C_{4}-Factorizations with Two Associate Classes

by
Michael Tiemeyer
A dissertation submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the requirements for the Degree of Doctor of Philosophy
Auburn, Alabama
May 14, 2010

Keywords: 4-cycle, Factorization

Copyright 2010 by Michael Tiemeyer

Approved by:
Chris Rodger, Chair, Scharnagel Professor of Mathematics \& Statistics Dean Hoffman, Professor of Mathematics \& Statistics Pete Johnson, Professor of Mathematics \& Statistics Doug Leonard, Professor of Mathematics \& Statistics

Abstract

Let $K=K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ be the multigraph with: the number of vertices in each part equal to a; the number of parts equal to p; the number of edges joining any two vertices of the same part equal to λ_{1}; and the number of edges joining any two vertices of different parts equal to λ_{2}. This graph was of interest to Bose and Shimamoto in their study of group divisible designs with two associate classes [1]. Necessary and sufficient conditions for the existence of z-cycle decompositions of this graph have been found when $z \in\{3,4\}[4,5]$. The existence of resolvable 4-cycle decompositions of K has been settled when a is even [2], but the odd case is much more difficult. In this paper, necessary and sufficient conditions for the existence of a C_{4}-factorization of $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ are found when $a \equiv 1(\bmod 4)$ and λ_{1} is even, and all cases with one exception have been solved when λ_{1} is odd.

Table of Contents

Abstract ii
List of Figures iv
List of Tables v
1 Introduction 1
2 Preliminary Results 4
$3 \quad \lambda_{1}$ is Even 6
$4 \quad \lambda_{1}$ is Odd and Small 10
$5 \quad \lambda_{1}$ is Odd and Large 18
Bibliography 39

List of Figures

$1.1 K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ 1
1.2 Example C_{4}-factors 3
3.1 Example of a mixed C_{4}-factor, $P(s, 4)$, of $K\left(13,4 ; \lambda_{1}, \lambda_{2}\right)$. 7
3.2 Example of an efficient C_{4}-factor, $P^{-}(s, j, r)$, of K 8
5.1 Example of a 2-factor, $M_{0}(j)$. 20
5.2 Example of an inefficient C_{4}-factor. 25
$5.3 W(j)$ 26
$5.4 C$ with $a=13$ 28
$5.5 D$ with $a=13$ 29
5.6 The 4-cycles of $R_{1,1}$ incident with vertices $\left\{4 i+2 \mid i \in \mathbb{Z}_{b}\right\}$; the other half of $R_{1,1}$ is formed by moving each cycle "down" one level in each part. 31
5.7 The 4-cycles of T_{1} incident with vertices $\left\{4 i+2 \mid i \in \mathbb{Z}_{b}\right\}$; the other half of T_{1} is formed by moving each cycle "down" one level in each part. 33
$5.8 T_{2}$ with $a=13$ 34
5.9 Near C_{4}-factor of $W^{+}(j)$ 37
5.10 Near C_{4}-factor of $W^{+}(j)$ 38

List of Tables

5.1 Locations of Mixed Edges in A . 30

Chapter 1

Introduction

In this dissertation, graphs usually contain multiple edges. In particular, if G is a simple graph then for any $\lambda \geq 1$, let λG denote the multigraph formed by replacing each edge in G with λ edges. Throughout this dissertation we allow sets to contain repeated elements. Let C_{z} denote a cycle of length z.

Let $K=K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ denote the graph formed from p vertex-disjoint copies of the multigraph $\lambda_{1} K_{a}$ by joining each pair of vertices in different copies with λ_{2} edges (so naturally, λ_{1}, λ_{2} are non-negative integers). The vertex set, $V\left(K\left(a, p ; \lambda_{1}, \lambda_{2}\right)\right)$, is always chosen to be $\mathbb{Z}_{a} \times \mathbb{Z}_{p}$, with parts $\mathbb{Z}_{a} \times\{j\}$ for each $j \in \mathbb{Z}_{p} ;$ naturally, each part induces a copy of $\lambda_{1} K_{a}$. We say the vertex (i, j) is on level i and in part j. An edge is said to be a mixed edge if it joins vertices in different parts, and is said to be a pure edge (in part j) if it joins two vertices in the j th part.

Figure 1.1: $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$

A 2-factor of a graph G is a spanning 2-regular subgraph of G. A 2-factorization of G is a set of edge-disjoint 2-factors, the edges of which partition $E(G)$. A C_{z}-factorization
is a 2-factorization such that each component of each 2-factor is a cycle of length z; each 2-factor of a C_{z}-factorization is known as a C_{z}-factor. A G-decomposition of a graph H is a partition of $E(H)$, each element of which induces a copy of $G . C_{z}$-factorizations are also known as resolvable C_{z}-decompositions.

There has been considerable interest over the past 20 years in C_{z}-decompositions of various graphs, such as complete graphs and complete mutipartite graphs. In the resolvable case, these results are collectively known as addressing the Oberwolfach problem. More recently, the existence problem for C_{z}-decompositions of $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ for $z=\{3,4\}$ has been solved $[4,5]$. Such decompositions are known as C_{z}-group-divisible designs with two associate classes, following the notation of Bose and Shimamoto who considered the existence problem for K_{z}-group divisible designs. The reason for this name is that the structure can be thought of as partitioning ap symbols, or vertices, into p sets of size a in such a way that symbols that are in the same set in the partition occur together in λ_{1} blocks, and are known as first associates, whereas symbols that are in different sets in the partition occur together in λ_{2} blocks, and are known as second associates.
C_{z}-factorizations of G have also been of interest[6]. Recently the existence of a $C_{4^{-}}$ factorization of $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ has been completely settled when a is even [2], but the case where a is odd is proving to be considerably more difficult. In this dissertation, we consider the case where $a \equiv 1(\bmod 4)$, completely settling the case where λ_{1} is even and and all but one exception when λ_{1} is odd.

It turns out that every C_{4}-factor must contain at least p mixed edges. So a C_{4}-factor is said to be efficient if it contains exactly p mixed edges, and otherwise it is said to be inefficient. If a C_{4}-factor consists entirely of mixed edges, we say it is a mixed C_{4}-factor. When λ_{1} is even, it is possible for all C_{4}-factors to be efficient; indeed, this is necessary when λ_{1} is maximum. However, when λ_{1} is odd, there must be some C_{4}-factors that are inefficient, and it is this property that makes the λ_{1} odd case so difficult.

Example 1 The following examples of C_{4}-factors of $K(5,4 ; 4,2)$ give good insight into the constructions used in Sections 3 and 4 (see Figure 1.2):

Figure 1.2: Example C_{4}-factors

For each $r \in \mathbb{Z}_{5}$, let $\pi_{r}^{-}(k)=\{(r+1, k),(r+2, k),(r+4, k),(r+3, k)\}$ be a near C_{4}-factor (i.e. includes all except one of the vertices) in the k th part. Then $\bigcup_{0 \leq k \leq 3} \pi_{r}^{-}(k) \cup$ $\{(r, 0),(r, 1),(r, 2),(r, 3)\}$ is a C_{4}-factor of K (see the solid edges) for the case when $r=0$. Notice that $\bigcup_{0 \leq k \leq 3} \pi_{r}^{-}(k) \cup\{(r, 0),(r, 2),(r, 1),(r, 3)\}$ is also a C_{4}-factor that could be used if λ_{1} is large (see the dashed mixed edges). Finally, observe that mixed edges can easily be used in C_{4}-factors of the form $P(s, j)=\left\{((i, 0),(i+j, 1),(i, 2),(i+j, 3)) \mid i \in \mathbb{Z}_{5}\right\}$ (see the dotted lines for one component when $j=2$).

Chapter 2

Preliminary Results

We begin by finding some necessary conditions in the next two lemmas.

Lemma 2.1 Let a be odd. If there exists a C_{4}-factorization of $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$, then:

1. $p \equiv 0(\bmod 4)$, and
2. $\lambda_{2}>0$ and is even.

Proof Since the number of 4 -cycles in each C_{4}-factor is the number of vertices divided by four, four must divide $a p$, and since a is odd, $p \equiv 0(\bmod 4)$. Similarly, if $\lambda_{2}=0$ then the number of vertices in each part, namely a, would be divisible by 4, contradicting a being odd.

Each vertex is joined with λ_{1} edges to each of the $(a-1)$ other vertices in its own part and with λ_{2} edges to each of the $a(p-1)$ vertices in the other parts; so the degree of each vertex is:

$$
d_{K}(v)=\lambda_{1}(a-1)+\lambda_{2} a(p-1) .
$$

Clearly, since K has a C_{4}-factorization, it is regular of even degree. Since a is odd, $(a-1)$ is even so the first term in $d_{K}(v)$ is even. The second term must therefore be even, so since both a and $(p-1)$ are odd, λ_{2} must be even.

Lemma 2.2 Let $a \equiv 1(\bmod 4)$. If there exists a C_{4}-factorization of $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$, then $\lambda_{1} \leq \lambda_{2} a(p-1)$.

Proof Since $a \equiv 1(\bmod 4)$, each C_{4}-factor contains at most $(a-1)$ pure edges in each part. So each C_{4}-factor contains at most $(a-1) p$ pure edges. Since there are $\lambda_{1}\binom{a}{2} p$ pure edges, the number of C_{4}-factors in any C_{4}-factorization is at least:

$$
\frac{\lambda_{1}\binom{a}{2} p}{(a-1) p}=\frac{\lambda_{1} a}{2} .
$$

Each C_{4}-factor has ap edges, of which at most $(a-1) p=a p-p$ are pure, so there are at least p mixed edges in any C_{4}-factor. Then the number of mixed edges in any C_{4}-factorization is at least:

$$
\frac{\lambda_{1} a p}{2} .
$$

Therefore, this number must be at most the number of mixed edges, $\lambda_{2}\binom{p}{2} a^{2}$, in K :

$$
\frac{\lambda_{1} a p}{2} \leq \lambda_{2}\binom{p}{2} a^{2}
$$

so

$$
\lambda_{1} \leq \lambda_{2} a(p-1)
$$

A set of 4 -cycles is said to be a near C_{4}-factor of G if it contains $\frac{|V(G)|}{4} 4$-cycles, which are vertex-disjoint; the vertex in $V(G)$ that is in none of these cycles is called the deficient vertex of the near C_{4}-factor. We will use the following known results in considering $C_{4}{ }^{-}$ factorizations of $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$.

Lemma 2.3[3] Suppose $a \equiv 1(\bmod 4)$. Then near C_{4}-factorizations of λK_{a} exist for all even λ.

Lemma 2.4 [7$]$ Suppose $p \equiv 0(\bmod 4)$. Then C_{4}-factorizations of λK_{p} exist for all even λ.

Chapter 3

λ_{1} is Even

Theorem 3.1 Suppose $a \equiv 1(\bmod 4)$, and λ_{1} is even. There exists a C_{4}-factorization of $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ if and only if:

1. $p \equiv 0(\bmod 4)$,
2. $\lambda_{2}>0$ and is even, and
3. $\lambda_{1} \leq \lambda_{2} a(p-1)$.

Proof The necessity of these conditions follows from Lemmas 2.1 and 2.2. So now assume that K satisfies conditions (1-3).

Using Lemma 2.4, let $\pi=\left\{\pi_{s} \left\lvert\, s \in \mathbb{Z}_{\frac{\lambda_{2}(p-1)}{2}}\right., \pi_{s}\right.$ is the $s^{t h} C_{4}$-factor of a C_{4}-factorization of $\left.\lambda_{2} K_{p}\right\}$. For each $s \in \mathbb{Z}_{\frac{\lambda_{2}(p-1)}{2}}, j \in \mathbb{Z}_{a}$, and $i \in \mathbb{Z}_{a}$, let

$$
P(s, j, i)=\{((i, w),(i+j, x),(i, y),(i+j, z)) \mid(w, x, y, z) \in \pi, w<x, y, z\} .
$$

Then for each $s \in \mathbb{Z}_{\frac{\lambda_{2}(p-1)}{2}}$ and for each $j \in \mathbb{Z}_{a}$, define the following mixed C_{4}-factor of $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ (see Figure 3.1):

$$
P(s, j)=\bigcup_{i \in \mathbb{Z}_{a}} P(s, j, i)
$$

Notice that it is easy to see that these C_{4}-factors can be used to produce a C_{4}-factorization of $K\left(a, p ; 0, \lambda_{2}\right)$, namely:

$$
\bigcup_{s \in \mathbb{Z}_{\frac{N_{2}(p-1)}{2}}} \bigcup_{j \in \mathbb{Z}_{a}} P(s, j) .
$$

Figure 3.1: Example of a mixed C_{4}-factor, $P(s, 4)$, of $K\left(13,4 ; \lambda_{1}, \lambda_{2}\right)$.

However, we may have pure edges to use too, which is accomplished by spreading the 4-cycles in $P(s, j)$ among a C_{4}-factors, each of which contains $P(s, j, i)$ for some $i \in \mathbb{Z}_{a}$ together with a pure near C_{4}-factor in each part. More specifically, for each $r \in \mathbb{Z}_{a}$ and $k \in \mathbb{Z}_{p}$, using Lemma 2.3, let $\pi_{r}^{-}(k)$ be the near C_{4}-factor of a near C_{4}-factorization of $2 K_{a}$ on the vertex set $\mathbb{Z}_{a} \times\{k\}$ with deficient vertex (r, k).

For each $r \in \mathbb{Z}_{a}, s \in \mathbb{Z}_{\frac{\lambda_{2}(p-1)}{2}}$, and $j \in \mathbb{Z}_{a}$, let

$$
P^{-}(s, j, r)=P(s, j, r) \cup\left(\bigcup_{\substack{(w, x, y, z) \in \pi_{s} \\ w<x, y, z}}\left(\pi_{r}^{-}(w) \cup \pi_{(r+j)(\bmod a)}^{-}(x) \cup \pi_{r}^{-}(y) \cup \pi_{(r+j)(\bmod a)}^{-}(z)\right)\right)
$$

be an efficient C_{4}-factor of K (see Figure 3.2).
Notice that in parts w and $y, P(s, j, r)$ contains the vertex only on level r, and in parts x and z, it contains the vertex only on level $(r+j)(\bmod a)$; in each case this vertex is the deficient vertex in the near C_{4}-factor being used. So, then $P^{-}(s, j, r)$ is a C_{4}-factor of K that contains exactly p mixed edges and p near C_{4}-factors of K_{a}. Furthermore,

Figure 3.2: Example of an efficient C_{4}-factor, $P^{-}(s, j, r)$, of K.

$$
\bigcup_{r \in \mathbb{Z}_{a}} P^{-}(s, j, r)
$$

contains:
(a) each pure edge twice, and
(b) precisely the mixed edges in $P(s, j)$.

Let $S=\left\{(s, j) \left\lvert\, s \in \mathbb{Z}_{\frac{\lambda_{2}(p-1)}{2}}\right., j \in \mathbb{Z}_{a}\right\}$. Let $S_{1} \subseteq S$ have size $\frac{\lambda_{1}}{2}$. Notice that by condition 3 of the theorem, $\lambda_{1} \leq \lambda_{2} a(p-1)$, so $\left|S_{1}\right|=\frac{\lambda_{1}}{2} \leq \frac{\lambda_{2} a(p-1)}{2}=|S|$, so such a set $\left|S_{1}\right|$ exists. Then

$$
\bigcup_{\substack{r \in \mathbb{Z}_{a} \\(s, j) \in S_{1}}} P^{-}(s, j, r)
$$

is a set of $\frac{\lambda_{1} a}{2} C_{4}$-factors that contains each pure edge $2\left|S_{1}\right|=\lambda_{1}$ times by (a), and uses precisely the mixed edges in

$$
\bigcup_{(s, j) \in S_{1}} P(s, j)
$$

by (b). Therefore, the required C_{4}-factorization of K is defined by

$$
P=\left(\bigcup_{\substack{r \in \mathbb{Z}_{a} \\(s, j) \in S_{1}}} P^{-}(s, j, r)\right) \cup\left(\bigcup_{(s, j) \in S \backslash S_{1}} P(s, j)\right)
$$

Notice that

$$
\begin{aligned}
|P| & =a\left|S_{1}\right|+\left|S \backslash S_{1}\right| \\
& =\frac{\lambda_{1} a}{2}+\frac{\lambda_{2} a(p-1)}{2}-\frac{\lambda_{1}}{2} \\
& =\frac{\lambda_{1}(a-1)}{2}+\frac{\lambda_{2} a(p-1)}{2}
\end{aligned}
$$

as required.

Chapter 4
λ_{1} is Odd and Small

We now turn our attention to the case where λ_{1} is odd. The main difficulty now is that there is no near C_{4}-factorization of $\lambda_{1} K_{a}$, and so some C_{4}-factors cannot look like $P^{-}(s, j, r)$ in the previous section. Instead, they must use more than p mixed edges; thus, some $C_{4^{-}}$ factors must be inefficient. So we need tools that will construct the inefficient C_{4}-factors.

There are two constructions used to produce the C_{4}-factorization of K when λ_{1} is odd. One construction produces the required C_{4}-factorization when λ_{1} falls within the range $1 \leq \lambda_{1} \leq a(p-1) \lambda_{2}-a$, and the other does so when $(a-2) \leq \lambda_{1} \leq a(p-1) \lambda_{2}-1$. Notice that the former construction produces the factorization for small values of λ_{1}, and the latter for large values of λ_{1}. There is a large intersection of values for λ_{1} for which either construction is appropriate, but clearly both are needed to produce the factorization for all possible λ_{1} values.

We begin with the construction that produces the factorization of K for small values of λ_{1}.

Let P_{2} denote a path of length 2 . We begin with a special cyclic P_{2} - decomposition of K_{a}. Let $V\left(K_{n}\right)=\mathbb{Z}_{n}$, and define the difference of the edge $\{x, y\} \in E\left(K_{n}\right)$, with $x<y$, to be $d(x, y)=\min \{y-x, n-(x-y)\}$. If B is a set of paths of length 2 , let $V(B)$ and $E(B)$ denote the set of vertices and edges in the paths in B respectively, and let $d(B)$ be the multiset of differences of the edges in $E(B)$. For $j \in \mathbb{Z}_{n}$, let $B_{j}=\{(x+j, y+j, z+j) \mid(x, y, z) \in B\}$, reducing the sums modulo n. It is well known that if $d(B)=\left\{1,2, \ldots, \frac{n-1}{2}\right\}$, then

$$
\bigcup_{j \in \mathbb{Z}_{n}} B_{j}
$$

is a cyclic P_{2}-decomposition of K_{n}. Each 2-path in B is known as a base path.

Lemma 4.1 Let $a \equiv 1(\bmod 4)$. There exists a cyclic P_{2}-decomposition of K_{a} with set of base paths $B=\left\{b_{k} \left\lvert\, k \in \mathbb{Z}_{\frac{a-1}{4}}\right.\right\}$, for which:

1. the base paths b_{k} for each $k \in \mathbb{Z}_{\frac{a-1}{4}}$ are vertex disjoint, and
2. there exists a function, f, such that:
(a) $f: B \rightarrow \mathbb{Z}_{a} \backslash V(B)$, and
(b) $N(B)=\left\{N\left(b_{k}, x\right)=\left(a-f\left(b_{k}\right)-x\right) \left\lvert\, k \in \mathbb{Z}_{\frac{a-1}{4}}\right., x\right.$ is an end vertex of $\left.b_{k}\right\} \subseteq \mathbb{Z}_{a}$ (reducing calculations modulo a) has size $\frac{a-1}{2}$ (i.e. contains no repetitions).

Remark Let $f(B)=\left\{f\left(b_{k}\right) \mid b_{k} \in B\right\}$. Notice that since $|V(B)|=\frac{3 a-3}{4},|f(B)|=|B|=$ $\frac{a-1}{4}$, and since the range of f ensures that $V(B) \cap f(B)=\emptyset$, it follows that $V(B) \cup f(B)=$ $\mathbb{Z}_{a} \backslash\{v\}$ for some $v \in \mathbb{Z}_{a}$. This vertex v is named the deficient vertex of B. For $B_{j}, j \in \mathbb{Z}_{a}$, we can choose the deficient vertex to be j; so in particular, 0 is the deficient vertex of $B=B_{0}$.

Proof The set of base paths, B, and function, f, are produced as follows, considering two cases in turn:

Case 1: $n=8 m+1$. Define

$$
\begin{gathered}
\alpha=\left\{b_{k}=(4 m-1-3 k, 1+k, 4 m-2-3 k) \mid 1 \leq k<m\right\} \\
\beta=\left\{b_{k}=(8 m-3 k, 4 m+k, 8 m-1-3 k) \mid 0 \leq k<m\right\} \\
\gamma=\{(4 m-1,1,4 m-2)\}, \text { and } \\
B=\alpha \cup \beta \cup \gamma
\end{gathered}
$$

For each $b_{k} \in \alpha, f\left(b_{k}\right)=4 m-3 k$; for each $b_{k} \in \beta, f\left(b_{k}\right)=8 m-2-3 k$; and for $\gamma, f(b)=5 m$.
To see that B is a set of base paths, note that:
(i) if $b_{k} \in \alpha$, then b_{k} contains edges of differences $4 m-2-4 k$ and $4 m-3-4 k$ for $1 \leq k<m ;$
(ii) if $b_{k} \in \beta$, then b_{k} contains edges of differences $4 m-4 k$ and $4 m-1-4 k$ for $0 \leq k<m$; and
(iii) the path in γ contains edges of differences $4 m-2$ and $4 m-3$.

So $D(B)=\{1,2, \ldots, 4 m\}$ as required.
To see that f satisfies condition (2a), notice that:
(i) $V(\alpha \cup \gamma) \subseteq\{1,2, \ldots, 4 m-1\}$, and if $v \in V(\alpha \cup \gamma)$ with $v \geq m+3$, then $v \equiv 4 m-1$ or $4 m-2(\bmod 3)$, and
(ii) $V(\beta) \subseteq\{4 m, 4 m+1, \ldots, 8 m\}$, and if $v \in V(\beta)$ with $v \geq 5 m$, then $v \equiv 8 m$ or $8 m-$ $1(\bmod 3)$ 。

So, since $f\left(b_{k}\right) \equiv 4 m(\bmod 3)$ for each $b_{k} \in \alpha, f\left(b_{k}\right) \equiv 8 m+1(\bmod 3)$ for each $b_{k} \in \beta$, and $f(b)=5 m$ for $\gamma \notin V(B)$, f satisfies condition (2a). To see that f satisfies condition (2b), notice that:
(i) if $b_{k} \in \alpha$, then $N\left(b_{k}\right)=\{n-(4 m-3 k)-(4 m-1-3 k), n-(4 m-3 k)-(4 m-2-3 k)\}=$ $\{6 k+2,6 k+3\}$ for $1 \leq k<m ;$
(ii) if $b_{k} \in \beta$, then $N\left(b_{k}\right)=\{n-(8 m-2-3 k)-(8 m-3 k), n-(8 m-2-3 k)-(8 m-1-3 k)\}=$ $\{6 k+4,6 k+5\}$ for $1 \leq k<m$; and
(iii) if $b \in \gamma$, then $N(b)=\{n-5 m-(4 m-1), n-5 m-(4 m-2)\}=\{7 m+3,7 m+4\}$.

Since clearly no element of \mathbb{Z}_{n} occurs in two of the above sets, f satisfies condition (2b).

Case 2: $n=8 m+5$. Define

$$
\alpha=\left\{b_{k}=(4 m+4-3 k, k, 4 m+2-3 k) \mid 1 \leq k \leq m\right\},
$$

$$
\begin{gathered}
\beta=\left\{b_{k}=(8 m+5-3 k, 4 m+2+k, 8 m+3-3 k) \mid 1 \leq k \leq m\right\}, \\
\gamma=\{(8 m+3,4 m+2,8 m+4)\}, \text { and } \\
B=\alpha \cup \beta \cup \gamma .
\end{gathered}
$$

For each $b_{k} \in \alpha, f\left(b_{k}\right)=4 m+3-3 k$; for each $b_{k} \in \beta, f\left(b_{i}\right)=8 m+4-3 k$; and for $\gamma, f(b)=m+1$.

To see that B is a set of base paths, note that:
(i) if $b_{k} \in \alpha$, then b_{k} contains edges of differences $4 m+4-4 k$ and $4 m+2-4 k$ for $1 \leq k<m ;$
(ii) if $b_{k} \in \beta$, then b_{k} contains edges of differences $4 m+3-4 k$ and $4 m+1-4 k$ for $1 \leq k<m$; and
(iii) the path in γ contains edges of differences $4 m+1$ and $4 m+2$.

So $D(B)=\{1,2, \ldots, 4 m+2\}$ as required.
To see that f satisfies condition (2a), notice that:
(i) $V(\alpha) \subseteq\{1,2, \ldots, 4 m+1\}$, and if $v \in V(\alpha)$ with $v \geq m+1$, then $v \equiv 4 m+4$ or $4 m+2(\bmod 3)$,
(ii) $V(\beta) \subseteq\{4 m+3,4 m+4, \ldots, 8 m+2\}$, and if $v \in V(\beta)$ with $v \geq 5 m+3$, then $v \equiv 8 m$ or $8 m+5(\bmod 3)$, and
(iii) $V(\gamma) \subseteq\{4 m+2,8 m+3,8 m+4\}$, and if $v \in V(\gamma)$, then $v \equiv 4 m+2,8 m$, or $8 m+$ $4(\bmod 3)$.

So, since $f\left(b_{k}\right) \equiv 4 m+3(\bmod 3)$ for each $b_{k} \in \alpha, f\left(b_{k}\right) \equiv 8 m+4(\bmod 3)$ for each $b_{k} \in \beta$, and $f(b)=m+1$ for γ, f satisfies condition (2a). To see that f satisfies condition (2b), notice that:
(i) if $b_{k} \in \alpha$, then $N\left(b_{k}\right)=\{n-(4 m+3-3 k)-(4 m+4-3 k), n-(4 m+3-3 k)-(4 m+$ $2-3 k)\}=\{6 k-2,6 k\}$ for $1 \leq k \leq m ;$
(ii) if $b_{k} \in \beta$, then $N\left(b_{k}\right)=\{n-(8 m+4-3 k)-(8 m+5-3 k), n-(8 m+4-3 k)-(8 m+$ $3-3 k)\}=\{6 k+1,6 k+3\}$ for $1 \leq k \leq m$; and
(iii) if $b \in \gamma$, then $N(b)=\{n-(m+1)-(8 m+3), n-(m+1)-(8 m+4)\}=\{7 m+5,7 m+6\}$.

Since clearly no element of \mathbb{Z}_{n} occurs in two of the above sets, f satisfies condition (2b).

We now see how to use the base paths found in Lemma 4.1, finding C_{4}-factors in K that use each pure edge once and only $\frac{a(a+1) p}{2}$ mixed edges.

The mixed difference from x to y of the mixed edge $\{(j, x),(k, y)\}$ in K is defined to be $\min \{k-j, a-k-j\}$.

Corollary 4.1 Let $p \equiv 0(\bmod 4)$ and $a \equiv 1(\bmod 4)$. Let $P(s, j)$ be the C_{4}-factor of mixed edges in K defined in the proof of Theorem 3.1. There exists a set $S_{1} \subseteq S=\{(s, j) \mid s \in$ $\left.\mathbb{Z}_{\frac{\lambda_{2}(p-1)}{2}}, j \in \mathbb{Z}_{a}\right\}$ with $\left|S_{1}\right|=\frac{(a+1)}{2}$ such that there exists a C_{4}-factorization of

$$
K(a, p ; 1,0)+\left(\bigcup_{(s, j) \in S_{1}} E(P(s, j))\right)
$$

containing a C_{4}-factors.

Proof Let $\pi=\left\{\pi_{s} \left\lvert\, s \in \mathbb{Z}_{\frac{\lambda_{2}(p-1)}{2}}\right.\right\}$ be a C_{4}-factorization of $\lambda_{2} K_{p}$. Let B be the set of base 2paths in K_{a} with associated function f found in Lemma 4.1. Let $B^{-}=\left\{b_{k}^{-}=(a-t, a-u, a-\right.$ $\left.v) \mid b_{k}=(t, u, v) \in B\right\}$ (reducing the sums modulo a) be another set of base paths (think of these as "upside-down versions" of the paths in $B)$, and let $f^{-}\left(b_{k}\right)=a-f(b)(\bmod a)$.

Notice that for any fixed $s \in \mathbb{Z}_{\frac{\lambda_{2}(p-1)}{2}}$, a C_{4}-factor of K can be formed by:

$$
\begin{aligned}
C(s)= & \left\{\left((t, w),(u, w),(v, w),\left(f^{-}\left(b_{k}\right), x\right)\right),\left((a-t, x),(a-u, x),(a-v, x),\left(f\left(b_{k}\right), y\right)\right),\right. \\
& \left((t, y),(u, y),(v, y),\left(f^{-}\left(b_{k}\right), z\right)\right),\left((a-t, z),(a-u, z),(a-v, z),\left(f\left(b_{k}\right), w\right)\right), \\
& \left.((0, w),(0, x),(0, y),(0, z)) \mid(w, x, y, z) \in \pi, w<x, y, z, b_{k}=(t, u, v) \in B\right\} ;
\end{aligned}
$$

properties 1) and 2a) of Lemma 4.1 ensure that the 4 -cycles are all vertex disjoint.
Next, let $C(s, i)$ be formed by adding $i(\bmod a)$ to the first coordinate in each vertex in each 4-cycle in $C(s) . C(s, i)$ is also a C_{4}-factor of K. Since B is a set of base paths, the pure edges in $\cup_{i \in \mathbb{Z}_{a}} C(s, i)$ are the edges in $K(a, p ; 1,0)$ (that is, one copy of each pure edge in K). Also, by Property 2b) of Lemma 4.1, for each $(w, x, y, z) \in \pi, w<x, y, z$, the mixed edges in $\cup_{i \in \mathbb{Z}_{a}} C(s, i)$ are precisely:

1. all the edges of mixed differences from w and x and from y and z in $N(B) \cup\{0\}$; and
2. all the edges of mixed differences from x and y and from z and w in $\{a-j \mid j \in$ $N(B) \cup\{0\}\}$.

So setting $S_{1}=\left\{(s, j) \left\lvert\, s \in \mathbb{Z}_{\frac{\lambda_{2}(p-1)}{2}}\right., j \in N(B) \cup\{0\}\right\}$, this is precisely the set of edges in

$$
\bigcup_{(s, j) \in S_{1}} P(s, j)
$$

We now use Lemma 4.1 and Corollary 4.1 to construct a C_{4}-factorization of $K=$ $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ when $a \equiv 1(\bmod 4)$ and λ_{1} is odd. We begin the construction by using the Corollary to produce C_{4}-factors using each pure edge only once, thereby effectively reducing λ_{1} by one. The construction from Theorem 3.1 is adapted to partition the remaining pure and mixed edges into C_{4}-factors, producing the required C_{4}-factorization.

Theorem 4.2 Suppose $a \equiv 1(\bmod 4)$ and λ_{1} is odd. There exists a C_{4}-factorization of $K=K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ if:

1. $p \equiv 0(\bmod 4)$,
2. λ_{2} is even and greater than zero, and
3. $\lambda_{1} \leq \lambda_{2} a(p-1)-a$.

Remark Conditions 1 and 2 are necessary, as is shown in Lemma 2.1.

Proof Assume that K satisfies conditions (1-3). For each $s \in \mathbb{Z}_{\frac{\lambda_{2}(p-1)}{2}}, j \in \mathbb{Z}_{a}$, and $i \in \mathbb{Z}_{a}$, let $\pi, S, P(s, j, i), P(s, j)$, and $P^{-}(s, j, r)$ be defined as in Theorem 3.1. Let S_{1} be defined as in Corollary 4.1; so $S_{1} \subseteq S$ with $\left|S_{1}\right|=\frac{(a+1)}{2}$.

By Corollary 4.1, there exists a C_{4}-factorization, C, of

$$
K(a, p ; 1,0)+\left(\bigcup_{(s, j) \in S_{1}} E(P(s, j))\right) .
$$

So it remains to partition the edges of the subgraph

$$
K^{\prime}=K\left(a, p ; \lambda_{1}-1,0\right)+\left(\bigcup_{(s, j) \in S \backslash S_{1}} E(P(s, j))\right)
$$

of K into C_{4}-factors.
Since $\lambda_{1}-1$ is even, it turns out that we can adapt the construction used in Theorem 3.1. By Condition 3, $\lambda_{1} \leq \lambda_{2} a(p-1)-a$, so $\frac{\lambda_{1}-1}{2} \leq \frac{\lambda_{2} a(p-1)}{2}-\frac{a+1}{2}=|S|-\left|S_{1}\right|$. Therefore, we can choose a set $S_{2} \subseteq S \backslash S_{1}$ with $\left|S_{2}\right|=\frac{\lambda_{1}-1}{2}$. Let $S_{3}=S \backslash\left(S_{1} \cup S_{2}\right)$. Then each element in

$$
\left\{P^{-}(s, j, r) \mid(s, j) \in S_{2}, r \in \mathbb{Z}_{a}\right\}
$$

induces a C_{4}-factor, and the union of the edges in all $\frac{a\left(\lambda_{1}-1\right)}{2} C_{4}$-factors contains each pure edge $2\left|S_{2}\right|=\lambda_{1}-1$ times, and uses precisely the mixed edges in

$$
\bigcup_{(s, j) \in S_{2}} P(s, j)
$$

Clearly the remaining edges can be partitioned into the following sets that induce the $C_{4^{-}}$ factors:

$$
\left\{P(s, j) \mid(s, j) \in S_{3}\right\}
$$

So, the required C_{4}-factorization of K is defined by:

$$
C \cup\left\{P^{-}(s, j, r) \mid(s, j) \in S_{2}, r \in \mathbb{Z}_{a}\right\} \cup\left\{P(s, j) \mid(s, j) \in S_{3}\right\}
$$

Notice that the number of C_{4}-factors is

$$
a+a \frac{\left(\lambda_{1}-1\right)}{2}+\left(\frac{\lambda_{2} a(p-1)}{2}-\frac{(a+1)}{2}-\frac{\left(\lambda_{1}-1\right)}{2}\right)=\frac{\lambda_{2}(p-1)}{2}+\frac{\left(\lambda_{1}-1\right)}{2}
$$

as required.

Chapter 5
 λ_{1} is Odd and Large

We now turn our attention to the construction that produces the factorization of K for the largest values of λ_{1}. The one exception that we encounter in the proof is when $a=9$; it is later shown that the techniques used in this proof do not allow us to produce the $C_{4^{-}}$ factorization of $K=K\left(9, p ; \lambda_{1}, \lambda_{2}\right)$ with $a(p-1) \lambda_{2}-a<\lambda_{1} \leq a(p-1) \lambda_{2}-1$.

We need a special C_{4}-factorization of λK_{p}.

Lemma 5.1 [7] Suppose λ is even. There exists a C_{4}-factorization of λK_{p} :

$$
\left\{F_{0,0}, F_{0,1}, F_{0,2}\right\} \cup\left\{F_{i} \mid 1 \leq i \leq \lambda(p-1)-3\right\}
$$

on the vertex set $\mathbb{Z}_{4 x}$ in which:

1. $F_{0,0}=\left\{(4 i, 4 i+1,4 i+2,4 i+3) \mid i \in \mathbb{Z}_{x}\right\}$,
2. $F_{0,1}=\left\{(4 i, 4 i+2,4 i+1,4 i+3) \mid i \in \mathbb{Z}_{x}\right\}$, and
3. $F_{0,2}=\left\{(4 i, 4 i+1,4 i+3,4 i+2) \mid i \in \mathbb{Z}_{x}\right\}$.

In Theorem 5.1 of the paper, we construct structures known as frames. Let $M(b, n)$ be the complete multipartite graph with b parts B_{0}, \ldots, B_{b-1} of size n. A 4 -cycle system of $M(b, n)$ is said to be a frame if the 4 -cycles can be partitioned into sets S_{1}, \ldots, S_{z} such that for $1 \leq j \leq z, S_{j}$ is a 2 -factor of $M(b, n) \backslash B_{i}$ for some $i \in \mathbb{Z}_{b}$.

Lemma 5.2 There exists a frame of $M(b, 4)$ for all $b \geq 3$.

Proof There are several constructions based on the parity of b. We begin with the case where b is odd.

Case 1: b is odd

Let F^{\prime} be a near 1-factorization on the vertex set \mathbb{Z}_{b}, and for each $d \in \mathbb{Z}_{b}$ let F_{d}^{\prime} be the near 1-factor in F^{\prime} with deficiency d; so each vertex in $\mathbb{Z}_{b} \backslash\{d\}$ occurs in exactly one edge in F_{d}^{\prime}.

Let $K\left(B_{x}, B_{y}\right)$ be the complete simple bipartite graph on the parts $B_{x}=\{x\} \times \mathbb{Z}_{4}$ and $B_{y}=\{y\} \times \mathbb{Z}_{4}, 0 \leq x<y \leq b-1$. For each $\{x, y\} \in E\left(F_{d}^{\prime}\right)$, define a C_{4}-factorization of $K\left(B_{x}, B_{y}\right)$, consisting of two C_{4}-factors:

$$
\begin{aligned}
& \pi_{x, y}(0)=\{((x, 0),(y, 0),(x, 2),(y, 2)),((x, 1),(y, 1),(x, 3),(y, 3))\} \\
& \pi_{x, y}(1)=\{((x, 0),(y, 1),(x, 2),(y, 3)),((x, 1),(y, 2),(x, 3),(y, 0))\}
\end{aligned}
$$

For each $d \in \mathbb{Z}_{b}$, let

$$
M_{d}=\bigcup_{\{x, y\} \in E\left(F_{d}^{\prime}\right)} K\left(B_{x}, B_{y}\right),
$$

which has a C_{4}-factorization, P_{d}, consisting of the two C_{4}-factors:

$$
M_{d}(j)=\bigcup_{\{x, y\} \in E\left(F_{d}^{\prime}\right)} \pi_{x, y}(j) \text { for each } j \in \mathbb{Z}_{2}
$$

Notice that

$$
M(b, 4)=\bigcup_{d \in \mathbb{Z}_{b}} M_{d}
$$

each edge of which therefore occurs in exactly one cycle in

$$
\bigcup_{\substack{d \in \mathbb{Z}_{b} \\ j \in \mathbb{Z}_{2}}} M_{d}(j)
$$

Notice also that each $M_{d}(j)$ is a 2-factor of $M(b, 4) \backslash\left(\{d\} \times \mathbb{Z}_{4}\right)$ so the 4-cycles in

$$
P(b)=\bigcup_{d \in \mathbb{Z}_{b}} P_{d}
$$

form a frame of $M(b, 4)$.

Figure 5.1: Example of a 2-factor, $M_{0}(j)$.

Case 2: b is even

There are two cases based on if $b \equiv 0$ or $2(\bmod 4)$.
Define $C=\left\{\left(c_{0}(i), c_{1}(i), \ldots, c_{b-2}(i)\right) \mid i \in \mathbb{Z}_{b}, c_{b-2}(i)=\infty, c_{j}(i)=i+(-1)^{j+1}\lceil j / 2\rceil\right.$ for $0 \leq$ $j \leq b-3\} \cup\{(0,1, \ldots, b-2)\}$ to be a $(b-1)$-cycle system of $2 K_{b}$ on the vertex set $V=\mathbb{Z}_{b-1} \cup\{\infty\}$. Let $c^{\prime}=(0,1, \ldots, b-2)$. For each $d \in V$, let C_{d} be the cycle with deficiency d.

Case 2.1: $b \equiv 0(\bmod 4)$
For each $c=\left(c_{0}, c_{1}, \ldots, c_{b-2}\right) \in C \backslash\left\{c^{\prime}\right\}$, say $c=C_{d}$, and for each $j \in \mathbb{Z}_{2}$, define a $C_{4^{-}}$ factor, $P(c, j)$, of $\left(V \times \mathbb{Z}_{4}\right) \backslash\left(\{d\} \times \mathbb{Z}_{4}\right)$ as follows (with the first subscripts reduced modulo ($b-1$) and the second subscripts reduced modulo 4):
$P(c, j)=\left\{\left(\left(c_{i}, 2 j+\left(1+(-1)^{i+1}\right)\right),\left(c_{i+1}, 2 j+\left(1+(-1)^{i+1}\right)\right),\left(c_{i}, 1+2 j+\left(1+(-1)^{i+1}\right)\right),\left(c_{i+1}, 1+\right.\right.\right.$ $\left.\left.\left.2 j+\left(1+(-1)^{i+1}\right)\right)\right) \left\lvert\,-1 \leq i \leq \frac{b}{2}-2\right.\right\} \cup\left\{\left(\left(c_{i}, 2 j+2\right),\left(c_{i+1}, 2 j\right),\left(c_{i}, 2 j+3\right),\left(c_{i+1}, 2 j+\right.\right.\right.$ 1)) $\left.\left\lvert\, \frac{b}{2}-1 \leq i \leq b-3\right.\right\}$.

Also, for each $j \in \mathbb{Z}_{2}$, define a C_{4}-factor, $P(c, j)$, of $\left(V \times \mathbb{Z}_{4}\right) \backslash\left(\{\infty\} \times \mathbb{Z}_{4}\right)$ as follows (with the first subscripts reduced modulo $(b-1)$ and the second subscripts reduced modulo 4):
$P\left(c^{\prime}, j\right)=\left\{((i, 2 j),(i+1,2 j+2),(i, 2 j+1),(i+1,2 j+3)) \mid i \in \mathbb{Z}_{b-1}\right\}$.
Notice that for each $c \in C$ and each $j \in \mathbb{Z}_{2}, P(c, j)$ is a 2-factor of $M(b, 4) \backslash\left(\{d\} \times \mathbb{Z}_{4}\right)$ where $c=C_{d}$ so the 4 -cycles in

$$
\bigcup_{\substack{c \in C \\ j \in \mathbb{Z}_{2}}} P(c, j)
$$

form a frame of $M(b, 4)$.
Case 2.2: $b \equiv 2(\bmod 4)$
In the case where $b \equiv 2(\bmod 4)$, there are two constructions for the 2 -factors. For each $c=\left(c_{0}, c_{1}, \ldots, c_{b-2}\right) \in C \backslash\left\{c^{\prime}\right\}$, say $c=C_{d}$, define two C_{4}-factors, $P_{0}(c)$ and $P_{1}(c)$, of $\left(V \times \mathbb{Z}_{4}\right) \backslash\left(\{d\} \times \mathbb{Z}_{4}\right)$ as follows (with the first subscripts reduced modulo $(b-1)$ and the second subscripts reduced modulo 4):

1. $P_{0}(c)=\left\{\left(\left(c_{i}, 1+(-1)^{i+1}\right),\left(c_{i+1}, 1+(-1)^{i+1}\right),\left(c_{i}, 2+(-1)^{i+1}\right),\left(c_{i+1}, 2+(-1)^{i+1}\right)\right) \mid-2 \leq\right.$ $\left.i \leq \frac{b}{2}-2\right\} \cup\left\{\left(\left(c_{i}, 0\right),\left(c_{i+1}, 2\right),\left(c_{i}, 1\right),\left(c_{i+1}, 3\right)\right) \left\lvert\, \frac{b}{2}-1 \leq i \leq b-3\right.\right\}$, and
2. $P_{1}(c)=\left\{\left(\left(c_{i}, 3+(-1)^{i+1}\right),\left(c_{i+1}, 3+(-1)^{i+1}\right),\left(c_{i}, 4+(-1)^{i+1}\right),\left(c_{i+1}, 4+(-1)^{i+1}\right)\right) \mid 0 \leq\right.$ $\left.i \leq \frac{b}{2}-2\right\} \cup\left\{\left(\left(c_{i}, 2\right),\left(c_{i+1}, 0\right),\left(c_{i}, 3\right),\left(c_{i+1}, 1\right)\right) \left\lvert\, \frac{b}{2}-1 \leq i \leq b-2\right.\right\}$

Also, for each $j \in \mathbb{Z}_{2}$, define a C_{4}-factor, $P(c, j)$, of $\left(\mathbb{Z}_{b} \times \mathbb{Z}_{4}\right) \backslash\left(\{\infty\} \times \mathbb{Z}_{4}\right)$ as follows (with the first subscripts reduced modulo (b-1) and the second subscripts reduced modulo 4):

$$
P\left(c^{\prime} j\right)=\left\{((i, 2 j),(i+1,2 j+2),(i, 2 j+1),(i+1,2 j+3)) \mid i \in \mathbb{Z}_{b-1}\right\}
$$

Notice that for each $c \in C$ and each $j \in \mathbb{Z}_{2}, P_{j}(c)$ and $P(c, j)$ are 2-factors of $M(b, 4) \backslash$ $\left(\{d\} \times \mathbb{Z}_{4}\right)$ where $c=C_{d}$ so the 4-cycles in

$$
\bigcup_{\substack{c \in C \\ j \in \mathbb{Z}_{2}}} P_{j}(c) \cup P(c, j)
$$

form a frame of $M(b, 4)$.

Theorem 5.1 Suppose $a \equiv 1(\bmod 4), a \neq 9$, and λ_{1} is odd. There exists a C_{4}-factorization of $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ if and only if:

1. $p \equiv 0(\bmod 4)$,
2. $\lambda_{2}>0$ and is even, and
3. $\lambda_{1} \leq a(p-1) \lambda_{2}-1$.

Proof The necessity of these conditions is proved in Lemmas 2.1 and 2.2, so now assume that Conditions (1-3) are true.

If $\lambda_{1} \leq a(p-1) \lambda_{2}-a$, then by Theorem 4.2 there exists a C_{4}-factorization of $K=$ $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$. In this proof, we provide a construction that finds the required C_{4}-factorization whenever $\lambda_{1} \geq(a-2)$. Notice that the result will follow because $a(p-1) \lambda_{2}-a \geq(a-2)$ since $\lambda_{2} \geq 2$ and $p \geq 4$. So now it suffices to assume that $(a-2) \leq \lambda_{1} \leq a(p-1) \lambda_{2}-1$. We now construct a C_{4}-factorization of $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ in these cases.

We begin by showing that if the theorem is true when $p=4$, then it is true for all $p \geq 8$ with $p \equiv 0(\bmod 4)$. Let $\lambda_{1}=l_{0}+l_{1}+\cdots+l_{\left(\lambda_{2}(p-1) / 2\right)-3}$ satisfying:
(a) $l_{0} \leq 6 a-1$ and is odd, and
(b) $l_{j} \leq 2 a$ and is even for $1 \leq j \leq\left(\lambda_{2}(p-1) / 2\right)-3$.

We begin by using Lemma 5.1 with $\lambda=\lambda_{2}$. Notice that $\cup_{i \in \mathbb{Z}_{3}} F_{0, i}$ is the union of $p / 4$ disjoint copies of $2 K_{4}$. For each $j \in \mathbb{Z}_{p / 4}$, let $\left(\mathbb{Z}_{a} \times\{4 j, 4 j+1,4 j+2,4 j+3\}, T_{i}\right)$ be a C_{4}-factorization of $K\left(a, 4 ; l_{0}, 2\right)$, which we are currently assuming exists since it satisfies Condition 3. Then clearly taking the union for all $j \in \mathbb{Z}_{p / 4}$ of these C_{4}-factorizations produces a C_{4}-factorization, $\left(\mathbb{Z}_{a} \times \mathbb{Z}_{p}, T_{0}^{\prime}\right)$, of $l_{0} K_{a} \sim \cup_{i \in \mathbb{Z}_{3}} F_{0, i}$.

For each $i \in \mathbb{Z}_{\lambda_{2}(p-1) / 2-3} \backslash\{0\}$, let $\left(\mathbb{Z}_{a} \times \mathbb{Z}_{p}, T_{i}^{\prime}\right)$ be a C_{4}-factorization of $l_{i} K_{a} \sim F_{i}$, which exists by Theorem 3.1. Then

$$
\left(\mathbb{Z}_{a} \times \mathbb{Z}_{p}, \cup_{i \in \mathbb{Z}_{\lambda_{2}(p-1) / 2-3}} T_{i}^{\prime}\right)
$$

is a C_{4}-factorization of $K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$.

So we now assume that $p=4$. As stated before, since λ_{1} is odd, some of the C_{4}-factors must be inefficient; these are produced first. We begin by considering the subgraph of K with $\lambda_{1}=3$. Let $b=\frac{1}{4}(a-1)$. Partition the vertices in $\mathbb{Z}_{a} \backslash\{0\}$ into sets $B=\left\{B_{0}, \ldots, B_{b-1}\right\}$, each of size 4 , where $B_{i}=\{4 i+1,4 i+2,4 i+3,4 i+4\}$ for each $i \in \mathbb{Z}_{b}$.

Let $M(B)=M(b, 4)$ be the complete simple multipartite graph with parts being the sets in B. In order to complete the factorization, we need a frame of $M(B)$, which exists by Lemma 5.2. In the frame of $M(B)$ constructed in Lemma 5.2, notice that for each $d \in \mathbb{Z}_{b}$, there are exactly two C_{4}-factors, say $M_{d, k}$ for $k \in \mathbb{Z}_{2}$, on the vertex set $\mathbb{Z}_{a} \backslash\left(B_{d} \cup\{0\}\right)$. To produce the inefficient C_{4}-factors of K, we will use each $M_{d, k}$ twice.

Remark In order to produce a frame of $M(b, 4)$ using Lemma $5.2, b$ must be greater than or equal to three. When $a=9, b=2$, and there is no frame of $M(2,4)$; therefore, we must currently exclude $a=9$ from the theorem. However, when $a=9$, we have previously shown in Theorem 3.1 that if $\lambda_{1} \leq a(p-1) \lambda_{2}-a$, then there exists a C_{4}-factorization of K.

Using the frames of $M(B)$, we can produce the minimum number of inefficient C_{4}-factors in K required by the necessary condition. All other inefficient C_{4}-factors in our constructions
contain only mixed edges, and occur only when $\lambda_{1}<a(p-1) \lambda_{2}-1$. If a C_{4}-factor of K contains only mixed edges, we call it a mixed- C_{4}-factor.

Recall that we are now assuming that $p=4$. For each $i \in \mathbb{Z}_{b}$ and $j \in \mathbb{Z}_{4}$, let $B_{i, j}=$ $B_{i} \times\{j\}$. For each $j \in \mathbb{Z}_{4}$, let $M(j)$ be the complete multipartite graph with parts $\left\{B_{i, j} \mid i \in\right.$ $\left.\mathbb{Z}_{b}\right\}$, and let $M_{d, k}(j)$ be the natural isomorphic copy of the C_{4}-factor $M_{d, k}$ on the vertex set $\left(\mathbb{Z}_{a} \backslash\left(B_{d} \cup\{0\}\right)\right) \times\{j\}$.

For each $d \in \mathbb{Z}_{b}$ and $k \in \mathbb{Z}_{2}$, we form four inefficient C_{4}-factors of $K^{\prime}=K(a, 4 ; 3,2)$ on the vertex set $\mathbb{Z}_{a} \times \mathbb{Z}_{4}$ as follows (reducing sums in the second subscript modulo 4):

$$
\begin{aligned}
& \pi_{2 k+1}(d)=\{((4 d+1, j+k),(0, j+k),(4 d+4, j+k),(0, j+k+1)) \mid j \in\{0,2\}\} \\
& \cup((4 d+2, k),(4 d+3, k),(4 d+2, k+2),(4 d+3, k+2)) \\
& \cup\{((4 d+1, j+k),(4 d+3, j+k),(4 d+2, j+k),(4 d+4, j+k)) \mid j \in\{1,3\}\} \\
& \cup\left\{M_{d, k}(j) \mid j \in \mathbb{Z}_{4}\right\}, \text { and } \\
& \begin{array}{c}
\pi_{2 k+2}(d)=\{((4 d+1, j+k),(0, j+k),(4 d+4, j+k),(0, j+k-1)) \mid j \in\{0,2\}\}
\end{array} \\
& \cup((4 d+2, k),(4 d+3, k),(4 d+2, k+2),(4 d+3, k+2)) \\
& \cup\{((4 d+1, j+k),(4 d+2, j+k),(4 d+4, j+k),(4 d+3, j+k)) \mid j \in\{k+1, k+3\}\} \\
& \cup\left\{M_{d, k}(j) \mid j \in \mathbb{Z}_{4}\right\} .
\end{aligned}
$$

Let $P^{*}=\left\{\pi_{2 j+1}(i), \pi_{2 j+2}(i) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{2}\right\}$ be the set of these $4 b$ inefficient C_{4}-factors. Let $E\left(P^{*}\right)$ be the set of edges of the sets of 4 -cycles in P^{*}. Let K^{*} be the graph induced by the edge-set $E\left(P^{*}\right)$; then K^{*} is a subgraph of K^{\prime}. For each $j \in \mathbb{Z}_{4}$, let $W(j)$ be the pure

Figure 5.2: Example of an inefficient C_{4}-factor.
edges in $K^{\prime} \backslash E\left(K^{*}\right)$ induced by the vertex set $\mathbb{Z}_{a} \times\{j\}$ (see Figure 5.3). In K^{*}, clearly each vertex has degree $8 b$ since its edges can be partitioned into $4 b C_{4}$-factors. More specifically, for each $j \in \mathbb{Z}_{4}$ the pure degree of v in K^{*} is

$$
d(v)=\left\{\begin{array}{cl}
4 b=a-1 & \text { if } v=(0, j), \text { and } \tag{1}\\
8 b-2=2(a-1) & \text { otherwise }
\end{array}\right.
$$

and the mixed degree of v is

$$
d(v)=\left\{\begin{array}{cl}
4 b=a-1 & \text { if } v=(0, j), \text { and } \tag{2}\\
2 & \text { otherwise }
\end{array}\right.
$$

We would like to supplement P^{*} with some efficient C_{4}-factors that equalize the pure and mixed degrees of all the vertices in K^{*} to $(a-1)(a-2)$ and $a-1=4 b$ respectively while using precisely the mixed edges of the broken differences; that is, broken in the sense that some edges of these differences are already used in $E\left(P^{*}\right)$. Let A be the multiset of mixed edges of differences $\left\{4 i+1,4 i+4 \mid i \in \mathbb{Z}_{b}\right\}$ in which each mixed edge of those differences occurs twice. So all the mixed edges in $E\left(P^{*}\right)$ are in A.

Figure 5.3: $W(j)$
To equalize the pure and mixed degree of the vertices will also require using the remaining edges in $K^{\prime} \backslash E\left(K^{*}\right)$ and an additional $(a-5) K_{a}$ on the vertex set $\mathbb{Z}_{a} \times\{j\}$ for each $j \in \mathbb{Z}_{4}$; the following three paragraphs indicate why one might expect this approach to be possible. It is worth reiterating now that the number of inefficient C_{4}-factors we have already constructed was carefully chosen so that if λ_{1} is as large as condition (3) allows, then all remaining C_{4}-factors must be efficient. It is also worth noting that this is why we require $\lambda_{1} \geq(a-5)+3=(a-2)$ in this proof.

Notice that for each $j \in \mathbb{Z}_{4}$, the remaining pure edges in the $j^{\text {th }}$ part in $K \backslash E\left(K^{*}\right)$, namely the edges in $W(j)$, consist of the $8 b(b-1)$ edges of the complete multipartite graph $M(B)$ and the $16 b$ edges in the 4 -cycles $C(i, j)=\{((0, j),(4 i+1, j),(4 i+4, j),(4 i+$ $3, j)),((0, j),(4 i+2, j),(4 i+4, j),(4 i+3, j)),((0, j),(4 i+2, j),(4 i+1, j),(4 i+4, j)),((0, j),(4 i+$ $2, j),(4 i+1, j),(4 i+3, j))\}$ for each $i \in \mathbb{Z}_{b}$.

In order to raise the mixed degree of the $a-1$ vertices $v \in\left\{(1, j), \ldots,(a-1, j) \mid j \in \mathbb{Z}_{4}\right\}$ from 2 (see (2)) to $a-1=4 b$ in the most efficient fashion (that is, to be used in efficient C_{4}-factors), each such v must be in $\frac{1}{2}(a-3) C_{4}$-factors in which v is the only vertex in the j th part that is in a mixed edge 4 -cycle. (Notice that $(0, j)$ is excluded since it already has mixed degree $a-1=4 b$.) So the number of C_{4}-factors needed to to accomplish this is $\frac{1}{2}(a-1)(a-3)$. Clearly if we proceed in this way then the mixed degree of $v=(0, j)$ is not raised for all $j \in \mathbb{Z}_{4}$ since each C_{4}-factor is required to be efficient.

Since in each of these C_{4}-factors $v=(0, j)$ must be incident with only pure edges, $(0, j)$ must be incident with $(a-1)(a-3)$ pure edges. In $W(j),(0, j)$ is incident with $8 b=2(a-1)$ pure edges. So $(a-1)(a-5)$ more pure edges incident with $(0, j)$ are needed. This can be achieved by adding $(a-5) K_{a}$ with vertex set $\mathbb{Z}_{a} \times\{j\}$ to $W(j)$. So let $W^{+}(j)=W(j) \cup(a-5) K_{a}$.

As a check on this construction, one might ask the following questions. With how many pure edges must $v \in\left\{(1, j), \ldots,(a-1, j) \mid j \in \mathbb{Z}_{4}\right\}$ be incident in order to complete the C_{4}-factors that raise the mixed degree of v to $a-1$? Among the previously described $\frac{1}{2}(a-1)(a-3) C_{4}$-factors, each of the $a-1$ choices for v must be incident with no pure edges in exactly $\frac{1}{2}(a-3)$ of the C_{4}-factors, implying v must be incident with $a-3$ fewer pure edges than $(0, j)$. With how many pure edges are vertices $v \in\left\{(1, j), \ldots,(a-1, j) \mid j \in \mathbb{Z}_{4}\right\}$ incident in $W^{+}(j)$? They are each incident with $(a-2)(a-3)$ pure edges, which is exactly $a-3$ fewer than $(a-1)(a-3)$.

We next partition the edges in $\bigcup_{j \in \mathbb{Z}_{4}} W^{+}(j)$ together with a set, M^{+}, of $\frac{1}{2}(a-1)(a-3)$ mixed 4-cycles into efficient C_{4}-factors. The edges in $\bigcup_{j \in \mathbb{Z}_{4}} W^{+}(j)$ are partitioned into sets that induce pure near C_{4}-factors in Lemma 5.3. The interested reader can skip to there now, but it also can be saved for later reading.

The precise set, M^{+}, of $\frac{1}{2}(a-1)(a-3)$ mixed 4-cycles used are described now. Notice that the only requirements we need to enforce are that each vertex (i, j) with $i \in \mathbb{Z}_{a} \backslash\{0\}$ and $j \in \mathbb{Z}_{4}$ occurs in exactly $\frac{1}{2}(a-3)$ of these mixed 4 -cycles, and that the edges they

Figure 5.4: C with $a=13$
contain all come from the edges of differences broken when forming P^{*}. Then each of the $\frac{1}{2}(a-3)$ mixed 4-cycles on the vertex set say $\left\{(i(j), j) \mid j \in \mathbb{Z}_{4}\right\}$ can be added to a pure near C_{4}-factor with deficiency $(i(j), j)$ for each $j \in \mathbb{Z}_{4}$ to form a C_{4}-factor of K.

The mixed edges of the broken differences that have already been used in the $4 b$ inefficient C_{4}-factors in P^{*}, and hence contained in A, can be described by the following two multisets:
(1) $E(C)$, where $C=\{((0, j),(4 i+1, j+1),(0, j+2),(4 i+1, j+3)),((0, j),(4 i+4, j+$ 1), $\left.(0, j+2),(4 i+4, j+3)) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{2}\right\}$, and
(2) $D=\{\{(4 i+2, j),(4 i+3, j+2)\},\{(4 i+2, j),(4 i+3, j+2)\},\{(4 i+3, j),(4 i+2, j+$ $\left.2)\},\{(4 i+3, j),(4 i+2, j+2)\} \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{2}\right\}$.

Then in the subgraph induced by $E(C)$,

$$
d(v)= \begin{cases}4 b & \text { if } v=(0, j) \\ 2 & \text { if } v \in\left\{(4 i+1, j),(4 i+4, j) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{4}\right\}, \text { and } \\ 0 & \text { otherwise },\end{cases}
$$

Figure 5.5: D with $a=13$
and in the subgraph induced by D

$$
d(v)= \begin{cases}2 & \text { if } v \in\left\{(4 i+2, j),(4 i+3, j) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{4}\right\}, \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

We now define three sets of 4 -cycles, R_{1}, R_{2}, and L such that each mixed edge in A will be used exactly once in $E(C) \cup D \cup E\left(R_{1}\right) \cup E\left(R_{2}\right) \cup E(L)$. The edges in these three sets of cycles will be recombined with the near C_{4}-factors of $W^{+}(j)$ into 4-cycles that can be partitioned into $4 b$ mixed C_{4}-factors and $\frac{1}{2}(a-3)$ efficient C_{4}-factors of K.

In forming R_{1}, we need to avoid the edges in C already used in the inefficent C_{4}-factors; this is done by disallowing values of i and j such that $i+j=0$.
(1) $R_{1}=\left\{((i, 0),(i+j, 1),(i, 2),(i+j, 3)) \mid i \in \mathbb{Z}_{a} \backslash\{0\}, j \in\left\{4 x+1,4 x+4 \mid x \in \mathbb{Z}_{b}\right\}, i+j \neq\right.$ $0\}$.

In forming R_{2}, we need to avoid the edges in D already used in the inefficent C_{4}-factors; this is reflected in the values of (i, j) disallowed in the following set.
(2) $R_{2}=\left\{((i, 0),(i+j, 2),(i, 1),(i+j, 3)),((i, 0),(i+j, 2),(i, 3),(i+j, 1)) \mid i \in \mathbb{Z}_{a}, j \in\right.$ $\left.\{-1,1\},(i, j) \notin\left\{(4 x+2,1),(4 x+3,-1) \mid x \in \mathbb{Z}_{b}\right\}\right\} \cup\{((4 x+2, j),(4 x+3, j+1),(4 x+$ $\left.2, j+2),(4 x+3, j+3)) \mid x \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{2}\right\}$, and
(3) $L=\left\{((i, 0),(i+j, 2),(i, 1),(i+j, 3)),((i, 0),(i+j, 2),(i, 3),(i+j, 1)) \mid i \in \mathbb{Z}_{a}, j \in\right.$ $\left.\left\{4 x+1,4 x+4 \mid x \in \mathbb{Z}_{b}\right\} \backslash\{-1,1\}\right\}$.

Each of the $2 b-2$ values of j in L produce two mixed C_{4}-factors of K, so this forms $4 b-4$ of the $4 b$ mixed C_{4}-factors claimed to exist. It is worth noting again that the edges in $E(C) \cup D \cup E\left(R_{1}\right) \cup E\left(R_{2}\right) \cup E(L)$ use all the mixed edges in A exactly once as Table 5.1 indicates.

Difference	Incident with 0	Between levels $4 x+2$ and $4 x+3$	Between parts j and $j+1$	Otherwise
$-1,1$	C, R_{2}	R_{1}, R_{2}	R_{1}, R_{2}	R_{1}, R_{2}
$4 x+1, x \neq 0$	C, L	No such edges exist	R, L	L, L
$4 x+4, x \neq b$	C, L	No such edges exist	R, L	L, L

Table 5.1: Locations of Mixed Edges in A

The edges of $R=R_{1} \cup R_{2}$ will now be partitioned in a different way into two sets. First notice the degree of each vertex in the subgraph induced by the edges of $E\left(R_{1}\right)$ and $E\left(R_{2}\right)$. In the subgraph induced by $E\left(R_{1}\right)$,

$$
d(v)=\left\{\begin{aligned}
0 & \text { if } v=(0, j) \\
a-3 & \text { if } v \in\left\{(4 i+1, j),(4 i+4, j) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{4}\right\}, \text { and } \\
a-1 & \text { if } v \in\left\{(4 i+2, j),(4 i+3, j) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{4}\right\}
\end{aligned}\right.
$$

and in the subgraph induced by $E\left(R_{2}\right)$,

$$
d(v)= \begin{cases}6 & \text { if } v \in\left\{(4 i+2, j),(4 i+3, j) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{4}\right\}, \text { and } \\ 8 & \text { otherwise }\end{cases}
$$

We remove a 2-regular subgraph on the vertex set $\left\{(4 i+2, j),(4 i+3, j) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{4}\right\}$ of the subgraph induced by $E\left(R_{1}\right)$ and add it to the subgraph induced by $E\left(R_{2}\right)$ in such a way that we have
(1) a graph R^{*} on the vertex set $\left(\mathbb{Z}_{a} \backslash\{0\}\right) \times \mathbb{Z}_{4}$ that is $(a-3)$-regular and whose edges can be partitioned into $\frac{1}{2}(a-3) 4$-cycles, and
(2) a graph R_{2}^{*} on the vertex set $\mathbb{Z}_{a} \times \mathbb{Z}_{4}$ that is 8-regular and whose edges can be partitioned into 4-cycles, which can be partitioned into four mixed C_{4}-factors.

Let R_{1}^{*} be the graph induced by $E\left(R_{1}\right)$. To form R^{*} from R_{1}^{*}, first remove the mixed edges that occur in the following subset of 4-cycles in $R_{1}: R_{1,1}=\{((4 i+2,0),(4 x+2,1),(4 i+$ $\left.2,2),(4 x+2,3)),((4 i+3,0),(4 x+3,1),(4 i+3,2),(4 x+3,3)) \mid i, x \in \mathbb{Z}_{b}, i \neq x\right\}$. The degree of each vertex in the subgraph, $R_{1,1}^{*}$, induced by $E\left(R_{1,1}\right)$ is $2(b-1)=2\left(\frac{1}{4}(a-1)-1\right)=\frac{1}{2}(a-1)-2$. Notice that each 4-cycle in $R_{1,1}$ is a 4-cycle in R_{1}.

Figure 5.6: The 4-cycles of $R_{1,1}$ incident with vertices $\left\{4 i+2 \mid i \in \mathbb{Z}_{b}\right\}$; the other half of $R_{1,1}$ is formed by moving each cycle "down" one level in each part.

Observe the degree of each vertex in $R_{1}^{*}-R_{1,1}^{*}$ is

$$
d(v)=\left\{\begin{array}{cl}
0 & \text { if } v=(0, j), \\
a-3 & \text { if } v \in\left\{(4 i+1, j),(4 i+4, j) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{4}\right\}, \text { and } \\
a-1-2(b-1) & \text { if } v \in\left\{(4 i+2, j),(4 i+3, j) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{4}\right\}
\end{array}\right.
$$

Therefore, we must add back to $R_{1}^{*}-R_{1,1}^{*}$ a $2(b-2)$-regular subgraph, T_{1}^{*}, of $R_{1,1}^{*}$ on the vertex set $v \in\left\{(4 i+2, j),(4 i+3, j) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{4}\right\}$ to complete the formation of R^{*}.

Let $[x]_{b}$ denote the integer $m \in \mathbb{Z}_{b}$ with $m \equiv x(\bmod b)$. We now form two sets of 4-cycles, T_{1} and T_{2}, whose edges partition $E\left(R_{1,1}\right)$. The set of 4-cycles in T_{1} is constructed based on the parity of b :

Case 1: b is odd

$$
T_{1}=\left\{\left(\left(4[i-k]_{b}+2,0\right),(4 i+2,1),\left(4[i+k]_{b}+2,2\right),(4 i+2,3)\right),\left(\left(4[i-k]_{b}+3,0\right),(4 i+\right.\right.
$$ $\left.\left.3,1),\left(4[i+k]_{b}+3,2\right),(4 i+3,3)\right) \mid i \in \mathbb{Z}_{b}, k \in 2, \ldots, b-1\right\}$.

Case 2: b is even

$$
T_{1}=\left\{\left(\left(4[i+k]_{b}+2,0\right),(4 i+2,1),\left(4[i+k+1]_{b}+2,2\right),(4 i+2,3)\right),\left(\left(4[i+k]_{b}+3,0\right),(4 i+\right.\right.
$$ $\left.3,1),\left(4[i+k+1]_{b}+3,2\right),(4 i+3,3)\right) \mid i \in \mathbb{Z}_{b}, k \in 2, \ldots, b-1, k$ is even $\} \cup\left\{\left(\left(4[i+k-2]_{b}+\right.\right.\right.$ $\left.2,0),(4 i+2,1),\left(4[i+k-1]_{b}+2,2\right),(4 i+2,3)\right),\left(\left(4[i+k-2]_{b}+3,0\right),(4 i+3,1),(4[i+k-\right.$ $\left.\left.1]_{b}+3,2\right),(4 i+3,3)\right) \mid i \in \mathbb{Z}_{b}, k \in 2, \ldots, b-1, k$ is odd $\}$.

The set T_{2} does not depend on the parity of b :
$T_{2}=\left\{\left((4 i+2,1),\left(4[i-k]_{b}+2,0\right),(4 i+2,3),\left(4[i+k]_{b}+2,2\right)\right),\left((4 i+3,1),\left(4[i-k]_{b}+\right.\right.\right.$ $\left.\left.3,0),(4 i+3,3),\left(4[i+k]_{b}+3,2\right)\right) \mid i \in \mathbb{Z}_{b}, k=1\right\}$.

Notice that the subgraph, T_{1}^{*}, induced by $E\left(T_{1}\right)$ is $2(b-2)$-regular on the vertices $\left\{4 i+2,4 i+3 \mid i \in \mathbb{Z}_{b}\right\}$. Add the edges of T_{1} to the graph $R_{1}^{*}-R_{1,1}^{*}$ to form R^{*}. Then in R^{*} each vertex v has degree:

$$
d(v)=\left\{\begin{aligned}
0 & \text { if } v=(0, j), \\
a-3 & \text { if } v \in\left\{(4 i+1, j),(4 i+4, j) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{4}\right\}, \text { and } \\
a-3 & \text { if } v \in\left\{(4 i+2, j),(4 i+3, j) \mid i \in \mathbb{Z}_{b}, j \in \mathbb{Z}_{4}\right\}
\end{aligned}\right.
$$

So let $R^{*}=R_{1}^{*}-R_{1,1}^{*}+T_{1}^{*}$. The edges of R^{*} consist of the edges of the 4 -cycles in $R_{1} \backslash R_{1,1}$ and the edges in the 4-cycles of T_{1}; therefore, the edges of R^{*} can be partitioned

Figure 5.7: The 4-cycles of T_{1} incident with vertices $\left\{4 i+2 \mid i \in \mathbb{Z}_{b}\right\}$; the other half of T_{1} is formed by moving each cycle "down" one level in each part.
into 4-cycles. Let $M^{+}=\left(R_{1} \backslash R_{1,1}\right) \cup T_{1}$ be the set of these 4-cycles that partition the edges of R^{*}.

Notice that the graph, T_{2}^{*} induced by $E\left(T_{2}\right)$ is 2-regular on the vertices $\{4 i+2,4 i+3 \mid i \in$ $\left.\mathbb{Z}_{b}\right\}$. Let R_{2}^{*} be the graph induced by $E\left(R_{2}\right) \cup E\left(T_{2}\right)$, which is 8-regular on the vertex set $\mathbb{Z}_{a} \times \mathbb{Z}_{4} . R_{2}^{*}$ can be partitioned into the following four C_{4}-factors:

1. Begin with $R_{2,1}=\left\{((i, 0),(i+1,2),(i, 1),(i+1,3)) \mid i \in \mathbb{Z}_{a}\right\}$, which is a C_{4}-factor. The edges in cycles in $R_{2,1}$ that are not in edges in cycles in R_{2} are precisely the edges in $S_{1}^{-}=\left\{\{(4 x+2,0),(4 x+3,2)\},\{(4 x+2,1),(4 x+3,3)\} \mid x \in \mathbb{Z}_{b}\right\}$. Remove the edges in S_{1}^{-}from the cycles in $R_{2,1}$ and replace them with the edges in the subset of $T_{2}: S_{1}^{+}=\left\{\left\{(4 x+2,1),\left(4[x-1]_{b}+2,0\right)\right\},\left\{(4 x+3,3),\left(4[x+1]_{b}+3,2\right)\right\} \mid x \in \mathbb{Z}_{b}\right\}$. Then the edges of $\pi_{1}=\left(R_{2,1} \backslash S_{1}^{-}\right) \cup S_{1}^{+}$induce a mixed C_{4}-factor.

Figure 5.8: T_{2} with $a=13$
2. Begin with $R_{2,2}=\left\{((i, 0),(i+1,2),(i, 3),(i+1,1)) \mid i \in \mathbb{Z}_{a}\right\}$, which is a C_{4}-factor. The edges in cycles in $R_{2,2}$ that are not in edges in cycles in R_{2} are precisely the edges in $S_{2}^{-}=\left\{\{(4 x+2,0),(4 x+3,2)\},\{(4 x+2,3),(4 x+3,1)\} \mid x \in \mathbb{Z}_{b}\right\}$. Remove the edges in S_{2}^{-}from the cycles in $R_{2,2}$ and replace them with the edges in the subset of $T_{2}: S_{2}^{+}=\left\{\left\{(4 x+2,0),\left(4[x+1]_{b}+2,3\right)\right\},\left\{(4 x+3,1),\left(4[x+1]_{b}+3,2\right)\right\} \mid x \in \mathbb{Z}_{b}\right\}$. Then the edges of $\pi_{2}=\left(R_{2,2} \backslash S_{2}^{-}\right) \cup S_{2}^{+}$induce a mixed C_{4}-factor.
3. Begin with $R_{2,3}=\left\{((i, 0),(i-1,2),(i, 1),(i-1,3)) \mid i \in \mathbb{Z}_{a}\right\}$, which is a C_{4}-factor. The edges in cycles in $R_{2,3}$ that are not in edges in cycles in R_{2} are precisely the edges in $S_{3}^{-}=\left\{\{(4 x+2,2),(4 x+3,0)\},\{(4 x+2,3),(4 x+3,1)\} \mid x \in \mathbb{Z}_{b}\right\}$. Remove the edges in S_{3}^{-}from the cycles in $R_{2,3}$ and replace them with the edges in the subset of $T_{2}: S_{3}^{+}=\left\{\left\{(4 x+2,3),\left(4[x+1]_{b}+2,2\right)\right\},\left\{(4 x+3,0),\left(4[x+1]_{b}+3,1\right)\right\} \mid x \in \mathbb{Z}_{b}\right\}$. Then the edges of $\pi_{3}=\left(R_{2,3} \backslash S_{3}^{-}\right) \cup S_{3}^{+}$induce a mixed C_{4}-factor.
4. Begin with $R_{2,4}=\left\{((i, 0),(i-1,2),(i, 3),(i-1,3)) \mid i \in \mathbb{Z}_{a}\right\}$, which is a C_{4}-factor. The edges in cycles in $R_{2,4}$ that are not in edges in cycles in R_{2} are precisely the edges
in $S_{4}^{-}=\left\{\{(4 x+2,1),(4 x+3,3)\},\{(4 x+2,2),(4 x+3,0)\} \mid x \in \mathbb{Z}_{b}\right\}$. Remove the edges in S_{4}^{-}from the cycles in $R_{2,4}$ and replace them with the edges in the subset of $T_{2}: S_{4}^{+}=\left\{\left\{(4 x+2,1),\left(4[x+1]_{b}+2,2\right)\right\},\left\{(4 x+3,0),\left(4[x+1]_{b}+3,3\right)\right\} \mid x \in \mathbb{Z}_{b}\right\}$. Then the edges of $\pi_{4}=\left(R_{2,4} \backslash S_{4}^{-}\right) \cup S_{4}^{+}$induce a mixed C_{4}-factor.

We can now supplement the C_{4}-factors of P^{*} in order to equalize the pure and mixed degrees of the vertices on the vertex set $\mathbb{Z}_{a} \times \mathbb{Z}_{4}$ while using mixed edges in A. Notice that: by Lemma 5.3 , each vertex (i, j) with $i \neq 0$ is deficient in $\frac{a-3}{2}$ pure near C_{4}-factors; and since R^{*} is $(a-3)$-regular, each such vertex is in $\frac{a-3}{2}$ mixed 4 -cycles in M^{+}. For each mixed 4-cycle $m \in M^{+}$, let $\pi^{+}(m)$ be the efficient C_{4}-factor on the vertex set $\mathbb{Z}_{a} \times \mathbb{Z}_{4}$ comprised of a near C_{4}-factor of $W^{+}(j)$, with deficiency being the vertex in m that is in $\mathbb{Z}_{a} \times\{j\}$ for each $j \in \mathbb{Z}_{4}$, and the mixed 4-cycle $m \in M^{+}$. Let $P^{+}=\left\{\pi^{+}(m) \mid m \in M^{+}\right\}$be set of efficient C_{4}-factors induced by the graph with edge-set $E\left(W^{+}(j)\right)+E\left(M^{+}\right)$for each $j \in \mathbb{Z}_{4}$.

Notice that now the subgraph induced by $E\left(P^{*}\right)+E\left(P^{+}\right)$of K is $16 b^{2}$-regular on the vertex set $\mathbb{Z}_{a} \times \mathbb{Z}_{4}$, which can be partitioned into C_{4}-factors of K. This gives a $C_{4^{-}}$ factorization, P, of $K(a, 4 ;(a-2), 0)+\left(E(C) \cup D \cup E\left(R_{1}^{*}\right)\right)$. So it remains to partition the edges of $K\left(a, 4 ; \lambda_{1}-(a-2), 0\right)+K\left(a, 4 ; 0, \lambda_{2}\right)-\left(E(C) \cup D \cup E\left(R_{1}^{*}\right)\right)$ into C_{4}-factors.

Since $\lambda_{1}-(a-2)$ is even, it turns out that we can adapt the construction in Theorem 3.1. By Condition 3 with $p=4, \lambda_{1} \leq 3 a \lambda_{2}-1$, so $\frac{\lambda_{1}-(a-2)}{2} \leq \frac{3 a \lambda_{2}}{2}-\frac{(a-1)}{2}$. Once we produce $\frac{3 a \lambda_{2}}{2}-\frac{(a-1)}{2}$ mixed C_{4}-factors from the remaining mixed edges, then we produce the needed C_{4}-factorization.

Let A^{\prime} be the subset of all the mixed edges formed by removing 2 copies of each of the edges joining vertices x levels apart for each $x \in\left\{4 i+1,4 i+4 \mid i \in \mathbb{Z}_{b}\right\}$. The mixed edges of A^{\prime} may be partitioned into mixed C_{4}-factors, $P(s, j)$, of K as defined in Theorem 3.1. The number of such C_{4}-factors is $\frac{\left|A^{\prime}\right|}{a p}=3\left(\frac{a+1}{2}+\frac{a\left(\lambda_{2}-2\right)}{2}\right)$. The edges of L and R_{2}^{*} can be partitioned into $a-5+4=a-1$ mixed C_{4}-factors. So combining both of these produces
$3\left(\frac{a+1}{2}+\frac{a\left(\lambda_{2}-2\right)}{2}\right)+(a-1)=\frac{3 a \lambda_{2}}{2}-\frac{(a-1)}{2}$ mixed C_{4}-factors, say $P(m)$ for $m \in \mathbb{Z}_{\left(\frac{3 a \lambda_{2}}{2}-\frac{(a-1)}{2}\right)}$ as required.

Now we can partition the edges of $K\left(a, 4 ; \lambda_{1}-(a-2), 0\right)+K\left(a, 4 ; 0, \lambda_{2}\right)-(E(C) \cup$ $\left.D \cup E\left(R^{*}\right)\right)$ into C_{4}-factors as follows. Since $\lambda_{1}-(a-2)$ is even, we can produce a near C_{4}-factorization, $C_{j}=\left\{c_{j}(1), \ldots, c_{j}\left(\frac{a}{2}\left(\lambda_{1}-(a-2)\right)\right)\right\}$ on the vertex set $\mathbb{Z}_{a} \times\{j\}$ for each $j \in \mathbb{Z}_{4}$ consisting of $\frac{a}{2}\left(\lambda_{1}-(a-2)\right)$ near C_{4}-factors. By Condition 3, $\lambda_{1} \leq 3 a \lambda_{2}-1$, so $\frac{\lambda_{1}-(a-2)}{2} \leq \frac{3 a \lambda_{2}}{2}-\frac{(a-1)}{2}$, so for $1 \leq i \leq \frac{\lambda_{1}-(a-2)}{2}$ and for each cycle $c \in P(i)$, we can extend c to a C_{4}-factor by adding it to four near C_{4}-factors, one from each $C_{j}, j \in \mathbb{Z}_{4}$ that are each vertex disjoint from c.

Thus, we have a C_{4}-factorization of $K\left(a, 4 ; \lambda_{1}-(a-2), 0\right)+K\left(a, 4 ; 0, \lambda_{2}\right)-(E(C) \cup$ $\left.D \cup E\left(R^{*}\right)\right)$; therefore, we have a C_{4}-factorization of $K\left(a, 4 ; \lambda_{1}, \lambda_{2}\right)$.

The following lemma is used in the proof of Theorem 5.1, so all notation is adopted from there. Although the parameter j could be omitted in this lemma, it retained so the notation here matches exactly with the notation of Theorem 5.1.

Lemma 5.3 Let $a \geq 13$ be odd, $j \in \mathbb{Z}_{4}$. Then $W^{+}(j)=W(j) \cup(a-5) K_{a}$ can be decomposed into $\frac{1}{2}(a-1)(a-3)$ near C_{4}-factors such that each $v \in\{(1, j), \ldots,(a-1, j)\}$ is deficient exactly $\frac{1}{2}(a-3)$ times and $v=(0, j)$ is never deficient.

Proof Notice that for each $i \in \mathbb{Z}_{b}$ and $j \in \mathbb{Z}_{4}$, the 4-cycles in $C(i, j)$ exhaust all the edges in $B_{i, j}$ and all the edges joining vertices in $B_{i, j}$ to $(0, j)$ in the graph $W(j)$.

Let $C_{1}(i, j)$ be a 4 -cycle system of $(a-5) K_{5}$ defined on the vertex set $B_{i, j} \cup\{0\}$ that contains a set, $C_{0}(i, j)$, of $\frac{1}{2}(a-5)$ copies of the 4 -cycle $((4 i+1, j),(4 i+2, j),(4 i+3, j),(4 i+$ $4, j)$). This can be done by taking $\frac{1}{2}(a-5)$ copies of a 4 -cycle system of $2 K_{5}$, in which case: each 4-cycle in $C_{1}(i, j) \backslash C_{0}(i, j)$ contains the vertex $(0, j)$.

We must use $(a-4)$ copies of a frame of $M(B)$ to complete the decomposition; let $M_{d, k}$ be defined as before.

For each $i \in \mathbb{Z}_{b}$, pair all but two of the 4-cycles in $\left(C_{1}(i, j) \backslash C_{0}(i, j)\right) \cup C(i, j)$ with the 4-cycles in a C_{4}-factor, $M_{d, k}$, to form a near C_{4}-factor of $W^{+}(j)$ (See Figure 5.9). This is possible since $\left|C_{1}(i, j)\right|-\left|C_{0}(i, j)\right|+|C(i, j)|-2=\frac{5}{2}(a-5)-\frac{1}{2}(a-5)+4-2=2(a-4)$, which is the number of C_{4}-factors on the vertex set $\left(\mathbb{Z}_{a} \backslash\left(B_{i} \cup\{0\}\right)\right) \times\{j\}$ in $(a-4)$ copies of the frame of $M(B)$.

Figure 5.9: Near C_{4}-factor of $W^{+}(j)$

For each $i \in \mathbb{Z}_{b}$, form $2 C_{4}$-factors of $W^{+}(j)$ consiting of the following 4-cycles (See Figure 5.10):
(a) one of the two remaining 4-cycles in $\left(C_{1}(i, j) \backslash C_{0}(i, j)\right) \cup C(i, j)$, and
(b) for each $d \in \mathbb{Z}_{b} \backslash\{i\}$, one of the 4-cycles in $C_{0}(d, j)$.

Notice that the number of 4 -cycles used in (b) in each block $B_{i, j}$ is $2(b-1)=\left|C_{0}(d, j)\right|$. The total number of C_{4}-factors produced this way is $2 b=\frac{1}{2}(a-1)$.

Notice that $\frac{1}{2}(a-1)(a-4)+\frac{1}{2}(a-1)=\frac{1}{2}(a-1)(a-3)$ as required, and that each vertex is deficient exactly once in the 4 -cycles in the $2 K_{5}$-4-cycle-decompostion so that each vertex in a 4-cycle in $C_{0}(i, j)$ is deficient exactly $\frac{1}{2}(a-5)$ times. Also, each vertex is deficient once

Figure 5.10: Near C_{4}-factor of $W^{+}(j)$
in $C(i, j)$; therefore, in total, each vertex is deficient $\frac{1}{2}(a-5)+1=\frac{1}{2}(a-3)$ times, and $v=0$ is never deficient.

Bibliography

[1] R.C. Bose and T. Shimamoto, Classification and analysis of partially balanced incomplete block designs with two associate classes, Journal of the American Statistical Association, 47 (1952), 151-184.
[2] E.J. Billington and C.A. Rodger, Resolvable 4-cycle group divisible designs with two associate classes: part size even, Discrete Math, 308 (2008), 303-307.
[3] J. Burling and K. Heinrich, Near 2-factorizations of $2 K_{2 n+1}$: cycles of even length, Graphs and Combinatorics, 5 (1989), 213-221.
[4] H. L. Fu, C. A. Rodger, and D. G. Sarvate, The existence of group divisible designs with first and second associates, having block size 3, Ars Combin., 54 (2000), 33-50.
[5] H. L. Fu and C. A. Rodger, 4-cycle group-divisible designs with two associate classes, Combin. Probab. Comput., 10 (2001), 317-343.
[6] H. L. Fu and C. A. Rodger, Group divisible designs with two associate classes: $n=2$ or $m=2$, J. Combin. Theory, 83 (1998), 94-117.
[7] S. Hamm and K. Heinrich, Resolvable and near-resolvable decompositions of $D K_{v}$ into oriented 4-cycles, Aequationes Mathematicae, 44 (1992), 304-316.

