum, a node checks whether the convex hull of any child node encloses the 

destination. If no such child exists, the packet is forwarded to the parent node. Otherwise, 

the packet is forwarded to the child node whose convex hull encloses the location of the 

destination. If multiple children meet this criterion, all these children will be explored in 

turn. The tree routing continues until a node closer to the destination than the last local 

minimum is found. Then the greedy forwarding takes over again. The spanning tree 

detouring strategy does not rely on any of the aforementioned assumptions and has been 

shown in [15] to produce comparable performance to other detouring strategies in terms 

of the number of hops. Notice that the effectiveness of the spanning tree-based detouring 

depends largely on the quality of the pre-constructed spanning tree. If the convex hulls of 

siblings in a spanning tree intersect each other, they are referred to as the conflicting hulls. 

If a tree has many conflicting hulls, a packet may need to traverse more branches before 

it finds the right path to the destination. Consequently, the routing performance will 

likely be poor. In [16], several different types of spanning trees are studied and the 

minimum path tree is found to perform best. However, in their study, the root of a tree is 

always fixed. This places a serious constraint on the construction of the spanning tree. 

Without knowing the locations of nodes in the tree, a bad selection of the root can easily 

lead to a large number of conflicting hulls. In addition, the available bandwidth of links is 
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not taken into account in their study. If a link included in a routing tree has low available 

bandwidth, it will likely become a bottleneck in the network. 

In this thesis, we propose the concept of the Bandwidth-Aware Routing Tree 

(BART), which is constructed in a bottom-up fashion based on both location and 

available bandwidth. Different from existing spanning trees, BART reduces the number 

of conflicting hulls and avoids bottlenecks in the routing tree. Simulation results show 

that BART results in fewer conflicting hulls and higher path throughput than other types 

of spanning trees. These properties are especially important for underwater sensor 

networks.  

The rest of the thesis is organized as follows. In Chapter 2, several types of spanning 

trees are reviewed. In Chapter 3, the proposed BART and the algorithm to construct it are 

introduced. In Chapter 5, the simulation results of BART, as well as two other routing 

trees are presented. The conclusion and the future research direction are given in Chapter 

6. 
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CHAPTER 2  

LITERATURE REVIEW 

 

In the spanning tree detouring strategy, data packets are delivered to their 

destinations along a path in the pre-constructed spanning tree topology. A spanning tree 

of a connected network is a tree that contains all of the nodes in the network. There are 

many different spanning trees for a given network. In this chapter, we review several 

spanning tree algorithms and discuss their applications in the routing of wireless 

networks. 

 

2.1. Breadth-First and Depth-First Spanning Trees  

The depth-first search (DFS) and the breadth-first search (BFS) are two principal 

algorithms to traverse a connected network and to create spanning trees [5]. 

 In the DFS algorithm, the starting point of traversal becomes the root of the tree. At 

each step of the traversal, DFS visits neighboring unvisited nodes as deep as possible 

until no such node is available, as described in Figure 2.1. The arrow dotted line means 

the traversal from root to build the tree. Whenever a new, unvisited node is reached for 

the first time, it is attached as a child to the node from which it is being reached. If there 

are multiple such unvisited nodes, a tie can be resolved arbitrarily. This process continues 

until a dead end ( i.e., a node without an adjacent unvisited node) is encountered. 
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At a dead end, the tree construction method backs up one link to the node where it came 

from and tries to continue visiting unvisited nodes from there. Eventually, it halts after 

backing up to the starting node, with later will become a dead end. By then, all the nodes 

within the same connected components as the starting node have been visited.  

 

Figure 2.1 Sequence of searching the node from root in DFS 

 

 

Figure 2.2 Sequence of searching the node from root in BFS 
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The BFS algorithm, on the other hand, visits the neighboring unvisited nodes without 

limitation until no such node is available. In the BFS algorithm, the starting point of 

traversal becomes the pre-constructed root of the tree. It proceeds in a concentric manner 

by first visiting all the nodes that are adjacent to the starting node, then all unvisited 

nodes two links apart from it, and so on, until all the nodes in the same connected 

component as the starting node are visited, as shown in Figure 2.2. Compared with Figure 

2.1, we can clearly see the different sequence of search. 

While DFS seeks to go as far as it can, BFS tries to exhaust the neighborhood first. 

The results of these traversals are the DFS trees and the BFS trees. Both DFS and BFS 

trees provide a route to reach every node in the network. 

 

2.2. Minimum Spanning Trees 

 

Figure 2.3 Minimum Spanning Tree 
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Figure 2.3 shows that a minimum spanning tree has the smallest total weight of links 

among all spanning trees of the network. The starting point of the traversal becomes the 

root of the tree to connect the nodes. It is similar to DFS and BFS due to use the top-

down fashion. A link between two nodes means that they are neighbors to each other. 

The number on the link means the weight between each neighbor nodes. The bold lines 

indicate the minimum spanning tree. The minimum spanning tree for a network can be 

constructed by using either the Prim’s or the Kruskal’s algorithm [5]. If additional nodes 

and links can be added in the process of constructing the minimum spanning tree, the 

total weight can be further reduced. The result is called a Steiner tree [5]. 

 

2.3. Minimum Path Trees 

 

Figure 2.4 Minimum Path Tree 
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A minimum path tree optimizes the spanning trees in another way. It first selects a 

node at the extreme other end of the network from the root. When building the tree, each 

node chooses the neighbor with the smallest number of hops to the root as its parent. If 

multiple neighboring nodes have the same number of hops to the root, the node that is 

geographically closest is chosen. Figure 2.4 illustrates the result of the minimum path tree. 

Compared with Figure 2.3, we find out that a minimum path tree looks heavier than the 

minimum spanning tree in terms of total weight. A minimum path, however, has less 

weight. If we traverse to node 6 from the root in Figure 2.3, the total weight is 24. 

Otherwise, in Figure 2.4, we figure out that the total weight to go to node 6 is only 8. 

Shorter links in the tree construction process reduce the occurrences of crossing links, 

and result in a tree with subtrees that are better clustered together, thereby reducing the 

probability of intersections between convex hulls. However, the disadvantage of the 

minimum path tree is that the root is pre-selected without knowing the locations of the 

nodes in the network. This puts a serious constraint in the tree construction. In the case of 

a root that is poorly chosen, it may lead to a large number of conflicting hulls. 

 

2.4. IEEE 802.1D 

Although not designed for wireless networks, the IEEE 802.1D standard [32] 

specifies how a spanning tree can be generated autonomously among bridges that connect 

multiple local area networks distributively. It is in essence a two-step process. First, each 

bridge broadcasts its unique serial number so that the bridge with the lowest serial 

number can be selected as the root. Second, the shortest path from the root to each bridge 

and local area network is included to form a spanning tree topology. The ports of some 
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bridges are intentionally disabled so that no loop is created. The protocol is also capable 

of maintaining the spanning tree in the presence of topology changes. However, the IEEE 

802.1D root election process requires each node to broadcast its unique identification, 

which is an extremely expensive operation in the underwater environment. 

 

2.5 Common Problems of Existing Tree Algorithms 

Except for the IEEE 802.1D, the above tree construction methods all follow the top-

down approach. They usually require centralized knowledge about the entire network. In 

practice, the centralized algorithms are implemented by sending information from all 

nodes to a centralized node, and then disseminating the decision to the entire network. 

This normally involves intensive message exchanges and may cause bottlenecks and low 

reliability. Clearly, distributed algorithms are more preferred in practice, but without 

centralized knowledge, they are difficult to develop. 

The second problem of existing tree algorithms is that they construct the trees 

according to the node locations, but do not consider the bandwidth of each link. 

Consequently, some low bandwidth links in the tree may become bottlenecks and the 

resulting tree routing could suffer from congestion. 

In the following chapter, we will develop a greedy spanning tree construction 

algorithm that considers both the location and the available bandwidth to minimize the 

number of the conflicting hulls and avoid the bottlenecks in the resulting spanning tree. 
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CHAPTER 3  

BANDWIDTH-AWARE ROUTING TREE 

 

In Chapter 2, we have discussed the fundamental issues and the tree routing 

commonly shared by the existing spanning tree algorithm. Most tree routings show a 

tendency to build the tree in similar manners, like a top-down and centralized fashion. In 

this chapter, we will introduce our routing tree algorithm namely Bandwidth-Aware 

Routing Tree (BART) to build the tree distributively in a bottom-up fashion. Our manner 

is focused on how we can define and collect the cluster using locations and bandwidth. 

First, we will present an overview of the BART. 

 

3.1 Overview of BART 

As explained in Chapter 2, existing spanning trees suffer from a number of problems 

that make tree construction and tree routing inefficient. To address them, we propose 

building the tree distributively in a bottom-up fashion based on locations of nodes and 

available bandwidth of links in the network. The notations and terms used for the rest of 

the thesis are defined as follows. A cluster is defined to be a set of nodes. Each cluster 

has a cluster head (or simply head when there is no confusion), and each node belongs to 

exactly one cluster. The center of a cluster is defined to be the average of the locations of 
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the nodes in the cluster. The distance between two clusters C1 and C2, denoted as 

dist(C1,C2), is defined as the Euclidean distance between the centers of them. Two 

clusters are said to be neighboring clusters if at least one node in the first cluster has a 

direct link to a node in the second cluster. Notice that in our definition that the distance 

between neighboring clusters can be greater than the transmission range of a node. To 

take the bandwidth factor into account, we assume each node is able to estimate the 

available bandwidth to each of its neighbors via beacon exchanges. The virtual 

bandwidth between two neighboring clusters C1 and C2, denoted as 

bandwidth(C1,C2), is defined as the sum of all available bandwidth between the nodes 

of two clusters. Notice that the virtual bandwidth between two neighboring clusters is an 

approximation to the actual available bandwidth between them. The reason to use the 

virtual bandwidth instead of the actual one is the virtual bandwidth is easier to obtain 

between two neighboring clusters and should be a good indication to the amount of actual 

available bandwidth. For instance, in Figure 3.1, the cluster with head P has two 

neighboring clusters. The virtual bandwidth between the cluster with head P and the 

cluster with the head Q is the sum of the bandwidth between neighboring pairs (A, X), (B, 

Y), and (C, Y). The size of a cluster C is the number of nodes in C, and is denoted as |C|. 

The head of a cluster maintains the cluster information, including the center of the cluster, 

the size of the cluster, and the virtual bandwidth as well as the link with the largest 

available bandwidth to each of its neighboring clusters.  
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Figure 3.1 Example of Clusters and The Bandwidth Between Them 

 

3.2 BART Algorithm 

The basic idea of our Bandwidth-Aware Routing Tree algorithm is that each pair of 

neighboring clusters has a gravity, which is computed according to a function of the 

distance and the virtual bandwidth between them. The strength of the gravity is 

represented by a number in the range of [1, ∞). The stronger the gravity two clusters 

have between them, the sooner they are merged into one cluster. This process is repeated 

until there is only one cluster left or there is no gravity between any pair of neighboring 

clusters. The cluster head can be in one of the following four states: comparing, requested, 

responded, and committed. To form the Bandwidth-Aware Routing Tree, each cluster 

head runs the Bandwidth-Aware Routing Tree algorithm stated in Table I. 
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Table I. Bandwidth-Aware Routing Tree Algorithm 

 

 
/* The cluster head of a cluster C runs the following */ 

if  𝐶  = 1 { // Initialization 

compute the gravity 𝐺𝑖  to its neighboring clusters 𝐶𝑖  

find the largest gravity 𝐺𝑇  =  𝑚𝑎𝑥∀𝑖 𝐺𝑖  

set target cluster as 𝐶𝑇  and timer T as 𝑇𝑚𝑎𝑥   / 𝐺𝑇  

set state to be comparing } 

while ( true ) { 

if ( state  =  comparing ) { 

repeat { 

reduce timer T value 

if ( receive an update message from cluster 𝐶𝐴  ) 

update information about 𝐶𝐴  

} until ( T expires ) or ( receive a m-request ) 

if ( T expires ) 

send a m-request to  and set state to be requested 

else { 

set target cluster 𝐶𝑇  to be the one sending m-request 

send a m-response to 𝐶𝑇  and set state to be responded } 

} else if ( state  =  requested ) { 

wait for 𝑇𝑚𝑒𝑟𝑔𝑒   for m-response 

if ( 𝑇𝑚𝑒𝑟𝑔𝑒   expires before receiving a response ) 

rollback 𝐶𝑇  and T, and set state to be comparing 

else 

send a commit message and set state to be committed 

} else if ( state  =  responded ) { 

wait for 𝑇𝑚𝑒𝑟𝑔𝑒   for commit message 

if ( 𝑇𝑚𝑒𝑟𝑔𝑒   expires before receiving the commit message ) 

rollback 𝐶𝑇  and T, and set state to be comparing 

else 

set state to be committed 

} else if ( state  =  committed ) { 

if (  𝐶  <  𝐶𝑇  ) { 

send cluster info to the cluster head of 𝐶𝑇  

turn into a regular cluster member } 

else { 

wait for 𝑇𝑚𝑒𝑟𝑔𝑒   for the cluster info from 𝐶𝑇  

if ( 𝑇𝑚𝑒𝑟𝑔𝑒   expires before receiving the cluster info ) 

rollback 𝐶𝑇  and T, and set state to be comparing 

else { 

add a link to connect C and 𝐶𝑇  

compute the gravity 𝐺𝑖  to its neighboring clusters 𝐶𝑖  

find the largest gravity 𝐺𝑇  =  𝑚𝑎𝑥∀𝑖 𝐺𝑖  

set timer T as 𝑇𝑚𝑎𝑥   / 𝐺𝑇  

set state to be comparing } } } } 
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In the algorithm, Tmax is the longest timer a node is allowed to set in number of the 

beacon period. Initially, each node is treated as a one-node cluster; the target cluster is set 

to be the neighbor with the strongest gravity to the node itself; and the timer is set to be 

Tmax divided by the gravity to the target cluster. When the timer of a cluster head expires, 

it sends a merge request containing the size of the cluster to the head of its target cluster 

to solicit a merge response. If the target cluster decides to accept the merge, it returns a 

merge response. After exchanging merge requests and responses, the two cluster heads 

execute the merge process. The head of the larger cluster becomes the head of the merged 

cluster, and the head of the smaller cluster submits its cluster information to the new 

cluster head and becomes a regular cluster member. In each merge, the head of the 

merged cluster includes the link with the highest available bandwidth between the two 

original clusters to connect them. It is not difficult to see that this process will introduce n 

– 1 links to connect n number of nodes. In other words, the result of the algorithm 

naturally forms a tree. We call this tree our Bandwidth-Aware Routing Tree (BART).  

Notice that according to our algorithm the cluster head is not necessarily the root of the 

tree.  

When two clusters are merged, the center of the cluster may shift and the virtual 

bandwidth to their neighboring clusters may change due to the inclusion of new cluster 

members, which will affect the gravity to the neighboring clusters. The center of the 

cluster is the average of the locations of nodes in the cluster, and can be calculated 

directly from the centers and the sizes of the original clusters. Similarly, the virtual 

bandwidth of the merged cluster to the neighboring clusters can be calculated directly 

from the virtual bandwidth of the original clusters to their neighboring clusters. The link 
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with the highest available bandwidth of the merged cluster to a neighboring cluster is the 

one with the higher bandwidth of the original two clusters to the neighboring cluster. As 

long as the head of the merged cluster obtains the cluster information from the head of 

the original smaller cluster during the merge process, it can derive these pieces of 

information and then calculate the new gravity to each of its neighboring clusters without 

additional message exchanges. After two clusters are merged into one, the head of the 

merged cluster will have to send an update message to inform heads of neighboring 

clusters of the new size of the merged cluster and the new virtual bandwidth between 

them. A cluster head who receives an update message from a neighboring cluster updates 

its information about that neighboring cluster, but will not reset its timer if it is in the 

comparing state. This is to ensure that the timer of a cluster head will eventually expire. 

It is worth noting that before all nodes in the entire network are merged into one 

cluster, each cluster head maintains its own bandwidth-aware routing tree inside its 

cluster, which is used to route the merge requests/responses and cluster update messages 

to neighboring clusters. 

 

3.3 Data Structure for Merging The Cluster 

To optimize the performance of the algorithm efficiently, two data structures are 

used by each cluster head. The first is the disjoint set of member nodes in the cluster. 

Initially each node is treated as a disjoint set. As two clusters are merged, their sets are 

unioned together. The disjoint set is implemented with union-by-size and find-with-path-

compression. The second data structure is the priority queues to store the virtual 

bandwidth and distances to neighboring clusters. These priority queues can reduce the 



   

18 

time required to find the merge target from neighboring clusters. Whenever an update is 

received from a neighboring cluster, the corresponding entries in the priority queues are 

updated. In the process of a merge, the head of the smaller cluster submits both data 

structures as the cluster information to the new cluster head. 

In the following subsections, we address two design issues in more detail: the gravity 

function and concurrent merge requests. 

 

3.4 The Gravity Function 

As explained in Chapter 1, more occurrences of conflicting hull in the network is 

likely to create a lengthy path to the destination. To minimize the possibility of having 

conflicting hulls between siblings, closer clusters should be merged early by assigning a 

larger gravity between them. To avoid creating bottlenecks in the tree, links with higher 

available bandwidth should be given higher priority so that they can be added to the tree. 

These observations lead us to define the gravity function between two neighboring 

clusters C1 and C2 as:  

 

gravity (C1 , C2) =  
bandwidth (C1 , C2)

dist (C1 , C2)2
 

(1) 

 

As in IEEE 802.11b specification [31], neighboring nodes exchange beacons 

periodically. By examining the beacon signals from a neighbor, a node can estimate the 

available bandwidth to the neighbor. So, as long as the network is connected, after a 

series of merges all nodes should eventually belong to one cluster. 
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3.5 Concurrent Merge Requests 

It is possible for multiple clusters have their timer expire before their merge process 

is complete. In this case, there will be concurrent merge requests sent out in the network. 

If the source and destination of these requests are different, the merge can be performed 

in parallel. Otherwise, the merge must be performed sequentially. 

In Table I, when a cluster head intends to merge with its target cluster, it first sends a 

merge request to the target cluster and waits for a merge response from the target cluster. 

The cluster heads will go through a process similar to the two-phase commit protocol 

[19]. The head initiating the merge will go through the requested and committed states, 

while the target cluster head will go through the responded and committed states. In 

addition, the statements associated with the committed state must be treated as one 

atomic action, i.e., the cluster head will not be preempted before the merge process is 

complete. By incorporating these protection mechanisms, a cluster head will be involved 

in at most one merge request. For instance, in Figure 3.1, after cluster heads P and Q go 

through the two-phase commit and execute the merge process under the committed state, 

if P receives a merge request from R before its merge process is complete, it will ignore 

the request. For cluster head R, it will simply switch back to a comparing state if it does 

not get a merge response for its merge request for a short period of time Tmerge. 
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CHAPTER 4  

ILLUSTRATION OF TREE CONSTRUCTION 

 

In this chapter, we illustrate how a BART is construed distributively and explain the 

differences between BART and the minimum path tree. We use a 2-D example to assist 

understanding of the tree construction. 

 

Figure 4.1 Original Network Topology
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Initially, we set up a network of 12 nodes, as shown in Figure 4.1. A link between 

two nodes means that they are neighbors to each other. The wider a link is the more 

available bandwidth between two neighbors. An irregular shape void region is located in 

the center of the network. 

 

 

Figure 4.2 Minimum Path Tree 

 

Using the algorithm described in [16], a minimum path tree can be constructed for 

the given network, as shown in Figure 4.2. Node A is first selected as the root of the tree 
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(represented by the solid circle) because it is at the boundary of the network. As can be 

seen by the dotted lines, this root selection leads to the conflicting hulls at sibling nodes 

B and K. In addition, the link < J, K > is included in the tree to connect node J, but it has 

much a lower available bandwidth than the edge < M, J >, as shown in Figure 4.1.  

 

 

Figure 4.3 Construction of BART - Initialization 

 

In contrast, BART is constructed in a bottom-up fashion and does not first make a 

selection of the root. As illustrated in Figure 4.3, initially each node is a single-node 
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cluster and its own cluster head (represented by the thick circle). Each node then 

computes the gravity to each of its neighbors based on available bandwidth and distance 

and sets a timer inversely proportional to the largest gravity toward its target neighboring 

cluster.  

 

 

Figure 4.4 Construction of BART - Parallel Tree Construction 

 

As shown in Figure 4.4, node pairs < K, M > < D, E >, and < F, G > have higher 

gravity due to more available bandwidth and a closer distance. Consequently, they will 
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merge together first. After these merges, the node that has the most members becomes the 

root in the new cluster. In the cluster < K, M >, node K becomes the head of the new 

cluster and node M becomes a member of the new cluster (represent by thinner circle).  

 

 

Figure 4.5 Construction of BART – Completion 

 

These merges are independent and can happen in parallel. The merge process is 

repeated until all nodes join the tree and no other clusters remain, as illustrated in Figure 

4.5. In the last merge, the link < C, D > is included in the tree. Therefore, the node C 



   

25 

becomes the root of the whole tree. It is not difficult to see that there is no conflicting hull 

between any pair of sibling nodes. 

In addition, the edges with the most available bandwidth are more likely to be 

included in the tree. For instance, the edge < M, J > is now used in the tree to connect 

node J instead of edge < J, K > compared with the minimum path tree in Figure 4.2. This 

effectively reduces the chance of creating traffic bottlenecks in the tree and more 

traverses to send packets to a destination. 
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CHAPTER 5  

PERFORMANCE STUDY 

 

In this chapter, we evaluate the performance of the proposed Bandwidth-Aware 

Routing Tree (BART). To show its performance, we use our own simulator developed 

through Java programming and ns-2 simulation [33] to implement the underwater 

situation. Also we compare its performance with two other spanning trees: Breadth First 

Search Tree (BFST) and Minimum Path Tree (MPT). To showcase the capability of the 

tree routing, the simulations are carried out in 3D network scenario.  

 

5.1. Simulation Settings 

The transmission range of each node is set to be 300 m. The transmission power is 

set to be 92 dB, which approximately corresponds to the transmission range. We 

randomly generated the topologies by placing nodes in a 3-D cube having sides with a 

length of 1000 m according to the uniform distribution. The cube is wrapped at both ends 

of each dimension to eliminate the edge effect. The total number of nodes placed in the 

cube ranges from 30 to 150, which corresponds to network densities from 3.39 to 16.96 

neighbors per node. For each network density, we generate 50 topologies and use them to 
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evaluate the performance of the three spanning trees. For each pair of neighbors, the 

available bandwidth between them is randomly generated in the range from 1 kbps to 100 

kbps with uniform distribution. For each realization, two pairs of source and destination, 

which are connected through the network, are randomly selected. Each source node 

generates constant bit-rate (CBR) traffic flows to its destination simultaneously. Each 

CBR flow sends 100 consecutive packets of 50 bytes at the transmission rate of 10 Kbps. 

The inter arrival time of packets is set to be 30 seconds. 

To simulate the characteristics of the underwater environment, the ns-2 underwater 

module [10] is used. For MAC protocol, CSMA/CA [23] with stop-n-wait ARQ (i.e., 

ACK) is implemented. The following subsections elaborate on the physical and MAC 

layer configurations.  

1) Physical Layer Configurations: In [10], the physical characteristics of the 

underwater acoustic sensor networks (UWSN) are realized by the creation of propagation, 

channel, and physical layer models. The propagation model calculates the signal-to-noise 

ratio (SNR) at each receiver node after attenuation, ambient noise, and the interference 

range of a signal. The attenuation is based on the spreading loss [30] and on Thorp’s 

approximation [3] for the absorption loss. In addition, the orientation of the link (i.e., 

whether it is horizontal or vertical) affects the signal attenuation through acoustic fading 

channels. The ambient noise in the underwater environment is obtained from turbulence, 

shipping, wind, and thermal.  

The channel model is used for the calculation of neighbor sets, collision, and so on. 

In addition, it calculates propagation delay, which is formulated by the speed of the sound, 

the depth of the water, and the temperature of the water [35]. 
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The physical layer model is responsible for packet reception, including transmission 

error, transmission time, and propagation delay by calling the function in the propagation 

and channel models. In addition, it calculates the energy consumption for transmission. 

The hardware related parameters of the physical interface, such as the receiving signal 

strength threshold and the maximum transmission power, are set according to the WHOI 

micro modem [26]. 

Although the underwater model in [10] does not provide the bit error rate (BER), it is 

able to calculate the receiving power, which can be used to infer the BER the experiment 

results presented in [7]. Without loss of generality, we adopt the error model in [7] as an 

exponential equation, 0.4 × exp(−0.323 × Pr), where Pr is the receiving power. In this 

equation, BER increases quickly as the receiving power decreases. For instance, when Pr 

is 30 dB, BER is 2 × 10−5, and when Pr is 40 dB, BER is 10−6.  

2) MAC Layer Configurations: As suggested in [6], the CSMA/CA with ARQ is 

adopted as the medium access control mechanism for our underwater simulations. The 

RTS/CTS handshaking is removed because it causes serious delays in a low rate and high 

delay underwater environment. To battle with high BER, the stop-n-wait ARQ (i.e., link 

layer ACK [27]) is used in our underwater simulations. If a node does not receive ACK 

within the period of the ACK timeout after it transmits a packet, it assumes the packet is 

lost and retransmits the packet. A packet can be retransmitted as needed up to a prefixed 

number of times. To simplify the simulation design, the forward error correction [27] is 

not implemented and the packet error rate (PER) is approximated as the product of BER 

and packet size. In other words, if any bit in a packet is lost, the whole packet will be 

discarded. 
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Due to the special physical characteristics of underwater acoustic links, the MAC 

parameters are adjusted accordingly. For instance, the value of the slot time in the 

CSMA/CA backoff mechanism has to account for the propagation delay of the physical 

layer. Since the speed of sound in water is approximately 1500 m/s, the slot time should 

be much longer than that in wireless media. The MAC parameters in our simulations are 

set similar to what are used in [22]. The inter frame spacing and the slot time are both set 

to be 0.18 second. The minimum and maximum contention window sizes are set to be 4 

and 32, respectively. To accommodate the high propagation delay of acoustic signals, the 

duration of the ACK timeout is set to be 5 seconds and the number of maximum link 

retransmissions is set to 10.  

 

5.2. Simulation Results and Analysis 

To evaluate routing protocols, six different metrics, including Number of Conflicting 

Convex Hulls, Average Path Hops, Average Path Distance, Average Throughput, 

Delivery Rate, and Energy Consumption, are used. Their definitions are provided as 

follows. 

1) Number of Conflicting Convex Hulls: The number of conflicting convex hulls is 

calculated by the conflict that happened between sibling clusters. 

2) Average Path Hops: The average path hops is defined as the average number of 

hop between source and destination pairs. 

3) Average Path Distance: the average path distance is defined as the sum of the 

Euclidean distance of links in the path from source to destination. 
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4) Average Throughput: The average throughput is defined as the smallest available 

link bandwidth along the path from source and destination. 

5) Delivery Rate: The delivery rate is defined as the ratio of the total number of 

received packets to the total number of generated packets. 

6) Energy Consumption: The energy consumption is calculated by the ns-2 

underwater module [10]. The unit of energy is a Joule.  

 

Figure 5.1 Number of Conflicting Convex Hulls 

 

The first metric is the average number of conflicting hulls in the spanning tree. After 

the spanning trees are produced by the three algorithms, we calculate the 3-D convex 

hulls of the subtrees and count the number of conflicting convex hulls among siblings. 

Each point in Figure 5.1 represents the average of the number of conflicting hulls in 50 

different topologies under the same network density. More conflicting hulls result in a 
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more complicated routing. As shown in Figure 5.1, the number of conflicting hulls of 

BART is less than one for all density levels and is consistently smaller than the other 

methods. This is because BART is built from bottom-up. Closer clusters are merged first 

so that the convex hulls between siblings have little chance of overlapping. Therefore, it 

results in a geographically “compact” tree.  

 

 

Figure 5.2 Average Path Hops 

 

The second metric is the average path hops. For each generated network topology, 2 

source-destination pairs are randomly selected to perform routing. Each point in Figure 

5.2 represents the average of 100 source-destination pairs from the 50 different network 

topologies for a given network density. A smaller number of path hops means that the 
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end-to-end delay is lower, so the traffic can reach the destination faster. While MPT is 

formed by the shortest paths from each node to the root, its average path hops may not be 

the lowest because the root may be neither the source nor the destination. As shown in 

Figure 5.2, BART has the smallest average path hops. In BART, the distance between 

neighboring clusters is one of the major factors to determine the merge of clusters. The 

resulting tree therefore has the smallest average path hops. 

 

 

Figure 5.3 Average Path Distance 

 

The third metric is the average path distance. A smaller average path distance means 

less energy is spent on each routing, thus prolonging the lifetime of nodes in the network. 

Similar to the average path hops, each point in Figure 5.3 is an average of 100 source-
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destination pairs from 50 different network topologies for a given network density. 

Compared with Figure 5.2, the result of Figure 5.3, taken between same densities, reflects 

very similar results. Otherwise, it shows that the average path hops is highly related with 

the average path distance. In Figure 5.3, it is clear that BART has the smaller average 

path distance than BFS and MPT. Recall that BART has clearly smaller average path 

hops, so the results of the average path distance again confirm that the average link length 

in BART is shorter. In underwater sensor networks, a shorter link may be preferred since 

it has the advantage of higher transmission success rates. 

 

 

Figure 5.4 Average Path Throughput 
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The fourth metric is the average path throughput of the routing path. The larger the 

path throughput is, the less likely that the traffic will be congested. Again, each point in 

Figure 5.4 represents an average of 100 source-destination pairs from 50 different 

network topologies for a given network density. 

As shown in Figure 5.4, BART has the largest path throughput because clusters of 

nodes are merged based on the inter-cluster available bandwidth as well as their distances. 

By merging clusters with higher bandwidth between them earlier, BART provides more 

bandwidth for routing along in the tree. 

 

 

Figure 5.5 Delivery Rate 
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The fifth metric is the delivery rate. Figure 5.4 illustrates the delivery rate of 

different routing protocols with respect to the network density. The larger delivery rate 

means the higher success rate to transfer the packet from source to destination. As 

observed, BART achieves a much higher delivery rate compared with MPT and BFST. 

This is due to the fact that BART has an efficient detouring strategy based on the 

routing tree concentrated on the distance and the bandwidth. Recall in Figure 5.2 BART 

is always the lowest average path hop. 

 

Figure 5.6 Energy Consumption 

The last metric is the energy consumption. Figure 5.6 demonstrates the energy 

consumption of different routing protocols with respect to the network density in the 

scenario. As can be seen in Figure 5.6, less energy is consumed by BART than MPT and 

0

200

400

600

800

1000

3.39 5.65 7.91 10.17 12.43 14.70 16.96 

e
n
e
rg

y 
co

n
su

m
p
ti
o
n
 (
J)

density (average number of neighbors)

BART

MPT

BFS



   

36 

BFST because BART delivers the packet to designation with shorter path hops. 

According to the increased density, energy consumption grows gradually.  
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

 

Geographic routing is a powerful algorithm well-known to be light-weight and 

efficient in wireless sensor networks, but when it is adopted for underwater sensor 

networks, most detouring strategies fail because their assumptions do not apply to the 

environment of such networks. In [15], spanning tree routing has been shown to be a 

good detouring strategy alternative for geographic routing without the need of those 

assumptions. 

However, the performance of the spanning tree routing is largely dependent on the 

quality of the pre-constructed spanning trees with a top-down fashion. In this thesis, the 

Bandwidth-Aware Routing Tree (BART) algorithm is presented. Compared with the 

existing spanning trees, the proposed BART makes better use of the location and 

bandwidth information in the network. Simulation results confirm that the spanning tree 

routing based on BART achieves a better routing performance in terms of the number of 

conflicting hulls, average path hops, average path distance, average path throughput, 

delivery rate, and energy consumption.  

Currently there is no pre-constructed spanning tree designed to be adaptive to 

network mobility. Slight movement changes of network topology may completely change 

the routing tree. Because of the distributed nature of BART, when a link is broken due to
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environment interference of node movement, theoretically the affected nodes can do a 

local search to find alternative links to reconnect network without reconstructing the 

entire tree. This option will be investigated in our future work. 
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