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My dissertation research focuses on establishing the structural stability of the attractor

(A-stability) via Morse-Smale property for diffusive two-species competition systems





∂tu = k1∆u + uf(x, u, v), x ∈ Ω,

∂tv = k2∆v + vg(x, u, v), x ∈ Ω,

Bu = Bv = 0, x ∈ ∂Ω,

(0.0.1)

on a C∞ bounded domain Ω ⊂ Rn, n ≥ 1, with either Dirichlet or Neumann boundary

conditions. Here u(t, x), v(t, x) are the densities of two competing species, k1, k2 are

diffusive constants and (f, g), f, g : Ω̄× R× R→ R C2 functions satisfying

(H1) f(x, 0, 0) > 0, g(x, 0, 0) > 0 ∀x ∈ Ω̄,

(H2) ∂uf(x, u, v), ∂vf(x, u, v), ∂ug(x, u, v), ∂vg(x, u, v) < 0, ∀ u, v ≥ 0, ∀x ∈ Ω̄,

(H3) supx∈Ω̄, v≥0 lim supu→∞ f(x, u, v) < 0,

(H4) supx∈Ω̄, u≥0 lim supv→∞ g(x, u, v) < 0.
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These hypotheses describe key features of competition models, and since u and v are the

densities of two species, we are only interested in nonnegative solutions (u, v). We therefore

consider (1.0.1) in the positive cone of some appropriate phase space. Our main result states

for the spatially one-dimensional case that if (0.0.1) is a Morse-Smale system on the positive

cone, it is structurally stable. We also establish that the set of functions (f, g) for which

(1.0.1) possess the Morse-Smale property, is open in the space of all pairs (f, g) satisfying

(H1)–(H4) under the topology of C2-convergence on compacta. Moreover, we show as a

sufficient condition that if all critical elements of (1.0.1) are hyperbolic with one-dimensional

unstable manifolds in case of equilibria (except 0) and two-dimensional unstable manifolds

in case of periodic orbits, then system (1.0.1) has the Morse-Smale property. These results

will have significant impact on the study of the asymptotic dynamics of various classes of

discretizations of (0.0.1).

The proof of the openness of the set of functions for which (1.0.1) is a Morse-Smale

system, is an adaption of an idea used in [23], to a positive cone setting. As for a sufficient

condition under which the system has the Morse-Smale property, we are able to prove the

transversality of unstable manifolds and local stable manifolds of critical elements under

the hypotheses mentioned before.

The proof of the main result is quite technically difficult because we have to work in a

positive cone setting. This proof can be broken down into a few main steps. First of all, since

the long-term features of the dynamics of (1.0.1) are determined by the global attractor,

which lies inside a sufficiently large ball, we can reduce (1.0.1) to a finite dimensional system

by means of Chow, Lu & Sell’s inertial manifold theorem (cf.[6]). Secondly, we prove that

the finite-dimensional system obtained in first step is also a Morse-Smale system. Thirdly,
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we establish the A-stability of the global attractor (in the positive cone) of the finite-

dimensional system. The proof is an adaption of the main idea of a corresponding result

in the monograph [13] by J. Hale, L. Magalhães, & W.Olivia. As mentioned before, their

result does not apply to our problem because we work on a subset of the positive cone

which cannot be considered to be a Banach manifold imbedded in a Banach space, the

setting underlying the work of J. Hale, L. Magalhães, & W.Olivia. Since the attractor of

the finite-dimensional system is the orthogonal projection of the global attractor of (1.0.1)

(in the positive cone) to the phase space of the finite-dimensional system, the final step

requires to derive the A-stability of the global attractor of (1.0.1) (in the positive cone)

from A-stability of the global attractor of finite-dimensional system.
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Chapter 1

Introduction

A fundamental goal of theoretical ecology is to understand how the interactions of

individual organisms with each other and with the environment affect the distribution and

structure of populations. One way to achieve this goal is to use mathematical models.

Among these models, reaction-diffusion models have received great attention from many

experts in the field such as Fisher (1939), Skellam (1951), Kierstead and Slobodkin (1953),

Fife (1979), Smoller (1982), Murray (1993), Grindrod (1996), Leung (1989), Hess (1991),

Pao (1992), Hassel (1994), Cantrell and Cosner (1996),....

The reaction part of such models is derived from Lotka-Volterra models which in turn

are frequently based on the logistic model of population growth. The latter was first sug-

gested by Verhulst (1838) to describe the growth of human populations and was later derived

independently by Pearl and Reed (1920) for modeling the population growth in the United

States. Logistic models are based on the assumption that the growth of a population is

determined by two factors, the reproduction rate (which is the difference of birth and death

rates of individuals) and the limitation of the habitat’s resources. The simplest logistic

model of population growth leads to the following equation

u̇ = ru
(
1− u

C

)
,

where u stands for the population density, r is the growth rate and C (which is called

carrying capacity) represents the maximum number of individuals that can be sustained

by the resources of the habitat. It is obvious that over a long period of time, the size of
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the population will approach C. The first model of interacting species were introduced by

Lotka (1925) and Volterra (1931). Derived from the logistic model of population growth, a

Lotka-Volterra competition model for two species has the form





u̇ = u(a1 − b1u− c1v),

v̇ = v(a2 − b2u− c2v),

where u, v denotes the population densities of the two species. The extra terms c1uv,

b2uv added to the logistic equation of each species represent the negative effect which one

species has on the other one due to competition for the habitat’s resource. This type of

model has also been studied thoroughly, and in general, the model predicts either compet-

itive exclusion (extinction of the weaker competitor or the initially disadvantaged species)

or stable coexistence of the two competing species. It appears that the predictions of the

model correspond to biologically realistic situations although some of its assumptions are

rather idealized, for example, the assumption of spatial homogeneity, the linear competition

between the two species, ... However, this model has drawn enormous amount of empiri-

cal and theoretical research since its introduction because of its great value for ecological

understanding,

In reality, individuals are not distributed homogeneously in their habitat and typically

interact with both the physical environment and other individuals in their neighborhood.

Therefore, there is the need for expanding Lotka-Volterra models by taking spatial depen-

dence into account. It is a natural first attempt to assume that migration occurs from regions

of higher population density towards regions of lower density, and Skellam (1951) has used

an random walk approach to argue that, in fact, the dispersal of a population should be
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modeled by diffusion, which suggests the following extension of the above Lotka-Volterra

competition model





∂tu = k1∆u + u(a1 − b1u− c1v), x ∈ Ω,

∂tv = k2∆v + v(a2 − b2u− c2v), x ∈ Ω,

Bu = Bv = 0, x ∈ ∂Ω.

Here, Ω ⊂ Rn, n ≥ 1, is a C∞ bounded domain and B stands for either Dirichlet or

Neumann boundary conditions which describe certain restrictions of the movement of the

two species at the boundary of the analyzed region. E.g., homogeneous Neumann boundary

conditions apply to isolated habitats with no migration through the boundary.

The long-term behavior of such systems is well understood. For example, a study by

Brown (1980) for the Neumann case showed that if

a1c2 − c1a2 > 0 and b1a2 − a1b2 > 0

then any solution with positive initial value converges over time to the spatially homogenous

positive solution (
a1c2 − c1a2

b1c2 − c1b2
,
b1a2 − a1b2

b1c2 − c1b2

)

which means the two species coexist. On the other hand, if

a1c2 − c1a2 > 0 but b1a2 − a1b2 < 0

3



then solutions with positive initial value converges over time to the spatially homogenous

positive solution (
a1

b1
, 0

)

which predicts the extinction of species 2. Clearly, reproduction rates, carrying capacities

and competition rates may also vary throughout the habitat and in time (seasonal effects).

This suggests to study more general reaction terms, space and possibly time dependent

ones. Many interesting results have been obtained addressing such issues, and we mention

Leung (1980), Pao (1981), Pao & Zhou (1982), Smith & Thieme (2001), Dancer & Zhang

(2002),...

The starting point of my Ph.D. research work was the simulation of the long-term

behavior of two competing species which populate overlapping, but different spatially het-

erogeneous habitats. How trustworthy are such findings considering that the issue is not

the approximation of a solution of an initial value problem on a finite time interval, but the

asymptotic behavior on an infinite time-interval. A paper [2] by S.M. Bruschi, A.N. Car-

valho and J.G. Ruas-Filho addresses this issue for one-dimensional parabolic equation. The

authors establish the dynamical equivalence of the flows on the attractor of the continuous

problem and the attractor of the spatially discretized problem, respectively.

There are quite a few obstacles to extending this result. The most significant one which

needs to be addressed first, is the question of structural attractor stability. In the case of a

parabolic equation this issue is linked to the concept of gradient system, but this concept

does not apply to parabolic systems in general, and in particular, not to systems under

consideration.
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My thesis research therefore focuses on establishing this structural stability of the

attractor (A-stability) for two-species competition systems with diffusion





∂tu = k1∆u + uf(x, u, v), x ∈ Ω,

∂tv = k2∆v + vg(x, u, v), x ∈ Ω,

Bu = Bv = 0, x ∈ ∂Ω,

(1.0.1)

on a C∞ bounded domain Ω ⊂ Rn with either Dirichlet or Neumann boundary conditions.

Here u(x, t), v(x, t) are the densities of two competing species, k1, k2 are diffusion constants

(called dispersal rates in the ecological literature), and f, g are smooth functions on Ω̄×R×R

satisfying certain properties preserving features of competition models. Ecologically, one is

only interested in nonnegative solutions (u, v).

It turns out that in order to understand the relationship between the dynamics of

(1.0.1) and of certain classes of discretizations for (1.0.1), it is essential to investigate the

structural stability of the global attractor of (1.0.1) on a positive cone. Obviously, one

cannot expect that numerical approximations reflect the asymptotic behavior of a solution

semi-flow, if the behavior is not “generically robust” against small perturbations.

The concept of structural stability was introduced by Andronov and Pontryagin (1937).

Since then, a systematic theory of structural stability for diffeomorphisms and vector fields

on manifolds has been well developed by M.M. Peixoto (1959), S. Smale (1967), D.V.

Asonov (1967), C.Pugh (1967), J. Moser (1969), J. Palis (1969), J. Palis & S. Smale (1970),

J.Robin (1971), C. Robinson (1976), S. T. Liao (1980), S. Newhouse (1980), J. Hale (1981),

R.Mañé (1988), M. Hirsch (1990),... In 1984, the weaker notion of A−stability (attractor
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stability) which is more suitable in the infinite-dimensional case and for the numerical issue

mentioned before, was introduced by J. Hale L. Magalhães & W.Olivia in [13].

The concept of Morse-Smale structure emerges as a sufficient condition for structural

stability. Classically, Morse-Smale system refers to systems which have a finite number of

critical elements, all of which are hyperbolic and satisfy a transversality condition when

their stable and unstable manifolds intersect.

One of the celebrated results due to the J. Palis & S. Smale states that if a Cr(r ≥

1) diffeomorphism on a compact C∞ manifold without boundary is Morse-Smale, then it

is structurally stable. In [13], J. Hale L. Magalhães & W.Olivia proved that any f ∈

KCr(B, B) which is Morse-Smale, is A-stable. Here, B is a Banach manifold imbedded in

a Banach space E and the choice of the classes KCr(B, B) depends on the problems under

consideration. Another important result in this context is due to Kennig Lu [22] who proved

the “structural stability on a neighborhood of the attractor” of scalar parabolic equations.

Typically, Morse-Smale systems have been defined in the context of (Banach) manifolds

with or without boundaries (see [26], [27], [24], [25],. . . ), but positive cones do not fall into

these categories. Therefore we first need to modify the classical concepts of Morse-Smale

system and structural stability in such a way that they apply to positive cone settings.

Since we are only interested in positive solutions, we will consider nonlinearities in the set

of pairs (f, g), f, g : Ω̄× R× R→ R C2 functions satisfying

(H1) f(x, 0, 0) > 0, g(x, 0, 0) > 0 ∀x ∈ Ω̄,

(H2) ∂uf(x, u, v), ∂vf(x, u, v), ∂ug(x, u, v), ∂vg(x, u, v) < 0 ∀ u, v ≥ 0, ∀x ∈ Ω̄,

(H3) supx∈Ω̄, v≥0 lim supu→∞ f(x, u, v) < 0,
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(H4) supx∈Ω̄, u≥0 lim supv→∞ g(x, u, v) < 0.

Our main result states for the spatially one-dimensional case that if (1.0.1) is a Morse-

Smale system on a positive cone, it is structurally stable. We also provide the sufficient

condition under which the system has the Morse-Smale property. These results will have sig-

nificant impact on the study of the asymptotic dynamics of various classes of discretizations

of (1.0.1).

To obtain these results, we view (1.0.1) as an evolution equation on a suitable fractional

power space. Under the conditions imposed on the nonlinearities, we have global existence

of solutions and hence existence of a global attractor. Since the long-term features of the

dynamics of the system are determined by the global attractor, which lies inside a sufficiently

large ball, we first reduce (1.0.1) to a finite dimensional system by means of Chow, Lu &

Sell’s inertial manifold theorem [6]. Recall that an inertial manifold I is a subset of the

phase space satisfying the following properties

1. I is a finite dimensional smooth manifold

2. I is invariant under the semi-flow generated by (1.0.1)

3. I is exponentially attracting solutions.

Next, we need to prove A-stability in the (finite dimensional) inertial manifold setting. The

proof adapts the main idea, J. Hale, L. Magalhães, & W.Olivia used in [13]. As mentioned

before, their result cannot be applied to our problem because we work on a subset of the

positive cone and not on a Banach manifold which is imbedded in another Banach space.
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After having established the structural stability of (1.0.1) in this dissertation, we intend

to investigate long-term aspects of various classes of numerical approximation schemes to

(1.0.1) in the future work.

Having solved one problem in mathematics leads usually to an array of new questions.

Let me just mention a few. Obviously, it will be an important task to address the same

questions as considered here for spatially higher dimensional cases. The key obstacle arises

from the fact that one cannot utilize C1-inertial manifolds as a reduction tool since they

rarely exist in higher dimensions.

Two important issues in connection with the original ecological problem arise: How

does the size of the overlapping region of the two habitats affects coexistence and extinction.

Mathematically speaking, one is lead to a peculiar bifurcation problem for the steady state

system associated with (1.0.1). What is the impact of seasonal effects, a question, which in

the general case leads to systems similar to (1.0.1), but with time-dependent reaction terms

and on domains which vary in time.

8



Chapter 2

Definitions, Notations and Main Results

2.1 General Semiflows

Definition 2.1.1. (local semi-flow, semi-flow)

(1) Let (Y, d) be a metric space. A map T : D(T ) ⊂ R+ × Y → Y is said to be a local

semi-flow on Y if for each y ∈ Y , there is τ(y) > 0 such that [0, τ(y))× {y} ⊂ D(T ),

(t, y) 6∈ D(T ) for any t ≥ τ(y) (i.e. [0, τ(y)) is the maximal interval of existence of the

local semi-flow with initial condition y at t = 0), and the following hold,

(i) T0 = Id,

(ii) Given y ∈ Y , and t1, t2 ≥ 0, if (t1 + t2, y) ∈ D(T ), then (t1, Tt2(y)) ∈ D(T ) and

Tt1+t2(y) = Tt1 ◦ Tt2(y),

(iii) Tt(x) is continuous in t, x for (t, x) ∈ D(T ),

where Tt(y) = T (t, y). Furthermore, if for each y ∈ Y , τ(y) = ∞, then T is called a

semi-flow on Y .

(2) Let T be a (local) semi-flow on Y and r ∈ N. If Y is a Banach space and T satisfies

the following additional property

(iv) Tt(x) is continuous in t, x together with Fréchet derivatives in x up through order

r for (t, x) ∈ D(T ),

then T is called a (local) Cr semi-flow.
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Definition 2.1.2. (hyperbolicity) Let (Y, d) be a metric space and T : D(T ) ⊂ R+×Y → Y

be a local semi-flow on Y .

(i) α ∈ Y is a fixed point if τ(α) = ∞, Tt(α) = α for all t ≥ 0. A fixed point α of

the semi-flow T is said to be hyperbolic if the spectrum σ(DTt(α)) of the Fréchet

derivative DTt(α) is disjoint from the unit circle of the complex plane for all t > 0.

(ii) α ⊂ Y is a periodic solution of period σ if for any p ∈ α, τ(p) = ∞, Tt+σ(p) = Tt(p)

for all t ≥ 0, and {Tt(p)| t ∈ [0,∞)} = α. A periodic solution α of period σ of the

semi-flow T is said to be hyperbolic if for any p ∈ α, λ = 1 is a simple eigenvalue

of DTσ(p) and the spectrum set σ(DTσ(p)) \ {1} of the Fréchet derivative DTσ(p) is

disjoint from the unit circle of the complex plane.

(iii) A critical element of the semi-flow T is either a fixed point or a periodic solution.

Definition 2.1.3. Let (Y, d) be a metric space and T : D(T ) ⊂ R+×Y → Y be a local semi-

flow on Y . We say that y ∈ Y has a global backward extension with respect to T if there

exists a continuous function ϕ : (−∞, τ(y)) → Y such that ϕ(0) = y and Tt(ϕ(s)) = ϕ(s+t)

for all t > 0 and t + s < τ(y). If y has a global backward extension, we will write T−t(x)

for ϕ(−t), t > 0. The set
⋃

τ∈(−∞,τ(y))
ϕ(τ) is called the global orbit of y with respect to T .

Definition 2.1.4. (stable, local stable, unstable, local unstable manifolds)

Let (Y, d) be a metric space and T : D(T ) ⊂ R+ × Y → Y be a local semi-flow on Y .

The stable, local stable, unstable, local unstable manifolds at a hyperbolic critical element

α of the semi-flow T , denoted by W s(α), W s
loc(α), W u(α), W u

loc(α) are defined as follows

W s(α) = {x ∈ Y | τ(x) = ∞, d(Tt(x), α) → 0 as t →∞},

W s
loc(α) = {x ∈ W s(α) | Tt(x) ∈ B ∀t ≥ 0}, B is some neighborhood of α,

10



W u(α) = {x ∈ Y | x has a global backward extension with respect to T

and d(T−t(x), α) → 0 as t →∞},

W u
loc(α) = {x ∈ W u(α) | T−t(x) ∈ B ∀t ≥ 0}, B is some neighborhood of α.

Definition 2.1.5. (Tubular family for flows) Let W be a finite dimensional Banach space

and r ∈ N. Consider a Cr semi-flow γ : D(γ) ⊂ R+ ×W → W on W .

(1) Let α be a fixed point of γ. A tubular family of W s(α), denoted by Γs(α), is a

collection of disjoint Cr-submanifolds (called leaves) of W, denoted by {Γs
y} or {Γs

y(α)}

for clarity, indexed by y in an open neighborhood N of α in W u(α) with the following

properties

a. Γs(α) =
⋃

y∈N Γs
y is an open set of W containing W s(α),

b. Γs
α = W s(α),

c. Γs
y intersects N transversally at y,

d. The map Γs(α) → N , Γs
y 7→ y is continuous; the section s which sends x ∈ Γs

y into

the tangent space of Γs
y at x is a continuous map from Γs(α) into the Grassmann

bundle over Γs(α).

(2) Let α be a periodic orbit of γ with period σ and S be a cross-section of α at p ∈ α.

S is called invariant if γσ(U) ⊂ S, where U is a neighborhood of p ∈ S. Let k be

the restiction of γσ to U , k := γσ|U : U → S, and Γs
y, y ∈ U be an invariant tubular

family of W s(p) (with respect to k). The tubular family of W s(α) is now defined by

Γs(γt(y)) = γt(Γs
y) for y ∈ U and all t ≥ 0.

11



(3) A system of tubular families of γ is a set of tubular families of fixed point(s) and

periodic orbit(s). It is compatible if given Γs
x(α) ∩ Γs

y(β) 6= ∅ (where α, β are two

different critical elements of γ), then one submanifold contains the other.

2.2 Semiflows Generated by Competition Models

Definition 2.2.1. Let Ω be a C∞ bounded domain in Rn, n ≥ 1, and X ⊂ Lp(Ω) (p > n)

be a fractional power space of −∆ : D(∆) → Lp(Ω), see [15], satisfying X ↪→ C1(Ω̄), where

D(∆) = {u ∈ H2,p(Ω)| Bu = 0 on ∂Ω}. Here, H2,p(Ω), p ≥ 1 are the well-known Sobolev

spaces (cf.[1] ). Under the assumptions (H1)-(H4), (1.0.1) generates a (local) semi-flow on

X ×X (cf. [15]), we denote it by Π,

Π : D(Π) ⊂ R+ ×X ×X → X ×X

Πt(u0, v0) := Π(t, u0, v0) = (u(t, ·; u0, v0), v(t, ·; u0, v0)), t ∈ τ(u0, v0),

where (u(t, ·;u0, v0), v(t, ·;u0, v0)) is the solution of (1.0.1) with

(u(0, ·;u0, v0), v(0, ·; u0, v0)) = (u0, v0),

and [0, τ(u0, v0)) is the maximal interval of existence of solution of (1.0.1) with initial

condition (u0, v0) at t = 0. For clarity, we may write Πfg
t instead of Πt.

As mentioned in Chapter 1, due to the nature of (1.0.1), we are only interested in

nonnegative solutions of (1.0.1). Therefore we introduce the positive cone X+ × X+ of

X ×X,

X+ ×X+ := {(u, v) ∈ X ×X| u ≥ 0, v ≥ 0 on Ω}.

12



A solution (u(t, x), v(t, x)) is called nonnegative if (u(t, ·), v(t, ·)) ∈ X+ × X+ for t ∈

[0, τ(u(·, 0), v(·, 0)). It can be proved that if (u0, v0) ∈ X+ × X+, then τ(u0, v0) = ∞

and Πt(u0, v0) ∈ X+×X+ for all t ≥ 0 (see Proposition 3.3.1). Hence Πt (t ≥ 0), restricted

to X+ ×X+ is a semi-flow.

The restriction to X+×X+ of stable, local stable, unstable, and local unstable manifolds

of a critical element α of Π are denoted by

W u+(α) = W u(α) ∩ (X+ ×X+),

W u+
loc (α) = W u

loc(α) ∩ (X+ ×X+),

W s+(α) = W s(α) ∩ (X+ ×X+),

W s+
loc (α) = W s

loc(α) ∩ (X+ ×X+).

Definition 2.2.2. (Global attractors and Non-wandering sets)

Let X and Πfg be defined as in definition 2.2.1.

a. We define the global attractor of Πfg, denoted by A (or A(f, g)), to be the set

{(u, v) ∈ X+ ×X+ | (u, v) has a bounded global orbit}.

b. An element (u, v) ∈ A is called a non-wandering point if , for any neighborhood U of

(u, v) in A and any T > 0, there exists t0 = t0(U, T ) > T and (ũ, ṽ) ∈ U such that

Πfg
t0

(ũ, ṽ) ∈ U . The non-wandering set, denoted by Ω(f, g), is the set of non-wandering

points.
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Definition 2.2.3. (competition order) Given (u1, v1), (u2, v2) ∈ X+ ×X+, we write

(u1, v1) ≤2 (u2, v2) if u1 ≤ u2, v2 ≤ v1,

(u1, v1) <2 (u2.v2) if (u1, v1) ≤2 (u2, v2), (u1, v1) 6= (u2, v2),

(u1, v1) ¿2 (u2, v2) if (u2 − u1, v1 − v2) ∈ IntX+ × IntX+.

Definition 2.2.4. A hyperbolic critical element α in X+×X+ of (1.0.1) is called a source

if W s+(α) ∩ A = α and a sink if W u+(α) = α, otherwise α is said to be a saddle.

Definition 2.2.5. (fundamental domains and fundamental neighborhoods)

Let α ∈ X+ ×X+ be a hyperbolic critical element of (1.0.1).

a. If α is not a sink , a fundamental domain for W u+
loc (α) is denoted by Gu+(α) and is

defined as Gu+(α) = ∂B(α) for some open disk B(α) ⊂ W u+
loc (α) (that is B(α) is a

disk centered at α if α is a fixed point or a tubular neighborhood of α if α is a periodic

orbit). Any neighborhood Nu+(α) in A of Gu+(α) such that Nu+(α) ∩W s+(α) = ∅

is called fundamental neighborhood for W u+(α).

b. If α is not a source , a fundamental domain for W s+
loc (α) is denoted by Gs+(α) and is

defined as Gs+(α) = ∂B(α)∩A for some open disk B(α) ⊂ W u+
loc (α) (that is B(α) is a

disk centered at α if α is a fixed point or a tubular neighborhood of α if α is a periodic

orbit). Any neighborhood N s+(α) in A of Gs+(α) such that N s+(α) ∩W u+(α) = ∅

is called fundamental neighborhood for W s+(α).

Definition 2.2.6. (Morse-Smale structure) We say (1.0.1) has Morse-Smale structure if

14



a. the semi-flow Πt|X+×X+ has a finite number of critical elements (i.e. fixed points or

periodic solutions), all of which are hyperbolic and their union coincides with the

non-wandering set Ω(f, g),

b. if α, β are two critical elements of Πt|X+×X+ , their unstable manifolds are finite-

dimensional, and the global unstable manifold W u+(α) and the local stable manifold

W s+
loc (β) either do not intersect or they intersect transversally (i.e. x ∈ W u+(α) ∩

W s+
loc (β) implies TxW u+(α)⊕ TxW s+

loc (β) = X ×X).

Definition 2.2.7. Let

CP := {(f, g)| f, g : Ω̄× R× R→ R C2 functions, f, g satisfy (H1)-(H4)}.

We define a metric on CP, denoted by dCP , as follows

ρN ((f, g), (f̃ , g̃)) := ‖(f, g)− (f̃ , g̃)‖C2(Ω̄×[−N,N ]×[−N,N ]),

dCP((f, g), (f̃ , g̃)) :=
∞∑

N=1

(ρN ((f, g), (f̃ , g̃))
2N (1 + ρN ((f, g), (f̃ , g̃)))

.

Definition 2.2.8. We define the Morse-Smale set as follows

MS := {(f, g) ∈ CP| (1.0.1) has Morse-Smale structure}.

Definition 2.2.9. (A-stability) Given (f0, g0) ∈ CP. System (1.0.1) is A-stable if there

exists an ε0 > 0 such that for each (f, g) ∈ CP, dCP((f, g), (f0, g0)) < ε0, there exists a

homeomorphism

H : A(f0, g0) → A(f, g)
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which takes trajectories of A(f0, g0) to trajectories of A(f, g) and preserves the sense of

direction in time.

2.3 Main Results

The following are the main results of the dissertation and are stated for the positive

cone setting.

Theorem A. The set MS (cf. Definition 2.2.8) is open (in CP).

Theorem B. Given (f, g) ∈ CP. Assume all the critical elements of (1.0.1) are hyperbolic

and their union coincides with the non-wandering set Ω(f, g). Furthermore, suppose that

the dimension of the unstable manifold of an equilibrium solution in X+ ×X+ \ {(0, 0)} is

at most one and the dimension of the unstable manifold of a periodic solution is at most

two, then (1.0.1) has the Morse-Smale structure.

Theorem C. Let Ω = (0, 1). If (f0, g0) ∈MS, then (1.0.1) is A-stable.
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Chapter 3

Preliminary results

3.1 General Semiflows

Definition 3.1.1. Let (Y, d) be a complete metric space, Λ be a metric space and T λ : R×

Y → Y be a continuous semi-flow for each λ ∈ Λ. The semi-flow T λ is asymptotically smooth

if, for any nonempty, closed, bounded set B ⊂ Y for which T λ
t (B) ⊂ B ∀t ≥ 0, there is a

compact set Jλ(B) ⊂ B such that Jλ(B) attracts B under T λ
t , that is, d(Tt(B), Jλ(B)) → 0

as t → ∞. We say the family of semi-flows {T λ}λ∈Λ, is collectively asymptotically smooth

if
⋃

λ∈Λ Jλ(B) is compact.

Theorem 3.1.1. Let (Y, d) be a complete metric space, Λ be a metric space and T λ :

R× Y → Y, t ≥ 0, is a semi-flow, for each λ ∈ Λ. Suppose that

(i) There is a bounded set B ⊂ Y independent of λ such that B attracts points of Y

under T λ
t , that is, d(T λ

t (y), B) → 0 as t →∞, ∀y ∈ Y .

(ii) For any bounded set U , the set V :=
⋃

λ∈Λ

⋃
t≥0 T λ

t U is bounded,

(iii) The family of semi-flows is collectively asymptotically smooth.

Then the global attractor Aλ of Tλ is upper semicontinuous in λ.

Proof. This is Theorem 3.5.3 in [12].

Lemma 3.1.2. (see [15]) Let A be a sectorial operator in a Banach space Y with Re σ(A) >

δ > 0 and Y α, Y β (0 ≤ α ≤ β < 1) denote the fractional power spaces of Y and f : Y α → Y
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be locally Lipschitzian. Denoted by w(t; t0, w0) the unique solution of





ẇ + Aw = f(w), t > t0,

w(t0) = w0 ∈ Y α.

(3.1.1)

Then there exist constants C1, C2 depending only on α, β such that

‖w(t; t0, w0)‖Y β ≤ C1(t− t0)−(β−α)e−δ(t−t0)‖w0‖Y α+

C2

∫ t
t0

(t− s)−βe−δ(t−s)‖f(w(s))‖Y ds, ∀t0 < t < τ(t0, w0),

where [t0, τ(t0, w0)) is the maximal interval of existence o solution of (3.1.1) with initial

condition w0 at t = t0.

Proof. Using the variational representation of w, we have

w(t; t0, w0) = e−A(t−t0)w0 +
∫ t

t0

e−A(t−s)f(w(s)) ds

Aβw(t; t0, w0) = Aβe−A(t−t0)w0 +
∫ t

t0

Aβe−A(t−s)f(w(s)) ds

‖w(t; t0, w0)‖Y β ≤ ‖Aβ−αe−A(t−t0)‖Y ‖Aαw0‖Y +
∫ t

t0

‖Aβe−A(t−s)‖Y ‖f(w(s))‖Y ds

≤ C1(t− t0)−(β−α)e−δ(t−t0)‖w0‖Y α +

C2

∫ t

t0

(t− s)−βe−δ(t−s)‖f(w(s))‖Y ds, ∀t0 < t < τ(t0, w0).
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3.2 Single Species Equation

Consider the boundary value problem





ϕt = k∆ϕ + ϕh(x, ϕ) on Ω,

Bϕ = 0 on ∂Ω.

(3.2.1)

on a C∞ bounded domain Ω ⊂ Rn, n ≥ 1, with either Dirichlet or Neumann boundary

conditions. Here ϕ(x, t) is the density of certain species, k is diffusive constant, and h is a

C2 function h : Ω̄× R→ R satisfying

(h1) h(x, 0) > 0 ∀x ∈ Ω̄,

(h2) ∂ϕh(x, ϕ) < 0 ∀ ϕ ≥ 0, ∀x ∈ Ω̄,

(h3) supx∈Ω̄ lim supϕ→∞ h(x, ϕ) < 0.

Definition 3.2.1. Let L := {h : Ω̄×R→ R C2 function | h satisfy (h1)-(h3)}. We define

a metric on L, denoted by dL, as following

dN (h, h̃) := ‖h− h̃‖C2(Ω̄×[−N,N ]),

dL(h, h̃) :=
∞∑

N=1

dN (h, h̃)
2N (1 + dN (h, h̃))

.

Definition 3.2.2. Let X ⊂ Lp(Ω) (p > n) be a fractional power space of −∆ : D(∆) →

Lp(Ω), see [15], satisfying X ↪→ C1(Ω̄), where D(∆) = {ϕ ∈ H2,p(Ω)| Bϕ = 0 on ∂Ω}.

Under the assumptions (h1)-(h3), (3.2.1) generates a (local) semi-flow on X (cf. [15]), we
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denote it by π,

π : D(π) ⊂ R+ ×X → X

πt(ϕ0) := π(t, ϕ0) = ϕ(t, ·; ϕ0) for t ∈ [0, τ(ϕ0)),

where ϕ(t, ·; ϕ0) is the solution of (3.2.1) with ϕ(0, ·; ϕ0) = ϕ0 and [0, τ(ϕ0)) is the maximal

interval of existence of solution of (3.2.1) with initial condition ϕ0) at t = 0.

Proposition 3.2.1. For any ϕ0 ∈ X+, the solution πt(ϕ0) of (3.2.1) with initial ϕ0 exists

and πt(ϕ0) ∈ X+ for all t ≥ 0.

Proof. For any M > 0, let π̃t(M) be the solution of the following ODE

ϕ̇ = ϕh̃(ϕ)

here h̃(ϕ) = maxx∈Ω̄ h(x, ϕ). By (h1) and (h3),

h̃(0) > 0, h̃(M) < 0 for M À 1.

Therefore π̃t(M) exists and π̃t(M) > 0 for all t > 0.

For given ϕ0 ∈ X+, let M0 À 1 be such that ϕ0(x) ≤ M0 for all x ∈ Ω̄. Observe that

h(x, ϕ) ≤ h̃(ϕ). Then by comparison principle for parabolic equations,

0 ≤ πt(ϕ0) ≤ π̃t(M0)

for all t ∈ [0, τ(ϕ0)). Since π̃t(M) exists for all t > 0, τ(ϕ0) = ∞.
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Proposition 3.2.2. There is a unique positive stationary solution ϕh in C1(Ω̄) ∩ C2(Ω)

of (3.2.1) which satisfies ‖ϕ(t, ·; ϕ0) − ϕh(·)‖X → 0 as t → ∞ for any ϕ0 ∈ X+, ϕ0 6≡ 0.

Moreover, if dL(hn, h) → 0 as n →∞, ‖ϕhn − ϕh‖C1(Ω̄) → 0 as n →∞.

Proof. By (h3), there exist constants Mh > 0 and δ > 0 such that h(x,m) < −δ for

all x ∈ Ω̄ and for all m ≥ Mh. Clearly, 0 is a lower solution of (3.2.1) and Mh is an

upper solution of (3.2.1). By Theorem 3.4 in [29], (3.2.1) has a unique positive solution

ϕh ∈ Cα(Ω̄) ∩ C2(Ω) and ϕh ≤ Mh. Since ϕh ∈ Cα(Ω̄) and h ∈ C2(Ω̄ × R), the function

ϕhh(·, ϕh) ∈ Lp(Ω) for any p ≥ 1. Therefore ϕh = (−∆ + Id)−1(ϕhh(·, ϕh) + ϕh) ∈ H2,p(Ω)

for any p ≥ 1. By the imbedding theorem in [1], we have ϕh ∈ C1(Ω̄).

Now, we will prove that if dL(hn, h) → 0 as n →∞, ‖ϕhn −ϕh‖? → 0 as n →∞. Since

dL(hn, h) → 0 as n → ∞, there exists N such that ‖hn − h‖C(Ω̄,[0,Mh+1]) < δ/2, ∀n > N .

This and the fact that h(x,m) < −δ < 0 for all x ∈ Ω̄ and for all m ≥ Mh imply

hn(x,Mh + 1) < −δ/2 < 0 for all x ∈ Ω̄ and for all n > N . By (h2), hn(x,m) ≤

hn(x,Mh + 1) < −δ/2 < 0 for all x ∈ Ω̄, for all m ≥ Mh + 1 and for all n > N . Let

M := max{Mh + 1,Mh1 , . . . , MhN }, we have h(x,m), hn(x,m) < 0 for all x ∈ Ω̄, for all

m ≥ M and for all n ≥ 1. From the fact that ϕhn ≤ Mhn for all n ≥ 1, we have ϕhn ≤ M

for all n ≥ 1. Hence, 0 ≤ maxΩ̄ ϕhnhn((·, ϕhn) + ϕhn) ≤ K for some K > 0. This and

ϕhn = (−∆ + Id)−1(ϕhnhn((·, ϕhn) + ϕhn)) ∈ H2,p(Ω) for all p ≥ 1 imply ‖ϕhn‖H2,p(Ω) < C

for all n ≥ 1 for some C > 0 because (−∆ + Id)−1 is a bounded linear operator. Therefore

there exists a subsequence {hnk
} of {hn} such that ϕhnk converges in C1(Ω̄) to some u0

( since the imbedding H2,p ↪→ C1(Ω̄) is compact). Hence −k∆ϕhnk = ϕhnk hnk
(·, ϕhnk )

converges to u0h(·, u0) in Lp(Ω) for all p ≥ 1. Because −k∆ (with boundary condition)

is a closed operator on Lp(Ω), we have u0 ∈ D(−k∆) and −k∆ϕhnk converges to −k∆u0.
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Therefore, −k∆u0 = u0h(·, u0). Since u0 ∈ C1(Ω̄), we have u0h(·, u0) + u0 ∈ C1(Ω). Hence

u0 = (−k∆ + Id)−1(u0h(·, u0) + u0) ∈ C2,α(Ω). This means u0 is also a positive solution

of (3.2.1). By uniqueness of solution of (3.2.1), u0 = ϕh. Hence ‖ϕhn − ϕh‖C1(Ω̄) → 0 as

n →∞.

3.3 Two Species Competition Systems

Proposition 3.3.1. For any t ≥ 0, we have Πt(X+ × {0}) ⊂ X+ × {0}, Πt({0} ×X+) ⊂

{0} ×X+ and Πt(X+ ×X+) ⊂ X+ ×X+.

Proof. Let πt(u0) be the solution of (3.2.1) with initial u0 ∈ X+ and h(x, u) = f(x, u, 0)

and πt(v0) be the solution of (3.2.1) with initial u0 ∈ X+ and h(x, u) = g(x, 0, v). Then by

(H2) and comparison principle for parabolic equations, we have

0 ≤ u(t, ·; u0, v0) ≤ πt(u0)

and

0 ≤ v(t, ·; u0, v0) ≤ πt(v0)

for t ∈ [0, τ(u0, v0)). By Proposition 3.2.1, τ(u0, v0) = ∞.

Proposition 3.3.2. If (u1, v1), (u2, v2) ∈ X+ ×X+ and (u1, v1) ≤2 (u2, v2), then

Πt(u1, v1) ≤2 Πt(u2, v2) for any t ≥ 0.

Moreover, if (u1, v1) <2 (u2, v2) and (u1, v1) 6∈ X+ × {0}, (u2, v2) 6∈ {0} × X+, then

Πt(u1, v1) ¿2 Πt(u2, v2) for all t > 0.
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Proof. See [21].
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Chapter 4

Morse-Smale Structure and A Sufficient Condition

4.1 Morse-Smale Structure

In this section, we shall prove Theorem A, that is, the openness of Morse-Smale set

MS. We first show the upper semi-continuity of the global attractor A.

Theorem 4.1.1. Given (f0, g0) ∈ CP. The global attractor A(f0, g0) of (1.0.1) is upper

semi-continuous (in X+ ×X+).

Proof. First, we will prove there exists a neighborhood Λ of (f, g) in CP and a bounded set

B ⊂ X+ × X+ independent of (f, g) ∈ Λ such that B attracts points of X+ × X+ under

Πfg
t for any (f, g) ∈ Λ. Let u0, v0, ũ, ṽ be the unique positive solutions of (3.2.1) with

h = f0(·, ·, 0), g0(·, 0, ·), f(·, ·, 0), g(·, 0, ·) respectively. Repeating the argument used in

proving Proposition 3.2.2, we can find a constant M > 0 such that

‖u0‖C(Ω̄), ‖v0‖C(Ω̄), ‖ũ‖C(Ω̄), ‖ṽ‖C(Ω̄) ≤ M, (4.1.1)

provided dCP((f, g), (f0, g0)) is sufficiently small. Let ε0 > 0 be small enough so that

dCP((f, g), (f0, g0)) < ε0 ⇒ ‖(f, g)− (f0, g0)‖C(Ω̄×[0,3M ]×[0,3M ])×C(Ω̄×[0,3M ]×[0,3M ]) ≤ 1.

We then define

Λ := {(f, g) ∈ CP| (4.1.1) holds and dCP((f, g), (f0, g0)) < ε0}.
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For any (u, v) ∈ X+ × X+, (u, v) 6= (0, 0), we have (0, v) ≤2 (u, v) ≤2 (u, 0). By lemma

3.3.2, we have

Πfg
t (0, v) ≤2 Πfg

t (u, v) ≤2 Πfg
t (u, 0), ∀t > 0, ∀(f, g) ∈ Λ. (4.1.2)

Since Πfg
t (u, 0) → (ũ, 0) and Πfg

t (0, v) → (0, ṽ) in X ×X ↪→ C(Ω̄)×C(Ω̄) as t →∞, there

exists tfg
0 (u, v) ≥ 1 such that

‖Πfg
t (u, v)‖C(Ω̄)×C(Ω̄) ≤ 3M, ∀t > tfg

0 (u, v), ∀(f, g) ∈ Λ. (4.1.3)

Applying lemma 3.1.2 with Y := Lp(Ω), Y α = Y β := X, we have

‖Πfg
t (u, v)‖X×X ≤ C1e

−t‖(u, v)‖X×X (4.1.4)

+C2

∫ t

tfg
0 (u,v)

(t− s)−βe−(t−s)‖Hfg(Πfg
s (u, v))‖Lp(Ω)×Lp(Ω) ds,

for all t > tfg
0 (u, v), where

Hfg : X ×X → Lp(Ω)× Lp(Ω)

(u, v) 7→ [uf(., u, v) + u, vg(., u, v) + v] ,

By (4.1.1), we have ‖Hfg(Π
fg
t (u, v))‖Lp(Ω)×Lp(Ω) ≤ Kf0g0 some constant Kf0g0 depending

on (f0, g0). Hence,

‖Πfg
t (u, v)‖X×X ≤ C1e

−t‖(u, v)‖X×X

+C2K
f0g0

∫ ∞

0
(t− s)−βe−(t−s) ds, ∀t > tfg

0 (u, v),
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Since
∫∞
0 (t− s)−βe−(t−s) ds < C3 for some constant C3, we then have

‖Πfg
t (u, v)‖X×X ≤ C1e

−t‖(u, v)‖X×X + C2C3K
f0g0 , ∀t > tfg

0 (u, v), (4.1.5)

Let B := {(u, v) ∈ X+ ×X+| ‖(u, v)‖X+×X+ ≤ 2C1 + C2C3K
f0g0}. By (4.1.5), B attracts

(u, v) under Πfg
t for any (f, g) ∈ Λ.

Next, we prove that for any bounded set U ⊂ X+×X+, the set
⋃

(f,g)∈Λ

⋃
t≥0 Πfg

t (U) is

bounded. Because U is bounded in X×X ↪→ C(Ω̄)×C(Ω̄), there exists a constant K > M

such that

(0, K) ≤2 Πfg
t (u, v) ≤2 (K, 0), ∀t ≥ 0, ∀(u, v) ∈ U, ∀(f, g) ∈ Λ.

Hence

‖Hfg(Π
fg
t (u, v))‖Lp(Ω)×Lp(Ω) < L(K, f, g), ∀t ≥ 0, ∀(u, v) ∈ U. (4.1.6)

where L(K, f, g) is a constant depending on K, f, g. Using (4.1.6) and the fact that

dCP ((f, g), (f0, g0)) < ε0 ⇒ ‖(f, g)− (f0, g0)‖C2(Ω̄×[0,K]×[0,K])×C2(Ω̄×[0,K]×[0,K]) < 2Kε0,

we have

‖Hfg(Π
fg
t (u, v))‖Lp(Ω)×Lp(Ω) < L̃(K, f0, g0), ∀t ≥ 0, ∀(u, v) ∈ U, ∀(f, g) ∈ Λ. (4.1.7)
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where L̃(K, f0, g0) is a constant depending only on K, f0 and g0. Applying lemma 3.1.2

with Y := Lp(Ω), Y α = Y β := X, we have

‖Πfg
t (u, v)‖X×X ≤ C1e

−t‖(u, v)‖X×X (4.1.8)

+C2

∫ t

0
(t− s)−βe−(t−s)‖Hfg(Πfg

s (u, v))‖Lp(Ω)×Lp(Ω) ds, ∀t > 0.

From (4.1.7) and (4.1.8), we have

‖Πfg
t (u, v)‖X×X ≤ C1e

−t‖(u, v)‖X×X + C2L̃(K, f0, g0)
∫ ∞

0
(t− s)−βe−(t−s) ds (4.1.9)

for all t ≥ 0, for all (u, v) ∈ U and for all (f, g) ∈ Λ. Because
∫∞
0 (t− s)−βe−(t−s) ds < C3,

we then have

‖Πfg
t (u, v)‖X×X ≤ C1e

−t‖(u, v)‖X×X + C2C3L̃(K, f0, g0), ∀t ≥ 0, ∀(u, v) ∈ U, ∀(f, g) ∈ Λ.

(4.1.10)

It is clear from (4.1.10) that
⋃

(f,g)∈Λ

⋃
t≥0 Πfg

t (U) is bounded in X ×X.

Finally, we prove that the family of semigroups {Πfg
t , t ≥ 0}, (f, g) ∈ Λ is collectively

asymptotically smooth. Fix any (f, g) ∈ Λ. For any bounded, closed set B ⊂ X+ × X+

for which Πfg
t (B) ⊂ B, ∀t ≥ 0, we define Jfg(B) = Πfg

1 (B) (the closure is taken in

X ×X). Since B is closed, we have Jfg(B) ⊂ B. We also have Πfg
t (B) = Π1(Π

fg
t−1(B)) ⊂

Πfg
1 (B) ⊂ Jfg(B), ∀t > 1. This means Jfg(B) attracts B under Πfg

t . Applying lemma

3.1.2 with Y := Lp(Ω), Y α := X, Y β := X̃, where X̃ is another fractional power space of
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∆ : D(∆) ⊂ H2,p(Ω) → Lp(Ω) and β > α is chosen so that X̃ ↪→ X is compact, we have

‖Πfg
1 (u, v)‖X̃×X̃ ≤ C1e

−1‖(u, v)‖X×X (4.1.11)

+C2

∫ 1

0
(1− s)−βe−(1−s)‖Hfg(Πfg

s (u, v))‖Lp(Ω)×Lp(Ω) ds.

Because B is a bounded set in X+ ×X+, we can use same argument used for the bounded

set and get

‖Hfg(Π
fg
t (u, v))‖Lp(Ω)×Lp(Ω) < ˜̃L(B, f0, g0), ∀t ≥ 0, ∀(u, v) ∈ B, ∀(f, g) ∈ Λ. (4.1.12)

where L̃(K, f0, g0) is a constant depending only on B, f0 and g0. From (4.1.12) and (4.1.12),

we have

‖Πfg
1 (u, v)‖X̃×X̃ ≤ C1e

−1‖(u, v)‖X×X + C2
˜̃L(B, f0, g0)

∫ 1

0
(1− s)−βe−(1−s), (4.1.13)

for all (u, v) ∈ B and for all (f, g) ∈ Λ. (4.1.13) and the compact imbedding X̃ ↪→ X imply
⋃

(f,g)∈Λ Jfg(B) is a compact set in X × X. Hence, the family of semigroups {Πfg
t , t ≥

0}, (f, g) ∈ Λ is collectively asymptotically smooth. By lemma 3.1.1, A(f, g) is upper

semi-continuous.

Lemma 4.1.2. Let e ∈ X×X be an critical point of (1.0.1). Let Eu(e) and Es(e) denote for

the linear spaces spanned by eigenfunctions which correspond to eigenvalues with negative

and positive real parts of the linearization of (1.0.1) at e. Define Eu
r (e) = Eu(e) ∩ Br(e)

and Es
r(e) = Es(e)∩Br(e) where Br(e) is a sufficiently small neighborhood of e (in X×X).
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Then there are two C1 maps

Φ1 : Eu
r (e) → Es

r(e)

(u, v) 7→ (k(u, v), l(u, v))

and

Φ2 : Es
r(e) → Eu

r (e)

(u, v) 7→ (m(u, v), n(u, v)).

such that the local unstable and stable manifolds of e, W u
loc,r(e) and W s

loc,r(e), are the

graphs of Φ1 + e and Φ2 + e respectively. Moreover, Φ1(0) = 0, Φ2(0) = 0, DΦ(0) ≡ 0 and

DΨ(0) ≡ 0. Here, DΦ1 and DΦ2 are the Fretchet derivatives of Φ1 and Φ2.

Proof. This is a corollary of theorem 6.1 in [31].

Lemma 4.1.3. Let e ∈ X be a critical element of boundary value problem





ϕt − k1∆ϕ = ϕq(x, ϕ), x ∈ Ω

Bv = 0, x ∈ ∂Ω
(4.1.14)

where B is either Dirichlet or Neumann boundary condition, q : Ω̄ × R → R is a C2-

function. Let Ou(e) and Os(e) denote for the linear spaces spanned by eigenfunctions

which correspond to eigenvalues with negative and positive real parts of the linearization

of (4.1.14) at e. Define Ou
r (e) = Ou(e)∩Qr(e) and Os

r(e) = Os(e)∩Qr(e) where Qr(e) is a

sufficiently small neighborhood of e (in X). Then there are two C1 maps

h̃1 : Ou
r (e) −→ Os

r(e)

ϕ 7−→ h̃1(ϕ)
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and

h̃2 : Os
r(e) −→ Ou

r (e)

(u, v) 7−→ h̃2(ϕ).

such that the local unstable and stable manifolds of e, W u
loc,r(e) and W s

loc,r(e), are the

graphs of h̃1 + e and h̃2 + e respectively. Moreover, h̃1(0) = 0, h̃2(0) = 0, Dh̃1(0) ≡ 0 and

Dh̃2(0) ≡ 0. Here, Dh̃1 and Dh̃2 are the Fretchet derivatives of h̃1 and h̃2 respectively.

Proof. This is a corollary of theorem 6.1 in [31].

Proposition 4.1.4. (representation of stable, unstable manifolds in positive cone)

Let e be an critical point of (1.0.1) on ∂(X+ ×X+). We have

W u+
loc (e) = e + {(u, v) + (k(u, v), l(u, v))| (u, v) ∈ Eu

r (e) ∩ (X+ ×X+)},

W s+
loc (e) = e + {(u, v) + (m(u, v), n(u, v))| (u, v) ∈ Es

r(e) ∩ (X+ ×X+)},

where Eu
r , Es

r and k, l,m, n are from lemma 4.1.2.

Proof. (1.0.1) has three fixed points on ∂(X+ ×X+): (0, 0), (u0, 0) and (0, v0).

Case 1: e = (0, 0). By lemma 4.1.2 , we have

W u
loc(e) = {(u, v) + (k(u, v), l(u, v))| (u, v) ∈ Eu

r (e)}.

We will prove

W u+
loc (e) := W u

loc(e) ∩ (X+ ×X+)

= {(u, v) + (k(u, v), l(u, v))| (u, v) ∈ Eu
r (e) ∩ (X+ ×X+)}.
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By lemma 4.1.3, we can write the unstable manifold at 0 of the semi-flow generated

by the boundary value problems





ut − k1∆u = uf(x, u, 0), x ∈ Ω,

Bu = 0, x ∈ ∂Ω.

and 



vt − k1∆v = vg(x, 0, v), x ∈ Ω,

Bv = 0, x ∈ ∂Ω.

as

W u
loc(0) = {u + h1(u)| u ∈ Uu

r (0)} and W̃ u
loc(0) = {v + h̃1(v)| v ∈ V u

r (0)}.

For any u ∈ Uu
r (0), we have (u + h1(u), 0) ∈ W u

loc(e). Therefore, there exists (ũ, ṽ) ∈

Eu
r (e) such that (ũ, ṽ) + (k(ũ, ṽ), l(ũ, ṽ)) = (u + h1(u), 0). Hence





ũ + k(ũ, ṽ) = u + h1(u)

ṽ + l(ũ, ṽ) = 0

⇒





ũ− u = h1(u)− k(ũ, ṽ)

ṽ = −l(ũ, ṽ)

⇒





ũ− u = h1(u)− k(ũ, ṽ) = 0

ṽ = −l(ũ, ṽ) = 0

because (ũ − u, ṽ) ∈ Eu
r (e), (h1(u) − k(ũ, ṽ),−l(ũ, ṽ)) ∈ Es

r(e) and Eu
r (e) ∩ Es

r(e) =

(0, 0). Hence l(u, 0) = 0 for all u ∈ Uu
r (0). A similar argument yields k(0, v) = 0, ∀v ∈
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V u
r (0). For (u, v) ∈ Eu

r (e), put Ψ(ξ) = k(ξu, v), 0 ≤ ξ ≤ 1. We have

k(u, v) = Ψ(1)−Ψ(0) =
∫ 1

0
Ψ′(ξ)dξ =

(∫ 1

0
∂1k(ξu, v)dξ

)
u.

A similar argument yields

l(u, v) =
(∫ 1

0
∂2l(u, ξv)dξ

)
v.

Therefore

(u, v) + (k(u, v), l(u, v)) = (u(K(u, v) + 1), v(L(u, v) + 1))

where

K(u, v) =
∫ 1

0
∂1k(ξu, v)dξ and L(u, v) =

∫ 1

0
∂2l(u, ξv)dξ.

By lemma 4.1.2, we have K(u, v), L(u, v) ¿ 1 for u, v ¿ 1. Therefore, we have

W u+
loc (e) := W u

loc(e) ∩ (X+ ×X+)

= {(u, v) + (k(u, v), l(u, v))| (u, v) ∈ Eu
r (e) ∩ (X+ ×X+)}.

Case 2: e = (u0, 0). By lemma 4.1.2 , we have

W u
loc(e) = {(u, v) + (k(u, v), l(u, v))| (u, v) ∈ Eu

r (e)}.
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We will prove

W u+
loc (e) := W u

loc(e) ∩ (X+ ×X+)

= {(u, v) + (k(u, v), l(u, v))| (u, v) ∈ Eu
r (e) ∩ (X+ ×X+)}.

By lemma 4.1.3, we can write the unstable manifold at u0 of the semi-flow generated

by the boundary value problem





ut − k1∆u = uf(x, u, 0), x ∈ Ω,

Bu = 0, x ∈ ∂Ω.

as

W u
loc(u0) = {u + h1(u)| u ∈ Uu

r (u0)}.

For any u ∈ Uu
r (u0), we have (u + h1(u), 0) ∈ W u

loc(e). Therefore, there exists (ũ, ṽ) ∈

Eu
r (e) such that (ũ, ṽ) + (k(ũ, ṽ), l(ũ, ṽ)) = (u + h1(u), 0). Hence





ũ + k(ũ, ṽ) = u + h1(u)

ṽ + l(ũ, ṽ) = 0

⇒





ũ− u = h1(u)− k(ũ, ṽ)

ṽ = −l(ũ, ṽ)

⇒





ũ− u = h1(u)− k(ũ, ṽ) = 0

ṽ = −l(ũ, ṽ) = 0

because (ũ − u, ṽ) ∈ Eu
r (e), (h1(u) − k(ũ, ṽ),−l(ũ, ṽ)) ∈ Es

r(e) and Eu
r (e) ∩ Es

r(e) =

(0, 0). Hence l(u, 0) = 0 for all u ∈ Uu
r (u0). For (u, v) ∈ Eu

r (e), put Ψ(ξ) =
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l(u, ξv), 0 ≤ ξ ≤ 1. We have

l(u, v) = Ψ(1)−Ψ(0) =
∫ 1

0
Ψ′(ξ)dξ =

(∫ 1

0
∂2l(u, ξv)dξ

)
v.

Therefore

(u, v) + (k(u, v), l(u, v)) = (u + k(u, v), v(L(u, v) + 1))

where

L(u, v) =
∫ 1

0
∂2l(u, ξv)dξ.

By Lemma 4.1.2, we have L(u, v) ¿ 1 for u− u0, v ¿ 1. Therefore, we have

W u+
loc (e) := W u

loc(e) ∩ (X+ ×X+)

= {(u, v) + (k(u, v), l(u, v))| (u, v) ∈ Eu
r (e) ∩ (X+ ×X+)}.

Proposition 4.1.5. Given (f0, g0) ∈ CP. Let e0 ∈ X+ × X+ be a hyperbolic critical

element of {Πf0g0
t , t ≥ 0}. Then there exist a neighborhood Õ of e0 in (X+ ×X+) and a

neighborhood V(f0, g0) of (f0, g0) (in CP) such that given (f, g) ∈ V(f0, g0) there exists a

unique homeomorphism

ρ := ρ(f, g) : e0 → ρ(e0) =: e ∈ Õ

close to the inclusion i : e0 → (X+ × X+) in the C0-topology, and e ∈ X+ × X+ is a

hyperbolic critical element of {Πfg
t , t ≥ 0}. Moreover, the map (f, g) ∈ V(f0, g0) 7→ ρ(f, g)
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is continuous, W u+
loc (e), W s+

loc (e) depend continuously on (f, g) ∈ V(f0, g0) which yields

dimW u+
loc (e) = dimW u+

loc (e0) for all (f, g) ∈ V(f0, g0).

Proof. For any l > 0, we define

Rl : CP → C2(Ω× [0, l]× [0, l])× C2(Ω× [0, l]× [0, l])

(f, g) 7→ (f|Ω̄×[0,l]×[0,l], g|Ω̄×[0,l]×[0,l]).

It is clear that Rl is a continuously linear map. By (H3) and (H4), there exist constants

Kf0g0 > 0 and δ > 0 such that

f0(x,m, n) < −δ, g0(x,m, n) < −δ for all x ∈ Ω̄, for all m, n ≥ Kf0g0 . (4.1.15)

Now, fix a neighborhood U(f0, g0) of (f0, g0) in CP such that

‖(f, g)− (f0, g0)‖C2(Ω̄×[0,Kf0g0+1]×[0,Kf0g0+1])×C2(Ω̄×[0,Kf0g0+1]×[0,Kf0g0+1]) < δ/2. (4.1.16)

From (4.1.15) and (4.1.16), we have

f(x,Kf0g0 + 1,Kf0g0 + 1), g(x,Kf0g0 + 1,Kf0g0 + 1) < −δ/2, ∀x ∈ Ω̄, ∀(f, g) ∈ U(f0, g0).

By (H2), we then have

f(x,m, n) < −δ/2, g(x,m, n) < −δ/2, ∀x ∈ Ω̄, ∀m,n ≥ Kf0g0 + 1, ∀(f, g) ∈ U(f0, g0).
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Hence, all critical elements of {Πf0g0
t , t ≥ 0} and {Πfg

t , t ≥ 0} take values inside the

contracting rectangle [0,Kf0g0 +1]×[0,Kf0g0 +1]. Therefore, we can consider the restriction

of the semi-flows {Πf0g0
t , t ≥ 0} and {Πfg

t , t ≥ 0} to the Banach manifold

{(u, v) ∈ X ×X| u(Ω), v(Ω) ⊂ (0,Kf0g0 + 1)}.

If e ∈ int(X+×X+), apply proposition 2.12 in [23] with B := {(u, v) ∈ X×X| u(Ω), v(Ω) ⊂

(0, Kf0g0 + 1)} and F̃ := C2(Ω̄ × [0,Kf0g0 + 1] × [0,Kf0g0 + 1]) × C2(Ω̄ × [0,Kf0g0 + 1] ×

[0,Kf0g0 + 1]); there exists a neighborhood O of e0 in B and a neighborhood Q(f0, g0) of

(f0, g0) in F̃ such that given (f, g) ∈ Q(f0, g0) there exists a unique homeomorphism

ρ := ρ(f, g) : e0 → ρ(e) =: e ∈ O

close to the inclusion i : e0 → B in the C0-topology and e is a hyperbolic critical element of

Πfg
t . Since ρ is close to the inclusion i, e must be in B ⊂ int(X+ ×X+) and therefore ρ is

close to the inclusion i : e0 → (X+ ×X+). Put Õ = O∩ (X+ ×X+). Then e ∈ O. Because

W u+
loc (e) := W u

loc(e)∩(X+×X+) and W u
loc(e) depends continuously on (f, g) (by proposition

2.12 in [23]), W u+
loc (e) also depends continuously on (f, g). Similar reason implies W s+

loc (e)

depends continuously on (f, g). Because RKf0g0
+1 is a continuous map, R−1

Kf0g0+1
(Q(f0, g0))

is an open neighborhood of (f0, g0) in CP. Then V(f0, g0) := U(f0, g0)∩R−1
Kf0g0+1

(Q(f0, g0))

is the desired neighborhood of (f0, g0) in CP.

If e ∈ ∂(X+ ×X+), Due to the conditions (H1)-(H4), we have three cases e = (0, 0),

e = (u0, 0) and e = (0, v0) where u0, v0 are the unique stationary solutions of (3.2.1)

with h(·, u) = f0(·, u, 0) and h(·, v) = g0(·, 0, v). Define ρ(0, 0) = (0, 0), ρ(u0, 0) =
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(ũ, 0), ρ(0, v0) = (0, ṽ) where ũ, ṽ are solutions of (3.2.1) with h(·, u) = f(·, u, 0) and

h(·, v) = g(·, 0, v). By proposition 3.2.2 and lemma 4.1.2, we have W s(u0, 0) and W s(ũ, 0)

are C1 close. Hence, W s+
loc (u0, 0) and W s+

loc (ũ, 0) are C1 close. Similar argument yields the

conclusion for the (0, v0) and (0, 0).

Proposition 4.1.6. Given (f0, g0) ∈ CP. Let e0 ∈ X+ × X+ be a critical element (e0 is

not a sink ) of {Πf0g0
t , t ≥ 0} and Nu+(e0) be a fundamental neighborhood of W u+(e0).

Then there exists a neighborhood V(f0, g0) of (f0, g0) in CP and a neighborhood Õ of e0

in X+ × X+ such that Nu+(e0) is also a fundamental neighborhood of W u+(e), where

e := ρ(e0) is the unique hyperbolic critical element in Õ of {Πfg
t , t ≥ 0}, (f, g) ∈ V(f0, g0).

Here, ρ is the homeomorphism in proposition 4.1.5. Moreover, there exists a neighborhood

B̃ of e0 such that for any (f, g) ∈ V(f0, g0), we have B̃ ⊂ ⋃
t≥0 Πfg

−t(N
u+(e0)) ∪W s+

loc (e).

Proof. If e0 ∈ int(X+ × X+), we use the same argument used in proposition 4.1.5 and

hence the result is direct from proposition 2.14 of [23]. We only need to consider the cases

e0 ∈ ∂(X+ × X+). By proposition 2.14 of [23], there exists a neighborhood V(f0, g0) of

(f0, g0) in CP and a neighborhood O of e0 in X × X such that Nu(e0) is also a funda-

mental neighborhood of W u(e), e := ρ(e0), is the unique hyperbolic critical element in O

of {Πfg
t , t ≥ 0}, (f, g) ∈ V(f0, g0). Here ρ is the homeomorphism in proposition 2.12

of [23]. By proposition 4.1.5, e is in X+ × X+. Hence, e is the unique hyperbolic crit-

ical element in Õ := O ∩ (X+ × X+) of {Πfg
t , t ≥ 0}, (f, g) ∈ V(f0, g0). It is also

obvious that Nu+(e0) := Nu(e0) ∩ (X+ × X+) is also a fundamental neighborhood of

W u(e) ∩ (X+ ×X+) =: W u+(e). Finally, we will prove the existence of B̃. By proposition
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2.14 of [23], there exists a neighborhood B of e0 such that

B ⊂
⋃

t≥0

Πfg
−t(N

u(e0)) ∪W s
loc(e).

Therefore,

B ∩ (X+ ×X+) ⊂

⋃

t≥0

Πfg
−t(N

u(e0)) ∩ (X+ ×X+)


 ∪W s+

loc (e).

Due to the fact that X+ × X+ is invariant under the semi-flow { Πfg
t , t ≥ 0}, it can be

verified that

⋃

t≥0

Πfg
−t(N

u(e0)) ∩ (X+ ×X+) =
⋃

t≥0

Πfg
−t(N

u(e0) ∩ (X+ ×X+)) =
⋃

t≥0

Πfg
−t(N

u+(e0)).

Let B̃ := B ∩ (X+ ×X+). Then we have

B̃ ⊂
⋃

t≥0

Πfg
−t(N

u+(e0)) ∪W s+
loc (e).

For the cases e = (0, 0), e = (u0, 0) and e = (0, v0) where u0, v0 are the unique stationary

solutions of (3.2.1) with h(·, u) = f0(·, u, 0) and h(·, v) = g0(·, 0, v), the conclusion is clear

from the C1 closeness of the local stable, unstable manifolds of (u0, 0) and (ũ, 0) as well as

the local stable, unstable manifolds of (0, v0) and (0, ṽ).

Proposition 4.1.7. The set of all critical hyperbolic elements of (1.0.1) in X+ ×X+ has

a partial order structure ≤3 defined by e1 ≤3 e2 iff W u+(e2) ∩W s+
loc (e1) 6= ∅.
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Proof. Firstly, we have e ≤3 e because W u+(e)∩W s+
loc (e) = {e}. Second, suppose e1 ≤3 e2,

e2 ≤3 e1 and e1 6= e2. Since W u+(e2) ∩ W s+
loc (e1) 6= ∅ (e1 ≤3 e2), we have W u(e2) ∩

W s
loc(e1) 6= ∅. By proposition 3.4 of [23], there is a submanifold of W u(e2) ε-C1 close to

B(e1) ∩W u
loc(e1) (ε is small enough and B(e1) is an appropriate open neighborhood of e1).

Since W u+(e1) ∩W s+
loc (e2) 6= ∅ (e2 ≤3 e1), we can choose p ∈ B(e1) ∩W u+

loc (e1) such that

Πt0(p) ∈ W s+
loc (e2) for some t0 > 0. Then for q ∈ W u+(e2) (q 6= e2) close enough to p, we

must have Πt0(q) ∈ W s+
loc (e2) (because of transversality). So, q ∈ W u+(e2)∩W s+

loc (e2) which

is a contradiction. This implies e1 = e2. Thirdly, suppose e1 ≤3 e2 and e2 ≤3 e3. Using

the similar argument as above, we have W u+(e3) ∩ W s+
loc (e1) 6= ∅ which means e1 ≤3 e3.

Therefore, ≤3 is partial order.

Definition 4.1.1. Let Crit(f, g) denote the set of all critical elements in X+ × X+ of

(1.0.1). For e1, en ∈ Crit(f, g), e1 6= en, the sequence e1 ≤3 e2 ≤3 . . . ≤3 en (if exists)

is called a chain from e1 to en of length n − 1. We also write beh(e1|en) = n − 1 if the

maximum length of chains from e1 to en is equal to n− 1.

Proposition 4.1.8. Let (f0, g0) ∈ CP. Then there exist a neighborhood V ⊂ X+ ×X+ of

the attractor A(f0, g0) such that if dCP((f0, g0), (f, g)) is small enough, we have

Ω(f, g) ∩ V = ρ(Crit(f0, g0) ∩ V ),

where ρ is the homeomorphism in proposition (4.1.5).

Proof. We construct V by induction. Let e0i be any sink of Crit(f0, g0) and ei := ρ(e0i)

where ρ is the homeomorphism in proposition (4.1.5). We have ei ∈ Crit(f, g) and e0i , ei

are close. Because e0i , ei are close, there exists a neighborhood V0(e0i) ⊂ W s
loc(e0i) such that
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ei ∈ V0(e0i) ⊂ W s
loc(ei) where Br(e0i

)(f0, g0) is a sufficiently small neighborhood of (f0, g0)

in CP. Put V0 :=
⋃

i V0(e0i) and r0 := mini{r(e0i)}. We then have ρ(Crit(f0, g0) ∩ V0) ⊂

Ω(f, g) ∩ V0. In the other hand, if x′ ∈ Ω(f, g) ∩ V0, then x′ ∈ V0 and x′ ∈ Crit(f, g).

Since x′ ∈ V0, there exists ei := ρ(e0i), e0i ∈ Crit(f0, g0) ∩ V0, such that x′ ∈ W s
loc(ei).

Because x′ ∈ Ω(f, g), x′ must be ei. Therefore, x′ ∈ ρ(Crit(f0, g0) ∩ V0). This implies

Ω(f, g) ∩ V0 = ρ(Crit(f0, g0) ∩ V0) for all (f, g) ∈ Br0(f0, g0).

Now, suppose we have constructed Vk, rk corresponding to critical elements of Πfg
t

whose behaviors with respect to sinks are ≤ k, that is,

Ω(f, g) ∩ Vk = ρ(Crit(f0, g0) ∩ Vk), (f, g) ∈ Brk
(f0, g0).

Let ek+1 ∈ Crit(f0, g0) be a saddle of Πfg
t whose behavior with respect to sinks is less than

or equal k +1. For each x ∈ Gu+(ek+1), we have Πfg
t (x) → e for some e ∈ Crit(f0, g0)∩Vk.

Therefore, there exists tx > 0 such that Πfg
tx (x) ∈ Vk. Let Ox ⊂ Vk be a neighborhood

of Πfg
tx (x) (in Vk). Then U(x) := Πfg

−tx(O) is a neighborhood of x in X+ × X+. O can

be chosen small enough such that U(x) ∩ W s+(ek+1) = ∅. Since Gu+(ek+1) is compact,

there exists {xj}n
1 such that Gu+(ek+1) ⊂

⋃n
j=1 U(xj). Then Nu+(ek+1) :=

⋃n
j=1 U(xj)

is a fundamental neighborhood of W u+(ek+1). Put t(ek+1) = max{txj}n
1 . Then for any

x ∈ Nu+(ek+1), we have Πt(x) ∈ Vk for some t < t(ek+1). By proposition 4.1.6, there exist

a neighborhood Br(ek+1)(f0, g0) of (f0, g0) in C and a neighborhood B̃(ek+1) of ek+1 such

that for any (f, g) ∈ Br(ek+1)(f0, g0), we have

B̃(ek+1) ⊂ W s+
loc (e′k+1) ∪

[
∪t≥0Π

f ′g′
−t (Nu+(ek+1))

]
, (4.1.17)
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where e′k+1 := ρ(ek+1), ρ is the homeomorphism in proposition 4.1.5. Define Bk+1 :=
⋃

B̃(ek+1), rk+1 = min{rk, min{r(ek+1)}}, tk+1 = max{t(ek+1)} and

Vk+1 = Vk ∪
(
∪0≤t≤tk+1

Πfg
−t(Vk)

)
∪Bk+1.

We will prove for any (f, g) ∈ Brk+1
(f0, g0),

Ω(f, g) ∩ Vk+1 = ρ(Crit(f0, g0) ∩ Vk+1).

First, we prove ρ(Crit(f0, g0) ∩ Vk+1) ⊂ Ω(f, g) ∩ Vk+1. If x′ ∈ ρ(Crit(f0, g0) ∩ Vk+1), then

x′ = ρ(x), x ∈ Crit(f0, g0) ∩ Vk+1. Because x ∈ Crit(f0, g0), we have x′ ∈ Crit(f, g) ⊂

Ω(f, g) by proposition (4.1.5). Since

Crit(f0, g0) ∩
[
Vk ∪

(
∪0≤t≤tk+1

Πfg
−t(Vk)

)]
= Crit(f0, g0) ∩ Vk,

we have

Crit(f0, g0) ∩ Vk+1 = (Crit(f0, g0) ∩ Vk) ∪ (Crit(f0, g0) ∩Bk+1) .

If x ∈ Crit(f0, g0) ∩ Vk, then from the induction assumption, we have x′ ∈ Ω(f, g) ∩ Vk ⊂

Ω(f, g) ∩ Vk+1. If x ∈ Crit(f0, g0) ∩ Bk+1 then x ∈ Crit(f0, g0) ∩ B̃ek+1
for some ek+1 ∈

Crit(f0, g0). By (4.1.17), we then have x ∈ W s+
loc (e′k+1) ∪

[
∪t≥0Π

fg
−t(N

u+(ek+1))
]
. Since

x is a critical element, it can not be in ∪t≥0Π
fg
−t(N

u+(ek+1)). Therefore, x ∈ W s+
loc (e′k+1).

Because ρ(x) is a critical element of {Πfg
t , t ≥ 0}, ρ(x) must be e′k+1 ∈ Vk+1 which implies

x′ := ρ(x) ∈ Crit(f, g) ∩ Vk+1. So, we have ρ(Crit(f0, g0) ∩ Vk+1) ⊂ Ω(f, g) ∩ Vk+1.
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Now we prove Ω(f, g)∩ Vk+1 ⊂ ρ(Crit(f0, g0)∩ Vk+1). If x′ ∈ Ω(f, g)∩ Vk+1, then x′ ∈

Vk+1 := Vk ∪
(
∪0<t≤tk+1

Πfg
−t(Vk)

)
∪Bk+1. If x′ ∈ Vk, then by the induction assumption, we

have x′ ∈ ρ(Crit(f0, g0)∩Vk) ⊂ ρ(Crit(f0, g0)∩Vk+1). So, we only need to consider the case

x′ ∈ ∪
(
∪0<t≤tk+1

Πfg
−t(Vk)

)
∪ Bk+1. Since x′ ∈ Ω(f, g), x′ can not be in ∪0<t≤tk+1

Πfg
−t(Vk).

Hence, x′ ∈ Bk+1 which means x′ ∈ B̃(ek+1) for some ek+1 ∈ Crit(f0, g0). By (4.1.17), x′

must be e′k+1. This implies Ω(f, g) ∩ Vk+1 ⊂ ρ(f, g)(Crit(f0, g0) ∩ Vk+1). This completes

the induction procedure. Finally we reach the sources and obtain a neighborhood V of

A(f0, g0) satisfying Ω(f, g) ∩ V = ρ(Crit(f0, g0) ∩ V ) provided dCP((f0, g0), (f, g)) is small

enough.

Now, we are ready to prove theorem A.

Theorem 4.1.9. The Morse-Smale set MS is open (in CP).

Proof. For (f0, g0) ∈ CP, let V be the neighborhood ofA(f0, g0) in proposition (4.1.8). Since

the map (f0, g0) 7→ A(f0, g0) is upper semicontinuous (theorem 4.1.1), we have A(f, g) ⊂ V

for all (f, g) ∈ V(f0, g0), where V(f0, g0) is a sufficiently small neighborhood of (f0, g0) in

CP. Applying proposition (4.1.8), we have

Ω(f, g) = Ω(f, g) ∩ V = ρ[Crit(f0, g0) ∩ V ] = ρ(Crit(f0, g0)) ⊂ Crit(f, g).

But Crit(f, g) ⊂ Ω(f, g). Hence Crit(f, g) = Ω(f, g). So the map

ρ : Crit(f0, g0) 7→ Crit(f, g)

is bijective. This implies the openness of MS (in CP).
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4.2 A Sufficient Condition

In this section, we shall prove theorem B.

Theorem 4.2.1. If all the critical elements of (1.0.1) are hyperbolic (in X+ × X+) and

the dimension of the unstable manifold of any fixed point in X+ ×X+ \ {(0, 0)} is at most

one and the dimension of the unstable manifold of a periodic solution is at most two, then

(1.0.1) has Morse-Smale structure.

Proof. Case 1: Let e, e′ ∈ X+ ×X+ be two fixed points of (1.0.1) with e 6= (0, 0). Suppose

that ∃ β ∈ W u+(e) ∩W s+
loc (e′). Since β ∈ W u+(e), there exist t0 > 0 and ξ ∈ W u+

loc (e) such

that β = Πt0(ξ). Let ω(ẽ) be the normalized (in X × X) principle eigenfunction of the

linearization problem of system (1.0.1) at ẽ 6= (0, 0). By the Krein-Rutman theorem (cf.

[16]), we have ω(ẽ) À2 (0, 0). By lemma 4.1.2, we have either

lim
ξ→ẽ, ξ∈W u(ẽ),

ξ − ẽ

‖ξ − ẽ‖X×X
= ω(ẽ) (4.2.1)

or

lim
ξ→ẽ, ξ∈W u(ẽ)

ξ − ẽ

‖ξ − ẽ‖X×X
= −ω(ẽ). (4.2.2)

Applying (4.2.1) for ẽ = e, there exists ξ ∈ W u
loc(e) such that

ξ − e = ‖ξ − e‖X×X

(
ω(e) +

o(‖ξ − e‖X×X)
‖ξ − e‖X×X

)
À2 (0, 0). (4.2.3)

This implies

Πt(ξ)−Πt(e) = Πt(ξ)− e À2 (0, 0), ∀ t ≥ 0. (4.2.4)
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Since β ∈ W s+
loc (e′), we have

Πt(ξ) → e′ (in X ×X) as t →∞. (4.2.5)

Letting t →∞ in (4.2.4) and using (4.2.5), we have e′ ≥2 e. By proposition 3.3.2, we have

Πt(e′) À2 Πt(e), ∀t > 0 but this means e′ À2 e. Now, suppose W u+(e′) 6= {e′}. Applying

(4.2.2) for ẽ := e′, there exists η ∈ W u
loc(e

′) such that

η − e′ = ‖η − e′‖X×X

(
−ω(e′) +

o(‖η − e′‖X×X)
‖η − e′‖X×X

)
¿2 (0, 0). (4.2.6)

This implies

Πt(η)−Πt(e′) = Πt(η)− e′ ¿2 (0, 0), ∀ t ≥ 0. (4.2.7)

Since e′ À2 e, we can choose ξ and η closed enough to e and e′ (respectively) such that

e ¿2 ξ ¿2 η ¿2 e′. This and Πt(ξ) → e′ (in X × X) as t → ∞ imply Πt(η) → e′ (in

C(Ω̄)× C(Ω̄)) as t →∞. This and the fact that the ω-limit set of η is relative compact in

X ×X implies Πt(η) → e′ (in X ×X) as t →∞. Hence η ∈ W s+(e′) which contradicts to

the fact η ∈ W u+(e′). Therefore W u+(e′) = {e′}. This implies W s+
loc (e′) = X ×X. Then, it

is clear that we have TβW u+(e)⊕ TβW s+
loc (e′) = X ×X.

Case 2: Let e 6= (0, 0) be an fixed point, e′ be a periodic orbit with period σ and

suppose that ∃ β ∈ W u+(e)∩W s+
loc (e′). Using the same argument as in the first part of case

1, there exists ξ ∈ W u+
loc (e) such that β = Πt0(ξ) and

Πt(ξ) À2 e, ∀ t ≥ 0. (4.2.8)
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Since β ∈ W s+
loc (e′), we have

Πt(ξ) → e′ (in X ×X) as t →∞. (4.2.9)

Let p0 ∈ e′ be a limit point of {Πt(ξ), t ≥ 0}. We have an increasing sequence tn → ∞

as n → ∞ such that Πtn(ξ) → p0. From (4.2.8), we have Πtn(ξ) À2 e, ∀ t ≥ 0. Let

n →∞, we have p0 ≥2 e. By proposition 3.3.2, we have Πσ(p0) À2 Πσ(e) which is p0 À2 e

Now, suppose W u+(e′) 6= {e′}. This means W u+(e′) is two-dimensional, DΠσ(p0) has one

eigenvalue with real part greater than 1. By Krein-Rutman theorem, this eigenvalue has a

strongly positive eigenfunction ω(p0). Let

W = {η ∈ X ×X| lim inf
n→∞ dX×X(Πn

σ(η), e′) > 0}.

Then we have

lim
‖η−p0‖X×X→0, η∈W

η − p0

‖η − p0‖X×X
= −ω(p0). (4.2.10)

This implies

η − p0 = ‖η − p0‖X×X

(
−ω(p0) +

o(‖η − p0‖X×X)
‖η − p0‖X×X

)
¿2 (0, 0). (4.2.11)

Since p0 À2 e, we can choose ξ and η closed enough to e and p0 (respectively) such that

e ¿2 ξ ¿2 η ¿2 p0. Thus, Πtn(ξ) ¿2 Πtn(η) ¿2 Πtn(p0). The set {Πtn(p0)} is compact.

So there exists a subsequence tnk
} of {tn} and p1 ∈ e′ such that Πtnk

(p0) → p1 as n →∞.

If p0 6= p1, then we have p0 ≤2 p1. Again, by proposition 3.3.2, we have p0 ¿2 p1. By

theorem 2.3 in [32], this can not happen. Therefore, p1 ≡ p0. Then we have Πtnk
(η) → p0
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as n →∞ which is a contradiction to the fact η ∈ W . Hence, W u+(e′) = {e′}. This implies

W s+
loc (e′) = X ×X. Then, it is clear that we have TβW u+(e)⊕ TβW s+

loc (e′) = X ×X.

Case 3: Let e be a periodic orbit with period σ, e′ be an equilibrium and suppose that

∃ β ∈ W u+(e) ∩W s+
loc (e′). Since β ∈ W u+(e), there exist p∗0 ∈ e and ξ ∈ W u+

loc (e) such that

β = Πt0(ξ) and p∗0 ¿2 ξ. Since Πt(ξ) → e′ as t → ∞, we have p∗0 ≤2 e′. By proposition

3.3.2, we have p∗0 ¿2 e′. Now, suppose W u+(e′) 6= {e′}. Applying (4.2.2) for ẽ := e′, there

exists η ∈ W u
loc(e

′) such that

η − e′ = ‖η − e′‖X×X

(
−ω(e′) +

o(‖η − e′‖X×X)
‖η − e′‖X×X

)
¿2 (4.2.12)

This implies

Πt(η)−Πt(e′) = Πt(η)− e′ ¿2 (0, 0), ∀ t ≥ 0. (4.2.13)

Since p∗0 ¿ e′, we can choose ξ and η closed enough to e′ and p∗0 (respectively) such that

ξ ¿2 η ¿2 e′. This and Πt(ξ) → e′ as t →∞ in X ×X imply Πt(η) → e′ (in C(Ω̄)×C(Ω̄))

as n →∞. This and the fact that the ω-limit set of η is relative compact in X ×X imply

Πtn(η) → p0 (in X × X) as n → ∞. This is a contradiction to the fact η ∈ W u+(e′).

Therefore W u+(e′) = {e′}. This implies W s+
loc (e′) = X ×X. Then, it is clear that we have

TβW u+(e)⊕ TβW s+
loc (e′) = X ×X.

Case 4: Let e, e′ be periodic orbits with periods σ, σ′ respectively. Suppose that

∃β ∈ W u+(e) ∩ W s+
loc (e′). Since β ∈ W u+(e), there exist p∗0 ∈ e and ξ ∈ W u+

loc (e) such

that β = Πt0(ξ) and p∗0 ¿2 ξ. Let p0 ∈ e′ be a limit point of {Πt(ξ), t ≥ 0}. We have

an increasing sequence tn → ∞ as n → ∞ such that Πtn(ξ) → p0. Hence, p0 À2 p∗0.

Now, suppose W u+(e′) 6= {e′}. This means W u+(e′) is two-dimensional, DΠσ(p0) has one
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eigenvalue with real part greater than 1. By Krein-Rutman theorem, this eigenvalue has a

strongly positive eigenfunction ω(p0). Let

W = {η ∈ X ×X| lim inf
n→∞ dX×X(Πn

σ(η), e′) > 0}.

Then we have

lim
‖η−p0‖X×X→0, η∈W

η − p0

‖η − p0‖X×X
= −ω(p0). (4.2.14)

This implies

η − p0 = ‖η − p0‖X×X

(
−ω(p0) +

o(‖η − p0‖X×X)
‖η − p0‖X×X

)
¿2 (0, 0). (4.2.15)

Since p0 À2 p∗0, we can choose ξ and η closed enough to p∗0 and p0 (respectively) such that

ξ ¿2 η ¿2 p0. Thus, Πtn(ξ) ¿2 Πtn(η) ¿2 Πtn(p0). The set {Πtn(p0)} is compact. So

there exists a subsequence tnk
} of {tn} and p1 ∈ e′ such that Πtnk

(p0) → p1 as n → ∞.

If p0 6= p1, then we have p0 ≤2 p1. Again, by proposition 3.3.2, we have p0 ¿2 p1. By

theorem 2.3 in [32], this can not happen. Therefore, p1 ≡ p0. Then we have Πtnk
(η) → p0

as n →∞ which is a contradiction to the fact η ∈ W . Hence, W u+(e′) = {e′}. This implies

W s+
loc (e′) = X ×X. Then, it is clear that we have TβW u+(e)⊕ TβW s+

loc (e′) = X ×X.

Case 5: Suppose ∃ β ∈ W u+(0, 0) ∩ W s+
loc (e), e 6= (0, 0). If W u+(e) = {e}, then the

transverality is clear. Suppose W u+(e) 6= {e}. Let ω(e) be the principle eigenfunction of

the linearization problem of system (1.0.1) at ẽ 6= (0, 0). We have ω(e) À2 (0, 0). Since

TeW
s+(e) and TβW s+(e) are close if β ∈ W s+

loc (e), we have TβW s+(e)⊕span{ω(β)} = X×X

with ω(β) is close to ω(e). Let η ∈ W u+
loc (0, 0) such that Πt0(η) = β for some t0 > 0. The

linearization of (1.0.1) at (0, 0) is decoupled and we have two positive eigenfunctions ωu and
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ωv. The linear space spanned by {ωu, ωv} is in the tangent space T(0,0)W
u+(0, 0). Since

η is close to (0, 0), TβW u+(0, 0) and T(0,0)W
u+(0, 0) are close. We can chose a strongly

positive vector ω(η) in the linear space spanned by {ωu, ωv} so that Πt0(ω(η)) = ω(β).

Since η is close to (0, 0), TβW u+(0, 0) and T(0,0)W
u+(0, 0) are close. Hence TβW u+(0, 0) =

span{ω(β)}. So, we have TβW s+(e)⊕ TβW u+(0, 0))} = X ×X.
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Chapter 5

A-stability via Morse-Smale structure

5.1 Reduction to inertial manifold

We consider (1.0.1) for the one-dimensional case Ω = (0, 1).





ut = k1uxx + uf(x, u, v), x ∈ (0, 1),

vt = k2vxx + vg(x, u, v), x ∈ (0, 1),

Bu = Bv = 0.

(5.1.1)

Let

A1 : D(A1) ⊂ L2(Ω) → L2(Ω)

(u, v) 7→ −k1uxx + u,

A2 : D(A2) ⊂ L2(Ω) → L2(Ω)

(u, v) 7→ −k2vxx + v,

A = (A1, A2), D(A) = D(A1)×D(A1).

where D(A1) = D(A2) = {ϕ ∈ H2,2(Ω)| Bϕ = 0}, B is either Neumann or Dirichlet

boundary condition. It is easy to see that the the fractional power spaces generated by A
1/2
1

and A
1/2
2 are same Hilbert space with different inner products

〈
A

1/2
1 ·, A1/2

1 •
〉

L2(Ω)×L2(Ω)
and

〈
A

1/2
2 ·, A1/2

2 •
〉

L2(Ω)×L2(Ω)
, respectively. For simplicity, we denote both by X. The inner
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product in X×X is then 〈·, •〉X×X =
〈
A

1/2
1 ·, A1/2

1 •
〉

L2(Ω)×L2(Ω)
+

〈
A

1/2
2 ·, A1/2

2 •
〉

L2(Ω)×L2(Ω)
.

It is implicitly understood that ‖ · ‖X = ‖A1/2
1 · ‖L2(Ω) and ‖ · ‖X = ‖A1/2

2 · ‖L2(Ω) depending

on whether · is the first or second component of (u, v). The normalized (in L2(Ω)×L2(Ω))

eigenfunctions of A + Id which correspond to the eigenvalues {λu
i = 1 + k1(iπ)2, λv

j =

1 + k2(jπ)2| i, j ∈ N ∪ {0} } are wu
i (x) = (

√
2 cos(iπx), 0), wv

i (x) = (0,
√

2 cos(jπx)), i, j ∈

N∪{0} if B is the Neumann boundary condition and are wu
i (x) = (

√
2 sin(iπx), 0), wv

i (x) =

(0,
√

2 sin(jπx)), i, j ∈ N if B is Dirichlet boundary condition. We arrange the eigenvalues

as an increasing sequence λ1 < λ2 < . . . < λN < λN+1 < . . .. Let WN be the linear space

spanned by the {λi}N
1 and W⊥

N be the orthogonal complement of WN in L2(Ω) × L2(Ω).

Let F̃fg(u, v) = [uf(·, u, v) + u, vg(·, u, v) + v]. Clearly, F̃fg : X ×X → H1,2(Ω)×H1,2(Ω).

Moreover, if B is the Dirichlet boundary condition, then F̃fg : X × X → X × X because

B(F (u, v)) = 0. If B is the Neumann boundary condition, it is well-known that X =

H1,2(Ω). Note that D(−∆ + Id) is dense in H1,2(Ω) under the norm induced by the inner

product 〈·, •〉H1,2(Ω)×H1,2(Ω) = 〈−∆·, •〉L2(Ω)×L2(Ω) + 〈·, •〉L2(Ω)×L2(Ω). Therefore, we can

consider F̃fg : X ×X → X ×X in both cases.

Lemma 5.1.1. Let (f, g) ∈ CP. Assume (u, v) ≥ 0, (u, v) ∈ D(A) and ‖(u, v)‖X×X ≥ R.

If R is large enough, then there exists m0 > 0 (depending on R and (f, g)) such that

〈
A(u, v)− F̃fg(u, v), (u, v)

〉
L2(Ω)×L2(Ω)

≥ 2m0.
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Proof. We have

〈
A(u, v)− F̃fg(u, v), (u, v)

〉
L2(Ω)×L2(Ω)

= 〈−k1uxx − uf(·, u, v), u〉L2(Ω) + 〈−k2vxx − vg(·, u, v), v〉L2(Ω)

=
∫

Ω
[k1u

2
x − u2f(·, u, v)]dx +

∫

Ω
[k2v

2
x − v2g(·, u, v)]dx

=
(

k1

∫

Ω
u2

x dx + k2

∫

Ω
v2
x dx

)
−

∫

Ω
u2f(·, u, v) dx−

∫

Ω
v2g(·, u, v) dx.

On the other hand, we have

‖(u, v)‖2
X×X =

〈
A

1/2
1 u,A

1/2
1 u

〉
L2(Ω)

+
〈
A

1/2
2 v,A

1/2
2 v

〉
L2(Ω)

= 〈A1u, u〉L2(Ω) + 〈A2v, v〉L2(Ω)

= k1

∫

Ω
u2

x dx + k2

∫

Ω
v2
x dx +

(∫

Ω
u2 dx +

∫

Ω
v2 dx

)

= k1

∫

Ω
u2

x dx + k2

∫

Ω
v2
x dx + ‖(u, v)‖2

L2(Ω)×L2(Ω). (5.1.2)

Therefore

〈
A(u, v)− F̃fg(u, v), (u, v)

〉
L2(Ω)×L2(Ω)

≥ ‖(u, v)‖2
X×X − ‖(u, v)‖2

L2(Ω)×L2(Ω) −
∫

Ω
u2f(·, u, v) dx−

∫

Ω
v2g(·, u, v)dx. (5.1.3)

From (H3) and (H4) there exists a positive constant R0 such that

f(·, u, v) < −1/2 for all v ≥ 0, x ∈ (0, 1), u ≥ R0,

g(·, u, v) < −1/2 for all u ≥ 0, x ∈ (0, 1), v ≥ R0.

(5.1.4)

51



Let

M0 = max{ sup
{0≤u≤R0}∩{v≥0}

f(·, u, v), sup
{0≤v≤R0}∩{u≥0}

g(·, u, v)}.

M0 exists and finite because of (H1) and (H2). Choose R sufficiently large so that

2m0 =
1
2
R2 −R2

0 − 2M0R
2
0 > 0.

From (5.1.3) and (5.1.4), we have

〈
A(u, v)− F̃fg(u, v), (u, v)

〉
L2(Ω)×L2(Ω)

≥ 1
2
‖(u, v)‖2

X×X − 1
2
‖(u, v)‖2

L2(Ω)×L2(Ω) −
∫

Ω
u2f(·, u, v) dx−

∫

Ω
v2g(·, u, v)dx

≥ 1
2
R2 − 1

2
‖(u, v)‖2

L2(Ω)×L2(Ω) −
∫

{u≥R0}
u2f(·, u, v) dx−

∫

{v≥R0}
v2g(·, u, v) dx

−
∫

{0≤u<R0}
u2f(·, u, v) dx−

∫

{0≤v<R0}
v2g(·, u, v) dx

≥ 1
2
R2 − 1

2
‖(u, v)‖2

L2(Ω)×L2(Ω) +
1
2

∫

{u≥R0}
u2 dx +

1
2

∫

{v≥R0}
v2 dx

−
∫

{0≤u<R0}
u2f(·, u, v) dx−

∫

{0≤v<R0}
v2g(·u, v) dx

=
1
2
R2 −

∫

{0≤u<R0}
[u2f(·, u, v) +

1
2
u2]dx−

∫

{0≤v<R0}
[v2g(·, u, v) +

1
2
v2]dx

≥ 1
2
R2 −R2

0 − 2M0R
2
0 = 2m0.

Fix (f0, g0) ∈ CP. Since A(f0, g0) is compact (in X+ ×X+), there exists R > 0 such

that A(f0, g0) ⊂ {(u, v) ∈ X+ × X+| ‖(u, v)‖X×X < R}. By theorem 4.1.1, A(f0, g0) is
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upper semi-continuous in X ×X. Hence

A(f, g) ⊂ {(u, v) ∈ X+ ×X+| ‖(u, v)‖X×X < R}, (5.1.5)

provided dCP((f, g), (f0, g0)) is small enough. From now on, we fix R > 0 such that (5.1.5)

holds and lemma 5.1.1 is true for (f0, g0). We define a C∞ function ϕ : [0,∞]×[0,∞] → [0, 1]

with the following properties





ϕ ≡ 1 on [0, R]× [0, R],

ϕ ≡ 0 on {(s1, s2) ∈ R2| max{s1, s2} ≥ 2R},

sups1≥0 ‖ϕs1(s1, s2)‖ ≤ 1, ∀ s2 ≥ 0,

sups2≥0 ‖ϕs2(s1, s2)‖ ≤ 1, ∀ s1 ≥ 0.

Let Ffg(u, v) = ϕ(‖u‖X , ‖v‖X)F̃fg(u, v). Since f, g are C2 functions, Ffg has the following

properties

1. F : X ×X → X ×X is bounded in C1 norm. Note that the bound depends on (f, g),

2. F (u, v) = F̃ (u, v) for all ‖(u, v)‖X×X ≤ R,

3. F (u, v) = 0 for all ‖(u, v)‖X×X ≥ 2R.

Therefore, rather than studying system (5.1.1), we can study the modified one





ut = k1uxx + ϕ(‖u‖X , ‖v‖X)uf(x, u, v), x ∈ (0, 1),

vt = k2vxx + ϕ(‖u‖X , ‖v‖X)vg(x, u, v), x ∈ (0, 1),

Bu = Bv = 0.

(5.1.6)
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For simplicity, we will sometimes write F instead of Ffg. Let Θ = (u, v), we can rewrite

system (5.1.6) as

Θt + AΘ = F (Θ), Θ ∈ D(A). (5.1.7)

Lemma 5.1.2. Given (f0, g0) ∈ CP and ε0 > 0. Define

Λ := {(f, g) ∈ CP| dCP((f, g), (f0, g0)) < ε0}.

Then there exists positive constants M0, M1 depending on ε0, f0, g0 such that

‖Ffg(u, v)‖X×X ≤ M0, ∀(u, v) ∈ X ×X, ∀(f, g) ∈ Λ, (5.1.8)

‖DFfg(u0, v0)(ξ, η)‖X×X ≤ M1‖(ξ, η)‖X×X , ∀ (u0, v0), (ξ, η) ∈ X ×X, ∀(f, g) ∈ Λ,

(5.1.9)

and

Supp Ffg ⊂ {(u, v) ∈ X ×X : ‖(u, v)‖X×X ≤ 2R}, ∀(f, g) ∈ Λ. (5.1.10)

Proof. It is clear from the definition of Ffg that

Supp Ffg ⊂ {(u, v) ∈ X ×X : ‖(u, v)‖X×X ≤ 2R}, ∀(f, g) ∈ Λ.

For (5.1.8) and (5.1.9), the existence of the constant M0 and M1 is guaranteed by (5.1.2)

and the fact that

{(u, v) ∈ X ×X| ‖(u, v)‖X×X ≤ 2R} ⊂ {(u, v) ∈ X ×X| ‖(u, v)‖C(Ω̄)×C(Ω̄) ≤ 2RC},
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where C is the embedding constant X ↪→ C(Ω̄). Therefore , we can choose a sufficiently

small neighborhood Λ of (f0, g0) such that

‖(f, g)− (f0, g0)‖C2(Ω̄×[−2RC,2RC]×[−2RC,2RC]) < 1, ∀(f, g) ∈ Λ.

Lemma 5.1.3. (Gap condition) Let K0 = 16M2
1 , K1 = 4M1 where M1 is the positive

constant in proposition 5.1.2. Then there exists N ∈ N such that

λN > K0 and λN+1 − λN > 2K1.

Proof. Since the eigenvalues of A can be rearranged as a strictly increasing sequence con-

verging to ∞, we always have λN > K0. Because λN+1 − λN = O(N), it is clear that

λN+1 − λN > 2K1 if N is sufficiently large.

Proposition 5.1.4. Given (f0, g0) ∈ CP. Let Λ be defined as in proposition 5.1.2. Choose a

natural number N such that the gap condition in lemma 5.1.3 holds. Let W := WN . Then,

for each (f, g) ∈ Λ, there exists a C1 map Φfg : W → W⊥ ∩ (X × X), Φfg = (Φu
fg,Φ

v
fg)

with the following properties

(i) Supp Φfg ⊂ {(u, v) ∈ X ×X : ‖(u, v)‖X×X ≤ 2R}, ∀(f, g) ∈ Λ,

(ii) ‖Φfg(w)‖X×X ≤ L0, ∀w ∈ W , ∀(f, g) ∈ Λ where L0 = M0e−1/2

2λN+1
(M0 is the positive

constant in proposition 5.1.2),

(iii) The manifold Ifg :=Graph Φfg is invariant under the flow generated by (5.1.7) and

attracts all solutions of (5.1.7) exponentially,
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(iv) ‖DΦfg(w)‖L(W,X×X) ≤ L1, ∀w ∈ W , ∀(f, g) ∈ Λ, where L1 ≤ 2M1
λN+1−λN

(M1 is the

positive constant proposition 5.1.2),

(v) Φfg, DΦfg are continuous in (f, g).

Proof. Apply theorem 2.1 in [27] with α = β = 1/2, k = 1, C0 = M0, C1 = M1. For

simplicity, we will write Φfg as Φ when no confusion should arises.

From now on, let W be the linear space defined in proposition 5.1.4 with N chosen

large enough such that

L2
0 − ‖Ff0g0‖0L0 < m0, (R + ‖F‖0)L0L1 < m0/2 (5.1.11)

where ‖Ff0g0‖0 = sup(u,v)∈X×X ‖F (u, v)‖X×X . Let P be the orthogonal projection of

L2(Ω) × L2(Ω) to W and Q = Id − P . By applying P and Q to (5.1.7), we obtain the

system

wt + Aw = (P ◦ F )(w + w⊥), (5.1.12)

w⊥t + Aw⊥ = (Q ◦ F )(w + w⊥), w ∈ W. (5.1.13)

By proposition 5.1.4, we can write (5.1.12) as

wt + Aw = (P ◦ F )(w + Φ(w)), w ∈ W. (5.1.14)

Lemma 5.1.5. Given (f0, g0) ∈ CP. Let

ΓR = {w ∈ W | ‖w + Φf0g0(w)‖X×X = R, w + Φ(w) ≥ 0}.
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Then

〈Aw − (P ◦ Ff0g0)(w + Φf0g0(w)), ν(w)〉L2(Ω)×L2(Ω) ≥ m0 > 0, ∀w ∈ ΓR, (5.1.15)

where ν(w) is the outer normal vector at w and m0 (depending on f0, g0) is the positive

constant defined in proposition 5.1.1.

Proof. For simplicity, we will write Φ, F instead of Φf0g0 , Ff0g0 . By lemma 5.1.1, we have

〈A(w + Φ(w))− F (w + Φ(w)), w + Φ(w)〉L2(Ω)×L2(Ω) ≥ 2m0, ∀w ∈ ΓR. (5.1.16)

On the other hand, we have

〈A(w + Φ(w))− F (w + Φ(w)), w + Φ(w)〉L2(Ω)×L2(Ω)

= 〈Aw + AΦ(w)− (P ◦ F )(w + Φ(w))− (Q ◦ F )(w + Φ(w)), w + Φ(w)〉L2(Ω)×L2(Ω)

= 〈Aw − (P ◦ F )(w + Φ(w)), w〉L2(Ω)×L2(Ω)

+ 〈AΦ(w)− (Q ◦ F )(w + Φ(w)),Φ(w)〉L2(Ω)×L2(Ω) , ∀w ∈ W.

Therefore,

〈Aw − (P ◦ F )(w + Φ(w)), w〉L2(Ω)×L2(Ω) (5.1.17)

≥ 2m0 − 〈AΦ(w)− (Q ◦ F )(w + Φ(w)), Φ(w)〉L2(Ω)×L2(Ω)

= 2m0 − 〈AΦ(w), Φ(w)〉L2(Ω)×L2(Ω) + 〈(Q ◦ F )(w + Φ(w)),Φ(w)〉L2(Ω)×L2(Ω)

≥ 2m0 − ‖Φ(w)‖2
X×X − ‖(Q ◦ F )(w + Φ(w))‖L2(Ω)×L2(Ω)‖Φ(w)‖L2(Ω)×L2(Ω)

≥ 2m0 − ‖Φ(w)‖2
X×X − ‖F (w + Φ(w))‖L2(Ω)×L2(Ω)‖Φ(w)‖L2(Ω)×L2(Ω), ∀w ∈ ΓR.
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Using property (ii) in proposition 5.1.4 and (5.1.11), we have

〈Aw − (P ◦ F )(w + Φ(w)), w〉L2(Ω)×L2(Ω)

≥ 2m0 − ‖Φ(w)‖2
X×X − ‖F‖0‖Φ(w)‖X×X

≥ 2m0 − L2
0 − ‖F‖0L0 ≥ m0, ∀w ∈ ΓR. (5.1.18)

Define

H : W → R

p 7→ 〈DΦ(w)(p), Φ(w)〉X×X .

It is clear that H is a continous linear functional on (W, ‖ · ‖X×X). By the Riesz represen-

tation (cf. [37]), there exists w∗ ∈ W such that 〈w∗, w〉 = H(w), ∀w ∈ W and

‖w∗‖X×X = ‖H‖L(W,R) ≤ ‖DΦ(w)‖L(W,X×X)‖Φ(w)‖X×X ≤ L0L1 < 1, (5.1.19)

where L0, L1 are constants in proposition (5.1.4). The outer normal vector ν(w) at w ∈ ΓR

then has the representation ν(w) = 2w + 2w∗. Therefore,

〈Aw − (P ◦ F )(w + Φ(w)), ν(w)〉L2(Ω)×L2(Ω)

= 〈Aw − (P ◦ F )(w + Φ(w)), 2w + 2w∗〉L2(Ω)×L2(Ω)

= 〈Aw − (P ◦ F )(w + Φ(w)), 2w〉L2(Ω)×L2(Ω) +

〈Aw − (P ◦ F )(w + Φ(w)), 2w∗〉L2(Ω)×L2(Ω) , ∀w ∈ ΓR. (5.1.20)
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From (5.1.18) and (5.1.20), we have

〈Aw − (P ◦ F )(w + Φ(w)), ν(w)〉L2(Ω)×L2(Ω)

≥ 2m0 − 2‖Aw‖L2(Ω)×L2(Ω)‖w∗‖L2(Ω)×L2(Ω)

−2‖(P ◦ F )(w + Φ(w))‖L2(Ω)×L2(Ω)‖w∗‖L2(Ω)×L2(Ω)

≥ 2m0 − 2‖Aw‖L2(Ω)×L2(Ω)‖w∗‖L2(Ω)×L2(Ω) (5.1.21)

−2‖F‖0‖w∗‖L2(Ω)×L2(Ω), ∀w ∈ ΓR.

We have ‖Aw‖L2(Ω)×L2(Ω) =
√∑N

1 c2
i λ

2
i for w ∈ WN , w =

∑N
1 ciwi. If w ∈ ΓR, we have

‖w‖X×X ≤ ‖w + Φ(w)‖X×X = R. But ‖w‖X×X =
√∑N

1 c2
i λi. Therefore,

‖Aw‖L2(Ω)×L2(Ω) ≤
√

λNΣN
1 c2

i λi ≤
√

λN R. (5.1.22)

From (5.1.11), (5.1.19), (5.1.21) and (5.1.22), we have

〈Aw − (P ◦ F )(w + Φ(w)), ν(w)〉L2(Ω)×L2(Ω) ≥ 2m0 − 2(R + ‖F‖0)L0L1 ≥ m0.

Lemma 5.1.6. Given (f0, g0) ∈ CP and ε0 > 0. If dCP((f, g), (f0, g0)), (f, g) ∈ CP, is small

enough so that ‖Ffg − Ff0g0‖X×X < m0
4(R+C) where C is the constant from the embedding

X ↪→ C(Ω̄). Then

〈Aw − (P ◦ Ffg)(w + Φf0g0(w)), ν(w)〉L2(Ω)×L2(Ω) ≥ m0/2 > 0, ∀w ∈ ΓR, (5.1.23)
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where ν(w) is the outer normal vector at w.

Proof. We have

〈Aw − (P ◦ Ffg)(w + Φf0g0(w)), ν(w)〉L2(Ω)×L2(Ω) (5.1.24)

= 〈Aw − (P ◦ Ff0g0)(w + Φf0g0(w)), ν(w)〉L2(Ω)×L2(Ω)

+ 〈(P ◦ Ffg)(w + Φf0g0(w))− (P ◦ Ff0g0)(w + Φf0g0(w)), ν(w)〉L2(Ω)×L2(Ω) , ∀w ∈ W.

From (5.1.15) and (5.1.24), we have

〈Aw − (P ◦ Ffg)(w + Φf0g0(w)), ν(w)〉L2(Ω)×L2(Ω)

≥ m0 + 〈(P ◦ Ffg)(w + Φf0g0(w))− (P ◦ Ff0g0)(w + Φf0g0(w)), ν(w)〉L2(Ω)×L2(Ω)

≥ m0 − ‖(Ffg − Ff0g0)(w + Φf0g0(w))‖L2(Ω)×L2(Ω)‖ν(w)‖L2(Ω)×L2(Ω)

≥ m0 − ‖Ffg − Ff0g0‖0(2‖w‖L2(Ω)×L2(Ω) + 2‖w∗‖L2(Ω)×L2(Ω))

≥ m0 − ‖Ffg − Ff0g0‖0(2R + 2C) ≥ m0 − m0

2
= m0/2, ∀w ∈ ΓR.

Let WR = {w ∈ W | ‖w + Φf0g0(w)‖X×X ≤ R, w + Φf0g0(w) ≥ 0}. The boundary of

WR (in W ) includes ΓR, Γu
R and Γv

R where

Γu
R := {w ∈ W | u + Φu

f0g0
(u, v) ≥ 0, v + Φv

f0g0
(u, v) = 0},

Γv
R := {w ∈ W | u + Φu

f0g0
(u, v) = 0, v + Φv

f0g0
(u, v) ≥ 0}.
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Proposition 5.1.7. Given (f0, g0) ∈ CP. Let Λ(f0, g0) be a sufficiently small neighborhood

of (f0, g0) in CP. The semi-flows {Πfg
t |W , t ≥ 0}, (f, g) ∈ Λ(f0, g0) are invariant on WR.

Proof. Clearly, the semi-flows {Πfg
t |W , t ≥ 0}, (f, g) ∈ Λ(f0, g0) are invariant on Γu

R, Γv
R.

On ΓR, by lemma 5.1.6 guarantees inward flows.

Proposition 5.1.8. If (f, g) ∈MS then (5.1.14) has Morse Smale property (in WR).

Proof. For simplicity, we write I and Πt for Ifg and Πfg
t . Let e0 ∈ X+ ×X+ be a critical

element of (5.1.7). By applying P to (5.1.7), we have P (e0) is a critical element of (5.1.14)

in WR. Now, let w ∈ WR be a critical element of (5.1.14). Because I is invariant under

the semi-flow {Πt, t ≥ 0}, we have Πt(w(0)+Φ(w(0))) ∈ I, ∀t ≥ 0. Therefore, there exists

w̃(t), t ≥ 0 such that Πt(w(0)+Φ(w(0))) = w̃(t)+Φ(w̃(t)), ∀t ≥ 0. Since Πt(w(0)+Φ(w(0))

is the solution of (5.1.7) with initial w(0) + Φ(w(0)), P (Πt(w(0) + Φ(w(0)))) = P (w̃(t) +

Φ(w̃(t))) = w̃(t) is a solution of (5.1.14) with initial w(0). Because of unique solvability

of (5.1.14), we have w̃ = w. Hence, w + Φ(w) ∈ X+ ×X+ is a critical element of (5.1.7).

Therefore, if (f, g) ∈ MS, then (5.1.14) has finitely many critical elements in WR. Next,

suppose w0 ∈ WR is a critical element of (5.1.14), we have w0 + Φ(w0) ∈ X+ × X+ is a

critical element of (5.1.7). Let IR+
fg = Ifg ∩{(u, v) ∈ X+×X+| ‖(u, v)‖X×X ≤ R} and Pfg

be the restriction of the orthogonal projection P to IR+
fg . Clearly, Pfg is a homeomorphism

from IR+
fg to WR and γt = Pfg ◦ Πt ◦ P−1

fg ∀t ≥ 0 on WR, where {γt, t ≥ 0} is the semi-

flows generated by (5.1.14). Therefore, (Dγt)(w) = (Pfg ◦ DΠt ◦ P−1
fg )(w) which implies

that λ is an eigenvalue of (Dγt)(w) with eigenfunction ϕ if and only if it is an eigenvalue

of DΠt(w + Φ(w)) with eigenfunction ϕ + Φ(ϕ). Since (f, g) ∈ MS, w0 + Φ(w0) is a

hyperbolic critical element of (5.1.7). Hence, w0 is a hyperbolic critical element of (5.1.14).

Finally, we prove the transversal intersection of stable and unstable manifolds of critical
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elements (in WR) of (5.1.14). Given two critical elements w1, w2 of (5.1.14). Suppose

W̃ u(w1) ∩ W̃ s
loc(w2) 6= ∅ where W̃ u(w1), W̃ s

loc(w2) are unstable and local stable manifolds

of w1 and w2. Let ei = wi + Φ(wi), i = 1, 2. Clearly, W̃ u(w1) = {w ∈ W | w + Φ(w) ∈

W u+(e1)}. Let β ∈ W̃ u(w1) ∩ W̃ s
loc(w2). We now prove TβW̃ u(w1) ⊕ TβW̃ s

loc(w2) = W .

Since η = β + Φ(β) ∈ W u+(e1) ∩ W s+(e2), we have TηW
u+(e1) ⊕ TηW

s+(e2) = X × X

(because (f, g) ∈MS). By the invariant foliation theory in [5], there exists a unique C1 leaf

J with codimension N which passes through η and is transversal to the inertial manifold

I. Let W s∗ := {w + Φ(w)| w ∈ W̃ s(w2)}. Then we have that TηW
s+(e2) = TηW

s∗ ⊕ TηJ .

Hence W u+(e1) is transversal to W s∗ and the dimension of TηW
u+(e1)⊕TηW

s∗ is N . Since

‖Φ‖L(W,W⊥∩X×X) < 1, the map w 7→ w + Φ(w) is a diffeomorphism from W to I and

it maps W̃ u(w1) to W u+(e1), W̃ s(w2) to W s∗. Hence, W̃ s(w1) is transversal to W̃ s(w2)

because TηW
u+(e1)⊕ TηW

s∗.

5.2 Tubular Family Theorem

Lemma 5.2.1. Given an ordered chain α1 ≤3 α2 ≤3 . . . ≤3 αn. Let Gu(αn) be a funda-

mental domain of W u(αn) and W s(αi), 1 ≤ i ≤ n, be the stable manifold of αi. Then we

have

∂W s(α1) ∩Gu(αn) ⊂
⋃

2≤i≤n−1

W s(αi) ∩Gu(αn).

Proof. Let x ∈ ∂W s(α1) ∩ Gu(αn). There exists a sequence {xj} ⊂ W s(α1), xj → x

as j → ∞. We also have ‖Πfg
t (xj) − Πfg

t (x)‖ ≤ ‖Πfg
t ‖‖xj − x‖ for any t > 0. Notice

that Πfg
t (xj) ∈ W s(α1) for all j and for all t > 0. Thus, for any given ε > 0, Πfg

t (x) ∈

Bε(W s(α1)) for all t > 0. Suppose Πfg
t (x) → β, then β must be one of the αi, 2 ≤ i ≤ n−1.

So x ∈ ⋃
2≤i≤n−1 W s(αi) ∩Gu(αn).
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Theorem 5.2.2. ( Tubular family Theorem) Let (f, g) ∈ MS. There exists a compatible,

invariant system of tubular families {Γi}, each Γi being a tubular family of W s(αi), where

αi is a critical element of γfg
t , where γfg

t is the flow introduced in the proof of proposition

(5.1.8).

Proof. Define L0 = {α | α is a sink}, L1 = {α | beh(β|α) = 1, β ∈ L1},

Lk = {α | beh(α|β) = k, β ∈ L1}. For each α ∈ L1, define Γα = W s(α). In this proof,

Γ• denotes a tubular family of •

Assume that Γα has been constructed for all α ∈ ⋃
0≤i≤k−1 Li. We will construct

Γα, α ∈ Lk. Let α ∈ Lk be a periodic orbit, p ∈ α, Gu(p) be the fundamental do-

main of W u
loc(p) and β ∈ Lk−1, W u(α)

⋂
W s

loc(β) 6= ∅. From lemma 5.2.1, we have

Gu(p)
⋂

∂W s(β) = ∅. Here, the boundary is relative with respect to W s(β). Now we

apply lemma 2.5 in [27] with C = Gu(p), W = W u(p), U0 = ∅, U = Uβ = Γβ ∩ Nu(p)

(Nu(p) is a properly chosen fundamental neighborhood of W u
loc(p)), we get a continuous

retraction rβ : Uβ → W u(p) which satisfies (i), (ii), (iii) of lemma 2.5 in [27]. Since Γβ are

mutually separated, we can define rk−1 =
⋃

β∈Lk−1, Wu(α)∩Ws
loc

(β) 6=∅
rβ. That is,

rk−1 : (
⋃

β∈Lk−1, Wu(α)∩Ws
loc

(β) 6=∅

Γβ) ∩Nu(p) → W u(p)

Next , we will extend rk−1 to
⋃

ξ∈Lk−2, Wu(α)∩Ws
loc

(ξ) 6=∅
Γξ. Let

ξ ∈ Lk−2, W u(α)
⋂

W s
loc(ξ) 6= ∅
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From lemma 2.1.5, we have

∂W s(ξ) ∩Gu(p) ⊂
⋃

β∈Lk−1,Wu(α)∩Ws
loc

(β)6=∅

W s(β) ∩Gu(p) ⊂
⋃

β∈Lk−1,Wu(α)∩Ws
loc

(β) 6=∅

Γβ ∩Nu(p)

Applying lemma 2.5 in [27] with C = Gu(p), W = W u(p), r0 = rk−1, U = Uξ = Γβ ∩Nu(p),

U0 =
⋃

β∈Lk−1, Wu(α)∩Ws
loc

(β) 6=∅
Γβ ∩ Nu(p), we get a continuous retraction rξ : Uξ → W u(p)

which satisfies (i), (ii), (iii) of lemma 2.5 in [27]. Define rk−2 =
⋃

ξ∈Lk−1, Wu(α)∩Ws
loc

(ξ) 6=∅
rξ,

that is,

rk−2 : (
⋃

ξ∈Lk−2, Wu(α)∩Ws
loc

(ξ) 6=∅

Γβ) ∩Nu(p) → W u(p).

Continuing this process through Lk−3, Lk−4, ..., L1, we have a continuous retraction r :

Nu(p) → W u(p). Now, let N be an open neighborhood of p ∈ α in W u(p) with ∂N = Gu(p).

For each y ∈ N there is a unique xy and a unique txy ∈ Gu(p) such that y = γfg
−txy

(xy). We

define Tα
y = γfg

−txy
(r−1(xy)) and Tα

p = W s(p). Then {Tα
y }y∈N is a invariant tubular family

of W s(p) under k = ξt(π, .)|N (π is the period of α). The tubular family of W s(α) is now

defined as in definition (2.1.5).

5.3 A-stability

We shall prove Theorem C in this section.

Theorem 5.3.1. Let (f0, g0) ∈ CP. The semi-flows {γf0g0
t |WR

, t ≥ 0} is A-stable (the

notion of γt was introduced in the proof of proposition 5.1.8).

Proof. Let p2 be a critical element of {γf0g0
t |WR

, t ≥ 0} with behavior ≤ 1 with respect

to sources. Consider source p1 such that beh(p1|p2) = 1. Put p̄i = ρ(pi) where ρ =

ρ(f, g), (f, g) ∈ CP, is the homeomorphism in Proposition (4.1.5). Since W̃ u(p1) is C1 close
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to W̃ u(p̄1) on compact sets, W̃ u(p1) ∩ G̃s(p1) is compact, there exists a diffeomorphism

h2 : W̃ u(p1) ∩ G̃s(p2) → W̃ u(p̄2) ∩ W̃ s
loc(p̄2), h2 is close to the identity map. For any

y ∈ W̃ u(p1)∩W̃ s
loc(p2), there exists a unique positive ( or negative) time τ = τ(y) such that

γfg
τ (y) ∈ W̃ u(p1) ∩ G̃s(p2). Therefore we can extend h2 to W̃ u(p1) ∩ W̃ s(p2) by using the

flows

h2 = γfg
−τ ◦ h2 ◦ γf0g0

τ : W̃ u(p1) ∩ W̃ s(p2) → W̃ u(p̄1) ∩ W̃ s(p̄2).

We do the same for all other sources p1 of which beh(p1|p2) = 1. Then we can extend h2

to A0
WR

∩ W̃ s(p2) where A0
WR

is the attractor of {γf0g0
t |WR

, t ≥ 0}. Note that A0
WR

=

P (A(f0, g0)). Repeat the same procedure for other p2 with behavior ≤ 1 with respect to

the sources to extend h2 to
⋃

beh(p|sources)=1(A0
WR

∩ W̃ s(p)).

The next step is to consider p3 with behavior ≤ 2. For the sources of behavior 1

with respect to p3, the procedure is similar to the one we just use above. Let p1 be

a source with beh(p1|p3) = 2. There exists at least a sequence p3 ≤3 p2 ≤3 p1 such

that beh(p1|p2) =beh(p2|p3) = 1. Since beh(p2|p3) = 1, we can define a diffeomorphism

h̄3 on W̃ u(p2) ∩ G̃s(p3) similarly to the way we define h2. The existence of compatible

system of unstable foliations guarantees that W̃ u(p1) intersects W̃ s
loc(p3). For each leaf of

W̃ u(p1) ∩ G̃s(p3) which is near W̃ u(p2) ∩ G̃s(p3), there corresponds a unique point y ∈

W̃ u(p1) ∩ W̃ s
loc(p2) near p2 such that γt0(y) belongs to that leaf for some t0 > 0. We index

these leaves as Jy, y ∈ W̃ u(p1)∩ W̃ s
loc(p2). Since Jy is near W̃ u(p2)∩ G̃s(p3), there exists a

diffeomorphism iy : Jy → W̃ u(p2)∩W̃ s
loc(p3). The same happens for the perturbed system,

so we also have a diffeomorphism ih2(y) : Jh2(y) → W̃ u(p̄2)∩W̃ s
loc(p̄3). Both iy and ih2(y) are

close to identity map. The composition map ¯̄h3,y = i−1
h2(y) ◦ h̄3 ◦ iy is a diffeomorphism from

Jy to Jh2(y). Using ¯̄h3,y, y ∈ W̃ u(p1) ∩ W̃ s
loc(p2), we can extend h̄ to a small neighborhood
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U of W̃ u(p2) ∩ G̃s(p3) in
(
W̃ u(p1) ∪ W̃ u(p2)

)
∩ G̃s(p3) as follows

¯̄h3(x) = h̃3,y(x), x ∈ Jy.

To extend ¯̄h3 to
(
W̃ u(p1) ∪ W̃ u(p2)

)
∩ G̃s(p3), we apply the Isotopy Extension Theorem

(cf. [13]). Let N be the relative boundary in
(
W̃ u(p1) ∪ W̃ u(p2)

)
∩ G̃s(p3) of a small

neighborhood U1 ⊂ U in the domain of ¯̄h3, M = γf0g0

(−ε,ε)(
(
W̃ u(p1) ∪ W̃ u(p2)

)
∩ G̃s(p3) \U2),

where U2 ⊂ U1. Since W̃ u(p1) ∩ G̃s(p3) and W̃ u(p̄2) ∩ W̃ s
loc(p̄3) are C1 close, there exists

a diffeomorsphism d which maps W̃ u(p1) ∩ G̃s(p3) to W̃ u(p̄2) ∩ W̃ s
loc(p̄3). Let j = d−1 ◦

¯̄h : N → M . Applying the Isotopy Extension Theorem for j, we obtain an extension

ϕ : M → M of j such that ϕ|N = j, ϕ(x) = x for all x outside a neighborhood V

of j(N). Let ¯̄̄
h3 = d ◦ ϕ. Define h3(x) = ¯̄h3(x) if x ∈ U1 and h3(x) = ¯̄̄

h3(x) if x ∈
[(

W̃ u(p1) ∪ W̃ u(p1)
)
∩ G̃s(p3)

]
\U1. Then h3 is an extension of ¯̄h3 to

(
W̃ u(p1) ∪ W̃ u(p1)

)
∩

G̃s(p3), h3 :
(
W̃ u(p1) ∪ W̃ u(p1)

)
∩ G̃s(p3) →

(
W̃ u(p1) ∪ W̃ u(p1)

)
∩ W̃ s

loc(p̄3). Using again

the flows to extend h3 to
(
W̃ u(p1) ∪ W̃ u(p2)

)
∩ W̃ s(p3). For other possible sequence(s)

p3 ≤3 p2 ≤3 p̄1, we repeat the same procedure to extend h3 to A0
WR

∩W̃ s(p3). The last step

shows the full induction procedure. Because there are only finitely many critical elements,

the induction is completed when we reach the sinks. Since ∪p−crit. elementA0
WR

∩ W̃ s(p) =

A0
WR

, and (A0
WR

∩ W̃ s(pi)) ∩ (A0
WR

∩ W̃ s(pj)) = ∅, i 6= j, we can define

h : A0
WR

(f, g) −→ A0
WR

(f ′, g′)

by h = h1 ∪ h2 ∪ h3 ∪ . . .. The final step is to check the continuity of h. For any x ∈

A0
WR

(f, g), there exists pi such that x ∈ A0
WR

∩ W̃ s(pi). Notice that it is sufficient to
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prove the continuity of h at those x ∈ A0
WR

∩ W̃ s
loc(pi). If pi is a source or a sink, the

continuity is trivial because A0
WR

∩ W̃ s
loc(pi) is either pi or A0

WR
. Assume pi is a saddle.

Let xn → x, xn ∈ J u
xn

(pi). We have h(xn) ∈ J u
hi(xn)(p

′
i). By a property of tubular families,

J u
hi(xn)(p

′
i) converges to J u

hi(x)(p
′
i). Therefore the set of accumulation points of {h(xn)}

is contained in W̃ s
loc(p

′
i) ∩ J u

hi(x)(p
′
i) = {hi(x)}. Since the set of accumulation points of

{h(xn)} has only one single element hi(x), h(xn) must converge to hi(x) = h(x). Thus h is

continuous. Hence h is a homeomorphism.

Theorem 5.3.2. If (f0, g0) ∈MS, then {Πf0g0
t , t ≥ 0} is A-stable.

Proof. Let h : A0
WR

→ AWR
be the homeomorphism in theorem 5.3.1. Define H = P−1

fg ◦h◦

Pf0g0 . Then H : A(f0, g0) → A(f, g) is a homeomorphism taking trajectories of A(f0, g0)

to trajectories of A(f, g) and preserves the sense of direction in time.
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