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Thesis Abstract

Hardware Testbed for Collaborative Robotics using Wireless

Communication

Christopher Wilson

Master of Science, December 18, 2009
(B.E.W.E., Auburn University, 2006)

59 Typed Pages

Directed by Thaddeus Roppel

Collaborating mobile robots equipped with WiFi transceivers are configured as a

mobile ad-hoc network. Search and rescue algorithms are developed to take advantage

of the distributed processing capability inherent to multi-agent systems. The focus of

this study is to investigate the effect of team size on target acquisition performance

with the amount of inter-robot communication as a parameter. A hardware testbed is

described which is used to examine these trade-offs in an indoor laboratory-scale test

area. Tests involving up to five robots employing three different amounts of commu-

nication are performed. The results show that increased communication significantly

reduces the overall number of steps to find a target, and that while inter-robot in-

terference is a significant factor regardless of the amount of communication which

occurs, more communication leads to less interference.
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Chapter 1

Introduction

On August 29, 2005, Hurricane Katrina slammed into the Louisiana-Mississippi

gulf-coast region flattening homes, destroying businesses, and destroying levies de-

signed to hold back the waters of the Mississippi River. In the aftermath of the

hurricane, people became disoriented. The landmarks they navigated by were com-

pletely wiped out.

It took 43 days for the flood waters to be pumped out of New Orleans [1]. These

flood waters contained a mixture of raw sewage, bacteria, heavy metals, pesticides and

toxic chemicals [2]. Thus, as they were pumped out, the residue that remained caked

on the remaining homes and businesses also contained these hazardous materials. In

order to assist the cleanup effort, an inventory of what areas were still toxic had to be

taken. The only method available was to send humans into the buildings and classify

what materials were present for later safe cleanup and disposal. This exposed the

inventory workers to the hazardous residue that was still lingering.

Since the flooded disaster area encompassed almost 80% of the city of New Or-

leans, nearly 144 square miles had to be searched [3] [4]. This extensive search could

have been done more safely with a group of robots doing the dirty work of going

into unstable houses and measuring using a full array of sensors. Thus a coordinated

mapping robotic system could be of great use to keep humans out of harm’s way and

possibly increase the reliability and accuracy of the mappings.
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Similar disaster recovery applications include fire, earthquake, and tsunami sce-

narios, among others. Each present their own hazards, but all can be made safer for

humans by using a collaborating team of robots to search the area.

Another important scenario is in building security. A team of robots can col-

laboratively and continuously scan an area of interest for intrusions or hazardous

materials leaks.

In military applications, collaboration can bring about robustness due to the

ability of other robots to continue operating if one is destroyed or compromised.

However, this collaboration’s usefulness must be weighed against the amount of active

communications sent from each robot and the possibility to give away positions.

One of the outstanding research problems in this field is the question of how much

communication really needs to occur between robots. This question was previously

studied through software simulation [5]. The present work implements a hardware

testbed employing algorithms which are as close to the software simulation as pos-

sible, for the purpose of comparative analysis. In this work, a team of robots is

programmed to explore an unknown area. The software simulation was limited in

that it did not account for the presence of noise on any of the sensor inputs, nor

did it have a realistic wireless communications channel. In an effort to realistically

translate the software simulation results onto a real hardware testbed, the effect of

communication and team size are examined. The robots are assumed to have a work-

ing localization routine, which on the small scale of the laboratory environment, is

a non-trivial issue. Additionally, a map of the environment is given to each of the

robots. This is a restriction that is not present in simulation, but one that makes

the initial implementation on the hardware platform more feasible. Later work may

remove any additional restrictions on the hardware testbed that are not present in

the software simulations.
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In Chapter 2, an overview of the literature is provided. This is followed by a

description of the hardware used for the robots in Chapter 3. The searching algorithm

is described in Chapter 4. The software architecture implementation of the SARA-2

algorithm for the experiment is described in Chapter 5. Experimental results are

presented in Chapter 6, followed by conclusions in Chapter 7.
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Chapter 2

Literature Survey

This chapter introduces a few key areas of research pertaining to robotics in

general and with particular interest in inter-robot communication. Sensing methods

which pertain to techniques for localization are presented. Next, a method using

multiple robots that sense each other to assist in localization is presented. Finally,

some literature on communication for the purpose of cooperation or robustness will

be presented.

2.1 Sensing for Localization

Robot design entails specifying what kind of interactions with the environment

need to occur. What information should the robot be able to gather from the envi-

ronment? In general, this could lead to the use of any number of sensors from specific

gas sensors to ambient light level sensors to radiation sensors. However, if the focus

is narrowed to sensors that will assist in localization, then the primary types are:

vision, sonar, infra-red, and laser.

2.1.1 Vision

Sim and Dudek present a method of localization based on a vision sensor system

using landmark detection and tracking [6]. Initially, an offline map is generated by

using an initial pass through the environment to identify and mark areas of high edge
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density as possible landmarks. Principal component analysis is used to obtain a lower-

ordered description of the landmarks suitable for processing during a learning phase.

The learning phase takes the identified landmarks and creates tracked landmarks,

which are landmarks suitable for tracking over the region of operation. For online

localization, the robot extracts candidate landmarks and compares them to the stored

landmarks, creating an estimate of position for each extracted landmark. Finally,

these position estimates are merged to obtain a final position estimate.

In [7], Se, Lowe, and Little also use a vision-based approach but take into account

scale-invariant landmarks. Their technique utilizes a stereo vision system composed

of three cameras. The left and top cameras are mounted 10 cm away from the right

camera. Unlike Sim’s work, which requires an a-priori knowledge of suitable land-

marks, Se’s work dynamically identifies target landmarks via Scale Invariant Feature

Transform (SIFT) and tracks them in near real-time via a linear least-squares method.

2.1.2 Sonar

Elfes maps and determines position using a ring of Polaroid laboratory-grade

sonar sensors [8]. A sonar sensor model is developed which takes into account many of

the inherent flaws of sonar: wide beam angles, multiple reflects, poor range precision,

and detection sensitivity. This model is then used to merge sonar readings on to an

occupancy grid of the robot’s environment. Also proposed are multiple views for the

occupancy grid, which incorporates multiple levels of abstraction and detail for each

in a pyramid like structure. The vertical axis represents the level of abstraction with

the lowest level being the raw sensor readings, and the highest level being the most

abstract features used for navigation. Additionally, each planar level has two axes:

resolution and geographical. The resolution axis involves how detailed each map is

while the geographical axis involves how much of an area is covered.
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2.2 Cooperative Sensing and Localization

Song, Tsai, and Huang use multiple robots to estimate each robot’s position [9].

Each robot is equipped with two CMOS cameras and a big colored ball mounted to

the top of the robot. IEEE 802.11 is used to communicate between the robots and

a central server. Song promotes a combined approach to localization: generate the

estimate using nothing but the current robot’s sensors, then combine that estimate

with the estimate generated from the other robot’s sensors. The central server has

the role to fuse each robot’s information and generate a position estimate of each

robot’s current position.

2.3 Robot communication

Chen and Li note that the research being performed using multiple robots inde-

pendently to try to improve tolerance against robot failure in many cases neglects the

use of intra-robot communication to improve time to success [10]. Therefore, they

look at the use of communication to improve the overall mission success rate and to

reduce the average amount of energy consumed by the robots relative to the multi-

ple independent robot case. Their teaming strategy consists of the robots forming a

cluster and designating one of their members as the “central coordinator” of the clus-

ter with the other robots termed “members”. Each member in the cluster creates a

small “mini-map” of it’s surroundings and sends this information back to the central

coordinator via a binary protocol defined in the paper. The coordinator’s job is then

to aggregate the information about the environment from the transmitted mini-maps

and make decisions about which direction the entire cluster will move next to reach

its goal. The authors present results from their testing showing that offloading path

planning processing to a central coordinator results in reduced computation and thus
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lower power usage per robot. However, they neglect to mention how to pick the cen-

tral coordinator or what would happen to their algorithm if the central coordinator

becomes unavailable.

Park et al investigate the performance gains of a multi-hop, single-channel net-

work for a group of robots [11]. To start their investigation, they look at a group of

robots placed in a random maze with the goal of developing a path-planning algorithm

that can extract value from the multi-hop nature of their robot’s wireless network.

They exploit the forwarding characteristics of the relay nodes in a normal multi-hop

network to provide additional benefit, most notably, having the relay nodes aggregate

their information into the packets they are supposed to be forwarding. Thus, by the

time the destination robot receives the information, it will contain the information

from the source robot as well as any relay robots that forwarded the packet. Park is

able to show that their algorithm reduces average time to escape from a maze in a

hardware simulation. Additionally, they show in simulation that with larger numbers

of robots, the average time to success is greatly reduced by the use of communication

between robots.

However, as far as the author can tell, no paper looks at varying the amount of

communication and the team size, which is the focus for this thesis.
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Chapter 3

Hardware

The simulations presented in [5], hereinafter denoted as the SARA-1 algorithm ,

assume each robot has 16 sonar range finders. This would be prohibitively expensive

and difficult to interface for many applications, thus a lower complexity solution was

designed. There are two key parts to the hardware used in the testing of the algorithm:

the experimental field and the robots themselves. This chapter will be divided up in

the same way. The experimental field will be described first followed by the robotic

hardware.

3.1 Experimental Field

The experiment is housed in an 8 ft. x 16 ft. field designed as a scale-model

of an indoor environment consisting of a hallway with three rooms on either side.

The field is constructed by using four 4 x 8 foot x 3/4” medium density fiberboard

(MDF) panels for the floors. Each board is attached to the others using straight

metal brackets and 3/8” screws. The walls are 12” tall and are also constructed from

MDF. The walls are secured to each other and to the floor boards using A66 angle

brackets. In order to ensure a smooth floor, pieces of poster board are put across

every seam and attached using 1” masking tape. The field is shown in Figure 3.1.
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Figure 3.1: Image of the Experimental Field

3.2 Robotic Hardware

This section provides a brief overview of the hardware possibilities for the robots

and explains why the specific hardware was chosen. This will be divided into five sub-

sections each describing one specific aspect: Chassis, Drive System, Sensors, Control

System, and Batteries.

3.2.1 Chassis

The chassis choice is a tradeoff between platform space, ease of manipulation,

cost, and construction time. Initially, a thin PVC was chosen to fabricate the chassis.

This was due to prior experience with the material and surplus supplies on hand for
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use in making a prototype. The main advantage to this approach was customization;

the robots could be made in any shape necessary. Unfortunately, this approach was

also very time consuming as each piece had to be individually cut, drilled, and bent,

consuming valuable time that could be spent on implementing the software for the

robots.

A search for cheaper and faster alternatives led to the discovery of the Bud-

getRobotic’s ScooterBot II chassis kit. This kit consists of a 7” diameter round chas-

sis assembly designed for differential drive steering. It consists of the base platform

with cut-outs for the drive wheels and an upper platform for housing the computer

and interface board. A third platform was used to serve as a base in mounting the

rotating sensor turret described in Section 3.2.3.

3.2.2 Drive System

The selection of a drive system is a bit more straightforward as there are two

main choices: legged and wheeled vehicles. Legged vehicles are better suited for

traveling over rough or unknown terrain. Wheeled vehicles perform better on smooth

level terrain and can usually carry more weight and travel at faster speeds than a

legged vehicle. Since this is a laboratory grade experiment in an indoor environment,

a wheeled design was chosen.

The next decision confronting the design is what type of wheeled system: tracked,

differential or car-style drive system. Tracked vehicles can successfully navigate

rougher terrain better than other wheeled vehicle types. They also have the advan-

tage of being able to turn inside their vehicle diameter. However, these advantages

come at the complexity of maintaining the tracks.
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Car style drive systems have two main drive motors with one steering motor

that can drive one or two wheels. These systems are not normally used in robotic

applications.

Differential drive vehicles, like tracked vehicles, also have the advantage of being

able to turn inside their vehicle radius. Additionally, they do not suffer from the

complexities of maintaining the track system.

Since the SARA-1 algorithm simulations used Pioneer-based simulation robots, a

differential drive approach was preferable to maintain similarity with previous work.

The next design decision was what type of motor, DC motors or continuous

rotation servos. DC motors usually have the advantage of accepting a wide variety of

voltages, but have the disadvantage of requiring some interface circuitry to connect

to the computer system.

Continuous rotation servos have the advantage of accepting logic-level inputs

from the computer system and automatically transforming those commands into mo-

tor movements. However, this advantage comes with the cost of usually being less

powerful than a comparable cost DC motor.

The original prototype used a DC motor interfaced with an H-bridge. The DC

motors were 175RPM 7.2V DC motors with an attached gear reduction system provid-

ing 50:1 reduction. The H-bridge was a TI L293NE quad half H-bridge chip to convert

the logic-level signals from the micro-controller and drive the motors. Each motor

was connected using two half H-bridges to allow forward and reverse movement. The

L293NE chip was connected to the unregulated battery to provide maximum power.

The wheels used with these motors were 3” diameter neoprene foam tires.

This system worked well and was successfully deployed on the prototype robot.

However, with the discovery of the chassis kit, which included continuous rotation
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drive servos, wheels, and mounting equipment at comparable cost to just the DC

motor drive system, the prototype’s drive system was scrapped in favor of the kit’s.

The kit uses GW Servo S03NXF STD continuous rotation servos which allows

speed control based on standard servo timing parameters. These motors weigh 59.6

grams and produce 35 oz-in of torque. They can rotate at a maximum speed of

60◦ in 0.15 seconds at 4.8 Volts. The wheels used have a diameter of 2.5 inches,

giving the robot a maximum speed of 22.16 cm/s. A linearized velocity equation can

be determined with input being the servo timing signal and output is wheel linear

velocity:

v(t) =


44.32 ∗ (t− 1.5) 1 ≥ t ≤ 2

−22.16 t ≤ 1

22.16 t ≥ 2

(3.1)

3.2.3 Sensors

The SARA-1 algorithm uses two main types of sensors: distance and odometric.

The distance sensors are used for observing the world around the robot and properly

plotting a course through it. The odometric sensors are used to determine the robot’s

position in the world. Thus, this section is subdivided into two parts: one part on

distance sensors, one part on odometry sensors.

3.2.3.1 Distance Sensors

The SARA-1 algorithm uses sonar sensors as the main distance sensor. Thus the

first choice we made was to use some sonar sensors that we already had experience

with, Parallax PING))) sonar sensors.
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The Parallax PING))) Ultrasonic sensor is a sonar with a three wire interface:

power, ground, and signal. The PING))) sensor has its own processing on-board such

that the input to the sensor is a pulse and the output is a duration-varying pulse. The

input pulse is a five micro-second pulse, that triggers the sensor to start measurement.

750 µs later, the return pulse starts. The duration of the return pulse is proportional

to the distance measured from the sonar, ranging from 115 µs to 18 ms. The sound

wave used is a 40kHz wave lasting 200 µs. [12]

There is one major problem with this approach. The SARA-1 algorithm uses 16

sonar sensors to plot out a 360◦ degree view of its surroundings. Since each sonar

sensor is $25, each robot would have $400 in sonar sensors alone. Other concerns

include the possible interference effect of multiple robots with 16 active sonars, and

the complexity of interfacing such a large number of sensors to the onboard microcon-

troller. So through the combination of complexity and cost, this solution was ruled

unacceptable.

Through searching for possible solutions, the idea of rotating two sensors 180◦

was developed. This would allow for complete 360◦ coverage as desired by SARA-1,

but at a fraction of the cost and complexity. The associated cost would now be two

sensors, a servo, and some mounting hardware. Additionally, the possible interference

risk would be greatly diminished.

This solution worked well. The sensors were mounted on a turret and the turret

was mounted onto a servo. The servo then varied its position from 0◦ to 180◦. It was

decided that an increment of 15◦ should be used for each iteration of the servo. This

would make each sensor scan 12 different positions for an effective 24 sensors on the

robot.

However, further tests revealed a crucial flaw in the sonar sensing approach. In

our environment, the sonar sensors suffer greatly from specular reflection, where the
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sound wave would reflect off the wall and not return enough energy back to the sonar

detector. They could not detect a wall at an angle of incident greater than 30◦.

Additionally, when the sensors were placed a medium distance from a corner, the

sonar wave would bounce from one side of the corner to the other and then return

giving a resulting distance estimate much greater than the actual distance. As the

robot moved closer, this problem was not as pronounced, but the robot should not

be “near-sighted”. This effectively meant that, in our rectangular test field, sonars

could not be counted upon to give reliable and accurate readings.

This led to a search for a new type of sensor that did not suffer the corner-echoing

phenomena and would still be reliable at angles of incidence greater than 30◦. The

sensor that was eventually found was the Sharp GP2D12 infrared (IR) distance sensor.

These sensors output an analog voltage that is linear with the inverse distance. They

have a minimum range of 10 cm and a maximum range of 80 cm. Each sensor should

have a filter capacitor from the IR signal line to ground to short any high frequency

noise.

Since they produce an analog voltage, a calibration routine should be performed

on them. This calibration routine included attaching both sensors to the robot and

turning the turret such that one sensor pointed at the target range. The target range

consisted of two boards of MDF left over from the field’s wall construction. One

board is placed flat on a table and marked with lines every 5 cm. The other board is

then placed vertically on each line, serving as the target for the IR beam of light. A

test program is then loaded on the robot which runs the analog-to-digital converter

(ADC) and logs the value of each reading. The target is then slid from 10 cm to 60

cm using 5 cm increments and taking 10 samples of the ADC value. This is done for

each sensor.
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Figure 3.2: IR sensor turret assembly.

Next a curve fit line is extracted using Matlab’s polyfit. In order to maintain

accuracy, a second order curve was chosen over a linear fit.

A picture of the completed IR distance sensor turrert can be found in Figure 3.2.

3.2.3.2 Odometry Sensors

The two types of odometry sensors are wheel encoders and floor encoders. Wheel

encoders are typically used in robotic applications and simply measure how far a wheel

turns. The advantage with this system is that it is very simple and the accuracy can

be adjusted by having different encoders. The main disadvantage with this system
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is that it can not tell the difference between when the wheel is moving the robot or

when the wheel is slipping.

Floor encoder systems measure the movement of the robot with respect to the

floor. This system’s main advantage is that it does not suffer measurement errors

from the slippage of the wheel and can be very accurate. The disadvantage is that

these typically have tight tolerances on mounting distance to the floor.

For this experiment, a floor encoder system based on using optical mice was

selected. The optical mice have the advantage of converting movements of the surface

to δx and δy. The mice also have varying resolution from 1 counts per mm to 8 count

per mm. Due to the inexact nature of the mounting, a calibration procedure from

Bonarini et al in [13] is followed to mitigate any systemic errors. An image of the

optical mice mounted to the robot can be found in Figure 3.3.

3.2.3.3 Target Sensors

For simplicity, target sensors are simulated in software. The location of the target

is programmed into the code, which then has the responsibility to tell the robot when

it has found the target and where it is in relation to the robot.

3.2.4 Control System

In order to control the robots, the Gumstix platform was recommended based on

prior research and use. This platform has a few major advantages. It runs embedded

linux, has an 802.11b wireless card expansion module called Wifistix, and has a micro-

controller based expansion module called Robostix.

The Gumstix Connex 400xm was chosen to allow the use of both the Wifistix

and Robostix. This processor is a 400 MHz Intel X-Scale ARM based chip with 64MB

of RAM and 16MB of flash. The one major limitation that eventually prompted a
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Figure 3.3: Mounted optical mice and batteries.
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Figure 3.4: Wifistix (top card) and Gumstix (bottom card).

major redesign of the code is the lack of a floating point unit. More information can

be found in the software discussion in Chapter 5.

The Robostix module contains an AVR ATmega128 micro-controller designed

to drive IO and serve as either the main brains of a robot or serve as interface glue

between the Gumstix and the hardware. In this particular application, the Robostix

serves as the interfacing glue, allowing the Gumstix to send commands to the Robostix

which turns those commands into motor commands. The Robostix is also responsible

for interfacing with the sensors and sending that data back to the Gumstix.

The Wifistix is based on the Marvell DRCM81 module from Wistron NeWeb

Corporation with the Marvell 88W8385 chipset [14]. The chipset supports 802.11b/g

in both infrastructure and ad-hoc connection modes. An image of both the Gumstix

Connex and the Wifistix can be found in Figure 3.4.

The other part of the control system is a desktop computer workstation. This is

used for logging all of the communications during experimental runs, as well as giving

the robots on their initial positions and computing the poses of the robots.
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3.2.5 Batteries

To power the robots, the decision was made to use normal RC car batteries. The

selected batteries provide 7.2V at 2800 mAh. These were primarily chosen due to

familiarity and reliability. Two batteries are used per robot. One battery powers the

electronics, the sensors and the microcontroller stack, while the other powers the three

servos, two drive servos and one turret servo. An image of the batteries mounted on

the robot can be found in Figure 3.3.
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Chapter 4

The Search and Rescue Algorithm - Version 2

The Search and Rescue Algorithm version 2, SARA-2, is an outgrowth of SARA-1

[5]. Whereas SARA-1 was developed for simulation, SARA-2 is intended for appli-

cation to real hardware. During initial testing of the SARA-1 algorithm as imple-

mented on the hardware, many issues were identified that required modification of the

algorithm. This chapter will focus on those necessary modifications to the SARA-1

algorithm. An overview of an initial version of SARA-2 with limited success with a

physical single robot can be found in [15]. This work extends [15] to the multi-robot

case. First, the underlying assumptions of SARA-2 will be presented. Second, each

phase, or behavior, of the algorithm will be presented.

4.1 Assumptions

SARA-1 utilized many assumptions, including a few unrealistic assumptions

which may be acceptable in simulation but break down upon implementation in actual

hardware. The revised assumptions used in SARA-2 are:

1. All maps have a predetermined size and resolution.

2. Each robot knows the floorplan of the arena.

3. Each robot knows its starting pose in reference to some defined point on the

map.

4. All motion and sensing takes place in a two-dimensional plane.
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5. Communication is not guaranteed to be available and communication can fail,

without the robot being informed of it.

6. All obstacles are treated as boundaries. Openings are assumed to be at least 2

robot widths.

7. The target does not move.

Assumption 1 is useful for initializing map memory requirements at compile time

and reducing memory management overhead. Assumption 2 is required to assist in

small-scale localization procedures. Assumption 3 is used to enable efficient and fast

map merging between robots during communication steps. Assumption 4 is to reduce

processing and memory requirements and is a reasonable assumption made often in

the literature. Assumption 5 is made due to the random nature of the unreliable

wireless communication channel. Assumption 6 is made currently for reduced com-

plexity during the path planning and following behaviors. Assumption 7 is made to

reduce the need to continually explore previously explored spaces.

4.2 Behaviors

Each robot action falls under a category of behaviors. While these behaviors

are typically independent of each other, they serve to complement the other ac-

tions and allow the algorithm as a whole to work. Each behavior could also be

considered a mode or state of the robot. This is reflected in the software for the

Gumstix which is described in Section 5.3. There are eight different behaviors for

each robot. Many of these behaviors flow after each other automatically, but some

are optionally triggered by user oversight. These modes are: Robot initialization,

map-building, error correction and localization, map-merging, path-planning, path-

following, obstacle-avoidance, and communication. The algorithm will automatically
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run error-correction, map-merging, path-planning, obstacle-avoidance, path-following

immediately after the map-building behavior is finished.

In the SARA-2 algorithm, it is useful to consider a series of behaviors as a step.

Each step consists of the map-building, error correction, path-planning, and path-

following behaviors. Thus, one step will involve the robot building a map, correcting

sensor errors, planning and following a path to the next destination point. Then the

process will repeat with the robot performing another step and so forth until the

target is found.

4.2.1 Robot Initialization

The main requirement for SARA-2 to work is accurate knowledge of the initial

pose so that all robots can correctly merge their maps during communication stages.

Thus before the robots can search, the operator is required to tell each robot their

initial pose. Additionally, the map information must be known at run time. In the

current implementation, the map information is incorporated at compile time.

4.2.2 Map-Building

Upon initialization of the robots or arriving at the destination point, the robot

begins the map-building behavior. This involves sweeping the distance sensor turret

assembly multiple times and obtaining an average distance reading for each angle at

which the turret assembly stops. These distance and angle measurements are then

plotted on a view map which represents the area immediately around the robot. An

example view map can be found in Figure 4.1(a). Since the returned sonar data will

have sensing errors in it, the algorithm extracts line features from the individual sonar

data in the next behavior.
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4.2.3 Error-Correction and Localization

One of the dramatic limitations of the SARA-1 simulations is the inability to

model noise during the simulation runs. Even a small amount of noise in sensor

readings can result in a very inaccurate mapping.

There are many sources of errors in realistic hardware deployments. Futhermore,

many of these sources have parameters that vary over time. Bearings slowly wear over

time; lighting conditions can change from room to room; sonar signals can bounce

off a corner and give wildly inaccurate and varying data; varying levels of sunlight

can affect infrared sensors; wheel encoders can measure distance including slippage;

and optical encoders can return noisy measurements. All of these sources of errors

degrade performance of the SARA-1 algorithm in practice.

Thus methods must be developed to counteract the major sources of errors. In

experimental tests with SARA-1 deployed on robots, the greatest error occurred in

the angle of orientation of the robot. The distance-traveled sensors were properly

giving the correct distance traveled; however, due to a combination of measurement

and quantization noise, the resulting angle was often highly inaccurate. This inac-

curacy would only compound as each robot moved around the experimental field.

Consequently, the map became unusable in just a few short steps.

Since SARA-1 relies so heavily on exact position information for the merging of

the maps, localization becomes the Achilles heel of the algorithm. Thus in an effort to

reduce the orientation error, a restriction is added: the field’s walls are required to be

known. This allows the angle of the walls with respect to the robot to be determined

via the mapped data from the IR sensors mounted on the turret.
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4.2.3.1 Map Correction

In order to reduce the amount of error in the robot’s orientation angle, the

view map is further processed to extract line features that are then compared to the

expected position. In order to extract line features, line segments are created between

every distance sensor reading. Then a processes of merging close line segments is

performed. If two line segments share a common point, then the if the angle between

the two line segments is less than 45◦, the line segments are merged together. This

merging operation is performed for all line segments in the view map. An example of

the extracted lines can be found in Figure 4.1(b).

Then, the remaining line segments are parameterized via a ρ and θ form:

ρ(θ) =

(
x− dimx

2

)
cos (θ) +

(
y − dimy

2

)
sin (θ) (4.1)

where dimx and dimy are the x and y size of the view map image, respectively.

The parameterized form of the lines are then compared with the known wall

lines, which are parameterized in the same way, inside a Kalman filter described in

Section 4.2.3.3

4.2.3.2 Odometry Correction

The other major source of error comes from the odometry sensors. Since these

sensors are integrated over the entire movement phase, small variations can quickly

sum into a large error. Thus, in addition to calculation of the expected pose that

the robot is currently located at, the variance of the pose estimate is also calculated.

Should the pose’s variance exceed a certain threshold, the robot is stopped and a

localization procedure is performed. The localization procedure entails another set
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of map-building and error correction phase which are merged via the Kalman filter

described in Section 4.2.3.3.

4.2.3.3 Localization

In order to obtain an optimal position estimate, the odometry sensors and line-

feature information has to be fused. This is performed via a Kalman filter as discussed

on pages 186-190 and 227-244 in [16].

After the Kalman filter produces a pose estimate and associated variance, the

known wall lines which match with observed lines are then plotted on the view map,

as shown in Figure 4.1(c).

The robot’s field of view is added by creating a line between the center of the

view map and each point on the circle with a radius of the maximum sensing range.

The line is traversed until it finds an occupied cell or the end of the line, and then

labels all cells between the center and the current point as open. The finalized view

map as shown in Figure 4.1(d), which will be used for the merging operations.

4.2.4 Map-Merging

Once the view maps are generated by each robot then the maps can be merged

during a communication phase. Each robot’s view maps are only shared if communi-

cation occurs during this step. If communication does not occur this step, then each

robot merges just their own view map with their local map. The local map is a map

that each robot keeps of the entire field which is usually at a lower resolution than

the view map.
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(a) Example view map from direct distance
sensor readings

(b) Example view map with extracted and
merged line segments overlaid on top of the di-
rect distance sensor readings.

(c) Matched known wall lines (d) Known wall lines with field of view

Figure 4.1: View maps at various stages of processing. The robot is located at the
center of the view map.
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In the simplest case of no communication, the view map is merged with the local

map using the same probabilistic technique found in SARA-1:

LMViewMapx,y = H
(

V MViewMapi,j

)
(4.2)

topx,y =

(
LocalMapx,y

1− LocalMapx,y

)
∗

( LMViewMapx,y

1− LMViewMapx,y

)
(4.3)

CombinedMapx,y =
topx,y

1 + topx,y

(4.4)

In Equation 4.2, H represents a coordinate transformation from the view map co-

ordinate system V MViewMapi,j to the local map coordinate system, LMViewMapx,y,

where the superscripts LM and V M denote the local map and view map coordinate sys-

tems, respectively. In Equation 4.3, the variable top is used to simplify the expression

of Equation 4.4. The combination of Equations 4.3 and 4.4 result in a probabilistic

merging that will tend toward “closed”, a value of 0.9, if a closed cell is present. In the

actual implementation, the maps are implemented as 8-bit integers for computational

speed, thus the Equations 4.3 and 4.4 become:

topx,y =

(
LocalMapx,y

256− LocalMapx,y

)
∗

( LMViewMapx,y

256− LMViewMapx,y

)
(4.5)

CombinedMapx,y =
topx,y

256 + topx,y

(4.6)

This operation is done for everywhere the view map is defined in the local map’s

coordinate system. After the calculations are complete, the combined map then

becomes the local map for later use.

In the case where communication occurs, each robot first performs the merging

of their own view map. Then they process the other view maps and pose estimates

from the other robots using the same method as the single robot case. However, there
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is “ring of exclusivity,” which means that each robot will only trust its own sensors

in an area immediately around itself. Thus, it will not merge any other robot’s view

map in the area that is extremely close to it. This prevents one robot from labeling

itself as an obstacle because another robot has confused the robot for an obstacle.

(a) Robot 1’s view map. (b) Robot 2’s view map.

(c) Robot 1’s local map with exclusivity. (d) Robot 2’s local map with exclusivity.

Figure 4.2: View maps and merged local maps of two robots in a three robot test. In
the view maps, the robot is in center of image. In the local maps, the robot is in the
center of the ”ring of exclusivity”
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4.2.5 Path-Planning

The SARA-1 path-planning algorithm uses the idea of a cost map, which is a

map that is the same size of the local map and has the cost associated with going to

each pixel as the pixel’s value.

One major limitation in SARA-1 that directly affects the destination point pick-

ing and path-planning behavior is the assumption that one robot is one pixel in the

map. In this hardware testbed, the field’s wall’s thickness are much smaller than the

robot so this assumption is not feasible because any large areas of open space next

to a wall would be labelled closed. Therefore, another strategy had to be devised. If

the obstacles are enlarged to the radius of the robot, then the same path-planning

logic used in SARA-1 can be used in SARA-2 with only a minimal preprocessing of

the local map. However, if any area on the cost map is within one robot radius away

of the robot then it will not be enlarged. This is so a robot can actually plan a path

out and away from the obstacle. It is illustrated in Figure 4.3(b) where a dark circle

cuts into the rectangular white section.

Once the cost map is generated, the same method is followed as in SARA-1 to

identify destination points using frontier cells, which are separated by a minimum

distance and the cost to reach each of these frontier cells is calculated. The entire

frontier cell list is then sorted by cost. The top of the list is the new destination

point, which is the frontier cell with the lowest cost.

In the case of communication, each robot’s list of cells and associated costs is

shared between all the other robots and the entire list is then sorted. The robot

with the lowest cost wins the first destination point and any points within a certain

distance of that destination point are removed from the collective lists.
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(a) Robot 1’s cost map. (b) Robot 2’s cost map.

(c) Robot 1’s local map with exclusivity. (d) Robot 2’s local map with exclusivity.

Figure 4.3: Cost maps and corresponding local maps of two robots in a three robot
test. Robot position can be found in the darkest areas of the cost map, which corre-
spond to the least cost.

Finally, the path can actually be planned using a similar approach as SARA-1

and the modified cost map. This is accomplished by following a steepest descent

down the cost map from the destination point. If the path falls to a local minima for

a few iterations of the path building process, then it arbitrarily doubles the current

cost to push itself out of local minima until it arrives at the robot’s position.

4.2.6 Path-Following

Once the path is planned, the robot should immediately execute it via the path-

following behavior. This is accomplished by setting a maximum angle threshold. For

each odometry sensor input, the offset angle between the front of the robot and the

current path point is calculated. If this angle is greater the maximum angle threshold,
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the robot will turn until the offset angle is less than the threshold. Additionally,

another threshold called the minimum distance threshold controls the removal of path

points. If the distance between the center of the robot and the current path point

is less than the minimum distance threshold, then the robot is considered to have

arrived at the destination path point and it is removed from the path. The robot

travels towards the next point in the path list. This process is repeated until the path

is exhausted and the robot arrives at the destination point or until the robot hits an

obstacle.

4.2.7 Obstacle-Avoidance

Upon collision with an obstacle, the robot ends the movement phase of this step

and restarts the map-building behavior.

4.2.8 Communication

Communication between robots is accomplished via an IEEE 802.11b mobile ad-

hoc network, MANET . Each robot has an assigned individual IPv4 address and joins

a UDP multicast group. Communication is accomplished by sending packets to this

multicast group. This is effective due to the inherent broadcast communications that

SARA-2 requires; all robots should be aware of what the other robots are doing to

ensure their global maps are correct. In cases where all robots are not within range

of each other, then node routing becomes an interesting issue and an area for further

study.
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Chapter 5

Experimental Setup

Due to the diverse nature of the hardware platforms used, three distinct code

bases were developed to support them and the experiment. The three code-bases used

for this project are the Robostix micro-controller code, the Gumstix ARM-based code,

and the desktop base-station code. The ATmega128 micro-controller on the Robostix

is programmed using C while the Gumstix and desktop code are both C++. This

chapter is divided into four sections. The first section describes the concessions that

had to be made to obtain a usable testbed. The remaining sections describe each

code base that implements the SARA-2 algorithm.

5.1 Algorithm Concessions

In the actual implementation of SARA-2 onto low cost robots, there are two

concessions that were made to allow a usable testbed to perform tests in a reasonable

amount of time. In our implementation, the map-merging and path-planning behav-

iors take too long to perform on the robots themselves, easily taking over 5 minutes

to allow the cost map to converge. Thus, the computations are offloaded onto the

workstation and take approximately 2 seconds for all the robots. Additionally, the

issue of small-scale localization was never successfully resolved. Fundamentally, the

map based algorithm requires an accurate position estimate with which to merge the

maps. The localization methods tried could not reduce the variance to acceptable

levels with the sensors on the robots. Thus, during the tests, the robots were allowed
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to plan their destination points and the associated paths, but were manually placed

there by the test operator. The robot’s positions were then updated to their proper

position. This does not impact the fundamental question as the amount of communi-

cation and the number of robots on the team still varies and plays an important role

in the success or failure of the mission.

5.2 Robostix Software

The Robostix code is responsible for sending the PWM signals to all three servos

(IR scan turret, left drive wheel, right drive wheel) and acquiring the IR distance

sensor and PS/2 mouse data. The software initially sets up the necessary variables

and timing parameters and then enters an infinite loop, handling serial data as it

comes in and checking status flags. Each servo is controlled via a PWM register in the

ATmega128 micro-controller. Changing the value in the PWM register allows control

over forward and reverse rotational speeds of the corresponding servo. Thus, full drive

control over the robot is maintained by modifying the two PWM registers. The turret

servo is controlled via a third PWM register. Since the servo needs to have settled to

its new position before the IR sensor readings are taken, an additional timer is used

for ensuring that the servo has enough time to move and settle to its new position.

Once the turret servo has settled, the IR sensors are read via the ATmega128’s A2D

inputs. Each IR is polled four times with 32 milliseconds between readings. This

data is then sent to the Gumstix where a conversion factor determined by calibration

testing is applied to the raw data. The micro-controller polls the optical mice for

movement data every 1/8 second via Jan Pieter de Ruiter’s Atmel PS/2 library [17].

The returned three byte packets are parsed and sent to the Gumstix.
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The Robostix disables the turret servo while the robot is moving. This serves

to reduce movement errors caused by the torques exerted on the robot via the turret

servo. Once the robot stops moving, the turret is activated again.

5.3 Gumstix Software

The Gumstix code is responsible for processing the raw mouse data, extracting

robot position and keeping the robot following the planned paths. It is also responsi-

ble for sending the sensor data obtained from the Robostix back to the base station

for more efficient processing. The Gumstix code is programmed in C/C++ using

Glib for its signaling and IO monitoring system. Glib 1.2.10 was chosen due to its

inclusion into the build system of the Gumstix. Using Glib’s event loop and IO noti-

fication system allows a single threaded implementation to monitor both the wireless

network IO from other robots and the serial port IO from the Robostix. The pro-

gram is structured such that three channels are watched with corresponding functions

designed to handle the respective channels. As mentioned before, the network con-

nection is converted into a Glib channel, and a function is specified to handle parsing

of the packets and to determine if any actions should be performed. The serial port

is also monitored for communications with the Robostix with a function designed to

parse the serial stream and execute any necessary functions for the robot based on

that input. Lastly, stdin is monitored for user debugging of the code and the state of

the robot.

The Gumstix code can also be thought of as a finite state machine with a few

operating modes: Calibration, Setup, Search, and Target Found. The robot initially

boots into the setup mode. In this mode, the servos are disabled but the sensors are

initialized. For the calibration mode, the sensors are enabled, and the motors are
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put under manual user control. The search mode is the active mode, with the robot

actively scanning its sensors, transmitting data back to the base station, and driving

any paths sent from the base station. Once a robot finds the target, it is put into

Target Found mode, whereupon it shifts into a state similar to the setup mode. At

this point, the robot has effectively finished its task, but still needs to communicate

with its neighbors to help them find the target. When a robot reaches the Target

Found mode, it then tells the other robots the position of the target.

5.4 Desktop Software

The desktop code is used for data logging and for computation of the destination

point and path. The code is written using C++ and based on the gtkmm C++

wrappers for the GTK+ library. It is designed such that each robot is kept isolated in

its own class instance, referred to as the robotClass, with any communication originally

occurring between robots now taking place between the robotClass instances. In this

way, the communication aspect is preserved and can be migrated back to the robots

when more processing power is available. Additionally, this allows a variable number

of robots to be supported: it is only necessary to instantiate a new class instance per

additional robot.

The key then becomes knowing what data coming in over the network corre-

sponds to which robot. The robots communicate over an ad-hoc network via an

XML-based data format. This format was chosen since it is desirable to have all data

logged to a MySQL database, and for the to data be in a human-readable format. In

keeping with this idea, each packet is required to have a minimum of two tags. The

source tag which serves as the root element is either <r> for transmission from robot

or <b> for transmission from the base station. This is followed by the robot number
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tag <n>#</n>. If the source tag is <r>, then the robot number is the number of

the robot sending the packet. If the source tag is <b>, then it is the robot to which

the packet is to be sent. If the packet is from the base station and has a number of

zero, then all robots will listen to the data. The element names were chosen to be one

letter long in an effort to reduce the amount of data transferred while still providing

human readability. A full listing of used element tags is presented in Tables 5.1 and

5.2. Since the original implementation had all processing take place on the robots, a

sensor data element was not added to the data format. However, this information is

sent back within the debugging tag and is correctly parsed by the desktop program.

Using the source number from the robot packets, the desktop code takes the

sensor readings from each robot and distributes the data appropriately to the specific

robot class instance associated with that robot. The robotClass is responsible for

converting the raw IR sensor values to an approximate distance through a calibrated

curve fit function for use in the map-building behavior. The error-correction, map-

merging, and path-planning behaviors of the SARA-2 algorithm are performed as

described in Chapter 4.

A robot is considered to have found the target when it is within line-of-sight at

a pre-defined range.
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<r> Robot header (required)
<n> # </n> Source Robot’s Number (re-

quired)
# = integer

<L> x y theta </L> Location (optional).
<D>x y </D> Destination (optional).
<T>0</T> Target information (optional).
<T>1 x y</T> If 0, target not found.

If 1, target found.
x,y location.

<d x=# y=# w=# h=#>data</d> Map data (optional)
x = upper left x
y = upper left y
w = width
h = height
data = Base 64 encoded

binary data.
<g> string </g> debugging values (Optional).

(ignored by other robots)
<M/> Generate Destination and Path

(ignored by other robots)
Tells the base-station to gener-
ate a destination and path for the
robot.

<P/> Path received acknowledgement
(ignored by other robots).
Tells the base-station that the
robot received the previously sent
path.

</r> End of the robot packet (re-
quired).

Table 5.1: Robot to Robot/Base station packet format.
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<b> Base station header
(required).

<n> # </n> Destination Robot’s
Number (required).
# = integer.

<L> x y theta </L> Location (optional).
<T>0</T> Target information
<T>1 x y</T> (optional).

If 0, target not found.
If 1, target found.
x,y location.

<s> code </s> State to put the robot in.
(Optional).
Code: 0 Setup

1 Start Search
2 Homing

<P n=#> x0 y0 x1 y1 Path to Destination
. . .</P> (Optional).

n = the # of points in the path.
x0/y0 = the first point,
followed by subsequent points.

</b> End of the robot packet
(required).

Table 5.2: Base Station to Robot packet format.

38



Chapter 6

Results

A series of tests were performed following the SARA-2 algorithm as described

in Chapter 4 and implemented as in Chapter 5. The tests can be divided into single

robot tests, three robot tests, and five robot tests. The multiple robot tests are

divided into three sections: no communication, occasional communication, and full

communication. Communication in this context means that the view maps and the

destination points of each robot are shared during that step with the other robots.

Occasional communication means communication occurs on the first step and every

third step afterwards. Full communication means that communication occurs at every

step.

Up to three tests were performed for each run. The results are listed in Table

6.1 and plotted in Figure 6.1.

Amount of Communication
Number of Robots None Occasional Full

1 19, 20 (19.5) NA NA
3 ∞* (∞) 18, 15 (16.5) 9, 9 (9)
5 23, 18 (20.5) 16 (16) 7, 7, 8 (7.33)

*Inter-robot interference resulted in no robot finding the target.

Table 6.1: Number of Steps to find the Target. Average values are in parentheses.
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Figure 6.1: Plot showing the effect of team size and amount of communication on
average target acquisition time.

6.1 Single Robot Results

The single robot tests serve as the baseline from which to compare the effect of

cooperation and communication. The single robot case took an average of 19.5 steps.

6.2 Multiple Robot Results

6.2.1 Three Robots

For the three robot case, communication results in lower number of steps per

run. In the no communication test, the robots never found the target as they got
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stuck blocking each other. In the occasional communication test, the robots found

the target in an average of 16.5 steps. In the full communication test, the robots were

able to find the target in 9 steps every time.

For the case of no communication between robots, the robots actually interfered

with each other so much as to deadlock each other in a doorway, resulting in a

completely unsuccessful run. Further analysis reveals that many times the robots

would not see each other as the turrets turned to present their slimmest profile as

the other robot would scan that area. Additionally, the times that it did pick up the

other robots, the algorithm itself failed to adequately place the obstacles due to the

matching of the known lines only, which was done for localization purposes.

In the occasional communication runs, the robots would often interfere with each

other, especially in the beginning, to continuously block each other from moving on

that step as in the no communication test. However, a communication step would

resolve the conflict and allow the robots to plan appropriate destinations and move.

The full communication test runs resulted in a much lower number of iterations

to find the target, only 9 steps per run.

6.2.2 Five Robots

In the five robot test, much like the three robot case, increased communication

results in fewer steps per run. In the no communication test, the robots took an

average of 20.5 steps. In the occasional communication test, the robots found the

target in an average of 16 steps. In the full communication test, the robots were able

to find the target in an average of 7.5 steps.

With no communication, most of the robots deadlocked as in the three robot case,

however, one robot was successfully able to escape the traffic and find the target.
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In the occasional communication runs, the robots duplicated much of the search

effort and ended up deadlocking themselves until a communication step, in which

they were able to resolve their destinations.

In the full communications test runs, the increased number of robots ended up

not spreading out efficiently enough to explore the full area, with multiple robots

consistently grouping together. These would pick destination points that were the

minimum distance away. However, the increased number did help in that one robot

would go into the target’s room faster than in the three robot case.

42



Chapter 7

Conclusions

This chapter will consist of two sections. The first section will summarize the

results. The second section will list possible modifications for future work.

7.1 Summary

In the implementation of SARA-2, increased amount of communication serves

to dramatically decrease the number of steps required to find the target. If multiple

robots are present and no communication is available, then the robots will more often

get in each other’s way and reduce the success rate of the mission.

With occasional communication, the search effort ends up getting duplicated

often. In the steps without communication, the robots often ended up blocking each

other until a communication step occurred, which greatly increased the number of

steps required to find the target.

The full communication case consistently resulted in the lowest number of steps

to find the target. This is intuitive as the robots spread out at least as much as the

minimum distance threshold specified in Section 4.2.5.

7.2 Future Work

One of the main issues in getting SARA-2 to work well on actual hardware is the

error in the localization procedure. Small scale localization is currently not feasible

with inexpensive sensors, but improvements in this area should be studied and used
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to improve the algorithm. Extending this work to outdoor scenarios using GPS is

also suggested.

Additionally, a look at multi-hop routing protocols for the cases where robots

are out of range should be evaluated. This can be accomplished by varying the power

levels on the Wifistix card in the Linux Gumstix interface.
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