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ABSTRACT

In addressing the propensity of steel buildingatrces to experience progressive
collapse due to extreme loading conditions (elgsth current design guidelines propose
the use of a threat-independent approach thansmamly referred to in the literature as
“the missing column scenario”. Under this scenaioplumn from a given story is
assumed to be removed and the resulting structaedlyzed to determine if it could
sustain the loads by activating one or more altertwaad carrying mechanisms, with the
idea of mitigating the potential for progressiveustural collapse. This study specifically
focuses on the ability of ductile steel beams toyclads by transitioning from flexural
behavior to cable-like behavior. Theoretical funeatals of this behavior are described
for rectangular and W-shaped steel beams withimeshboundary conditions and
presumed fully ductile behavior. Two theoreticahlgsis approaches are used to model
the beam behavior: rigid-plastic analysis and cahkdysis. The main factors affecting
the behavior, such as material and geometric ptiegeas well as boundary conditions
are described and corroborating nonlinear finiearent (FE) analyses are presented and
compared to the theoretical resu@pen System for Earthquake Engineering Simulation
OpenSees was used in the FE analysis studies. Bpsadheoretical and FE analysis
results, a set of equations are proposed thateasdd to predict the deflection at the
onset of pure cable behavior.

Additionally, the effect of elastic boundary restta on the beam behavior was
studied using FE analysis. An approach to evalitdoundary restraints offered by the



surrounding members in a given frame is also ptesett is shown that axial restraints
have a much more significant effect on the behatan rotational restraints.
The theory presented in this thesis can servess fma designing ductile steel

beams undergoing transition from flexural to cadike-behavior.
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Chapter 1. INTRODUCTION

1.1 Overview

In May 16, 1968, 23-story Ronan Point Apartmentsandon, U.K partially collapsed
due to a gas explosion at thé"iBory. The loss of load—bearing precast concretésw

caused the upper floors to collapse and eventlelyo progressive collapse of the entire
corner of the building (Figure 1-1).
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Figure 1-1 Ronan Point Apartments collapse (Copyright Dagjefraph 1968:

http://apps.newham.gov.uk/History canningtown/pibdm)



Progressive collapse can be defined as an initeal [failure triggering a spread
of failure in a disproportionately large part oétstructure. There has been a considerable
effort to develop design guidelines and criterigéarease or eliminate the vulnerability
of buildings to this kind of failure (Nair 2004)h&se efforts usually have tended to
concentrate on ensuring a level of redundancy jrmoity and ductility in buildings to
prevent such a collapse in case of a local failure.

One of the main methods of analysis for desigmnsg@rogressive collapse in
current design guidelines involves the so-callegs&mng column scenario”. In this
method, a designated column from a given floowyjshotetically removed and the
damaged system is expected to bridge over the bbare the removed column (Figure
1-2(a)). With this “immaculate” removal of the coln, the structure seeks an alternate
path to re-distribute the loads without failure.eQnf the key load-resisting mechanisms
that is believed to assist the damaged systemhieathis is often referred to as
“Catenary Action”. As illustrated in Figure 1-2 (lthe beam cannot resist the vertical
loads with flexural action alone and the new eduiilim state is reached by development
of axial catenary forces through a formation otoatry—like mechanism (Figure 1-2 (c))
(Khandelwal and EI-Tawil 2007).

In spite of many debates, this formation is wideted in most common
progressive collapse design guidelines. For exarmptayressive Collapse Analysis and
Design Guidelines for New Federal Office Buildiraggl Major Modernization Projects
(GSA 2003) clearly states that the capability @f tkeam or girder to accommodate the

“double span condition” resulting from the misstwjumn scenario is essential.
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Figure 1-2 Load-resisting mechanism upon column removal
(Adopted from Hamburger and Whittaker 2004)

The term “catenary” refers to a theoretical curskdpe of a hanging chain or
flexible wire supported at the ends under its ovemght (Weisstein 2009). However, it is
evident from Figure 1-2 (c) that the shape is nlieea cable subjected to a concentrated

load at midspan. Therefore, “cable—like actionéamsidered more rigorous describing
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this behavior. However, since the terminology “caiy action” is widely used, the

words “cable” and “catenary” are used interchanbetidvoughout this study.

1.2 Motivation

Current design guidelines provide a number of pretee methods to prevent or
limit this failure by progressive collapse. Howeuvdie theory behind the key load
resisting mechanism of beams resulting from “dowipl@n condition” remains poorly
understood and has not been rigorously studied.

The study presented in this thesis is intendect@ldp a rigorous description of
the fundamental behavior of ductile steel beam®rgaing a transition from a flexural to

a cable-like behavior, as illustrated in Figure.1-2

1.3 Research Objectives and Scope

The overall objectives of this study are as follows

= Develop rigorous theoretical models that desciigeltehavior of ductile steel beams
undergoing a transition from flexural to cable-likehavior.

= Develop analytical models that can be used to et@land assess the theoretical
models as well as help identify the main parametffesting the behavior.

= Assess the effect of boundary conditions on thexbiein.

The scope of this study is limited to ductile steedms with idealized boundary
conditions. Factors related to the potential fetability, fracture and connection
behavior are beyond the scope of this researthbklieved that a thorough
understanding of the behavior at this fundameetadllis essential to understanding the

behavior in the presence of other complex factors.
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The idealized boundary conditions used include Enfplly fixed and partially
restrained supports. Theoretical models are deedléqr the first two support types
whereas finite element (FE) analysis is used fasugdport types. Studies related to the

effect of partially restrained supports are limiteclastic boundary conditions.

1.4 Approach

The beam over which the remaining structural systedesired to bridge upon
removal of a supporting column is isolated and nextievith idealized boundary
conditions to study fundamental behavior. Two tleéoal approaches are used to model
the beam behavior: rigid-plastic analysis and cahkdysis. Rigid-plastic analysis
assumes that the beam behaves rigidly until a fexaollapse mechanism is reached,
whereas cable analysis assumes that the beam oioefan any flexural resistance.
These two theoretical models will serve as bouodbke actual behavior.

In order to verify the theoretical results from th® approaches mentioned above,
preliminary FE analyses were conducted. Following $tudy, another parametric FE
analysis was conducted in order to identify themfactors affecting the behavior.

OpenSees (McKenna et al. 2000pen System for Earthquake Engineering

Simulationsoftware was used in the FE analyses.

1.5 Organization of Thesis

Chapter 2 provides background information includicyrent methodologies
used for design against progressive collapse, @igéen of recent relevant research
studies and a review of rigid-plastic analysis prhae. Chapter 3 presents theoretical

results using rigid-plastic and cable analysesaf&lysis results are presented in Chapter
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4. In Chapter 5, an equation is developed and exgpthat can be used to predict the
midspan deflection at the onset of pure cable hehawn Chapter 6, the effect of elastic
boundary conditions on the beam behavior is ingastid. Finally, a summary of the
study, along with conclusions and recommendation$uture directions, are provided in

Chapter 7.

1.6 Notation

The notation used in this thesis folloAESC Steel Construction Manuali&dition

(2005) and is listed in Appendix A.



Chapter 2. BACKGROUND

2.1 Introduction

Progressive collapse is a failure mode that maynlyt occur unexpectedly in buildings
but can also be seen in building demolitions (Bazaan Verdure 2007). Due to the
relative rareness of the events and situationsctnzde progressive collapse, it is one of
the least researched areas in structural engige@viohamed 2006 ASCE Standard 7
(ASCE 2005) defines progressive collapse as “Theagpof an initial failure from
element to element, eventually resulting in theéagrsle of entire structure or a
disproportionately large part of it”. The keywordisproportionate” is widely adopted
since the resulting collapse is generally out opprtion to the initial failure.

The Ronan Point apartment collapse (Figure 1-a)ladmark case of this
phenomenon in recent history that instigated cd@mges. In fact, a reform in British
codes started in early 1970’s and has been intelysigferenced in literature produced in
the U. S. (Mohamed 2006). Despite the fact thaeeamgerest hascontinued throughout
the decades, the majority of resources were degdldpring the first several years after
this event. A second increase in interest was axbby the attack on the Alfred P.
Murrah Federal Building in 1995. Various reportg@produced to investigate the
damage and progressive collapse of the buildingdasdyn—specific recommendations
were provided. Now, the interest has reached && pevel after 9 / 11 tragedy occurred
in New York in 2001 (Dusenberry 2002).
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A comprehensive survey of all the efforts mentioabdve is beyond the scope of
this study. Therefore, a brief review of common$ed concepts and approach methods
for design against progressive collapse is predant8ection 2.2. Recent relevant
research is reviewed in Section 2.3. Finally, aee\of rigid—plastic analysis of beams

undergoing finite displacements as provided by ¢h689) is presented in Section 2.4.

2.2 Existing Methodologies for Design against Progresse Collapse

It is usually not practical to design a structwran abnormal loading condition
unless it is a special protective system. Neveeigllocal failure effects and progressive
collapse can be limited or mitigated by taking prg@ns in the design process (ASCE
2005).

There exist a considerable amount of referencerdeants that address the problem
of progressive collapse. However, most common pugactor codes and standards
largely regard general structural integrity andgoessive collapse in a qualitative
manner, whereas governmental documents explidiiflyess the issue (Dusenberry
2002). In fact, a good engineering judgment, dearph construction practices in order
for increased structural robustness and integréyaaldressed in a number of standards
(Ellingwood et al. 2007). The most commonly usegdrapches for design against
progressive collapse are indirect and direct desigthods. In general, the indirect
design method is a prescriptive method that reguarminimum level of connectivity
between the structural members. Direct designherother hand, largely depends on
structural analysis to ensure that the structwsistean abnormal event (Ellingwood et al.

2007).



The following sections provide a review of these twethods with an emphasis on

steel structures for the purpose of this study.

2.2.1 Indirect Method

Indirect design refers to implicit considerationse taken during the design
process for resistance to progressive collapsedansiof requiring minimum levels of
strength, continuity and ductility (ASCE 2005). Tinain purpose of those provisions is
to provide an alternate path within the structoreetdistribute the loads in case of an
abnormal loading condition. ASCE 7-05 gives théofeing key concepts to be
considered for improving general structural intggri
= Good plan layout
»= Provide integrated ties among the principal elesaiithin the structures
*= Returns on walls
= Changing directions of floor spans
= Usage of load-bearing interior partitions
= Catenary action of floor framing (slab)
= Beam action of walls
= Ductile detailing
= Consideration of load reversals
= Compartmentalized construction

While most of practices listed above may be comsilias examples of
precautions to be considered in the design protdessecond concept, which is

commonly referred to as the “Tie Force Method” wasoduced in British codes after



Ronan Point collapse and then was adopted by sbthe governmental bodies in the U.
S. In this approach, both vertical and horizontahtbers in buildings are desired to be
tied together at each principal floor level assthated in Figure 2-1. Furthermore, these
tensile tie forces are typically provided by themeénts and their connections within the
structure that are designed conventionally (UFC5200he types of ties are peripheral,

internal, horizontal and vertical ties (Figure 2-1)

Corner
Column
Ties

Internal Ties
(dotted lines)

Horizontal Tie to

External Column ' '
or Wall

oy - = oo - -

Peripheral Tie Vertical

(dashed lines) Tie

Figure 2-1 Schematic of Tie Forces in a Frame Structure (U652

The only standard that explicitly utilizes this apgch in the U. S. is the
Department of Defense document: Unified Facilizgeria (UFC)Design of Buildings

to Resist Progressive Collapg2005). It is noted that the tie force requirenseare
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almost identical to British Standards, and it isussed that they are applicable to U. S.
construction. Tie force requirements in variousgleguidelines are summarized in
Table 2-1; the loads generally need not be constblas additive to other loads (e. g.
dead and live loads).

Even though the tie approach does not incorpondmsive calculations of the
structural response to extreme load conditionsavides a reserve capacity to members
and connections within reinforced concrete and-stieaned structures through either
flexure or membrane action. This event-independpptoach is relatively easy to apply
and convenient for all projects (Ellingwood et2007).

The mechanics behind this approach are not welbed. In fact, the
fundamental assumption for the efficiency of thistihhod is that the structural members
and their connections have sufficient rotationadtiity to develop axial capacity in the
form of catenary action under large deflections f(dhand and Alfawakhiri 2005). For
the purpose of this study, horizontal tie forceuisgments which pertain to beams and
girders will be thoroughly presented. Accordingetbngwood et al. (2007), the form of
horizontal steel tie force requirement given in UR005) and British Code (BS 5950-|
2000) as detailed in Table 2-1 can simply be obthinith use of the one—half beam
shown in Figure 2-2 in the following way: in cadeaaccolumn removal, the span length is
now doubled and the slab hangs in a catenary shdipe@ maximum sag & (denoted
by Sin Figure 2-2). In addition to vertical reacticaitsthe ends, horizontal

reaction forcd= must also be developed. Therefore, the momentilegum requires:

wl{2L)?
8

Fa= [2.1]
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wherew is load per unit length, is the bay length. The magnitude of the horizontal
force reactions that must be provided by ties, Wwahsverse spacirgycan be expressed
as:

qlslL
2[{alL)

[2.2]

whereq is the floor load (i.eq :v:v

)

UFC (2005) points out that the theory behind tloiscept is based on research
conducted by Burnett (1975), who discussed theclagd theoretical background used to
develop the British tie force requirements. Howetee details are limited to reinforced
concrete structures and similar descriptions weteevealed for steel design in the
development of UFC (2005). An illustration of thiiscussion is given in Figure 2-2.

Fr in Table 2-1 and Figure 2-2 is defined as “Bagrei®th” and according to
UFC (2005), the upper limit (60 kN / m) can be afa from two cases. The first
method is to considéfras the internal member force developed by catemetign of the
floor in case a vertical load bearing element moeed to produce a presumed transverse
deflection of 10% of the span length (Figure 212)e second method for determiniRg
is to consider the forces applied to a typical walhel under a static pressure of 34
kN/m? (5 psi), which is thought to be the overpressuag ticcurred in the Ronan Point
explosion. The first approach (catenary actionhésmechanism that the tie forces are
intended to withstand based on the debates witisBrengineers (UFC 2005). It should
be noted thafE provided to obtain the form of steel tie forceuiggments (Equation 2.2)
has units of force and should not be confused R4itiorce per unit length) in the

context of calculations for reinforced concretga®n in Figure 2-2.
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Table 2-1Strength of Ties (Ellingwood et al. 2007)

BS Steel 2000 BS Concrete 1997 BS Masonry 1992 Eurocode 2-2002 PCI1976

Interior Greater of Greater of F, or Fioo i = 20 KN/m. Horizontal

g +4; f_r F G +0; L_a £ KN/m For ties grouped at =22 kKN/m
05(1l4g.+ 75 5 ° 75 5t beam lines: (1500 Ib/ft)
1.6q;)s,L=75kN or 1.0 F,, where F,= Sae=(hth) q4/2

the lesser of (20 + 4 < g5 where

#1g) or 60 kN qs=20kN/m and g;

=70 kN

Peripheral Fioper=lLiqs<qq

1.0F, F, kN where =71 kN
025 (14g, + g;=10kN/mand g; | (16 000 Ib)
1.6q;) s,L 275 kN =70kN
Edge Columns
1 % of the maximum Greater of Lesser of 2 F, or Fiocot =150kN
factored vertical dead 2.0 F,or (h/2.5) F, kN

and imposed load in
the column adjacent to
that level or same as
for interior ties,
whichever is more.

(I./2.5) F,if less], or 3
% of total ultimate
vertical load carried
by column at that level

Corner Columns

Same as for edge
columns, but in 2

Corner columns
should be tied in two

perpendicular directions.
directions
Walls Greater of Lesser of 2 F,or (h Fias. fugade = 2.5 % of service
[2.0 F,or /2.5) F,kN/m 20 kN/m load
(I./2.5) F, per meter if on wall, but
less], or =22 kN/m
3 % of the total (1500 Ib/ft)
ultimate vertical load
carried by the wall at
that level
Vertical Greater of
Largest factored Maximum design 344 | By V N per
vertical dead and ultimate dead and 80001 1 ) = 44 KN/m
imposed load reaction | imposed load received | column or .
lied to the col by the column fr (3000 Ib/ft)
applied to the column v the column from 100 KN/m of wall of wall

at a single floor level

any one story

length

A = horizontal cross sectional area of column or wall;
g, Gy, = characteristic dead load per unit area of the floor or roof;

i = clear story height;

hg = clear height of a column or wall between restraining surfaces;

L =span;

L, = the lesser of: 5 &, or the greatest distance in the direction of the tie, between the centers of columns or other vertical

loadbearing members, whether this distance is spanned by a single slab or by a system of beams and slabs;

I; = length of end span;

I1, I, = span length of floor slabs on either side of the beam;

g, N; = number of stories including ground and basement;

gk, Or = characteristic imposed floor or roof load per unit area;

s, = mean transverse spacing of the ties adjacent to that being checked:
¢ = thickness of column or wall.

13
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- - - \ i i

Eloment to ba removed

A =5 m (17 Ft] A =5 m 17 Ft)

e [ N

S, assumed 10% of the span (24

Typical British Construction circa 1970:

A=5m (17 ft)
S=A/5

D=3.6 kN/m? (75 psf)
L=3.6 kN/m? (75 psf)

Thus, Fi=60 kN/m (4.1 kip/ft or 13.5 kip/3.3-ft)

Figure 2-2 Calculation of Upper Bound on the Basic StrengtRQ2005)

There has been same discussion of the approxireéieetion level to use in the
calculation of the tie force requirements; beam slat tests conducted by Creasy (1972)

suggested that the sag of the double span ovenigsed support should not exceed 20%
14



of single span length. However, Breen (1980) stdtatthe British calculations are
based ora / Lof 0.15. For steel buildings, on the other handrdland and Alfawakhiri
(2005) claim that the required tie forces specifigdiesign guidelines are “minimum”

catenary forces that develop under a sag of 1Gpeof “double span”.

2.2.2 Direct Methods

Direct design is an explicit consideration of aisture’s resistance to progressive
collapse and damage absorption ability during #sgh phase. It consists of two
approaches: Specific Local Resistance (SLR) anerAdtte Path Method (APM). The
first refers to providing adequate strength tostesn extreme loading condition and
requires that the triggering event be identifiedrsolocal resistance can be related to a
particular limit state (Krauthammer et al. 2002kefnate Path Method, on the other
hand, allows for local failure but requires theikaklity of alternate load paths to re-

distribute the loads within the remaining struct(th&CE 2005).

2.2.2.1 Specific Local Resistance (SLR)

SLR approach implies the design of critical veitioad bearing elements to a
specific threat. These critical elements are ofedarred as “key elements” and are
explicitly designed to withstand abnormal load dtinds (e.g., blast pressure).
Therefore, this approach is threat — dependenh@ood et al. 2007).

ASCE Standard JASCE 2005) provides the following load combinatdo
check the capacity of a structure or structurahelet to resist an abnormal event:
= 12D+ A+ (0.5L or 0.2S + 0.2W) [2.3]

= (0.90r1.2)D+ A+0.2W [2.4]
15



whereAgrepresents extreme load condition such as blasspre and, L, S W
represents dead load, live load, snow load, wiad,loespectively.

In spite of many debates regarding this methoalee of the difficulties in
defining the magnitude of the extreme event, thgreach is relatively less expensive in
many cases (Mohamed 2006). In fact, this appraaoiftén considered to be more
practical for retrofitting an existing structurechese the cost might be significant to have

the structure meet the requirements of other apgpesa(Ellingwood et al. 2007).

2.2.2.2 Alternate Path Method (APM)

The Alternate Path Method (APM) is based on suppglyn alternate load path in
order to limit the local damage and prevent ma@iapse in case of a local failure
(Khandelwal and El-Tawil 2007). This threat — indedent method addresses the
performance of the structure after some elemeets@npromised. It is performed by
assuming that the primary structural elements, exgtiplly one element at a time, are
rendered ineffective and investigating the consegsieuctural behavior (Dusenberry
2002). The APM relies on continuity and ductilityredistribute the forces in case of a
local damage. Therefore, APM attracts people bectheslimit state considered is
explicitly related to overall structural performanand, in contrast to SLR method, the
triggering event does not need to be identifiecsigally (Krauthammer et al. 2002)

In this methodology, key structural elements @gtly a column or wall), are
hypothetically removed and the structure is anaypeevaluate its capacity to bridge
over that removed member (Marchand and Alfawalttifi4). Therefore, it is important

that beams and floor girders are able to at leasiramodate the double span condition.
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This necessitates not only beam-to-beam contirwityalso requires that girders and
beams deflect further than their elastic limitlextire without undergoing structural
collapse across the removed element (GSA 2003).

Even though it is not likely to occur in an actesaént, the vertical load bearing
elements are notionally removed without degradaiotme abilities of the joint above
the removed member. This so called “immaculate k&fias not necessarily intended to
represent an actual event (UFC 2005). The remawakgure, as well as the response of
the framing scheme, after loss of primary columppsut in a traditional moment frame

is illustrated in Figures 2-3 and 2-4.

Figure 2-3Removal of Column (UFC 2005)
17



Insufficient strength of column core subjected to
concentrated forces (e.g., web crippling, yielding,
buckling, and flange local bending) precludes beam-
to-beam continuity across the column.

Tl - L \ /] |

Premature brittle T— ﬁ | ===§
fracture impedes plastic )
hinge formation. l || SECTION B-B
r Double span condition A_’
il = —— - Ay =" — - 1
A VA i

A -~

“H-.B_J}_g:_:g‘lf\#"z.__g_l,i e

\, ¥, Weak panel zone
Weak panel zone M-
shear failure impedes noon
P oo Column core

plastic hinge formation. ” :: tension field

n Wy
Removed/damaged

column

Figure 2-4 Double Span Condition in a Traditional Moment Feaf@SA 2003)

A theoretical damage state as depicted in FigtBes2assumed in the application
of APM and all other damages that may occur asaltref loss of vertical support are
ignored. The transition is assumed to be instaoiaand dynamic effects are
considered depending on the analysis procedure(&digtywood et al. 2007). The
following analysis procedures can be conducted:
= Linear Static
= Nonlinear Static
= Linear Dynamic

= Nonlinear Dynamic

18



Vertical member removal considerations are genecalinmon. Interior and
exterior considerations are illustrated in Figw® &r framed structures. A similar but

more detailed set of considerations are also d@laifar shear / load bearing structures.

Interior Considerations

I Analyze for the instantaneous loss of 1
columnthat extends from the floor of the
underground parking area or uncontrolled
public ground floor area to the next floor
(1 story). The column considered should
be interior to the perimeter column lines. ., 1

Plan
View
Exterior Considerations

1 Analyze for the instantancous loss ofa
column for one floor above grade (1 story)
located at or near the middle of the short

side of the building. i
2 Analyze for the instantaneous loss of a / T

column for one floor above grade (1 story)
located at or near the middle of the long
side of the building.

3 Analyze for the instantaneous loss of a Plan
column for one floor above grade (1 story) — View
located at the corner of the building.

Figure 2-5Element Removal Considerations for Framed StredfGiSA 2003)

Load combinations used for this method in diffémndelines are summarized in
Table 2-2. It can be seen that a factor 2.0 is us&bD UFC 4-023-03 (2005) and GSA
(2003) when a linear-static analysis is perfornigmlvell (2005) states that the maximum
deflection for a linear structure is twice the istaeflection, therefore, an “impact” or
“load amplification” factor is commonly used in thgisting design guidelines. There has

been a significant amount of effort on progressiokapse assessment of both RC and
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steel-framed buildings using these different anslysocedures. Advantages and

disadvantages of each are discussed in detail wglP(2005).

Table 2-2Load Combinations for Progressive Collapse Analysis

(Ellingwood et al. 2007)

Standards

Load combinations after notional member removal

BS

(1£0.5)D+L/3+ W, /3

Eurocode 2003 draft

Canada 1977

D+LA+W,/3

ASCE 7-98. 02. 05

(090r1.2) D+(0.5Lor0.25)+0.2 W, (with member removal)
12D+ A4;+(0.5Lor0.25) (specific local resistance method)
(090r1.2) D+ A4;+0.2 W,  (specific local resistance method)

DOD UFC 4-010-01

D+0.5L net floor uplift

DOD UFC 4-023-03

D+05L net floor uplift
(090r1.2)D+(0.5Lor0.2S)+ 0.2 W, (nonlinear dynamic analysis)
20[(090r1.2) D+(0.5Lor0.25)]+0.2 W (static analysis)

NYC 1998, 2003

2D+025L+02W,

GSA

2(D+0.25L)  static analysis
D+025L dynamic analysis

Sweden

Gy + YO

D, L, W,, §=dead, live, wind and snow loads:
Q. = characteristic value of accidental action;
Gy, Oy = characteristic dead. imposed loads per unit area of the floor or roof;

¥ is a load reduction factor which, when multiplied with Q.
gives the frequent value of a variable action.

Ay = extraordinary load.

Two governmental documents in the U. S. expliaie this methodology.

Department of Defense’s; Unified Facilities Crise(UFC)Design of Buildings to Resist

Progressive Collapsg005) andProgressive Collapse Analysis and Design Guidelines

for New Federal Office Buildings and Major Modemation Projectsdeveloped by the

General Services Administration (GSA) (2003). Hoaracceptance criteria used in the

process vary in each. UFC (2005) usead and Resistance Factor Design (LRFD)
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methodology and refers to material specific codeer@as GSA (2003) provides its own
procedure.

In addition to the acceptance criteria for struatmembers and their connections,
regardless of the analytical method used, it isired that the designer quantify
structural damage during and at the end of theyarsalTable 2-3 provides the damage

definitions and limits stipulated by various desggndelines.

Table 2-3Definition of Local Collapse (Ellingwood et al. ZD0

BS 5950-1:
2000

Canada -NBCC 1977

NYC 1998,
2003

DOD UFC 4-023-03
2005

GSA 2003

Horizontal Spr:

ead

Lesser of 15 %
of floor or roof
area or 100 m”

(1000 ft).

Truss. beam, floor strip
or floor panel of initial
damage plus one same
on either side; one bay;
two bay-sized slabs
may hang together as a
catenary it support at
one end of slab is
removed.

Lesser of 20 %
of floor or roof
area or

1000 ft’

(100 mh).

Exterior: Damage to
floor above lost
member shall be lesser
of 70 m* (750 ft) or 15
% of total floor area:
Interior: Lesser of

140 m” (1500 ft*) or 30
% of total floor area.
Damage must not
spread beyond structure
tributary to failed
element (exterior) or
beyond the bays
adjacent to removed
element (interior).

The structural bay
associated with the
removed member.

Vertical Spread

Level of initial
damage, plus
one adjacent
level., either

above or below.

Level of initial damage,

plus one adjacent level,
either above or below.

< 3 stories

Floor directly beneath
failed element should
not fail

1800 ft* (170 m%) at
the floor directly above
a removed exterior
column; or 3600 ft?
(330 m?) at the floor
directly above a
removed intrerior
column.

2.3 Recent Relevant Research

“Structural integrity” is a trendy term that proregtimportant arguments

regarding inclusion of provisions into design cottesthe purpose of enhanced structural
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robustness (Gustafson 2009). After the SeptemB®attacks, research interest in
progressive collapse intensified. Because of tble ¢td design—specific provisions in
existing codes, a majority of recent consideratiogage more likely been intended to find
quick answers for structural design practice.

For design of structural steel buildings, AISC pablished “Fact for Steel
Buildings 2:Blast and Progressive Collagsey Marchand and Alfawakhiri (2005). The
need for careful research is highlighted in redardssessing weather or not beams and
their connections as currently designed have adegaohustness to develop imperative
plastic rotations and large tensile forces duriaggcary action, which is considered to be
promising for steel structure design (Hamburger\afiattaker, 2004).

Foley et al. (2007) investigated the level of rdhass that structural steel
buildings naturally possess. An application of Miternate Path Method for steel
moment resisting frames with varying number ofistrs presented; the inherent
robustness is evaluated by means of assessingahferce demands in members and
their connections after loss of an exterior columraddition, the study goes beyond
framework analysis, and the effect of catenaryraedhbrane action in floor systems is
investigated for more accurate quantification dfustness. Gravity load analyses of
various floor sub-assemblages are performed asguiirfixity at the perimeter of the
panels. Recommendations are made for detailingaeraions to provide inherent
robustness enhancement for structural systems.

The question of the reliability of catenary acttorredistribute forces resulting
from column damage has been studied on partictriactaral systems. A case study of a
steel-framed building was performed by Byfield &atamasivam (2007) with regard to
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the ability of beams to exhibit catenary behavidre results showed that industry
standard simple beam—column connections have inategluctility to exhibit large

floor displacements during catenary action. Furtieee, the absence of rotation capacity
in the tie force method is emphasized and the edfieprying action is also underlined in
regard to the connection performance.

Due to the natural toughness of earthquake resistenstruction, which
contributes to alternate load paths and distriloytowidespread notion has arisen that
earthquake resistant design will improve collagsestance (Khandelwal and EI-Tawil
2007). To that end, a research study was carriedykl-Tawil and his co-workers to
investigate the collapse behavior of seismicallgigieed steel moment resisting frames
and connections. Sub- assemblages of an eight-sgpegial moment resisting perimeter
frame were taken under investigation, which is Widessed in the U.S. west coast. The
effect of a number of key design variables on aatgaction formation was investigated
and the results indicated that connection dugtitd strength are adversely affected by
an increase in beam depth and YUSR (yield to uténs&rength ratio). A set of practical
implications are also provided based on numergstlilts. However, it should be
remarked that the boundary conditions considerddarsub—assemblages involved
seismic behavior characteristics which may not seaely reflect actual behavior. The
ensuing effort of this group focused on the develept of computationally adequate, so-
called “macro models” to investigate progressivibapse resistance of seismically
designed moment frame buildings including RC aeeélsframed structures (Khandelwal

et al. 2008).
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As far as recent demand to incorporate design{specovisions into building
codes, the upcomingternational Building Codé€IBC) will include new section for
structural integrity. Gustafson (2009) presentséhsgew provisions with an emphasis on
structural steel requirements. According to Gusta{2009), minimum connection
requirements for beams are as follows:

“End connections of all beams and girders shaleha minimum nominal axial
tensile strength equal to the required verticabsls&rength for Allowable Strength
Design (ASD) or 2/3 of the required shear strerigth.oad and Resistance Factor
Design (LRFD) but not less than 10 kips (45 kN)x e purpose of this section,
the shear force and the axial tensile force ne¢tb@considered to act
simultaneously.”

It is emphasized that based on the last sentenite glection provided above, the
proposed procedure is to design the beam end ciimmeonventionally and then to
check for the horizontal force required. Moreovhis force is not intended to be the
force that is required to be redistributed withie structure (Gustafson, 2009). Instead, it
can be considered as a minimum level of struciatagrity within the structure.

Finally, the behavior of axially-restrained beasubjected to extreme transverse
loading was studied by Izzuddin (2005), focusingstatic response under ambient and
elevated temperature in which beams exhibit laigglacements and develop axial
forces. However, the model developed in this stusld a linear idealization of the yield
condition under combined bending moment and awriaef. Thus, the behavior of W—

shaped beams could not be described rigorously.
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2.4 Static Plastic Behavior of Simple Beams

Static plastic behavior of a centrally-loaded sienpéam with a rectangular cross-
section experiencing finite, but not necessaritgéa displacements was presented by
Jones (1989). Due to its relevance, for the purpo$¢he study presented in this thesis,

the procedure employed by Jones (1989) is review#te remainder of this chapter.

2.4.1 Rigid-Plastic Behavior

Elastic-perfectly plastic and rigid perfectly piastiealizations on a material
(stress versus strain) level are depicted in FiguBga). The corresponding idealizations
on the cross-sectional level (moment versus curgaare shown in Figure 2-6 (b). Jones
(1989) used the rigid-perfectly plastic idealizatmn a cross-sectional level for his
analyses, so the effect of elastic deformatioriiglig ignored. In other words, no cross-
sectional deformations occur until a plastic hifgens (e.g., when the moment at any
section reaches the plastic momdwfor the case shown in Figure 2-7). Once a flexural
collapse mechanism is reached, the beam stareflertd As transverse deflection

increases, the beam starts to develop axial fofees, discussed next.
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Figure 2-6 Behavior Idealizations (Jones 1989)

2.4.2 Effect of Finite Displacements

Conventional beam theory is developed assumingl shisplacements, and hence
it is possible to write the equilibrium equations the undeformed original shape. For
the case illustrated in Figure 2-7, the line thitotlge longitudinal axis of the beam needs
to be longer in the deflected shape configuratioa @ finite transverse displacements,
W. This extension results in development of an ssti@in and an associated axial force,
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N (Jones 1989). As a result, the load carrying aapacreases beyond the plastic
collapse load as will be shown later. To desciiitie Ibehavior, a yield condition for

combined bending momem¥ and axial forcelN needs to be obtained, as presented in the

following section.

X

Figure 2-7 Centrally Loaded Simple Beam under Finite Displagets

2.4.3 M-N Interaction at Cross-Sectional Level

For combined bending momeM, and axial forcelN on a rectangular cross-
section, with the aid of Figure 2-8, the followilgN interaction equation that defines

the yield condition can be derived:

M N i
—+|— =1 [25]
M p NP

where N, is the plastic axial force anidl | is the plastic bending moment.

A graphical representation of this equation isvaiha Figure 2-9.
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(a) Cross-Section

(b) Stress distribution associated under pureiplagnding momenM
(c) Stress distribution associated under pureiplagtal forceN,

(d) Stress distribution associated with combikedndN
(e)-(f) Stress distribution associated withandN respectively

(g) Strain distribution across the depth due tostiness distribution indj

Figure 2-8 Combination of Axial force and Moment on a Rigiddieetly Plastic Beam

with a Rectangular Cross-section (Jones 1989)
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Figure 2-9Yield Condition Relatingl andN required for a Rectangular Cross-

Section

When a flexural mechanism forms, transverse deflestresult in an axial force,
N and yielding is now controlled by combinktandN, as indicated in Figure 2-8. As
transverse deflection increases, the plastic nleastia keeps migrating upwards across
the depth and yielding follows the path shown igufé 2-9 until it is dominated purely
by N.
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2.4.4 Equilibrium Equations

Under finite displacements, governing equilibriuquations need to be written
on the deformed configuration. Jones (1989) ilatss the infinitesimal free body of a
beam under generalized transverse loads as showgure 2-10.
Horizontal equilibrium requires:

daN _, [2.6]
dx

which means that membrane foldés constant throughout the beam
Moment equilibrium requires:

dM
5 =9 [2.7]

Transverse equilibrium requires:

(Z—Q+d(NdW/dx)/dx+q:O [2.8]
X

Figure 2-10Element of a eam subjected to loads which profinde transverse

displacements (Jones 1989)
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By careful inspection, it can be shown the equsti@bove as derived by Jones
(1989) assume the following:
= sind=0, cos¥ =1 for horizontal and moment equilibrium

= sind=6 cox¥=1 for vertical equilibrium

2.4.5 Deflected Shape Configuration
The deflected shape (Figure 2-7) can be represastadunction ok using:

-wl1-%
W—W(l Lj [2.9]

The change in length in the longitudinal axis &f beamAL is given as:
AL:ZEKE W)’ - L] [2.10]
The corresponding axial strainpver a single plastic hinge of lengthat midspan is

given as:

E= 2L[[1+ VLL;} —1]/I [2.11]

Expanding the Equation 2.11 using the binomial teeoand neglecting powers

W 2
of(rj greater than two, results in:

{2

Then, the axial strain rate,, the first derivative of Equation 2.12 with respectime, is

given as:
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ANVW
L

E=

[2.13]

Secondly, the change in angle over a midspan plastge length of, the

associated curvature rate,is given as:

k=2 [2.14]
L

From the Equations 2-13 and 2.14 it can be shoan th

&K =W [2.15]

2.4.6 Load-Deflection

With the use of the previously presented concepdsasgsociated derivations,
expressions for internal forces and external leadws deflection of the beam shown in
Figure 2-7 can be derived. A stepwise presentatiadhe procedure and resulting
graphical illustration of behavior will also be prded.

Expressions for internal forcell(@ndN) and then external forc®) as a function
of transverse deflectiohy will be derived. Once the expressionsKbandN are
obtained, substitution of these equations intoytblel condition defined in Equation 2.5
results in normalized load carrying capachky/(P:) as a function o¥V, whereP. is the
plastic collapse load.
= Expressions for axial forcé\:

Axial forces are derived with use of the deflectbédpe configuration (Figure 2-7)
as well as a stress / strain profile illustratedrahe depth of rectangular cross-section
(Figure 2-8). It is evident from Figure 2-8(f):
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N o g [2.16]
NP

where,

N, :ay[b[d [2.17]
Figure 2-8(g) suggests:

. . . . d

£=k(nd-d/2) or 5//(:(2/7—1)5 [2.18]
Where:s, is the axial strain rate at the centroidal axig associated' is the curvature

rate.

Substituting Equation 2.1i6to 2.18 yields:

o e d N

&Kk =(=)(— 2.19
(2)(Np) [2.19]

which, when combined with Equation 2.15, gives:

for O<sW<

2N
5 [2.20]

N

N
NP
Equation 2.20 indicates that at zero deflectioa,akial forceN is zero. As the

beam deflects, plastic flow begins at PointM=M ) shown in Figure 2-11 and goes

through the yield curve until it reaches to thdyfplastic phase whef¢ = N S at a

deflection ofW =d /2 (Point C). Therefore:

ﬁz1 for Wz9 [2.21]
N, 2

The solid arrows shown in Figure 2-11 represeaigéneralized strain rate vector

which is normal to the yield surface due to thenmality requirement of plasticity. At
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point C, Equation 2-15 still controls the behaaad the generalized strain vector rotates
toward the N-axis a#/ increases beyond d / 2 (Jones 1989).
= Expressions for bending MomeM;

Bending moment is derived with use of the equilibriequations presented in
Section 2.4.4. The governing equation for the beaawn in Figure 2-7 is obtained by

substituting Equation 2.7 into 2.8 with=0:

d°M +(d_'\'j[ﬁd_""j+|\m‘:7‘f’=o [2.22]

dx? dx ) {dx

N/N,
1.25A

0.75 4

0.5 4

0.25 4

1.25
M/M,

Figure 2-11Plastic flow of a rigid-perfectly plastic beam itectangular cross-

section (Jones 1989)
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Recall, Equation 2.9 suggested that the defledtadesexpression is a linear
function of, it follows that the second derivativewfwith respect tx is zero. In

addition, Equation 2.6 suggested tNas constant along the length. Thus, Equation 2.22

becomes:
d*M
e =0 [2.23]

By successive integration of Equation 2.23, itdai that:

M(x) = Ax+ B [2.24]

whereA andB are integration constants. Considering only hithe beam in Figure 2-7

(i.,e.0< x< L) and sincéM =0at the supports, then:

M(x) = Al[(x—-L) [2.25]
Now, considering vertical equilibrium at midspabhXa 0), the vertical loa® is

resisted by the vertical componentd\NodndQ:

P__ W, . dw
5= Q@OS%) NE'l;ln(dx) [2.26]

Forsin(6) =@, cogd) =1

Po-aM _ W 2.27]
2 dx dx

Equations 2.9 and 2.25 predict th%\ivz¥ andotlj—'vI = A respectively, thus:
X X

a=NW_P [2.28]
L 2
Then, the moment equation becomes:
NW P
M(x) = (T‘E)(X‘ L) [2.29]
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Atx=0,

M= T [2.30]

Normalizing Equation 2.30 by the plastic momaéht,, and eliminatingN with Equation
2.20, gives:

M _ POL_ 2N,V

M 2M dM

p p P

for OSWS% [2.31]

= External LoadP:
Under combined bending and axial load, the extdozal,P is simply derived
with substitution of the previously obtainbtlandN equations as given in Equations

2.20 and 2.31, respectively, into yield conditi&@gation 2.5). Thus:

4\N2
+

d2

P d
—=1 OsWs<— 2.32
P, 2) [ ]

whereP, =

For transverse deflectioNd beyondd / 2, Equation 2.20 suggests that the beam

has reached the fully plastic phasé £ N, ) and the applied load is resisted by only

plastic axial loads as illustrated in Figure 2-IRerefore, vertical equilibriunZ F, =0

requires:

P-2[N,[sind=0 [2.33]

Forsin@d=6= % then,

p- < [2.34]
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Normalizing by P, and rearranging yields:

4[W
d

N

Pﬁc = W==) [2.35]

Figure 2-12Forces at Midspan (x=0) at Fully Plastic Phase

In conclusion, as can be seen in Figure 2-13péaen reaches the fully plastic
axial state at a deflection of one-half of the béhitkness at an external load of twice

the plastic collapse loa&; (Jones 1989).
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>

1.25
W /d

Figure 2-13Normalized Load—-Deflection curve for simple beaithva rectangular

cross-section (Jones 1989)

A similar procedure was conducted for a fully fixeeam subjected to a

concentrated load at midspan by Haythornthwait&@)1and results showed that:

2
B :1+W_
P. d?
P _2IwW
P, d
wherepP. = —F

Q<sW<d)

W=zd)
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Chapter 3. THEORETICAL MODELS

3.1 Overview and Scope

In this chapter, the fundamental behavior of dadteel beams with idealized
boundary conditions due to finite displacementsrésented. The ability of a beam to
carry loads by transitioning from a flexural mecisamto a cable—like mechanism will be
described. Two different theoretical models areettgyed: rigid—plastic beam model,
which is developed in a manner similar to that desed by Jones (1989) as reviewed in
Section 2.4, and cable analysis, which reflecigemial case of resisting the loads only by
means of axial forces developed on the memberaligable.

Two load cases are considered: a concentratedatoadispan and uniformly
distributed load along the length. The theoriespsesented in such a way that load—
deflection characteristics of each case are destiiba graphical manner, which is
obtained with use of a common flow of derivations.

Fully ductile behavior is assumed and stabilityessare not considered throughout

this section.

3.2 Rigid—Plastic Analysis

Rigid—perfectly plastic behavior of beams was pmése: in section 2.4 along with
other important concepts used in the procedurereftie, all assumptions made therein

are valid in the development of this section.
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Theoretical results for W—shaped beams will begaressd. Therefore, an
interaction relationship between bending momkhand axial forceN on the cross—
sectional level for a W—shape needs to be intradludesimilar procedure to that used for
rectangular sections (as presented in Chapterg®yeés. In this case, tHd—N interaction
relationship depends upon the plastic neutral @A) location as illustrated in Figure
3-1 for positiveM andN. The interaction equations are given as (Horn@x97

=  When the plastic neutral axis is in the web,

2
M _ | Nj_A M,N=>0 [3.1]
M, N, | 4,Z,

= When the plastic neutral axis is in the flange,

M _ 1_ﬁ 1- 1—l A E—lﬂ M,N=0 [3.2]
M N N, )2bd| 2Z,

p p
whereM, andN, are the plastic moment and plastic axial forcepgesvely. Other
cross—sectional properties can be found in AppeAdix
Equations 3.1 and 3.2 are graphically represemt&dgure 3-2 for a W30x124. In

this figure M  represents the plastic bending moment calculated tise flanges only
(about major axis) andll ,, represents the plastic axial force calculated usiegveb

only. Equation 3.1 is valid between points A andBuation 3.2 is valid between points
B and C. At Point A, the PNA is at the centroidiod cross-section. At Point B, the PNA
is at the interface between web and the flangé&oMt C, the PNA can be at or beyond

the top of the cross-section.
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(a), (e) Cross-Sectio\[SCnotations are used and fillets neglected)

(b), (f) Stress distributions associated with

(c), (g) Stress distributions associated with

(d), (h) Strain profile when the neutral axis ighe web and flange respectively
o, is the yield stress aralis the distance between PNA and centroidal axis

Figure 3-1Stress distributions in the cross-section baseth@ihocation of neutral axis
(Horne, 1979)
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Figure 3-2M—N interaction for W—Shapes (W30x124)

42



3.2.1 Simply Supported Beam with a Concentrated Load at Mispan

The load—deflection characteristics of a rigid—pettly plastic simple beam with
W-shape cross—section (Figure 3-3) can be deriviébduse of a procedure similar to that
described in section 2.4. Expressions for intefma@es and external loads throughout the

deformation are derived, and then a graphical sspri@tion of overall behavior is

provided.

Pl

:, X
| ’ 5 |
I : I
L L . L |
N > g

~10 P
\_'\.'\ W _ - -
~ - - W \A /../
s ;fl 20
&K S|

Figure 3-3W-Shaped Rigid—Plastic Simple Beam with a Concésdrbbad at Midspan

= Axial Force,N:
Once the mechanism condition is reached as showigure 3-3; finite

transverse deflectiohy results in development of axial forcés, It is evident from
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Figure 3-2(d) and (h) that regardless of the PNzatimon, the ratio of generalized

deformation rates is:

fx=a [3.3]

When the neutral axis is in the web, it can be $es®n Figure 3-2(b) that:

N =2lalt, [0, [3.4]
Thus,

2lalt
ﬁ: atly [35]
N A

It is noted that the development of the r;'siié in Section 2.4 was independent of
the cross—section considered. Thus, Equation 2.%8llivalid, therefore Equation 3.3
becomes:
a=W [3.6]
Substitutinga into Equation 3.5 gives:

N _2IwIt, 3.7]
N, A

For the special case when the PNA is at the interbgetween the web and the flange:
N=N,, =0, (A, [3.8]
Substituting Equation 3.8 into Equation 3.7 andisgl for W gives:
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Equation 3.9 suggests that the PNA moves intolémgé for deflections beyor%ﬁ. As

d

a result, Equation 3.9 is valid f@r<W < 7““ :

When the PNA is in the flange, it can be seen fRagure 3-3(f):
N=|A-(d-2la)lb, lo, [3.10]

and it follows that:
~—[b,. [3.11]

Substitution of Equation 3.6 into Equation 3.11egiv

1_[d—2[W]
A

N b, 3.12]
Np
Equation 3.12 suggests that the fully plastic cabd¢e (i.e.N = N ) is reached

when the second term is zero so Wat%. As a result, Equation 3.12 is valid in the
range ofd—W W< 9 :
2 2
For a pure cable state, Equation 3.12 also sugtestthe beam sustaihl for

deflections beyon(% .Thus, the axial force expression can simply begias:

ﬁz1 for Wz [3.13]
N, d

N

A plot of N / N, versusW / dis provided in Figure 3-4.

= Bending moment\:
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Bending moment as a function of transverse deflacW, can simply be obtained
by substituting the axial force expressions obthifoe the two different locations of the
PNA indicated earlier into the interaction equasionhus, when the PNA is in the web,

substituting Equation 3.7 into 3.1 gives:

2

M :1—W L, for OsWsd—W [3.14]
M, Z, 2
and when the PNA is in the flange, substituting &gun 3.12 into 3.2 gives:

2 2
- d

M :(d W )EﬂJf for —WSWSE [3.15]
M, 47, 2 2
and finally for pure cable state:
M 0 for Wz9 [3.16]
M, 2

Similarly, a plot ofM / M, versusW / dis provided in Figure 3-5.
= External ForceP:

External load derivation was carried out with sitbg8on of internal force$! and
N into the corresponding yield condition, as wasewed in Section 2.4. Bending
momentM was obtained based on vertical equilibrium at paechs(Equations 2.23
through 2.31). A similar procedure is used to eetagnding momenM to external load,
P and axial forcel, to finally obtain the external loa®,as a function o¥V. Thus, when

the PNA is in the web, substituting Equation 3fo iBquation 2.29 at=0 gives:

P 2W?0, N,

M =L [3.17]

Now, substituting Equation 3.17 and 3.7 into 3a&, éxternal load expression is given as:
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2
P W for  0swedw [3.18]
Rz 2
2IM,
whereP, = T

When the PNA is in the flange, substituting EquaBol2 into Equation 2.30

gives:

M :Lﬂ{Np—(d_ZW)mfmp}wv] [3.19]
2 A

Similarly, substituting Equation 3.19 and 3.12 itlte yield condition given in Equation

3.2, gives:

2
P_1 d—zvvj b, + AW or  Jwowed [3.20]
P Z 2 2 2

where againP, =

For the pure cable state, with use of vertical ldzjiiim of forces shown in Figure

2-12, it can be shown that:

P :—A[W forWz9 [3.21]
P, Z, 2

] 2[M
with P, = C >,

The theoretical progression of behavior of a singulgported, centrally loaded,
rigid—perfectly plastic beam having a W-Shape csegion is depicted in Figures 3-4
through 3-7. Figure 3-4 displays a plot of normadiaxial force versus normalized

deflection at midspan. Figures 3-5 shows normaltzating moment with respect to
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midspan deflectionV. Figure 3-6 represents the corresponditilyl interaction at the
midspan section and finally the relationship of éix¢éernal loadP with respect to
transverse deflection is given in Figure 3-7. Thobkaracteristic points are indicated in
the figures: A, B and C. Point A represents theesbo§the formation of a flexural
mechanismN=0 andM=M,at midspan). As the beam deflects, plastic flolofes the
path as shown in Figure 3-6 and the generalizathstector remains perpendicular to
the yield condition. Due to finite displacementse beam develops axial forces and the
PNA starts to migrate upwards away from the cedtasi indicated in Figure 3-6. Then,
axial force N, increases linearly and bending momémtdrops quadratically witkv

until Point B is reached, which represents the igpésvel of deflection oW =d, / 2, as
shown in Figures 3-4 and 3-5, respectively. At lomt, the PNA is at the interface of
the web and the flange as shown in Figure 3-6. Beéyoint BN continues to increase
linearly wherea®/ decreases quadratically wiitiat a much faster rate than before Point

B. Eventually, the pure cable state is reached{R&) when the deflection is half as

much as the nominal depth of the be%rr(N:Np andM=0). Beyond this point, external

load,P, is resisted by plastic axial ford¢,, alone with a cable-like action thus the

generalized strain vector rotates towardsNkexis as the PNA moves away from the

cross-section, as shown in Figure 3-6.
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3.2.2 Fully Fixed Beam with a Concentrated Load at Midspa

Similar theoretical steps to those described feingly supported beam can be
carried out for a fully fixed beam (Figure 3-8 (&)t has a W-Shape cross-section
subjected to a concentrated load at midspan. Fgn&¢b) illustrates the deflected shape
configuration. In this case, three plastic hingesif simultaneously, one at midspan and
one at each support once the flexural mechanismittom is reached. As a result, the

average strain over midspan plastic hinge lerigtegiven as:

W2 1/2
£= 2|_K1+ ?j —1] /2 [3.22]
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2
With the aid of binomial series expression, andewmg powers %%j greater than

two, gives:

o7 (5)

Thus, the strain rate becomes:

(a) Beam

(b) Deflected shape configuration

(€)

[3.23]

[3.24]



(c) Statically admissible moment diagram
Figure 3-8 Centrally loaded, fully fixed beam with W-Shapessesection

On the other hand, the change in angle over thepaitplastic hinge length,

gives curvature as:
K=—o [3.25]
thus the curvature rate becomes:

= 2NW 3.26]
L0

From Equations 3.24 and 3.26, it follows that:

é/k:%. [3.27]

Now, internal load — deflection characteristics bandentified.

= Axial Force,N:
Equation 3.3 suggests th;alt/‘( —a= % regardless of the location of the PNA.

Thus, Equations 3.5 and 3.11 give the followingregpions respectively, when the PNA

is in the web, and when it is in the flange:

N _WI, [3.28]
N A

Ny la-wly [3.29]
N, A

For the special case when the PNA is at the interleetween web and the flange:
N=N, =A,lo,. [3.30]
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Substituting Equation 3.30 into Equation 3.28 aolgliag for W gives:

W=d,

Solving Equation 3.29 foN = N, (i.e. pure cable state):

W=d

As a result, Equation 3.28 is valid forsW < d,,, whereas Equation 3.29 is valid for
d, <W < dand suggests that the beam reaches a pure cableveenW =d .

Eventually at the pure cable state, the beam sisdtigj and therefore:

—=1 for W=x=d [3.31]

= Bending moment\:
Moment—deflection equations can be obtained bytgubsn of axial force
expressions into their respective yield conditiepehding on the location of the PNA.

Thus, when the PNA is in the web, substituting Eque3.28 into Equation 3.1 gives:

M _, WL,
M 47

p X

for Osw<d, [3.32]

and when the PNA is in the flange, substituting &un 3.29 into Equation 3.2 gives:

2 _\p2
M@ W) gy for  d, swsd [3.33]
M, 4z

p X

For pure cable state:

M

—=0 for W=x=d [3.34]
M p

= External ForceP:
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To use the procedure presented in Section 2.4 (Bmsa2-23 through 2-31), a
bending moment expression is needed to obtainxteeral force as a function u¥.
First, it is evident from Figure 3-8(c) that berglimoment can be expressed as
(considering one-half of the beam due to symmetry):

M (x) = Ax+B. [3.35]

Using the boundary values to obtain the constardaad\B, atx=0:

M(@©) =B [3.36]
and atx=1L:
-M(@Q)=AIL+B [3.37]

Solving Equations 3.36 and 3.37 simultaneouslyegjiv

_-2M(0)
L

A

Thus, the resulting moment expression as a functioris given as:

M(X) = M (0) [E'—LZX +1} [3.38]
and
dM(x) __2M(©0) [3.39]
dx L '
Therefore, the equilibrium Equation 2.27, developethidspan, becomes:
P_2MO  NW [3.40]
2 L L
Solving for M (0) gives:
PIL NIW
MO)=———-——. 3.41
© 4 ) [3.41]
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Now, substitutingM (0) into Equation 3.38 gives the moment expression as:

M(x):r}— NZENH_LZXH} [3.42]

Now, external load expressions can be obtainedrdipg on the location of the
PNA as follows:
* When the PNA is in the web, substituting Equatict23atx = 0) and
Equation 3.28 into Equation 3.1 gives:

W2 i,
+
417,

szl forOsw<d,,. [3.43]
* When the PNA is in the flange; substituting Equadi®.42 (ak = 0) and 3.29

into 3.2 gives:

2
Ezi(d—_wj m, + W ford, swsd. [3.44]
P zJ|l 2 2

X

* For the pure cable state, using the vertical dayiilin of forces shown in

Figure 2-12 gives:

P_AW for W>d [3.45]
P, 2Z,
whereP, = ® in this case.

We can see that the fixed-fixed case resultedarsime form of equations as the
simple beam case. However, twice as much defleiord) is needed to form the cable
mechanism in this case.

This progression of events throughout the deflactibthe beam is indicated in

Figures 3-9 through 3-11. Figures 3-9 and 3-10layspespectively, the plot of
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normalized axial forcd\l, and bending momeny), versus normalized deflection at
midspan. Figure 3-11 displays the correspondinggfloormalized external loa&,
versus normalized deflection at midspan. A rigid+gly plastic beam starts to deflect

once three plastic hinges form at a loa&.dfindicated as Point A, the onset of formation

of a flexural mechanism). When the transverse daghentV increases, the beam starts
to develop axial forceN and the plastic neutral axis starts to move ups/atdng the

web as depicted in Figure 3-6. As a reduistarts to drop (Figure 3-10) and yielding is
now controlled by combined bending moment and dwriae. When the PNA gets into
the flange (Point B), moment starts to drop fa@&gure 3-10) and consequently, the
axial force increases rapidly (Figure 3-9) untpuirely dominates the behavior (Point C).
This behavior between points B and C can be att&ibto the fact that more area (wide
flange) attracts more axial force during the dittion of yielding across the cross—

section. Eventually, the beam reaches a cable Ratet C, wher&l = N ).
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Figure 3-11Normalized Force—Deflection Relationship (Midspan)

3.2.3 Fully Fixed Beam with Uniformly Distributed Load along the Length

Rigid—plastic behavior suggests that there is rileckgon until the beam reaches
a flexural mechanism condition. In this case, pdsihges (at midspan and end sections)
do not form simultaneously. As illustrated in Figu-12, it is evident from the theory of
plasticity that two plastic hinges form at the soipg first (Figure 3-12(a)), and the beam
acts like a simple beam. Then, with formation ofidspan plastic hinge, the flexural
mechanism condition is reached (Figure 3-12(b))thsbeam deflects further, the
deflected shape can be anticipated to transitiendatenary—like shape towards the

formation of pure cable action (Figure 3-12(c)).
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Figure 3-12Change in Deflected Shape Configuration Under &mfLoading

The rigid—plastic analysis procedure presentadigistudy thus far has assumed a
consistent deflected shape throughout the defoomattiowever, incorporating this
deflected shape transition (as shown in Figure23-ib the analysis may not be as
straightforward. To implement this phenomenon, tifterent theories will be presented:
Theory I, in which a triangular deflected shapedasidered and Theory I, in which a
parabolic deflected shape is considered througtheutleformation.

A similar procedure to that used for the conceattdbad cases can be carried

out. Theories for rectangular and W—Shaped beaendeareloped and presented next.
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3.2.3.1 Beam with Rectangular Cross—Section

Using the yield condition provided under combinedding and axial force for
rectangular a cross—section, a rigid—plastic amajy®cedure is conducted for each

theory.

3.2.3.1.1 Theory |

Figure 3-13 illustrates the schematics of Theomdluding the deflected shape
configuration and a statically admissible momeagdam.
With the aid of the general equilibrium equationsgented in Section 2.4,

moment equilibrium in this case is given as:

= g [3.46]

which allows us to express moment as follows:

2

M (X) = _ZX + Ax+B [3.47]

where A and B are integration constants.
To solve for the constants A and B, boundary valresused:

= Atx=0=M(@0)=B
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Figure 3-13Schematics of Theory |

_ _-qL’
= At x=L=-M(0)= + AL+ M (0)
Thus:
p=dt_2M©O) [3.48]
2 L

Then, the moment expression is given as:

M(x):ié¥i+[%?—fﬁ%§9}«km(m [3.49]

Now, with use of the expression for vertical edprilim at midspan given in Equation

2.27 forP=0, it can be shown that:
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gL> Nw
MO =—"—-—— 3.50
© y 2 [3.50]

Having determined the moment expression, the ldefliection characteristics of
this case can be derived using the same analysiggure as before.
= Axial Force,N:

It can be shown that use of a triangular deflesteape results in the same form of

equations as those of the concentrated load casexBmple, the ratio of deformation

ratesgl k, is independent of the cross—section considereds:T

dx=N [3.51]
2

and:

N_W forws<d. [3.52]

N, d

Equation 3.52 suggests that a pure cable statached at a deflection of cross-
sectional deptll. Beyond this deflection, the beam resists thedawith the plastic axial

force, N, where the expression is simply given as:

N
—=1 forw>d. [3.53]
Np

= Bending moment\:
Substitution of Equation 3.52 into the yield coraditgiven in Equation 2.5 gives:

2
:1—W_

M 5 forws<d. [3.54]
M, d

Equation 3.53 suggests:
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—=0 forw=>d [3.55]

for a pure cable state.
= External Loadg:

Having determined internal force equations in Eiguiat3.50 and 3.52 fov and
N, respectively, we can substitute them into thédyeendition for a rectangular cross—

section given in Equation 2.5. Thus, the normalieei@rnal load expression is given as:

2
q& :1+% forw<d [3.56]
whereq, = sz :

It should be remarked that Theory | predicts amaéiqu that is identical to the
form predicted by Haythornthwaite (1959) for beamith a rectangular cross—section
under concentrated loading, as given in Equatidf.2.

At the pure cable state, vertical equilibrium ofces in the free body diagram

illustrated in Figure 3-14 can be constructed as:

Figure 3-14Equilibrium of Forces at Pure Cable State
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Z F, =0=q[2L-2[N, sinf =0, from each it follows that:

q._w for W= d [3.57]
q. d
4M

where againg, = sz .

By inspection, Equations 3.56 and 3.57 do not freesame load at the deflection
d, at which the beam reachés. This discrepancy will be discussed in the contéxt
Theory Il later.

For comparison purposes, the overall load—deflaatlmaracteristics of the beam
shown in Figure 3-13 associated with Theory | Wwélgraphically illustrated and

discussed after the presentation of Theory Il enftilowing section.

3.2.3.1.2 Theory Il
As illustrated in Figure 3-15(b), a parabolic defeel shape configuration is

considered in development of this theory. The dédleé shape can be expressed as:

L2

w :W(l—X—ZJ [3.58]

Taking the derivative of Equation 3.58 twice widspect tx gives:

aw_ = 2 [3.59]
dx L
d’w_-2wW

= 3.60
dx® L 13-60]

Therefore, the governing vertical equilibrium edgomtpresented in Section 2-4

changes with use of this geometry. Substitutingafiqn 3.60 into Equation 2.8 gives:
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2 —
d IVI+NEﬁ 2Wj+q:O and [3.61]

dx? L?
d’M  2NW
v EREE T [3.62]
q
Y, 4 \ 4 Yy VvV VY \ 4 \ 4 A\ 4 \ 4 \ 4 \ 4 \ 4 A\ 4 \ 4 \ 4 \ 4 A\ 4 \ 4 A N
o Ll N (a)

(b)

M(0)
Figure 3-15Schematics of Theory Il

By integrating Equation 3.62 twice, bending momena function ok becomes:

M(x):Mx2—3x2+Ax+B. [3.63]
L2 2

Solving for the constants A and B by introducing boundary values considering
the moment diagram presented in Figure 3-15(c):
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2
. Atx:—L:>M(—L):—M(0):NW—%—AL+B (1)

2
. Atx=L:M(L):—M(O)=NW—%+AL+B (n)

Solving (I) and (1) simultaneously yields:
qL*
A=0 and B:T—NW—M(O)

With aid of the third boundary valud] (0) at midspan, whene=0, gives:

gL> Nw
MO =—"—-— 3.64
© y 2 [3.64]

This deflected shape configuration requires déoweof the change in length of
the beam which relates the axial strain and as®utexial force definitions. The actual
length of the deflected shape shown in Figure 8p)®an be obtained with use of the arc

length formulation given as:

L' :Tw/1+[f '(%)]? dx [3.65]

in which f'(x) is the first derivative of the function of the glezof arc. Due to symmetry,
only one—half of the beam is considered. Subsbitutif Equation 3.59 into Equation 3.65

gives the actual length as:

L _ 2
L'=| 1{ E\ZNX} dx. [3.66]
0

For convenience, Iemn% andg‘:% then,

L'=L [ij/u 4w2£2df} [3.67]
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Evaluation of this integral was performed using Maid version 14 (2007) and the

solution was obtained to be a sign functioruads follows:

" [3.68]

L= Eﬁcsgn@)%}%f +1, csgn@) EI]n(Za)E:sgn@) ++/40) +1)
2

where csgnd )sign function forw = VTV .

By inspection, this complex expression may be apprated using a relatively simple

equation in the form:

L' = Lifi+ (o 20)?) [3.69]
In Figure 3-16, the normalized actual length aredapproximation (Equation

3.69) is plotted versua witha = 0.707. It can be seen that a good correlation was

obtained in representing the actual length of #ftedted shape with Equation 3.69.

Since the change in length is:

AL =2L'-2L [3.70]

Then, substituting Equation 3.69 into Equation 3tfi@ change in length becomes:

AL =2[H1+[a éﬂ}— L} 3.71]

Settinga = 0. 707Equation 3.71 reduces to:

AL =L [EWT [3.72]
L
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Figure 3-16Length of Arc Approximation

Then, the change in length over a total plastigéilength2l as shown in Figure 3-15(b)

gives an axial straing, of:

AL L JWT
=550t b

Thus, the axial strain rate,, is given as:

g=WIW [3.74]
L
On the other hand, the total change in angle dwveeplastic hinge at the end

section, which has a Iength}zfé, the curvature rate in this case becomes:

k= [3.75]
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Thus, the ratio of.s//.(, IS given as:
£l k :%. [3.76]

Load—deflection characteristics according to theory can be developed using
the rigid—plastic analysis procedure.

= Axial Force,N:

This ratio of ¢/ k was obtained in Equation 2.19 for a beam of rectmngross—
section. Thus, a combination of this equation \iitjuation 3.76 gives the axial force

expression as:

[3.77]

S

N
ND
Equation 3.77 suggests that twice as much defle@tb is needed for the beam

to reach the pure cable staté € N ) as in Theory I. Therefore, it is valid for a

transverse deflection range @f<W < 2d.

Then for the pure cable state,

N =1 for W=x=2d. [3.78]
NP

= Bending momenty:
Again, using the yield condition defined for a setjular cross—section given in

Equation 2.5, moment equations can be shown to be:

M o, W2

M 4d?

p

forws<2d [3.79]

and Equation 3.77 suggests that:
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—=0 forw=2d [3.80]

at the pure catenary state
= External Loadg:

Having determined internal force equations in eigunat3.64 and 3.77 favl and
N respectively, we can substitute them into thedygeindition for a rectangular cross—
section (Equation 2.5). Thus, the normalized extidioad expression in this case

becomes:

2
qi:1+ jg’z fol < 2d [3.81]

p
L2

whereq, =

In a similar manner, the derivations can be extdridethe deflections
beyond2d . Figure 3-17 illustrates the free body diagraterahe beam reaches a pure
cable state. Vertical equilibrium requires:

D> F,=0=qR2L-2[N, sind=0 [3.82]

Figure 3-17Equilibrium of forces at pure catenary state
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Forsin@=6= % , it can be shown that:

q& :% Forw = 2d [3.83]

p

whereq, = E

It is evident that Equations 3.81 and 3.83 resuthe same load level at the point
of a pure cable stat&\(=2d).

Figures 3.18 through 3.20 illustrate the overaldedeflection characteristics of
fully clamped, rectangular shaped beams under imifoading as predicted by Theory |
and Il. Characteristic points A and C represenfoiiat of mechanism condition
formation and point of pure cable state, respelstivihe subscripts | and Il refer to
Theory | and I, respectively.

Since Theory | did not accurately predict the bébrawpon formation of the pure
cable state, it is not represented in Figures 348, and 3-20 beyond point.C
However, it should be noted that the extensiondhé&heory | (Figure 3-18) that passes
through the origin coincides with point,Gvhich represents the point of pure cable state
predicted by Theory Il. This agreement can belatted to the transition in deflected
shape configuration presented in Figure 3-12.

As a concluding remark, different theories basedifferent deflected shape
considerations provide boundaries to the real hehawhich is discussed in the context

of the finite element analyses presented in Chapter
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3.2.3.2 Beam with W—Shaped Cross—Section

Two theories based on triangular and parabolicededtl shapes can be developed
for beams with W—Shapes. Characteristics, sucheasechanism condition and
statically admissible moment diagram for each thesrpresented in Figure 3-13 and
Figure 3-15, respectively, are independent of thes-section. The difference here is the
dependency of the yield condition on the locatibthe PNA across the beam depth, as
given in Equations 3-1 and 3-2. Load—deflectionrabteristics of W—Shaped beams

predicted by each theory can be obtained in aaimbinner as before.

3.2.3.2.1 Theory |
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It was observed that results using Theory | predi¢he identical form of
equation given by Haythornthwaite (1959) for tharnewith a rectangular cross—section
under concentrated load case. Therefore, with gmaihticipation, the rigid—plastic
analysis procedure was conducted, and the resals shown to be analogous to the
load—deflection characteristics given for W—Shapeadms under concentrated loading as
presented in Section 3.2.2. Depending on the locatf the PNA, predictions of Theory |
are given as follows:

=  When the PNA is in the web, wheBe<W < d,,

Wt
N _Wit, [3.84]
N, A
W2 i
M =1- % and [3.85]
M, AlZ,
W2 i
Ao Y e [3.86]
. ALZ,
Whereq, = sz :
= When the PNA is in the flange, whede <W <d
N, [d-w] b, , [3.87]
N, A
d? -wW?)b
M =( ) L, and [3.88]
M, AlZ,
2
a_t (d_Wj b, + AW, [3.89]
9. z.|l 2 2
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p

whereq, = E

As shown in the procedure presented for beamsnedtangular cross—section,
Theory | did not accurately predict the behavioydrel pure cable formation (i.e. for
W > d ) with use of the vertical equilibrium presentedrigure 3-14. Thus, equations
predicted by Theory | beyond the pure cable staeaat presented. In similar manner,

for comparison purposes, graphical representafioesults given herein will be

presented after presentation of Theory Il results.

3.2.3.2.2 Theory Il

Schematics of Theory Il were given in Figure 3-a8ier. A similar rigid—plastic
analysis procedure as that presented in Sectio®.8.2 was implemented for W—Shaped
beams with introduction of corresponding yield atiod. Therefore, load—deflection
characteristics of the behavior predicted by Thébecan be obtained as follows:
= Axial Force,N:

* When the PNA is in the web:

Coupling Equation 3.3 with Equation 3.76, then sitilting the result into

Equation 3.5, the normal force expression yields:

N _Wit,
N 2A

p

[3.90]

Applicability of Equation 3.90 can similarly be iestigated for the special
case where the PNA is at the interface betweenamdiflange. Solving fow at

N=N,, gives:

W=2d,,. [3.91]
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Thus, Equation 3.90 is valid for the range0f W < 2d .

* When the PNA is in the flange:
Coupling equations 3.3 and 3.76, then substitutiegresult into Equation

3.11, the normal force expression is given as:

N - [3.92]
NP

Equation 3.92 suggests that the beam reaches zablestate at a
deflection of twice the beam deg@th. Thus it is valid in a range of

2d, sW<2d.

* Beyond the pure cable state:

—=1 forW=2d. [3.93]

Bending momenty:

Substitution of the previously defined normal foempiations into their

corresponding yield condition gives:

* When the PNA is in the web:

2
WL hewead, [3.94]

M
M, ~ 16(Z, v

* When the PNA is in the flange:

2l b
M _ dz_("_"j G2 for 2d, <W<2d. [3.95]
M 2 47

P X

» Beyond the pure cable state:
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£=0 forw=2d. [3.96]
M p

= External Loadg:

Substituting the axial force equations for eactatmn of the PNA, along with the
moment equation derived from equilibrium equati¢gisen in Equation 3.64), into the
respective yield condition, gives:

* When the PNA is in the web:

2
qﬂ =1+ 31Aéztw For 0sW<2d, [3.97]
whereq, = sz :

* When the PNA is in the flange:

qﬂ - %Kd _v?vj [ﬁd —%jbf + 2AW] [3.98]

* Beyond the pure cable state:
With use of vertical equilibrium of forces in theé body diagram as

given in Figure 3-17, it can be shown that:

qﬂ = % for W = 2d [3.99]
whereq, =—".

L2
Finally, progression of events in a graphical mansiéndicated in the Figures 3-

21, 3-22 and 3-23. Load—deflection characterigireslicted by the two theories for a W—

Shaped beam under uniform loading are presentgdrd-B-21 displays a plot of
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normalized external load versus normalized defbeciiv, at midspan. Figures 3-22
shows the normalized axial fordd, with respect to normalized midspan deflectidh,

and finally the relationship of the bending moméhtyith respect to transverse
deflection is given in Figure 3-23. In these figsjreharacteristic points A, B and C are
again indicated with respective subscripts reprasgeach theory presented herein. It
can be seen that the overall progression of eartsommon for the two theories except
they occur at a different level of transverse dgiten for each theory. Theory | is again
presented with a dashed line beyond the pure ctdile (¢, as it was shown that it does

not accurately represent the behavior in this regio

q/dc
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e
3 C”//
,""{
5 | Leq 308
Eq.386 ~ .-
g
1+ s
A, .- Eq.380 Ed-397
O T T T >
0 1 2 3 4
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Figure 3-21Normalized Load—Deflection relationship
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3.2.4 Summary

The rigid—plastic behavior of ductile steel beanithwdealized boundary
conditions was presented. Load—deflection charaties for each loading, boundary
conditions and cross—section types were descrhiredghout the deformation of the
beam. Results showed that the load—deflection ctexrstics for each cross—section type
are predominantly affected by the correspondintfyéendition under combined bending
and axial forces. It was also seen that a simidenfof equations for normalized load,
axial force and bending moment as a function afavarse deflectiodV and cross—
sectional properties, described the behavior dt ease. The amount of transverse
deflection at the onset of pure cable behavioindefasi\.,; was predicted in order of
nominal depthd of the cross—section independent of the crossesettpe. Table 3-1
summarizes thé/, predictions using the rigid—plastic theory for lr@ase presented

herein.

Table 3-1W,, predicted by Rigid—Plastic Theory

Case W
1
7 d/2
— F d
PO Ty Theoryl : d
] — Theory Il : 2d
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3.3 Cable Analysis

In this section, a theoretical analysis procedsi@eiveloped for a special type of
behavior, commonly referred to as “cable actionhfs assumed that the member has no
resistance to bending; therefore, external loaesesisted only by means of axial forces
that develop in the member as it deflects. Withafghe elastic—perfectly plastic
material idealization shown in Figure 3-24, defotiovas remain elastic until the plastic
axial force,Np, is reached (Point C). Beyond this point, the beaemiver sustaini, and
yielding occurs along the length. Theoreticallys tiype of “pure cable” behavior can be

anticipated from infinitely long beams as discusiseer in Chapter 4.

v

Figure 3-24Material idealization used in Cable analysis

It can be anticipated that the load—deflection abtaristics of this type of

behavior are independent of the boundary conditems®ciated with the rotational degree
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of freedom at the supports, since there is noteesie to bending. Therefore, assuming
full axial fixity at the supports, an analysis pedare was developed to describe the load—
deflection characteristics under a midspan conatedrioad, and under a uniformly

distributed load is presented next.

3.3.1 Concentrated Load Case

An analysis procedure is presented to derive iateand external loads as a
function of midspan deflectioWy for a beam under a concentrated load at midspan.
= Axial Force,N:

Axial strain associated with axial forces can beedrined by deriving the change

in length of the beam as shown in Figure 3-25.

AL=L"-L=+L2+W?-L [3.100]
and
£ :A—LL. [3.101]

Substituting Equation 3-100 into Equation 3-101egiv

2 1/2
g:(1+—j -1 [3.102]

L2

For smalvlrv, with the aid of a binomial expression, Equatiobt02 can be reduced to the

form:

P [ﬁﬂ} _ [3.103]
2 1L

Thus, the associated axial force can be deternased
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N=o[A=Elg[A. [3.104]

Substituting Equation 3.103 into Equation 3.104dge

[3.105]

_EMA WT
2 L]’

Thus, Equation 3.105 predicts that the axial folkgas a quadratic function of
transverse deflectiofy.
In the special case when the beam reaches thelastic cable state

(l,e.N=N, =0, [A), Equation 3.105 gives:

W, 2

at — y

L E

[3.106]

It can be seen that, Equation 3.106 is indeperafehe cross—section of the

beam.

;'4

r Vl‘ rl

Figure 3-25Free body diagram under concentrated load

=  External LoadP:

Considering vertical equilibrium of the forces givia Figure 3.25:
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D> F,=0=P-2[N[Eind=0

and assuming thaind =6 = % , it follows that:

P= . [3.107]
Substituting Equation 3.105 into Equation 3.10vegi

W 3
P=E DAEET} : [3.108]

Thus, Equation 3.108 gives the external Id3d3s a cubic function of transverse

deflection,W.

3.3.2 Uniformly Distributed Load Case

The deflected shape associated with this loadisagpresented with a parabolic
configuration as illustrated in Figure 3-26. Thgidi-plastic analysis procedure presented
previously indicated that this configuration appragely represents the behavior at the
pure cable state.

To obtain load—deflection characteristics of thase, a similar procedure is
carried out to that for the concentrated load gassented earlier.
= Axial Force,N:

The axial strain based on a parabolic configuratias derived in the context of
rigid—plastic analysis. Recall, considering onefbathe beam that the actual length was
approximated in terms of a parameter,For convenience, derivations herein will be

given as a function ef and then, an acceptable value used to represeatthal length
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in the deflected shape associated with this tydeebgvior is provided. Therefore, with

use of Equation 3.71, change in length is given as:

2
AL = 2L [ [E%} [3.109]

Thus axial the strain over the length of the beaamiver:

2
5:%:a2 Eﬁ%} [3.110]

Figure 3-26Free body diagram under uniform loading

Substituting 3.110 into Equation 3.104, gives:

2
N =a? EEDA[E%} [3.111]

Equation 3.111 predicts that the axial fofdeis a quadratic function of

transverse deflectiohy.
For the special case, when the beam reaches thefastic cable state

(l,e.N=N, =0, [A) it can be deduced from Equation 3.111 that:

86



Wcat — 1 Jy

LaE

[3.112]

It can be seen that Equation 3.112 is also indeg@raf the cross-section.
= External Loadg:
Considering vertical equilibrium of forces givenkigure 3.26:

D> F,=0=q[2L-2[Nsind=0. [3.113]

It follows that:

_2NW

E [3.114]

Substituting Equation 3.111 into Equation 3.114egiv

2 3
q= ZaLEAEEﬁ . [3.115]

Thus, Equation 3.115 gives external logdas a cubic function of transverse
deflection,W.
To represent the actual length of the deflectepaishown in Figure 3-26, the arc

length approximation given in Equation 3.69 isigéitl. In similar manner, an infinitely

long beam assumption will predict an infinitely sim\%. In Figure 3-27, thex

parameter (determined according to Equation 3$$)atted versu&=%. By

inspection, it is found thatr approaches 0.816 whangoes to zero. As a result, under
uniform loading, the deflected shape associatel this special case of “cable action”

can be approximated by Equation 3.69 witk 0.816.
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Figure 3-27 a — « relationship
3.3.3 Summary
Load-deflection characteristics of ductile steelrhe under different load
conditions predicted by cable behavior were preserit was seen that the procedure is
predominantly affected by the deflected shape gondition and is independent of cross—
section used. In fact, the deflection at the ongeure cable behavioW.,was shown to
be a function of material properties and span kengy rearranging Equations 3.106 and

3.112 W, predictions by cable theory can be given as:

/ZDtT
W, = = Y T1 for a concentrated midspan loading, and
_1_/9, : L .
W, ——HE [L for uniformly distributed loading,
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wherea is a parameter used to determine the actual lesfgtie parabolic deflected
shape, and can be taken as 0.816. As remarkedre#riése predictions are independent
of the boundary conditions, therefore, they cande for simple beams as well as for

beams fixed at both ends.

3.4 Conclusion and Expected Behavior

In this chapter, ductile behavior of steel beandeurinite displacements was
described using two different theories; rigid—gaand cable. It can be recognized that
each of these models represents special caseamfliehavior. Therefore, a conclusion
can be driven with regards to how each theoryesl&d the actual, elastic—perfectly
plastic behavior which is commonly used in practieg illustrated in Figure 3-28, which
graphically describe the overall behaviorirN interaction at a cross—sectional level,
rigid—plastic and cable theories can be regardebdeasetical lower and upper bounds of
the actual behavior, respectively. The paths orithee represent the behavior depicted
by each case throughout the deformation of the b8aif descriptions of these paths
are given as follows:
= Path OAC: Represents rigid—plastic behavior. Nded&ibn occurs until the

mechanism condition is reachelll (= M ;at all possible plastic hinge locations).

Once the condition is satisfied (Point A), the bestarts to deflect, and develops
axial forcesN. Form then on, yielding occurs with a combinatdi andN and

follows the path shown until the beam reaches thie pable state (Point C).
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0.75 -
0.5 -
@
S 025 -
@)
0= |
0 0.25 0.5 0.75 1 1.25
—> Rigid-Plastic M/M,

Figure 3-28Expected behavior representationMAaN interaction

Path O-dashed lines-C: Represents the actual ehdepending upon the flexibility
of the elastic—plastic beam member. For very fliexibe. long beams, the behavior
may be represented with steeper dashed lines gandaaghnes cable theory. For very
short, relatively rigid beams, the behavior is esgnted with shallower dashed lines,
approaching rigid-plastic theory. In the case efdlashed lines, the beam may

encounter finite displacements in the elastic regand develop axial forces. When
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the axial forces become large enough, plastic Isifiggen under a combination bf

andN (before reaching fulM ).

= Path OC: Represents the cable behavior. The beamdibending resistance and
carries the loads only by means of axial forceughmut the deflection until reaching
a pure cable state (i.8=Ny). As noted earlier, infinitely long beams may éitthis
special upper bound behavior.
To summarize, the actual behavior of ductile dbe@lms will fall somewhere in
between the bounding theories developed in thiptelnaEnsuing efforts presented in the
following chapters will focus on how to represdre tharacteristics of actual behavior

with use of these unique theories.
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Chapter 4. ANALYTICAL MODELS

4.1 Introduction

In this chapter, Finite Element (FE) analyses eélsbeams with idealized
boundary conditions, including the effect of geomeedind material nonlinearity, are
described. First, a set of preliminary FE analyserse executed for comparison with the
theoretical findings presented in Chapter 3. Tlagmarametric study was conducted to
identify the main geometric factors affecting tloéual behavior.

Both loading and cross—sectional cases considerestdel beams, as presented in
Chapter 3 were studied, focusing on beams withdfexeds. FE models were developed
and analyzed usinQpen System for Earthquake Engineering SimulatiOpenSees)

software (McKenna et al. 2000).

4.2 Modeling Concepts

Modeling tools available in OpenSees (McKenna €2@00) are presented next

and were used in this study.

4.2.1 Fiber Section Discretization

In order to keep track of the propagation of yietgthrough the cross-section, the

fiber section modeling object available in OpenSeas used.
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to Subdivisions (Fibers)

Rectangular W - Shape

Figure 4-1 Schematic of Fiber Section Discretization of Cr&=etions

As illustrated in Figure 4-1, sections considerethis study were subdivided into
smaller regions (fibers) for which the materiakss—strain response is integrated to give
the resultant behavior.

Thickness of the fibersi,erWas consistently taken ag1®?2 inches for all the FE
models presented herein. For W-Shapes, fillete@géected and the required number of

fibers was calculated, and then assigned to theamdlihe flange.

4.2.2 Corotational Transformation

In order to account for geometric nonlinearity, gf@metric transformation
object that is available in OpenSees, the so-catlewbtational transformation” was
used. In this procedure, the beam element stiffardsanternal forces are transformed
from the basic (reference) system to a global doatd system. According to De Sousa
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(2000), geometrically nonlinear systems can beyaedl using this formulation in which
rigid—body displacements are set apart from elemefarmations by attaching a
reference coordinate system that rotates and at@ssivith the element throughout the

deformation.

4.2.3 Selection of Beam Element

Among the variety of element types available in@penSees library, a force-
based “Nonlinear Beam—Column Element” was selefttedse in this study. This
element, which was proposed by Neuenhofer anddeilif1998) utilizes force
interpolation functions for varying internal forcegge to transverse displacements and
explicitly satisfies equilibrium in the deformedagte. The spread of plasticity is
considered along the length of the element. Consigl®oth geometric and material
nonlinearity in the problem, the use of this eletrtgpe, in conjunction with fiber section
and corotational transformation objects in OpenSe&s been proposed by Scott et al
(2008).

The number of elements along the length of the baaalels was consistently

taken as one hundred (100) throughout the FE aemlysesented herein.

4.2.4 Material

A uniaxial elastic—perfectly plastic material mgdes shown in Figure 4-2 was

used for all the FE models.
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orforce
>

$E - tangent 4

$epsyP -strain or deformation at which & /
material reaches plastic state % ! |3E
tension !

$epsyN -strain at which material reaches
plastic state in compression
$epsO dnitial strain (optional)

$epsh

|
* JepsP  strain or deformation
$ep50

Figure 4-2 Uniaxial Elastic—perfectly plastic material

(http://opensees.berkeley.edu/OpenSees/manualsiaiseal/index.html)

4.2.5 Loading and Analysis

The static “Displacement Control” analysis objecditable in OpenSees was
used throughout the FE analyses presented hendinisitype of analysis, an appropriate
midspan transverse displacement increment is gigean input. The applied external
load is also inputted as the corresponding plasti@apse load for each load case

considered B, orq,). For the standard case considered here (fuldftxeams spanning

2L), these plastic collapse loads are calculated wagthof the theory of plasticity and

given as:

4M
= P = i ® for beams with a concentrated load at midspan
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4M
= Q.= sz for beams with a uniformly distributed load alahg length.

where M jwas calculated neglecting the fillets.

As a result, at each step, using a given displanemerement, OpenSees

provides the external load as a fraction of theesponding plastic collapse load inputted

(FP orﬂ).

Cc C
Typical OpenSees input files for the concentréded case and the distributed

load case are provided in Appendices B1 and Bpeaw/ely.

4.3 Preliminary FE Analyses

The theoretical fundamentals of rigid—plastic aallle behavior for ductile steel
beams with idealized boundary conditions were prieskin Chapter 3. Here in Chapter
4, a set of preliminary nonlinear FE analyses erldteams with similar load and
geometric configuration is described, with an enghan the fixed-fixed beams. The
primary objectives of this section are as follows:
= Verify the theoretical behavior predicted by edutory.
= Generate FE analysis results using elastic-peyfetdistic material properties and

compare to theoretical results.

4.3.1 Approach

The approach taken to accomplish the objectivékisfsection is given next.

= Comparison with Rigid—plastic Theory:
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In order to enable a direct comparison of FE amalesults with the rigid-plastic
theory, a simple approach that involves the usenbus values of Young’s Modulus of
Elasticity, E, was used, with a value of 29,000 ksi for steehasienchmark case.
= Comparison with Cable Theory:

As noted earlier, theoretically pure cable behamay be anticipated for
infinitely long beams. In order to enable a comgamiof FE analysis results with the
cable theory, rather large span lengths were asgdign
= Presentation of results:

The preliminary FE analysis results are presentaghgcally in comparison with

theoretical results. For comparison with the rigldstic theory, the following plots are

shown: normalized external loa b (or % ), versus normalized deflectio\‘\%,

normalized axial force',\I versus normalized deflection\///d, normalized moment,

N,’
% , versus normalized deflectio\’%l, and normalized1—-N interaction
p

(% versus% ). For comparison with cable theory, the followjpigts are shown:
p p

external loadP (or g) versus normalized deflectioH\%_, normalized axial force, ,

versus normalized deflectioH\)//L and normalized/ — Ninteraction % versus
p

I\%/I ). M andN are typically given at midspan, unless noted otiss.
P
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4.3.2 Description of Preliminary FE Models

Figure 4-3 shows a schematic of the beam modekidemed in the preliminary
FE analyses. The beam which is fixed at its endsodeled with 100 nonlinear beam-

column elements along the length.

— N\
77

Figure 4-3 Schematic of preliminary FE beam models

The cross—section of the beam was chosen as ¥&raped or rectangular.
When a W-Shaped cross-section was used, a fiat WiB0x124beam section was used
as typical (Khandelwal and El-Tawil 2007), wheraagctangular cross—section was
selected in such a way that it gave approximatedysame plastic section modulidg,as
a W30x124. As a result, the rectangular sectiorsehdad a unit width of 1 inch and a
nominal depthg, of 40 inches. In addition, a W24x192 was usesbime distributed load

cases as noted in the relevant sections. Crosseuiere discretized as fiber sections

as illustrated in Figure 4-1 with a typical fibbidknesst,., , of 510~ inches.
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As noted earlier, a uniaxial elastic—perfectly ptasteel material model was used
in all cases. The various material yield stressgs,and span lengtf2L, of the beams
used in this study are given in Table 4-1. In addjtthe elastic moduli used in the FE

analyses for comparison with the rigid—plastic tiyeare given in Table 4-2. In these

tables, N/A implies that results for the case giaesnot available.

Table 4-1Summary of Model Parameters in Preliminary FE Msdel
Models For Comparison with Rigid - Plastic Theory

Section Length, 2L (in) g, (ksi) N, (Kips) M, (k-in) P. (k) d. (kfin)
REC (bxd) 1x40 700 58 2320 23200 265.1 0.758
W Shape W30x124 700 58 2094 23390 267.3 N/A
W24x192 720 50 2810 27976 N/A 0.863

Models For Comparison with Cable Theory

Section A(in‘) Length, 2L (in) o, (ksi) N, (Kips)
REC (bxd) 1%40 40.0 7.2x10° 50 2000
W Shape W30x 124 36.1 7.2x10° 50 1805

Table 4-2Elasticity Modulus

Modulus of Concentrated Uniformly
Elasticity, E Loading Distributed Loading
E* v v
Ex20 v N/A
Ex50 v N/A
Ex100 v v
Ex200 N/A v

*E=29000 ksi (Benchmark Case)

4.3.3 Comparison of Results with Rigid—Plastic Theory

The beam shown in Figure 4-3 was modeled and ae@lyzOpenSees with the
parameters given in Table 4-1 for different elastmduli as specified in Table 4-2. The
presentation of results is broken into the two loaskes considered with rectangular and

W-Shapes.

99



4.3.3.1 Concentrated Load Case

Analysis results for the beam shown in Figure 4-afa given in comparison

with rigid—plastic theoretical results for eachss-esection considered.

4.3.3.1.1 Beam with Rectangular Cross—Section

FE analysis results for the beam shown in Figugéaj-with a rectangular cross-
section are presented in comparison with theolagsallts in Figures 4-4, 4-5 and 4-6.
The onset of pure cable behavior is referred thase figures as Point “C” for the
benchmark case and the theoretical cases. Figutghrdugh 4-6 show that there is a
significant difference between theory and FE ansalyspredicting the onset of pure
cable behavior. According to rigid-plastic thegoyre cable behavior is reached when
W=d, whereas the FE analysis results for the benchicas& predict that pure cable
behavior is reached wh&ki=1.34 d When large values & are used, it can be seen that

the point of pure cable behavior approaches tretigted by theory.
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Figure 4-4Normalized Load—Deflection Plot
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Note:C is the onset of point of pure cable behavior

Figure 4-5Normalized Axial Force—Deflection Plot (Midspan)
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Note:C is the onset of point of pure cable behavior
Figure 4-6 Normalized Moment—Deflection Plot (Midspan)

Another comparison can be made on the normalizel interaction plot shown
in Figure 4-7. The theoretical point for the onsiethe flexural mechanism condition is
indicated as Point “A” whereas Point “C” represehis point of pure cable behavior. It
can be seen that the beam models with [&gknost follow the path predicted by the
rigid—plastic theory. On the other hand, the beretknecasekE reaches Point A before
developing fullM,. The reason is that the axial force developetieneiastic regime
causes a plastic hinge under combiNedndN. As a result, the benchmark case
representing the actual behavior reaches pure bablavior at a significantly larger

transverse deflection than predicted by the ridab{ic theory.
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Figure 4-7 NormalizedM—N interaction Plot (Midspan)

4.3.3.1.2 Beam with W—Shape Cross—Section

FE analysis results for the beam shown in Figugéaj-with a W30x124 cross-
section are presented in Figures 4-8 through 4Fthé.point of pure cable behavior is
referred to in these figures as Point “C”. In aubdif the theoretical Point B where the
PNA is at the interface between the web and flasgdéso shown in the normalized axial

force versus the normalized deflection and normdlimoment versus normalized
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deflection plots shown in Figures 4-9 and 4-10peesively. In general, similar

comparison statements can be made as for the geddarcross—section results. As can

be seen in these figures, the primary differende/éen the theoretical and benchmark

cases is thdE is again observed to greatly affect the predictibthe point of pure cable

state (Point C). According to theory, pure cabledwor is reached whéw=d for W-

Shapes, whereas the FE analysis results for thehb®ark case predict that pure cable

behavior is reached wh&W=1.68 d When large values & are used though, it can be

seen that the point of pure cable behavior predibtethe FE models approaches that

predicted by theory.

3
Benchmark Case, E
C
2 -
Ex20
i~ . Ex100
. Theon <> C
N S S
1 __|_ o ‘___=__,'_._‘_,‘___,_,_—_.—*_.—_.=-—‘-'—-_ ﬂ’ ror .EL\“SO
( - e0ry
‘ E Ex20 Ex50 Ex100 —--- Theory
D T T T T
0 05 1 1.5
w/d

Note:C is the onset of point of pure cable behavior
Figure 4-8 Normalized Load—Deflection Plot
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Figure 4-10Normalized Moment-Deflection Plot (Midspan)
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In addition, it is evident from thil—N interaction relationship at midspan shown
in Figure 4-11 that all cases eventually fall oa yield curve and follow the same path.
For the benchmark case, in whigEk29,000ksi, the beam again exhibits substantial
transverse deflections in elastic regime and d@getxial forces. Thus, the mechanism
condition forms under combinéd andN, as opposed to the prediction by the rigid—

plastic theory, where for Point AVI=M,.

1.25
E Ex20 Ex50 Ex100 ----Theory

.

1 t("

S

.
.
\..\
S
g E

0.75 - \\,\ Ex20
. . Ex30

“ Ex100

</
2

0.5 - -

0.25 - »

E
D T " T T f\_f * ‘;—1
0 0.25 05 0.75 1 1.25
M/M  gyv20, Exs0, Ex100

Figure 4-11NormalizedM-N interaction Plot (Midspan)
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4.3.3.2 Distributed Load Case

Preliminary FE analysis results for the beam showkigure 4-3(b) are compared
to results obtained using the rigid—plastic theoryeach of the cross—sections and elastic

moduli as given in Tables 4-1 and 4-2, respectively

4.3.3.2.1 Beam with Rectangular Cross—Section

FE analysis results for the beam shown in FiguB¢hj}-are presented in
comparison with result obtained using rigid-plastieory in Figures 4-12, 4-13 and 4-14.
The onset of pure cable behavior is indicated @séfigures as points @nd G, for
Theory | and Theory Il, respectively, as presemedhapter 3. According to Theory I,
pure cable behavior is reached wh®rd, whereas according to Theory Il, pure cable
behavior is reached wh&=2d. The FE analysis results for the benchmark caseigir
that pure cable behavior is reached wiér2.32 d For cases when large E values are
used, it can be seen that the point of pure cadhedor prediction approaches that
predicted by Theory II.

Moreover, Figures 4-13 and 4-14 show that the behaxhibited byEx100and
Ex200is in general bounded by the Theory | and Thebpyddictions. In particular, it
can be noted that Theory | at IM/ dvalues is tangent to the FE analysis results, kvhic
gradually converge to Theory Il towards the poinpare cable behavior (. This can
be attributed to the deflected shape transitiofrioign a triangular shape to a parabolic
configuration as discussed in Section 3.2.3. Ind&gdory I, which was developed based

on a triangular deflected shape predicts the behaxell in the early stages, whereas
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Theory Il which was developed based on a paraletiiected shape, predicts the

behavior well near the point of a pure cable H@f8.

B

51 Theory IT
C
Cu \\
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3 3 ' Case, E
o Theory I

-
-
T
o
-,
-

- Theory IT

Ex100 ——E ---—-Theoryl Ex200 —— Theoryll

0 T T

0 1 w/d 2

Figure 4-12Normalized Load—Deflection Plot
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Figure 4-14Normalized Moment-Deflection Plot (End)
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NormalizedM—N interaction curves are given in Figures 4-15 arid 4or an end
section and for midspan, respectively. As seerigare 4-15, all FE models perfectly
follow the yield curve once they reach a flexur@aimanism condition (Point A). On the
other hand, it is evident from Figure 4-16 thattmdspan section indeed develops a
plastic hinge once it reaches the mechanism camd{foint A), but does not necessarily
follow the yield curve later on.

Recall that, besides the different deflected sltapmsidered, both theories under
uniform loading predicted that a midspan plastitglei is sustained throughout the
deformation of the beam. Therefore, neither of tiesoperfectly represents the actual

rigid—plastic behavior predicted by stiffer FE mtsd#aroughout the deformation.

110



N /Np

1.25

C
A 1
Ex100 ——E - ——-Theory Ex200
Ex200 - 1 075
szaaci -
E .
Theorjfz‘&- 195
4 0.25
' E
Ao
& T T T 0
-1.25 -1 \"S -0.75 -05 -0.25 0

Theory, Ex100, Ex200 M /M p
Figure 4-15NormalizedM—-N interaction (End)

111



1.25

" —E Ex100 --—--Theory

0.75

N/N,

0.25

A

Y
1
b
¥
0 T T T ‘
0 0.25 D'EM,/M 0.75 \‘\5 1 1.25
P Theory, ExI00

Figure 4-16 NormalizedM—N interaction (Midspan)

4.3.3.2.2 Beam with W-=Shape Cross—Section

Under uniform loading, preliminary FE analysis lespresented for a beam with
rectangular cross—section provided a great deahdérstanding as to how the FE models
compare with theoretical results. FE analysis tegal the beam shown in Figure 4-3(b)
with a W24x192 cross-section are presented in Egdrl7 through 4-21. The point of
pure cable behavior is indicated in these figueeBa@ints €and G for Theory | and
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Theory I, respectively. In addition, the theorati®oint B where the PNA is at the
interface between the web and flange, is also showlme normalized axial force versus
normalized deflection and normalized moment versusalized deflection plots shown
in Figures 4-18 and 4-19, respectively. It cand®ngn these figures that the difference
between theoretical results and those for bencheesg, in whicliE=29,000ksi, is

again observed to play a significant role in predgcthe onset of a pure cable state
(Point C). According to Theory I, pure cable beloavws reached whew=d for W-
Shapes, whereas according to Theory Il, pure dadtavior is reached wh&ki=2d. On
the other hand, FE analysis results for the bendhoase predict that pure cable
behavior is reached wh&i=2.74 d When large values & are used, it can be seen that
the point of pure cable behavior prediction by F&dels somewhat approach that
predicted by Theory II.

In addition, as can be seen in Figures 4-18 and, 4hkoretical prediction of
behavior can be considered as the boundaries té&hmodels for th&x100andEx200
cases. In fact, it can be noted that the resulisirdd by Theory | at low values ¥f / d
are tangent to the FE analysis results, which cgeve Theory Il towards the point of
pure cable behavior (¢ This result is similar to that described in thecussion of
comparison of FE results with theoretical resudtsréctangular sections in Section

4.3.3.2.1.
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NormalizedM—N interaction curves are given in Figures 4-20 at®d 4or an end
section and at midspan, respectively. As can be iseleigure 4-20, all FE models
perfectly follow the yield curve once they reach thechanism condition (Point A),
whereas the midspan section indeed develops acpféisgie once it reaches the
mechanism condition (Point A), but does not neadgdallow the yield curve later on,

as seen in Figure 4-21.
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4.3.4 Comparison of Results with Cable Theory

The beam shown in Figure 4-3 was modeled and a@@lyzOpenSees using the
rather large span lengths given in Table 4-1. Resuie presented in comparison with
theoretical results for the two load cases consiiseparately. Even though cable theory

predicts that the load—deflection characterisasswell as the midspan deflection at the
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onset of pure cable statd/{;) are independent of cross—section, FE results for

rectangular and W-Shaped cross—sections givenbte®al are considered.

4.3.4.1 Concentrated Load Case

It can be seen from the external load—deflectian given in Figure 4-22 that the
theoretical results are in excellent agreement #iEthmodel results for both cross—section
types, in spite of the existence of a small flekueaistance as recognized from ¥eN
interaction curves shown in Figures 4-24 and 4e23He midspan section of a
rectangular beam and a W-Shaped beam, respectindbct, the point of pure cable
behavior (C) occurs at the exact same deflectisuggested by the theoretical results

given by Equation 3-106.

20 FE - REC C
FE - W Shape n C
—a— Theory - REC g
--o--Theory - W Shape &

P (k)

{ @
200 ~ 7 o

Figure 4-22External Load — Normalized Deflection Plot
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It should be noted that the slight difference ia kbad—deflection curves shown in
Figure 4-22 for the different cross—section tyedue to the difference in cross—
sectional area of the beam models as given in TalileRecall, an area term exists in
Equation 3-108 which relates external Idatb normalized transverse deflectioM,/ L
On the other hand, all of the curves resulting fleEhmodels and from theory are in a
perfect agreement once the axial fofdes normalized b,, as suggested by Equation

3-105 (Figure 4-23)
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Figure 4-23Normalized Axial Force — Deflection Plot (Midspan)
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4.3.4.2 Distributed Load Case

Similar to the concentrated load case, FE resudteiound to be in excellent
agreement with the theoretical results. Indepenelenthe onset point of a pure cable
state with cross-sectional properties was suggdstatiis case by Equation 3-112.
Indeed, FE results for Point C perfectly coinciddwtheoretical results for both beam

models as shown in Figures 4-26 and 4-27. It shbeldoted that the theoretical curves
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are based on the proposed valuercf 0.816 to represent the deflected shape
configuration in this case, as given in Equatiohl®- Similar to results for concentrated
load, a slight difference in cross—sectional aigagytwo different load—deflection curves
corresponding to the different cross-section shagmeseen in Figure 4-26, whereas

normalized load—deflection plot again comparesquf with theory, as shown in Figure

4-27.
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Figure 4-26Normalized Load—Deflection Plot
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NormalizedM—N interaction curves for rectangular and W—Shapeuinise shown
in Figure 4-28 and 4-29, respectively, predictightlresistance in bending as they hit the
yield curve under predominantly axial load, andighs nonzero bending moment before

reaching the pure cable state.
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4.3.5 Summary and Conclusion

FE models of rectangular and W—Shaped steel bdared,at both ends, were
developed and analyzed in OpenSees and the resrikscompared and discussed with
the results from rigid-plastic and cable theorieggeneral, the results showed that both

rigid—plastic and cable theories can be replicatederically with appropriate FE
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modeling. In particular, the transverse deflecabthe onset point of pure cable

behavior W4 predicted by each theory was discussed. Followdtatitianal conclusions

are made for this study:

For the concentrated load case, both rigid—plastccable theory predictions were
explicitly verified using FE modeling. Thereforlgettheoretical prediction for the
onset point of pure cable behavior presented irp@&n& can be used.

For the distributed load case, FE analysis restltsved that Theory | and Theory Il
set boundaries for the actual behavior, but neinerrepresents the behavior
throughout the deformation. Nevertheless, the pafiimiterest W, suggested by
Theory Il was verified to be appropriate. FE anebttetical results in regard to the
cable theory were in excellent agreement; thustheeretical prediction for the onset
point of pure cable behavigiven in Chapter 3 can also be used.

Benchmark FE models representing the actual elgumifectly plastic beam behavior
revealed the substantial effect of elastic defoionatwith regard to the onset point of
pure cable behavior. It was observed that theieldsformations caused a delay in

forming pure cable action compared to rigid—plasteory prediction.

4.4 Parametric Study

Preliminary FE analysis results proved the adeqoédlye theoretical models

developed in Chapter 3. It was seen that the aetaatic—perfectly plastic beam behavior

was generally in closer agreement with rigid—ptabghavior. In fact, the effect of elastic

deformations was to cause a delay in formationmirg cable state beyond the one

predicted by rigid—plastic theory. Based on thipamant observation, a parametric study
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was conducted with FE analyses in order to idemtifg study the parameters affecting
the formation of pure cable behavior for elasticfgely plastic beams.
A beam fixed at both ends was analyzed for thesesestions and loading

conditions considered in Chapter 3.

4.4.1 Approach

Based on the results of the preliminary FE analybesonset point of pure cable
behavior for elastic— perfectly plastic beams saktode predominantly affected by the
elastic deformations of the member. In particul@msverse deflections that a beam
exhibits in the elastic range result in a lag\ip: beyond that predicted by rigid—plastic
theory.

Rigid—plastic behavior assumes that no deformatiake place until the flexural
mechanism condition is reached. An elastic—penrfgatstic beam however, deflects
prior to reaching a mechanism. As illustrated igufe 4-30, a beam with full end fixity
reaches a flexural mechanism at Point A. Deflecéibtihe plastic collapse loaB(or qc)
may be associated with the following well known maxm elastic midspan deflection

equations for fixed-fixed beams spanniig

3
= % under central concentrated load [4.1]
__qo’ - i
mex = S e under uniform loading along the length [4.2]

For simplicity, the load-deflection relationship the distributed load case is idealized as

illustrated by the dotted line in Figure 4-30(bhefefore, substituting the plastic collapse
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4 aM
loads, P, = C ®andq, = sz for concentrated and uniform loading into Equatidris

and 4.2, respectively, gives the same expressiof, &s:

5, W 5, W

(a) Concentrated Load (b) Uniformly Distributed Load
Figure 4-306, Definition

2 2
M, _o,Z,L

or = 4.3
P 6El, P 6El, [4-3]

whereM j =0, [Z,.

Equation 4-3 suggests that the effect of elastiordeations consists of geometric and

material properties.

The following parameters are considered in therpatac FE analyses, d, / d,

op/ 2L and L / dThe effect of these parameters on the behavicessribed next.
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4.4.2 Description of Beam Models

The beams are modeled and analyzed using Open&bdbiavconcepts
presented in Section 4-2. A description of the beawdels considered in this section is
given below. The other parameters are given foh ease separately.

= Elastic — perfectly plastic steel material wath=50ksi andE = 2900&si is used in

all cases.

= The cross—sections are discretized using fiberaectvith a constant fiber thickness,
tiber=5x10"°inches

= The number of elements along the length of the b@@mbers is constantly taken as

100.
4.4.3 Concentrated Load Case

4.4.3.1 Constantdy

Several beam geometries with W—Shaped cross seatiere modeled and
analyzed in OpenSees. First, a 6@ft)(beam with W30x124 cross-section was selected
and the correspondiniy was calculated using Equation 4'Be other beam sections
were chosen among different W-Shape groups listeddAISC Steel Construction
Manual (2005) in such a way that they produce sap@es that for a W30x124 by
changing the span length. Table 4-3 lists the berass—sections considered with other

parameters of interest, and theresultant defleetidhe onset of pure cable behavior.
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Table 4-3Beam Models Considered with constéant

B;im Section d(in)  L(in) N, (kips) M, (k-in) P (kips) &, (in) &,/d Wy (in) Wee/d
1 W30x124 302 360 1805 20164 224 283 0094 497  1.65
2 W27x129 27.6 345 1910 19494 226  2.83 0103 465  1.68
3 W24x131 245 327 1784 18432 225  2.83 0116 430 176
4 W21x122 217 308 1921 15279 198 2.83  0.131 394 1.81
5 W18x130 193 289 1875 14555 201 283 0147 359  1.86

It can be seen from Table 4-3 that for deeper negsyla larger deflection is
required to reach the pure cable state. HoweveenW,; is normalized by nominal
depth,d, an opposite trend is observed in Wig;/ d parameter.

Figures 4-31, 4-32 and 4-33 give normalized lodtedgon relationships. It can
be seen from these figures that widgis constant, the point of pure cable state (C) is
close for different cross-sections. In particul&f,:/ d varies from 1.65 to 1.86, which is

a difference, approximately of 13% with respedti® smallest value &/ d.
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Figure 4-31Normalized Load—-Deflection Plot for Constaigt
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To summarize, the results showed that the ormet pf pure cable behavior,
Weat IS not only sensitive td, . In similar manner, with the idea of eliminatitige
nominal depthd, from the problem, FE analyses for different begametries with

constan®, / d were conducted and are presented next.

4.4.3.2 Constantdp/ d

In this section, eight groups of beam models withstan®, / d were analyzed,
each including three beams with varying nominalthlggh W—Shaped cross—sections
within each group were chosen from &i&C Steel Construction Manu@O005) to cover
a wide range ofl. From the cross—sectional properties, the requéegith ¢L) for J,/ d
is obtained using Equation 4.3 and was assigneddb beam model. Rectangular cross—
sections were chosen to have approximately the saménal depth and cross—sectional
area as the corresponding W—-Shapgsd varied between groups, from 0.01 to 2.00 to
cover a wide range of behavior.

All cases were analyzed using OpenSeesviadvas determined by inspection

of the output transverse deflection at midspaheaipbint wheMN /N [ 10 is reached.

However, unlike the W—Shape results, rectangulasszsection cases typically exhibit a

plateau a4;Nl (J1.0. This can be seen in Figure 4-34 which shows E&ymormalized
p

axial force—deflection plot for rectangular shapses that is used in this procesks,;

was determined as the deflection level at the cofstbie apparent plateau which

consistently corresponded—l\élg— > 099. Having observed such a trend from FE analysis
p
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results prompted the idea that the beam model$ thacpure cable state and sustdin
as predicted by the theory.

The parameters used and the results obtained\se mi Tables 4-4 and 4-5 for
the beams with rectangular and W—shaped crosasctiespectively. The tables also

provide the resulta/cy in its normalized forms with respectdpd, and?2L.

N/Np
1.25 A

R R A Wear
0.75 +

The end of the

0.5 7 analysis: N = N\

0.25 ~

N /N, £0.99 N> Wy

>

Wwi/d

Figure 4-34Typical Normalized Axial Force—Deflection plot useddetermin@h,; for

Rectangular Shape Cases

133



Table 4-4FE Models with Rectangular Shapes (Consdgnhi)

Group  bn dgn Lay L/d 5, (n) &,/d W(?;f) W d W,/&, &,/2L W /2L
1.90 36 1226 3.4 0.36 0.01  37.53 1.04 1042  0.0015 0.153
1 4.50 15 51.1 3.4 0.15 0.01  15.63 1.04 1042 0.0015 0.153
2.50 26 88.6 3.4 0.26 0.01 2712 1.04 1043 0.0015 0.153
2.40 40 3046 7.6 2.00 0.05  49.87 1.25 4.9  0.0033 0.082
2 2.20 25 1904 7.6 1.25 0.05 3117 1.25 4.9  0.0033 0.082
140 10 76.2 7.6 0.50 0.05 1248 1.25 250 0.0033 0.082
2.20 39 4200 10.8 3.90 0.10  55.48 142 4.2 0.0046 0.066
3 1.20 4 2585 10.8 240 0.0  34.00 142 4.2 0.0046 0.066
2.00 9 96.9 10.8 0.90 0.10  12.78 142 4.2 0.0046 0.066
1.70 36 4749 13.2 540 0.5  56.00 1.56 104  0.0057 0.059
4 0.95 6 79.1 13.2 0.90 0.15 9.34 1.56 104 0.0057 0.059
3.60 21 277.0 13.2 3.15 015 3276 1.56 104 0.0057 0.059
1.70 40  609.3 15.2 8.00 0.20 67.28 1.68 84  0.0066 0.055
5 2.50 26 396.0 15.2 5.20 0.20 43.74 1.68 84  0.0066 0.055
1.50 12 1828 15.2 2.40 0.20  20.20 1.68 84 0.0066 0.055
2.00 40 7462 187  12.00 0.30  75.82 1.90 6.3  0.0080 0.051
6 1.00 8 140.2 18.7 240 0.30  15.16 1.90 6.3 0.0080 0.051
1.25 M 4477 18.7 7.20 0.30 4548 1.90 6.3 0.0080 0.051
1.60 43 10356 241 21.50 0.50  96.14 2.24 45  0.0104 0.046
7 2.70 1 2649 24.1 5.50 0.50  24.60 2.24 45  0.0104 0.046
1.10 27 650.2 241 13.50 0.50  60.38 2.24 45 0.0104 0.046
1.90 36 1734.0 482  72.00 200 13448 3.74 1.9 0.0208 0.039
8 4.50 15 7225 482 30.00 200  56.12 3.74 1.9 0.0208 0.039
2.50 26 12523 48.2  52.00 200  97.34 3.74 1.9 0.0208 0.039
Table 4-5FE Models with W-Shapes (Constaigt' d)
Group Section dGn Lgn) L/d &, (i 6,/d W(‘;;’; We/d W /6, 6,/2L W.,/2L
W36x231  36.50 1434 3.9 0.37 0.01 423 1.16 1159  0.0013 0.148
1 Wi12x230 1510 57.4 3.8 0.15 0.01  16.57 1.10 1007 0.0013 0.144
W24x229 2600 101.3 3.9 0.26 0.01  20.55 1.14 1136 0.0013 0.146
W40x327 408 3500 8.6 2.03 0.05  53.04 1.42 286  0.0029 0.083
2 W24x192 255 2185 86 1.27 005  37.12 1.46 293 0.0029 0.085
W10x49 10 88.2 8.8 0.50 0.05  14.92 1.49 301 0.0028 0.085
W40x207 308 4915 12.3 3.98 0.10  66.86 1.68 16.8  0.0040 0.068
3 W8x58 875  107.7 12.3 0.88 0.10  14.76 1.69 16.9  0.0041 0.068
W24x103 %45 3022 12.3 2.45 0.10  41.06 1.68 168 0.0041 0.068
W36x210 367 5510 15.0 5.51 015 67.24 1.83 122 0.0050 0.061
4 W6x20 6.38 95.9 15.0 0.96 015  11.84 1.86 124 0.0050 0.062
W18x258 215 38.1 14.8 3.23 0.15  30.38 1.83 122 0.0051 0.062
W40x235 397 845.0 213 1191 0.30  88.86 2.24 7.5 0.0070 0.053
5 W12x65 121 2637 21.8 3.63 0.30  28.30 2.34 7.8 0.0069 0.054
W24x229 26 5546 21.3 7.80 0.30  58.97 2.27 7.6 0.0070 0.053
W40x278 402 931.8 244  16.08 040  99.36 2.47 6.2  0.0082 0.051
6 W38x40 825 2053 2.9 3.30 040  20.88 2.53 6.3  0.0080 0.051
W24x103 4.5 6045 7 9.80 040 6146 2.51 6.3 0.0081 0.051
W44x230 429  1138.1 77 2145 0.50 115.98 2.70 54 0.0090 0.049
7 W10x100 111 304.2 274 5.55 0.50  31.36 2.82 56  0.0091 0.052
W27x102 271 7481 276 13.55 0.50  72.40 2.67 53 0.0091 0.048
W36x231  36.50  2028.6 556  73.00 200 160.00 4.38 22 0.0180 0.039
8  WI12x230 1510 8117 53.8  30.20 200  63.84 4.23 21 0.0186 0.039
W24x229  26.00 14321 551 52.00 200 113.70 4.37 2.2 0.0182 0.040
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The following are observations from Tables 4-4 4+

For each group, constady/ d resulted in identicél / d andd, / 2L values for
rectangular section cases (Table 4-4) but a stigfgtrence in those values for W—

Shaped beams (Table 4-5). This can be explainéullaws. If the moment of inertia

about the major axi$, =S, % is substituted into Equation 4.3, it follows that:

o,xZ, 07
L= [4.4]
3[(ELS, d
Introducing the shape factdr, which is defined as:
Z
f=- 4.5
S, [4.5]
into Equation 4.4, gives:
o, o, 2
% Gy gt [4.6]
d 3[E |d

The shape factor is constarit € 1.5) for rectangular cross-sections. Therefore,

for a constand, / d, L / dmust also be the same within each group in Talsle#he
slight difference in shape factor among W—-Shage§ (L.15) results in the slight
difference inL / d within each group in Table 4-5.

In a similar manner, re-writing Equation 4.6 asddais shows whyj, / 2L also

follows the same trend &s/ d:

i :_Uy LT [EL} [4.7]
2L 6[E [d]| '

Rigid—plastic theory suggests that regardlessettbss—section, centrally loaded,

fully fixed beam reaches the onset point of putdecatate when the deflection equals
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the depth of the beam (i.®/,,,/d = 1.0). Indeed, as can be seen from both tables,

at

W,/ d approaches 1.0 &g/ d approaches zero (relatively rigid cases).

* The output parameteWa / d, Wear/ 6p andWea / 2L are almost identical within each
group for rectangular shape cases (Table 4-4)hauetexists slight difference for the
W-Shape cases (Table 4-5), especially in relatiredye rigid groups.

A graphical presentation of the relationships betwthese variables that seem to
follow a pattern is provided next. The output vales:Weat / p, Wear/ dandWea / 2L are
plotted versus the input variablég:/ d,d, / 2LandL / d, respectively. Therefore, in
total, nine plots will be shown. In these plots;leaoint represents one beam model.

Plots ofWcat/ dpversuss, / d,dp / 2LandL / d,are given in Figures 4-35, 4-36
and 4-37 respectively. It can be seen that thetpoapresenting the rectangular beams
within each group are coincident. However, the ®ofar W—Shaped beams within each
group do not necessarily coincide. In particulaguFe 4-35 shows that the points for the
W-Shapes within each group do nearly coincide eixieghe very rigid cases. Figure 4-
35 is the only figure in that group of three figsitbat uses an independent variablé,df
d which happens to be constant with each grouprettbeams. The reason for these
observations will be explored in detail in Chaf@eil he figures also show that agreement
for each group of beams with the same cross-settpmhas the tendency to improve as
op/ dincreases, or as beam flexibility increases. Intamfd the figures show thaWca: /

Jpdecays with increasingy, / d,dp / 2LandL / d.
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Plots ofW.a:/ d versuss, / d,d, / 2LandL / d are given in Figures 4-38, 4-39 and
4-40,respectively. Again, it can be seen that the poisesenting the rectangular cross-
section cases within each group are coincidenttHaupoints for the W-Shapes within
each group do not necessarily coincide. The agreefoethe W-Shapes is best in Figure
4-38, which is the only figure in that group ofdigs that uses an independent variable of
op ! d. The figures also show th¥f, / d increases with increasiy / d,J, / 2LandL /

d.
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Plots ofWat/ 2L versusdp / d,dp / 2LandL / d are given in Figures 4-41, 4-42
and 4-43, respectively. Similar observations astegetan be made. The points for the
rectangular cross-section cases within each groeipancident, but the points for the
W-Shapes within each group do not necessarily abéndhe agreement for the W-
Shapes is best in Figure 4-41, which is the ogyre that uses an independent variable
of Jp/d. The figures also show th@l..;/ 2L decreases with increasiag/ d,J, / 2L and

L/d.
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4.4.3.3 Constantd,/ 2L

A similar procedure as before is used. For beartis iwgctangular cross sections,

the results are the same as shown previously ite#ad. This table is rearranged and

presented as Table 4-6. For beams with W-Shapegidiht groups indicated in Table 4-

5 were re-analyzed. The required span length foin e@am model and associatigd 2L

values were determined using Equation 4-7.
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Table 4-6FE Models with Rectangular Shapes (Conséght?L)

Goup b d@m L L/d S, (m &,/d W;f;’]‘) W./d W, /6, /2L W,,/2L
1.90 36 122.6 34 0.36 0.01 37.53 1.04 104.2  0.0015 0.153

1 4.50 15 511 34 0.15 0.01 15.63 1.04 104.2  0.0015 0.153
2.50 26 88.6 34 0.26 0.01 2712 1.04 104.3  0.0015 0.153

240 40 304.6 7.6 2.00 0.05 49.87 1.25 249 0.0033 0.082

2 2.20 25 190.4 7.6 1.25 0.05 3117 1.25 249 0.0033 0.082
140 10 76.2 7.6 0.50 0.05 1248 1.25 25.0  0.0033 0.082

2.20 39 420.0 10.8 3.90 0.10 5548 142 14.2  0.0046 0.066

3 1.20 24 258.5 10.8 240 0.10 34.00 142 14.2  0.0046 0.066
2.00 9 96.9 10.8 0.90 0.10 1278 1.42 14.2  0.0046 0.066

1.70 36 474.9 13.2 5.40 0.15 56.09 1.56 104  0.0057 0.059

4 0.95 6 79.1 13.2 0.90 0.15 9.34 1.56 104  0.0057 0.059
3.60 21 277.0 13.2 3.15 0.15 32.76 1.56 104 0.0057 0.059

1.70 40 609.3 15.2 8.00 0.20 67.28 1.68 84  0.0066 0.055

5 2.50 26 396.0 15.2 5.20 0.20 43.74 1.68 84  0.0066 0.055
1.50 12 182.8 15.2 2.40 0.20 20.20 1.68 84  0.0066 0.055

2.00 40 746.2 18.7 12.00 0.30 75.82 1.90 6.3  0.0080 0.051

6 1.00 8 149.2 18.7 240 0.30 15.16 1.90 6.3  0.0080 0.051

1.25 24 477 18.7 7.20 0.30 4548 1.90 6.3  0.0080 0.051

1.60 43 10356 241 21.50 0.50 96.14 2.4 4.5 0.0104 0.046

7 270 11 264.9 241 5.50 0.50 24.60 2.4 45 0.0104 0.046
1.10 27 650.2 241 13.50 0.50 60.38 2.4 4.5 0.0104 0.046

1.90 36 17340 48.2 72.00 200 13448 3.74 1.9 0.0208 0.039

8 4.50 15 722.5 48.2 30.00 2.00 56.12 3.74 1.9 0.0208 0.039
2.50 26 1252.3 48.2 52.00 2.00 97.34 3.74 1.9 0.0208 0.039

Table 4-7FE Models with W-Shapes (Constapt 2L)

Group  Section d@m) L (m L/d O,in &,/d W(”j;’:) W../d W.,/8, 6,/2L W./2L
W36x231 36.50 165.5 4.5 0.49 0.01 43.82 1.20 90.2  0.0015 0.132
1 W12x230 15.10 64.1 4.2 0.19 0.01 17.00 1.13 90.4 0.0015 0.133
W24x229 26.00 115.8 4.5 0.34 0.01 30.54 1.17 89.8  0.0015 0.132
W40x327 40.80 397.0 9.7 2.61 0.06 60.94 1.49 234 0.0033 0.077
2 W24x192 25.50 255.9 10.0 1.68 0.07 39.28 1.54 234 0.0033 0.077
W10x49 10.00 102.9 10.3 0.68 0.07 15.84 1.58 234 0.0033 0.077
W40x297 39.80 563.6 14.2 5.23 0.13 71.42 1.79 13.6  0.0046 0.063
3 W8x58 8.75 123.2 14.1 1.14 0.13 15.77 1.80 13.8  0.0046 0.064
W24x103 24.50 346.2 14.1 321 0.13 43.84 1.79 13.6 _ 0.0046 0.063
W36x210 36.70 627.1 17.1 7.13 0.19 7212 1.97 10.1  0.0057 0.058
4 W6x20 6.38 109.2 17.1 1.24 0.19 12.66 1.98 10.2  0.0057 0.058
W18x258 21.50 356.9 16.6 4.06 0.19 41.52 1.93 10.2  0.0057 0.058
W40x235 39.70 787.2 19.8 10.34 0.26 85.12 2.14 8.2  0.0066 0.054
5 W12x65 12.10 251.6 20.8 3.30 0.27 27.50 2,27 8.3  0.0066 0.055
W24x229 26.00 517.9 19.9 6.80 0.26 56.35 2,17 8.3  0.0066 0.054
W40x278 40.20 964.1 24.0 15.50 0.39 98.20 2.4 6.3 0.0080 0.051
6 W8x40 8.25 205.3 4.9 3.30 0.40 20.87 2,53 6.3  0.0080 0.051
W24x103 24.50 599.6 2.5 9.64 0.39 60.20 2.46 6.2 0.0080 0.050
W44x230 42.90  1366.2 31.8 28.36 0.66  125.98 2.9 44 0.0104 0.046
7 W10x100 11.10 346.2 31.2 7.19 0.65 32.39 2,92 45 0.0104 0.047
W27x102 27.10 857.5 31.6 17.80 0.66 79.06 2.92 44  0.0104 0.046
W36x231 36.50 23408 64.1 97.20 2.66 179.84 4,93 1.9 0.0208 0.038
8 W12x230 15.10 905.9 60.0 37.62 249 71.14 4.7 1.2 0.0208 0.039
W24x229 26.00  1637.7 63.0 68.00 2.62  127.80 4.92 1.9 0.0208 0.039

143



Plots ofWcat/ dp versuso, / d, o, / 2LandL / d are given in Figures 4-44, 4-45 and
4-46, respectively. Plots 8./ d versusi, / d,dp / 2LandL / d are given in Figures 4-
47, 4-48 and 4-49, respectively. Plot3/f: / 2L versuss, / dod, / 2LandL / d, are given
in Figures 4-50, 4-51 and 4-52, respectively.

Very similar observations as before can be madeobyparing Figures 4-44
through 4-52 with Figures 4-35 and 4-43. HoweMaeré is one exception. In the current
case, the points for the W-Shapes within each gstwav the best agreement for cases
that use an independent variabledpf 2L, which happens to be constant for each group

of three beams. This can be seen in Figures 4-48,ahd 4-51.
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4.4.3.4 ConstantL/d

Again, a similar procedure as before is used. Eants with rectangular cross
sections, the results are the same as those sholable 4-4. This table is rearranged
and is presented in Table 4-8. For the beams wiBhapes, the required span length for
each beam model and associated span-to-depthlrdtdhwas determined using
Equation 4-7. The parameters used and resultsnaotdor beams with W-shapes are

given in Table 4-9.

Table 4-8FE Models with Rectangular Shapes (Constahtl case)

Gowp bn d@m L@ L/d &, B&,/d W(c;}r) Weo/d We/8, 5,/2L W,/2L

1.90 36.0 122.6 34 0.36 0.01 37.53 1.04 104.2  0.0015 0.153
1 4.50 15.0 51.1 34 0.15 0.01 15.63 1.04 104.2  0.0015 0.153
2.50 26.0 88.6 34 0.26 0.01 27.12 1.04 104.3  0.0015 0.153
240 40.0 304.6 7.6 2.00 0.05 49.87 1.25 249  0.0033 0.082
2 2.20 25.0 190.4 7.6 1.25 0.05 3117 1.25 24.9 0.0033 0.082
140 10.0 76.2 7.6 0.50 0.05 1248 1.25 25.0  0.0033 0.082
2.20 39.0 420.0 10.8 3.90 0.10 55.48 1.42 14.2  0.0046 0.066
3 1.20 24.0 258.5 10.8 240 0.10 34.00 1.42 14.2  0.0046 0.066
2.00 9.0 96.9 10.8 0.90 0.10 12.78 1.42 14.2  0.0046 0.066
1.70 36.0 474.9 13.2 540 0.15 56.09 1.56 10.4  0.0057 0.059
4 0.95 6.0 79.1 13.2 0.90 0.15 9.34 1.56 10.4  0.0057 0.059
3.60 21.0 277.0 13.2 3.15 0.15 32.76 1.56 10.4 _ 0.0057 0.059
1.70 40.0 609.3 15.2 8.00 0.20 67.28 1.68 8.4  0.0066 0.055
5 2.50 26.0 396.0 15.2 5.20 0.20 43.74 1.68 8.4  0.0066 0.055
1.50 12.0 182.8 15.2 240 0.20 20.20 1.68 8.4 0.0066 0.055
2.00 40.0 746.2 18.7 12.00 0.30 75.82 1.90 6.3  0.0080 0.051
6 1.00 8.0 149.2 18.7 240 0.30 15.16 1.90 6.3  0.0080 0.051
1.25 24.0 7.7 18.7 7.20 0.30 45.48 1.90 6.3 0.0080 0.051
1.60 43.0 10356 241 21.50 0.50 96.14 224 45 0.0104 0.046
7 270 11.0 264.9 241 5.50 0.50 24.60 224 45 0.0104 0.046
1.10 27.0 650.2 241 13.50 0.50 60.38 224 45  0.0104 0.046
1.90 36.0 1734.0 48.2 72.00 2.00 13448 3.74 1.9  0.0208 0.039
8 4.50 15.0 722.5 48.2 30.00 2.00 56.12 3.74 1.9 0.0208 0.039
2.50 26.0 12523 48.2 52.00 2.00 97.34 3.74 1.9 0.0208 0.039
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Table 4-9FE Models with W—Shapes (Constantd case)

Group Secton d@m L@ L/d 8, (n &,/d Wea W../d W.,/6, &,/2L W.,/2L

(in)
W36x231 36.50 124.3 34 0.27 0.01 40.89 112 149.2  0.0011 0.164
1 W12x230 15.10 51.4 34 0.12 0.01 16.16 1.07 133.3  0.0012 0.157
W24x229 26.00 88.6 34 0.20 0.01 28.61 1.10 143.9  0.0011 0.162
W40x327 40.80 310.7 7.6 1.60 0.04 55.72 1.37 349 0.0026 0.090
2 W24x192 25.50 194.2 7.6 0.97 0.04 35.38 1.39 36.6 0.0025 0.091
W10x49 10.00 76.2 7.6 0.37 0.04 14.10 1.4 381  0.004 0.093
W40x297 39.80 428.7 10.8 3.03 0.08 62.94 1.58 208  0.0035 0.073
3 W8x58 8.75 94.2 10.8 0.67 0.08 13.87 1.59 20.7  0.0036 0.074
W24x103 24.50 263.9 10.8 1.87 0.08 38.68 1.58 20.7  0.0035 0.073
W36x210 36.70 484.1 13.2 4.25 0.12 63.06 1.72 14.8  0.0044 0.065
4 W6x20 6.38 84.2 13.2 0.74 0.12 11.11 1.74 151 0.0044 0.066
W18x258 21.50 283.6 13.2 2.56 0.12 36.77 1.71 143 0.0045 0.065
W40x235 30.70 604.7 15.2 6.10 0.15 73.36 1.85 12.0  0.0050 0.061
5 W12x65 12.10 184.3 15.2 1.77 0.15 23.08 1.91 13.0  0.0048 0.063
W24x229 26.00 396.0 15.2 3.98 0.15 4843 1.86 122 0.0050 0.061
W40x278 40.20 749.9 18.7 9.38 0.23 82.70 2.06 8.8 0.0063 0.055
6 W8x40 8.25 153.9 18.7 1.86 0.22 17.48 212 94  0.0060 0.057
W24x103 24.50 457.0 18.7 5.60 0.23 50.92 2.08 9.1  0.0061 0.056
W44x230 42.90  1033.2 2.1 16.22 0.38  104.46 243 6.4  0.0079 0.051
7 W10x100 11.10 267.3 2.1 4.28 0.39 27.27 246 64  0.0080 0.051
W27x102 27.10 652.7 2.1 10.31 0.38 65.82 243 64  0.0079 0.050
W36x231 36.50 1758.1 48.2 54.83 1.50 14413 3.95 26  0.0156 0.041
8 W12x230 1510 7273 48.2 24.25 1.61 59.02 3.01 24 0.0167 0.041
W24x229 26.00 12523 48.2 39.76 1.53  102.58 3.95 26 0.0159 0.041

Plots ofWcat/ dpversuss, / d,dp / 2LandL / d are given in Figures 4-53, 4-54 and
4-55, respectively. Plots ../ d versusi, / d,dp / 2LandL / d are given in Figures 4-
56, 4-57 and 4-58, respectively. Plots/: / 2L versusi, / d,dp / 2LandL / d are given
in Figures 4-59, 4-60 and 4-61, respectively.

Very similar observations as before can be madeobyparing Figures 4-53
through 4-61 with Figures 4-35 through 4-43, resipely, for the constani, / d case,
and with Figures 4-44 through 4-52, respectivedy the constani, / 2L case. However,
there is one exception. In the current case, tipbor the W-Shapes within each group

show the best agreement for cases that use aneindept variable df / d, which
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happens to be constant for each group of three $ieBms can be seen in Figures 4-55,

4-58, and 4-61.
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4.4.4 Distributed Load Case

A similar study was conducted for fully fixed beaorgler uniform loading, as
shown in Figure 4-3(b).

Only the case of constant/ dis presented herein. Similar observations as for
fully fixed beams under a concentrated load at padsvere made. The parameters used
and results obtained are given in Tables 4-10 ahdl #r beams with rectangular and W-

Shapes, respectively.

Table 4-10FE Models with Rectangular Sections (Uniform Loading)

Group b (in) df(in) L (in L/d &, (n ©&,/d w(*;;; We/d W /8, &,/2L W, /2L
1.90 36.00 122.6 3.4 0.36 0.01 67.74 1.88 188.2  0.0015 0.276

1 4.50 15.00 51.1 34 0.15 0.01 28.23 1.88 188.2  0.0015 0.276
2.50 26.00 88.6 3.4 0.26 0.01 48.93 1.88 188.2  0.0015 0.276

2.40 40.00 3046 7.6 2.00 0.08 8963 2.24 448  0.0033 0.147

2 2.20 25.00 190.4 7.6 1.25 0.05 56.03 2.24 448  0.0033 0.147
1.40 10.00 76.2 7.6 0.50 0.05 241 2.24 44.8  0.0033 0.147

2.20 39.00 420.0 10.8 3.90 0.10 93.07 2.39 23.9 0.0046 0.1

3 1.20 24.00 258.5 10.8 2.40 0.10 57.27 2.39 239  0.0046 0.111
2.00 9.00 96.9 10.8 0.90 0.10 21.48 2.39 23.9  0.0046 0.1

1.70 36.00 474.9 13.2 5.40 0.15 8958 2.49 16.6  0.0057 0.004

4 0.95 6.00 791 13.2 0.90 0.15 14.93 2.49 16.6  0.0057 0.094
3.60 21.00 277.0 13.2 3.15 0.15 52.27 2.49 16.6  0.0057 0.094

1.70 40.00 609.3 15.2 8.00 020 10296 2.57 129 0.0066 0.084

5 2.50 26.00 396.0 15.2 5.20 0.20 66.92 2.57 129 0.0066 0.084
1.50 12.00 182.8 15.2 2.40 0.20 30.90 2.58 129  0.0066 0.085

2.00 40.00 746.2 18.7 12.00 030 10884 2.72 9.1  0.0080 0.073

6 1.00 8.00 149.2 18.7 240 0.30 2185 2.73 9.1  0.0080 0.073
1.25 24.00 M47.7 18.7 7.20 0.30 65.32 2.72 9.1 0.0080 0.073

1.60 4300 10356 241 2150 050 12658 2.94 59 00104 0.061

7 2.70 11.00 264.9 241 5.50 0.50 32.38 2.94 59 0.0104 0.061
1.10 27.00 650.2 24.1 13.50 0.50 79.48 2.94 59 0.0104 0.061

1.90 36.00 17340 48.2 72.00 2.00 14338 3.98 2.0 0.0208 0.041

8 4.50 15.00 722.5 48.2 30.00 2.00 §9.72 3.08 2.0  0.0208 0.041
2.50 2600 12523 48.2 52.00 2.00 10356 3.98 2.0  0.0208 0.041
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Table 4-11FE Models with W-Shapes (Uniform Loading)

Group Section d(n) Ln) L/d &, (n &,/d W(ﬁ:) We/d W/, 6,/2L W, /2L
W36x231 36.50 124.3 3.4 0.27 0.01 64.47 1.77 2352 0.0011 0.259

1 W12x230 16.10 514 3.4 0.12 0.01 27.50 1.82 226.8 0.0012 0.267
W24x229 26.00 886 3.4 0.20 0.01 51.48 1.98 258.9  0.0011 0.291
W40x327 40.80 3107 7.6 1.60 0.04 87.88 215 §5.0 0.0026 0.141

2 W24x192 25.50 194.2 7.6 0.97 0.04 55.44 217 §7.3  0.0025 0.143
W10x49 10.00 76.2 7.6 0.37 0.04 21.12 2.1 57.1  0.0024 0.139
W40x297 39.80 4287 10.8 3.03 0.08 95.58 2.40 31.6  0.0035 0.111

3 WBx58 8.75 942 10.8 0.67 0.08 22,71 2,60 34.0  0.0036 0.121
W24x103 24.50 2639 10.8 1.87 0.08 57.94 2.36 31.0  0.0035 0.110
W36x210 36.70 484 1 13.2 4.25 0.12 98.58 269 232  0.0044 0.102

4 W6x20 6.38 84.2 13.2 0.74 0.12 16.25 2,55 22.0  0.0044 0.007
W18x258 21.50 283.6 13.2 2.56 0.12 57.43 2.67 22.4  0.0045 0.101
W40x235 39.70 604.7 156.2 6.10 0.15  110.64 279 18.1  0.0050 0.091

5 W12x65 12.10 184.3 15.2 1.77 0.15 34.24 283 19.3  0.0048 0.093
W24x229 26.00 396.0 15.2 3.98 0.15 72.86 2.80 18.3  0.0050 0.092
W40x278 40.20 7499 18.7 9.38 023 117.02 29 125  0.0063 0.078

6 W8x40 8.26 153.9 18.7 1.86 0.22 24.22 2.94 131 0.0060 0.079
W24x103 24.50 457.0 18.7 5.60 0.23 71.06 2.90 12.7 _ 0.0061 0.078
W44x230 4290 10332 241 16.22 0.38 136.05 317 8.4  0.0079 0.066

7 W10x100 11.10 2673 241 4.28 0.39 34.23 3.08 8.0  0.0080 0.064
W27x102 27.10 652.7 241 10.31 0.38 85.712 3.16 8.3  0.0079 0.066
W36x231 36.50 17581 48.2 54.83 150 154.70 4.24 28 0.0156 0.044

8 W12x230 15.10 7273 48.2 24.25 1.61 62.76 4.16 26  0.0167 0.043
W24x229 26.00 12523 48.2 39.76 1.53  109.48 4.21 28  0.0159 0.044

Plots ofW¢at/ dpversussy, / d, o, / 2LandL / d are given in Figures 4-62, 4-63 and
4-64, respectively. Plots O/ d versuss, / d,dp / 2LandL / d are given in Figures 4-
65, 4-66 and 4-67, respectively. Plots/df:/ 2L versusi, / d,dp / 2LandL / d are given

in Figures 4-68, 4-69 and 4-70, respectively.

157



o

50 A

*»

*

0 T T

< »

REC & W Shape

0.0 05 1.0 5, /d

15

2.0 25

Figure 4-62W;at/ dp- dp / d Relationship (Constart/ d within each group)

250

'S 4

200

g

50 4

*»

e
¥ &
0 T T

40 @

| REC W Shape

0.000 0.005 0.010

5, /2L

0.015

0.020 0.025

Figure 4-63Weat/ dp- dp / 2L Relationship (Constat/ d within each group)

158



250

. REC & W Shape
*
200 +
o 150 A
0
~
g
= 100 -
50 - ®
$
® 5
4
¢ ©
0 T T T T
0 10 20 30 40
L/d

50

Figure 4-64W,a / 6p— L / dRelationship (Constartt/ d within each group)

5.0

4.0 A

3.0

Weat / d
N
o
b ™
®e
2o

1.0 A

0.0

L 4

%

|WREC W Shape

0.0

0.5

5, /d

2.0

25

Figure 4-65W,a:/ d- dp / d Relationship (Constart/ d within each group)

159



Weat / d

Weat / d

5.0

4.0 -

3.0

2.0 A

1.0

0.0

¢

® e

REC & W Shape

o

NG

0.000

0.005 0.010 5, /2L 0.015 0.020 0.025

Figure 4-66W.« / d- J, / 2L Relationship (Constart/ d within each group)

5.0

4.0

3.0

2.0 -

1.0

0.0

K24

»

REC & W Shape

4

e
L 2 2
L 2
»
<e

10 20 30 40 50
L/d

Figure 4-67W.,:/ d— L / dRelationship (Constarnt/ d within each group)

160



0.30 ¢

L REC & W Shape
*
»
0.20 ~
-
N
~
g (@
K
0.10 | &
*
2
“ e
OOO T T T T
0.0 0.5 10 6,/d 15 2.0 25

Figure 4-68W.a/ 2L -6, / d Relationship (Constart/ d within each group)

0.30

° | W REC & W Shape
P 4
0.20 -
—
N
— o
3 @
*
= ¥
0.10 - R
»
.
“wo
0.00 ‘ | ‘ |
0.000 0.005 0.010 0.015 0.020

5, /2L

0.025

Figure 4-69W,at/ 2L -0, / 2L Relationship (Constartt/ d within each group)

161



0.30

* REC & W Shape
*
L 2
0.20 A
—
Y
8 8
= *
*
0.10 A ¢ o
*
84
L 2
0.00 ‘ ‘ ‘ ‘
0 10 20 L/d 30 40 50

Figure 4-70W.a:/ 2L — L / dRelationship (Constamnt/ d within each group)

4.4.5 Summary and Conclusions

A parametric FE analysis study of elastic—perfepthstic steel beams with full
end fixity was conducted. Through preliminary FElgsis results, geometric parameters
that had an influence on the onset of pure cahle $V.,;were identified and studied
using beam models for rectangular and W—Shaped-esestions.

A cursory study revealed that the midspan displargrat the onset of pure cable
behavior Weat, is not only influenced by,; even for the sam&, it was observed that
Weat Varied significantly with the cross-section usedwever, further investigations
revealed that the point of pure cable behavioe#&hed at approximately the same ratio

of midspan displacement to dep#,;: / d, regardless of the cross section used. This
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initial study led to another parametric study watlvider scope. In particular, the effect of

opl d,dp/ 2LandL / donWeat/ dp, Wear/ dandWea / 2L wasinvestigated.
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Chapter 5. EQUATIONS FOR THE ONSET OF PURE CABLE BEHAVIOR

5.1 Overview

Rigid—plastic and cable theories for fully fixedalnes with rectangular and W-
Shaped cross-sections were developed in ChapreBminary FE analysis results
presented in Chapter 4 showed that results froim th&tories can be simulated
numerically. However, they represent an ideal bbahavior. FE parametric studies as
presented in Chapter 4 showed that the elasticeqgtériplastic response can be neither
represented precisely by rigid—plastic nor cabémtia, but is expected to fall in between
the two. The studies focused on finding the midsgeftection level at the onset of pure
cable behavioWV,. The observed trends V.., with respect to the geometric
parameters studied, prompted an investigationth@ossibility of developing an
equation that would predict the onset point of prakle behavior in terms of the
theoretical predictions presented in Chapter 3.

Trends forlW; g can be expressed in several ways, such as thazesslesl in

Chapter 4. The following three forms of relatiomshwere selected:

*  Weat/ dpversuso, / 2L (Formulation 1)
»  Wea/ dversusl / d (Formulation 11)
»  Wea/ 2L versusl / d (Formulation 111)
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Theoretical expressions fiv.,: in these forms were developed using both rigid-
plastic and cable theories, and were compared tarfallysis results for the concentrated

and uniformly distributed load cases from Chapter 4

5.2 Concentrated Load Case

5.2.1 Formulation |
» Rigid—plastic theory:
The onset point of pure cable behavior for a fliked beam is independent of

the cross-section and occurs when the deflectioaledhe nominal depth of the section,

d (i.,eW,_, =d). Therefore:
W,
o 0 51
Jp 5P
which can be written as:
Weu 11 1 : [5.2]
% 2 L} %
d]|aL
SubstitutingL / dfrom Equation 4.7 into Equation 5.2 yields:
W o,lf
w o L fy D1 [5.3]
o0, 12 E [o
o
2L

= Cable Theory
It has been shown in Section 3.3.1 that the onsiat pf pure cable behavior is

independent of cross—section type and can be wiittéhe form:
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[5.4]

which can be rewritten as:
20
Wcat - y D 1 [55]
5p \ E ) Jp
2L

or

W, [o, 1
cat = |7V [5.6]
5, V2E [0,

oL

Plots ofWeat / dp Versuss, / 2L as suggested by each theory are given in Figures 5

1 through 5-4 in comparison with FE analysis respiesented in Chapter 4. Sintfgy
according to the rigid-plastic theory is affectgdthe shape factorf() (Equation 5-3),
the plots are presented for beams with rectangumdnV-Shaped cross-sections
independently. Figure 5-1 shows the comparison #lEhanalysis results for rectangular
shaped beams. Figure 5-2, 5-3, and 5-4 show theaason with FE results for W—

Shaped beams with constapt d,d, / 2L,andL / d, respectively. The shape factdr,

in Equation 5.3 was taken as an average valde of foll&ll W—Shapes considered.
For beams with rectangular cross-section, it caseesm from Figure 5-1 that the
FE analysis results tend to approach those foridgind plastic theory for relatively stiff
beams and approach cable theory results for relatilexible beams. Similar
observations can be made for beams with W—Shap&soas in Figures 5-2, 5-3 and 5-
4. With the purpose of representing the behavier ¢ive entire range, a new curve is

introduced which was obtained by linear superpasitf Equations 5.3 and 5.6:
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Wcat_ 1 UYDf 1

/Jy 1

=—0d >+l == [5.7]
Jp 12 E Jp 2E é'p
2L 2L

Equation 5.7 is represented by the solid curvegnies 5-1 through 5-4.

Equation 5.7 approaches the rigid-plastic theorydtatively stiff beams and cable
theory for relatively flexible beams.

It can be seen that Equation 5.7 is in excellerg@ment with the FE results for
W-Shapes (Figures 5-2 through 5-4) and in goodeageat with the FE results for
rectangular shapes (Figure 5-1). Minor discreparitiat can be seen in the figures will

be discussed in Section 5.4.
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Figure 5-1 Comparison with FE results (REC Shapes)
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5.2.2 Formulation Il

» Rigid—plastic theory:
The onset point of pure cable behavior for a flikgd beam is independent of

the cross-section and occurs when the deflectioalsghe nominal depth of the section,

d (i.eW_ =d). Therefore:

W,

_ca —1. 5.8
d [5.8]

= Cable theory:

It has been shown in Section 3.3.1 that the onsiat pf pure cable behavior is

independent of cross—section type and can be wiittéhe form:
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cat — y [59]

which can be rearranged to give:

Weur _ |29y [EL} [5.10]
d E |d

FE analysis results compared with the results ffl@mmulation | shown
previously demonstrated that the linear superpsibil the theoretical predictions
appropriately represented the behavior. Accordinilg superposition equation for

Formulation Il is given as:

Wcat =1+ 20—)’ [EL} . [511]
d \ E [d

As can be seen, this formulation is independethi@thape factor. Thus, the

comparison can be presented for both cross—sdgpes together.

Figure 5-5, 5-6, and 5-7 show the comparison adittiecal predictions with FE
results for rectangular and W—-Shaped beams witktaatd, / d,d, / 2L,andL / d,
respectively. Again, it can be seen that FE ansiyesults are in excellent agreement with

Equation 5.11.
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5.2.3 Formulation Il

» Rigid—plastic theory:

The onset point of pure cable behavior for fullefil beam was predicted to be

equal to the nominal deptdi, regardless of the cross—section type Wg, =d).

Therefore:
Woar _ d
2L 2L

which can be written as:

Wou - 1

* g
d
= Cable theory:
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It has been shown in Section 3.3.1 that the onset pf pure cable behavior is

independent of cross—section type and can be wiittéhe form:

o
Wea _ |9y [5.14]
2L V2E

Similarly, the superposition equation in this ckeeomes:

Wcat :L_'_ & . [515]
2L Z%L} V2E

d

Similar to the second formulation, this represeotais also independent of the

shape factor { ). Therefore the comparisons with FE analysis tesare presented

together for rectangular and W-Shaped beams.

The following figures (5-8 through 5-10) give thiets of W.a:/ 2LversusL / d
predicted by each theory, along with the represiemavith superposition equation
(Equation 5.15) in comparison with FE results facle case considered in the parametric
study in Chapter 4. As can be seen in these figtliessuperposition equation as given in
Equation 5.15 indicates excellent agreement withidslts. In particular, W—Shapes are
again in excellent agreement with results fromsilygerposition curve given in Equation
5-15. Typically, rectangular shaped beams alway®&ow the curve, which will also

be discussed in Section 5.4.
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5.3 Distributed Load Case

A similar procedure for the beams with uniformlgtiibuted load along the

length was implemented.

Theoretical expressions fiv.,: in these forms were developed using both rigid-

plastic and cable theories, and werecompared tanfalysis results for the concentrated

and uniformly distributed load cases. Since thdimpmeary FE analysis results as

presented in Section 4.3.3.2 showed that Theoprédicted the deflection at the onset

of pure cable behavior somewhat accurately, Thedamll be used herein.

5.3.1 Formulation |

» Rigid—plastic theory:
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The onset point of pure cable behavior for a flikgd beam is independent of
the cross-section and occurs when the deflectiaalsdwice the nominal depth of the

section, & (i.eW_,, = 2d ). Therefore:

at

Wear _ 2d [5.16]
59 Jp
which can be arranged as:
Wou - 11 [5.17]
5, H 3,
d]| 2L
Now, substitution of. / dfrom Equation 4.7 into Equation 5.17 yields:
o, lf
Wcal IED y 1 [518]

5, 6 E iz'
2L

= Cable Theory:
It has been shown in Section 3.3.2 that the onsat pf pure cable behavior

independent of cross—section type and can be wiittéhe form:

We = 1 /9y [5.19]
2L 2a E

where a was verified to be 0.816.Re—arranging Equation ad fbllows and

usinga = 0.816, Equation 5.19 becomes:

W,

lo, 1

cal = 0,61270 2 . [5.20]
3, E [0,
2L

Finally, the superposition equation for this casedmes:
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p p

o, [f o
Wear :ED 2 1 > +0.6127 4/—" ! [5.21]
0 6 E 3, E |0
2L 2L

In Figures 5-11 and 5-1%V.a:/ dpis plotted versus,/ 2L, including the
predictions given in Equations 5.18, 5.20 and Sr2tpmparison with FE analysis
results from the parametric study in Section 4.8idce the rigid—plastic theory
prediction given in Equation 5.18 involves the shétor term, comparison is made for

each of the cross section types independentlynAlsa concentrated load case, an

average shape factor is used for W—Shages 1.15) to produce the theoretical

prediction shown in Figure 5-12. As can be sedhase figures, FE results are in good
agreement with the rigid—plastic theory for snégh 2L values, whereas cable theory
produces better agreement for relatively largeaslfd,/ 2L (i.e. for the flexible
regime). The superposition equation given in Equei.21 is again in excellent

agreement with the FE results over the entire range
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5.3.2 Formulation Il
» Rigid — plastic theory:

The onset point of pure cable behavior for a fliked beam is independent of
the cross-section and occurs when the deflectioalsedwice as much the nominal depth

of the section, @ (i.eW_,, = 2d ). Therefore:

at

Weat — 5. [5.22]
d

= Cable theory
It has been shown in Section 3.3.2 that the onsiet pf pure cable behavior is

independent of cross—section type and can be wiittéhe form:

W _1 |0y [EL} [5.23]
d alE [d] '

Substitution ofa = 0.816into Equation 5.23 yields:

g
Wear 12250/ EEE} . [5.24]
d E |d

Having determined the relationship based on daebry, the superposition

equation in this formulation can be given as:

g
Vh:2+1.225q/—y L [5.25]
d E |d

Figure 5-13 provides the plots 0,/ d versusL/ d predicted by Equations 5.22,
5.24 and 5.25 in comparison with FE analysis reduttm the parametric study as
presented in Section 4.4.4. It can be seen tha&rpapition equation adequately

represents the trend exhibited by FE analysis tesul
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5.3.3 Formulation Ill

» Rigid — plastic theory:

The onset point of pure cable behavior for a flikgd beam is independent of

the cross-section and occurs when the deflectioalsdwice the nominal depth of the

section, 2 (i.eW,,, = 2d ). Therefore:

at

Wcat — E

2L 2L
which can be rewritten as:

W, 1

cat — &
" e
d

= Cable theory:
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It has been shown in Section 3.3.2 that the onsiet pf pure cable behavior

independent of cross—section type and can be wiittéhe form:

WC at —

g
Wea - 1 1% [5.28]
2L 20 VE

Again, substitutingy = 0. 816nto Equation 5.28 yields:

g
% = 0.6127Q/Ey [5.29]

Finally, the linear superposition equation for ttuemulation becomes:

g
Wea - 1, 561270/ [5.30]

2L {H E

Weat/ 2L 1is plotted versus span-to-depth ratid @) in Figure 5-14, including FE

results from the parametric study (Section 4./h4)amparison with predictions
produced by Equations 5.27, 5.29 and 5.30. Sirolb@ervations are made and it can be
seen that W—Shaped beams, in particular, seemitolmter agreement with the

prediction given by Equation 5.30 over the entinege ofl / d values.
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The adequacy of representation of FE resultsri®ali superposition of the

theoretical predictions is discussed in followimgtson.

5.4 Discussion

Based on the trends observed in the results ofdr&npetric study (Section 4.4),
theoretical predictions for the onset point of pcable behavior were formulated and
compared to FE analysis results. The comparisoowesth that the FE results approached
results produced by the rigid-plastic and cableties for stiff and flexible beams,
respectively. In order to cover the entire rangbedfavior, a new equation is proposed
that is obtained by linear superposition of thédriglastic and cable equations.

Comparison of FE analysis results with the new #goahowed that it can be used to
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predict the onset point of pure cable behavioefastic—perfectly plastic steel beams.
Some discrepancies were observed between the guposiation and FE analysis
results. The difference between the two, and plessaasons for this discrepancy are
discussed next.

The difference between results from the propose@dtan and FE results can be
guantified as:

Differencé%) = YLSYi x100 [5.31]

FE
whereY, s andYge are y—coordinates of the proposed equation andnfalysis results at a
givenL / dlevel, respectively. Span-to-depth ratio/ (d) was chosen for this analysis due
to its common use in practice.

It can be anticipated that the difference will Bentical regardless of which
formulation is used in comparison. The reasonas ¢lach formulation presented in this
chapter is a different manipulation of the the@adtonset point of pure cable behavior,
Wear Thus, the percent differences between proposedtieq and FE analysis results for
each cross—section type are calculated using ExuatB1l and are presented in the range
of L / d considered in the parametric study.

Figures 5-15 and 5-16 show plots of Equation 5&%wsL / d of the
concentrated load case, for rectangular and W—-Shiagems, respectively. It can be seen
that the difference is largest for relatively sh#fams and becomes smaller for relatively
flexible beams. While this has not been studiedetail in the thesis, it is believed that
the difference is largest for relatively stiff bembrecause the deflection at the onset of

pure cable behavior is typically large compareth®span length. Since the rigid-plastic
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theory is developed for finite, but not necessddalge deflections, it is believed that it
may not give accurate results for very stiff beams.

The shaded region shown in Figures 5-15 and 5-%¥éredhe range df / d
between 1@&nd30 that is typically encountered in practice. Witthis range, the
difference between the proposed equation and thenllysis results falls in a range of
8~15% for rectangular shapes and less than 3% foriAp&s. Considering that W—
Shapes are widely used in practice, this differarazebe considered acceptable. While
the reason that the difference is larger for regiiéar shaped beams than for W-Shaped
beams has not been rigorously studied in the thiesssbelieved that it relates to the way

the onset point of pure cable behavidk,, was determined, as indicated in Figure 4-34

and explained in Section 4.4.
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Figure 5-15Distribution of the Difference for Rectangular $bd Beams
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(Concentrated Load case)

15%

o
10% -
S
Q ([ J
© 5% -
o
£
5 e
o0
0% [ ] -
" e
®
@
( ] o P
-5% ®
0 10 20 30 40 50 60 70
L/d

Figure 5-16Distribution of the Difference for W-Shaped Beams
(Concentrated Load Case)

In a similar manner, Figures 5-17 and 5-18 showspdd Equation 5.31 versus/
d for the distributed load case for rectangular Wh&haped beams, respectively. The
difference is again largest for relatively stiffames but not necessarily much smaller for
relatively flexible beams. However, within the shddegion( / d of 10 to 30) the
difference ranges from 6% to 10% for rectangulapgid beams and remains within 7%
for W-Shaped beams.

The fact that the difference is slightly larger WrShaped beams compared to the
concentrated load case can be attributed to tlceigion made within the context of the

preliminary FE analysis (Section 4.3.3.2) thatahset point of pure cable behavior
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prediction by the rigid—plastic theory for unifotoading W:a:=2d) is not rigorous but is

approximate.
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5.5 Conclusion

An equation is proposed that predicts the midsplection at the onset of pure
cable behaviolV.4for elastic—perfectly plastic steel beams with arspo-depth ratiol.
/ d, ranging between 10 and 30. It can be shown thttrae formulations presented
herein result in the same reduced form of the gnsiett of pure cable behavior as

follows:

For beams fixed at both ends spanrfhginder a concentrated load at midspan:

20b,
W, =d+ =20 [5.32]

and for beams fixed at both ends span@bgnder uniformly distributed load along the

length:
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g
W,,, = 2d +1.225q/Ey il [5.33]

Equations 5.32 and 5.33 suggest iNaf is independent of the cross-section type

and it can be predicted with knowledge of odly, o, andE. Although previous FE

analysis results suggested that the shape of tiss-section has an influence on the onset
point of pure cable behavior, the analysis conaltequantify the difference between

FE analysis results and theoretical linear supéipogesults indicated that the

difference is sufficiently small for both rectangubnd W-Shaped cross-sections.

Therefore, Equations 5.32 and 5.33 can be useg@émiient of the cross-section type.
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Chapter 6. EFFECT OF ELASTIC BOUNDARY CONDITIONS

6.1 Overview

The behavior of ductile steel beams undergoingmstition from flexural to cable
behavior was described using idealized boundargitions in the previous chapters. The
end supports were assumed to be either fully foraginned. However, it can be
anticipated that the boundary conditions of a beatmin a building frame may be
different from the idealized ones. In particulasnditions at the ends of the beam may
result in partial rotational and axial restrairBeam end restraints can be attributed to
two main sources: restraining effects due to thieosmding elements framing into the
beam joint and restraining effects provided bylibam-to-column connection itself.

In this chapter, study on the effect of elasticrmary conditions using FE models
is described. The study consisted of two main dbjes: (1) to determine the effect of
elastic boundary restraints on beam behavior andg@pare frame models to that of
beam models.

The beam models used in the analysis are illustiat€igure 6-1. The beam A-B
is isolated from the frame and beam end restramg@snodeled using linear—elastic
springs .k, andkyare translational and rotational spring constaetgpectively, as shown

in Figure 6-1. Due to symmetrl; andk,are the same for both supports.
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Nonsymmetrical cases are not considered in thdysta addition, the beam is
loaded at midspan as shown in Figure 6-1. The bamyncbnditions associated with the

midspan joint are idealized to be rigid and cordumi

Removed Column

Kk, K

B A
|
|

Figure 6-1 Schematics of Beam Model with Elastic Boundary Giols

The beams and frames considered in this chapter also modeled and analyzed
using OpenSees (2000). Therefore, all modelingaanadlysis concepts described in

Section 4.2 are valid here as well.
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6.2 Effect of Elastic Restraint

FE analyses of steel beams with linear—elastic Ganconditions were
conducted. Both material and geometric nonlineavitye considered for the beams.
First, the effects of translational and rotatiorestraint were studied separately. For each
case, a wide range of spring constant values wssé. (Irhen, both were incorporated
simultaneously into the models, as illustratediguFe 6-1, to study their combined
effect.

The cross-section of the beam used in the analyassletermined from
preliminary design of a two—bay frame, based onAI®C Manual2005) LRFD
approach, as presented in Section 6.3. A W14x53used for all beam models
considered throughout this section. Cross—sectiane discretized with fibers as
explained earlier in Section 4.2.1 with a consfimgr thicknesstiper = 510° inches. An
elastic—perfectly plastic steel material witf= 50 ksi was used in all models. The

number of elements along the beam length was denglistaken as 100.

6.2.1 Effect of Translational Restraint

In order to study the effect of partial translabrestraint, the beam was modeled

as shown in Figure 6-2.
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L L

Figure 6-2 Beam model with translational springs only
A range of spring constant values was considerddtaee beam models
(W14x53) with varying lengths for ea&h were analyzed. Table 6-1 summarizes the
input parameters, as well as the resulting midsjisplacement at the onset of pure cable

behavior Wea, andWezt/ d.

Table 6-1W14x53Beam Models with Translational Springs only

Length (2L)

No |k, (kip /in) 20 ft 60 ft 100 ft

L/d| W, (n)|W.,/d| L/d| W, (in)|W._/d| L/d|W_,(n)|W.,/d
1 0.1 8.63] 12835 9.24] 25.90| 366.45| 26.36] 43.17| 605.75] 43.58
2 1 8.63] 128.41 9.24] 25.90[ 349.85] 25.17| 43.17] 547.65] 39.40
3 6 863 11365 8.18] 25.90 251.05] 18.06] 43.17| 34850 25.07
4 24 5.63 52.05 590 25.90 15220 10.95| 43.17| 201.45] 14.49
5 100 8.63 50.70 365 25.90 85.95 6.18] 4317 112.40 8.09
6 400 8.63 32.85 2.36] 25.90 5420 390 43.17 72.85 5,24
7 1600 8.63 2467 177| 25.90 41.35 297 4317 57.25 412
8 6400 8.63 2159 155 25.90 37.20 2.68] 4317 52.50 3.78
9 25600 8.63 20.64 1.48] 2590 36.15 260 4317 51.25 3.69
10 | 100000 5.63 20.38 1.47| 25.90 35.85 258 4317 50.90 3.66

It can be seen in Table 6-1 tWt.:/ d increases with decreasikg This trend is
also illustrated in Figure 6-3, in whidN.5/ d is plotted versuks. The figure also shows
that for the samky, Weai/ dis always larger for longer beams than for shdreams,

which is consistent with the observations and tesafl Chapter 4.
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Figure 6-3Dependency 0¥,/ d on Translational Spring Constaki,

The results are also given in the form of normalilcad versus deflection,
normalized axial force versus deflection, normalimeoment versus deflection, and
normalizedV—N interaction plots in Figures 6-4, 6-5, 6-6, and,8espectively. The
figures are given for the 60-ft-long beams onlysHould be noted that the external load

is normalized by the plastic collapse loBdof a fully fixed beam which in this case is:

o 4M, _ 4022535
L 36(

= 4726 kips

whereM , = 42535k-in for a W14x53 section (fillets are neglected).

Figure 6-4 shows how the level of axial restramt significantly affect the

behavior. For small values of translational spgogstant, it can be seen that no
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significant increase iR beyondP. can be achieved until extremely large deflectitahe

place.
5
4_
3_
o
~
o 2 -
1_
DI T T T T T
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—TR1 —TR2 —TR3 TR4 —TR5 w/d
—TR6 —TR7 —TRS8 TR9 TR10

Figure 6-4 Normalized Load—Deflection Plot (Midspan)

Figure 6-5 shows that for a low level of axial rasit, the beam develops
insignificant axial forces even at fairly large léetions. And as a result, the behavior is
dominated by flexure, as is seen in Figure B4\ interaction plots are provided in
Figures 6-7 and 6-8 for midspan and end secti@spectively. Once the mechanism
condition is reached, plastic hinges remain orytakl curve under a combination lf

andN until the behavior is purely dominated by cablgarc(i.e.,N =N,).
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6.2.2 Effect of Rotational Restraint

In order to study the effect of partial rotationastraint, the beam with a W14x53

is modeled as shown in Figure 6-8.
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Figure 6-9 Beam with Rotational Springs Only

A range of values fdtyranging from zero (e.g., pinned) to infinity (fullixed) at
the beam supports was considered and beams witingdengths were modeled and
analyzed for eackylevel.

In Table 6-2, analysis input parameters, as vgetha resulting midspan
deflection at the onset point of pure cable behaVig,, andW.,/ d, are givenA close
examination of the results, along with Figure 64h0xhichW;,/ dis plotted versuk,
reveals that the dependencyWdf,;/ d on the rotational spring constaky,is not as
straightforward as it was for the beams with tratigshal springs presented earlier. Figure
6-10 shows that up to a certain levekgfW.a:/ d gradually increases and reaches a peak
at akylevel of approximatelyp000k-in / rad Then, it starts to decrease with increasing
and eventually converges to a value which is theepmedicted by the fixed-fixed case.

Table 6-2 in comparison Table 6-1 also shows\tat/ dis relatively less
sensitive tdky thank, presented earlier. For example, for beams witital span length,
2L, of 60 ft,W.4/ d varies between 2.08 and 2.57 for this case (Taf2lg But varies
between 26.36 and 2.58 for beams with translatispahgs only (Table 6-1).

The results are also graphically presented iridima of normalized load versus

deflection, normalized axial force versus deflattioormalized moment versus
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deflection andM—N interaction plots in Figures 6-11 through 6-16eTigures are given

for the 20ft-long beams only.

Table 6-2W14x53Beam Models with Rotational Springs only

Ko (k- Length (2L)

No in/rad) 2L=20 ft 2L=60 ft 2L=100 ft
L/d| W_,(in)|W_,/d L/id| W, (in)|W_,/d L/id| W_,(in)|W_,/d
SS 0 8.63 13.93 1.00] 25.90 28.90 2.08[ 43.17 42.75 3.08
1 1 8.63 13.92 1.00f 25.90 28.85 2.08[ 43.17 42.65 3.07
2 100 8.63 13.92 1.00] 25.90 28.85 2.08[ 43.17 42.65 3.07
3 1000 8.63 18.83 1.35] 25.90 35.85 258 43.17 51.05 3.67
4 5000 8.63 27.41 197 25.90 38.15 274 43.17 51.35 3.69
5 10000 8.63 27.30 1.96( 25.90 38.85 279 4317 51.565 3.71
6 50000 8.63 25.95 1.87 25.90 38.30 276 43.17 51.60 3.71
7 100000 8.63 23.56 1.69| 25.90 37.95 273 43.17 51.25 3.69
8 200000 8.63 22.07 1.59] 25.90 37.30 2.68[ 43.17 51.10 3.68
9 500000 8.63 21.06 152 25.90 36.40 2.62( 43.17 51.00 3.67
10 | 1000000 8.63 20.68 149 25.90 36.05 259 43.17 50.95 3.67
11 | 5000000 8.63 20.38 147 25.90 35.75 257 43.17 51.45 3.70
12 | 50000000 8.63 20.31 1.46] 25.90 35.75 257 43.17 50.80 3.65
13 | 100000000 8.63 20.30 146 25.90 35.75 257 43.17 50.80 3.65
FF Infinite 8.63 20.29 1.46] 25.90 35.75 257 4317 50.90 3.66

*SS Simply Supported
*FF Fixed-Fixed
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Figure 6-10Dependency 0¥V ./ d on Rotational Spring Constaiit,
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Again, external forceR in Figure 6-11 is normalized by the plastic colapoad,

P for the fixed-fixed case which in this case is:

o _4M, _4m@2535
¢ L 12C

=14178 Kips

Figures 6-12 through 6-14, in particular, showgtgmificance of the level of
rotational restraint on the behavior. For modelwimchkyis not large enough to develop
a plastic hinge (e.g., ROT3 through ROTS), the ¢y of the load—deflection curves is
to “jump” to the curves that corresponds to modéth higher rotational restraints at a
certain deflection level. This can be attributedh® fact that those models do not provide
enough restraint for the beam to develop flexulac hinges at end supports, as shown
in Figure 6-14. Therefore, for these Idywalues, the beam acts like a simple beam. As
seen in Figure 6-16, with the development of afdedesN, plastic hinges eventually
form at the ends with a combinationMfandN, and the beam forms a mechanism. As a
result, it tends to behave as fixed-fixed and lakedlection curves seem to suddeny shoot
towards the one predicted by the fully fixed case.

The plot ofM-N interaction at midspan (Figure 6-15) shows thalagtic hinge

forms predominantly by flexure first and followsetiield curve under combinéd and

N in all beam models, regardlesskgfevel, as seen in Figure 6-15.
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The effect of rotational restraint can also betegldo the connection behavior at
the beam supports. The AISC Manual (2005) classd@nections on a moment—
rotation M-6) behavior model as fully restrained (FR), payiaéistrained (PR) and
simple, as illustrated in Figure 6-17. Dashed lii&$ set the boundaries for connection
behavior idealizations in structural analysis. Gations with stiffness between these

two limits are considered as partially restraineR). In order to determine how the range
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of spring constant considered herein relates teethenits, the moment—rotation response
of the spring models are shown in Figure 6-18, @hith the AISC regions for
connection behavior. It can be seen that a nunmfrepoesentative beam models are
covered in all three regions. In fact, the majoatyhe models (ROT1 through ROT8)

fall within the “simple connection” region, whicligports the discussion made regarding

the sudden jump observed in the normalized intdorak—deflection plots (Figures 6-12,

6-13).
M(6)
Mp, beam ‘I
s |
€ |
£ |
S L I 2Fl
K=
m Y Simple
| >
.03

Rotation, 8 (radians)

Figure 6-17Classification of moment—rotation response of fudigtrained (FR),

partially restrained (PR) and simple connectionksS(a2005)
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Figure 6-18Moment—Rotation Response of Elastic Springs in ERB Models

6.2.3 Combined Effect of Translational and Rotational Regaints

Individual effects of translational and rotatiosplings at beam ends provided a
great deal of insight into their effect on the beba In this section, a W14x53 is
modeled as shown in Figure 6-1 to study the contbé@iect of elastic boundary
restraints.

Spring constant combinations were chosen in sweyaas to cover combinations
of low, intermediate and high spring constants m@red in the previous sections. A
typical 60-ft-long, elastic—perfectly plastic beanth W14x53 cross-section was
modeled and analyzed using the 16 different contiong of linear—elastic spring

constants listed in Table 6-3. Labels K11 throudl4 idenote the beam models analyzed.
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Table 6-3 also gives the resulting deflectiorhatanset of pure cable behavior,
Wear andW,,:/ d for each case. It can be seen Wat:/ d is rather more sensitive to the
level of axial restraint, than to the level of rotational restraikg, In fact, despite the
large variation in rotational spring constant, ligsel of translational spring constant
determined\.4:/ d which changes only slightly within each group. Auishally, the
onset point of pure cable behavior is reachedraladively reasonable deflection level for

the two groups with higher axial restraints as saeérable 6-3.

Table 6-3Beam Models with Combined Spring Constant Cases

Group No| Name |k, (kip/in) if?;r;‘;) Wea (in) | Wea/d
K11 1 1 345.67 24.87
1 K12 1 5000 353.58 25.44
K13 1 500000 349.90 2517
K14 1 50000000 349.85 2517
K21 24 1 147 .66 10.62
5 K22 24 5000 154.89 11.14
K23 24 500000 152.40 10.96
K24 24 50000000 152.27 10.95
K31 400 1 4927 3.54
3 K32 400 5000 56.89 4.09
K33 400 500000 5470 3.94
K34 400 50000000 54.23 3.90
K41 25600 1 29.34 2.1
4 K42 25600 5000 39.11 2.81
K43 25600 500000 36.92 2.66
K44 25600 50000000 36.12 2.60

FE analysis results are also given in the plotsooialized load versus
deflection, normalized axial force versus deflettioormalized moment versus
deflection in Figures 6-19 through 6-21. It carsben from these figures that the curves
are assembled into four groups, each with the sam&dditionally, the significance of
the level of axial restraint, rather than the rotadl restraint in regard to the onset point

of pure cable behavior can also be seen in Figi# and 6-21. In particular, all the
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beams of Group 1 have to exhibit extremely largéedBons to reach pure cable

behavior.
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Figure 6-19Normalized Load—-Deflection Plot
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Figure 6-21Normalized Moment—Deflection Plot (Midspan)
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Figures 6-22 and 6-23 show normali2ddN interaction results for midspan and
end sections, respectively. It can be seen thahwbtational restraints at supports are
low (i.e. K11, K21...K41 and K12, K22...K42), the plashinge forms with

predominantly axial force\ (Figure 6-23).
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Figure 6-22NormalizedM—N Interaction (Midspan)
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6.3 Relationship between Beam Models and Frame Models

In this section, a description is given of a numtfesimple FE frame analyses

that were conducted using OpenSees to investigatsedurces of boundary conditions

available within a frame and to relate the reswlthe beam model studies presented in

Section 6.2. First, a preliminary design of a tway-benchmark frame was performed for

gravity loads only. The frame was assumed to beddkaAlso, continuous bracing for the
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beams due to the existence of a slab was assumsalugtrated in Figure 6-24, a part of
an interior frame in an office building which hasrsnetry in both directions was
consideredl(=30ft). The AISCLRFD (2005) method was used and typical beam

sections were chosen to be W14x53 and W16x100 efersen for the columns.

q o, = 0.7 kit
q,, = 1.5 kit
\ 4 \ 4 A A A A A \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 A 4
H=180"
A A A
la ala al
| L=360" | L=360" |

Figure 6-24Reference Frame

6.3.1 Quantification of Elastic Spring Constants

For the purpose of this study, restraining effatthe beam ends within an actual
frame are assumed to be provided by the surroundamgbers framing into the beam
joints. In other words, beam-to-column connectibeeein are considered to be fully
restrained (FR). However, it can be anticipated tinva frame given in Figure 6-24 would
not provide any significant translational and rata&l restraint at the beam supports if
the middle column is notionally removed and theagmmg frame analyzed under a
concentrated load at midspan (Figure 6.25). Instelael additional bay on each side of
the frame was added to the reference frame to shedguantification of boundary

restraints.
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Figure 6-25Schematic of Frame Analysis

As illustrated in Figure 6-26, elastic boundary ditions offered by the side
frames at joints A and B can be calculated as\id@lside frames are isolated from the
actual frame and analyzed with arbitrary lodds,(Ma) one at a time in order to obtain
translational and rotational spring constants,@etyely. A linear—elastic analysis was
conducted using OpenSees and the resultant sprimgjants (i.e. slope of the resultant
load—deflection curve) were obtained as:

ka=11.8 kip/in
ko= 393,700 k-in / rad.

Due to symmetry, spring constants were taken tindsame at A and B.
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Figure 6-26 Schematic for the Quantification of Linear—Elagjring Constants

6.3.2 Comparison between Frame and Beam Models

Having determined the linear—elastic spring cortstaronlinear static analyses of
the frame and the beam A-B were conducted undeneeatrated load at midspan
separately, as illustrated in Figure 6-27. It sidaé noted that material nonlinearity was
not included in the members other than for the bAa# in the frame analysis, as noted
in Figure 6-31.

W14x53 beam A-B was again discretized with fibeith & typical thickness of
tiver=5x10°%inches and an elastic—perfectly plastic steel neter,=50 ksi) was used"®

number of elements along the beam length was akemtas 100.
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FE analysis results are presented in the form ohabzed load versus
normalized deflection, normalized axial force versormalized deflection, normalized
moment versus normalized deflection, &N interaction plots in Figures 6-28 through
6-32 for the beam A-B in each case. In Figure 6428 external load?, is normalized
by the plastic collapse loaB,, of a W14x53 beam with fixed ends spann2hg-60ft as
typical.

It can be seen in Figures 6-28 through 6-32 thabthavior exhibited by the
beam model with elastic springs is in excelleneagrent with the beam behavior within

the frame. In can be seen from the normalized &arab—deflection plot given in Figure
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6-30 that the beam within the frame exhibits ahdligbmpression in the elastic regime, as
anticipated, and then axial tension forces duange deflections start to dominate the
behavior. This can also be seen in the normalzeN interaction curves as both
midspan and end sections, which follow the yieldditbon perfectly once the flexural
plastic hinge is formed (Figures 6-31 and 6-32peetvely).

The results show that it is possible to model amlyze the beam above a
notionally removed column in a given frame with quiate representation of boundary
conditions. Nevertheless, it should be noted thatésults are limited to the frame

considered herein, and are not necessarily to bergkzed at this point.
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0 5 10 15
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Figure 6-28Normalized Load—-Deflection Plot (Beam Midspan)
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6.4 Summary and Conclusions

Studies of theffect of elastic boundary conditions on the beasponse, along

with simple frame studies conducted herein provithedfollowing findings:

The dependency of the deflection at the onset i pable behavior on axial restraint
is significantly larger than the dependence ontiatal restraint. Therefore, if the
beam ends are not sufficiently restrained axidatlyg impractical to take advantage of
the cable behavior described in this thesis as@-tesisting mechanism.

Evaluation of linear—elastic boundary conditionastthre offered at the beam joints
within a given frame, and comparison with correspog beam models, showed an
acceptable agreement for use in future frame studiewever, it should be noted that

general statements can not be made at this timéodhe limited data produced.
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Chapter 7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE STUDY

7.1 Summary

In addressing the propensity of steel buildingdtrtes to experience progressive
collapse due to extreme loading conditions (elgsth current design guidelines propose
the use of a threat-independent approach thansmamly referred to in the literature as
“the missing column scenario”. Under this scenaaioplumn from a given story is
assumed to be removed and the resulting strucwaealyzed to determine if it could
sustain the loads by activating one or more altertzaad-carrying mechanisms, with the
idea of mitigating the potential for progressiveistural collapse. This study specifically
focused on the ability of ductile steel beams twyckbads by transitioning from flexural
behavior to cable-like behavior. Theoretical funéamals of this behavior were described
for rectangular and W-shaped steel beams withizshboundary conditions and
presumed fully ductile behavior. Two theoreticahlgsis approaches were used to model
the beam behavior: rigid-plastic analysis and cabkgysis. The main factors affecting
the behavior, such as material and geometric ptiegeas well as boundary conditions
were described and corroborating nonlinear finikenent (FE) analyses were presented
and compared to the theoretical resulipen System for Earthquake Engineering

Simulation OpenSees was used in the FE analysis studiesdBg®n theoretical and FE
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analysis results, a set of equations were propibegdan be used to predict the
deflection at the onset of pure cable behavior.

Additionally, the effect of elastic boundary restta on the beam behavior was
studied using FE analysis. An approach to evaliltdoundary restraints offered by the
surrounding members in a given frame was also ptedelt is shown that axial

restraints have a much more significant effectrenldehavior than rotational restraints.

7.2 Conclusions

Conclusions for this study can be summarized dsvist

» Rigid-plastic and cable theories serve as bountisetbehavior of ductile steel beams
undergoing a transition from a flexural to cableslbehavior.

= Comparisons of FE analysis results with the thémaktesults revealed that modeling
the behavior using rigid-plastic theory is appraf®ifor very stiff beams, whereas
modeling with the use of cable theory is approprfat very flexible beams. In the
general case, neither theory can alone accuratetiqt the behavior.

» FE analysis parametric studies showed that thepardbeam deflection at the onset
of pure cable behavioW.,;, is especially sensitive to the deflection atdhset of
flexural mechanism formation.

= Expressions foW.,; were developed and compared with theory, and ezps=tvere
proposed for use in the range of span-to-depth,dafil, from 10 to 30.

= Studies on the effect of boundary conditions intidahat the onset point of pure

cable behavior is predominantly affected by trainstel restraints.
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7.3 Recommendations

Despite a number of assumptions made in the devedopof theory in this study,
it is believed that a profound understanding oftibbavior established a solid foundation
for future investigations. The following recommetidas for future study are made:

= Itis recommended that beam models be investigated
» Evaluation of ductility demands in regards to acowdating respective
displacements.
* Nonlinear behavior incorporation at boundary cdnds.
* Material strain hardening effect.
* Nonlinear-dynamic analysis.
= Due to the lack of experimental results in theréitare, it is also recommended
that medium-scale laboratory testing be perforneeddealized boundary
conditions to corroborate the results obtainedhis study.
= |tis recommended that further frame analy23/(3D) be conducted to
understand the global behavior with regard to Hosvideam behavior described in
this study would interact within a frame.
= |tis also recommended that all sources of ancleopagsibilities such as those
that exist in an actual building structure be itigeged due to the significant
dependency of the behavior to the lateral stiffrresided at each floor.
= |tis recommended that the equations proposedsrstbdy be compared to and
their applicability be investigated for, developrhehthe Tie Force Method used

in current progressive collapse design guidelines.
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APPENDIX A: Notation

Distance between cetroid and neutral axis of esegsion, in

Cross-sectional area of membef, in

Web area, the overall depth times the web thickrdsst,) , in®

width of rectangular cross-section, in

Flange width, in

Full nominal depth of the section, in

Nominal web depth, in

Modulus of Elasticity of steel, 29000 ksi

Shape function

Moment of inertia about principal axisin
Linear-Elastic translational spring constant, kip /
Linear-Elastic rotational spring constant, kip-iad
Plastic hinge length

Length (e.g., beam, bay), in (ft)

Actual length in deformed configuration
Bending moment, kip-in

Plastic Bending Moment, kip-in

Plastic Bending Moment calculated using the flarmdyg (about major axis)

Axial force, kips
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Np Plastic Axial Force, Kips

Npw Plastic Axial Force calculated using the web only

Pc Plastic collapse load of member, kips

P Point load on member, kips

q Uniformly distributed load along the member

Oc Uniformly distributedplastic collapse load of member
Q Shear Force, kips

S Mean transverse spacing, in (ft)

S« Elastic section modulus taken about the princiga,an’
tier  Thickness of fiber

tw Beam web thickness, in

w shape function of deformed shape configuration

W Midspan transverse deflection, in

Wet  MidspanTransverse deflection at pure catenary formation

W Transverse deflection rate (with respect to time)
Zy Plastic section modulus about the principal axi$, i

Op Midspan deflection at the onset of flexural mecBamiin

& Axial strain

£ Axial strain rate (with respect to time)
K Curvature

K Curvature rate (with respect to time)

oy Yield stress, Ksi
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i Depth fraction represents the location of neutxéd #om bottom of cross-section
0 Rotation angle at beam supports

AL Change in length
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APPENDIX B: Typical Input Files in OpenSees
B.1: Centrally Loaded Beam Fixed at Supports
wipe all;

#---Units: kip, in---#

for {set i 0} {$i<101} {incr i} {
set nodeTag [expr $i+1]
set xdim [expr $i*7.2]

node $nodeTag $xdim 0

}

Hommmmme e Define Boundary ConditionS----===-=--=-=====nmmmmmmmmm oo #
fix1111;

fix 10111 1;

Hommmmme e Geometric Transformation------===-=--=-mmmmm s

uniaxialMaterial ElasticPP 1 29000 0.00172413;
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#Section W30x124#

set SecTag 1

setd 30.2;

set tw 0.585;

set bf 10.5;

set tf 0.93;

set nfdw 5688;

set nftw 1;

set nfbf 1,

set nftf 186;

set dw [expr $d-2*$tf]

set y1 [expr -$d/2]

set y2 [expr -$dw/2]

set y3 [expr $dw/2]

set y4 [expr $d/2]

set z1 [expr -$bf/2]

set z2 [expr -$tw/2]

set z3 [expr $tw/2]

set z4 [expr $bf/2]

section fiberSec $SecTag {
# nflJ nfJK yl zI yJ zyK zK yL zL
patch quadr 1 $nfbf $nftf $yl $z4 Pyl $&y2 $z1 $y2 $z4
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patch quadr 1 $nftw $nfdw $y2 $z3 $y2 $393 $z2 $y3 $z3

patch quadr 1 $nfbf $nftf $y3 $z4 $y3 $&44 $z1 $y4 $z4

for {set k 0} {$k<100} {incr K} {
set eltag [expr $k+1]
set inode [expr $k+1]
set jnode [expr $k+2]

element nonlinearBeamColumn $eltag $inode $jnotld 3

}
Homommemme e Define ReCorders----------m-m oo
recorder Node -file W30x124/Node51.out -time -néde-dof 2 disp;
recorder Node -file W30x124/Nodel.out -time -nodeldf 3 disp;
recorder Element -file W30x124/ForceE51-S1.outethmle 51 section 1 force;
recorder Element -file W30x124/DefE51-S1.out -tirake 51 section 1 deformation;
recorder Element -file W30x124/ForceE1-S1.out -thele 1 section 1 force;
recorder Element -file W30x124/DefE1-S1.out -timée-1 section 1 deformation;
Hemmmmmmeenaenae Define Load Case---=-=-====n=nsmmeom e e eee #
pattern Plain 1 Linear {

load 51 0 -230.4474 0
}
Hommmmmm oo Define Analysis ObjeCtS--------——-=-mmmmmm oo #

constraints Plain;
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numberer Plain;

system BandGeneral;

test NormDisplncr 1.0e-3 10;

algorithm Newton;

integrator DisplacementControl 51 2 -0.02;
analysis Static

analyze 5000;

loadConst -time 0.0;

puts "Done!"
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B.2: Fixed Beam with Uniformly Distributed Load along the Length
wipe all;

#---Units: kip, in---#

for {set i 0} {$i<101} {incr i} {
set nodeTag [expr $i+1]
set xdim [expr $i*7.2]

node $nodeTag $xdim O

}

Hommmmme e Define Boundary ConditionS-----==-=--=-=====nmmmmmmm oo #
fix1111;

fix 10111 1;

Hommmmme e Geometric Transformation------===-=--=-==mmmmm oo



set SecTag 1

setd 30.2;

set tw 0.585;

set bf 10.5;

set tf 0.93;

set nfdw 5688;

set nftw 1;

set nfbf 1,

set nftf 186;

set dw [expr $d-2*$tf]

set y1 [expr -$d/2]

set y2 [expr -$dw/2]

set y3 [expr $dw/2]

set y4 [expr $d/2]

set z1 [expr -$bf/2]

set z2 [expr -$tw/2]

set z3 [expr $tw/2]

set z4 [expr $bf/2]

section fiberSec $SecTag {
# nflJ nfJK yl zI yJ zyK zK yL zL
patch quadr 1 $nfbf $nftf $yl $z4 Pyl $&y2 $z1 $y2 $z4
patch quadr 1 $nftw $nfdw $y2 $z3 3Py2 $3593 $z2 $y3 $z3
patch quadr 1 $nfbf $nftf $y3 $z4 $y3 $&4 $z1 $y4 $z4
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for {set k 0} {$k<100} {incr k} {
set eltag [expr $k+1]
set inode [expr $k+1]
set jnode [expr $k+2]

element nonlinearBeamColumn $eltag $inode $jnotld 3

recorder Node -file W30x124_DistL/Node51.out -timede 51 -dof 2 disp;

recorder Node -file W30x124_DistL/Nodel.out -tinmode 1 -dof 3 disp;

recorder Element -file W30x124 _DistL/ForceE51-S1¢ime -ele 51 section 1 force;
recorder Element -file W30x124_DistL/DefE51-S1.eune -ele 51 section 1
deformation;

recorder Element -file W30x124 DistL/ForceE1-S1 .dime -ele 1 section 1 force;

recorder Element -file W30x124 DistL/DefE1-S1.dirne -ele 1 section 1 deformation;

pattern Plain 1 Linear {

load 1 0-2.240

for {set m 1} {$m<100} {incr m} {
set Nodetag [expr $m+1]

load $Nodetag 0 -4.48 0
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}

load 101 0-2.24 0

constraints Plain;

numberer Plain;

system BandGeneral;

test NormDisplincr 1.0e-1 10;

algorithm Newton;

integrator DisplacementControl 51 2 -0.01;
analysis Static

analyze 10000;

loadConst -time 0.0;

puts "Done!"
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B.3: Beam with Linear-Elastic Boundary Conditions
wipe all;

#---Units: kip, in---#

for {set i 0} {$i<101} {incr i} {
set nodeTag [expr $i+1]

set xdim [expr $i*7.2]

node $nodeTag $xdim O

}

node 102 0 O;

node 103 720 O;

equalDOF 1 102 2;

equalDOF 101 103 2;

fix102111;

fix 103111;

240



geomTransf Corotational 1;

uniaxialMaterial ElasticPP 1 29000 0.00172413;
uniaxialMaterial Elastic 2 320;

uniaxialMaterial Elastic 3 4451000;

#Section W30x124#
setd 30.2;

set tw 0.585;

set bf 10.5;

set tf 0.93;

set nfdw 5668;

set nftw 1;

set nfbf 1,

set nftf 186;

set dw [expr $d-2*$tf]
set y1 [expr -$d/2]
set y2 [expr -$dw/2]
set y3 [expr $dw/2]
set y4 [expr $d/2]
set z1 [expr -$bf/2]
set z2 [expr -$tw/2]
set z3 [expr $tw/2]
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set z4 [expr $bf/2]

section fiberSec 1 {
# nflJ nfJK yl zI yJ zyK zK yL zL
patch quadr 1 $nfbf $nftf $yl $z4 3Pyl $HY2 $z1 $y2 $z4
patch quadr 1 $nftw $nfdw $y2 $z3 $y2 $393 $z2 $y3 $z3

patch quadr 1 $nfbf $nftf $y3 $z4 3Py3 $&HY4 $z1 $y4 $z4

for {set k 0} {$k<100} {incr k} {

set eltag [expr $k+1]

set inode [expr $k+1]

set jnode [expr $k+2]

element nonlinearBeamColumn $eltag $inode $jnotld 3
}

element zeroLength 101 102 1 -mat 2 3 -dir 1 6;

element zeroLength 102 103 101 -mat 2 3 -dir 1 6;

recorder Node -file W30x124.wSP/Node51.out -timeda 51 -dof 2 disp;

recorder Node -file W30x124.wSP/Nodel.out -timedad -dof 1 3 disp;

recorder Node -file W30x124.wSP/Nodel01.out -timede 101 -dof 1 3 disp;
recorder Element -file W30x124.wSP/TRSpringForce@0tl-time -ele 101 force;
recorder Element -file W30x124.wSP/TRSpringDEF101.-time -ele 101 deformation;
recorder Element -file W30x124.wSP/TRSpringForce@0®-time -ele 102 force;
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recorder Element -file W30x124.wSP/TRSpringDEF102-time -ele 102 deformation;
recorder Element -file W30x124.wSP/ForceE1l.outethele 1 globalForce;

recorder Element -file W30x124.wSP/ForceE100.aatet-ele 100 globalForce;
recorder Element -file W30x124.wSP/ForceE51-S1-tne -ele 51 section 1 force;
recorder Element -file W30x124.wSP/ForceE1-S1.onte -ele 1 section 1 force;
recorder Element -file W30x124.wSP/DefE1-S1.ouheti-ele 1 section 1 deformation;
recorder Element —file W30x124.wSP/DefE51-S1.autet-ele 51 section 1

deformation;

pattern Plain 1 Linear {

load 51 0 -224.046 0

constraints Lagrange;

numberer Plain;

system BandGeneral;

test Energylincr 1.0e-3 10;

algorithm Newton;

integrator DisplacementControl 51 2 -0.01;
analysis Static

analyze 10000;

loadConst -time 0.0;

puts "Done!"
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