
The Activity Metric for Low Resource, On-Line Character Recognition

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory

committee. This dissertation does not include
proprietary or classified information.

William James Confer

Certificate of Approval:

W. Homer Carlisle
Associate Professor
Department of Computer Science and
Software Engineering

Richard Chapman, Chair
Associate Professor
Department of Computer Science and
Software Engineering

Dean Hendrix
Associate Professor
Department of Computer Science and
Software Engineering

Stephen L. McFarland
Acting Dean
Graduate School

The Activity Metric for Low Resource, On-Line Character Recognition

William James Confer

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
16 December 2005

The Activity Metric for Low Resource, On-Line Character Recognition

William James Confer

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at their expense.

The author reserves all publication rights.

Signature of Author

16 December 2005

Date of Graduation

iii

Vita

William Confer began his career in the field of Computer Science early, being exposed to

programming in the early 1980’s at home and at the Classical Junior Academy of St. Louis,

Missouri. Upon completing the Computer Science program at Illinois College in 1999,

William worked as a software developer for the Department of Veteran Affairs, Veteran

Hospital Division and then moved south to Auburn, Alabama where he began his graduate

career. While at Auburn University, William has worked hard in the fields of character

recognition and wireless software development. His efforts in character recognition have

culminated in this doctoral work and a U.S. patent he shares with his advisor, Richard

Chapman.

iv

Dissertation Abstract

The Activity Metric for Low Resource, On-Line Character Recognition

William James Confer

Doctor of Philosophy, 16 December 2005
(M.S., Auburn University, 2005)

(B.A., Illinois College, 1999)

196 Typed Pages

Directed by Richard Chapman

This work presents an algorithm for on-line character recognition that is fast, portable,

and consumes very little memory for code or data. The algorithm is alphabet-independent,

and does not require training beyond entering the alphabet once. This algorithm uses a

novel, parameter-based method of feature extraction, activity, to achieve high recognition

accuracy. Recognition accuracy is shown to be improvable dynamically without further

input from the user. The algorithm brings the capability to do character recognition to

classes of devices that heretofore have not possessed that capability because of limited com-

puting resources, including mobile handsets, PDAs, pagers, toys, and other small devices.

It achieves recognition speeds of 16.8 characters per second on a 20MHz, 8-bit microcon-

troller without floating-point. The alphabet-independent nature of the algorithm combined

with its inherent resistance to regular noise interference may allow it to enhance the capa-

bility of persons with impaired motor or nervous systems to communicate with devices by

writing or gesturing commands. Additionally, two human studies demonstrate the effec-

tiveness of a simple, activity-based recognizer for users of the stylized Graffiti alphabet and

for non-stylized variants of the English alphabet. A final experiment shows how recognition

v

accuracy can be improved per user by modifying the parameters of the activity metric over

samples collected in the non-stylized study.

vi

Acknowledgments

This work is dedicated to the memories of my grandmother, Lois Hoffman, and my

truest friend, Jacob Palmatier. Lois passed recently after a twenty-plus year battle with

multiple sclerosis. She is the inspiration behind the majority of my work with character

recognition. Jacob was killed by a roadside bomb in Iraq while retrieving the mail. He was

my only friend who didn’t criticize pursuing higher degrees for all these years. I miss each

of them terribly.

I would like to thank each of my committee members, especially Richard Chapman,

and my outside reader, Chwan-Hwa Wu, for their support over the years. Jaun Gilbert

supplied the tablet computers used to collect samples for my final studies. Gerry Dozier’s

assistance in evolutionary techniques was crucial to the success of my attempts to opti-

mize recognition. Mike Spiegel, an undergraduate student from Depauw University, was

a tremendous help in organizing and collecting character samples. I would also like to

acknowledge the contributions of the following students for their assistance in the past:

Charlton Barker, Tyson Begly, David Boyette, Barry Burton, Crystal Collings, Jim Han,

Travia Holder, Kevin Jackson, Justin Limbaugh, Adam Luter, Deitrick Mathews, John

Morley, Christopher Nuby, Marcus Parker, and Bradley Scott. An additional round of

thanks go to Auburn University Technology Transfer for assistance in acquiring the patent

and in seeking licensees for activity-based recognizers.

This work was sponsored in part by the Auburn University Center for Innovations in

Mobile, Pervasive, Agile Computing Technologies (IMPACT) and the U.S. Department of

Education Graduate Assistance in Areas of National Need (GAANN) Fellowship.

vii

Style manual or journal used Journal of Approximation Theory (together with the style

known as “aums”). Bibliography follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically LATEX)

together with the departmental style-file aums.sty.

viii

Table of Contents

List of Tables xi

List of Figures xii

1 Introduction 1

2 Related Work 4
2.1 On-Line vs. Off-Line Recognition . 4
2.2 Unistrokes . 6
2.3 Self-Disclosing Systems . 7
2.4 MDITIM . 9
2.5 EdgeWrite . 11
2.6 Elastic and Structural Matching . 13

3 The Problem of Character Recognition 18
3.1 e-Studio . 18
3.2 Recognition Qualities . 19

3.2.1 Low resource usage and portability 19
3.2.2 Alphabet Independence and User Dependence 20
3.2.3 Revisable Post-Deployment . 21
3.2.4 Resistance to Noise . 22

3.3 Finding a Sample Corpus for Evaluation . 22
3.3.1 Off-Line Resources . 23
3.3.2 On-Line Resources . 23

4 Activity-Based Recognition 27
4.1 Preprocessing . 27

4.1.1 Resampling . 27
4.1.2 Directional Codes . 28

4.2 Activity . 30
4.2.1 Activity is When Stuff Happens . 32
4.2.2 Activity Regions . 34
4.2.3 When Activity Fails . 34

4.3 Recognition . 35

5 Implementations 38

ix

6 Experiments 42
6.1 Graffiti Experiments . 42
6.2 English Experiment . 50

6.2.1 Non-interactive collection . 51
6.2.2 Phrase set . 52
6.2.3 Generating the phrase set . 52
6.2.4 Collecting Samples . 57
6.2.5 Alphabet Selection . 60
6.2.6 Results . 62

6.3 Optimizing Recognition . 66
6.3.1 Parameters . 70
6.3.2 Genetic Algorithms . 72
6.3.3 Optimization Operators . 78
6.3.4 Genetic Profiling . 82
6.3.5 Results . 84
6.3.6 Optimization Anomalies . 91

7 Conclusions 95

Bibliography 97

Appendices 101

A Genetic Algorithm Profiles 102

B Optimized Parameter Sets 111

C CDROM Contents 178
C.1 Character Samples . 178
C.2 Errors . 179
C.3 Final Optimization Parameters . 180
C.4 Results . 181

x

List of Tables

3.1 Words used the the Kassel phrase set . 26

3.2 Digit sequences used the the Kassel phrase set 26

3.3 Character and digit instance counts for the Kassel data corpus 26

6.1 Character instance counts for the Graffiti experiment 45

6.2 Average results of the Graffiti study . 46

6.3 Accuracy rates of the pilot study with commercial recognizers 47

6.4 Average recognition accuracy of five recognizers 49

6.5 English letter frequencies (A) reported in The Oxford Dictionary of
English [37], (B) reported in Cryptograhical Mathematics [30], (C) based
on three contemporary sources [32] . 54

6.6 Generated phrase set for the English character studies 56

6.7 Overall recognition error of the English study with a stock recognizer . . . 63

6.8 Overall error reduction gained from one α value to another (English study
with a stock recognizer) . 65

6.9 Overall recognition error of the English study with a stock recognizer and
Oxford letter frequencies . 65

6.10 20 GA profiles examined for the optimization study 83

6.11 Overall recognition error of the English study with optimized parameter sets 85

6.12 Overall error reduction gained from one α value to another (optimization
parameter set recognizer) . 85

6.13 Overall recognition error of the optimized parameter set recognizer and Ox-
ford letter frequencies . 87

xi

List of Figures

2.1 (A) Vertical histogram of the letter ‘a’. (B) Horizontal histogram of the letter
‘a’. (C) Compound histogram of the letter ‘a’. 5

2.2 (A) Five strokes of the Unistroke alphabet. (B) Unistroke letters that map
directly to their Roman letters. 7

2.3 The Graffiti alphabet . 7

2.4 (A) The alpha character layout of T-Cube. (B) T-Cube flick sequence for
the word ”writing”. 8

2.5 (A) Cirrin stroke for the word “soap”. (B) Quikwriting stroke for the word
“the”. 9

2.6 (A) Alpha characters of the MDITIM system. (B) The word “letter” drawn
with as two separate strokes. (C) The word “letter” drawn as a single stroke
with a pause (shown as a circle) to distinguish the consecutive south move-
ments between the first ‘e’ and ‘l’. 10

2.7 (A) The plastic, EdgeWrite template for a Palm PDA. (B) Example corner
recognition boundaries over the drawing of the character ‘s’. 12

2.8 The alpha character representations of the EdgeWrite System. 13

2.9 Structural primitives employed by Chan and Yeung 17

4.1 Resampling of a simple stroke to four coordinates: (A) Original stroke with
three coordinates, (B) Four coordinates placed over the length of the stroke,
(C) Final resampled stroke. 29

4.2 Drawings of the letter ‘G’ correctly classified by the presented recognizer . 29

4.3 Directional code mappings. (A)–Freeman chain code, (B)–Accurate vertical
and horizontal lines, (C)–Rarely southwestern 31

4.4 Directional Code representations of ‘D’, ‘P’, ‘W’, ‘V’ and ‘A’ of the Graffiti
alphabet . 33

xii

4.5 The seven Activity Regions and measures for ‘W’ 35

5.1 Windows alphabet editor . 39

5.2 Recognition, alphabet, and character editing screens for the Palm OS . . . 40

5.3 Front and back views of the 8-bit microcontroller implementation 41

6.1 The data collection application for the Graffiti experiments 45

6.2 Characters of the Graffiti alphabet grouped by total unique directional codes 48

6.3 Character collection application for the English alphabet studies 58

6.4 From left to right, the letter ‘X’ as drawn on paper, identified as two strokes,
and as converted to a single stroke . 60

6.5 Average and standard recognition errors over 900 runs for all subjects in the
(A) upper and (B) lower cases. 64

6.6 Recognition error per uppercase letter for all subjects – sorted by α = 3 . . 67

6.7 Recognition error per lowercase letter for all subjects – sorted by α = 3 . . 67

6.8 Recognition error per uppercase letter for a subject with good general accu-
racy (“c00”) – sorted by α = 3 . 68

6.9 Recognition error per lowercase letter for a subject with good general accu-
racy (“c00”) – sorted by α = 3 . 68

6.10 Recognition error per uppercase letter for a subject with poor general accu-
racy (“c02”) – sorted by α = 3 . 69

6.11 Recognition error per lowercase letter for a subject with poor general accu-
racy (“c02”) – sorted by α = 3 . 69

6.12 Stock parameter set for activity-based systems 70

6.13 Pseudocode for a basic genetic algorithm 74

6.14 Breeding example for (A) binary string and (B) real-coded alleles 76

6.15 The crossover range of the BLX-c operator for real-coded alleles 76

xiii

6.16 Mutation operator for activity regions . 81

6.17 Optimized average and standard recognition errors over 900 runs for all sub-
jects in the (A) upper and (B) lower cases. 86

6.18 Optimized recognition error per uppercase letter for all subjects – sorted by
α = 3 . 88

6.19 Optimized recognition error per lowercase letter for all subjects – sorted by
α = 3 . 88

6.20 Optimized recognition error per uppercase letter for a subject with good
general accuracy (“c00”) – sorted by α = 3 89

6.21 Optimized recognition error per lowercase letter for a subject with good gen-
eral accuracy (“c00”) – sorted by α = 3 . 89

6.22 Optimized recognition error per uppercase letter for a subject with poor
general accuracy (“c02”) – sorted by α = 3 90

6.23 Optimized recognition error per lowercase letter for a subject with poor gen-
eral accuracy (“c02”) – sorted by α = 3 . 90

6.24 Optimized lower case parameters for subject “c21” 91

6.25 Optimized directional code mappings for (A) subject “c10” (lower case), (B)
subject “c17” (upper case), and (C) subject “c37” (lower case) 92

6.26 Optimized activity regions for (A) subject “c29” (upper case) and (B) subject
“t12” (upper case) . 93

6.27 Optimized activity regions for (A) subject “c05” (lower case) and (B) subject
“c00” (lower case) . 94

C.1 (A) Directory structure on the CDROM and (B) example file names for each
directory . 179

xiv

Chapter 1

Introduction

Since the mid 1990’s on-line character recognition has become widely employed in

Personal Digital Assistants (PDAs), beginning with the Palm Pilot devices which defined the

product category. However, a number of factors have limited the use of character recognition

to this category of device, and has even, for some PDA users, proved too frustrating. These

include lower real-world accuracy rates than advertised, fairly significant requirements for

memory and processor speed, and dependence on a stylized alphabet that users are forced

to learn.

This work presents an algorithm that, by means of a novel feature extraction technique,

activity, significantly reduces the computational overhead required to support robust, on-

line character recognition and permits the use of arbitrary alphabets. There are quite a few

applications for such an algorithm. First, devices with very little computational capability

can now incorporate character recognition. Four implementations of the algorithm will be

described — one on a 20MHz, 8-bit microcontroller using 40K bytes of memory. Thus,

toys, pagers, mobile phones, and many other small, cheap devices can take advantage of

character recognition for command and data entry. Second, the alphabet independence of

the algorithm makes it attractive for use by those who require application specific alphabets

or gestures. Any set of marks can be assigned arbitrary meanings since the algorithm

doesn’t use particular features of the Roman alphabet or any other. The parameters of the

algorithm are suitable for modification (post-deployment) so that the idiosyncrasies of the

writing of any particular user can be incorporated and thus improve recognition accuracy.

1

Finally, this algorithm, in practice, appears to exhibit an immunity to noise that makes

it forgiving of the writing style of someone writing in a noisy environment (such as on a

subway or bus, for example), or suffering from a tremor, nervous or motor condition.

Three studies will investigate the real world performance of simple, activity-based rec-

ognizers. The first allowed users to interact with the recognizer using the stylized Graffiti

alphabet shipped on devices running the Palm OS, pen-based operating system. Since this

alphabet is supported by a large number of existing mobile platforms (including non-Palm

OS systems), the results of the study afford insight into the immediate usefullness of the

activity metric for contemporary market devices. The results of this study measured aver-

age recognition accuracy from 97.12% (for experts) to 95.01% (for novices). A second study

allowed subjects to perform their non-stylized version of characters in the English alphabet

in a non-interactive setting – i.e., the recognizer was applied to the captured drawings in

an off-line fashion, once the user has completed their writing. This affords data that is

void of character adaptions a human might traditionally make to comprise for deficiencies

in a recognizer (eg, exaggerating the bumps of a ‘B’). Additionally, both the upper and

lower case alphabets are examined whereas there is only one case in Graffiti. The results

of this second study for alphabets with three samples of each letter measured an average

upper case accuracy of 92.2% where 83% of subjects’ accuracy exceeded 90% and an average

lower case accuracy of 91.6% where 71% of subjects’ accuracy exceeded 90%. The third

study examines the effects of altering the parameters of the activity metric for each user’s

data from the previous study. The focus of this final study is on improving the recognition

accuracy for each user. This final experiment resulted in an average upper case accuracy of

94.3% where 92% of subjects’ accuracy exceeded 90% and an average lower case accuracy of

2

93.1% where 86% of subjects’ accuracy exceeded 90%. Further, the error rate was reduced

by an average of 30.3% for upper case and 20.9% for lower case characters.

3

Chapter 2

Related Work

Character recognition is a mature field. Interfaces using handwritten/gestural input

were being researched as early as the late 1950s [7, 13, 16] including the use of photo-

sensors for the recognition of hand gestures such as waving goodbye. Early methods are

surveyed in [14, 27, 45, 47]. The development of high resolution optical scanners and

digitizing tablets during the 1960’s and early 1970’s, fueled both character and handwriting

recognition. Most methods were off-line processing methods which used bitmap and string

contextual information to increase recognition accuracy. The algorithm presented in this

work is an on-line method.

2.1 On-Line vs. Off-Line Recognition

Character (or more generally, pattern) recognition systems are classified as either on-

line or off-line systems, dependant on the way drawings of characters are analyzed.On-line

systems often (although not always) interact with users during the drawing process. They

take advantage of temporal data gathered from the pen events of a stylus and pad, for

example, in order to analyze how the drawing was put down by the user. This data can be as

simple as sequenced X and Y coordinates, but may also include additional information such

as pressure, timing, and stylus angles [20, 47]. Generally, on-line methods sacrifice accuracy

for real time performance speeds, which is counter to off-line recognition [20, 27, 47]. There

is some debate as to whether temporal data merely adds noise to the static images produced

4

(C)

Figure 2.1: (A) Vertical histogram of the letter ‘a’. (B) Horizontal histogram of the letter
‘a’. (C) Compound histogram of the letter ‘a’.

by the stylus; however, Kassel [27] has demonstrated the additional information can be used

effectively to increase recognition accuracy in a variety of systems.

Off-line methods evaluate the pixel information obtained by optically scanning an ex-

isting document, for example. Optical Character Recognition (OCR) is a commonly used

form of off-line recognition. One simple approach used in off-line systems is to normalize

the size of character drawings and evaluate the one-dimensional projection of the resulting

bitmaps. Figure 2.1 shows example vertical, horizontal, and compound ((A), (B), and (C)

respectively) histograms of the letter ‘a’.

Further coverage of off-line methods is beyond the scope of this research; however,

there are several thorough surveys on the subject [28, 39, 44]. Koerich et al survey large

scale recognition systems that combine core character classifiers (“what letter is this?”)

with vocabulary contexting (“given the last few letters and some dictionary, what letter is

this?”) [28]. That survey focuses particularly on systems with very large dictionaries – some

tens of thousands of words – such as the recognition system used by Microsoft Tablet PCs.

Like Koerich, Steinherz et al discuss the methods of systems that include word recognition;

however, the systems evaluated are all cursive script readers [44]. Plamondon et al cover the

5

fundamental techniques of both on-line and off-line recognition specifically as they apply to

the fields of signature verification, writer authentication, and handwriting learning [39].

Presently, much research in on-line character recognition has centered around single

character entry systems [5, 3, 4, 10, 11, 12, 19, 20, 22, 23, 27, 31, 25, 24, 33, 34, 48, 49].

Characters are entered one at a time and the recognizer classifies the character before the

next is written. This provides the user immediate feedback so that errors can be corrected

as they occur. Typically, there is a simple method for the user to depict the beginning and

end of each character - commonly accomplished by pen down and up events.

2.2 Unistrokes

Unistrokes [19], developed at Xerox Corporation in 1993 is a well known example of

a single character, pen-event system. Unistrokes characters were designed to be written

one on top another so as to minimize the real estate required for recognition and to allow

for “eyes free operation” [19]. The Unistrokes alphabet is based on five basic strokes and

their rotational deformations. While several characters (‘i’, ‘j’, ‘L’, ‘O’, ‘S’, ‘V’ and ‘Z’

for example) are represented by strokes similar to their Roman drawings (see Figure 2.2),

most characters’ strokes require unnatural memorization [33]. Additionally, a model has

been developed for predicting the time required to enter arbitrary text with Unistrokes by

an expert user [22]. This is particularly useful since several variations of the Unistrokes

alphabet have been introduced in recent years [22].

A popular variant of Unistrokes is the Graffiti system originally used in the Palm OS

family of PDAs [1]. Graffiti improved upon Unistrokes by representing characters with

symbols that are, for the most part, quite like their Roman counterparts (see Figure 2.3).

6

Figure 2.2: (A) Five strokes of the Unistroke alphabet. (B) Unistroke letters that map
directly to their Roman letters.

Figure 2.3: The Graffiti alphabet

A disadvantage of both Graffiti and Unistrokes is that their alphabets are static. Graf-

fiti also has several characters that are composed of multiple strokes in order to allow a

more natural writing style. As users change applications, more or fewer characters may be

required [12, 11]. For example, there is little need for a simple, arithmetic calculator to

recognize characters other than say digits, some punctuation and operators. Reducing the

size of the alphabet in these situations might also increase recognition accuracy.

2.3 Self-Disclosing Systems

T-Cube [48], developed at Apple Computers in 1994, is a self-disclosing method for

character input. Nine pie-shaped templates designate the alphabet map as in Figure 2.4(A),

each pie cut into eight wedges. Each wedge contains characters or character commands. . . Figure 2.4(A)

7

Figure 2.4: (A) The alpha character layout of T-Cube. (B) T-Cube flick sequence for the
word ”writing”.

only demonstrates the location of the alpha characters for simplicity. Characters could be

input essentially by touching a stylus to the desired wedges in sequence. To reduce the

use of precious screen real estate, however, the T-Cube user only draws on a single pie

target like those shown in Figure 2.4(B). This target has an enlarged center, giving the pie

nine wedges. The user is able to perform any of the characters from the expanded map by

“flicking” a stylus from the center of a wedge in any of the eight cardinal directions. The

wedge pen down event represents which of the nine pies in the map the character is to be

recognized from. The direction of the flick determines which wedge of this pie to recognize.

This approach significantly decreases the amount of stylus-to-pad time required to draw an

arbitrary character since each drawing is a unidirectional flick [48].

There are two basic problems that prevent T-Cube from being an acceptable form of

character input in mobile or wearable devices. First, because of the visual aspect of the

pies, eyes-free operation is impossible [33]. Second, circular shaped menus have been known

8

(A) (B)

Figure 2.5: (A) Cirrin stroke for the word “soap”. (B) Quikwriting stroke for the word
“the”.

to be difficult to scan with the eye for many users [9], reducing the speed at which they can

be correctly accessed.

Two other notable self-disclosing systems that incorporate circular forms are Quikwrit-

ing [38] and Cirrin [34]. These two systems are quite similar. Each maps the characters of

the alphabet about the perimeter of a circular or rectangular form. Characters are drawn by

sliding a stylus from the center of the form to a character (see Figure 2.5). By sliding rather

than flicking, users can write entire words with one long stroke, sliding from character to

character. Because of the circular nature of these systems, however, they both suffer the

same problems as T-Cube.

2.4 MDITIM

In 2000, Isokoski and Raisamo developed the Minimal Device Independent Text Input

Method (MDITIM) [23]. MDITIM represented drawings of characters with a chain of

the four cardinal directions — North, South, East and West (N, S, E, and W) — (see

Figure 2.6(A)). This coarse grain resolution allows for a wide variety of input devices other

9

"le" "tter"

"le" <pause> "tter"

Figure 2.6: (A) Alpha characters of the MDITIM system. (B) The word “letter” drawn
with as two separate strokes. (C) The word “letter” drawn as a single stroke with a pause
(shown as a circle) to distinguish the consecutive south movements between the first ‘e’ and
‘l’.

than a stylus and pad (e.g., touchpads, mice, joysticks and keyboards). As with Quikwriting

and Cirrin, MDITIM allows users to draw entire words with a single, long stroke or with

consecutive unistrokes.

No character representations in the MDITIM alphabet include consecutive instances of

the same direction. This eliminates any ambiguity that might exist recognizing sequences

like ENS and ENSS, where it might be impossible to determine whether the user’s intent

was one or two ‘S’s. This is a powerful feature of the alphabet’s design; however, this does

not eliminate the potential for a multiple character sequence to introduce the same problem.

For example, the directional sequence for the word “letter” (SNSWESSNESNEWESWSN)

10

contains an SS pattern on the transition from the first ‘e’ to the ‘t’. Were the SS rec-

ognized as a single S, the system would fail at the sequence SNSWESNE and could not

recover by any mechanical means. This is because there is no way to determine which

of the recognized directions should have been a double. The proper SS would make the

SNSWESNE sequence error free, but the second S could also be doubled without introduc-

ing errors. . . SNSSWESNE is the valid string “ldt”. To deal with this circumstance, the

user may lift or pause the stylus briefly between the consecutive ‘S’s. MDITIM users with

trackballs are forced to pause since the ball does have a lift analog. When a keypad is used

to enter MDITIM strings directions, sequences of key presses are entered rapidly, without

pause, because consecutive instances of the same direction are instantly detectable. The

use of a keypad with MDITIM additionally makes the system self-disclosing so long as the

directional sequences are memorized.

2.5 EdgeWrite

Individuals with nervous or motor impairments are beginning to use mobile devices

such as PDAs as controllers or input devices for computers and other equipment [36, 43, 49].

Using a stylus with a PDA has been found to provide a more fluid control experience than

a keyboard or mouse for individuals with Muscular Dystrophy, for example [43]. This is

because many motor and nervous disorders impair an individual’s ability to make large,

rigid movements such as using a mouse [49]. People with Parkinson’s and Cerebral Palsy

introduce intention tremors in large movements, and individuals with Muscular Dystrophy

lose gross motor control earlier and faster than fine motor control [36].

EdgeWrite is a character recognition technology designed to assist individuals with dis-

abilities that use (or desire to use) PDAs as input devices for computers or other equipment.

11

Figure 2.7: (A) The plastic, EdgeWrite template for a Palm PDA. (B) Example corner
recognition boundaries over the drawing of the character ‘s’.

EdgeWrite reduces the interference of noise (such as tremor or slipping) by representing

characters as a sequence of corner hits within a recessed square [49]. Figure 2.7(A) shows

a simple, plastic template that be attached to a Palm PDA in order to make it EdgeWrite

compatible. Characters are then drawn as a single stroke by touching the stylus to the first

corner of the representation and then sliding the stylus from corner to corner over the rest of

the drawing. Since the corner sequences are the key to EdgeWrite recognition, impairments

that might cause noise over the lengths of the stroke between corner hits will have minimal

influence on overall recognition[49]. Many users choose not to fully slide the stylus along

the hard edges of the template as the character representations suggest — Figure 2.8 shows

the alpha character representations of the EdgeWrite system. Instead they target corner

regions (without actually hitting a corner pixel) as part of their stroke resulting in rounded

figures that reflect their roman counterparts to a greater extent [49]. Thus, properly deter-

mining when and which corners are hit over the length of a stroke is a crucial element to

the workings of EdgeWrite. Corners are detected in regions by two separate mechanisms as

shown in Figure 2.7(B). When the initial pen down event occurs, corner regions are treated

as rectangular zones around each corner. As the stylus begins to move, the corner regions

12

Figure 2.8: The alpha character representations of the EdgeWrite System.

are converted to triangular zones around each corner to reduce the number of unintentional

corner hits by users not sliding along the template edges [49].

Wobbrock et al [49] noticed that users targeted corners more liberally on the side of

their dominant hand. This is because the stylus is angled toward the dominant hand so the

tip can not actually reach the full corner unless the users hand changes its angle for these

corners — Figure 2.7(A) shows this issue for a left handed user. Figure 2.7(B) demonstrates

how corner recognition zones can be enlarged on the dominant side of a left handed user to

further accommodate this problem [49].

2.6 Elastic and Structural Matching

Some of the most robust recognizers in development today are based on elastic and

structural matching techniques [3, 5, 11, 12, 20, 31, 47]. While recognition accuracy for

these algorithms is somewhat high (averaging 83-98%), their recognition speed can be low.

With elastic matching, drawings are treated as raw sequences of (X,Y) coordinate pairs.

Classification of a drawing against an alphabet is done by finding the character instance

in the stored alphabet that has the smallest elastic cost when points in the new drawing

13

are stretched to match points in the stored instance. This cost between drawings, E, is the

average elastic distance to sequences in the stored instance from those in the new drawing,

as in Equation 2.1.

E(µ, λ) =
E(µ, λ)

λ
(2.1)

Here, the new drawing has µ points and the stored instance it’s being compared to has λ

points. The elastic distance, E, to the new drawing is found and averaged over λ. E(i, j)

(defined in Equation 2.2) calculates this distance over the sequence of points in the new

instance (starting with point i) and the sequence starting at j in the stored instance.

E(i, j) = d(i, j) +































































































i = 0 :
∑j−1

k=0 d(0, k)

j = 0 :
∑i−1

k=0 d(k, 0)

(i > 0) , (j = 1) : min















E(i − 1, j)

E(i − 1, j − 1)

(i > 0) , (j > 1) : min































E(i − 1, j)

E(i − 1, j − 1)

E(i − 1, j − 2)

(2.2)

E(i, j) is a recursive calculation (hence its tendency to be slow) terminated by the subdis-

tance measure, d, discussed later. On most occasions, the operations of E(i, j) as handled

by the last cases in Equation 2.2 are similar to those operators used in traditional string

matching techniques. Specifically, extraneous points are identified and removed, missing

points are identified and added, and existing points are stretched to match counterparts in

the stored instance. The least expensive of these operators is always chosen. The special

cases when i = 0 or j = 0 indicate that one or the other drawings has run out of points in

14

the recursion. The resulting action is a penalty cost dependant on the k points remaining

in the non-emptied sequence. This is where the real stretching happens. The subdistance

measure, d (Equation 2.3), is the sum of the Euclidian distance and the difference in slope

of the drawings tangent to the points in question. The difference in slope is weighted by β,

which is chosen by the designer.

d(i, j) = (xi − xj)
2 + (yi − yj)

2 + β|si − sj| (2.3)

One of the most computationally intense aspects of elastic costing is the fact that

E(i, j) must be evaluated many times over the comparison of a single pair of drawings. An

optimized approach to this issue is described both by Hellkvist and Tappert [20, 46]. The

comparison process is always begun with the E(0, 0) calculation which is stored in element

[0, 0] of a µ × λ array. By starting i and j with zero values and working upward, the array

can be populated such that no calculation is ever repeated during the comparison of two

drawings. While storing these values gives an immediate efficiency boost, they must be

accessed quite often so the developer must design the code and data flows responsibly to

ensure a speedy evaluation of E [46].

Merlin [20] was an elastic system developed at Ericsson Radio Systems as the primary

means of text entry on their Configurable Phone project. Hellkvist’s efforts were primarily

on optimizing standard elastic methods for speed as the Configurable Phone’s processor

was a 133MHz, Intel StrongArm. Merlin specifically focused on a character set including

the Graffiti and Jot alphabets. Merlin required just under 150K bytes of runtime and

data memories and was recorded at a top speed of 3.03 recognized characters per second.

15

Experienced Graffiti and Jot users obtained an average accuracy of 97%. Non-experts,

however, had a recognition accuracy averaging from 83% and 87%.

Structural approaches to character recognition attempt to extract descriptive, struc-

tural strings to represent drawings of characters. This is directly in contrast to elastic

techniques which traditionally attack raw coordinate data. Structural representations can

include any number of devices, such as directional chain codes (described later in Sec-

tion 4.1.2), the Printer Description Language (PDL), tree grammars, etc. The activity-based

system described in this work extracts structural information in the form of directional chain

codes and activity measures (see Section 4.2).

Li and Yeung’s algorithm [31] incorporates both elastic and structural techniques in a

combined recognizer. First a structural analysis takes place, identifying “dominant” points

in drawings. A point is considered dominant if it is the elbow point of a 45 degree or

greater change in pen direction. The raw point sequence of the drawing is then replaced

by the dominant point sequence. This first structural stage works as a pre-classifier and

is follwed by the fine classification of elastic matching. The elastic portion of the system

works on dominant point sequences rather than raw data. With this system, Li and Yeung

reported recognition accuracy averaging 91% and a recognition rate of up to 2.8 characters

per second on an Intel 486 50MHz processor.

Chan and Yeung’s algorithms [11, 12] incorporate elastic and structural methods in a

unique fashion. Drawings are first described in terms of the following structural primitives

seen in Figure 2.9: line(dir), up(dir), down(dir), loop, and dot. The up and down primitives

represent counter-clockwise and clockwise curves, respectively. A loop is a curve (rotational

direction is unimportant) that intersects with itself. The dir represents some notion of the

direction the primitive ends with. . . East, Northwest, or South for example. Say there

16

Figure 2.9: Structural primitives employed by Chan and Yeung

are eight directional values considered. In this way there are 8 lines, 8 ups, 8 downs, 1

loop, and 1 dot, totaling 26 possible primitives A drawing is then described as a string

of the 26 primitives. Elastic matching is then applied to these sequences where instead

of Euclidian distance and slope, d(i, j) from Equation 2.3 can be calculated based on a

subdistance matrix between primitives designed by the developer to suit the target alphabet.

For example, the distance from line(East) to line(Northeast) may be 2 while the distance

from line(East) to up(East) is 1. The developer determines these values to best match the

alphabet, preexisting intelligence about its characters, and known deformation tendencies.

This provides for extraordinarily high recognition accuracy (98.6% for digits, 98.5% for

uppercase, and 97.4% for lowercase [11]), but requires design time intelligence that cannot

be updated post-deployment to incorporate new or altered symbols. Recognition speed is,

again, moderately slow with an average speed of 7.5 characters per second running on a

Sun SPARC 10 Unix workstation. In comparison, the algorithm presented in this paper was

timed with an average recognition speed of 16.8 characters per second on the most resource

limited implementation — a 20MHz, 8 bit microcontroller without floating-point.

17

Chapter 3

The Problem of Character Recognition

3.1 e-Studio

The focus of this research originated as part of a 2001, Auburn University project

called “e-Studio”. The goal of the e-Studio project was to develop a software and network

infrastructure to enhance the typical teacher-presentation student-notes experience. Faculty

would present slides and handwritten notes over a screen projector, and students would get

the same materials delivered to them via any of a variety of networked computers, such as a

laptop, PDA, super-phone, tablet computer, etc. These materials would then be accessible

at later times for review while on a bus or waiting for the laundry, for example. There

was also a desire to promote collaborative environments between the users so that students

could present questions, notes, or drawings to faculty from their terminals and create “study

groups” to automatically share materials with. This collaborative element is similar to the

efforts presented in [29].

e-Studio would provide each user (including faculty members) the ability to add notes

to any materials delivered to or received by a terminal — similar to the CrossPad applica-

tion in the Classroom 2000 project [2]. These notes were generally expected to manifest in

two forms — scribbles and text. Scribbles would consist of quick sketches, bullet augmen-

tations, circles, lines, arrows, etc. A typical scribble might be simply drawing a quick star

next to an important piece of information or drawing a line to associate physically dislo-

cated bits of information. Text would consist of actual characters and digits that required

legibility. There is an emphasis here on legibility because characters and digits could both

18

be represented as scribbles; however, since the resolutions of different terminals may be

quite different, a string drawn reasonably on a tablet may appear illegible on a PDA. Thus

the text component of e-Studio would provide a means of character recognition so that the

content could be stored as strings and rendered appropriately across the various terminal

types. My research in character recognition stems from efforts to develop the text element

of the e-Studio project.

3.2 Recognition Qualities

A character recognition method designed to satisfy the needs of the e-Studio text

element must have numerous qualities. The character recognition algorithm my research

presents fulfills each of these.

3.2.1 Low resource usage and portability

e-Studio terminals were expected to include a variety of computing platforms, including

inexpensive mobile devices such as super-phones and PDAs. The system would be easiest

to expand and maintain if each component (including the character recognition component)

were portable across the device gamut. For the character recognition algorithm, this includes

the following requirements:

• Memory usage should be minimal, including data stores and runtime memories.

• Recognition must perform in an on-line fashion to ensure an individual’s notes are

correct. This adds an additional speed requirement to ensure that users are not waiting

for the recognizer. A recognition speed of 5 characters per second for a Roman-styled

19

alphabet should suffice considering it would be very difficult for a human to draw

characters any faster than this.

• Regardless of a device’s input capabilities, any character drawings can be represented

or mapped to a two-dimensional picture plane. Thus recognition must be based solely

on (X,Y) coordinate data.

• The recognition must support the unistroke drawing standard where each character

is drawn to completion one on top of the next. This will guarantee input support for

devices such as PDAs and touchpads which are too small to afford characters drawn

side by side (as on paper).

3.2.2 Alphabet Independence and User Dependence

The e-Studio system targeted an audience of diverse faculty and students. Users would

have different natural and cultural histories, distinguishing the requirement to support mul-

tiple, language-alphabets (e.g., English or Cyrillic). However, users of the same nationality

may vary in sex, dominant hand, and age (often by generations) and draw characters from

the same alphabet in very different ways. Further, users may have developed personal,

note-taking shorthand they would like to continue using.

To satisfy these conditions, the recognition system must be tailored to each user (user

dependence) and should not inherently respond to characteristics of a specific language-

alphabet (alphabet independence). It is important to note that an alphabet independent

recognition system need not support every language-alphabet under the sun. . . not natively

at least. Rather, it must be capable of functioning reasonably well given an arbitrary set of

drawings as an alphabet. How well is well enough is system and application dependant. If

20

the character recognizer represents the complete system (as on most PDAs), the recognition

accuracy must be very high. If instead it is a component of a larger, word-based system (as

with those surveyed by [28]), a character-level accuracy of only 70% may be necessary. The

user dependant aspect of the system should ensure that character-like markings outside of

the user’s chosen language-alphabet can be supported in addition to the alphabet’s charac-

ters. . . in other words, the user trains the system rather than the user learning the system.

This is reasonable since most mobile and wearable devices are typically used solely by the

owner.

3.2.3 Revisable Post-Deployment

It is unreasonable (or prohibitively expensive) to expect that a recognition system

could be produced to satisfy the issues for alphabet independence and user dependencies

for all users prior to deployment. After all, such a system (out of the box) would have to

account not only for all language-alphabets, but would additionally support all shorthands

and written variants of both. Instead, the e-Studio system should be deployable with some

existing character alphabet (optionally) along with the tools necessary to replace, expand,

and edit alphabets. This would allow users not only to write in a manner comfortable to

them, but it would provide the means to add new shorthand or other characters to the

alphabet. Kassel [27] has shown the editing process to be generally acceptable by most

users.

To take the alphabet editing, post-deployment, a step further, the system must not

require an algorithm update when the alphabet changes, although the particular parameter

values for the deployed algorithm may certainly be revised in some automated fashion.

21

This is a difficult proposition considering recognizers are commonly deployed using some

hard-wired bit of human expertise to classify difficult characters [3, 12, 10, 11, 20, 27].

3.2.4 Resistance to Noise

The e-Studio system was to target a wide range of mobile devices. With this in mind, a

recognition algorithm suitable for the mobile environment must be capable of dealing with

the effects of the environment on the drawing of characters. In particular, regular noise as

introduced by say the fairly constant motor of an elevator and isolated or irregular noise

(from bumps in the road, for example) should have a minimized influence on recognition

accuracy. Performance in a noisy environment should be comparable to that of an otherwise

static environment.

3.3 Finding a Sample Corpus for Evaluation

A convenient resource for research scientists in many fields is a common data corpus

containing vast amounts of field specific data that can be utilized in experiments and for

standardized comparisons of various techniques. For the field field of character recognition,

such a corpus would contain samples of several thousand individuals of varying backgrounds,

including sloppy samples, along with a digital transcript of the drawings produced by human

viewers. While many such repositories exist, none (to my knowledge) are suitable for use

in the extended study of on-line, unistroke-style, user dependant recognizers. As such, the

experiments presented in Chapter 6 rely on character samples I collected for the purpose of

this work.

22

3.3.1 Off-Line Resources

Of the major character repositories available today, the overwhelming majority are

directed specifically at off-line recognition systems. This comes as no surprise since there is

such a vast wealth of paper documents that might have an increased value if converted to

digital texts. . . journals, typewriter manuscripts, prescriptions, etc.

One such corpus is the NIST Handprinted Forms and Character Database (Special

Database 19) available for purchase over the Internet. It is quite large, containing samples

from over 3200 individuals and has been leveraged to develop the recognition systems used

by the US Census Bureau. It additionally includes a complete human generated transcript

for each sample, as well as database management utilities. Unfortunately there is no tem-

poral information about any of the handwritten documents it contains. Rather, it is based

on high resolution (300 dpi) scanned documents.

Since temporal information is virtually always imperative to on-line recognizers (abso-

lutely crucial to the technique described by my work), such databases are useless to on-line

researchers. This is a shame since the same wealth of handwritten documents mentioned

earlier could be used as the base of new character database for off-line recognizers. In

fact, new data sets could be constructed regularly by scanning any of the thousands of

handwritten documents that surround us in our everyday lives.

3.3.2 On-Line Resources

There are a few existing resources that are designed specifically for on-line recogni-

tion research. To my knowledge, however, non of these are suitable for user-dependant

recognizers.

23

Unipen Database

The first major on-line data corpus was managed by the International Unipen Foun-

dation. This database provides samples from over 2200 writers in the Unipen format. The

Unipen format was designed as a standardized means of recording handwritten character

samples, far predating similar technologies such as InkML or Microsoft’s Journal formats.

Samples include information about the writer (eg, name, hand dominance, tablet model)

as well as sequenced (X,Y) coordinate data, pen events, and timing information. Like the

NIST database, Unipen also includes human generated transcriptions and database tools.

While this database is quite useful and popular, it is not useful for the development of

user-dependant recognizers because the subject samples are not controlled adequately. A

large percentage of the data does not even include one instance of each character per writer.

This is primarily due to the fact that the recording process is not administered and because

no standard phrase set is provided to writers. A complete sample for one writer is the word

“applesauce”. Without adequate frequency of each character per writer it is impossible to

separate the data into suitable training and recognition sets. Additionally, the majority of

samples are not transcribed by a human reader. A final issue is that there is no control

to enforce character segmentation - i.e. a large number of samples include fully connected,

script-style characters and ligatures which are not at all suitable for unistroke-style systems

where each character is drawn to completion, one on top of the next.

Kassel Data Corpus

For his comparison of recognizers, Kassel devised and collected one of the most sub-

stantial databases of handwritten character samples for on-line recognition, which he has

since released to the research community [27]. Kassel recorded 159 subjects’ handwriting

24

in the Unipen format to ensure compatibility with the existing Unipen tools. Unlike the

Unipen database, Kassel developed a standardized phrase set for his experiments contain-

ing 599 individual drawings to ensure consistency between subjects. The Kassel phrase

set consists of 25 five digit numbers and 54 capitalized words selected from a 20,000 word

lexicon, the Merriam-Webster Pocket Dictionary [35]. This provides coverage for upper and

lower case English characters as well as digits. Overall, Kassel recorded 95,241 character

samples. In particular, Kassel developed his phrase set to be as compact as possible while

affording close to English letter-frequencies. The downside to this approach is that the

complete sample for any given subject contains too few examples of most characters to be

applied to user dependant systems. As seen in Table 3.3, Kassel’s phrase set contains only

one instance of 13 capital letters, two instances of four capitals, five or less instances of five

lower case letters, and 10 or fewer instances of nine lower case letters. There are so few ‘G’s,

once one is used to train the recognizer, only one sample ‘G’ remains to be tested. This

means either 0% or 100% recognition accuracy for ‘G’. Further, Kassel intentionally did not

control character segmentation, thus fully connected, script-style characters and ligatures

exist which are not suitable with Unistroke-style recognizers.

25

Accountability Frightfully Omitted Taxi
Agonizingly Fuzz Projections Transform
Announcing Geography Puff Uncomfortably
Approaching Governing Puzzlement Unexpected
Backing Hugging Quizzically Unworkable
Cafeteria Inconsequential Rejuvenating Vanquish
Commanding Industrialized Revving Volcanic
Comparatively Invulnerable Seeker Wobble
Complex Justifications Shadow Xylophone
Declaring Kidding Skiing Yearbook
Decompress Lump Spoiling Zero
Disqualified Mate Surrounded
Embraces Menu Swab
Fabulously Normalization Sympathetically

Table 3.1: Words used the the Kassel phrase set

02066 16380 35124 54331
05521 23687 45922 60839
07856 27657 47190 61449
10342 29697 48170 72898
13262 30464 50011 74184
79158 86773 88253 94095
99375

Table 3.2: Digit sequences used the the Kassel phrase set

‘0’ – 13 ‘9’ – 12 ‘I’ – 3 ‘R’ – 2 ‘a’ – 33 ‘j’ – 2 ‘s’ – 12
‘1’ – 13 ‘A’ – 4 ‘J’ – 1 ‘S’ – 7 ‘b’ – 10 ‘k’ – 5 ‘t’ – 20
‘2’ – 13 ‘B’ – 1 ‘K’ – 1 ‘T’ – 2 ‘c’ – 17 ‘l’ – 26 ‘u’ – 21
‘3’ – 12 ‘C’ – 4 ‘L’ – 1 ‘U’ – 3 ‘d’ – 11 ‘m’ – 12 ‘v’ – 6
‘4’ – 13 ‘D’ – 3 ‘M’ – 2 ‘V’ – 2 ‘e’ – 37 ‘n’ – 40 ‘w’ – 3
‘5’ – 12 ‘E’ – 1 ‘N’ – 1 ‘W’ – 1 ‘f’ – 8 ‘o’ – 31 ‘x’ – 3
‘6’ – 12 ‘F’ – 3 ‘O’ – 1 ‘X’ – 1 ‘g’ – 18 ‘p’ – 11 ‘y’ – 11
‘7’ – 13 ‘G’ – 2 ‘P’ – 3 ‘Y’ – 1 ‘h’ – 7 ‘q’ – 3 ‘z’ – 19
‘8’ – 12 ‘H’ – 1 ‘Q’ – 1 ‘Z’ – 1 ‘i’ – 42 ‘r’ – 22

Table 3.3: Character and digit instance counts for the Kassel data corpus

26

Chapter 4

Activity-Based Recognition

The core of this work is based on a novel feature extraction metric, activity. In order

for activity to be a useful tool for character recognition, it must be incorporated into a

recognizer designed both to feed the metric as well as use its measures to classify hand-

written characters. The following sections define the activity metric and introduce a simple

recognizer designed to use it.

4.1 Preprocessing

Typically, before any recognition of characters can be performed, a drawing of a charac-

ter must be preprocessed so that it can be described in the format native to the recognition

algorithm. This affords greater recognition accuracy (and perhaps speed) and allows in-

stances of characters to be stored efficiently [20].

4.1.1 Resampling

When drawing a character, it is quite likely that the speed of the pen will vary over

different portions of the stroke. For example, while drawing the capital letter ‘V’, the device

capturing the pen movement will probably capture few, well separated coordinates along

the left and right slopes, and many tightly packed coordinates around the base joint. This

irregular distribution is due to the pen slowing down in anticipation of returning in an

upward direction. Additionally, there is no guarantee that the same number of coordinates

will be captured each time the same character is drawn.

27

To deal with these issues, this recognizer resamples the drawing of a character by

linearly interpolating N +1 Cartesian coordinates into a vector ~R = 〈r1, r2, . . . , rN+1〉 over

the length of the drawing as in [3, 27] so that line segments between consecutive elements in

~R are of equal length (with respect to the traversal length of the original stroke) and both the

first and last coordinates are the same as those captured in the original drawing. Figure 4.1

demonstrates this interpolation more clearly. As well as guaranteeing each ~R is of constant

size, spatially resampling a drawing in this manner also aids in dampening regular noise and

tremor and has been shown to benefit recognition [27]. Figure 4.2 shows four examples of

the letter ‘G’ that are each correctly classified by this recognition algorithm. The leftmost

drawing is very close to the character class for ‘G’ in the test alphabet. The next two

examples in the figure were drawn with exaggerated regular noise. Proper classification of

these types of drawings is in part due to the noise reduction that resampling provides. Some

noise that is introduced into drawings of a character is not regular, say noise that occurs

as the result of writing on a bus. Resampling can not be relied on to eliminate this kind of

noise. The rightmost drawing of the figure has several instances of this type of noise and

is recognizable by the use of the feature extraction method described in Section 4.2, which

dampens the noise that spatial resampling can not eliminate.

4.1.2 Directional Codes

While size and position of a drawing on the writing surface could be relevant in enhanc-

ing recognition [8], this algorithm emphasizes the direction of pen movement over the course

of the stroke. This provides for eyes-free use, where a user is likely to draw the same charac-

ter in many different locations on the writing surface as well as in varied size. Each consec-

utive coordinate pair (ri, ri+1) ∈ ~R is used to create a vector from the first element of the

28

Figure 4.1: Resampling of a simple stroke to four coordinates: (A) Original stroke with
three coordinates, (B) Four coordinates placed over the length of the stroke, (C) Final
resampled stroke.

Figure 4.2: Drawings of the letter ‘G’ correctly classified by the presented recognizer

29

pair to the second. This vector is then mapped to one of a finite number of directional codes

stored in a vector ~D = 〈d1, d2, . . . , dN 〉 where di = DirectionalCodeMapping(ri, ri+1).

Freeman’s chain code [17] – which divides vector space into the eight cardinal directions

E, NE, N, NW, W, SW, S, and SE (enumerated 0,. . . ,7 respectively) as in Figure 4.3(a) –

is frequently used for this. Since the presented algorithm was intended to work with cus-

tom alphabets, it might also be beneficial to use a generalized direction mapping (based on

Freeman’s code) so that certain ranges of vector space can be emphasized over others with

respect to a particular alphabet and user. Additionally, these ranges can be optimized over

an alphabet to further separate characters, thereby improving recognition. For example, if

a particular user draws the vertical and horizontal portions of characters in an alphabet in

a close to vertical and horizontal manner (with only rare deformations), reducing the ranges

for directions 0, 2, 4, and 6 in Freeman’s mapping (as in Figure 4.3(b)) may improve recog-

nition accuracy for the user. Further, if few characters in an alphabet require W, SW or

S pen movements, the directional mapping could be altered to allow greater discrimination

in the other directions, as in Figure 4.3(c). As part of my final experiments, I investigate

methods for automating the creation and optimization of directional code mappings on a

per user basis. While this can improve recognition accuracy overall when used to prepare

directional code vectors, it is beyond the scope of this chapter since it does not alter or

accentuate the mechanics of the activity metric.

4.2 Activity

While a vector of Freeman’s chain codes could be used alone to describe a drawing of

a character, no single vector element can be used to derive information about the overall

drawing since deformations tend to be localized. The simple recognizer used throughout

30

(A) (B) (C)

Figure 4.3: Directional code mappings. (A)–Freeman chain code, (B)–Accurate vertical
and horizontal lines, (C)–Rarely southwestern

this work attempts to address this issue specifically by introducing a feature extraction

metric that further compresses the information gained from directional codes and provides

insight into the entire drawing in a general manner. This metric is called activity and is

defined over a directional code vector ~D as follows:

Activity(~D) =
Length(~D)

Dominance(~D)
(4.1)

where Dominance(~D) is the cardinality of the dominant (most common) directional code

over ~D. The activity metric is intended to approximate (quite loosely) the number of unique

directional codes required to describe a given vector. If the directional code mapping used

enumerates 8 unique values (as in Freeman’s chain code), the value of activity over an

arbitrary vector of these codes can range generally from 1.0 (only one directional code is

present) to 8.0 (all possible codes appear in equal frequency). For example, the directional

code vector 〈0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 7〉 has an activity of 12/10 = 1.2. While there are

clearly three distinct directional codes in the vector, the non-0 directions are both isolated

and could likely be considered noise. The activity measured suggests that the drawing has

a single dominant direction with few deformations, thereby significantly dampening noise

that remained after spatial resampling. Stating the vector has three different directions, 0,

31

1 and 7, severely undermines the dominance of 0 and over-emphasizes the presence of 1 and

7.

4.2.1 Activity is When Stuff Happens

In order to understand the reasoning behind the activity metric, you must keep in mind

the e-Studio target and desired recognition qualities for which this effort originated (see Sec-

tion 3.2). An algorithm that seemed particularly promising was developed by Kam-Fai Chan

and Dit-Yan Yeung [11] based on elastic structural matching. The primary disadvantages

of this algorithm for the e-Studio project was that the runtime complexity of elastic match-

ing was too great for some potential target processors (such as a Zilog Z80). Additionally,

similar characters sometimes required the algorithm designer to develop code specifically to

distinguish them. For example, the character ‘D’ could be described as a line in direction

N(6) followed by a clockwise curve starting in direction E(0) and ending in direction W(4).

Unfortunately, the same description could be used to describe the character ‘P’. To resolve

conflicts between the two characters, code would be added to calculate the ratio of the

height of the curve to the height of the line. Were the ratio below some threshold, the ‘P’

is recognized, otherwise ‘D’ is recognized. This eliminates the possibility of modifying an

alphabet after deployment.

In an early attempt to correct the inadequacies of the algorithm described in [11], I

approached the problem of distinguishing between the characters ‘D’ and ‘P’ by drawing

each, one after another quickly, with my eyes closed, and then trying to interpret how I

knew was drawing one or the other. The key point here was to identify the mentality of

drawing each character, rather than emphasize how to distinguish drawings of each. The

notion I considered was that the difference between the two drawings was “when all the

32

D → 〈 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4 〉
P → 〈 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 0, 0, 7, 7, 7, 6, 6, 5, 5, 4, 4 〉
W → 〈 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 〉
V → 〈 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 〉
A → 〈 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 〉

Figure 4.4: Directional Code representations of ‘D’, ‘P’, ‘W’, ‘V’ and ‘A’ of the Graffiti
alphabet

interesting stuff happens, or when I deviate from the interesting stuff”. To clarify, drawing

the ‘P’ was like drawing a line with a circular tail at the end, whereas drawing the ‘D’ was

more like drawing a semicircle with a line at the head. There is a subtle difference – the

first puts the drawing emphasis on the line while the second emphasizes the curve. This

examination is what led me to develop the activity metric.

Consider the directional code vectors representing ‘D’ and ‘P’ as shown in Figure 4.4.

The activity measured over the ‘D’ is approximately 2.91, while the measure of ‘P’ is

1.6. These numbers reflect my observations about drawing the two characters. The ‘P’

is primarily a line in a single direction with deformations (the curve at the end) totaling

half the drawing’s length, whereas the ‘D’ is mostly curve. . . a bigger curve mean a higher

cardinality of each directional code, and thereby a higher activity. Additionally, notice the

curve in ‘P’ adding 0.6 to the straight line activity (1.0) is consistent with the relationship

height of the line and curve ratio measured in [11]. The important thing to recognize here, is

that the activity metric does not compare the heights of lines and curves, rather it provides

a similar separation measure, for most such problematic character combinations (eg, ‘u’ and

’y’), but without the need for instance-specific code.

33

4.2.2 Activity Regions

In order to further increase the usefulness of activity, it is necessary to measure the

activity of portions of a drawing rather than only measuring over the entire length of the

stroke. Activity regions define these directional subvectors. To this point, only the region

spanning the length of the drawing has been considered. In my initial work with the

metric I found it beneficial to recognition accuracy to additionally measure activity over

regions covering the first and second halves of the drawing, as well as each quarter of the

drawing. This totals seven activity regions and is exemplified in Figure 4.5. While the

number and location of regions used for a given implementation or alphabet may differ -

or perhaps even evolve with usage - I have chosen these seven regions as stock parameters

under the assumption that they would be useful for a variety of alphabets. For example, the

activity measures over the full drawings for ‘W’ and ‘V’ in Figure 4.4 are both 2.0, which

does not provide for recognition. Measuring activity on the first halves of each of these

characters, 1.6 and 1.0 respectively, and further on the remaining regions clearly separates

the two. Additionally, since one activity region may cover a greater portion of the drawing

than another or might isolate a particularly revealing portion of the stroke, the activity

measured over each region could be biased by some scalar to emphasize the importance of

a particular region in distinguishing characters of the current user’s alphabet.

4.2.3 When Activity Fails

Regardless of the general success that can be achieved using activity over multiple re-

gions of a drawing, activity fails to aid recognition under certain conditions. Take, for exam-

ple, measuring the seven activity regions on the characters ‘A’ and ‘V’ in Figure 4.4. . . they

are all identical. In fact, no region can be defined such that the activity for both characters

34

A1 = 3.2, A2 = 1.6, A3 = 1.6, A4 = 1.0, A5 = 1.3, A6 = 1.3, A7 = 1.0

Figure 4.5: The seven Activity Regions and measures for ‘W’

is not equivalent. This means that activity alone can not distinguish these two character

drawings. The reason for this failure is that activity, while being a measure of direction,

in no way reflects direction. A drawing with a full activity of 1.0 has only one directional

code present after spatial resampling. What can not be determined from activity is what

direction the stroke was in. To resolve this issue, elements of the directional codes must

be maintained along with activity so that recognition between these classes of characters is

possible.

4.3 Recognition

Deployed use of recognition software based on the presented method takes place in

three stages.

1. A character class alphabet is created

2. New drawings are input by the user and converted to the class template used in the

alphabet

3. A character in the alphabet is recognized as being the most equivalent (or sufficiently

equivalent) to the user’s drawings

35

To prepare a new (custom) alphabet, the user draws each character of the desired

alphabet at least once for the recognition system, guaranteeing the character classes in the

alphabet contain the irregularities introduced by a given individual’s writing style. This

affords improved recognition accuracy for the user since the irregularities can be used to

further separate characters rather than “test” the classifier in spite of them. Additionally,

this method of alphabet generation allows the use of arbitrary, non-Roman characters. The

popularity of the Palm OS demonstrates that users are willing to learn an alphabet to

improve run time accuracy [42]. It is my belief that users might alternately be responsive

to “showing” a device the way they already write.

Each character drawing to be included in the alphabet is defined by an activity vector,

a directional code vector and the character associated with the drawing. The inclusion of

the directional code vector compensates for activity’s lack of directional information (see

Section 4.2.3). Care should be should taken when determining the length of each vector to

ensure that both direction and activity have appropriate influence in the character classes.

For the implementations described in Chapter 5, drawings were preprocessed to a directional

vector of length 32. The choice of 32 directional codes was made a priori, and the resulting

vector included as the directional code vector in the character. The activity vector used in

complement is length 7 over the regions described in Section 4.2.2.

Once an alphabet is constructed, the recognition process is quite straightforward. A

new drawing is introduced to the system and described as a directional code and activ-

ity vector pair (as above). This character is then compared against each member of the

alphabet as a point in multi-dimensional hyperspace (39 dimensional space in my implemen-

tations). While I chose Euclidean-squared distance to measure the variance of a drawing

and members of the alphabet, other metrics might be equally useful. No studies have been

36

done at this time comparing the quality of recognition gained from alternate distance met-

rics. Classification over the calculated distances is done with a K nearest-neighbor voting

mechanism. The set of K closest character classes is found with respect to a given drawing,

and the character with the most (either instance or weight-based) influence over the set is

recognized.

Calculating the distance between two characters is simple. The distance between two

values on an activity dimension is simply the difference between the two values. The differ-

ence between two directional codes is the toral separation between the two codes’ values.

In other words, the distance between directions 7 and 0 is 1 rather than 7. If a irregular

directional code mapping is used, it would be more appropriate to evaluate the distance be-

tween codes torally in terms of degrees or radians rather than integer code values. I use this

separation approach in my final experiment when I optimize the parameters of recognition

for different users.

In an attempt to balance the influence of direction and activity, a scalar bias of 1.222

was applied to each activity measure upon its calculation. This value was determined in the

following manner. . . the range of variance for two Freeman codes is 4, and for two Freeman

activities is 7.0, thus the balanced Euclidean-squared influence equation is:

7(7.0 × Bias)2 = 32(4)2 (4.2)

37

Chapter 5

Implementations

This work is characterized primarily as the effort to introduce the activity metric

and its application to the field of on-line character recognition. The implementations and

evaluations of the activity metric resulting from this effort are focused on demonstrating

that it is a viable solution for each of the recognition issues described in Section 3.2.

In order to demonstrate the low resource requirements and portability the activity-

based recognizer discussed in previous sections, the stock recognizer was implemented and

deployed on four platforms: Intel x86, Motorola Dragonball (Palm), Rabbit Semiconductor

2000 (a 20MHz, 8-bit microcontroller with 128K SRAM, 256K flash, and on-board serial

I/O), and the Sharp Zaurus handheld. A U.S. patent has been acquired for activity-based

character recognition based on these implementations.

The Intel implementation was done first, using Borland C++ Builder on Microsoft

Windows. It consisted of an alphabet creation/maintenance application and a notepad-

type application for testing recognition. The primary interface of the editor is shown in

Figure 5.1. Each character was described as a length 32 vector of directional codes and a

length 7 activity vector like that defined in Section 4.2.2. The direction mapping used was

the Freeman mapping. A scalar bias of 1.222 was applied to each activity measure upon its

calculation.

The small size of the Windows code (only 149 lines of C++, excluding the code for the

user interface) and the small data structures required (less than 30K of data) encouraged

me to try to implement the algorithm on much smaller, slower processors. Given that

38

Figure 5.1: Windows alphabet editor

handwriting recognition is now a common feature of PDA’s, a fixed-point implementation

was developed for Palm OS devices. The parameters used for this algorithm were the

same stock parameters used in the Windows implementation other than the modifications

required to scale for fixed point.

The Palm implementation requires 35K bytes for code and data, and 6K of persistent

storage for an alphabet of 26 characters, space and backspace (all data is unpacked). The

recognition screen and alphabet editor screens from the Palm application are depicted in

Figure 5.2. While profiling this implementation, it was found the bulk of time spent in

recognizing a character was spent during character classification when the distance between

members of the alphabet is calculated. As such, this implementation was also optimized

for speed by making two intermediate checks of the distance between characters. Since the

variance range for an activity measure is twice that of a directional code, the activity vector

39

Figure 5.2: Recognition, alphabet, and character editing screens for the Palm OS

is used to form the initial squared sum and a check was made after 12 and 24 dimensions

of the direction vector. This allows for terminating the distance calculation if the partially

calculated distance is already greater than the distance to the closest character found so

far. This resulted in a 22% speed increase at recognition time, based on internal clock

measurements.

An 8-bit microcontroller implementation on a 20MHz processor with very small on-

board SRAM and flash memories proved the viability of the algorithm for adding character

recognition capability to very cheap and very low resource devices. The input device was a

Fellowes Touch Mouse and the output device was a 2x20 line LCD display. Code size was

1349 lines of Dynamic C (332 lines for recognition code). Including an alphabet comparable

to that used in the Palm OS implementation, the binary image for this application is 40K

bytes. No additional memories are required at runtime as no dynamic memory allocation

is used. Thus, a processor with a 64K address space is adequate. Measurements using the

on-board timer of the Rabbit Semiconductor 2000 indicate a maximum character recogni-

tion speed on this very slow device of 16.8 characters per second, significantly faster than

humans are capable of drawing characters. This implementation further demonstrates the

portability of activity-based recognizers since the Touch Mouse used for input does not

40

Figure 5.3: Front and back views of the 8-bit microcontroller implementation

report (X,Y) coordinate data, but rather accelerated (X,Y) deltas. This means that a slow

motion of one physical inch will report a smaller change in X and Y than a quick motion of

one physical inch. The hardware is shown front and back in Figure 5.3. It should be noted

that most of the board pictured is an unused prototyping area – the only chips used are the

microcontroller, an RS232 driver and an inverter. Due to the limited interface capabilities

of this implementation, the alphabet editor written for the Windows environment was used

to facilitate the creation of an alphabet. A Perl script was written to convert the files

generated by the editor to the binary format required by the Rabbit. These files were then

downloaded into flash memory using the Rabbit field utility.

After the first three implementations were completed, a portable, fixed point, ANSI

C version of the core recognition tasks (alphabet representation, preprocessing, activity

measurement, and character classification) was developed. This core was then used to

develop a final implementation for the Sharp Zaurus handheld computer with an interface

based on the Palm implementation. The core included 1622 lines of ANSI C code and

require 60K bytes of RAM.

41

Chapter 6

Experiments

6.1 Graffiti Experiments

To measure the accuracy of a simple, activity-based recognizer, a study was per-

formed where 15 university students wrote with the Graffiti alphabet. Graffiti was cho-

sen because many subjects would have some familiarity with it. Additionally, it might

be possible to use the results in comparison to the Palm OS, Pocket PC and TealScript

(www.tealpoint.com/softscrp.htm) recognizers, each of which support the Graffiti alphabet

natively.

Thisphrase set was designed based on the approach used by Kassel [27] as described in

Section 3.3.2. A compact phrase set was desirable that reflected English letter frequency

but also included many instances of each character to ensure the data was suitable for user

in user-dependent systems. Satisfying each of these requirements at once is a mammoth

task. First The notion capturing multiple letter-cases or digits with this experiment was

eliminated — Graffiti strokes for both upper and lower cases are identical and digits are

part of a small (10 characters versus 26) separate alphabet. This reduced the size of Kassel’s

phrase set by 125 characters, but the real tradeoffs are made trying to balance compactness

with letter frequency.

Without regard to case, the letter ‘J’ appears only three times in Kassel’s phrase set

— the fewest occurrences of any character. To ensure at least X instances of each character

were recorded, Kassel’s phrases could be reused minus case but would require subjects to

write the set out X/3 times. This means to guarantee a minimum of nine instances of each

42

character in the phrase set, subjects would have to draw (599 − 125) ∗ 3 = 1422 individual

characters (not including any redrawn to account for recognition errors). A few individuals

wrote out parts of the phrase set on paper so the time requirements for this size collection

could be approximated. . . about 40 minutes if fatigue did not set in. This is far too long

for only nine ‘J’s but 43 ∗ 3 = 129 ‘I’s.

Kassel had dealt with compactness and letter frequency, but because many instances

of each character needed to be collected there was little possibility his phrase set could

be reused for this study. Further, it was clear letter frequencies would have to loosen to

keep the size down and record X instances. My final decision was to construct a phrase

set from pangrams, sentences that contain each letter of the alphabet at least once. With

this method, choosing the number of pangrams determines X while keeping the phrase set

compact. A list of pangrams was compiled from a variety of sources on the Internet and the

phrase set was built by selecting the shortest 20. Following are the complete text passages

written by subjects:

1. the five boxing wizards jump quickly

2. a very bad quack might jinx zippy fowls

3. a sphinx of black quartz judged my vow

4. a quick brown fox jumps over the lazy dog

5. wavy jake and his fat zebra had mexican pig liquor

6. brawny gods just flocked up to quiz and vex him

7. an exquisite farm wench gave a body jolt to prize stinker

43

8. five or six big jet planes zoomed quickly by the tower

9. pack my box with five dozen liquor jugs

10. six big devils from japan quickly forgot how to waltz

11. william jex quickly caught five dozen republicans

12. a large fawn jumped quickly over white zinc boxes

13. alfredo just must bring very exciting news to the plaza quickly

14. grumpy wizards make toxic brew for the evil queen and jack

15. back in june we delivered oxygen equipment of the same size

16. jaded zombies acted quaintly but kept driving their oxen forward

17. would you please examine both sizes of the jade figures very quickly

18. six big juicy steaks sizzled in a pan as five workmen left the quarry

19. about sixty codfish eggs will make a quarter pound of very fizzy jelly

20. a mad boxer shot a quick gloved jab to the jaw of his dizzy opponent

This phrase set contains 887 characters (non-space) with instance counts for each char-

acter shown in Table 6.1. This is fewer total characters than if the Kassel phrases were

doubled while guaranteeing many more instances of each character.

Because this experiment was designed to be subject interactive (subjects see the results

of the recognition as they write) and involved English sentences, a simple testing interface

was designed similar to a note taking application one might find on a PDA as seen in

44

‘A’ – 63 ‘F’ – 25 ‘K’ – 22 ‘P’ – 22 ‘U’ – 40 ‘Z’ – 23
‘B’ – 23 ‘G’ – 23 ‘L’ – 32 ‘Q’ – 20 ‘V’ – 20
‘C’ – 25 ‘H’ – 24 ‘M’ – 39 ‘R’ – 39 ‘W’ – 23
‘D’ – 34 ‘I’ – 71 ‘N’ – 37 ‘S’ – 37 ‘X’ – 20
‘E’ – 87 ‘J’ – 20 ‘O’ – 55 ‘T’ – 46 ‘Y’ – 29

Table 6.1: Character instance counts for the Graffiti experiment

Figure 6.1: The data collection application for the Graffiti experiments

Figure 6.1. The application allowed users to draw characters, one on top of the next in a

box on the screen and have the recognized characters appear one after another in a text

box to the right.

Subjects were classified as novice (no experience with Graffiti), moderate (having basic

comfort with Graffiti) or expert (able to write Graffiti eyes-free). They were each given a

sheet of paper with the Graffiti alphabet seen in Figure 2.3 and the complete phrase set

for the experiment. Subjects then drew each letter of the alphabet (plus “Backspace” and

“Space”) three times to train the system using the Windows alphabet editor (Figure 5.1).

After this they entered each pangram from the phrase set, pressing the “Next Sentence”

button between each pangram.

45

Accuracy # of Subjects

Expert 97.12% 4

Moderate 96.5% 2

Novice 95.01% 9

Overall 95.77% 15

Table 6.2: Average results of the Graffiti study

Subjects were allowed to write at their own pace and were instructed to correct recog-

nized characters by backspacing and redrawing the character. Each backspace was recorded

as a character in error. This mechanism allows each subject to determine when a character

is misrecognized rather than relying on an automated, character by character comparison

of the subjects’ text versus the experiment text. As a result, subjects who attempted to

memorize phases from the given text but remembered them incorrectly (eg, “the” instead

of “this”) would not negatively influence the data. Additionally, if a particular subject’s

drawings of certain characters were difficult to recognize, serial misrecognitions of the same

character instance would have an increasingly negative effect on recognition accuracy. This

is as close to real world behavior as possible while still maintaining some control over the

content.

Recognition accuracy was measured for each subject and averaged across the subject’s

classification. The results (summarized in Table 6.2) show average recognition accuracies

ranging from approximately 95% to 97%. An brief analysis of the data collected from the

Graffiti study revealed that the majority of recognition error was the aggregate effect of only

several characters being misrecognized frequently. This means the recognizer was generally

quite good for all but a few problem characters.

To gain an idea of how activity-based recognition compares to some commercial PDA

recognizers, two expert users from the study agreed to repeat the phrase set with the Palm

46

Pocket PC TealScript Palm OS Activity-based

Expert 1 94.13% 94.54% 96.2% 98.96%

Expert 2 92.12% 95.03% 95.4% 97.01%

Table 6.3: Accuracy rates of the pilot study with commercial recognizers

OS, Pocket PC (in all-caps mode) and TealScript recognizers. Of the four recognizers eval-

uated for these users, the activity-based recognizer performed with the greatest accuracy.

The results of this pilot study are summarized in Table 6.3.

Several variants of the activity-based recognizer were tried in an attempt to deal with

this issue.

One approach that might improve the recognition accuracy of the activity-based algo-

rithm was to divide the recognition comparisons into two phases. First, the activity vector

would be used to find some small subset of characters in the alphabet whose activity vec-

tors were the closest to the drawn character. Second, the directional code vector of the

drawing would be compared against only those alphabet members found in the activity

phase of recognition. This variant is referred to as activity-first recognition. Each of these

comparisons was done using Euclidean-squared distance.

Figure 6.2 shows how characters in the Graffiti alphabet could begin to be classified

based on the number of unique directional codes required to describe the strokes. Only 3

letters are described by a single directional code and 9 are described by two directional codes.

Since the activity metric was designed to approximate the number of directional codes that

describe a given vector, finding those characters whose activity vector is very similar to that

of a given drawing might provide the second phase recognizer with a smaller alphabet of

characters with very different directional code vectors. This new, smaller alphabet might

then be recognized against using only directional codes, benefiting the overall recognition

47

Figure 6.2: Characters of the Graffiti alphabet grouped by total unique directional codes

accuracy, as well as improving recognition speed since only several characters would have

the length 32 directional code vectors compared.

Given activity-first recognition, it was thought it might be worth while to reverse the

two recognition phases for the sake of comparison. Direction-first recognition is imple-

mented by first comparing a drawing with the characters in the alphabet based only on

directional-codes. The closest several characters found in this first phase are put into a new

alphabet and then recognized against using only activity vectors.

In addition to the previous two variants of activity-based recognizers, two additional

recognizers were implemented; activity-only and direction-only respectively. The first uses

activity vectors only to distinguish characters. The second uses only directional codes only

– specifically Freeman’s chain codes.

To measure the quality of the various recognizers described here, each was used to

recognize the 15 subjects’ data from the first study. Each recognizer used a directional code

vector of length 32 and an activity vector of length 7 spanning the activity regions described

in Section 4.2. A scalar bias of 1.222 was applied only to the activity vector of the basic,

activity-based recognizer. This is because a bias can not affect the outcome of recognition

for the four variants tested. For both the activity-first and direction first recognizers, the

48

Table 6.4: Average recognition accuracy of five recognizers
Activity Direction Activity Direction Activity
Based Only First First Only

Expert 97.1% 92.3% 85.6% 77.9% 36.2%

Moderate 96.5% 91.2% 85.7% 74.4% 37.5%

Novice 95.0% 90.2% 83.5% 74.1% 35.8%

Overall 95.8% 90.9% 84.3% 75.1% 36.1%

first phase of recognition generate a new, subset alphabet with 8 members. The results of

these experiments are summarized in Table 6.4.

While none of the variant recognizers examined in this paper were able to outperform

the basic activity-based recognizer, the results of the experiment are somewhat revealing.

First, the direction-only recognizer provided the second best recognition accuracies for this

experiment, far exceeding the quality of recognition gained from the activity-only recognizer.

This is not surprising since activity is a more coarse grain descriptor than directional codes.

Additionally, the activity-first recognizer provided greater recognition accuracy than the

direction-first recognizer. This is a reasonable expectation because coarse grain (activity)

classification is followed by fine grain (directional) classification. While the activity-first

algorithm did not exceed the recognition accuracy of the basic activity-based recognizer, its

performance may still be sufficiently improved. Perhaps by applying a unique bias to each

activity region in the activity vector, the first phase of the activity-first approach might

discover more appropriate sub-alphabets that could improve the recognition accuracy of

activity-first recognizers. A similar approach with varying scalar bias could be applied to

the activity vector in the basic, activity-based algorithm.

49

6.2 English Experiment

Having completed the Graffiti study, second experiment was performed focusing on

measuring the performance of a stock activity-based recognizer against subjects’ non-stylized

version of the English alphabet in a non-interactive fashion. This means subjects wrote the

text without a recognizer interactively displaying the recognized characters. Instead the

same temporal information required by the recognizer (i.e. sequenced (X,Y) coordinate

pairs, pen down and up events, etc) was collected so simulate subjects could be used for

future optimization studies. Basically, subjects didn’t worry about the recognizer’s perfor-

mance so much as they were simply writing text as they might in an eyes-free situation.

As with the Graffiti study, the non-stylized study presented users with text passages for

them to write, this time with their personal variation of the English alphabet. This affords

greater insight into the performance of an activity-based recognizer on character sets other

than the Graffiti alphabet which, after all, was designed to be mechanically recognized.

Further, the differences between writing styles are much stronger with this study since an

alphabet reference sheet could not be provided. Although it would be nice to investigate

wildly unique subject alphabets (including the alphabets of languages other than English),

it was important to stick with English at this stage so that the content of the captured text

could be controlled to a great degree and because many English speaking subjects were

available.

A major facet of this study’s design was based on the fact a third experiment was

planned involving the optimization of the recognizer’s parameters. This optimization pro-

cess would certainly involve many minor and major adjustments to parameter values. After

each set of changes were applied, the parameters would have to be evaluated in terms of

50

recognition accuracy. If this study was conducted in the fashion of the Graffiti study, the

time and resource expenses involved in having subjects perform the experiment over and

over would be unreasonable. Therefore, it was decided to completely reorganize the tech-

nique for the sake of the optimization and future studies. The restructuring for the English

experiment manifested specifically in two areas: the phrase set, and the fact that subjects

would write the phrase set in a non interactive fashion.

6.2.1 Non-interactive collection

The choice to use a non-interactive collection technique ensures that drawings represent

the natural style of each subject without recognizer influence. After the Graffiti study was

finished and its data reused for introductory tests of variant recognizers, several subjects

mentioned that when they encountered consistently misrecognized characters, they altered

the way they drew the characters in an attempt to complement the recognizer. This means

the results of the variant recognizer tests should be taken with a grain of salt because the

data collected was not raw, it was to some degree driven by the original recognizer and

therefore not wholly suitable for reuse. It was realized that recording raw, non-interactive

subject data would be crucial if one wanted to reuse the data to pursue optimization tech-

niques or investigate alternate algorithms in the future. The non-stylized study would

provide such a data store while simultaneously profiling the recognizer with a yet untested

alphabet.

Further, many Graffiti subjects indicated the cognitive effort involved in verifying the

recognition of each character slowed them down and added some mental fatigue. It was

believed, then, that the non-interactive study would go faster and might allow for a greater

amount of data to be collected in equal or less time. With this approach recognition

51

would occur at some point after all the drawings had been collected, fed into the system

automatically to simulate on-line usage.

6.2.2 Phrase set

The phrase set chosen for the Graffiti study consisted of 20 pangram sentences. This

ensured that every letter of the alphabet appeared at least 20 times in the phrase set. The

Graffiti alphabet had only one letter case, so in order to reuse these phrases one would have

to require that each subject wrote the phrase set twice, once for each case. At first this

seems reasonable, but a trial run found it very unnatural to write sentences in upper case.

Further, subjects in the Graffiti study often attempted to memorize parts of the pangrams

in order to expedite their progress. This resulted in pangrams being transcribed incorrectly

— not a big deal when the subject is watching over their own shoulder and can verify the

recognition. For a non-interactive mode, however, we had to minimize the possibility that

subjects would write the wrong thing because we would have to expect each character they

drew was the character requested for the sake of accuracy measurements. Transcription

errors introduced by subjects could also waste the effort in designing a phrase set if they

result in letter frequencies other than what was intended by the researcher, even if they

could be verified by a human reader. A new phrase set was developed that overcame these

new issues while adequately satisfying those established in the Graffiti study. It was also a

priority to think of a way to address English letter frequencies.

6.2.3 Generating the phrase set

Because the Graffiti phrase set was constructed with little regard to English letter

frequencies, we decided to focus on this parameter of the revised collection method first.

52

After isolating several resources on the topic, it was discovered there are no widely accepted

values for letter frequencies or standardized methods for generating new ones. Table 6.5 lists

English letter frequencies as reported by three sources, each determined in a unique fashion.

The first source (Table 6.5[A]) is the Oxford Dictionary of English [37] which determined

its list by counting the letters in words defined in their most recent edition — letters used in

definitions, front and back matter were not considered. Lewand [30] (Table 6.5[B]) offers a

list suitable for general purpose, English cryptography. Although the sources and collection

method he used are unknown, Lewand suggests the most pertinent frequency tables should

be constructed by investigators using a representative collection of documents specific to

the domain of the material to be evaluated. Linton [32] (Table 6.5[C]) pulls his numbers

from three very different contemporary sources: the license agreement from the Sun Java

Development Kit 1.2.1, the teaching philosophy of a Computer Science professor from a

liberal arts college in Minnesota, and a letter of recommendation for a national competition

for innovative uses of technology in collegiate teaching.

Lewand’s notion of using domain specific frequencies struck a chord because it is be-

lieved the most powerful recognition systems will take application specific information into

account to boost performance. Rather than selecting a domain and frequency set, the phrase

set was organized so that any frequencies could be soundly applied to the collected data

to simulate domain specific frequencies. First, the phrase set must ensure the collection

of a statistically large number of each character (30) in upper and lower cases. Additional

instances of each letter (both cases) must also be captured for alphabet training. In past

efforts we built alphabets with three instances of character. As such we collected three

additional instances of each character totaling 33 instances of 26 characters in two cases. . .

53

A – 43 F – 9 K – 6 P – 16 U – 19 Z – 1
B – 11 G – 13 L – 28 Q – 1 V – 5
C – 23 H – 15 M – 15 R – 39 W – 7
D – 17 I – 38 N – 34 S – 29 X – 1
E – 57 J – 1 O – 37 T – 35 Y – 9

(A)

A – 110 F – 30 K – 10 P – 26 U – 37 Z – 1
B – 20 G – 27 L – 54 Q – 1 V – 13
C – 38 H – 82 M – 33 R – 81 W – 32
D – 57 I – 94 N – 91 S – 86 X – 2
E – 172 J – 2 O – 101 T – 122 Y – 27

(B)

A – 137 F – 39 K – 7 P – 34 U – 48 Z – 1
B – 18 G – 30 L – 75 Q – 2 V – 21
C – 57 H – 58 M – 47 R – 112 W – 23
D – 61 I – 128 N – 128 S – 118 X – 4
E – 207 J – 3 O – 119 T – 162 Y – 32

(C)

Table 6.5: English letter frequencies (A) reported in The Oxford Dictionary of En-
glish [37], (B) reported in Cryptograhical Mathematics [30], (C) based on three contem-
porary sources [32]

54

1,716 samples in all, per subject. Once recognition accuracies are determined for each

character, the results can be weighted to match any English frequency set.

Given an arbitrary frequency set F = 〈f1, f2, . . . , f26〉 where fi is the relative frequency

of letter i (1 being ‘A’ and 26 being ‘Z’), compute the frequency total FT =
∑26

i=1 Fi. Next

calculate the recognition accuracies R = 〈r1, r2, . . . , r26〉 for each character i. Apply the

frequencies to determine the frequency based accuracy A according to Equation 6.1.

A =

∑26
i=1 fi × ri

FT

(6.1)

To organize the 858 characters per case into phrases, it would be impossible to use

English words, or at least the resulting phrase set would be intolerable. Instead we decided

to present the characters in 143, pseudo random strings, six characters long. Then multiple

strings would be displayed at one time to subjects, filling out screen after screen of these

strings. Organizing these strings completely at random was out of the question, however,

because there would likely be character sequences repeating too often to ensure represen-

tative variety for each character. It is impossible to ensure no two character sequence is

repeated over an ordering of 858 English characters, so it was determined the phrase set

for the study would at least contain no duplicate sequence of three characters. To build

the final set a primitive algorithm was developed to generate a pseudo random sequence of

858 characters meeting the previously mentioned requirements. First, an 858 length string

was randomly populated with 33 instances of each of the 26 characters. Until no three

character sequences are duplicated in the string the first character in the repeat sequence

was swapped with a random position in the string. Table 6.6 shows the result of this effort,

the final phrase set used in the English study.

55

BASJWD NJLUMT URNGTB MKNUPV HPROBG TEVBLC
UKECPM XPVFKQ OFMIVA DQRYVD XYQAUZ UMUQXS
VRNIHT KUGJVS ZCSJXP NAJOLQ VFDILM GBWCVE
YLGZOX CYFRZM KHDYWL RKYBTP CTKWHB YMLKTI
QFGIFK PTELXD ZNERCM MUZFHI EJNIFD RFJPDA
RBJVNT INQWBH OVXJPY CGSXEW GZACTL HOZNRA
WOMDSQ AOIATG AGDSUW CAQPKD YUKSQM ZUCKPF
CZEPUX MUPHSQ HFIKQT JXVUFL VPWRXO IHVMDL
YAHLBO YNOJRW LBUEIC RZYGNO PGHUOI NGJWTB
WEPJNC DCLFZB GTOYLP BMIWEH SZFYEB YXOQES
URGMSH VXEKGP BJWNRM STJKRS XAMQTN LEXGVN
DIVKXT FQWOCI VFAXZS TLNIWD WVKLJC TAUCJI
YZAFQL AXNSUK DKQHWV HVUCQA DRUETZ PZQRDS
IGQKCT RDZVHB MSOZHJ BGFPXM CJWOGN BKOMWH
PSUEDH MLYJET DEPBCN ZYOEGM BAHKDP YFOBAJ
LVAJFM BTLEHQ IXTFRQ HFBNLT SRQVFX SPTKYV
XNRWYZ WGXSDM KAYULG ZVAWSE YIMLAB EHDZMU
BOYOQC NFAIKU KWMUON XOKJQI DWSHPU LWIGCQ
RINHLA YPVZCR CGJEBX YPRUDC EOGMNJ NXFRCZ
FKBGME OJHBYT HYLZPT LBHXPI QXKYFI FOJLVS
UPTSDV CGPWAE FRSIVD CVTQAG ZRLVTC NDPYIR
ZXJWSC MUSZND AQFEWX EFROYD NZRDOH BEHAUG
GZHEBW RKFOLI OSGLHC UMWKJS AJKPSG KMTQWX
IORADY JVQXQE JBZTIA ZNSJNE FYQIWX

Table 6.6: Generated phrase set for the English character studies

56

Initially it was a concern that the size of this phrase set was too large to be comfortably

performed by subjects in a single sitting. Additionally we were unsure whether the random

sequences would result in slower drawing by subjects. To test these concerns a paper test

was developed, four pages long and given to five people for profiling. Each page contained

four strings from the phrase set. These sheets were laid out identically to the application

developed to collect the character samples for this study as seen in Figure 6.3. It was

surprising to discover the speed at which subjects filled out these sheets in comparison to

the speed of subjects in the Graffiti study. Based on estimates from this profiling it was

determined subjects could complete the entire study in close to 50 minutes. . . only slightly

longer than the Graffiti study but with many more character instances. It is speculated the

speed increase is based on two things, subjects didn’t have to pause between each character

to verify recognition, and the pseudo random strings removed any unintentional cognitive

overhead occurring if subjects subconsciously interpreted the words in the phrase set.

6.2.4 Collecting Samples

To collect subject samples, two Tablet PCs running the Microsoft XP Tablet Edition

were used; one manufactured by Compaq and the other, Toshiba. Both tablets were of the

convertible style. A Windows application was developed to collect the character samples as

previously outlined. The application (as seen in Figure 6.3) was designed to fill the entire

display. Strings from the phrase set were shown in four rows with each character given

dedicated screen real estate (a 100x100 pixel box) within which the subject could draw.

Each drawing box had a caption (above) that displayed the character in the specific letter-

case that drawing should represent. A “Clear” button below each box allowed subjects to

erase the data and drawing for a specific character instance if they made a mistake and drew

57

Figure 6.3: Character collection application for the English alphabet studies

58

the wrong character. The “Next” button on the bottom right of the application replaced

the current screen with the next set of strings from the phrase set. The “Next” button

was deactivated if any character on the current page had no drawing. A progress bar to

the left of the “Next” button showed the subject what percentage of the samples they had

completed.

The application presented 72 pages of strings in two halves, each covering the entire

phrase set. The first half were lower case. Upon completion of the lower case phrase set, a

dialog box appeared letting subjects know the remaining screens would require upper case

characters.

66 students and faculty from the Computer Science and Mathematics departments

participated in this study. Subjects were given an identifier to ensure their data was anony-

mous. . . a letter (‘c’ or ‘t’) representing whether they performed the study on the Compaq

or Toshiba tablet followed by a two digit number — eg, “c19”. Although no demographic

or subject specifics were recorded with samples, approximately one third of subjects were

female. Several subjects wrote with a dominant left hand, and some wrote in Italics (a

pseudo-cursive script with disconnected characters). 45 subjects used the Compaq tablet

and 21 used the Toshiba.

Subjects were seated in front of a tablet and shown how to use the stylus with the

screen. They were allowed to place the tablet in whatever way felt comfortable; eg, resting

on the table in front of them or held in their lap. Subjects were given a short demonstration

of using the application including drawing in the character boxes, clearing a drawing, and

continuing to the next screen. Subjects were instructed to fill the screens based on the

way they write with pencil and paper; however, they were additionally asked to maintain a

consistent style throughout their samples. Breaks could be taken at any time. On average,

59

Figure 6.4: From left to right, the letter ‘X’ as drawn on paper, identified as two strokes,
and as converted to a single stroke

subjects completed the study in just under one hour. The complete collection of subject

samples is located on the packaged CDROM and described in Appendix C.

6.2.5 Alphabet Selection

This experiment is focused on measuring the performance of the stock parameter set

identified in Section 6.1 over the upper and lower case English character samples collected

in Section 6.2.4. Generally this process is straightforward; however, there were three is-

sues to address before the experiment could continue: handling multiple stroke drawings,

determining the size of of the alphabets to be evaluated, and dividing the 33 samples of

each character into training (alphabets) and test sets. The issue of multiple strokes can

be overcome trivially. It was simply decided to treat all drawings as single strokes by only

considering the raw (X,Y) coordinate pairs without regard to whether a visible line would

connect them on paper. An example interpretation of the letter ‘X’ is shown in Figure 6.4.

The remaining two issues regarding alphabets are not so simple and require further discus-

sion.

In the Graffiti experiment, we had subjects train the recognition system by explicitly

drawing three instances of each letter to define the alphabet. For the sake of brevity, we

60

will herein refer to the number of instances of each letter in an alphabet as the alphabet’s

α value; eg, α = 2 indicates the alphabet has two unique drawings of each of the 26 letters

of the alphabet, totaling 52 character instances. We had always used an alpha value of 3 in

our previous work because it provided character variance while resulting in a small enough

alphabet to allow fast recognition speed. The samples collected for this experiment allow

for a statistically large set of characters (30 per letter) to be tested with α = 3. However,

because subjects are not explicitly instructing the system to use particular drawings as

the alphabet, we could also evaluate the performace of the stock activity system with α

values of 1 and 2, testing 32 and 31 samples of the same character, respectively. Thus, for

this experiment as well as the following optimization experiment, the system was evaluated

using α values from 1 to 3.

Because subjects provided samples as if they were writing on many sheets of paper

(rather than into a recognition system) no alphabets were consciously specified. In fact, the

collection technique had no concept of of alphabet whatsoever. This raises the question of

which characters instances should be chosen for the alphabet and test sets. Kassel [27] (as

well as others) chose specific character instances from the phrase set to work as alphabet

and test characters. This approach is reasonable considering the small instance counts of

many characters, but it only provides a small glimpse into the performance of a recognizer.

Because of the large character instance counts provided by subjects, we were able to gain

a much more accurate account of the recognizer’s accuracy per subject. Instead of a single

alphabet and test set, we can generate many random alphabets of a particular α value to

determine not only average recognition accuracy, but we can get some idea of the sensitivity

of an activity-based system to alphabet selection for a particular subject. This is crucial

because this system is intended to be user-dependent.

61

For each subject we evaluated every permutation of letter-case and alpha value (herein

referred to as a trial :

Uppercase, α = 1 Lowercase, α = 1

Uppercase, α = 2 Lowercase, α = 2

Uppercase, α = 3 Lowercase, α = 3

Each trial included the random generation and evaluation of 900 α valued alphabets. Ini-

tially, the entire sample set for the current case is loaded into a matrix S:

S =

















s1,1 · · · s1,33

...
. . .

...

s26,1 · · · s26,33

















where sl,i is the ith instance of the lth letter in the current letter-case. Prior to each of the

900 runs, a random alphabet is generated by swapping elements sl,1 through sl,α in S with

sl,U() where U() return a uniformly distributed random integer from 1 to 33, inclusive. This

is done for each l (every letter of the English alphabet). The alphabet for this run of the

trial is now the first α columns in S, and the remaining columns make up the test set.

6.2.6 Results

Overall, the stock activity-based recognizer performed comparably to its’ fellow struc-

tural recognition methods (see Section 2.6). With an α value of 3, subjects averaged only

a 7.76% error for upper case characters and 8.4% for lower case. The worst recorded errors

for α = 3 were 27.1% (subject “c11”) and 33.78% (subject “c18”) for upper and lower case,

respectively. The best were 1.48% (subject “c09”) and 1.13% (subject “t16”) for upper and

62

Upper case Lower case

α mean σ mean σ

1 15.42% 6.11% 16.7% 7.95%

2 9.86% 4.75% 10.68% 6.43%

3 7.76% 4.13% 8.4% 5.65%

Table 6.7: Overall recognition error of the English study with a stock recognizer

lower case, respectively. Table 6.7 summarizes the average and standard recognition error

over all subjects for each α value. The complete results for each subject can be found on

the included CDROM described in Appendix C.

Although the error range is quite large, most subjects had good results. Figure 6.5

shows the average recognition errors for each subject trial, sorted. Here it can bee seen

that for α = 3, 83% of the subjects’ error was less than 10% for upper case and 71% of

subjects had an error lower than 10% for lower case. What is most striking about this

figure, however, is the seemingly minor connection it reveals between average and standard

errors. For any given α it is clear the standard error is somewhat larger when the average

error is high and somewhat smaller when the average is low. It is also clear that larger

α afford smaller standard errors. This is not unexpected. What is unexpected is that for

a given α the range of average error may go from 48% to 7% while the standard error

differs by around 2%. This is most clearly seen when α = 1. This suggests in general that

recognition accuracy is not the result of finely tuned alphabet selection nearly so much as

it is dependent on the number of instances of each character in the alphabet.

Figure 6.5 shows an asymptotic reduction in error as α increases. The reduction in

error was measured over all α transitions for each subject. The results of this evaluation are

summarized in Table 6.8. It is clear that increasing the α value of an alphabet will improve

recognition, but there is certainly a point at which the accuracy gain is overshadowed by

63

(A)

(B)

Figure 6.5: Average and standard recognition errors over 900 runs for all subjects in the
(A) upper and (B) lower cases.

64

Upper case Lower case

(α = i) → (α = j) mean σ mean σ

1 → 2 37.79% 5.97% 38.9% 7.08%

2 → 3 22.67% 4.3% 23.9% 5.7%

1 → 3 51.67% 7.08% 53.13% 8.66%

Table 6.8: Overall error reduction gained from one α value to another (English study with
a stock recognizer)

Upper case Lower case

α mean σ mean σ

1 15.79% 6.62% 17.13% 7.94%

2 10.0% 5.05% 11.04% 6.49%

3 7.84% 4.35% 8.67% 5.75%

Table 6.9: Overall recognition error of the English study with a stock recognizer and Oxford
letter frequencies

the loss in recognition speed. Although it is beyond the scope of this effort, it would

be reasonable to develop a formula to predetermine a maximally beneficial alpha value

for specific implementations that increases recognition accuracy as much as possible while

ensuring a minimum recognition speed.

Section 6.2.3 introduces the idea that results from this study could be scaled to an

arbitrary letter frequency distribution. To demonstrate this, the Oxford letter frequencies

enumerated in Figure 6.5 were applied to the results of each subject in this study. Table 6.9

summarizes the performance of the stock recognizer with the updated letter frequencies.

Figures 6.6 and 6.7 show the recognition error per English letter with respect to α.

Thus, the horizontal axes of the figures shows the relative difficulty a stock activity-based

recognizer has with each letter. Because the range of average error is so great, the results

from two subjects at opposite ends of the accuracy spectrum were visualized in an identical

fashion for comparison. Figures 6.8 and 6.9 are taken from subject “c00” whose error was

65

particularly low (but not the best). Figures 6.10 and 6.11 are taken from subject “c02”

whose error was particularly poor (but not the worst). Even though the average error of

these two subjects is wildly different, it is remarkable to note the similarity in the relative

difficulty of characters. For the lower case letters, ‘c’ and ‘o’ are the most successfully

recognized letters; ‘g’, ‘i’, and ‘y’ are in the worst five for both subjects. In the upper case

characters, both subjects’ best and worst letters (‘S’ and ‘V’ respectively) are identical.

Figure 6.11 also demonstrates an interesting anomaly. Recognition error is quite high

on most characters when α = 1, but for α values 2 and 3 the error is hyper-reduced. Upon

investigation, it was discovered that subject “c02” drew many lower case letters with more

than one variation – eg, crossing ‘t’s from left to right sometimes and right to left others.

When α = 1, no instance of these letters could be selected at random for the run’s alphabet

that could ensure recognition across its other instances. When α > 1, these letters may

now have one of each drawing-style instance in the alphabet. This allows for much broader

coverage of the remaining letter instances, and further supports the notion that increasing

α may be more lucrative than tuning the alphabet without changing α.

6.3 Optimizing Recognition

To conclude this work, a final study reused the character samples from the English

study (Section 6.2) and focused on reducing recognition error for each subject by using a

genetic algorithm to optimize the parameters used by the activity metric. Specifically, this

optimization study varied directional code mappings, the placement of activity regions, and

the scalar bias applied to individual activity regions.

66

Figure 6.6: Recognition error per uppercase letter for all subjects – sorted by α = 3

Figure 6.7: Recognition error per lowercase letter for all subjects – sorted by α = 3

67

Figure 6.8: Recognition error per uppercase letter for a subject with good general accuracy
(“c00”) – sorted by α = 3

Figure 6.9: Recognition error per lowercase letter for a subject with good general accuracy
(“c00”) – sorted by α = 3

68

Figure 6.10: Recognition error per uppercase letter for a subject with poor general accuracy
(“c02”) – sorted by α = 3

Figure 6.11: Recognition error per lowercase letter for a subject with poor general accuracy
(“c02”) – sorted by α = 3

69

Directional Mapping:

Activity Regions:

[0,31]

[0,15]

[16,31]

[0,7]

[8,15]

[16,23]

[24,31]

| |

Scalar Bias:

1.222

1.222

1.222

1.222

1.222

1.222

1.222

Figure 6.12: Stock parameter set for activity-based systems

6.3.1 Parameters

Figure 6.12 visualizes the complete stock parameter set for activity-based recognition

systems as defined throughout Section 4.2. Specifically, a drawing is interpolated into 32

substrokes, each of which is mapped to a Freeman directional code. Seven activity regions

are defined and measured over the 32 substrokes as shown below. The 32 directional codes

and 7 activity measures form a point in 39 dimensional space. When two character drawings

are compared (distance between two points in these 39 dimensions), each of the seven

activity measures is scaled by the bias associated with that particular activity region prior

to distance calculations. This bias is 1.222 for all regions in the stock parameter set.

More than anything, the purpose of this final study was to demonstrate that elements of

the parameters for recognition can be altered to reduce recognition error from the stock set

for every subject’s samples. It was not imperative to actually find the optimum parameter

set at this stage. . . at least not in the traditional sense of optimization. However, for the

sake of brevity, these final attempts to reduce recognition error beyond the capabilities of

70

the stock parameters will be herein referred to as optimization. With this in mind, only

several recognition parameters were selected to be optimized.

The directional code mapping was the first parameter selected for optimization. While

it seems reasonable to use the Freeman mapping, there is no evidence to suggest this map-

ping maximally separates arbitrary character and symbol drawings. The best thing about

Freeman’s codes is that a drawing converted to those eight cardinal directions looks very

much like the original drawing when replotted using the only the mapped directions. Visual

representation, however, does not equate to automated recognition. To optimize the direc-

tional code mapping, only the angular regions defining the directional codes were altered,

i.e., eight codes were still mapped. No restrictions were set as to where the directional

boundaries could lie other than the complete 360 degree circle must be covered such that

any angle has one an only one mappable code.

As with the directional mapping, it was decided that seven activity regions should still

be measured over 32 interpolated substrokes. The location and size of the regions would

instead be optimized. This would allow the regions to lie on those portions of a drawing

where the activity metric could provide the greatest benefit. Additionally, the single bias

value approach was replaced by a vector of scalars, one unique bias for each of the activity

regions. This would allow different regions to affect the separation of drawings with an

appropriate level of influence. No restrictions were placed on the location or size of the

activity regions. Bias values were restricted only in that they could not be negative.

Selecting this small set of parameters to optimize had the additional benefit of allowing

virtually all of the existing recognition code to be reused, unchanged. One thing that did

require an update (both in theory and code) was the mechanism used to determine the

distance from one directional code to another. Because Freeman’s mapping consisted of

71

eight equally sized angular regions, the distance between any two codes had always been

the toral integer distance:

distance(i, j) = min















max(i, j) − min(i, j)

8 −
(

max(i, j) − min(i, j)
)

This mechanism would provide less than desirable results if regions were sized arbitrarily.

For example, the distance between any two consecutive directions in Freeman’s mapping

is 1 using the above distance calculation. With an arbitrary mapping, two consecutive

directional centers may be separated by a few degrees while another consecutive pair is

separated by 100 degrees. Were the distance between each pair of these codes equal to 1,

the recognition system would be ignoring compelling information. To satisfy this new issue,

the previous distance measure was augmented as follows where Cx is the angular center (in

degrees) of the xth directional region:

distance(i, j) = min















max(Ci, Cj) − min(Ci, Cj)

360.0 −
(

max(Ci, Cj) − min(Ci, Cj)
)

6.3.2 Genetic Algorithms

Genetic algorithms (GAs) are often used to solve combinatorial and parameter opti-

mization problems and can be implemented into existing systems with ease. They tend to

provide close approximations to optimal problem solutions with few resources and in very

little time. . . at least with respect to exhaustive search methods. Because they model the

evolutionary process, the solutions they evolve tend to be quite robust. These were the

72

primary motivations behind choosing GAs as the mechanism to optimize the parameters of

the activity-based system.

GAs are a form of evolutionary search loosely based on population genetics in the

natural world. Holland [21] first introduced the concept as a means to model and study

evolutionary processes. Later, Goldberg [18], Eshelman [15], Bäck [6] and others explored

the application of GAs to solving optimization problems from various domains.

Essentially, potential problem solutions are generalized to their most basic collection of

data structures. This collection is called the genome. The elements of a genome are referred

to as alleles and are encoded in whatever manner is most appropriate to the problem. Hol-

land [21] primarily chose binary string encodings, but Eshelman and Schaffer [15] introduced

the use of real-coded (floating point) alleles. Other encodings (such as enumerates) are also

possible. Once each of a genome’s alleles are given values, that genome instance is referred

to as an individual. A population of individuals is maintained upon which the mechanics of

the GA operate. The population undergoes generations of evolution in which members of

the population known as parents breed to create child individuals. These children replace

population members that die and are removed. The guiding principal here is that if parents

are selected to breed based on how well they solve the problem (their fitness), they will pro-

duce children with above average fitness to enter the population. As this process continues

over many generations, the average fitness of individuals in the population will improve,

edging the search toward an optimal (or approximate thereof) solution to the problem. If

children replace population members based on fitness as well, this process may be further

strengthened. Figure 6.13 presents pseudocode for a simple GA.

In Line 1 of the pseudocode, the population of individuals is initialized, and each

individual’s fitness is measured. This process is most often accomplished by setting each

73

genetic_algorithm() {

1) initialize_population();

2) generation = 0;

3) until(stop_condition) {

4) selection();

5) crossover();

6) mutation();

7) evaluate_children();

8) replacement();

9) generation++;

}

}

Figure 6.13: Pseudocode for a basic genetic algorithm

allele to some appropriate random value. Random bits are used for binary string encodings.

There has also been work that suggests seeding some alleles with values that are known to

be good may improve the speed at which the population improves [26, 41].

Once the initial population is established, the GA begins cycling through generations

of the evolutionary process until some predetermined stop condition is reached (Figure 6.13,

Line 3). This condition often includes the case of population convergence where each in-

dividual in the population is identical. It generally focuses on meeting (or beating) some

fitness value or stopping after some predetermined number of generations have past. For

problems where fitness is expensive to measure, the total number of fitness evaluations is

regularly used rather than generations. This way the population size and parent replace-

ment mechanisms can be altered while keeping the total fitness expense constant.

The first step in a generation is to select the individuals as parents for the next genera-

tion (Figure 6.13, Line 4). For each new child desired, two individuals from the population

are selected as parents; both parents may actually be the same individual. The total num-

ber of children bred at each generation is predetermined by the implementer. The most

74

common means of selection is a probabilistic selection operator where P (i) is the probability

individual i (with a fitness of F (i)) is selected as a parent:

P (i) =
F (i)

∑

i F (i)

While this operator is likely the most popular, many other selection operators have been

devised [6].

Two parents produce a child by selectively combining allele values in the process known

as crossover (Figure 6.13, Line 5). The crossover operation is completely dependent on the

encoding of individual alleles. When binary coded strings are used, the allele value from

only one parent survives in the same allele of the child. From which parent this value is

taken must be determined for each allele. If the allele is real-coded, Radcliffe’s crossover [40]

is commonly used to find a real value somewhere in the space between the value of the allele

in each parent. Specifically, if a1 and a2 are the allele values of the first and second parents,

respectively, child’s allele value becomes a1 + β(a2 − a1) where β is a real value between

0 and 1, inclusive. β can be calculated uniformly at random or based on the relative

fitness of the parents. Figure 6.14 demonstrates each of the operators in a simple example.

Eshelman et al [15] extended Radcliffe’s crossover to include values just outside the interval

between a1 and a2. This “blending” crossover, written as BLX-c, computes the child value

as a1 − c(a2 − a1) + β
(

a2 + c(a2 − a1)
)

where c is some real value (see Figure 6.15). BLX-

0.0 is equivalent to Radcliffe’s crossover operator. Unique operators must be developed

for unusually structured alleles. Crossover is often referred to as a global search operator

because it can produce wildly unique individuals.

75

Figure 6.14: Breeding example for (A) binary string and (B) real-coded alleles

Figure 6.15: The crossover range of the BLX-c operator for real-coded alleles

76

Once the new child is created, it goes through a process called mutation (Figure 6.13,

Line 6) where each allele value has the chance to be “wiggled” a little. This results in a

mutated child that is very much like the original child, only marginally different. Mutation

is therefore considered a local search operator, particularly once the population begun to

converge on a local extrema. For each allele, it must be determined whether it should be

mutated. This is frequently accomplished by setting a mutation rate, µ, as the probability

each allele should be mutated. Alleles in binary strings are simply replaced by a random

bit. Real-coded alleles are offset from their existing value by a normally distributed random

number. Figure 6.14 demonstrates each of these mutations. As with crossover, unique

mutation operators must be developed for unusually structured alleles.

At this stage each of this generation’s finished children has its fitness measured (Fig-

ure 6.13, Line 7) and the replacement scheme is activated (Figure 6.13, Line 8). There are

two dominant replacement strategies, generational and steady-state. Generational replace-

ment guarantees the entire population dies and is replaced by children at each generation.

This method requires that at least as many children are generated as there are individuals

in the population. If more children are created the replacement scheme must also determine

which of the children are most suitable for the new generation (perhaps using relative fit-

ness). This method allows for great diversity over the generations but is costly in terms of

fitness evaluations. With steady-state replacement, only one child is created in a generation

and replaces the least fit of the population. This approach is very efficient with respect to

fitness evaluations and ensures that individuals with above average fitness remain in the

population until they are no longer above average. Bäck [6] introduced an aging metaphor

to steady-state replacement to ensure hyperfit individuals cannot remain in the population

77

indefinitely. This mechanism is often crucial in avoiding premature convergence. As indi-

viduals enter the population, they are given a time-to-live (TTL) value that is decremented

per generation. TTLs are typically large so that the evolutionary process can work natu-

rally. However, if an individual should outlive its TTL, it is immediately removed from the

population and replaced with a new individual.

6.3.3 Optimization Operators

In order to optimize the selected parameter set described in Section 6.3.1 using a GA,

each of the operators from Section 6.3.1 must be defined. Because so much of the mechanics

of GAs are fitness-based, the structural definition and its measurement of fitness should first

be disclosed. Each individual represents the parameters for recognizing one letter case for

a specific subject.

For the purpose of the GA, a directional code mapping for an individual consists of

eight, real-coded alleles, a1, . . . , a8, each representing one angular boundary of a single

directional code in degrees. When sorted, each consecutive pair (including the last and

first elements) completely define the range of a directional code. Each range is specifically

measured as inclusive of the most counter-clockwise angle in the pair and non-inclusive

of clockwise angle. During population initialization, each of these eight values are set to

uniformly distributed random values from 0.0 to 360.0 (non-inclusive) and then sorted.

Each of the seven activity regions made up an allele described by two integers, si and ei.

si is the interpolated substroke on which the ith region begins; ei ends the region. The

activity regions were seeded to initially reflect the stock regions. This choice was made to

ensure the regions would have some initial influence suitable to driving the search. Under all

circumstances, si <= ei. If after some manipulation this does not hold true, their values are

78

immediately swapped to preserve consistency. Finally, eight real-coded scalars, b1, . . . , b8,

identify the bias applied to the activity measured over the evolved regions. These values

were initialized to uniformly distributed random numbers between 0 and 200.

Because recognition accuracy was generally expected to be above 70%, it was decided

that the fitness evaluation for this study should register recognition error (generally ex-

pected to be low). This provides for a clearer interpretation of relative fitness as accuracy

improves. For example, the difference between accuracies of 98% and 99% seems tiny,

whereas the equivalent errors (2% and 1% respectively) differ by 100%. Fitness for an in-

dividual is measured by evaluating recognition over a subject’s specific letter case samples.

The evaluation is performed over 300 random α = 1 alphabets, similar to the method used

to evaluate recognition for a subject in Section 6.2.4. Only 300 alphabets were tested per

fitness evaluation to allow for a faster approximation to the actual error. This does mean

error rates found in these fitness evaluation are subject to greater variance, but this specific

issue is handled by a custom aging operator (described later). Only α = 1 alphabets are

evaluated under the notion that improving recognition for the known worst α value (as

shown in Section 6.2.6) will result in largely improved accuracy for higher α. Since fitness

reports recognition error, the GA for this study will attempt to minimize fitness values in

its search.

The blending crossover BLX-0.5 was used to crossover angular boundary and bias

alleles. A custom operator was required, however, to crossover activity regions. Region

alleles would survive into a new child in a fashion similar to crossover in binary strings. . .

the child would inherit each region from a single parent. A crossover probability rate,

δ = 0.2, was defined. This rate was used to control the amount off crossover performed in

the generation of each new child. Specifically, each allele in the new child was determined

79

as the result of a crossover operation with a probability of δ. Otherwise, the child inherited

the allele directly from the first parent.

Angular boundary and bias alleles were mutated using normally distributed random

numbers. Angular boundaries were mutated with a standard deviation of 2.5 degrees such

that a′i = ai + N(2.5). Bias scalars were each mutated with a standard deviation of 5

such that b′i = bi +N(5). Another custom operator was developed to mutate activity region

alleles. Once it was determined a region allele would be mutated, si and ei were individually

updated as s′i = si + R1() and e′i = ei + R2() where R() returns the values -1, 0, and 1 with

equal probability. The result of this operator is that a region either expands, contracts,

or slides with varying probability. Figure 6.16 show each of the possible effects resulting

from this new operator. To complement the crossover rate, each allele was mutated with a

probability of 1 − δ.

Parents were chosen from the population using the probabilistic selection operator men-

tioned above. A modified steady state replacement strategy was chosen for this such that

the worst population member was only replaced if the child was more fit. An additional

aging element was added to the replacement scheme based on Bäck’s work [6]. Bäck was

primarily concerned that super individuals could occasionally take control of a population a

bring about premature convergence. With this effort, however, there was a greater concern

that the sloppy fitness measures (based on 300 rather than 900 alphabets) would allow

individuals to remain in the population for extended periods of time based on a fitness

value that could actually be misleading. An aging system was needed to ensure individuals

would die out of the population once fitness values began to converge. Instead of a deter-

ministic TTL system, aging was managed by increasing the fitness error recorded with each

population member by 0.0001 at each generation. What this did was allow individuals to

80

Figure 6.16: Mutation operator for activity regions

81

remain in the population indefinitely, so long as relative fitness measures were varied within

the population. Once the population fitnesses became similar, this aging mechanism would

decay the value of any false-positive individuals such that they can be easily replaced by

new children.

6.3.4 Genetic Profiling

As the genetic operators for this study were being devised, some concern was raised

as to whether activity regions should be evolved at all. The primary issue is there are

tight dependency relationships between angular boundaries and activity regions, as well

as activity regions and bias scalars. Any evolutionary change in activity regions could

potentially interfere with the recognition value of the evolved boundaries and biases. There

was also a question as to whether aging might actually be a beneficial operator for this

GA. Population size was also undetermined, but some basic numbers were already being

considered. . . 40, 30, 20, 10, and 3 (the smallest usefull population size [18]).

To determine the appropriate answers to these questions, a pilot study was conducted

to optimize recognition for subjects “c00” and “c02”. Every permutation of population

size, aging decay, and whether to use dynamic activity regions was tested. Each of these

permutations is listed in Table 6.10 and given a profile letter for reference. Each profile

was evaluated on the two subjects for each letter case with a stop condition of 2000 fitness

evaluations, chosen arbitrarily.

The performance of each profile was empirically judged on a few factors. In particular, a

desirable profile would afford new best solutions throughout the evolutionary process rather

than only in tight bursts. Further, it would find high quality solutions (low recognition error)

relative to other profiles. Finally, the profile should perform in a consistent manner across

82

Profile Population Size Aging Decay Activity Regions

A 40 0 Static
B 40 0 Dynamic
C 40 0.0001 Static
D 40 0.0001 Dynamic

E 30 0 Static
F 30 0 Dynamic
G 30 0.0001 Static
H 30 0.0001 Dynamic

I 20 0 Static
J 20 0 Dynamic
K 20 0.0001 Static
L 20 0.0001 Dynamic

M 10 0 Static
N 10 0 Dynamic
O 10 0.0001 Static
P 10 0.0001 Dynamic

Q 3 0 Static
R 3 0 Dynamic
S 3 0.0001 Static
T 3 0.0001 Dynamic

Table 6.10: 20 GA profiles examined for the optimization study

83

both subjects and letter cases. Upon investigation, Profile T was determined to best meet

these requirements and was used to perform the optimization trials over all subjects. The

complete results for all the profile runs is included in Appendix A.

Generally, none of the profiles demonstrated any meaningful improvement after approx-

imately 1000 generations. This information was useful in itself as it helped to determine

a more appropriate stop condition for the complete optimization trials. As such the final

trials were based on the evolutionary results after 1000 fitness evaluations. Additionally, the

GA was run on each subject and letter case three times. The best solution from the three

is reported as the final, optimized parameter set. The complete list of optimized parameter

sets can be found in Appendix B.

6.3.5 Results

Overall, the results from the optimization study were quite good. For α = 3, error

rate was reduced from the stock results an average of 30.3% and 20.9% for upper and

lower cases, respectively. The worst α = 3 errors recorded were 24.7% (subject “c11”)

and 32.07% (subject “c18”) for upper and lower cases, respectively. The best were 0.81%

(subject “c09”) and 0.81% (subject “t16”) for upper and lower cases, respectively. Each of

these four extreme values are held by the same subjects as reported with stock parameters

(see Section 6.2.6). Table 6.11 summarizes the average and standard recognition error over

all subjects for each α value. Further, it shows the reduction in average error for each α

value per letter case. The complete optimized results for each subject can be found on the

included CDROM described in Appendix C.

Figure 6.17 shows the average and standard recognition errors for each subject trial,

sorted. Here it can be seen that for α = 3, 92% of the subjects’ error was less than 10%

84

Upper case Lower case

α mean σ error reduction mean σ error reduction

1 11.98% 5.94% 24.73% 13.84% 7.84% 20.21%

2 7.3% 4.53% 29.54% 8.7% 6.15% 22.14%

3 5.71% 3.9% 30.32% 6.92% 5.35% 20.92%

Table 6.11: Overall recognition error of the English study with optimized parameter sets

Upper case Lower case

(α = i) → (α = j) mean σ mean σ

1 → 2 42.12% 7.13% 40.59% 7.41%

2 → 3 23.89% 4.84% 22.84% 4.97%

1 → 3 55.64% 7.98% 53.84% 8.46%

Table 6.12: Overall error reduction gained from one α value to another (optimization pa-
rameter set recognizer)

for upper case and 86% of subjects had an error less than 10% for lower case. The thin

dotted lines on the figure represent the results for the stock parameter set. It is striking to

see for the upper case that the α = 2 optimized results were nearly always superior to the

α = 3 results with stock parameters. Also, for both letter cases and nearly every subject,

the stock parameter average is almost always worse than the poor extreme of standard error

for the optimized average on the same α.

In Section 6.2.6, it was shown there is an asymptotic reduction in error as α increases,

and Table 6.8 summarized this change. For the sake of reference, Table 6.12 treats these

same values resulting from the optimization study. It is interesting to note that the reduc-

tion in average and standard error is remarkably similar for both the stock and optimized

parameters as α increases from 2 to 3.

Section 6.2.3 introduced the idea that results from this study could be scaled to an

arbitrary letter frequency distribution. To demonstrate this, the Oxford letter frequencies

85

(A)

(B)

Figure 6.17: Optimized average and standard recognition errors over 900 runs for all subjects
in the (A) upper and (B) lower cases.

86

Upper case Lower case

α mean σ mean σ

1 12.65% 6.37% 14.15% 7.94%

2 7.69% 4.88% 8.98% 6.33%

3 6.01% 4.08% 7.15% 5.57%

Table 6.13: Overall recognition error of the optimized parameter set recognizer and Oxford
letter frequencies

enumerated in Figure 6.5 were applied to the results of each subject in the stock parameters

study. To continue this example, Table 6.13 summarizes the performance of the optimized

recognizer with the Oxford letter frequencies.

Figures 6.18 and 6.19 show the optimized recognition error per English letter with

respect to α. The horizontal axes of the figures shows the relative difficulty an optimized

recognizer has with each letter. Because the range of subjects’ average error is so great, the

results from two subjects at opposite ends of the accuracy spectrum were visualized in an

identical fashion for comparison. Figures 6.20 and 6.21 are taken from subject “c00” whose

error was particularly low (but not the best). Figures 6.22 and 6.23 are taken from subject

“c02” whose error was particularly poor (but not the worst). Overall, recognition of the

letter ‘V’ improved quite a bit moving it up in the ranking a remarkable 12 positions. For

subject “c02”, however, recognition of ‘V’ improved only minimally. On the opposite end

of the spectrum, ‘P’ dropped to the worst upper case letter overall once the parameter sets

were optimized. The general ranking of the lower case letters did not change significantly

with optimization. For subject “c02”, the letter ‘r’ fell 12 positions in rank.

87

Figure 6.18: Optimized recognition error per uppercase letter for all subjects – sorted by
α = 3

Figure 6.19: Optimized recognition error per lowercase letter for all subjects – sorted by
α = 3

88

Figure 6.20: Optimized recognition error per uppercase letter for a subject with good general
accuracy (“c00”) – sorted by α = 3

Figure 6.21: Optimized recognition error per lowercase letter for a subject with good general
accuracy (“c00”) – sorted by α = 3

89

Figure 6.22: Optimized recognition error per uppercase letter for a subject with poor general
accuracy (“c02”) – sorted by α = 3

Figure 6.23: Optimized recognition error per lowercase letter for a subject with poor general
accuracy (“c02”) – sorted by α = 3

90

Directional Mapping:

Activity Regions:

[1,26]

[1,14]

[3,31]

[7,28]

[7,20]

[10,26]

[6,15]

| |

Scalar Bias:

19.6133

26.2741

117.532

3.51239

98.3833

87.4932

116.404

Figure 6.24: Optimized lower case parameters for subject “c21”

6.3.6 Optimization Anomalies

While the results of the optimization study show dramatic recognition improvement

over the stock parameters, the most interesting outcome from this study are the evolved

parameters themselves.

Subject “c21” reduced lower case, α = 1 error by approximately 12% by primarilly al-

tering the activity regions and associated scalars. Figure 6.24 shows the complete optimized

parameter set for subject “c21” over the lower case. Notice the directional code mapping is

nearly identical to the mapping of the stock parameters. This is by no measure the common

case. Most often, all parameters have changed dramatically as a result of optimization.

Figure 6.25 shows optimized directional code mappings for subjects “c10”, “c17”, and

“c37”. For each of these subjects, the GA shrunk individual directional ranges to be so

small they have essentially been removed from the mapping.

Subjects “c10” and “c17” appear to have only six discernable directions. Subject “c37”

has possibly the most astounding example of this range shrinkage with what is basically a

five code mapping. Notice also that the mapping for subject “c10” shows clear separation

91

(A) (B) (C)

Figure 6.25: Optimized directional code mappings for (A) subject “c10” (lower case), (B)
subject “c17” (upper case), and (C) subject “c37” (lower case)

of vertical directions with a typical clockwise slant. On the other hand, the mapping of

subject “c17” has no vertical notion whatsoever.

Figure 6.26 shows optimized activity regions for subjects “c29” and “t12”. These two

subjects’ regions are exemplary of anomalies seen in many subjects’ optimized regions. Like

the previous directional mappings, the GA has evolved the means to remove regions. The

upper case regions evolved for subject “c29” have three regions that are nearly identical:

each end on substroke 25, two start on substroke 15, and the other starts on 16. Basically,

these regions will each measure the essentially the same activity as one and other, regardless

of the drawing. Given the three associated biases, b1, b2, and b3, two of these regions could

be removed with the remaining region’s bias set to b2
1 + b2

2 + b2
3. Although not shown in the

figure, one lower case region for subject “t12” has a bias of 0.719. This also has the effect

of removing the region alltogether. The evolved upper regions of subject “t12” contain tiny

regions covering only two or three substrokes. This may be an “in progress” evolutionary

strategy to remove the regions that cut short by the terminating condition of the GA. Were

these regions shrunk to where the start and stop substrokes were the same value, the regions

would always afford an activity of 1 (Figure 6.27 has three examples of this). However, the

92

[16,25]

[1,22]

[14,31]

[12,24]

[15,25]

[15,25]

[2,17]

| |

[25,29]

[2,24]

[3,31]

[29,30]

[27,29]

[17,28]

[28,29]

| |

(A) (B)

Figure 6.26: Optimized activity regions for (A) subject “c29” (upper case) and (B) subject
“t12” (upper case)

non-zero size and relatively close placement of these regions is somewhat peculiar. The two

smallest regions can only provide an activity of 1 or 2. Because the bias associated with one

of these regions is quite high (122.316), it could be argued that this region plays a crucial,

binary roll, identifying whether anything at all is going on in that part of drawing. Even

the slightest curve or change in direction would cause the regions to fire high.

For some subjects, entire portions of drawings are shown to have little benefit to recog-

nition. For subject “c05”, only the first two thirds of lower case draws appear to have

any discerning value. This is seen quite clearly in the evolved activity regions shown in

Figure 6.27(A). On the opposite side of the spectrum, the evolved regions for subject “c00”

(Figure 6.27(B)) show that only the final third of drawings benefit recognition.

93

[14,20]

[2,15]

[3,12]

[4,15]

[11,13]

[9,18]

[1,13]

| |

[26,31]

[28,30]

[31,31]

[26,26]

[20,26]

[28,28]

[23,30]

| |

(A) (B)

Figure 6.27: Optimized activity regions for (A) subject “c05” (lower case) and (B) subject
“c00” (lower case)

94

Chapter 7

Conclusions

As human-centric interfaces continue to become more and more ubiquitous, there is a

greater need to develop methods to provide robust implementations of the most widely used

communication mediums: namely, speech and handwritten symbol recognition. This work

has described a novel metric, activity, to aid in the recognition of handwritten characters.

The intent of this metric is not simply to provide another means to do character recog-

nition; rather, it affords the capability to provide high accuracy recognition on even the

lowest resource devices. Not only will this allow recognition functionality on devices that

have otherwise been without, it can also be leveraged to allow alphabet customization by

users even after it has been deployed. Because the metric is based on a few simple param-

eters (directional code mapping, activity regions and scalar bias) it may be applicable to

a wide variety of alphabets and take advantage of user specific idiosyncrasies. The studies

conducted and reported in this work provide evidence of this using the Graffiti and English

alphabets along with user variants of each. Additionally, a simple, evolutionary method of

activity parameter optimization was demonstrated which could be used post-deployment

to improve recognition experiences for users. Futher, the interpolated directional mapping

has been shown to reduce regular and isolated noise in a fashion beneficial to mobile user

who work in shaky or irregular environments, such as a bus, cab, or plane.

The fact that each of these recognition qualities are addressed by such a simple recogni-

tion system is what makes this work exciting. As a larger majority of the computer systems

95

we interact with regularly become smaller and more mobile, a recognition system such as

the activity-based recognizer detailed in this work will become increasingly valuable.

96

Bibliography

[1] 3Com. Palmpilot handbook, 1997.

[2] Gregory D. Abowd. Classroom 2000: An experiment with the instrumentation of
a living educational environment. IBM Systems Journal; Special issue on Pervasive
Computing, 38(4), 1999.

[3] Fevzi Alimoğlu. Combining multiple classifiers for pen-based handwritten digit recog-
nition. Master’s thesis, Institute of Sciences and Engineering, Boğaziçi University,
1996.

[4] Fevzi Alimoğlu and Ethem Alpaydin. Methods of combining multiple classifiers based
on different representations for pen-based handwriting recognition. In Proceedings
of the Fifth Turkish Artificial Intelligence and Artificial Neural Networks Symposium
(TAINN 96), June 1996.

[5] Fevzi Alimoğlu and Ethem Alpaydin. Combining multiple classifiers for pen-based
handwritten digit recognition. ELEKTRIK: Turkish Journal of Electrical Engineering
and Computer Sciences, 9(1):1–12, 2001.

[6] Thomas Bäck, Ulrich Hammel, and Hans-Paul Scwefel. Evolutionary computation:
Comments on the history and current state. IEEE Transactions on Evolutionary Com-
putation, 1(1), April 1997.

[7] W. Bledsoe and I. Browning. Pattern recognition and reading by machine. In Proceed-
ings of the EJCC, pages 225–232, December 1959.

[8] M. Brown and S. Ganapathy. Preprocessing technique for cursive script word recogni-
tion. Pattern Recognition, 16(5):447–458, 1983.

[9] J. Callahan, D. Hopkins, M. Weiser, and B. Shneiderman. An empirical comparison
of pie vs. linear menus. In Conference proceedings on Human factors in computing
systems, pages 95–100, May 1988.

[10] Kam-Fai Chan and Dit-Yan Yeung. Elastic structural matching for on-line handwritten
alphanumeric character recognition. In Proceedings of the Fourteenth International
Conference on Pattern Recognition, pages 1508–1511, August 1998.

[11] Kam-Fai Chan and Dit-Yan Yeung. A simple yet robust structural approach for rec-
ognizing on-line handwritten alphanumerical characters. In Proceedings of the Sixth
International Workshop on Frontiers in Handwriting Recognition, pages 229–238, Au-
gust 1998.

97

[12] Kam-Fai Chan and Dit-Yan Yeung. Recognizing on-line handwritten alphanumeric
characters through flexible structural matching. Pattern Recognition, 32(1):1099–1114,
July 1999.

[13] C. K. Chow. Optimal character recognition system using decision functions. In IRE
Transactions on Electronic Computers, volume 6, pages 247–254, August 1957.

[14] J. T. Chu. Optimal decision functions for computer character recognition. Journal of
the ACM, 12(2):213–226, April 1965.

[15] L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval-
schemata. In Foundations of Genetic Algorithms 2, pages 187–202. Morgan Kaufmann,
1993.

[16] I. Flores. An optimum character recognition system using decision functions. IRE
Transactions on Electronic Computers, 7(2), June 1958.

[17] Herbert Freeman. Computer processing of line-drawing images. ACM Computing
Surveys, 6(1):57–97, March 1974.

[18] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

[19] David Goldberg and Cate Richardson. Touch-typing with a stylus. In Proceedings of
the INTERCHI’93 Conference on Human Factors in Computing Systems, pages 80–87.
ACM, April 1993.

[20] Stefan Hellkvist. On-line character recognition on small hand-held terminals using
elastic structural matching. Master’s thesis, Royal Institute of Technology, Stockholm,
Department of Numerical Analysis and Computing Science, 1999.

[21] J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michi-
gan Press, 1975.

[22] Poika Isokoski. Model for unistroke writing time. In Proceedings of the SIG-CHI on
Human factors in computing systems, pages 357–364. ACM, March 2001.

[23] Poika Isokoski and Roope Raisamo. Device independent text input: A rationale and
an example. In Proceedings of the Working Conference on Advanced Visual Interfaces
AVI2000, pages 76–83. ACM, 2000.

[24] Allan Long Jr., James Landay, and Lawrence Rowe. Pda and gesture use in practice:
insights for designers of pen-absed user interfaces. Technical Report UCB//CSD-97-
976, U.C. Berkley, 1997.

[25] Allan Long Jr., James Landay, Lawrence Rowe, and Joseph Michiels. Visual similarity
of pen gestures. In Proceedings of Human Factors in Computer Systems (SIGCHI),
April 2000.

98

[26] A. Kapsalisand, V. J. Rayward-Smith, and G. D. Smith. Solving the graphical steiner
tree problem using genetic algorithms. Journal of the Operational Research Society,
44(4):397–406, April 1993.

[27] Howard Kassel. A comparison of approaches to on-line handwritten character recogni-
tion. Master’s thesis, Massachusetts Institute of Technology, June 1995.

[28] A. L. Koerich, R. Sabourin, and C. Y. Suen. Large vocabulary off-line handwriting
recognition: A survey. Pattern Analysis Application, 6:97–121, 2003.

[29] James Landay. Using note-taking appliances for student to student collaboration.
In Frontiers in Education Conference, FIE ’99, volume 2, pages 12C4/15–12C4/20,
November 1999.

[30] Robert Edward Lewand. Cryptographical Mathematics. Mathematical Association of
America Press, 2000.

[31] Xiaolin Li and Dit-Yan Yeung. On-line handwritten alphanumeric character recognition
using feature sequences. In Proceedings of the ICSC, pages 197–204, 1997.

[32] Tom Linton. English letter frequencies. http://www.central.edu/homepages/

LintonT/classes/spring01/cryptography/letterfreq.html, 2001.

[33] Scott MacKenzie and Larry Chang. A performance comparison of two handwriting
recognizers. Interacting with Computers, 11:283–297, 1999.

[34] Jennifer Mankoff and Gregory D. Abowd. Cirrin: A word-level unistroke keyboard
for pen input. In ACM Symposium on User Interface Software and Technology, pages
213–214. ACM Press, 1998.

[35] Merriam-Webster Inc. Merriam-Webster Pocket Dictionary. Merriam-Webster Inc.,
1964. Computer readable form.

[36] Brad Myers, Jacob Wobbrock, Sunny Yang, Brian Yeung, Jeffrey Nichols, and Robert
Miller. Using handhelds to help people with motor impairments. In Proceedings of
ASSETS 02, pages 89–96. ACM Press, 2002.

[37] Oxford. Oxford Dictionary of English. Oxford University Press, 2004.

[38] Ken Perlin. Quikwriting: Continuous stylus-based text entry. In ACM Symposium on
User Interface Software and Technology, pages 215–216, November 1998.

[39] Réjean Plamondon and Sargur N. Srihari. On-line and off-line handwriting recognition:
A comprehensive survey. In IEEE Transactions on Pattern Analysis and Machine
Intelligence, volume 22, pages 63–84, January 2000.

[40] Nicholas J. Radcliffe. Genetic neural networks on MIMD computers. PhD thesis,
Edinburgh, Scotland, UK, 1990.

99

[41] Colin R. Reeves. A genetic algorithm for flowshop sequencing. Comput. Oper. Res.,
22(1):5–13, 1995.

[42] Neil Rhodes and Julie McKeehan. Palm OS Programming. O’Reilly and Associates,
2nd edition, October 2001.

[43] Jennie Borodko Stack. Palm Pilot Connects Girl with Classroom,
volume 8(1). Magazine of the Muscular Dystrophy Association,
http://www.mdausa.org/publications/Quest/q81palmpilot.cfm, 2001.

[44] Tal Steinherz, Ehud Rivlin, and Nathon Intrator. Offline cursive script word
recognition–a survey. International Journal on Document Analysis and Recognition,
2:90–110, 1999.

[45] Ching Suen, Marc Berthod, and Shunji Mori. Automatic recognition of handprinted
characters – the state of the art. In Proceedings of the IEEE, volume 68, pages 469–487,
April 1980.

[46] Charles Tappert. Speed, accuracy, and flexibility trade-offs in on-line character recog-
nition. Technical Report RC13228, IBM Research, October 1987.

[47] Charles Tappert, Ching Suen, and Toru Wakahara. The state of the art in on-line hand-
writing recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(8):787–808, August 1990.

[48] Dan Venolia and Forrest Neiberg. T-cube: A fast, self-disclosing pen-based alphabet.
In Proceedings of CHI Human Factors in Computing Systems, pages 265–270. ACM
Press, April 1994.

[49] Jacob Wobbrock, Brad Myers, and John Kembel. Edgewrite: A stylus-based text
entry method designed for high accuracy and stability of motion. In Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST ’03), pages 61–70,
November 2003.

100

Appendices

101

Appendix A

Genetic Algorithm Profiles

The following figures show the evolutionary progress of the 20 GA profiles defined in

Section 6.3 for subjects “c00” and “c02”. For the sake of visualization clarity, runs associated

with a particular subject and letter case combination have been distributed across four

diagrams containing five profiles each. The top of each figure provides the fitness value

when the stock parameter set for activity-based recognition was used with α = 1. Further,

a dotted horizontal line indicates this value in the figure. Each point along a particular run

indicates when a new best solution was discovered.

102

Subject “c00” Profile Runs for Upper Case Characters

103

104

Subject “c00” Profile Runs for Lower Case Characters

105

106

Subject “c02” Profile Runs for Upper Case Characters

107

108

Subject “c02” Profile Runs for Lower Case Characters

109

110

Appendix B

Optimized Parameter Sets

The following figures represent the final parameters found in the optimization study

described in Section 6.3. Each of the 66 subjects’ upper and lower case sets are shown.

The figures contain four primary sections: error, directional mapping, activity regions,

and scalar bias. The value labled “Error” indicates the percentage of characters misrecog-

nized over the 300 randomly selected alphabets with α = 1. The “Directional Mapping”

shows the directional regions evolved. The directions are not labled 0–7 as with Free-

man’s chain code because they are inconsequential and their relative locations may have

been extremely displaced during optimization. The “Activity Regions” portion of the figure

identifies the starting and ending elements of the 32 resampled subtrokes of characters. The

regions’ relative size and position are visualized to the right of their respective values. The

“Scalar Bias” portion of the figure identifies the scalar bias applied to the activity region

visualized directly to its left.

111

Subject “c00”

Optimized parameters for the upper case characters:

Error:

0.0410016

Directional Mapping:

Activity Regions:

[0,30]

[16,30]

[3,30]

[5,18]

[17,21]

[12,25]

[15,31]

| |

Scalar Bias:

185.537

17.7145

11.1813

21.4447

51.8673

136.92

142.06

Optimized parameters for the lower case characters:

Error:

0.0443029

Directional Mapping:

Activity Regions:

[26,31]

[28,30]

[31,31]

[26,26]

[20,26]

[28,28]

[23,30]

| |

Scalar Bias:

55.0411

34.0693

87.5962

166.645

71.4395

117.701

100.562

112

Subject “c01”

Optimized parameters for the upper case characters:

Error:

0.058101

Directional Mapping:

Activity Regions:

[2,17]

[7,31]

[16,31]

[0,29]

[1,24]

[14,25]

[0,23]

| |

Scalar Bias:

136.426

63.3899

181.077

150.57

2.79018

35.8326

142.199

Optimized parameters for the lower case characters:

Error:

0.0511899

Directional Mapping:

Activity Regions:

[0,31]

[1,29]

[25,31]

[9,30]

[10,30]

[1,16]

[1,8]

| |

Scalar Bias:

157.718

6.90533

119.433

120.092

64.1443

137.248

105.585

113

Subject “c02”

Optimized parameters for the upper case characters:

Error:

0.230966

Directional Mapping:

Activity Regions:

[0,26]

[4,20]

[9,15]

[13,26]

[4,15]

[11,31]

[21,30]

| |

Scalar Bias:

162.876

87.7076

93.0607

108.461

43.5768

101.085

147.618

Optimized parameters for the lower case characters:

Error:

0.303401

Directional Mapping:

Activity Regions:

[3,14]

[1,9]

[0,9]

[12,31]

[2,12]

[25,31]

[2,15]

| |

Scalar Bias:

11.0249

83.5426

51.254

108.478

138.925

192.959

22.9986

114

Subject “c03”

Optimized parameters for the upper case characters:

Error:

0.051238

Directional Mapping:

Activity Regions:

[1,28]

[0,19]

[26,30]

[9,27]

[22,31]

[18,29]

[1,31]

| |

Scalar Bias:

112.255

155.743

169.523

74.1164

14.7265

105.092

67.3367

Optimized parameters for the lower case characters:

Error:

0.029992

Directional Mapping:

Activity Regions:

[6,22]

[4,17]

[2,19]

[16,25]

[7,22]

[19,28]

[15,31]

| |

Scalar Bias:

14.6319

156.118

63.18

94.4849

203.149

90.5955

144.082

115

Subject “c04”

Optimized parameters for the upper case characters:

Error:

0.155116

Directional Mapping:

Activity Regions:

[0,4]

[5,20]

[2,11]

[6,31]

[8,20]

[6,21]

[2,2]

| |

Scalar Bias:

17.3706

8.91946

112.537

128.533

56.0872

121.381

179.17

Optimized parameters for the lower case characters:

Error:

0.100717

Directional Mapping:

Activity Regions:

[5,31]

[8,23]

[20,27]

[25,31]

[12,27]

[12,25]

[6,30]

| |

Scalar Bias:

158.82

109.861

81.8627

134.747

29.0503

45.4129

43.0312

116

Subject “c05”

Optimized parameters for the upper case characters:

Error:

0.0775521

Directional Mapping:

Activity Regions:

[3,27]

[2,15]

[16,31]

[9,31]

[8,24]

[5,28]

[24,31]

| |

Scalar Bias:

99.3617

122.451

163.135

133.347

109.603

23.6801

87.3497

Optimized parameters for the lower case characters:

Error:

0.0288301

Directional Mapping:

Activity Regions:

[14,20]

[2,15]

[3,12]

[4,15]

[11,13]

[9,18]

[1,13]

| |

Scalar Bias:

55.3274

65.7895

104.774

81.6605

30.7791

155.566

15.0562

117

Subject “c06”

Optimized parameters for the upper case characters:

Error:

0.0741066

Directional Mapping:

Activity Regions:

[10,20]

[1,26]

[16,31]

[10,18]

[13,23]

[12,22]

[24,30]

| |

Scalar Bias:

82.8961

141.647

179.869

22.3728

71.9964

100.111

147.686

Optimized parameters for the lower case characters:

Error:

0.160084

Directional Mapping:

Activity Regions:

[2,30]

[3,20]

[18,29]

[1,7]

[0,11]

[7,30]

[19,31]

| |

Scalar Bias:

195.456

77.921

101.737

108.11

18.0115

3.52932

61.4518

118

Subject “c07”

Optimized parameters for the upper case characters:

Error:

0.1098

Directional Mapping:

Activity Regions:

[4,20]

[13,19]

[13,31]

[1,15]

[12,21]

[4,30]

[1,28]

| |

Scalar Bias:

71.3732

52.3073

123.79

149.695

127.072

181.333

67.194

Optimized parameters for the lower case characters:

Error:

0.125084

Directional Mapping:

Activity Regions:

[0,31]

[6,31]

[5,17]

[4,15]

[11,31]

[3,21]

[14,29]

| |

Scalar Bias:

138.889

42.0388

47.6082

35.8665

85.6894

106

13.2575

119

Subject “c08”

Optimized parameters for the upper case characters:

Error:

0.225284

Directional Mapping:

Activity Regions:

[3,20]

[8,25]

[21,29]

[20,31]

[14,27]

[16,22]

[25,29]

| |

Scalar Bias:

85.1883

80.1829

100.548

117.299

46.1111

79.6613

104.756

Optimized parameters for the lower case characters:

Error:

0.180737

Directional Mapping:

Activity Regions:

[17,29]

[10,27]

[23,31]

[1,8]

[5,19]

[1,31]

[25,29]

| |

Scalar Bias:

75.6946

92.0391

154.623

79.9464

138.443

145.356

77.5635

120

Subject “c09”

Optimized parameters for the upper case characters:

Error:

0.0330288

Directional Mapping:

Activity Regions:

[0,29]

[4,30]

[9,31]

[6,31]

[7,19]

[5,31]

[0,14]

| |

Scalar Bias:

110.891

70.2981

115.82

77.2957

178.596

29.4995

88.878

Optimized parameters for the lower case characters:

Error:

0.0615425

Directional Mapping:

Activity Regions:

[0,31]

[0,7]

[6,12]

[2,5]

[5,27]

[1,28]

[5,30]

| |

Scalar Bias:

58.508

76.71

61.0807

90.1035

111.117

41.402

187.038

121

Subject “c10”

Optimized parameters for the upper case characters:

Error:

0.096226

Directional Mapping:

Activity Regions:

[0,30]

[0,20]

[0,30]

[0,5]

[6,28]

[12,27]

[11,25]

| |

Scalar Bias:

127.517

174.062

3.58045

85.5529

77.2626

175.321

24.0055

Optimized parameters for the lower case characters:

Error:

0.116146

Directional Mapping:

Activity Regions:

[0,9]

[0,31]

[19,31]

[0,9]

[0,25]

[11,25]

[31,31]

| |

Scalar Bias:

71.9252

51.8543

103.3

8.32579

154.298

167.56

163.94

122

Subject “c11”

Optimized parameters for the upper case characters:

Error:

0.352432

Directional Mapping:

Activity Regions:

[3,31]

[6,20]

[21,31]

[26,30]

[4,15]

[5,15]

[17,31]

| |

Scalar Bias:

120.639

105.957

112.357

98.811

6.2912

67.0133

80.5539

Optimized parameters for the lower case characters:

Error:

0.368221

Directional Mapping:

Activity Regions:

[14,31]

[0,27]

[14,31]

[2,31]

[3,13]

[1,25]

[15,31]

| |

Scalar Bias:

33.8572

85.1457

21.5791

86.8324

95.7103

124.911

121.399

123

Subject “c12”

Optimized parameters for the upper case characters:

Error:

0.0852764

Directional Mapping:

Activity Regions:

[10,14]

[5,24]

[20,28]

[15,19]

[6,18]

[25,29]

[1,24]

| |

Scalar Bias:

45.2465

51.5572

148.809

39.5054

123.807

81.4921

122.678

Optimized parameters for the lower case characters:

Error:

0.100393

Directional Mapping:

Activity Regions:

[4,28]

[18,30]

[8,17]

[16,29]

[3,6]

[0,10]

[20,30]

| |

Scalar Bias:

194.055

160.358

115.052

36.4885

69.4201

82.8582

92.9649

124

Subject “c13”

Optimized parameters for the upper case characters:

Error:

0.0584696

Directional Mapping:

Activity Regions:

[0,29]

[4,4]

[5,23]

[7,28]

[6,20]

[4,29]

[18,23]

| |

Scalar Bias:

126.546

163.278

128.427

122.223

71.1779

27.588

70.8643

Optimized parameters for the lower case characters:

Error:

0.0817468

Directional Mapping:

Activity Regions:

[0,28]

[4,21]

[7,20]

[0,9]

[3,18]

[10,30]

[1,1]

| |

Scalar Bias:

91.3544

55.6963

51.4464

136.894

29.5846

126.187

191.123

125

Subject “c14”

Optimized parameters for the upper case characters:

Error:

0.190232

Directional Mapping:

Activity Regions:

[4,21]

[0,7]

[2,11]

[0,10]

[2,10]

[11,19]

[0,29]

| |

Scalar Bias:

74.574

4.63831

124.618

31.6933

27.5384

91.7298

95.9236

Optimized parameters for the lower case characters:

Error:

0.163045

Directional Mapping:

Activity Regions:

[4,28]

[0,16]

[18,26]

[9,9]

[14,14]

[15,24]

[1,11]

| |

Scalar Bias:

124.307

97.4474

1.41646

105.94

2.49281

124.886

86.9893

126

Subject “c15”

Optimized parameters for the upper case characters:

Error:

0.173229

Directional Mapping:

Activity Regions:

[1,30]

[1,27]

[5,31]

[4,31]

[4,11]

[9,24]

[20,28]

| |

Scalar Bias:

131.346

117.624

123.601

57.027

198.104

127.319

180.028

Optimized parameters for the lower case characters:

Error:

0.189339

Directional Mapping:

Activity Regions:

[9,31]

[14,28]

[0,17]

[5,10]

[2,15]

[7,27]

[7,23]

| |

Scalar Bias:

132.592

66.293

105.454

43.0787

58.2831

4.68164

139.905

127

Subject “c16”

Optimized parameters for the upper case characters:

Error:

0.188474

Directional Mapping:

Activity Regions:

[5,31]

[0,24]

[5,31]

[19,29]

[1,21]

[4,29]

[25,30]

| |

Scalar Bias:

133.249

7.40678

21.4927

67.096

145.932

13.6645

128.048

Optimized parameters for the lower case characters:

Error:

0.25246

Directional Mapping:

Activity Regions:

[2,31]

[1,10]

[3,5]

[2,12]

[31,31]

[12,30]

[27,27]

| |

Scalar Bias:

161.8

134.076

31.618

52.5634

144.059

128.453

163.559

128

Subject “c17”

Optimized parameters for the upper case characters:

Error:

0.178377

Directional Mapping:

Activity Regions:

[1,30]

[6,14]

[12,28]

[12,14]

[12,21]

[24,30]

[1,30]

| |

Scalar Bias:

112.74

177.555

114.96

15.7983

160.963

153.645

47.9266

Optimized parameters for the lower case characters:

Error:

0.131747

Directional Mapping:

Activity Regions:

[0,30]

[3,31]

[14,30]

[5,18]

[10,23]

[4,29]

[18,30]

| |

Scalar Bias:

143.016

123.759

179.759

3.67423

169.625

63.1713

11.7781

129

Subject “c18”

Optimized parameters for the upper case characters:

Error:

0.242957

Directional Mapping:

Activity Regions:

[3,31]

[1,20]

[11,23]

[1,28]

[2,31]

[17,24]

[19,27]

| |

Scalar Bias:

12.7487

133.61

105.813

54.9401

29.293

112.439

132.182

Optimized parameters for the lower case characters:

Error:

0.451651

Directional Mapping:

Activity Regions:

[1,28]

[6,8]

[18,26]

[21,28]

[5,16]

[1,13]

[22,28]

| |

Scalar Bias:

128.763

52.4643

128.914

72.5034

96.0161

69.5062

117.787

130

Subject “c19”

Optimized parameters for the upper case characters:

Error:

0.0910457

Directional Mapping:

Activity Regions:

[0,30]

[17,19]

[16,30]

[1,6]

[4,23]

[16,23]

[22,28]

| |

Scalar Bias:

117.977

0.704248

55.2683

147.879

195.228

73.226

123.516

Optimized parameters for the lower case characters:

Error:

0.10869

Directional Mapping:

Activity Regions:

[25,31]

[3,18]

[14,22]

[0,0]

[2,3]

[2,5]

[22,31]

| |

Scalar Bias:

153.385

133.468

154.669

133.217

78.9633

38.4741

99.6347

131

Subject “c20”

Optimized parameters for the upper case characters:

Error:

0.10401

Directional Mapping:

Activity Regions:

[0,30]

[12,21]

[2,15]

[9,22]

[1,20]

[16,26]

[2,31]

| |

Scalar Bias:

70.0801

71.7994

97.9465

78.51

86.3814

79.0717

141.365

Optimized parameters for the lower case characters:

Error:

0.099976

Directional Mapping:

Activity Regions:

[12,25]

[6,22]

[19,24]

[18,28]

[1,30]

[2,31]

[15,28]

| |

Scalar Bias:

91.9222

62.7307

69.567

42.4467

167.164

50.852

108.156

132

Subject “c21”

Optimized parameters for the upper case characters:

Error:

0.105938

Directional Mapping:

Activity Regions:

[7,23]

[1,9]

[11,28]

[3,14]

[2,14]

[0,31]

[25,30]

| |

Scalar Bias:

104.64

107.769

104.577

88.2079

129.125

110.042

106.803

Optimized parameters for the lower case characters:

Error:

0.166987

Directional Mapping:

Activity Regions:

[1,26]

[1,14]

[3,31]

[7,28]

[7,20]

[10,26]

[6,15]

| |

Scalar Bias:

19.6133

26.2741

117.532

3.51239

98.3833

87.4932

116.404

133

Subject “c22”

Optimized parameters for the upper case characters:

Error:

0.0985136

Directional Mapping:

Activity Regions:

[4,29]

[2,9]

[20,30]

[1,12]

[4,22]

[18,23]

[20,27]

| |

Scalar Bias:

100.463

9.69649

107.138

85.2906

40.2513

125.511

100.177

Optimized parameters for the lower case characters:

Error:

0.107973

Directional Mapping:

Activity Regions:

[4,19]

[2,17]

[18,29]

[1,18]

[10,31]

[5,16]

[9,19]

| |

Scalar Bias:

95.805

55.2773

0.767765

22.0513

144.078

8.42714

71.296

134

Subject “c23”

Optimized parameters for the upper case characters:

Error:

0.0459255

Directional Mapping:

Activity Regions:

[3,28]

[1,27]

[15,30]

[1,10]

[8,17]

[12,25]

[4,14]

| |

Scalar Bias:

166.535

48.1232

54.2834

139.658

157.928

115.305

142.843

Optimized parameters for the lower case characters:

Error:

0.158421

Directional Mapping:

Activity Regions:

[19,27]

[21,27]

[1,5]

[2,8]

[0,25]

[19,28]

[13,30]

| |

Scalar Bias:

26.9372

46.5957

14.3676

169.508

167.415

59.2531

188.806

135

Subject “c24”

Optimized parameters for the upper case characters:

Error:

0.128337

Directional Mapping:

Activity Regions:

[3,31]

[3,20]

[20,26]

[2,15]

[11,20]

[17,31]

[18,31]

| |

Scalar Bias:

103.784

158.971

7.05251

79.0556

113.236

105.349

120.853

Optimized parameters for the lower case characters:

Error:

0.230697

Directional Mapping:

Activity Regions:

[5,31]

[21,31]

[18,22]

[23,31]

[17,22]

[16,22]

[15,26]

| |

Scalar Bias:

84.5366

35.5753

30.7789

170.502

3.06102

30.2358

85.5438

136

Subject “c25”

Optimized parameters for the upper case characters:

Error:

0.110441

Directional Mapping:

Activity Regions:

[1,26]

[3,22]

[10,31]

[16,25]

[19,27]

[11,24]

[8,15]

| |

Scalar Bias:

131.113

47.1443

142.653

166.562

88.3611

102.986

86.9191

Optimized parameters for the lower case characters:

Error:

0.0878005

Directional Mapping:

Activity Regions:

[1,31]

[8,19]

[0,31]

[1,1]

[0,0]

[15,24]

[22,29]

| |

Scalar Bias:

174.107

117.828

77.2542

187.011

169.715

94.3359

95.9883

137

Subject “c26”

Optimized parameters for the upper case characters:

Error:

0.158393

Directional Mapping:

Activity Regions:

[3,29]

[0,16]

[12,28]

[0,12]

[10,22]

[7,30]

[11,21]

| |

Scalar Bias:

77.9367

133.889

26.6941

48.9754

132.367

67.233

20.5276

Optimized parameters for the lower case characters:

Error:

0.125605

Directional Mapping:

Activity Regions:

[2,30]

[7,17]

[9,23]

[0,0]

[6,17]

[2,25]

[21,30]

| |

Scalar Bias:

102.317

58.5418

33.984

141.842

84.8043

44.9699

133.235

138

Subject “c27”

Optimized parameters for the upper case characters:

Error:

0.138269

Directional Mapping:

Activity Regions:

[2,31]

[16,24]

[21,29]

[3,16]

[3,21]

[4,18]

[4,16]

| |

Scalar Bias:

115.837

110.802

161.646

77.2869

74.1725

30.9143

36.1901

Optimized parameters for the lower case characters:

Error:

0.21899

Directional Mapping:

Activity Regions:

[2,26]

[0,13]

[9,31]

[25,28]

[19,19]

[19,31]

[3,27]

| |

Scalar Bias:

94.7931

81.91

86.9897

35.1895

48.6636

176.465

16.5838

139

Subject “c28”

Optimized parameters for the upper case characters:

Error:

0.0530449

Directional Mapping:

Activity Regions:

[4,29]

[5,15]

[12,26]

[0,8]

[3,16]

[0,24]

[22,30]

| |

Scalar Bias:

49.6022

154.69

139.311

90.2627

141.394

55.9702

138.516

Optimized parameters for the lower case characters:

Error:

0.0738782

Directional Mapping:

Activity Regions:

[9,18]

[9,18]

[16,30]

[0,11]

[19,25]

[5,25]

[23,30]

| |

Scalar Bias:

37.7973

109.265

95.6369

81.1552

35.3687

142.531

128.703

140

Subject “c29”

Optimized parameters for the upper case characters:

Error:

0.0439223

Directional Mapping:

Activity Regions:

[16,25]

[1,22]

[14,31]

[12,24]

[15,25]

[15,25]

[2,17]

| |

Scalar Bias:

49.69

159.729

108.55

44.629

106.144

38.9062

41.95

Optimized parameters for the lower case characters:

Error:

0.0557171

Directional Mapping:

Activity Regions:

[11,25]

[7,23]

[16,28]

[0,24]

[21,29]

[11,31]

[8,23]

| |

Scalar Bias:

4.62448

84.0787

36.8133

152.515

102.208

12.5449

26.9113

141

Subject “c30”

Optimized parameters for the upper case characters:

Error:

0.17387

Directional Mapping:

Activity Regions:

[6,25]

[11,20]

[9,18]

[0,14]

[16,30]

[0,30]

[4,8]

| |

Scalar Bias:

101.921

127.514

22.1682

98.5478

91.3762

101.325

13.7437

Optimized parameters for the lower case characters:

Error:

0.200845

Directional Mapping:

Activity Regions:

[26,30]

[2,18]

[27,30]

[2,29]

[17,31]

[0,8]

[3,27]

| |

Scalar Bias:

35.8078

92.5925

5.0718

88.711

140.547

167.198

6.25048

142

Subject “c31”

Optimized parameters for the upper case characters:

Error:

0.120757

Directional Mapping:

Activity Regions:

[11,28]

[18,29]

[14,29]

[1,16]

[12,26]

[3,16]

[19,30]

| |

Scalar Bias:

159.779

110.287

82.7398

95.1861

13.2275

36.6346

47.9338

Optimized parameters for the lower case characters:

Error:

0.0832893

Directional Mapping:

Activity Regions:

[15,27]

[3,18]

[13,31]

[3,18]

[0,16]

[14,26]

[15,30]

| |

Scalar Bias:

21.7192

59.2801

186.036

19.6122

85.3168

60.787

170.976

143

Subject “c32”

Optimized parameters for the upper case characters:

Error:

0.147716

Directional Mapping:

Activity Regions:

[16,25]

[21,28]

[1,22]

[0,19]

[23,31]

[17,27]

[1,23]

| |

Scalar Bias:

22.6267

73.2952

54.8834

58.9387

96.1215

51.0723

13.3136

Optimized parameters for the lower case characters:

Error:

0.180184

Directional Mapping:

Activity Regions:

[5,28]

[0,18]

[20,31]

[1,1]

[22,30]

[3,31]

[11,23]

| |

Scalar Bias:

42.3307

71.1163

73.9211

164.327

64.556

51.2183

9.20665

144

Subject “c33”

Optimized parameters for the upper case characters:

Error:

0.159471

Directional Mapping:

Activity Regions:

[3,30]

[9,19]

[17,27]

[2,31]

[5,14]

[12,27]

[22,31]

| |

Scalar Bias:

136.797

146.854

68.4648

101.091

175.395

118.705

196.08

Optimized parameters for the lower case characters:

Error:

0.161146

Directional Mapping:

Activity Regions:

[6,22]

[7,19]

[14,26]

[0,30]

[5,19]

[4,19]

[20,31]

| |

Scalar Bias:

37.525

83.033

134.255

175.849

84.8813

0.167313

177.888

145

Subject “c34”

Optimized parameters for the upper case characters:

Error:

0.152135

Directional Mapping:

Activity Regions:

[0,31]

[2,20]

[12,22]

[2,22]

[13,26]

[19,24]

[21,29]

| |

Scalar Bias:

141.577

70.7026

21.8886

82.3364

124.539

22.2652

144.256

Optimized parameters for the lower case characters:

Error:

0.154563

Directional Mapping:

Activity Regions:

[17,30]

[4,16]

[15,30]

[20,27]

[2,15]

[2,27]

[14,31]

| |

Scalar Bias:

34.7362

116.774

170.166

22.5639

52.48

172.387

79.9799

146

Subject “c35”

Optimized parameters for the upper case characters:

Error:

0.065028

Directional Mapping:

Activity Regions:

[11,29]

[10,28]

[3,23]

[14,26]

[3,13]

[13,23]

[2,31]

| |

Scalar Bias:

3.53714

93.9488

76.4152

50.4936

65.8857

91.4465

104.08

Optimized parameters for the lower case characters:

Error:

0.105276

Directional Mapping:

Activity Regions:

[4,22]

[15,18]

[22,31]

[0,17]

[0,31]

[17,26]

[1,31]

| |

Scalar Bias:

91.5004

47.8863

93.0178

4.25931

125.151

107.225

68.7355

147

Subject “c36”

Optimized parameters for the upper case characters:

Error:

0.0795593

Directional Mapping:

Activity Regions:

[3,23]

[2,19]

[14,31]

[20,28]

[2,25]

[16,23]

[3,21]

| |

Scalar Bias:

61.8527

186.245

189.072

76.4317

41.7045

164.246

56.174

Optimized parameters for the lower case characters:

Error:

0.0763221

Directional Mapping:

Activity Regions:

[6,15]

[21,21]

[18,31]

[1,31]

[4,15]

[18,31]

[0,12]

| |

Scalar Bias:

12.2069

159.612

158.056

109.423

87.0328

24.4837

55.4194

148

Subject “c37”

Optimized parameters for the upper case characters:

Error:

0.0473317

Directional Mapping:

Activity Regions:

[0,31]

[1,16]

[16,24]

[1,12]

[0,8]

[13,21]

[9,30]

| |

Scalar Bias:

177.192

143.307

107.94

104.505

141.477

126.338

139.984

Optimized parameters for the lower case characters:

Error:

0.0491867

Directional Mapping:

Activity Regions:

[1,31]

[15,30]

[8,21]

[13,30]

[5,24]

[2,17]

[21,31]

| |

Scalar Bias:

196.957

63.1508

181.011

153.856

69.2795

123.446

102.907

149

Subject “c38”

Optimized parameters for the upper case characters:

Error:

0.0775641

Directional Mapping:

Activity Regions:

[1,30]

[7,23]

[24,31]

[17,27]

[1,8]

[15,23]

[8,24]

| |

Scalar Bias:

110.493

102.245

188.424

99.3315

19.3787

78.63

80.6399

Optimized parameters for the lower case characters:

Error:

0.125401

Directional Mapping:

Activity Regions:

[15,31]

[0,28]

[23,30]

[14,20]

[2,7]

[14,29]

[1,27]

| |

Scalar Bias:

70.9789

158.347

101.396

2.62904

130.156

88.5502

2.70559

150

Subject “c39”

Optimized parameters for the upper case characters:

Error:

0.100505

Directional Mapping:

Activity Regions:

[1,25]

[3,28]

[21,30]

[12,28]

[2,19]

[17,23]

[14,25]

| |

Scalar Bias:

170.992

123.701

195.373

174.717

183.57

80.6935

96.0666

Optimized parameters for the lower case characters:

Error:

0.0586739

Directional Mapping:

Activity Regions:

[9,26]

[3,15]

[10,31]

[6,19]

[0,12]

[2,26]

[8,22]

| |

Scalar Bias:

12.7671

10.0789

71.8657

50.8172

75.6428

53.7131

120.695

151

Subject “c40”

Optimized parameters for the upper case characters:

Error:

0.0850962

Directional Mapping:

Activity Regions:

[0,31]

[1,31]

[17,29]

[10,27]

[2,21]

[5,21]

[11,30]

| |

Scalar Bias:

148.319

159.939

44.3837

142.52

139.881

63.2344

30.3998

Optimized parameters for the lower case characters:

Error:

0.108562

Directional Mapping:

Activity Regions:

[25,28]

[9,31]

[25,28]

[0,2]

[0,0]

[1,30]

[0,31]

| |

Scalar Bias:

68.5755

201.739

6.01585

191.438

129.89

83.319

81.7186

152

Subject “c41”

Optimized parameters for the upper case characters:

Error:

0.132216

Directional Mapping:

Activity Regions:

[3,31]

[1,16]

[18,31]

[11,21]

[1,6]

[13,23]

[1,7]

| |

Scalar Bias:

98.3765

121.421

123.306

8.77814

16.6685

74.8922

100.982

Optimized parameters for the lower case characters:

Error:

0.246314

Directional Mapping:

Activity Regions:

[9,18]

[26,31]

[23,30]

[26,30]

[10,18]

[14,23]

[23,31]

| |

Scalar Bias:

0.00119558

128.49

99.1444

147.522

21.076

127.078

22.3664

153

Subject “c42”

Optimized parameters for the upper case characters:

Error:

0.122889

Directional Mapping:

Activity Regions:

[15,26]

[3,16]

[13,29]

[1,26]

[3,28]

[20,31]

[3,19]

| |

Scalar Bias:

78.7633

105.665

65.253

20.165

143.221

62.2536

8.79207

Optimized parameters for the lower case characters:

Error:

0.112196

Directional Mapping:

Activity Regions:

[3,31]

[1,30]

[18,31]

[2,15]

[23,29]

[9,21]

[23,30]

| |

Scalar Bias:

137.532

16.4693

118.58

117.008

14.4251

146.075

51.9192

154

Subject “c43”

Optimized parameters for the upper case characters:

Error:

0.0983974

Directional Mapping:

Activity Regions:

[0,31]

[5,15]

[16,30]

[11,22]

[19,29]

[11,27]

[14,16]

| |

Scalar Bias:

178.697

94.0704

36.2074

67.4686

90.864

63.8612

11.2912

Optimized parameters for the lower case characters:

Error:

0.187364

Directional Mapping:

Activity Regions:

[1,26]

[2,13]

[3,18]

[8,28]

[0,26]

[0,15]

[25,31]

| |

Scalar Bias:

32.2132

55.3336

37.821

76.658

88.7166

1.2372

71.2463

155

Subject “c44”

Optimized parameters for the upper case characters:

Error:

0.0816186

Directional Mapping:

Activity Regions:

[10,23]

[3,17]

[15,30]

[2,30]

[14,31]

[3,18]

[9,27]

| |

Scalar Bias:

62.8604

84.6672

10.7031

151.89

84.4914

0.593239

39.1273

Optimized parameters for the lower case characters:

Error:

0.0866747

Directional Mapping:

Activity Regions:

[2,28]

[3,30]

[2,23]

[0,27]

[1,21]

[3,21]

[9,21]

| |

Scalar Bias:

27.1823

110.691

106.205

110.526

106.185

35.7056

101.35

156

Subject “t00”

Optimized parameters for the upper case characters:

Error:

0.215917

Directional Mapping:

Activity Regions:

[6,30]

[0,14]

[18,27]

[27,28]

[8,15]

[15,31]

[2,19]

| |

Scalar Bias:

149.113

4.44934

136.359

47.3665

89.2072

183.019

202.494

Optimized parameters for the lower case characters:

Error:

0.256639

Directional Mapping:

Activity Regions:

[0,31]

[9,31]

[15,29]

[2,30]

[3,17]

[12,27]

[18,30]

| |

Scalar Bias:

96.9642

41.1581

18.2992

75.2523

153.621

19.3605

185.628

157

Subject “t01”

Optimized parameters for the upper case characters:

Error:

0.133085

Directional Mapping:

Activity Regions:

[3,25]

[11,28]

[19,31]

[14,27]

[14,31]

[16,25]

[1,18]

| |

Scalar Bias:

71.0806

31.9444

97.0806

23.3147

106.558

163.182

80.5865

Optimized parameters for the lower case characters:

Error:

0.146811

Directional Mapping:

Activity Regions:

[5,19]

[1,13]

[19,24]

[20,29]

[15,31]

[5,14]

[0,13]

| |

Scalar Bias:

49.0315

27.3605

6.19609

116.796

88.2369

68.031

64.4197

158

Subject “t02”

Optimized parameters for the upper case characters:

Error:

0.0786298

Directional Mapping:

Activity Regions:

[0,31]

[2,31]

[1,21]

[2,29]

[0,18]

[8,22]

[11,26]

| |

Scalar Bias:

76.7353

86.9643

63.8668

27.019

96.3404

121.287

32.2721

Optimized parameters for the lower case characters:

Error:

0.15397

Directional Mapping:

Activity Regions:

[24,29]

[6,24]

[20,29]

[2,14]

[11,19]

[1,10]

[0,20]

| |

Scalar Bias:

29.2716

124.25

133.176

5.96883

104.623

61.9133

64.441

159

Subject “t03”

Optimized parameters for the upper case characters:

Error:

0.130172

Directional Mapping:

Activity Regions:

[4,30]

[4,17]

[9,25]

[7,26]

[17,28]

[1,9]

[1,29]

| |

Scalar Bias:

112.066

115.404

92.3764

70.3925

39.7668

124.23

175.628

Optimized parameters for the lower case characters:

Error:

0.184784

Directional Mapping:

Activity Regions:

[0,31]

[13,24]

[13,25]

[2,10]

[7,17]

[20,29]

[4,29]

| |

Scalar Bias:

121.01

14.3915

41.6941

98.9317

149.451

168.482

126.465

160

Subject “t04”

Optimized parameters for the upper case characters:

Error:

0.0763301

Directional Mapping:

Activity Regions:

[0,29]

[1,18]

[10,16]

[15,29]

[1,22]

[1,4]

[11,31]

| |

Scalar Bias:

179.047

153.068

12.8584

157.244

80.7516

15.3259

157.249

Optimized parameters for the lower case characters:

Error:

0.105773

Directional Mapping:

Activity Regions:

[11,28]

[4,19]

[13,31]

[2,30]

[21,30]

[6,31]

[13,25]

| |

Scalar Bias:

110.455

186.579

190.65

136.434

185.344

59.3605

35.3756

161

Subject “t05”

Optimized parameters for the upper case characters:

Error:

0.0539503

Directional Mapping:

Activity Regions:

[0,0]

[0,21]

[18,30]

[0,0]

[9,23]

[0,23]

[19,30]

| |

Scalar Bias:

168.149

147.414

176.478

161.472

149.933

66.1713

21.7509

Optimized parameters for the lower case characters:

Error:

0.0834455

Directional Mapping:

Activity Regions:

[5,31]

[1,11]

[19,28]

[4,30]

[2,13]

[6,22]

[26,30]

| |

Scalar Bias:

121.864

88.2476

147.191

6.53906

94.6447

152.666

10.3714

162

Subject “t06”

Optimized parameters for the upper case characters:

Error:

0.0832011

Directional Mapping:

Activity Regions:

[0,30]

[7,14]

[17,26]

[28,29]

[7,16]

[7,30]

[6,29]

| |

Scalar Bias:

186.804

43.1142

117.448

46.9402

158.354

23.6205

119.947

Optimized parameters for the lower case characters:

Error:

0.143854

Directional Mapping:

Activity Regions:

[0,29]

[4,25]

[17,29]

[13,25]

[8,19]

[23,24]

[26,31]

| |

Scalar Bias:

152.859

134.167

172.901

91.0565

101.41

43.8918

83.154

163

Subject “t07”

Optimized parameters for the upper case characters:

Error:

0.0553325

Directional Mapping:

Activity Regions:

[13,29]

[0,25]

[2,11]

[8,23]

[16,21]

[2,20]

[18,29]

| |

Scalar Bias:

26.7755

101.976

20.3077

129.457

13.589

119.999

186.066

Optimized parameters for the lower case characters:

Error:

0.0509014

Directional Mapping:

Activity Regions:

[1,30]

[1,14]

[14,30]

[1,5]

[7,15]

[17,22]

[11,29]

| |

Scalar Bias:

155.29

101.538

86.5866

98.3551

94.6962

58.3699

102.452

164

Subject “t08”

Optimized parameters for the upper case characters:

Error:

0.099403

Directional Mapping:

Activity Regions:

[2,25]

[5,30]

[0,24]

[4,31]

[4,28]

[19,28]

[0,18]

| |

Scalar Bias:

99.8

74.2093

122.851

127.454

70.4073

97.1993

151.153

Optimized parameters for the lower case characters:

Error:

0.0911298

Directional Mapping:

Activity Regions:

[2,31]

[23,31]

[13,25]

[1,14]

[10,19]

[14,31]

[22,29]

| |

Scalar Bias:

148.964

10.1868

113.072

77.2711

109.64

3.94666

95.3894

165

Subject “t09”

Optimized parameters for the upper case characters:

Error:

0.181386

Directional Mapping:

Activity Regions:

[1,31]

[3,23]

[0,22]

[14,31]

[1,25]

[8,31]

[22,26]

| |

Scalar Bias:

134.765

110.666

112.737

194.949

98.2005

138.815

3.13344

Optimized parameters for the lower case characters:

Error:

0.108886

Directional Mapping:

Activity Regions:

[5,27]

[11,25]

[0,30]

[2,6]

[6,15]

[7,20]

[20,31]

| |

Scalar Bias:

24.4772

66.9013

169.179

18.6468

183.064

82.8069

167.304

166

Subject “t10”

Optimized parameters for the upper case characters:

Error:

0.111687

Directional Mapping:

Activity Regions:

[10,28]

[0,14]

[5,28]

[1,17]

[1,30]

[16,23]

[20,31]

| |

Scalar Bias:

168.515

81.6709

11.2988

96.281

124.975

65.3763

111.276

Optimized parameters for the lower case characters:

Error:

0.167732

Directional Mapping:

Activity Regions:

[1,31]

[2,14]

[2,31]

[13,29]

[6,17]

[13,26]

[17,29]

| |

Scalar Bias:

161.712

183.021

26.0808

30.6264

45.5874

106.871

159.703

167

Subject “t11”

Optimized parameters for the upper case characters:

Error:

0.177007

Directional Mapping:

Activity Regions:

[0,29]

[12,23]

[19,31]

[13,13]

[11,23]

[19,23]

[1,30]

| |

Scalar Bias:

79.2241

0.39717

159.404

192.048

139.694

32.5767

71.0145

Optimized parameters for the lower case characters:

Error:

0.182107

Directional Mapping:

Activity Regions:

[21,31]

[0,11]

[6,30]

[7,20]

[27,31]

[24,30]

[0,8]

| |

Scalar Bias:

72.1158

31.8859

177.329

73.0161

133.366

185.054

81.933

168

Subject “t12”

Optimized parameters for the upper case characters:

Error:

0.104159

Directional Mapping:

Activity Regions:

[25,29]

[2,24]

[3,31]

[29,30]

[27,29]

[17,28]

[28,29]

| |

Scalar Bias:

36.4633

137.513

156.017

44.1485

30.7142

146.33

122.316

Optimized parameters for the lower case characters:

Error:

0.100016

Directional Mapping:

Activity Regions:

[1,29]

[10,21]

[20,30]

[4,7]

[4,20]

[0,13]

[7,25]

| |

Scalar Bias:

188.353

0.718574

194.716

12.5296

179.027

114.107

31.1494

169

Subject “t13”

Optimized parameters for the upper case characters:

Error:

0.0819111

Directional Mapping:

Activity Regions:

[3,29]

[2,30]

[1,31]

[4,5]

[3,14]

[18,26]

[22,28]

| |

Scalar Bias:

98.314

129.353

4.87348

29.4743

191.215

167.264

177.552

Optimized parameters for the lower case characters:

Error:

0.0641627

Directional Mapping:

Activity Regions:

[0,28]

[0,24]

[20,31]

[9,25]

[0,30]

[5,25]

[5,23]

| |

Scalar Bias:

98.3724

26.189

135.425

21.7641

40.5988

38.3009

24.6958

170

Subject “t14”

Optimized parameters for the upper case characters:

Error:

0.103329

Directional Mapping:

Activity Regions:

[0,27]

[3,18]

[0,20]

[0,4]

[0,31]

[26,31]

[23,30]

| |

Scalar Bias:

96.7879

176.406

78.4025

126.488

18.58

33.7079

189.252

Optimized parameters for the lower case characters:

Error:

0.0946955

Directional Mapping:

Activity Regions:

[18,31]

[0,31]

[11,23]

[18,31]

[19,30]

[9,29]

[8,21]

| |

Scalar Bias:

140.54

165.358

62.3377

107.704

54.6595

88.9864

81.6355

171

Subject “t15”

Optimized parameters for the upper case characters:

Error:

0.186298

Directional Mapping:

Activity Regions:

[8,21]

[9,28]

[1,26]

[7,31]

[17,31]

[7,30]

[3,31]

| |

Scalar Bias:

145.163

10.8799

102.439

71.11

134.845

20.9933

71.0725

Optimized parameters for the lower case characters:

Error:

0.195068

Directional Mapping:

Activity Regions:

[0,14]

[0,2]

[13,31]

[2,3]

[0,5]

[19,31]

[11,27]

| |

Scalar Bias:

95.9962

183.977

94.298

46.6957

143.999

122.289

87.3799

172

Subject “t16”

Optimized parameters for the upper case characters:

Error:

0.0477163

Directional Mapping:

Activity Regions:

[0,31]

[2,14]

[15,31]

[0,8]

[14,18]

[14,22]

[22,28]

| |

Scalar Bias:

168.476

129.387

144.956

198.688

36.1123

147.164

67.5201

Optimized parameters for the lower case characters:

Error:

0.0302965

Directional Mapping:

Activity Regions:

[1,30]

[15,26]

[6,29]

[21,31]

[7,21]

[6,22]

[25,28]

| |

Scalar Bias:

85.6707

114.221

48.6986

134.688

160.101

31.2551

103.128

173

Subject “t17”

Optimized parameters for the upper case characters:

Error:

0.15484

Directional Mapping:

Activity Regions:

[0,31]

[17,30]

[10,26]

[2,18]

[6,19]

[0,24]

[13,25]

| |

Scalar Bias:

64.2141

87.663

50.9263

117.559

7.47494

32.5805

85.4686

Optimized parameters for the lower case characters:

Error:

0.1226

Directional Mapping:

Activity Regions:

[1,31]

[0,20]

[20,30]

[1,4]

[1,31]

[0,7]

[1,9]

| |

Scalar Bias:

90.0627

176.759

123.344

170.476

2.8479

137.33

117.779

174

Subject “t18”

Optimized parameters for the upper case characters:

Error:

0.107131

Directional Mapping:

Activity Regions:

[0,31]

[20,26]

[13,28]

[2,18]

[0,18]

[0,21]

[20,27]

| |

Scalar Bias:

122.974

61.6228

161.169

155.736

66.6944

61.3375

147.299

Optimized parameters for the lower case characters:

Error:

0.0971034

Directional Mapping:

Activity Regions:

[3,25]

[2,10]

[15,30]

[0,8]

[19,19]

[25,25]

[19,29]

| |

Scalar Bias:

123.881

5.05596

67.8729

157.443

186.331

141.508

134.309

175

Subject “t19”

Optimized parameters for the upper case characters:

Error:

0.11655

Directional Mapping:

Activity Regions:

[9,29]

[14,24]

[18,21]

[11,25]

[10,24]

[12,26]

[22,30]

| |

Scalar Bias:

36.8398

24.7286

18.7045

60.1853

65.9961

64.4141

136.062

Optimized parameters for the lower case characters:

Error:

0.189291

Directional Mapping:

Activity Regions:

[2,31]

[0,31]

[21,30]

[20,28]

[4,21]

[11,23]

[16,27]

| |

Scalar Bias:

32.0364

150.378

144.672

59.5064

182.121

85.4956

69.2216

176

Subject “t20”

Optimized parameters for the upper case characters:

Error:

0.0841747

Directional Mapping:

Activity Regions:

[24,31]

[2,26]

[10,29]

[5,15]

[11,18]

[3,27]

[5,17]

| |

Scalar Bias:

192.768

142.46

181.425

33.6511

12.0134

134.11

177.909

Optimized parameters for the lower case characters:

Error:

0.0772877

Directional Mapping:

Activity Regions:

[4,30]

[4,18]

[7,20]

[4,4]

[7,24]

[15,27]

[12,28]

| |

Scalar Bias:

179.04

38.4046

94.4444

183.526

61.632

104.869

94.0085

177

Appendix C

CDROM Contents

Bound with this dissertation is a CDROM containing 739MB of data from the non-

stylized English and optimization studies (Sections 6.2 and 6.3). The top level directories

are each compressed with TAR and GZIP in order to meet the CDROM size limitation.

Once each of these tarballs is decompressed you will find the directory structure shown in

Figure C.1(A). This chapter reviews the contents of each directory, file naming conventions,

and details the format of each file type.

C.1 Character Samples

The “character samples” directory contains the character drawings collected in the

non-stylized English study (Section 6.2) in their raw form. Each subject has a single data file

named by their subject identifier plus “.txt”. Thus, the example file name in Figure C.1(B)

is for the samples drawn by subject “c00”. These file names are the base file names used

throughout the remaining directories on the CDROM.

Each file contains 1716 lines, one for each letter drawing provided by the subject. The

lines have the following format:

C P S x0 y0 . . . xP−1 yP−1 d0 u0 . . . dS−1 uS−1

C is the ASCII character represented by the line, P is the number of (X,Y) coordinate pairs

in the drawing, and S is the number of strokes. Following this header information, each

coordinate pair (xi, yi) is listed. Next the strokes are defined by pen down and up events.

178

Figure C.1: (A) Directory structure on the CDROM and (B) example file names for each
directory

di indicates which point in the drawing was the ith pen down event. . . specifically the ith

pen down event occurs at the coordinate pair (xdi
, ydi

). Similarly, ui indicates which point

in the drawing was the ith pen up event.

C.2 Errors

The “errors” directory contains files listing the recognition errors resulting from the

evaluation of a parmeter set for a specific letter-case and α value. These files are dis-

tributed into two directories, “optimized parameters” and “stock parameters”, identi-

fying whether the parameter set is the one optimized by the study in Section 6.3 or the stock

set. The file extension begins with “SP” for stock parameters or “OPT” for an optimized set.

The “ U ” and “ L ” extension flags indicate the letter-case, upper or lower respectively, and

179

the numeral finishing the extension is the α value. The base name of each file identifies the

subject. Thus, the example “optimized parameters” file name in Figure C.1(B) is for the

errors found recognizing the upper case samples drawn by subject “t05” using an optimized

parameter set where α = 2. The example “stock parameters” file name in Figure C.1(B)

is for the errors found recognizing the lower case samples drawn by subject “c12” using the

stock parameter set where α = 1.

Each file contains 900 lines, one for each random, α-sized alphabet tested. The lines

have the following format:

N c0 . . . cN−1 t0 r0 t1 r1 . . .

N = α × 26 is the total number of character samples in the alphabet tested. ci indicates

which sample from the subject’s sample file (Section C.1) the the ith member of the alphabet

is. Specifically, line ci (zero-based) is the ith sample for the current, random alphabet.

Following the alphabet identification are value pairs indicating a single recognition error

each (continuing to the end of the line). ti is the drawing to be recognized and ri is the

drawing that was incorrectly determined to be the closest match. Similar to ci, ti and ri

are zero-based line numbers in the subject’s sample file.

C.3 Final Optimization Parameters

The “final optimization parameters” directory contains the final, best fitness pa-

rameters found for each subject and letter case in the optimization study (Section 6.3).

The base file name indicates the subject as in Section C.1, and the “U” and “L” extensions

indicate whether the parameters apply to the upper or lower case characters respectively.

180

The example file name in Figure C.1(B) is for the the upper case parameters evolved for

subject “c27”. Additionally, each subject’s parameters are visualized in Appendix B.

Each file contains a single line in the following format:

F a0 . . . a7 s0 e0 . . . s6 e6 b0 . . . b6

F is the fitness (error rate) measured over 300 random alphabets where α = 1. ai is the

lower, non-inclusive bound of the ith angular region in the evolved directional mapping. si

and ei indicate the zero-based substrokes that start and end the ith activity region. bi is

the scalar bias applied to the ith activity region.

C.4 Results

The “results” directory contains the recognition results for subjects on each of the 900

random alphabets evaluated for upper and lower case letters. These files are distributed into

two directories, “optimized parameters” and “stock parameters”, identifying whether

the parameter set is the one optimized by the study in Section 6.3 or the stock set. The

file extension begins with “SP” for stock parameters or “OPT” for an optimized set. The

“ U ” and “ L ” extension flags indicate the letter-case, upper or lower respectively, and

the numeral finishing the extension is the α value. The base name of each file identifies

the subject. The example “optimized parameters” file name in Figure C.1(B) is for lower

case samples drawn by subject “t11” using an optimized parameter set where α = 3. The

example “stock parameters” file name in Figure C.1(B) is for upper case samples drawn

by subject “c03” using the stock parameter set where α = 1.

181

Each file contains 900 lines, one for each random alphabet. Lines are formatted as

follows:

T e1 . . . e26

T =
∑26

i=1 ei where ei is the number of ith letter’s drawings that were misrecognized on the

run. In this notation i refers to a letter of the alphabet where ‘a’= 1 and ‘z’= 26 (in the

lower case, for example).

182

