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In recent years, power consumption has become a critical design concern for many

VLSI systems. Nowhere is this truer than for portable, battery-operated applications, where

power consumption has perhaps superseded speed and area as the overriding implementation

constraint. But since last few years as the greater emphasis is put on miniaturization, in

future technologies, the problem of subthreshold leakage power in CMOS circuits will grow

in significance. The leakage current is exponentially dependent on the value of the threshold

voltage such that if the threshold voltage is reduced (as it will be in the future technologies),

the leakage current registers an exponential increase. Responding to this challenge, several

low power techniques at levels ranging from technology to architecture have been proposed

to reduce both dynamic and static power for processors and make them more energy-

efficient. Some of these techniques can be applied to hardware whereas others are software

based techniques. In this thesis, we propose a combined hardware-software technique which

will potentially show considerable leakage energy reduction when power-performance trade-

offs are made in higher-leakage technologies.
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A simple method to reduce the power consumption in a processor is to slow down

the clock frequency. The dynamic power reduces in proportion to the frequeny reduction.

However, the leakage power remains the same. Because a computing task will require the

same number of clock cycles it will now take more time. The leakage energy will therefore

increase, although the dynamic energy will remain the same. It is the reduction of leakage

power and energy that is targeted in the present work.

The main idea introduced and investigated is that the power-performance trade-off is

accomplished by inserting empty (no-op) cycles while the clock rate is kept unchanged.

The hardware units are especially designed to save leakage power while processing a no-

op instruction. As an illustration, the hardware of a five-stage pipeline RISC processor is

redesigned to reduce power consumption of the no-op cycles using sleep modes. This largely

eliminates the leakage in those cycles. The expected result is that as more empty cycles are

inserted, the performance would drop similar to the conventional clock frequency reduction.

However, the computing task that now takes more cycles has only a marginal increase in the

leakage energy. In addition, the empty cycles may eliminate many of the pipeline hazards

and thus reduce the performance penalty. In this work, power supply for the active (i.e.,

non-empty) cycles is not changed and that aspect is left for the future investigation.

The control unit of the processor has been designed to interpret an external power man-

agement signal. Based on the power and performance requirements, this signal specifies a

performance slowdown factor. The power block has been added in the processor architec-

ture that inserts no-ops in proportion to the slowdown factor in the instruction stream.

The normal clock rate is maintained. The control also generates the power signals for dif-

ferent blocks of the processor along with the other control signals. These power signals are
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applied to various hardware blocks (register file, ALU, and instruction and data caches) of

the processor, which on the basis of the required activity are put into one of the low power

modes such as drowsy or sleep mode. These modes are chosen for the best leakage power

reduction.

We have simulated a modified 32-bit MIPS pipelined processor for 22nm and 65nm

technologies using the Berkeley Predictive Technology Models.
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Chapter 1

Introduction

The invention of a transistor was a giant leap forward for low-power electronics that

has remained unequaled to date. The operation of vacuum tubes required several hundred

volts and several watts of power. In comparison the transistor required only milliwatts

of power. Since the invention of the transistor, decades ago, through the years leading

to the 21st century, power dissipation, though not entirely ignored, was of little concern.

The greater emphasis was on performance and miniaturization. Applications powered by

batteries - pocket calculators, hearing aids and, most importantly, wristwatches - drove

low-power electronics. In all such applications, it is important to prolong the battery life

as much as possible. Especially now, with the growing trend towards portable computing

and wireless communication, power dissipation has become one of the most critical factors

in the continued development of the microelectronics technology. There are two reasons for

this:

1. One of the most significant low-power design ideas of the last century, the comple-

mentary metal oxide semiconductor (CMOS) technology [111], has served us well for

several decades. However, to make the best cost-performance trade-off [82] we con-

tinue to integrate more functions onto a chip by shrinking the features to the smallest

size permitted by the manufacturing technology. As a result, the dissipation of power

per unit area grows and the accompanying problem of heat removal and cooling wors-

ens. Examples are the general-purpose microprocessors used in desktop computers

and servers. Even with the scaling down of the supply voltage, power dissipation has
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Figure 1.1: Power density for the Intel-32 family

not come down. Figure 1.1 shows the power density for several commercial processors.

As it is shown in the figure, the trend is to increase the power density to levels where

the cooling mechanisms are unlikely to be effective enough.

2. Portable battery-powered applications of the past were characterized by low com-

putational requirements. The last few years have seen the emergence of portable

applications that require a greater amount of processing power. Two vanguards of

this processing model are the notebook computer and the personal digital assistant

(PDA).

As a result, today, it is widely accepted that power efficiency is a design goal at par in

importance with miniaturization and performance. In spite of this acceptance, the practice

of low-power methodologies is being adopted at a slow pace due to the widespread changes
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Figure 1.2: Projected development of power consumption over technology generations [44]

called for by these methodologies. Minimizing energy consumption and power dissipation

calls for conscious effort at each abstraction level and at each phase of the design process.

While technology scaling has made it possible to put more transistors onto a single

chip, at the same time allowing them to run faster, new complications continue to arise [1].

The supply voltage, being one of the critical parameters, has been reduced according to the

characteristics of the shrinking MOS device. Therefore, to maintain the transistor switch-

ing speed, the threshold voltage is also scaled down at the same rate as the supply voltage.

As a result, leakage currents increase dramatically with each technology generation. Some

researchers predict a 7.5-fold increase in the leakage current and a 5-fold increase in total

energy dissipation for every new microprocessor chip generation [64]. As the leakage cur-

rent increases faster, it will become the major component in the total power dissipation.

Figure 1.2 shows that static power consumption reaching the level of dynamic power con-

sumption within a few years time. Leakage power is becoming a serious problem that needs

handling at all levels of abstraction.
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1.1 Problem Statement

In the presence of non-negligible leakage power, the way to design architectures for low

power consumption may have changed. This master’s thesis represents one step towards

exploring low power design again. It concentrates on trying to reduce the leakage power at

the architectural level.

1.2 Contribution of Research

We have developed a new Hardware-Software Architecture for the processors that helps

in leakage power reduction for future higher-leakage technologies by using pipeline stalls.

The architecture includes a power block that inserts NOPs in the processor in order to

reduce the frequency of operation. Simultaneously when the NOP is inserted the different

blocks of the processor are put into low-power mode, such as sleep mode or drowsy mode,

by power-gating technique given in the literature.

1.3 Organization of the thesis

The thesis is organised as follows. In chapter 2, we survey the different power reduction

techniques that has been used at different abstraction levels such as technology level, layout

level, circuit level, gate level, architecture level and algorithm level. Chapter 3 explains

the new hardware-software technique for leakage power reduction. The modified low-power

architecture of the processor and the results are discussed in chapter 4. The thesis is

concluded with the insight on the future work in chapter 5.
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Chapter 2

Background

This chapter describes low-power design techniques at abstraction levels ranging from

layout and technology to architecture and system. By reading this chapter, it should become

clear that high-level design decisions - those made at the architecture or system level - have

the most dramatic impact on power consumption.

2.1 SOURCES OF POWER CONSUMPTION

Power dissipated in CMOS circuits consists of several components as indicated be-

low [15] [112]:

Ptotal = Pswitching + Pshortcircuit + Pstatic + Pleakage (2.1)

The individual components represent the power required to charge or switch a capacitive

load (Pswitching), short circuit power consumed during output transitions of a CMOS gate as

the input switches (Pshortcircuit), static power consumed by the input switches (Pstatic), and

leakage power consumed by the device (Pleakage). Components Pswitching and Pshortcircuit are

present when a device is actively changing state, while the components Pstatic and Pleakage

are present regardless of state changes.

The largest active component is Pswitching. It is caused due to the logic transitions.

As the transistors in the digital CMOS circuit transition back and forth between the two

logic levels, the parasitic capacitances are charged and discharged. Current flows through

the channel resistance of the transistors, and electrical energy is converted into heat and

dissipated away (Fig. 2.1)
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Figure 2.1: Circuit transition currents (left: charge, right: discharge)

Pswitching is defined as,

Pswitching = C ∗ Vdd ∗ Vswing ∗ α ∗ f (2.2)

Where C represents the capacitance being switched, Vdd is the supply voltage, Vswing

corresponds to the change in the voltage level of the switched capacitance, α represents a

switching activity factor based on the probability of an output transition and, f represents

the frequency of operation. The product α ∗ C is also referred to as the effective switched

capacitance, or Ceff . In most circuits, Vswing is equal to Vdd, so (2.2) is commonly written

as

Pswitching = Ceff ∗ V 2
dd ∗ f (2.3)

The term Pshortcircuit occurs when short-circuit currents flow directly from supply to

ground when both n-subnetwork and p-subnetwork of a CMOS gate conduct simultaneously

(Fig.2.2). With the input(s) to the gate stable at either logic level, only one of the two

subnetworks conduct and no short-circuit currents flow. But when the output of the gate is

changing in response to the change in the input, both subnetworks conduct simultaneously

for a brief interval. The duration of the interval and the short circuit dissipation both

depend on the input and the output transition (rise or fall) times.

6



Figure 2.2: Short circuit currents

Pshortcircuit has a complicated derivation, but in a simplified form can be written as [16],

Pshortcircuit = Imean ∗ Vdd (2.4)

Where Imean represents the average current drawn during the input transition. Imean is

minimized for a single gate with short input rise and fall times, and with long output tran-

sition times, thus presenting a trade off in device sizing. When a set of gates is considered,

it is generally optimal to target equal input and output transition times. For large devices

such as input-output (I/O) buffers or clock drivers, special design considerations are often

used to minimize the overlap current [109]. For properly sized and ratioed gates, the contri-

bution to overall dynamic power due to Pshortcircuit is on the order of 10 % -20 %, although

this factor may increase with increased device scaling [110].

Pstatic is not usually a factor in pure CMOS designs, since static current is not drawn

by a CMOS gate, but certain circuit structures such as sense amplifiers, voltage references,

and constant current sources do exist in CMOS systems and contribute to overall power.

Pleakage is due to leakage currents from reversed biased PN junctions associated with

the source and drain of MOS transistors, as well as subthreshold conduction currents. The

leakage current flows when the input(s) to, and therefore the outputs of, a gate are not

7



changing (Fig. 2.3). The leakage component is proportional to device area and temperature.

The subthreshold leakage component is strongly dependent on device threshold voltages,

and becomes an important factor as power supply voltage scaling is used to lower power.

For systems with a high ratio of standby operation to active operation, Pleakage may be

the dominant factor in determining overall battery life as lower the threshold voltage, the

lower the degree to which MOSFETs in the logic gates are turned off and the higher is the

standby leakage current.

Figure 2.3: Leakage Currents

Minimization of these components of power dissipation is important in designing low-

power systems, and there are complex interactions that require trade offs to be made in-

volving each.

2.2 DEGREES OF FREEDOM

Active power minimization involves reducing the magnitude of each of the components

in equation (2.2): voltage, physical capacitance, and activity. Optimizing for power in-

variably involves an attempt to reduce one or more of these factors. Unfortunately, these

parameters cannot be optimized independently as they are not completely orthogonal. This
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section briefly discusses each of the factors, describing their relative importance, as well as

the interactions that complicate the power optimization process [22].

2.2.1 Voltage

With its quadratic relationship to power, voltage reduction offers the most direct and

dramatic means of minimizing energy consumption. Without requiring any special circuits

or technologies, a factor of two reduction in supply voltage yields a factor of four decrease

in energy (see Figure 2.4(a) [18]). Furthermore, this power reduction is a global effect,

experienced not only in one sub-circuit or block of the chip, but throughout the entire

design. Because of this quadratic relationship, designers of low-power systems are often

willing to sacrifice increased physical capacitance or circuit activity for reduced voltage.

Unfortunately, supply voltage cannot be decreased without bound. In fact, several factors

other than power influence selection of a system supply voltage. The primary factors are

performance requirements and compatibility issues. As supply voltage is lowered, circuit

Figure 2.4: Energy and Delay as a function of supply voltage

delays increase (see Figure 2.4(b)) leading to reduced system performance. To the first

order, device currents are given by:
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Idd =
µCox

2
W

L
(Vdd − Vt)2 (2.5)

This leads to circuit delays of the order:

t =
CVdd

Idd
∝ Vdd

(Vdd − Vt)2
(2.6)

So, for Vdd >> Vt delays increase linearly with decreasing voltage. In order to meet

system performance requirements, these delay increases cannot go unchecked. Some tech-

niques must be applied, either technological or architectural, in order to compensate for this

effect. As Vdd approaches the threshold voltage, however, delay penalties simply become

unmanageable, limiting the advantages of going below a supply voltage of about 2Vt.

Performance is not, however, the only limiting criterion. When going to non-standard

voltage supplies, there is also the issue of compatibility and inter-operability. Unless the

entire system is being designed completely from scratch it is likely that some amount of

communications will be required with components operating at a standard voltage. This

dilemma is lessened by the availability of highly efficient (> 90%) DC-DC level converters,

but still there is some cost involved in supporting several different supply voltages [98].

This suggests that it might be advantageous for designers to support only a small number of

distinct intrasystem voltages. For example, custom chips in the system could be designed to

operate off a single low voltage (e.g., 2Vt) with level shifting only required for communication

with the outside world. To account for parameter variations within and between chips, the

supply would need to be set relative to the worst-case threshold, Vt,max.
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To summarize, reducing supply voltage is paramount to lowering power consumption,

and it often makes sense to increase physical capacitance and circuit activity in order to

further reduce voltage. There are, however, limiting factors such as minimum performance

and compatibility requirements that limit voltage scaling. These factors will likely lead

designers to fix the voltage within a system. Once the supply has been fixed, it remains to

address the issues of minimizing physical capacitance and activity at that operating voltage.

The next two sections address these topics.

Figure 2.5: Primary sources of device capacitance

2.2.2 Physical Capacitance

Dynamic power consumption depends linearly on the physical capacitance being switched.

So, in addition to operating at low voltages, minimizing capacitance offers another tech-

nique for reducing power consumption. In order to properly evaluate this opportunity we

must first understand what factors contribute to the physical capacitance of a circuit. Then

we can consider how those factors can be manipulated to reduce power. The physical ca-

pacitance in CMOS circuits stems from two primary sources: devices and interconnect. For

devices, the most significant contributions come from the gate and junction capacitances as

shown in Figure 2.5. The capacitance associated with the thin gate oxide of the transistor
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is usually the larger of the two. This term can be approximated as a parallel-plate (area)

capacitance between the gate and the substrate or channel:

cg = WLCox = WL
εox

tox
(2.7)

In addition, source/drain junction capacitances contribute to the overall device capaci-

tance. These capacitances have both an area and a perimeter component and are non-linear

with the voltage across the junction:

Cj(V ) = ACj0(1− V

φ0
)−m + PCjsw0(1− V

φ0
)−m (2.8)

Where A and P are the source/drain area and perimeter, Cj0 and Cjsw0 are equilibrium

bottomwall and sidewall capacitances, φ0 is the junction barrier potential,and m is the

junction grading coefficient.

Figure 2.6: Sources of interconnect capacitance

Often, this non-linear capacitance is approximated by a large-signal equivalent lin-

earized capacitance given by:
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Cjeq =
∫ V1

V0 Cj(V )dV
V1 − V0

(2.9)

Where V0 and V1 describe the range of typical operating voltages for the junction. In past

technologies, device capacitances dominated over interconnect parasitics. As technologies

continue to scale down, however, this no longer holds true and we must consider the con-

tribution of interconnect to the overall physical capacitance. For the interconnect, there

is the capacitance between each metalization layer and the substrate, as well as coupling

capacitances between the layers themselves (see Figure 2.6). Each of these capacitances in

turn has two components: a parallel-plate component and a fringing component:

Cw = WLCp + 2(W + L)Cf (2.10)

Historically, the parallel-plate component, which increases linearly with both the width

and the length of the wire, has been dominant. The fringing component starts to become

significant, however, as the interconnect width becomes narrower and narrower relative

to the wire thickness [13]. With this understanding, we can now consider how to reduce

physical capacitance. From the previous discussion, we recognize that capacitances can be

kept at a minimum by using small devices and short wires. As with voltage, however, we are

not free to optimize capacitance independently. For example, reducing device sizes will not

only reduce physical capacitance, but will also reduce the current drive of the transistors,

making the circuit operate more slowly. This loss in performance might prevent us from

lowering Vdd as much as we might otherwise be able to do. In this scenario, we are giving

up a possible quadratic reduction in power through voltage scaling for a linear reduction
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Figure 2.7: Interpretation of switching activity in synchronous systems

through capacitance scaling. So, if the designer is free to scale voltage it does not make sense

to minimize physical capacitance without considering the side effects. Similar arguments

can be applied to interconnect capacitance. If voltage and/or activity can be significantly

reduced by allowing some increase in physical interconnect capacitance, then this may result

in a net decrease in power. The key point to recognize is that low-power design is a joint

optimization process in which the variables cannot be manipulated independently.

2.2.3 Activity

In addition to voltage and physical capacitance, switching activity also influences dy-

namic power consumption. A chip can contain a huge amount of physical capacitance, but

if it does not switch then no dynamic power will be consumed. The activity determines how

often this switching occurs. As mentioned above, there are two components to switching ac-

tivity. The first is the data rate, f , which reflects how often, on average, new data arrives at

each node. This data might or might not be different from the previous data value. In this

sense, the data rate f describes how often on average switching could occur. For example,

in synchronous systems f might correspond to the clock frequency (see Figure 2.7).
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The second component of activity is the data activity, α. This factor corresponds to

the expected number of transitions that will be triggered by the arrival of each new piece

of data. So, while f determines the average periodicity of data arrivals, α determines how

many transitions each arrival will spark. For circuits that don’t experience glitching, α can

be interpreted as the probability that a transition will occur during a single data period.

For certain logic styles, however, glitching can be an important source of signal activity

and, therefore, deserves some mention here [17]. Glitching refers to spurious and unwanted

transitions that occur before a node settles down to its final, steady-state value. Glitching

often arises when paths with unbalanced propagation delays converge at the same point in

the circuit. Since glitching can cause a node to make several power consuming transitions

instead of one (i.e. α > 1) it should be avoided whenever possible. The data activity α

can be combined with the physical capacitance C to obtain an effective capacitance, Ceff

= α C/2, which describes the average capacitance charged during each 1/f data period.

This reflects the fact that neither the physical capacitance nor the activity alone determines

dynamic power consumption. Instead, it is the effective capacitance, which combines the

two, that truly determines the power consumed by a CMOS circuit:

P =
1
2
αCVdd

2f = CeffVdd
2f (2.11)

This discussion provides the first indication that data statistics can have a significant

effect on power consumption. As with voltage and physical capacitance, we can consider

techniques for reducing switching activity as a means of saving power. For example, cer-

tain data representations, such as sign-magnitude, have an inherently lower activity than
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two’s-complement [27]. Since sign-magnitude arithmetic is much more complex than two’s-

complement, however, there is a price to be paid for the reduced activity in terms of higher

physical capacitance. This is yet another indication that low-power design is truly a joint

optimization problem. In particular, optimization of activity cannot be undertaken inde-

pendently without consideration for the impact on voltage and capacitance.

2.3 RECURRING THEMES IN LOW POWER DESIGN

Sections 2.1 and 2.2 have provided a strong foundation from which to consider low-

power CMOS design. Specifically, Section 2.1 derived the classical expression for dynamic

power consumption in CMOS. This led to the realization that three primary parameters:

voltage, physical capacitance, and activity determine the average power consumption of

a digital CMOS circuit. Section 2.2 then went on to describe each of these factors in-

dividually, while emphasizing that design for low-power must involve a joint rather than

independent optimization of these three parameters. The upcoming sections present specific

power reduction techniques applicable at various levels of abstraction. Many of these tech-

niques follow a small number of common themes. The three principle themes are trading

area/performance for power, avoiding waste, and exploiting locality. Probably the most

important theme is trading area/performance for power. As mentioned in Section 2.2.1,

power can be reduced by decreasing the system supply voltage and allowing the perfor-

mance of the system to degrade. This is an example of trading performance for power.

If the system designer is not willing to give up the performance, he can consider apply-

ing techniques such as parallel processing to maintain performance at low voltage. Since

many of these techniques incur an area penalty, we can think of this as trading area for
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power. Another recurring low-power theme involves avoiding waste. For example, clocking

modules when they are idle is a waste of power. Glitching is another example of wasted

power and can be avoided by path balancing and choice of logic family. Other strategies for

avoiding waste include using dedicated rather than programmable hardware and reducing

control overhead by using regular algorithms and architectures. Avoiding waste can also

take the form of designing systems to meet, rather than beat, performance requirements.

If an application requires 25 MIPS of processing performance, there is no advantage gained

by implementing a 50 MIPS processor at twice the power. Exploiting locality is another

important theme of low-power design. Global operations inherently consume a lot of power.

Data must be transferred from one part of the chip to another at the expense of switching

large bus capacitances. Furthermore, in poorly partitioned designs the same data might

need to be stored in many parts of the chip, wasting still more power. In contrast, a design

partitioned to exploit locality of reference can minimize the amount of expensive global

communications employed in favor of much less costly local interconnect networks. While

not all low-power techniques can be classified as trading-off area/performance for power,

avoiding waste, and exploiting locality these basic themes do describe many of the strategies

that will be presented in the remainder of this chapter. The organization of these upcoming

sections is by level of abstraction. Specifically, beginning with Section 2.4 and ending with

Section 2.9, they cover low-power design methodologies for the technology, layout, circuit,

gate, architecture, and algorithm levels, respectively.
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2.4 TECHNOLOGY LEVEL

At the lowest level of abstraction we can consider low-power design strategies in the

context of both packaging and process technologies.

2.4.1 Packaging

Often a significant fraction of the total chip power consumption can be attributed

not to core processing but to driving large off-chip capacitances. This is not surprising

since off-chip capacitances are on the order of tens of picofarads while on-chip capacitances

are in the tens of femtofarads. For conventional packaging technologies, Bakoglu suggests

that pins contribute approximately 13-14 pF of capacitance each (10 pF for the pad and

3-4 pF for the printed circuit board traces) [13]. Since dynamic power is proportional to

capacitance, I/O power can be a significant portion of overall chip power consumption. The

notion that I/O capacitance at the chip level can account for as much as 1/4 to 1/2 of the

overall system power dissipation suggests that reduction of I/O power is a high priority in

multi-chip systems. If the large capacitances associated with inter-chip I/O were drastically

reduced, the I/O component of system power consumption would be reduced proportionally.

Packaging technology can have a dramatic impact on the physical capacitance involved

in off-chip communications. For example, multi-chip modules or MCM’s offer a drastic

reduction in the physical capacitance of off-chip wiring. In an MCM, all of the chips

comprising the system are mounted on a single substrate, and the entire module is placed

in a single package. Utilizing this technology, inter-chip I/O capacitances are reduced to the

same order as on-chip capacitances [20]. This is due not only to the elimination of the highly

capacitive PCB traces, but also to the minimization of on-chip pad driver capacitances due
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to reduced off-chip load driving requirements. Thus, utilizing MCM technology, the I/O

component of system power consumption can be kept at a minimum, shifting the focus

of power optimization from I/O considerations to chip core considerations [23]. Actually,

low-power operation is only one of the advantages of MCM technology. In addition, MCM’s

with their reduced chip-level interconnect lengths and capacitances can significantly reduce

system delays resulting in higher performance, which can then be traded for lower power at

the designer’s discretion [13]. So, selection of a packaging technology can have an important

effect on system power consumption.

2.4.2 Process

In addition to packaging considerations, process (or fabrication) technology plays an

important role in determining power consumption. This section presents two important

process-based techniques for reducing power consumption: technology scaling and threshold

voltage scaling.

TECHNOLOGY SCALING

Scaling of physical dimensions is a well-known technique for reducing circuit power

consumption. Basically, scaling involves reducing all vertical and horizontal dimensions

by a factor, S, greater than one. Thus, transistor widths and lengths are reduced, oxide

thicknesses are reduced, depletion region widths are reduced, interconnect widths and thick-

nesses are reduced, etc. The first-order effects of scaling can be fairly easily derived [12, 35].

Device gate capacitances are of the form Cg = W L Cox. If we scale down W , L, and tox

by S, then this capacitance will scale down by S as well. Consequently, if system data rates
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and supply voltages remain unchanged, this factor of S reduction in capacitance is passed

on directly to power:

Fixed Performance, F ixed V oltage : P ∝ 1
S

(2.12)

To give a concrete example, at the 1994 International Solid-State Circuits Conference,

MIPS Technologies attributed a 25% reduction in power consumption for their new 64b

RISC processor solely to a migration from a 0.8µm to a 0.64µm technology [114]. The

effect of scaling on delays is equally promising. Based on (eq 2.5), the transistor current

drive increases linearly with S. As a result, propagation delays, which are proportional

to capacitance and inversely proportional to drive current, scale down by a factor of S2.

Assuming we are only trying to maintain system throughput rather than increase it, the

improvement in circuit performance can be traded for lower power by reducing the supply

voltage. In particular, neglecting Vt effects, the voltage can be reduced by a factor of S2.

This results in a S4 reduction in device currents, and along with the capacitance scaling

leads to an S5 reduction in power:

Fixed Performance, V ariable V oltage : P ∝ 1
S5

(2.13)

This discussion, however, ignores many important second-order effects. For example,

as scaling continues, interconnect parasitics eventually begin to dominate and change the

picture substantially. The resistance of a wire is proportional to its length and inversely

proportional to its thickness and width. Since in this discussion we are considering the

impact of technology scaling on a fixed design, the local and global wire lengths should
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scale down by S along with the width and thickness of the wire. This means that the wire

resistance should scale up by a factor of S overall. The wire capacitance is proportional to

its width and length and inversely proportional to the oxide thickness. Consequently, the

wire capacitance scales down by a factor of S. To summarize:

Rw ∝ S and Cw ∝
1
S

(2.14)

twire ∝ RwCw ∝ 1 (2.15)

This means that, unlike gate delays, the intrinsic interconnect delay does not scale

down with physical dimensions. So at some point interconnect delays will start to dominate

over gate delays and it will no longer be possible to scale down the supply voltage. This

means that once again power is reduced solely due to capacitance scaling:

Parasitics dominated : P ∝ 1
S

(2.16)

Actually, the situation is even worse since the above analysis did not consider second-

order effects such as the fringing component of wire capacitance, which may actually grow

with reduced dimensions. As a result, realistically speaking, power may not scale down at

all, but instead may stay approximately constant with technology scaling or even increase:

Including 2nd− order effects : P ∝ 1 or more (2.17)
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The conclusion is that technology scaling offers significant benefits in terms of power

only up to a point. Once parasitics begin to dominate, the power improvements slack off or

disappear completely. So we cannot rely on technology scaling to reduce power indefinitely.

We must turn to other techniques for lowering power consumption.

THRESHOLD VOLTAGE REDUCTION

Many process parameters, aside from lithographic dimensions, can have a large impact

on circuit performance. For example, at low supply voltages the value of the threshold

voltage (Vt) is extremely important. Section 2.2.1 revealed that threshold voltage places

a limit on the minimum supply voltage that can be used without incurring unreasonable

delay penalties. Based on this, it would seem reasonable to consider reducing threshold

voltages in a low-power process. Unfortunately, subthreshold conduction and noise margin

considerations limit how low Vt can be set. Although devices are ideally “off” for gate volt-

ages below Vt, in reality there is always some subthreshold conduction even for Vgs < Vt.

The question is especially important for dynamic circuits for which subthreshold currents

could causes erroneous charging or discharging of dynamic nodes. The relationship between

gate voltage and subthreshold current is exponential. Each 0.1V reduction in Vgs below Vt

reduces the subthreshold current by approximately one order of magnitude [74]. Therefore,

in order to prevent static currents from dominating chip power and to ensure functionality

of dynamic circuits, threshold voltages should be limited to a minimum of 0.3-0.5V. Unfor-

tunately, dimensional and threshold scaling are not always viable options. Aside from the

drawbacks of interconnect non-scalability, submicron effects, and subthreshold conduction,

chip designers often don’t have complete freedom to arbitrarily scale their fabrication tech-

nology. Instead, economic factors as well as the capabilities of their fabrication facilities
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impose limits on minimum lithographic dimensions. For this reason, in order to achieve

widespread acceptance, an ideal low-power methodology should not rely solely on technol-

ogy scaling or specialized processing techniques. The methodology should be applicable

not only to different technologies, but also to different circuit and logic styles. Whenever

possible, scaling and circuit techniques should be combined with the high-level methodology

to further reduce power consumption; however, the general low-power strategy should not

require these tricks.

2.5 LAYOUT LEVEL

There are a number of layout-level techniques that can be applied to reduce power. The

simplest of these techniques is to select upper level metals to route high activity signals.

The higher level metals are physically separated from the substrate by a greater thickness

of silicon dioxide. Since the physical capacitance of these wires decreases linearly with

increasing tox, there is some advantage to routing the highest activity signals in the higher

level metals. For example, in a typical process metal three will have about a 30% lower

capacitance per unit area than metal two [84]. The DEC Alpha chip takes advantage of this

fact by routing the high activity clock network primarily in third level metal [36]. It should

be noted, however, that the technique is most effective for global rather than local routing,

since connecting to a higher level metal requires more vias, which add area and capacitance

to the circuit. Still, the concept of associating high activity signals with low physical

capacitance nodes is an important one and appears in many different contexts in low-power

design. For example, we can combine this notion with the locality theme of Section 2.3

to arrive at a general strategy for low-power placement and routing. The placement and
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routing problem crops up in many different guises in VLSI design. Place and route can be

performed on pads, functional blocks, standard cells, gate arrays, etc. Traditional placement

involves minimizing area and delay. Minimizing delay, in turn, translates to minimizing the

physical capacitance (or length) of wires. In contrast, placement for power concentrates on

minimizing the activity-capacitance product rather than the capacitance alone. In summary,

high activity wires should be kept short or, in a manner of speaking, local. Tools have been

developed that use this basic strategy to achieve about an 18% reduction in power [31, 108].

2.6 CIRCUIT LEVEL

Many circuit techniques can lead to reduced power consumption. In this section, we

go beyond the traditional synchronous fully-complementary static CMOS circuit style to

consider the relative advantages and disadvantages of other design strategies. This section

will consider topics related to low-power circuit design.

2.6.1 Dynamic Logic

In static logic, node voltages are always maintained by a conducting path from the node

to one of the supply rails. In contrast, dynamic logic nodes go through periods during which

there is no path to the rails, and voltages are maintained as charge dynamically stored on

nodal capacitances. Figure 2.8 shows an implementation of a complex boolean expression

in both static and dynamic logic. In the dynamic case, the clock period is divided into a

precharge and an evaluation phase. During precharge, the output is charged to Vdd. Then,

during the next clock phase, the NMOS tree evaluates the logic function and discharges the
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Figure 2.8: Static and Dynamic implementations of F = (A+B)C

output node if necessary. Relative to static CMOS, dynamic logic has both advantages and

disadvantages in terms of power.

Dynamic design styles have reduced device counts, do not experience short-circuit

power dissipation, and are guaranteed to have a maximum of one transition per clock cycle

unlike static gates which experience glitching, However, each of the precharge transistors

in the chip must be driven by a clock signal requiring a dense clock distribution network

and its associated capacitance and driving circuitry, which contributes significant power

consumption to the chip. Also as each gate is influenced by the clock the issues of skew

become important and difficult to handle.

2.6.2 Pass-Transistor Logic

As with dynamic logic, pass-transistor logic offers the possibility of reduced transistor

counts. Figure 2.9 illustrates this fact with an equivalent pass-transistor implementation of

the static logic function of Figure 2.8. Once again, the reduction in transistors results in
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Figure 2.9: Complementary pass transistor implementation of F = (A+B)C

lower capacitive loading from devices. This might make pass-transistor logic attractive as

a low-power circuit style.

Like dynamic logic, however, pass-transistor circuits suffer from several drawbacks, at

the voltages attractive for low-power design; the reduced current drive of pass-transistor

logic networks becomes particularly troublesome. Low threshold processes can lessen this

problem, but it is at the expense of robustness and static power dissipation.

2.6.3 Asynchronous Logic

Asynchronous logic refers to a circuit style employing no global clock signal for syn-

chronization. Instead, synchronization is provided by handshaking circuitry used as an

interface between gates (see Figure 2.10). While more common at the system level, asyn-

chronous logic has failed to gain acceptance at the circuit level. This has been based on

area and performance criteria. It is worthwhile to re-evaluate asynchronous circuits in the

context of low power. The primary power advantages of asynchronous logic can be clas-

sified as avoiding waste. The clock signal in synchronous logic contains no information;

therefore, power associated with the clock driver and distribution network is in some sense
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Figure 2.10: Asynchronous circuits with handshaking

wasted. Avoiding this power consumption component might offer significant benefits. In

addition, asynchronous logic uses completion signals, thereby avoiding glitching, another

form of wasted power. Finally, with no clock signal and with computation triggered by the

presence of new data, asynchronous logic contains a sort of built in power-down mechanism

for idle periods

At the small granularity with which it is commonly implemented, the overhead of the

asynchronous interface circuitry dominates over the power saving attributes of the design

style. It should be emphasized, however, that this is mainly a function of the granularity of

the handshaking circuitry. It would certainly be worthwhile to consider using asynchronous

techniques to eliminate the necessity of distributing a global clock between blocks of larger

granularity.

2.6.4 Transistor Sizing

Regardless of the circuit style employed, the issue of transistor sizing for low power

arises. The primary trade-off involved is between performance and cost - where cost is

measured by area and power. Transistors with larger gate widths provide more current

drive than smaller transistors. Unfortunately, they also contribute more device capacitance
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to the circuit and, consequently, result in higher power dissipation. Moreover, larger devices

experience more severe short-circuit currents, which should be avoided whenever possible.

In addition, if all devices in a circuit are sized up, then the loading capacitance increases

in the same proportion as the current drive, resulting in little performance improvement

beyond the point of overcoming fixed parasitic capacitance components. In this sense,

large transistors become self-loading and the benefit of large devices must be re-evaluated.

A sensible low-power strategy is to use minimum size devices whenever possible. Along

the critical path, however, devices should be sized up to overcome parasitics and meet

performance requirements. Care should be taken in this sizing process to avoid the waste of

self-loading [24]. By following this approach, Nagendra et al. found that the average power

dissipation of a signed-digit adder could be reduced by 36% with a delay penalty of only

0.3% [76].

2.6.5 Design Style

Another decision which can have a large impact on the overall chip power consumption

is the selection of a design style, e.g., full custom, gate array, standard cell, etc. Not surpris-

ingly, full-custom design offers the best possibility of minimizing power consumption. In a

custom design, all the principles of low-power including locality, regularity, and sizing can be

applied optimally to individual circuits. Unfortunately, this is a costly alternative in terms

of design time, and can rarely be employed exclusively as a design strategy. Other possible

design styles include gate arrays and standard cells. Gate arrays offer one alternative for

reducing design cycles at the expense of area, power, and performance. While not offering

the flexibility of full-custom design, gate-array CAD tools could nevertheless be altered to
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place increased emphasis on power. Standard cell synthesis is another commonly employed

strategy for reducing design time. Current standard cell libraries and tools, however, offer

little hope of achieving low power operation. In many ways, standard cells represent the

antithesis of a low-power methodology. First and foremost, standard cells are often severely

oversized. Most standard cell libraries were designed for maximum performance and worst-

case loading from inter-cell routing. As a result, they experience significant self-loading and

waste correspondingly significant amounts of power.

2.6.6 Dynamic Voltage Scaling

The other technique that is considered for power reduction at the circuit level is dy-

namic voltage scaling where a component is run at a less-than-maximum voltage in order

to conserve power. Dynamic voltage scaling is most commonly used in laptops and other

mobile devices, where energy comes from a battery and thus is limited. As explained in

Section 2.2.1, the switching power dissipated by a chip decreases quadratically with voltage.

A problem with this technique in embedded devices is that batteries have a certain voltage

so extra circuitry must be introduced to scale the voltage down from the original value.

This circuitry may take a while to settle at the desired voltage, hence adding a time-cost in

the µs range on reducing the supply voltage. Dynamic frequency scaling is another power

conservation technique that works on the same principles as dynamic voltage scaling. Both

dynamic voltage scaling and dynamic frequency scaling can be used to prevent computer

system overheating, which can result in program or operating system crashes, and possibly

hardware damage. The speed at which a digital circuit can switch states - that is, to go
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from ”low” (VDD) to “high” (VSS) or vice versa - is proportional to the voltage differen-

tial in that circuit. Reducing the voltage means that circuits switch slower, reducing the

maximum frequency at which that circuit can run. This, in turn, reduces the rate at which

program instructions that can be issued, increasing program runtime.

2.6.7 Dual Threshold Voltage

It may be expected that dynamic voltage scaling will always reduce dynamic power

dissipation in a long period of operating time since when the workload is reduced the supply

voltage could also be reduced to save power. However, in deep submicron technologies, we

need to begin to take leakage power consumptions into account as well, especially when

design with dual threshold voltage cells are becoming widely adopted. A recent report [43]

gives a comprehensive analysis of the consequences of applying Dynamic Voltage Scaling

(DVS) to dual Vt cell design. A typical design scenario could be as follows. In the initial

design, all cells used are low leakage (LL) cells to minimize power consumption. Then we

could replace cells along critical paths by high-speed (HS) cells in order to shorten the delay.

Thus we get a mixed cells design. And now DVS could be used to further decrease dynamic

power dissipation when a larger delay could be tolerated. When applying DVS, we only

get power gains if total power consumption in the mixed cell design is less than that in the

original single LL cell design. According to the author M. Hans, subthreshold leakage is

supply voltage dependent. An example [43] shows that after applying DVS the dynamic

power dissipation is indeed decreased. However, the leakage consumption is increased at the

same time. This tells us that DVS could have a negative impact on leakage consumption

under certain circumstances and thus careful analysis needs to be done before making design
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choices. The literature [10, 25, 33, 41, 52, 54, 70, 81, 95, 101, 107] gives more information on

different experiments that has been tried using DVS, Transistor Sizing and Dual Threshold

Voltage Techniques.

2.6.8 Dynamic Power Cutoff Technique (DPCT)

Dynamic Power Cutoff Technique (DPCT) is an active leakage power reduction tech-

nique. In this technique first the switching window for each gate, during which a gate

makes its transitions, is identified by static timing analysis. Then, the circuit is optimally

partitioned into different groups based on the minimal switching window (MSW) of each

gate. Finally, power cut off transistors are inserted into each group to control the power

connections of that group. Each group is turned on only long enough for a wavefront of

changing signals to propagate through that group. Since each gate is only turned on during a

small timing window within each clock cycle, this significantly reduces active leakage power.

This technique can also save standby leakage and dynamic power. Results on ISCAS’85

benchmark circuits modeled using 70nm Berkeley Predictive Models show up to 90% active

leakage, 99% standby leakage, 54% dynamic power, and 72% total power savings [115, 116].

However, this technique being new, its effect on the noise margin, power grid design and

layout is still not known.

2.6.9 Retiming

Retiming is a classic logic optimization technique for synchronous circuits. Retiming

is the technique of moving the structural location of latches or registers in a digital circuit

to improve its performance, area, and/or power characteristics in such a way that preserves
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its functional behavior at its outputs. When originally introduced [58, 59, 60], its empha-

sis was on the application to systolic systems. A subsequent paper [61] fully revisits the

concept of retiming and shows how generic synchronous circuits can benefit from it under

three main optimality criteria: (1) minimize the circuit clock period by adding/removing

storage elements, (2) minimize the circuit area by reducing the number of storage elements,

and (3) minimize circuit area under a maximum clock-period constraint. In the last two

decades, Retiming has been adopted as a key optimization technique within every major

logic synthesis tool both in academia and industry.

The other circuit level techniques have been discussed several authors [26, 30, 63, 100].

2.7 GATE LEVEL

As in the case of the circuit level, there are gate-level techniques that can be applied

successfully to reduce power consumption. Once again these techniques reflect the themes

of trading performance and area for power, avoiding waste, and exploiting locality. In this

section we discuss a number of gate-level techniques and give some quantitative indication

of their impact on power. In particular, this section presents techniques for technology

mapping, glitching and activity reduction, input vector control technique and methods for

exploiting concurrency and redundancy in the context of low-power design.

2.7.1 Technology Decomposition and Mapping

Technology decomposition and mapping refers to the process of transforming a gate-

level boolean description of a logic network into a CMOS circuit. For a given gate-level
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network there may be many possible circuit-level implementations. For instance, a three-

input NAND can be implemented as a single complex CMOS gate or as a cascade of simpler

two-input gates. Each mapping may result in different signal activities, as well as physical

capacitances. For example, complex gates tend to exhibit an overall lower physical capac-

itance since more signals are confined to internal nodes rather than to the more heavily

loaded output nodes. The concept of technology mapping for low-power is to first decom-

pose the boolean network such that switching activity is minimized, and then to hide any

high activity nodes inside complex CMOS gates. In this way, rapidly switching signals are

mapped to the low capacitance internal nodes, thereby reducing power consumption. Mak-

ing a gate too complex, however, can slow the circuit, resulting in a trade-off of performance

for power. Several technology mapping algorithms for low power have been developed and

offer an average power reduction of 12% [102] to 21% [104].

2.7.2 Activity Postponement

While technology mapping attempts to minimize the activity-capacitance product,

other gate-level strategies focus on reducing activity alone. For example, an operation

as simple as reordering the inputs to a boolean network can in some cases reduce the total

network activity (see Figure 2.11) [56]. The basic concept is to postpone introduction of

high activity signals as long as possible. In this way, the fewest gates are affected by the

rapidly switching signals.

2.7.3 Glitch Reduction

Other gate-level activity reduction techniques focus on avoiding the wasted transitions

associated with glitching. Figure 2.12 shows two implementations of the same logic function.

33



Figure 2.11: Input Reordering for activity reduction

One implementation employs a balanced tree structure, while the other uses a cascaded

gate structure. If we assume equal input arrival times and gate delays, we find that the

cascaded structure undergoes many more transitions than the tree structure before settling

at its steady-state value. In particular, the arrival of the inputs may trigger a transition

at the output of each of the gates. These output transitions may in turn trigger additional

transitions for the gates within their fan-out. This reasoning leads to an upper-bound

on glitching that is O(N2), where N is the depth of the logic network. In contrast, the

path delays in the tree structure are all balanced, and therefore, each node makes a single

transition and no power is wasted. This concept can be extended to derive optimum tree

structures for the case of unequal arrival times as well [75]. Some studies have suggested

that eliminating glitching in static circuits could reduce power consumption by as much as

15-20% [17].

Techniques for reducing glitch power have been described by several authors [5, 6, 49,

50, 66, 67, 68, 69, 86, 87, 88, 89, 90, 105, 106].

A mixed integer linear programming (MILP) technique [68] is used to minimize the

leakage as well as glitch power consumption of a static CMOS circuit for any specified
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Figure 2.12: Cascaded versus Balanced tree gate structures

input to output delay. Using dual-threshold devices the number of high-threshold devices is

maximized and a minimum number of delay elements are inserted to reduce the differential

path delays below the inertial delays of incident gates. The key features of this method

are that the constraint set size for the MILP model is linear in the circuit size and power-

performance trade off is allowed. Experimental results for this technique shows 96%,40%

and 70% reductions of leakage power, dynamic power and total power respectively for the

benchmark circuit C7552 implemented in the 70nm BPTM CMOS technology.

In a CMOS circuit, energy consumption per signal transition at a node with capacitance

C is 0.5CV 2. Keeping the gate delays, internal to standard cells, fixed the authors of [106]

determine the values of necessary routing delays to eliminate all glitches by either path delay

balancing or inertial filtering. To implement these delays they insert the required amounts

of resistances as customized feedthrough cells. In spite of the increased resistance in the

circuit, the overall power is reduced because the resistive delays suppress glitches without

increasing the 0.5CV 2 power per transition, and no increase in the critical path delay is

incurred. For the ISCAS ’85 benchmark circuit, c2670, 30% saving has been achieved in

average power consumption with 14% increase of the chip area.
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Table 2.1: Leakage current values for different input combinations of a 3-input NAND gate

Input State Subthreshold leakage (nA) Gate Leakage (nA) Total Leakage (nA)
000 0.49 6.58 7.07
001 0.81 19.68 21.49
010 0.81 6.79 7.60
011 2.68 34.78 37.46
100 0.81 3.15 3.96
101 2.68 16.8 19.48
110 2.68 1.84 4.52
111 16.85 45.3 62.15

2.7.4 Input Vector Control

Much research has been done to model and estimate the nominal leakage current of a

circuit. Due to the stacking effect, the leakage of a circuit depends on its input combina-

tions [3]. Table 2.1 shows the leakage components for all input combinations of a 3-input

NAND gate.

Thus by finding a minimum leakage vector (MLV) and applying it to the circuit, we can

guarantee the circuit turns into its low leakage state. Abdollahi et al. [3] have proposed a

technique to identify the MLV and discussed several ways to apply the vector to the circuit.

They first construct a Boolean network to compute the total leakage and then they use

the SAT solver to find an input vector that results in the minimum leakage of the whole

circuit. However, the effectiveness of the method does not rely on finding the MLV solely.

Due to the limited access to internal nodes, it is very difficult to put the ideal value to

every node especially for very complex circuits. Therefore the authors tried two ways to

increase controllability of the internal nodes, namely adding multiplexers and modifying

gates. Since both methods change the circuit to some extent, new Boolean networks need
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to be constructed. Although the authors found an efficient way to identify the MLV and

figured out ways to increase controllability, we could see that the actual application of

input vector control is still limited by the primary inputs. And to put a sleep circuit back

to normal will require extra memory elements to store the original states, thus incurring

both area and delay penalty. Another controllability increasing method is given by Rahman

and Chakrabarti [85].

2.7.5 Concurrency and Redundancy

The final technique discussed in this section is the use of concurrency and redundancy

at the gate level in low-power design. The principal concept is to use concurrency and

redundancy to improve performance and then to trade this performance for lower power by

reducing the voltage supply. In some sense, path balancing, which was found to be useful for

reducing glitching activity, can be thought of as a form of gate-level concurrent processing.

Referring to Figure 2.12, the path balanced tree structure is characterized by several logic

gates computing in parallel, with the gates in their fan-out combining the results. In

contrast, for the linear, cascaded structure computations must take place sequentially since

the results from the initial stages are needed to compute the output of the later stages. So

by using concurrency, the tree structure achieves a shorter critical path than the cascaded

structure - quantitatively, logarithmic as opposed to linear. This reduced critical path can

be used to improve performance, or this performance can be traded for power by reducing

the operating voltage until the delay of the logarithmic structure matches that of the linear

structure.The majority of the techniques employing concurrency or redundancy incur an

inherent penalty in area, as well as in physical capacitance and switching activity. At first
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glance, a carry-select adder with 50 % more physical capacitance and activity than a ripple-

carry adder might not seem low power at all. The key concept is to identify the design

paradigm under which you are working: fixed voltage or variable voltage. If the voltage is

allowed to vary, then it is typically worthwhile to sacrifice increased physical capacitance

and activity for the quadratic power improvement offered by reduced voltage. If, however,

the system voltage has been fixed, then there is nothing gained by employing a carry-select

adder in place of a ripple-carry adder, unless the slower adder does not meet the timing

constraints. So in such situation its better to use the least complex adder that meets the

performance requirements. This falls under the category of avoiding waste [76].

2.8 ARCHITECTURE AND SYSTEM LEVELS

This chapter has repeatedly suggested that decisions made at a high level (architecture

or system) will have a much larger impact on power than those made at a lower level (e.g.,

gate or circuit). This section provides some evidence to support this claim. In the termi-

nology of this thesis, architecture refers to the register-transfer (RT) level of abstraction,

where the primitives are blocks such as multipliers, adders, memories, and controllers. This

level of abstraction is also referred to as the micro-architecture level. Having defined the

terminology, this section discusses architectural or RT-level techniques for reducing power

consumption.

2.8.1 Concurrent Processing

Perhaps the most important strategy for reducing power consumption involves employ-

ing concurrent processing at the architecture level. This is a direct trade-off of area and
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Figure 2.13: Voltage Scaling and Parallelism for low power

performance for power. In other words, the designer applies some well-known technique

for improving performance such as parallelism or pipelining, and then swaps this higher

performance for lower power by reducing the supply voltage.

PARALLELISM

As a quantitative example, consider the use of parallelism to perform some complex

operation, A (see Figure 2.13(a)). The registers supplying operands and storing results for

A are clocked at a frequency f . Further assume that algorithmic and data dependency

constraints do not prevent concurrency in the calculations performed by A. When the

computation of A is parallelized, Figure 2.13(b) results. The hardware comprising block A

has been duplicated N times, resulting in N identical processors. Since there are now N

processors, a throughput equal to that of sequential processor, A, can be maintained with a

clocking frequency N times lower than that of A. That is, although each block will produce

a result only 1/Nth as frequently as processor A, there are N such processors producing

results. Consequently, identical throughput is maintained.
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The key to this architecture’s utility as a power saving configuration lies in this factor

of N reduction in clocking frequency. In particular, with a clocking frequency of f/N , each

individual processor can run N times slower. Since to the first order, delays vary roughly

linearly with voltage supply, this corresponds to a possible factor of N reduction in supply

voltage. Examining the power consumption relative to the single processor configuration,

we see that capacitances have increased by a factor of N (due to hardware duplication),

while frequency and supply voltage have been reduced by the same factor. Thus, since

P = CV 2f , power consumption is reduced by the square of the concurrency factor, N :

N − way Concurrency : P ∝ 1/(N)2 (2.18)

Hardware parallelism also has its disadvantages. For instance, complete hardware

duplication entails a severe area penalty. In addition, there is hardware and interconnect

overhead related to signal distribution at the processor inputs and signal merging at the

outputs. These contribute to increased power consumption and tend to limit the utility of

excessive parallelism. Also, the area requirements of full parallelism can be a limiting factor.

Still, other forms of concurrent processing offer some of the power savings of parallelism at

reduced cost.

PIPELINING

Pipelining is another form of concurrent computation that can be exploited for power

reduction. An example of pipelining for low power is shown in Figure 2.14(b). In this

situation, rather than duplicating hardware, concurrency is achieved by inserting pipeline

registers, resulting in an N-stage pipelined version of processor A (assuming processor A

can be pipelined to this extent). In this implementation, maintaining throughput requires
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Figure 2.14: Voltage Scaling and Pipelining for low power

that we sustain clocking frequency, f . Ignoring the overhead of the pipeline registers, the

capacitance, C, also remains constant. The advantage of this configuration is derived from

the greatly reduced computational requirements between pipeline registers. Rather than

performing the entire computation, A, within one clock cycle, only 1/Nth of A need be cal-

culated per clock cycle. This allows a factor N reduction in supply voltage and,considering

the constant C and f terms, the dynamic power consumption is reduced by N2.

Thus, for both concurrency techniques - pipelining and parallelism - consumption is

reduced by N , resulting in a first-order quadratic reduction in power consumption. As with

parallelism, pipelining incurs some overhead, though not nearly as much. In a pipelined

processor, for example, the pipeline registers represent an overhead in both power and

area. First, each register must be clocked, adding to the capacitive loading of the clock

network. As the pipeline depth increases, the area and capacitance associated with the

pipeline registers approaches that of the actual processor stages. At that point, further

pipelining becomes unattractive. Still, the overhead associated with pipelining is typically
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much less than that of parallelism, making it a useful form of concurrent processing for

power minimization.

A lot of other techniques have been combined with pipelining to reduce power in

processors. Software constitutes a very important part of the system these days and a

large portion of the functionality of the systems is in the form of instructions as opposed

to gates so analyzing power consumption from the point of view of instructions is equally

important.

Pipelined processors frequently insert NOP instructions into the pipe for generating

delay or resolving dependency. NOP instruction is a No-Operation Instruction. It consumes

only 1 clock cycle compared to other instructions and consumes the minimum power but

the NOP energy significantly varies depending upon its position in the program.

[77] presents an approach for power virus generation using behavioral models for digital

circuits. The technique presented converts the given behavioral model automatically to an

integer (word-level) constraint model and employs an integer constraint solver to generate

the required power virus vectors. Experiment results on the DLX processor showed two

power virus sequences that consumed maximum power and the NOPs were predominant

in these sequences which show that NOP energy significantly varies depending upon its

position in the program as well as the instructions preceding and succeeding it.

P. Kamran et al. [65] describe a technique to optimize dynamic power consumption

by eliminating useless transitions that are generated by the pipeline when a stall happens.

For the NOP instruction to generate as few transitions as possible, the data part of the

instruction is kept as the preceding instruction and in this way as a NOP instruction passes

through a pipe, relative to the previous cycle, the same operations are performed on the
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same data in all stages of the pipeline, therefore only a small number of transitions is

generated as a result of the NOP insertion and propagation. By this technique the authors

demonstrate up to 10% reduction in power consumption for some benchmarks at a cost of

negligible performance and area overhead (below 0.1%).

2.8.2 Power Management

Any power consumed by a system that does not lead to useful results is wasted. For

previous generations of chips, where power was not a major concern, this source of waste

was typically ignored. Strategies for avoiding wasted power in systems are often called

power management strategies. Some power management techniques available to designers

include selective power down, sleep mode, and adaptive clocking/voltage schemes. Selective

power down refers to deactivating processing modules that are not doing any useful work.

A selective power down strategy requires additional logic to monitor the activity of the

various modules within a system. Control lines signaling idle periods are then used to gate

the clocks to the various system modules. As a result, idle modules are not clocked and no

power is wasted. Some care must be taken in applying this strategy to dynamic circuits,

for which clocking is used to maintain information stored on dynamic nodes. Two of the

other methods that could be considered instead of complete power down are as follows:

CLOCK GATING:

Instead of switching off the power supply, the clock signal may be halted in idle devices.

This reduces switching activity and therefore dynamic power consumption to zero. Inserting

clock gates is not as great of an interference to the design as power supply shutdown and

is applicable for applications where power shut down is no alternative. Clock gating won’t
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lessen power dissipation to zero since leakage power is unaffected. The designer has to take

into account that the gate increases clock skew and makes testing more complicated. Lastly,

it should be seen that glitches on the switch’s control signal is prevented. For example, a

glitch could cause a temporarily false clock turn off/on, which might add an extra rising

edge to the clock signal behind the gate and as a result the behavior of the circuit is not

preserved.

ENABLED FLIP-FLOPS:

As clock gating can be seen as a softer alternative to power supply shut down, enabled

flip-flops are the next less aggressive (and less effective) strategy. Registers are replaced by

a representative with an enable signal. By enabling these representatives, they behave like

general registers. Disabled, the flip-flops’ outputs are not changing, which reduces switching

activity in the circuit. The most active signal, the clock, is still active though, ensuing a

great deal of power dissipation. It can be said that power management based on enabled

flip-flops can be beneficial, but an implementation based on gated-clocks is fundamentally

superior.

LOW-POWER MODES:

Sleep mode is an extension of the selective power-down strategy. Here, the activity of

the entire system is monitored rather than that of the individual modules. If the system

has been idle for some predetermined time-out duration, then the entire system is shut

down and enters what is known as sleep mode. During sleep mode the system inputs are

monitored for activity, which will then trigger the system to wake up and resume processing.

Since there is some overhead in time and power associated with entering and leaving sleep
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mode, there are some trade-offs to be made in setting the length of the desired time-out

period.

To reduce leakage power drowsy mode is another option under power-down strategy.

When in drowsy mode, the information in the cache line is preserved; however, the line must

be reinstated to a high-power mode before its contents can be accessed. A recent paper [40]

shows that with simple architectural techniques, about 80%-90% of the cache lines can be

maintained in a drowsy state without affecting performance by more than 1%.

At ISSCC’94, Intel, MIPS Technologies, and IBM all reported microprocessors that

include selective power down and sleep-mode capabilities [14, 83, 94, 114]. IBM estimated

that selective clocking saved 12-30 % in the power consumption of their 80MHz super-

scalar PowerPC architecture [83]. In addition, Intel estimated that the combination of

both techniques resulted in an overall 2x reduction in average power when running typical

applications on their design [94].

Another power management strategy involves adapting clocking frequency and/or sup-

ply voltage to meet system performance requirements. Since the performance requirements

of a system typically vary over time as the task it is performing changes, it is wasteful

to run the system at maximum performance, even when a minimum of compute power is

required. Adapting the clocking frequency or supply voltage of the system to reduce per-

formance (and power) during these periods can result in substantial power savings. Since it

is difficult to directly measure how much performance is actually required at a given point

in time, some indirect performance feedback scheme must be devised. This can be in the

form of clock slow-down instruction issued by the software application. MIPS Technologies
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takes this approach in their 64b RISC processor, achieving a 4x reduction in power through

reduced clock frequency [114].

To summarize, without careful management, large amounts of system power can be

wasted by continuing computations during idle periods. A power-conscious system will

avoid this source of waste either by powering down inactive modules or processors or by

adapting the processing power of the system to meet, rather than exceed, the current

requirements.

Many other and similar power saving techniques at the architectural level have been

discussed by several authors [19, 32, 37, 47, 48, 57, 62, 71, 72, 73, 79, 91, 92, 96, 97, 99, 113].

2.8.3 Memory Partitioning

Farrahi et al. [39] propose a memory partitioning (also called segmentation) scheme

that reduces power by exposing idleness in memory access. The functionality of memory is

to store data when it is written and return it when read. Farrahi suggests to view memory

not as a monolithic resource but as a collection of independent memory segments. Each

segment has its own clock and refresh signals. Whenever a memory segment is idle, it can

be put in a sleep mode where the clock is halted or no refreshes are transmitted. Memory

is idle, when no useful information is stored in it. It should be kept in mind that memory

is not idle, when it is not accessed. It might store vital information which would be lost

when the memory is turned off. It might store unimportant information though. A lifetime

can be assigned to each variable in a memory element. It defines a time interval which

starts when a variable is written, and ends when the variable is last read. A segment is

called idle, when it contains no live variables. The partitioning technique attempts to store
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variables which have overlapping lifetimes in the same segment. Due to this approach, idle

time of memory segments is increased and power dissipation is reduced. As with processing

hardware, a distributed array of small local memories is often more power efficient than

a shared, global memory subsystem. In particular, the energy consumed in accessing a

memory is approximately proportional to the number of words stored in that memory. If

this number can be reduced by partitioning the memory, then the total power associated

with memory accesses will also be reduced. For example, assume 10 independent processors

need to access one piece of data each. A single, shared memory will need to contain 10

words and each access will take 10 energy units for a total of 100 units of energy. On the

other hand, if each processor utilizes a local memory containing the one piece of data it

requires, then each of the 10 accesses will consume only one unit of energy for a total of

10 units - a factor of 10 savings in power. This example, though idealized, suggests the

advantage of local or distributed memory structures over global or shared memories.

2.8.4 Programmability

The previous section suggested that distributed processors, which can be optimized

for specific tasks, might consume less power than general-purpose, programmable proces-

sors that must execute many different tasks. This observation was made in the context

of distributed versus centralized processing; however, it brings up the important issue of

programmable versus dedicated hardware. As an example, consider the implementation of

a linear, time-invariant filter. Such filters involve multiplication of variables by constants.

All required constant multiplications could be implemented on a single array multiplier.

This is a programmable scenario since the multiplier can be programmed to execute any of
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the different constant multiplications on the same hardware. Alternatively, we can consider

implementing each of the constant multiplications on dedicated hardware. In this case, since

the multipliers each need to perform multiplication by a single, fixed coefficient, the array

multipliers can be reduced to add-shift operations with an adder required only for the 1 bits

in the coefficient and the shifting implemented by routing. For coefficients with relatively

few 1’s, this dedicated implementation can result in a greatly reduced power consumption,

since the waste and overhead associated with the programmable array multiplier is avoided.

This approach was taken by Chandrakasan for the implementation of a video color space

converter for translating YIQ images to RGB [29]. The algorithm consists of a 3×3 constant

matrix multiplication (i.e., nine multiplications by constant coefficients). Chandrakasan not

only replaced the array multipliers with dedicated add-shift hardware, but also scaled the

coefficients to minimize the number of 1 bits in the algorithm. The resulting chip consumed

only 1.5 mW at 1.1V. As this example demonstrates, avoiding excessive or unnecessary

programmability in hardware implementations can lead to significant reductions in power.

Programmability does, however, offer some advantages. For instance, dedicated hardware

typically imposes some area penalty. In the above case, the nine multiplications would each

require their own unique hardware blocks. In contrast, in a programmable implementation a

single array multiplier could be used to perform all nine multiplications. Another advantage

of programmable hardware is that it simplifies the process of making design revisions and

extensions. The behavior of a programmable component can be altered merely by changing

the instructions issued by the software driving the device. A version of the chip relying

primarily on dedicated hardware, however, might require extensive redesign efforts.
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2.8.5 Data Representation

Another architectural decision that can impact power consumption is the choice of

data representation. In making this decision, the designer typically has several different

alternatives from which to choose, e.g., fixed-point vs. floating-point, sign-magnitude vs.

two’s-complement, and uncoded vs. encoded data. Each of these decisions involves a trade-

off in accuracy, ease of design, performance, and power. This section discusses some of the

issues involved in selecting a data representation for low power. The most obvious trade-

off involves deciding upon a fixed- or floating-point representation. Fixed-point offers the

minimum hardware requirements and, therefore, exhibits the lowest power consumption

of the two. Unfortunately, it also suffers the most from dynamic range limitations and

must be incorporated into the processor micro-code, which results in some runtime over-

head. Floating-point, in contrast, alleviates the dynamic range difficulties at the expense

of extensive hardware additions. This increased hardware leads to correspondingly higher

capacitances and power consumption. As a result, floating-point should be selected only

when absolutely required by dynamic range considerations. Decisions involving selection of

the word length for the datapath and the accuracy of the floating point should be taken

after a careful analysis of the requirements of an application, rather than the desired for

an efficient low-power implementation. Aside from issues of accuracy and word length, the

designer must also select an arithmetic representation for the data. For example, two’s-

complement, sign-magnitude, and canonical signed-digit are all possible arithmetic repre-

sentations for data. Two’s-complement is the most amenable to arithmetic computation

and, therefore, is the most widely used. In this representation, the least significant bits

(LSB’s) are data bits, while the most significant bits (MSB’s) are sign bits. As a result, the
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MSB’s contain redundant information, which can lead to wasted activity (and power) for

data signals that experience a large number of sign transitions. In contrast, sign-magnitude

data uses a single bit to describe the sign of the data and so sign transitions cause toggling

in only one bit of the data [27]. A related issue is that of data encoding. Logarithmic

companding can be used instead of floating-point to achieve similar results. Unfortunately,

as with sign-magnitude, many computations (such as additions) don’t have straightforward

implementations in the logarithmic domain; however, some computations actually become

simpler and less power consuming in this domain, e.g., multiplications translate to additions.

Applications requiring a large number of multiplications can take advantage of this fact by

using logarithmically encoded data. Clearly, there are many trade-offs involved in selecting

a data representation for low-power systems. It is unlikely that any one choice would be

ideally suited for all applications. Instead, a careful analysis of the application requirements

in terms of performance and accuracy should be done before selecting the appropriate repre-

sentation. Moreover, it might be beneficial to use different data representations in different

parts of the systems at the expense of some data conversion overhead.

2.9 ALGORITHM LEVEL

Algorithmic-level power reduction techniques focus on minimizing the number of op-

erations, weighted by the cost of those operations. Selection of an algorithm is generally

based on details of an underlying implementation such as the energy cost of an addition

versus a logical operation, the cost of a memory access, and whether locality of reference,

both spatial and temporal can be maximized. The presence and structure of cache mem-

ory, for example, may cause a different set of operations to be selected, since the cost of a
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memory access, relative to that of an arithmetic operation, changes. In general, reducing

the number of operations to be performed is a first-order goal, although in some situations,

recomputation of an intermediate result may be cheaper than spilling to and reloading from

memory. Techniques used by optimizing compilers, such as strength reduction, common

subexpression elimination, and optimizations to minimize memory traffic are also useful in

most circumstances in reducing power. Loop unrolling may also be of benefit, as it results

in minimized loop overhead as well as the potential for intermediate result reuse. Number

representations offer another area for algorithmic power trade-offs. For example, the choice

of using a fixed point or a floating-point representation for data types can have a significant

difference in power consumption during arithmetic operations. Selection of sign-magnitude

versus two’s complement representation for certain signal processing applications can result

in significant power reduction if the input samples are uncorrelated and dynamic range is

minimized [28]. Operator precision, or bit length, is another trade off that can be selected

to minimize power at the expense of accuracy. For some floating point algorithms, full

precision can be avoided, and mantissa and exponent width reduced below the standard

23 and 8 bits, respectively, for single precision IEEE floating point standard. In [103], the

authors show that for an interesting set of applications involving speech recognition, pattern

classification, and image processing, mantissa bit width may be reduced by more than 50%

to 11 bits with no corresponding loss of accuracy. In addition to improved circuit delays,

energy consumption of the floating point multiplier was reduced 20% - 70% for mantissa

reductions to 16 and 8 bits, respectively. Truncation of low-order bits of partial sum terms

when performing a 16-bit fixed-point multiplication has been shown to result in power sav-

ings of 30% due mainly to reduction in area [93]. Adaptive bit truncation techniques for
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performing motion estimation in a portable video encoder are shown to save 70% of the

power over a full bit width implementation [45].

2.10 SUMMARY

In previous sections we discussed the mechanisms of power dissipation. We discussed

various existing techniques of power reduction at different abstraction levels ranging from

layout and technology to architecture and system and outlined the benefits and limitations

of those techniques.
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Chapter 3

Hardware - Software Technique using Pipeline stalls to reduce leakage

power

In the previous chapter we discussed the mechanisms of power dissipation and various

techniques used at different abstraction levels to reduce power. In this chapter we describe

a new Architecture and System level technique to reduce leakage power.

3.1 Hardware-Software Technique

We already discussed the impact of the technology scaling on power dissipation in

Chapter 1. In particular, due to the scaling down of the threshold voltage, an exponential

growth in subthreshold leakage current is expected with every cranking of the technology

wheel [21]. Similarly, scaling down of the gate geometry (and in particular, oxide thickness)

is resulting in a very rapid growth of the gate leakage current [42]. Without corrective

measures at the device, circuit and/or microarchitecture level, the total standby (leakage)

power may well become the dominant part of the total power consumed by a microprocessor

chip in the future technologies.

To solve this problem of increasing leakage power consumption in the high-leakage

technologies we have proposed a hardware-software technique to reduce leakage power of

microprocessors at the architecture level. We present a simulated experiment to evaluate

this technique for a pipelined processor.

A simple and obvious way to reduce power consumption is to decrease the clock fre-

quency f . Decreasing f causes a proportional decrease in the dynamic power dissipation.
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The power consumption over a given period of time is reduced but slowing the clock also

results in slower computations, hence the rate of useful work done is reduced and the system

then operates for a longer period of time to execute the given task. Two of the limiting con-

straints of the clock frequency reduction technique are throughput and peak-performance.

So for the peak-performance constrained and throughput constrained systems, clock fre-

quency reduction is not a viable alternative for power optimization.

As the clock frequency is reduced, the amount of work done in a given period of time

is reduced and this leads to reduction in the dynamic power but the leakage power remains

unchanged. So, for the future technologies where leakage power is of concern this will lead

to very high leakage energy dissipation. In order to reduce this leakage power dissipation,

instead of reducing the clock frequency of the processor we reduce the execution rate of

the processor by inserting NOPs in the pipeline after every instruction. According to the

performance needed we can add as many NOPs after each instruction as is possible. This

does affect the throughput of the processor and so can be applied to processors when they

are not throughput constrained. This technique is more efficient in the case where the

programs executed on the normal processor have lots of hazards. Such programs will take

longer time to execute in the normal processor and will need to add bubbles in the pipeline

to remove the hazards, but in the case where the NOPs are added after every instruction,

many hazards will get resolved and the execution time will be less compared to the normal

processor.

Once a NOP is inserted in the pipeline the control unit decodes the NOP instruction

and generates power signals for the hardware components of the processor that consume

most power and puts them into sleep mode. In the sleep mode the power supply is either
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completely or partially cut off. The power signals thus allow significant saving of power

during the cycles when NOPs are being executed.

Power-gating is a technique for reducing leakage power by shutting off the idle blocks.

Implementation of power-gating requires a multi-threshold CMOS process. Logic blocks

are implemented using low-Vt, high-performance transistors whereas high-Vt transistors

(called sleep transistors) connect the gated blocks to the power supply [78].

Microarchitectural technique for power gating of the Execution Units is explained

in [51]. In that paper, parameterized analytical equations that estimate the break-even

point for application of power-gating techniques are first developed. The potential for

power gated execution units is then evaluated, for the range of relevant break-even points

determined by the analytical equations, using a state-of-the-art out-of-order superscalar

processor model. The power gating potential of the floating-point and fixed-point units of

this processor is then evaluated using three different strategies to detect opportunities for

entering sleep mode, namely, ideal, time-based, and branch-misprediction-guided.

In the ideal technique, power gating is achieved by using a suitably sized header (Fig.

3.1) or footer transistor for a circuit block that is deemed to be a power-gating candidate.

When the logic detects the onset of a sufficiently long idle period of a target circuit block, a

”sleep” signal is applied to the gate of the header or footer transistor to turn-off the supply

voltage of the circuit block. Similarly, once it is determined that the circuit block is being

requested for use, the ”sleep” signal is de-asserted to restore the voltage at the virtual Vdd.

In the time-based technique, the execution unit is power-gated after observing prede-

termined number of idle cycles and restarting the execution unit with a performance penalty

once a pending operation is detected.
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Figure 3.1: Using Headers for Power Gating

The other technique given by the author [78], the branch prediction mechanism guides

the gating of execution units. An execution unit is turned off as soon as the branch mis-

prediction is detected.

The results show that using the time-based approach, floating-point units can be put

to sleep for up to 28% of the execution cycles at a performance loss of 2%. For the more

difficult to power-gate fixed-point units, the branch misprediction guided technique allows

the fixed-point units to be put to sleep for up to an additional 40% of the execution cycles

compared to the simpler time-based technique, with similar performance impact.

For the caches, the preservation of cache states during standby mode is often desirable,

which means it would be good if data stored in caches were not destroyed so that we won’t

need to access secondary memories on recovery. The other thing is that memory access

time should not be greatly degraded, which means recovery time should be as small as

possible, otherwise it will severely compromise the system performance. Two most widely

cited methods are decay cache and drowsy cache [64].

Decay cache utilizes the gated-Vdd technique. This technique reduces the leakage power

by using a high threshold (high-Vt) transistor to turn off the power to the memory cell when
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Figure 3.2: Supply Voltage Control Mechanism

the cell is set to low-power mode. This high-Vt device drastically reduces the leakage of

the circuit because of the exponential dependence of leakage on Vt. While this method is

very effective at reducing leakage, its main disadvantage lies in that it loses any information

stored in the cell when switched into low-leakage mode. This means that a significant

performance penalty is incurred when data in the cell is accessed and more complex and

conservative cache policies must be employed. This technique reduces energy-delay by 62%

with minimal impact on performance.

Drowsy cache, as described by Kim et al. [55], provides a better solution. It also uses

transistors to separate virtual Vdd from Vdd supply line but still supplies a very low voltage

to the cell when it is turned into low power mode. The cell implementation is shown in

Figure 3.2.

According to the authors [55], the wake up latency is only a few clock cycles and thus

does not have a major impact on the system performance. For data caches, all cache lines

except the active one are put into drowsy mode every n clock cycles. The integer n depicts
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the window size of how often should the cache be put into drowsy mode and they found

4000 is an adequate number for the benchmark they run on. Since programs typically only

access a small portion of the entire data in the memory, the drowsy cache method could

gain a significant reduction in leakage power consumption in the long run. By this method

80%-90% of the data cache lines can be maintained in a drowsy state without affecting the

performance by more than 0.6%, even though moving lines into and out of a drowsy state

incurs a slight performance loss.

For instruction caches, the situation is slightly different due to the instruction access

characteristics. Therefore putting all cache lines into drowsy mode every n cycles does

not work well for instruction caches. However, the spatial locality property can still be

utilized. Kim et al. [55] proposed a low leakage instruction cache architecture based on the

subbank method. The basic idea of subbank is to divide the cache into several subbanks

and turn those inactive subbanks into low power mode. The proposed architecture extends

the subbank method and adds Next Subbank Prediction Techniques to it. A prediction

buffer keeps track of predicted subbank index and other information for the instruction

fetched one cycle earlier. Thus if the instruction (e.g., a jump instruction) is going to access

a subbank in drowsy mode, that subbank could be woken up one cycle earlier to enhance

the performance. There are also other techniques for instruction caches such as the one

described by Kalla et al. [53]. The authors perceived that programs, especially multimedia

applications, tend to spend most of their time in loops and execute only a sequence of

instructions for most of their computations. Based on this observation, they propose a

novel cache replacement policy for instruction caches, which forces instructions in a loop to

be placed in the same subbank and are not the first candidates to be replaced into secondary
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memories when misses occur. In such a way, only one subbank will stay active and other

subbanks can stay in the drowsy mode most of the time.

Power-aware compilation for register file energy reduction has been discussed in a recent

paper [11].

Power-gating techniques as mentioned above can be applied to the different components

of the processor which are not in use when the NOP instruction is inserted into the pipeline

of the processor.

Power gating techniques are discussed by other authors as well [4, 34].

3.2 Conclusion

A software approach of inserting NOPs after every instruction, combined with a hard-

ware approach of power-gating the processor components that are not in use when the NOP

is executed, is explained in this chapter to gain the leakage power savings. Because clock

period is not changed for the non-NOP instructions, we have not assumed any reduction in

the supply voltage, which would have slowed down the hardware. However, there has been

reported work on speculative hardware speed reduction for power saving [38]. Here, voltage

reduction may cause some errors, which are detected and the instructions are reexecuted.

As long as the error rate is small, one can obtain power saving with negligible performance

penalty. Using such procedures with the NOP insertion may be investigated in the future.
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Chapter 4

Theoretical and Experiment Results

In the previous chapter, a hardware-software technique for reducing the leakage power

was explained. The theoretical results as well as practical results are discussed in this

chapter. The technique was applied to a 32-bit MIPS pipelined processor using CMOS

circuitry. We assumed the Berkeley Predictive Technology Models for 65nm and 22nm

CMOS technologies [2]. Though this demonstration uses one particular processor, the

technique can be applied to other processors as well.

4.1 THEORETICAL RESULTS

4.1.1 Clock Slow-Down Method

As we discussed in the previous chapter we are using the clock frequency reduction

method as our reference method. To reduce power when we slow down the clock, dynamic

power is reduced in proportion to clock rate whereas leakage power remains unchanged.

However, the computing task now takes longer to complete. This results in the same

dynamic energy consumption whereas the leakage energy consumed is more. For normal

operation, we assume:

Rated clock frequency as: f

Dynamic power as: Pd

Static power as: Ps
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Then,

Total power consumedP (1) = Dynamic power + Static power = Pd+ Ps (4.1)

and,

Energy consumed by an N − cycle task E(N, 1) = Power×Time = (Pd+Ps)N/f (4.2)

For power saving mode where the clock frequency is reduced by factor n:

Clock frequency = f/n

Dynamic Power = Pd/n, as dynamic power is reduced in proportion to clock rate

Static Power = Ps, as static power remains unchanged

Therefore, in this case,

Total power consumedP (n) = Pd/n+ Ps (4.3)

and,

Energy consumed by an N − cycle task E(N,n) = (Pd+ nPs)N/f (4.4)

Using equations 4.1 and 4.3, the power saving ratio is obtained as follows:

P − ratio = P (1)/P (n) (4.5)

P − ratio = n(Pd+ Ps)/(Pd+ nPs) (4.6)

P − ratio = n(k + 1)/(k + n) where k = Pd/Ps (4.7)
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For low leakage technologies where static power consumption is negligible compared to

dynamic power consumption, k >> 1. In this case,

P − ratio = n (4.8)

For high leakage technologies where static power consumption is higher and of concern,

assuming k ≤ 2, power ratio we obtain for different values of k is as follows:

P − ratio = 3n/(n+ 2) for k = 2 (4.9)

where k = 2 means dynamic power consumed is double the static power consumption.

Further,

P − ratio = 2n/(n+ 1) for k = 1 (4.10)

where k = 1 means dynamic power consumed is equal to the static power consumption.

Also,

P − ratio = 3n/(2n+ 1) for k = 0.5 (4.11)

where k = 0.5 means dynamic power consumed is half of the static power consumption.

These results are plotted in the graph shown in Figure 4.1.

From Figure 4.1, we observe that for low-leakage technologies, the power saving ob-

tained is linear with the clock slow-down factor n but as the static power increases in

proportion to the dynamic power, as is the case for the future high-leakage technologies,

the power savings obtained by this method shall reduce.
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Figure 4.1: Power Saving Ratio for Clock Slow-Down Method

Similarly, calculating energy saving ratio from equations 4.2 and 4.4 we get:

E − ratio = E(N, 1)/E(N,n) (4.12)

E − ratio = (Pd+ Ps)/(Pd+ nPs) = n× P − ratio (4.13)

E − ratio = (k + 1)/(k + n) where k = Pd/Ps (4.14)

For low leakage technologies where static power consumption is negligible compared to

dynamic power consumption, k >> 1. In this case,

E − ratio = 1 = constant (4.15)

63



Figure 4.2: Energy Saving Ratio for Clock Slow-Down Method

For high leakage technologies where static power consumption is higher and of concern,

assuming k ≤ 2, energy ratio we obtain for different cases of k is as follows:

E − ratio = 3/(n+ 2) for k = 2 (4.16)

where k = 2 means dynamic power consumed is double the static power consumption.

Further,

E − ratio = 2/(n+ 1) for k = 1 (4.17)

where k = 1 means dynamic power consumed is equal to the static power consumption.

Also,

E − ratio = 3/(2n+ 1) for k = 0.5 (4.18)

where k = 0.5 means dynamic power consumed is half of the static power consumption.

These results are plotted in the graph shown in Figure 4.2.
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From Figure 4.2, we observe that for low-leakage technologies, there is no increase in

energy and hence the energy saving obtained is constant but as the static power increases

in comparison to the dynamic power, as for the future high-leakage technologies, the energy

consumption will go on increasing.

4.1.2 Instruction Slow-Down Method

To differentiate from the clock slow-down methodology, we will call the NOP insertion

as the instruction slow-down method. In this new energy saving method the rated clock

frequency (f) is maintained. Power management hardware inserts nops after each instruc-

tion. Let this instruction slowdown factor be m, where m = 0 for normal operation. Once

the nops are inserted the management unit provides hardware sleep modes to reduce NOP

power. Power control signals are generated by control logic for each individual unit of the

processor to set them into their individual low-power modes as discussed in Chapter 3. To

analyze this technique, let

P = power consumed by instruction cycles,

P/f = energy consumed per instruction cycle,

βP/f = energy consumed per NOP cycle,

where β = reduction factor (0 ≤ β ≤ 1) due to power down/sleep modes.

Hence, for this new technique, for a given time period as illustrated in Figure 4.3, we get

Power = P (1 +mβ)/(m+ 1) (4.19)

For the normal operation mode in the new instruction slow-down method we have,

Rated clock frequency, f and m = 0 (as no NOP is inserted)
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Figure 4.3: Distribution of Instruction Energy and NOP Energy for a given time period

Assuming,

Dynamic power: Pd

Static power: Ps

Total power consumed = Pd+ Ps (4.20)

and,

Energy consumed by N − cycle task = (Pd+ Ps)N/f (4.21)

For the power saving mode where the rated clock frequency f is maintained, using equation

4.19, we get

Dynamic Power = Pd(1 +mβ)/(m+ 1) (4.22)

Static Power = Ps(1 +mβ)/(m+ 1) (4.23)

Hence,

Total power P (m) = (Pd+ Ps)(1 +mβ)/(m+ 1) (4.24)

However, now a given N -cycle task will take longer to complete as NOPs are inserted

after each instruction. The energy consumed by the N -cycle task is given by,

E(N,m) = (Pd+ Ps)[(1 +mβ)/(m+ 1)]N(m+ 1)/f = (Pd+ Ps)(1 +mβ)N/f (4.25)
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Figure 4.4: Power Saving Ratio for Instruction Slow-Down Method

From equations 4.20 and 4.24 the power saving ratio for the instruction slow-down method

can be obtained as:

P − ratio = P (0)/P (m) (4.26)

P − ratio = (m+ 1)/(1 +mβ) (4.27)

The plot of the P−ratio as obtained from equation 4.27 is shown in Figure 4.4. For the case

β = 1, where the NOP cycle consumes the same power as the instruction cycle we see no

power saving and this method is not effective. When the NOP cycle consumes less power

compared to an instruction cycle, we observe power savings. For the case where β = 0,

which is the ideal case where NOP cycle consumes no power at all, we observe the power

saving linear with the instruction slow-down factor m.

Next, from equations 4.21 and 4.25, we get the energy saving ratio as follows:

E − ratio = E(N, 0)/E(N,m) (4.28)
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Figure 4.5: Energy Saving Ratio for Instruction Slow-Down Method

E − ratio = 1/(1 +mβ) (4.29)

A plot of the E − ratio, obtained by equation 4.29, is shown in Figure 4.5. For the case

β = 1, where the NOP cycle consumes the same power as the instruction cycle we see

the energy consumed increases linearly with the instruction slow-down factor m. However,

when the NOP cycle consumes less power compared to instruction cycle we observe that

the energy consumption decreases. For β = 0, which is the ideal case where NOP cycle

consumes no power at all, we observe that there is no increase in energy. Hence, for the

ideal case, where NOP cycle consumes no power, there is no increase in the energy whereas

the power saving is linear to the instruction slow-down factor m.

4.1.3 Comparison of Clock Slow-Down and Instruction Slow-Down Methods

From equations 4.4 and 4.25, we compute the energy ratio comparing the two methods

as follows:
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Figure 4.6: Clock Slowdown Method Vs. Instruction Slowdown Method for β = 1 (No Sleep
Mode)

Energy (Clock slowdown)/Energy (Instruction slowdown) = (k+m+1)/[(k+1)(1+mβ)]

(4.30)

where, n = m + 1 and k = Pd/Ps. This ratio can be plotted for different values of β as

shown in Figures 4.6, 4.7 and 4.8.

From Figure 4.6 we observe that for β = 1, when there is no sleep mode applied and the

NOP cycle consumes the same power as instruction cycle, the new instruction slow-down

technique is not too efficient for high-leakage technologies and it provides no benefit for the

low-leakage technologies. Instruction slow-down shows advantage for k = Pd/Ps = 0.5,

i.e., when static power is twice that of dynamic power, but that is only because of the

inefficiency of the clock slow-down method.
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Figure 4.7: Clock Slowdown Method Vs. Instruction Slowdown Method for β = 0.5 (Sleep
Mode)

For β = 0.5, where NOP cycle consumes 50% less power than the instruction cycle, in

Figure 4.7 we observe a break-even point for the case where k = Pd/Ps = 1. That is, for

a technology where dynamic power is equal to the static power, the instruction slow-down

technique shows the same energy consumption as the clock slow-down technique. For this

case too the instruction slow-down technique provides no significant benefit for low-leakage

technologies.

For β = 0.1, where NOP cycle consumes 90% less power than the instruction cycle, in

Figure 4.8 we observe significant advantage from instruction slow-down except when leakage

is very small (k = Pd/Ps >> 1).

Hence, the instruction slow-down technique is more efficient for high-leakage technolo-

gies than the clock-slow down technique for the case where NOP cycle consumes 50% or

less power than the normal instruction cycle.
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Figure 4.8: Clock Slowdown Method Vs. Instruction Slowdown Method for β = 0.1 (Sleep
Mode)

The new technique was applied to a 32-bit MIPS processor [8, 9]. The architecture of

the processor is discussed in next section.

4.2 MIPS PROCESSOR

The MIPS architecture [46, 80] is a widely supported processor architecture, with a

vast infrastructure of industry-standard tools, software and services that help ensure rapid,

reliable and cost-effective system-on-chip (SoC) design. The MIPS processor, designed in

1984 by researchers at Stanford University, uses a RISC (Reduced Instruction Set Com-

puter) instruction set. Compared with their CISC (Complex Instruction Set Computer)

counterparts (such as the Intel’s Pentium processors), RISC processors typically support

fewer and much simpler instructions.
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Table 4.1: MIPS Instruction Formats

Format Bits 31-26 Bits 25-21 Bits 20-16 Bits 15-11 Bits 10-6 Bits 5-0
R op rs rt rd shamt funct
I op rs rt imm
J address

4.2.1 MIPS Instruction Formats

The meanings of the fields in MIPS instructions presented in Table 4.1 are as follows:

op : opcode. basic operation of the instruction.

rs : the first register source operand.

rt : the second register source operand.

rd : the register distination operand. It gets the result of the operation.

shamt : shift amount.

funct : function. This field selects the specific variant of the operation in the op field.

A compromise choice made by the MIPS designers is to keep all instructions the same

length, thereby requiring different kinds of instruction formats for different kinds of in-

structions. The format above is called R-type (for register), I-type (for immediate), and

J-type(for jump).

For the particular processor used for the experiment the supported instructions are

load word (LW), store word (SW), add (ADD), subtract (SUB), branch on equal (BEQ),

jump (J), and no operation (NOP). LW and SW use the immediate-format (I-format); the

operands are the destination/source register address, the register address storing the base

memory address, and an immediate value for the data memory address offset. BEQ also

follows the I-format such that it takes two register addresses to test for equality and an
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Table 4.2: Format and the meaning of the supported Instructions

Name 6 Bit 5 Bit 5 Bit 5 Bit 5 Bit 6 Bit Assembly Meaning

lw 35 2 1 100 lw$1, 100($2) $1 <= DMem[$2+100]
sw 43 2 1 100 sw$1, 100($2) DMem[$2+100] <= $1
add 0 2 3 1 0 32 add $1, $2, $3 $1 <= $2 + $3
sub 0 2 3 1 0 34 sub $1, $2, $3 $1 <= $2 - $3
beq 4 1 2 25 beq $1, $2, 100 if($1 == $2), then

PC <= PC+4+100
j 2 2500 j 10000 PC <= 10000
nop 0 nop Do Nothing

immediate value to add to the program counters value should the equality test pass. ADD

and SUB follow the register-format (R-format) where the operands are the destination

register address and two source register addresses. Finally, J uses the jump-format (J-

format); its operand is an immediate value to store into the program counter. Table 4.2

summarizes the instruction formats.

4.2.2 Architecture

The processor datapath has five stages: instruction fetch (IF), instructions decode (ID),

execute (EX), data memory (M), and write-back (WB).

INSTRUCTION FETCH: The IF stage involves keeping track of the current/next

instruction as well as retrieving the current instruction from memory. In this scenario,

memory is split into separate instruction and data memories in order to avoid a structural

hazard. That is, simultaneous access to memory, one for instructions and the other for

data, is possible in the architecture shown in Figure 4.9.

INSTRUCTION DECODE: In the next cycle, the fetched instruction moves into the

ID stage. There, the instruction is broken up into several fields and inputs into the control

logic and register file. Various control signals, register values, and intermediate values are
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Figure 4.9: General Architecture of the Processor
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handed to the EX stage where arithmetic operations are performed (in this case, integer add

and subtract). In addition, the register addresses will be forwarded to the hazard detector

in this stage. If there is potential hazard in the system, this stage will perform a stall.

EXECUTE: This is the main stage where most of the ALU operations are performed.

Also, this is where the registers addresses are forwarded back to the ID stage for hazard

detection.

DATA MEMORY: In the M stage, data is retrieved and/or stored into memory.

WRITE BACK: Finally, in the WB stage, applicable control signals and results, either

from data memory or arithmetic calculations, are fed back to the register file.

4.2.3 Pipeline Hazards

There are situations, called hazards, that prevent the next instruction in the instruction

stream from being executing during its designated clock cycle. Hazards reduce the perfor-

mance from the ideal speedup gained by pipelining. There are three classes of hazards:

Structural Hazards: They arise from resource conflicts when the hardware cannot

support all possible combinations of instructions in simultaneous overlapped execution.

Data Hazards: They arise when an instruction depends on the result of a previous

instruction in a way that is exposed by the overlapping of instructions in the pipeline.

Control Hazards: They arise from the pipelining of branches and other instructions

that change the PC.

Hazards in pipelines can make it necessary to stall the pipeline. The processor can

stall on different events:
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Table 4.3: A Sequence of Instructions

AND R1 , R2 , R3
SUB R4 , R5 , R1
AND R6, R1 , R7

A cache miss: A cache miss stalls all the instructions on pipeline both before and after

the instruction causing the miss.

A hazard in pipeline: Eliminating a hazard often requires that some instructions in the

pipeline to be allowed to proceed while others are delayed. When the instruction is stalled,

all the instructions issued later than the stalled instruction are also stalled. Instructions

issued earlier than the stalled instruction must continue, since otherwise the hazard will

never clear.

The problem with data hazards, introduced by the sequence of instructions as shown

in table 4.3, can be solved with a simple hardware technique called forwarding. The key

insight in forwarding is that the result is not really needed by SUB until after the ADD

actually produces it. The only problem is to make it available for SUB when it needs it.

If the result can be moved from where the ADD produces it (EX/MEM register), to where

the SUB needs it (ALU input latch), then the need for a stall can be avoided.

Using this observation, forwarding works as follows:

The ALU result from the EX/MEM register is always fed back to the ALU input

latches.

If the forwarding hardware detects that the previous ALU operation has written the

register corresponding to the source for the current ALU operation, control logic selects the

forwarded result as the ALU input rather than the value read from the register file.
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Figure 4.10: Modified Architecture of the Processor

4.3 MODIFIED MIPS PROCESSOR

The architecture of the given MIPS processor is modified in order to get low-power

consumption. In the modified architecture, a Power Block is added in the fetch cycle of the

Processor as shown in the Figure 4.10. This Power Block has an externally controlled 3-bit

signal that is controlled by the user. According to the performance required, the 3-bit signal

can be set to the number of NOPs that is inserted into the pipeline after every instruction.

With the 3-bit signal, maximum of 7 NOPs can be inserted into the pipeline with the bit

condition as shown in Table 4.4.

A schematic of the power block is shown in Figure 4.11.
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Figure 4.11: Schematic of the Power Block
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Table 4.4: External 3-bit signal conditions

000 Normal Processor Operation
001 1 NOP inserted after every instruction
010 2 NOPS inserted after every instruction
011 3 NOPS inserted after every instruction
100 4 NOPS inserted after every instruction
101 5 NOPS inserted after every instruction
110 6 NOPS inserted after every instruction
111 7 NOPS inserted after every instruction

In this architecture the instruction memory instead of feeding to the pipeline register for

the decode stage is fed to this Power Block. The Power Block then performs two operations.

It reads the external instruction slowdown signal and decides whether the normal stream

of instructions should be executed or the NOPs should be inserted in the pipeline after

every instruction. The second operation it performs is to maintain the program counter

pointing at the same instruction until the NOPs are executed. Once the NOPS are inserted

into the pipeline the control unit decodes the NOP instruction and generates the power

signals and puts the data-memory, register file and the ALU into low-power mode by power-

gating techniques as discussed in Chapter 3. A low-power mode can also be applied to the

instruction memory when the pipeline is executing the inserted NOP instruction. Once the

NOPs are executed the program counter fetches the next instruction in instruction memory,

which is then executed followed by NOPs again.
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4.4 RESULTS

4.4.1 Blocks of the Original Processor

Firstly the power consumption of different blocks of the processor was found out in

order to understand which block of the processor consumes the most power and needs to

be put down into low-power mode. For getting the power estimation of these blocks the

structural Verilog netlist of the blocks was taken and converted into the Rutger’s mode

gate-level netlist. This netlist was then estimated for power by the tool developed by Jins

Alexander at Auburn University [7]. The power results for the blocks were obtained by

applying 1000 random input vectors with the vector period of 100ns and rise time of 1ns for

a combinational circuit and the vector period of 200ns with rise time of 1ns for sequential

circuit. Operating voltage applied is 1V. Fanout wire load delay format was used with delay

of each gate in ns. Each of these blocks was power estimated for two different technologies,

65nm and 22nm technology and the clock period used is 10ns. The results are in microwatts.

The results obtained are shown in Tables 4.5 and 4.6.

From Tables 4.5 and 4.6 we observe that as the technology is scaled down to 22nm

from 65nm, the leakage power increases and the dynamic power decreases. The leakage

power is relatively high in 22nm technology and forms the major part of the total power

consumption. We also observe that for this particular processor the data memory, register

file and ALU consume more power and so power-gating techniques can be applied to these

units to put them into low-power mode when the NOP is executed.

However, the results of Tables 4.5 and 4.6 show that the expected ratio of dynamic and

leakage power is not maintained as the Berkeley Predictive Technology Model files available

may have been modified to account for certain industry processes.
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Table 4.5: Estimated power in microwatts for different blocks of the processor (65nm CMOS
technology, clock period 10ns)

Block Name Number of gates Avg Leakage Power Avg Dynamic Power Total Avg Power
add-1-word 58 1.30247 0.371326 1.673802
add-nbits 142 3.310713737 1.322882 4.633595
alu 126 3.760219442 2.584336 6.344556
comparator 43 1.174578188 0.288572 1.463151
control-logic 12 0.221470117 0.111679 0.333149
data-mem 649 5566.433072 0.044306 5566.47731
inst-mem 63 0.99482736 0.061841 1.056669
hazard 30 0.754764244 0.17651 0.931275
forward 39 0.919369882 0.223469 1.142839
ex-m 73 3142.959671 4.311972 3147.271695
id-ex 123 5176.235456 6.456847 5182.692315
if-id 150 4201.080184 4.525968 4205.605946
m-wb 71 2997.391392 4.288376 3001.679666
pc 60 1690.834528 2.002712 1692.837221
regfile 4178 78306.37693 19.659017 78326.03902

Table 4.6: Estimated power in microwatts for different blocks of the processor (22nm CMOS
technology, clock period 10ns)

Block Name Number of gates Avg Leakage Power Avg Dynamic Power Total Avg Power
add-1-word 58 61.57274038 0.287966 61.860708
add-nbits 142 160.1353579 0.678731 160.814088
alu 126 183.8257594 1.278279 185.104043
comparator 43 57.45039016 0.075063 57.525453
control-logic 12 10.12932989 0.074958 10.204288
data-mem 649 7573.0565 0.011231 7573.067676
inst-mem 63 54.12064638 0.016018 54.136664
hazard 30 35.5 0.047986 35.560068
forward 39 44.38890755 0.059332 44.448239
ex-m 73 8541.498333 3.325714 8544.824086
id-ex 123 14295.63016 4.974914 14300.60528
if-id 150 8512.405679 1.761546 8514.16681
m-wb 71 8259.585127 3.308923 8262.894116
pc 60 3808.628768 0.910683 3809.539368
regfile 4178 146416.0234 5.043241 146421.06
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Table 4.7: Estimated power in microwatts for different blocks of the processor (65nm CMOS
technology, clock period 20ns)

Block Name Number of gates Avg Leakage Power Avg Dynamic Power Total Avg Power
ex-m 73 3147.808369 2.225534 3150.033997
id-ex 123 5183.414556 3.332566 5186.747294
if-id 150 3977.928776 2.623281 3980.551846
m-wb 71 3001.879202 2.213355 3004.09249
pc 60 1686.125412 1.033658 1687.159063
regfile 4178 78049.01153 15.659671 78064.67265

Table 4.8: Estimated power in microwatts for different blocks of the processor (65nm CMOS
technology, clock period 40ns)

Block Name Number of gates Avg Leakage Power Avg Dynamic Power Total Avg Power
ex-m 73 3150.349716 1.131009 3151.480807
id-ex 123 5187.182222 1.693599 5188.875832
if-id 150 3976.784647 1.333143 3978.117835
m-wb 71 3004.232887 1.12482 3005.357692
pc 60 1683.653332 0.525302 1684.178598
regfile 4178 78611.9774 8.016249 78619.99422

To examine the effect of clock frequency on the blocks of the processor we again apply

1000 random vectors to the sequential blocks of the processor with the vector period of

200ns and rise time of 1ns. Operating voltage applied is 1V. Fanout wire load delay format

is used with delay of each gate in ns. Results were obtained for two different frequencies

20ns and 40ns. The results for 65nm technology are shown in Tables 4.7 and 4.8

From Tables 4.7 and 4.8 we observe that as the clock frequency is reduced to half the

dynamic power is reduced by half, whereas the leakage power is not stable. Even though

the dynamic power reduces to half, the leakage power being too high results in the total

average power increasing with the reduction in clock frequency.
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Table 4.9: Estimated power in microwatts for different blocks of the processor (22nm CMOS
technology, clock period 20ns)

Block Name Number of gates Avg Leakage Power Avg Dynamic Power Total Avg Power
ex-m 73 8547.215723 1.716498 8548.93215
id-ex 123 14304.46375 2.567698 14307.03141
if-id 150 8355.727419 0.991802 8356.719278
m-wb 71 8264.964446 1.707831 8266.672492
pc 60 3804.834792 0.47003 3805.304877
regfile 4178 146260.038 4.038493 146264.0762

Table 4.10: Estimated power in microwatts for different blocks of the processor (22nm
CMOS technology, clock period 40ns)

Block Name Number of gates Avg Leakage Power Avg Dynamic Power Total Avg Power
ex-m 73 8550.218306 0.872319 8551.090956
id-ex 123 14309.11012 1.304896 14310.4149
if-id 150 8356.056176 0.50403 8356.560022
m-wb 71 8267.787285 0.867914 8268.655278
pc 60 3802.842693 0.238868 3803.081578
regfile 4178 146664.9324 2.018337 146666.944

Similarly, the clock frequency effects for the blocks of the processor for 22nm technology

are shown in Tables 4.9 and 4.10.

4.4.2 Power Block

For the modified processor the new block added in the architecture is the power block.

The power results for this new block are obtained by applying 1000 random input vectors

with the vector period of 200ns, rise time of 1ns and operating voltage of 1V. Fanout wire

load delay format was used with delay of each gate in ns. Power is estimated for two different
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technologies, 65nm and 22nm technology, and the clock periods used are 10ns, 20ns and

40ns. The results are in microwatts and are shown in Tables 4.11 and 4.12.

Table 4.11: Estimated power in microwatts for power block of the processor (65nm CMOS
technology)

Number of gates Clock period Avg Leakage Power Avg Dynamic Power Total Avg Power
49 10 43.57989 6.246311 49.826202
49 20 44.52892 3.089169 47.618098
49 40 46.42725 1.512446 47.939706

Table 4.12: Estimated power in microwatts for power block of the processor (22nm CMOS
technology)

Number of gates Clock period Avg Leakage Power Avg Dynamic Power Total Avg Power
49 10 335.59347 3.457777 339.051243
49 20 336.11856 1.712433 337.831007
49 40 337.27590 0.840803 338.116719

For the power block too we observe that the leakage power is more for 22nm technology

compared to 65nm technology. We also observe that as the clock frequency is reduced the

dynamic power reduces, whereas the leakage power increases and, leakage power being too

high and a major fraction of the total power, the total power increases with reduction

in clock frequency. Even this results contradicts our expectations as the leakage power

increases instead of remaining stable with the reduction in the clock frequency.

4.4.3 Comparison between the original and modified processors

When the power block is added into the architecture, and comparing it with the original

processor when just 1 NOP is inserted after every instruction into the processor, the results
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Table 4.13: Comparing the original and modified processors for 22nm technology for 1 NOP
(power in microwatts)

Processor No. of gates Clock Period Avg Leakage Pwr Avg Dynamic Pwr Total Avg Pwr
Original 6684 20ns 235042.2 3.352106 235045.5521
Modified 6787 10ns 225510.6 3.533928 225514.1339
Original 6684 40ns 237590.5 1.670603 237592.1706
Modified 6787 20ns 226043.6 1.746964 226045.347

Table 4.14: Comparing the original and modified processors for 65nm technology for 1 NOP
(power in microwatts)

Processor No. of gates Clock Period Avg Leakage Pwr Avg Dynamic Pwr Total Avg Pwr
Original 6684 20ns 116676.4 13.29557 116689.6956
Modified 6787 10ns 111695.1 14.057876 111709.1579
Original 6684 40ns 118611.3 6.529785 118617.8298
Modified 6787 20ns 113055.2 6.828938 113062.0289

obtained for 22nm technology are as shown in Table 4.13 and the results obtained for 65nm

technology are as shown in Table 4.14.

From Tables 4.13 and 4.14 we observe that an average of about 4.46% of power savings

is obtained for the modified processor when 1 NOP is inserted into the pipeline after each

instruction. The power savings obtained from these results is not as much as expected.

This might be because the technology files used for the experiment were not reliable. Also

the tool used to obtain the results was not capable enough to simulate large designs and

operated only for constant inputs whereas the design required pulsed inputs.
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4.5 Summary

This chapter discusses the theoretical results, which show that the new energy saving

instruction slow-down technique is better than the reference clock slow-down technique for

higher leakage technologies for the case where NOP cycle consumes 50% or less power than

the normal instruction cycle. The architecture of a 32-bit MIPS processor and the modified

architecture of the new processor are also explained in this chapter. However, the practical

results obtained were not as expected because of the unreliable technology files used for the

experiment and the tool used to simulate the design was not efficient.
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Chapter 5

Conclusion

Leakage power is a major concern in current and future microprocessor designs, since

as with the technology scaling the leakage power is becoming a major component of the

total power consumption. In this thesis, to reduce this leakage power for the higher-leakage

technologies, we propose a new hardware-software technique where pipeline stalls are in-

serted into the processor after every instruction while maintaining the clock rate of the

processor. The hardware units are designed to save leakage power while processing NOP

instruction by putting the idle blocks into sleep mode. This technique is more effective when

NOP cycle consumes less than 50% power than the regular instruction cycle. For the future

work, power of the active cycles of the processor can be worked upon to further reduce the

leakage and dynamic power. Also voltage reduction can be considered for further reduction

in power when reducing the clock frequency, if the performance penalty can be met.
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