
A Gateway-Based Approach for Information Retrieval from
Data-Centric Wireless Sensor Networks from IP Hosts

by

Brandon Keith Maharrey

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 13, 2010

Keywords: wireless sensor network, sensor network query, data collection, Directed
Diffusion, data-centric

Copyright 2010 by Brandon Keith Maharrey

Approved by

Alvin S. Lim, Chair, Associate Professor of Computer Science & Software Engineering
John A. Hamilton, Jr., Professor of Computer Science & Software Engineering

Xiao Qin, Associate Professor of Computer Science & Software Engineering

Abstract

With applications ranging from environmental and health monitoring to military surveil-

lance and inventory tracking, wireless sensor networks (WSNs) are changing the way we

collect and use data and will be a major part of our technological future. The decreased

manufacturing cost of these small devices has made it reasonable to deploy many sensor

nodes — 10s to 1000s and more — over large and small indoor and outdoor areas for sensing

tasks. With this increase in density come data-gathering problems. It would be useful if

an IP-based host could collect information from multiple remote data-centric networks us-

ing a predefined application programming interface (API). This thesis presents two APIs,

one API for wireless sensor nodes in a data-centric Directed Diffusion WSN and the other

API for IP-based nodes residing on an IP network outside of the WSN. An associated WSN

middleware layer used to effectively connect these two APIs is also presented. These three

components work together in harmony to enable IP-based hosts to gather sensed data from

one or more remote WSNs through an application-layer gateway which links these different

remote WSNs to an IP network.

ii

Acknowledgments

I would like to thank Drs. Alvin S. Lim, John A. Hamilton, Jr., and Xiao Qin for their

guidance in the writing of this thesis. I would also like to thank Raghu K. Neelisetti, Qing

Yang and Arunkumar Thippur Jaykeerthy for their efforts in acclimating me to the life of a

graduate student and helping me when the times got tough. It has certainly been a fun ride.

I also cannot forget my wife, Tasha M. Crawford, my step-daughter, Rosemary M.

Crawford-Goosby, my mother, Carol Elmore and my sister, Brandi N. Maharrey, who have

all been there as my support system throughout graduate school and this research.

Thank you all very much.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . x

List of Abbreviations . xi

1 Introduction . 1

2 Problem Statement . 4

3 Objective . 6

4 Motivation . 8

5 Challenges . 10

6 Limitations . 12

7 Related Work . 14

7.1 Gateway- or Proxy-Based Approaches . 14

7.2 IP-Enabled Approaches . 16

7.3 Overlay Approaches . 18

7.3.1 Sensor Network Overlay IP Network 18

7.3.2 IP Network Overlay Sensor Network 19

7.4 6LoWPAN and IEEE 802.15.4 Standards . 20

7.5 Data Collection from WSNs . 21

7.5.1 Clustering, Routing and Data-Centric Storage Protocols 22

7.5.2 Query Optimization . 24

7.5.3 Middleware Solutions . 24

8 System Overview . 26

iv

8.1 Directed Diffusion . 29

8.1.1 Directed Diffusion Basics . 32

8.1.2 Directed Diffusion and the Publish/Subscribe Messaging Paradigm . 35

8.1.3 Directed Diffusion Sensor Node Application Programming 35

8.2 Dynamic Services . 36

8.3 Device Roles . 38

8.3.1 External Agents . 38

8.3.2 Sensor Nodes . 38

8.3.3 Gateway Node . 40

9 Dynamic Services . 41

9.1 Dynamic Services Include Structure . 41

9.2 Inside Dynamic Services . 44

9.3 Dynamic Services API Available to Sensor Role 47

9.4 DS API Example Usage . 51

9.4.1 Simple Producer API Usage Details & Example 51

9.4.2 Complex Producer API Usage Details & Example 55

10 External Agent Role . 63

10.1 External Agent API . 63

10.2 External Agent API Example Usage . 65

11 Gateway Role . 68

12 Integrating the WSN with the IP Network . 70

12.1 Building a Sensor Network Application . 70

12.2 Building an External Agent Application & Performing a Query 74

13 PC104 Testbed & Case Studies . 77

13.1 PC104 Testbed Specifications . 77

13.1.1 Hardware . 77

13.1.2 Operating System . 82

v

13.2 Sample Case Studies . 82

13.2.1 Sensor Node Applications . 88

13.2.2 External Agent Applications . 94

13.3 Target Tracking Experimental Results . 98

14 Experiment Design & Performance Evaluation 102

14.1 Experiment Design . 102

14.2 Performance Evaluation . 103

14.2.1 LOC Metric . 103

14.2.2 DS Delay Analysis . 104

15 Future Work . 111

15.1 Concerning Sensor Applications . 111

15.2 Concerning the Application-Layer Gateway 112

15.3 Concerning External Agent Applications . 112

16 Conclusions . 113

Bibliography . 115

vi

List of Figures

1.1 “Tell” Gateway . 2

3.1 “Tell” Gateway . 6

7.1 Gateway- or Proxy-Based Approach . 15

7.2 TCP/IP-enabled Approach . 17

7.3 Packet Translation at Overlay Gateway Node in Sensor Overlay IP Network . . 19

8.1 Network Architecture Showing Heterogeneous IP Hosts 27

8.2 Network Architecture Showing IP Hosts and Multiple Wireless Sensor Networks 28

8.3 An External Agent Queries a WSN . 29

8.4 An External Agent Receives Data from a WSN 30

8.5 Network Stack of Device Roles . 31

8.6 Stages of Interest Propagation in Directed Diffusion 33

8.7 Stages of Data Propagation in Directed Diffusion 34

8.8 Pure DD Main & Tasking Threads Pseudo-Code 36

8.9 Comparison of Networking Stacks . 37

8.10 External Agent Stack with Many Applications 39

vii

8.11 Sensor Node Stack with Many Applications . 39

8.12 Gateway Node Networking Stack . 40

9.1 Dynamic Services, Gateway Node, Sensor and External Agent Applications In-

clude Dependency Graph . 42

9.2 Dynamic Services Message Queue Illustration 46

9.3 Dynamic Services Main & Tasking Threads Pseudo-Code 46

9.4 Simple Producer Tasking and Data Production 52

9.5 Simple Producer Detail Message Passing . 53

9.6 Complex Producer Tasking and Data Production 57

9.7 Complex Producer Detail Message Passing . 58

13.1 PC104 CPU Module . 78

13.2 PC104 PCMCIA Module . 78

13.3 PC104 Power Supply Module . 80

13.4 Orinoco Gold Wireless PCMCIA LAN Card . 80

13.5 Lucent Omnidirectional External Antenna . 81

13.6 Compact Flash Card . 81

13.7 PC104 RAM . 81

13.8 PC104 USB Microphone . 83

13.9 PC104 +12V AC Power Supply . 83

viii

13.10PC104 +12V Battery . 84

13.11Completed PC104 Assembly without Casing . 84

13.12Completed PC104 Assembly with Casing . 85

13.13Close-Up of Completed PC104 Assembly with Casing 85

13.14WSN Example Deployment Scenario . 87

13.15Sony EVI-D30 Pan-Tilt-Zoom Camera . 88

13.16WSN Experiment Setup . 89

13.17Sound Analysis Image . 91

13.18Target Tracking Results . 100

13.19Snapshot of Moving Target . 101

14.1 Tasking Time Explanation with Dynamic Services 105

14.2 Publishing Time Explanation with Dynamic Services 106

14.3 Tasking Time Explanation without Dynamic Services 107

14.4 Publishing Time Explanation without Dynamic Services 108

14.5 Dynamic Services Tasking Time Performance Graph 109

14.6 Dynamic Services Publishing Time Performance Graph 110

ix

List of Tables

9.1 Definition of Tasking Thread and Main Thread using Pure DD vs using DS . . 45

13.1 Target Tracking Experimental Results . 99

14.1 Lines-Of-Code Comparison With & Without Dynamic Services 104

x

List of Abbreviations

6LoWPAN IPv6 over Low power Wireless Personal Area Network

ACM Association for Computing Machinery

API Application Programming Interface

CPA Closest Point of Approach

CPU Central Processing Unit

CTP Collection Tree Protocol

DARPA Defense Advanced Research Projects Agency

DCS Data-centric Storage

DD Directed Diffusion

DS Dynamic Services

EA External Agent

GPS Global Positioning System

GPSR Greedy Perimeter Stateless Routing

GSN Global Sensor Network

GUI Graphical User Interface

ID Identification

IEEE Institute of Electrical and Electronics Engineers

xi

IETF Internet Engineering Task Force

IP Internet Protocol

IPv6 Internet Protocol version 6

LAN Local Area Network

LEACH Low-Energy Adaptive Clustering Hierarchy

LOC Lines of Code

LR-WPAN Low-Rate Wireless Personal Area Network

MPI Message Passing Interface

OS Operating System

PC Personal Computer

PCMCIA Personal Computer Memory Card International Association

PDA Personal Data Assistant

PEDQPP Power Efficient Data Query Processing Protocol

RFC Request For Comment

RMST Reliable Multi-Segment Transport

SBC Single-Board Computer

SCADDS Scalable Coordination Architecture for Deeply Distributed Systems

SPIN Sensor Protocols for Information via Negotiation

SQL Structured Query Language

STL Standard Template Library

xii

TAG Tiny AGgregation

TCP Transmission Control Protocol

UDP User Datagram Protocol

WSN Wireless Sensor Network

XML Extensible Markup Language

xiii

Chapter 1

Introduction

A wireless sensor network mainly consists of many independent, low-power, low-cost

devices capable of sensing, processing and wireless communication [7]. Their main purpose

is to collect and disseminate environmental data and possibly perform some calculations [4].

There has been a push, especially in industry1, in recent years to make real-time data

collected from WSNs more readily available to consumers of this information. However,

there are no convenient tools or specific frameworks in place to allow instant access to this

sensed information in a programming environment. Thus, one of the main problems with

deploying WSNs is gathering the data they produce and using it in flexible ways.

Assume, for the moment, you are an application programmer and your job is to, some

how, gather data from hundreds of nodes located in several WSNs located around the world

and use this data in some application. You already know it is going to be a tough job,

considering the WSN nodes are spread around the world. You realize this is going to be a

job best suited for IP communication since all of the remote locations are already connected

to the Internet. Why not use the already-in-place communication infrastructure provided

by the Internet, right? It then dawns on you that the overhead incurred by TCP or UDP

and IP may be prohibitive for use on your resource-constrained sensor nodes in the remote

WSNs. However, that is not a real issue since you are aware of the existence of data-centric

networking protocols. Data-centric networking protocols can significantly reduce wireless

communication overhead in WSNs because there is no wasted overhead in transmitting end-

point identification information along each wireless hop [5]. You are even more sure of your

decision to use a data-centric networking protocol when you notice all of your data can be

1See http://www.archrock.com/company

1

easily named and divided into categories, e.g., humidity, pressure, temperature, vibration,

light intensity, etc.

Would it not be amazing if you, as the IP-based application programmer, could simply

“tell” a remote WSN which type or category of data you wanted and have it delivered to your

application by the IP network? That is precisely the solution this thesis attempts to provide

— a simple way for a programmer of IP-based applications to simply “tell” a data-centric

WSN which data he wants and have it delivered to his application via the IP network. This

concept is illustrated in Figure 1.1.

It is, however, not quite as simple as this first glance. There must be some sort of

interface between the Internet host and the WSN to facilitate this communication.

Figure 1.1: This figure shows the optimal process where an application simply requests —
by name — named data from a remote wireless sensor network.

The proposed middleware layer and gateway node employed as the access point for the

purpose of information retrieval from WSNs work together to ease the implementation of

sensor network applications in the WSN by providing a standard interface to the data-centric

WSN networking protocol and IP-based applications alike. Further, the approach described

in this thesis does not require any changes to any existing data-centric WSN protocols nor the

IP protocol. The middleware layer for the WSN could easily be adapted to other data-centric

2

WSN protocols, and the IP-based application programmers’ API could not only be used for

computers, laptops and servers but also other smaller devices such as PDAs, SmartPhones

and other IP-based devices.

In the following chapters of this thesis, a concise problem statement is defined in Chap-

ter 2 and associated objective given in Chapter 3. Motivation is outlaid in Chapter 4, and

challenges and limitations of this research regarding the gathering of data from one or more

WSNs from IP-based hosts are presented in Chapters 5 and 6, respectively. Following these,

a discussion of other relevant approaches to gathering data from WSNs connected to the

Internet is presented in Chapter 7. An overall summary of the work is then given, includ-

ing discussing Directed Diffusion and Dynamic Services and defining roles of various agents

within the system in Chapter 8. Following this summary, details of Dynamic Services and

its relation to the sensor, External Agent and gateway roles is given in Chapters 9, 10 and

11, respectively. A description is then given of how all of the actors work together within the

system in Chapter 12. Next, details of a PC104 testbed and WSN sensor node case study

application is given along with two IP-based applications in Chapter 13. Then, experimental

design details are given along with a few metrics of interest in Chapter 14 to show that the

system is feasible. Finally, a few avenues of future research and final concluding remarks are

given in Chapters 15 and 16, respectively.

3

Chapter 2

Problem Statement

When an application programmer is tasked with gathering data from possibly thousands

of remote sensor nodes from one or multiple WSNs located locally or remotely, the problems

are many. The decision to use the existing IP infrastructure may be obvious considering

the ubiquitous access to the Internet, but there are more subtle problems like how to ac-

tually query remote sensor nodes for their data, not to mention the burden on the WSN

and application programmers of programming in this environment without many tools at

their disposal. This thesis attempts to provide solutions for these problems. For the task of

actually querying the remote WSNs, a working API available to IP-based application pro-

grammers for querying one or more remote WSNs is given. A related API is also provided

for WSN sensor node application programmers for programming on the sensor nodes in the

WSN.

With these solutions come more problems. Through what means or mechanisms do

the IP-based hosts actually retrieve the data from the remote WSNs? In this thesis, a

discussion of the implementation of an application-layer gateway is given which simplifies

the process of retrieving information from the remote WSNs. Because the WSNs discussed

in this thesis are data-centric and hosts residing on a host-centric network (the IP network)

wish to gather data from these WSNs, there is the problem of translating the information

contained in this data-centric network to a network which is address-centric. Therefore,

another problem this application-layer gateway must solve is how to translate named data

coming from the data-centric WSN to an IP address so that transmission of this data can

occur via this address-centric IP network and arrive at the correct IP-based host(s). Simply

4

explained, there should be some translation or mapping service provided by the gateway

node to translate named data to an IP address.

One more problem is how IP-based application programmers actually query the remote

WSN(s). How is data in the WSN requested by an IP-based host? Since the data-centric

network discussed in this thesis is based on the publish-subscribe paradigm, IP-based hosts

must take this fact into account. Subscriptions must be sent from IP-based hosts to the

application-layer gateway node in some fashion. The gateway node must then distribute this

subscription to other sensor nodes in the WSN for data production to begin at sensor nodes

who “know” how to produce this named data.

5

Chapter 3

Objective

This thesis presents two APIs and an associated middleware layer which attempts to

make both IP-based and sensor node application programming easier for the purpose of

harvesting data from multiple remote data-centric WSNs. The two APIs work together to

make data in remote data-centric WSNs more readily accessible. Please see Figure 3.1 for an

illustration of how these APIs work together with the associated middleware layer to allow

IP-based hosts to gather sensed data from sensor nodes.

Figure 3.1: This figure shows the optimal process where an application simply requests —
by name — named data from a remote wireless sensor network.

At this time, there is no standard method of or API for gathering data from a data-

centric WSN and transporting that named information from the remote WSN to IP-based

hosts who are interested in this data. Therefore, a main objective is to give sensor node and

IP-based application programmers a tool — in the form of two APIs — to enable easy access

to data sensed by WSN sensor nodes in a programming environment on IP-based hosts.

As previously mentioned, two simple APIs are presented — one for IP-based application

programmers and the other for sensor node application programmers. The API for IP-based

6

application programmers is used to enable communication between IP-based hosts and the

gateway node connecting the IP network to the WSN. This API provides two different

services to IP-based hosts: a method to submit requests to and a related method of receiving

information from the remote WSN(s).

The other API is used to facilitate communication between sensor node applications and

Dynamic Services (DS), a middleware layer written on top of the data-centric networking

protocol Directed Diffusion (DD). Without DS, tasking of sensor node applications by IP-

based hosts could not occur nor could transmission of information take place from sensor

node applications to the gateway node. This API also makes the programming job easier for

sensor node application programmers and thereby makes adding sensing capabilities easier

to implement.

A description is also given of an implementation of an application-layer gateway used as

the interface to the WSN for the purpose of information retrieval from data-centric WSNs

via IP-based hosts. Not only is this application-layer gateway node the access and data

transfer points which enables access to the remote WSN(s), it also provides a data name-to-

IP address mapping service. This service essentially uses an internal mapping structure to

decide to which IP-based host(s) named data should be forwarded from the WSN.

Since there are many different device roles that must work seamlessly together to make a

system like the one discussed in this thesis work well, there are a few networking architecture

assumptions given and discussed.

Finally, results are given of a lines-of-code (LOC) metric and a timing analysis of DS. The

LOC metric is used to determine the relative ease of the job of the sensor node application

programmer when compared to programming a sensor node application directly over DD

instead of using the services provided by DS. The timing analysis is used to show that the

overhead incurred by DS and the sensor node API is negligible when compared to using the

pure DD API.

7

Chapter 4

Motivation

The area of sensor networking applications is exploding rapidly. In the recent past,

many new sensor networking applications have surfaced in the literature, and most notably

among them are wildlife habitat monitoring [2], forest fire detection [30], alarm systems [1]

and monitoring of volcanic eruptions [11]. These scenarios involve many unique issues and

challenges still remain when faced with the problem of gathering this sensed data in real

time for analysis, computation or storage. IP-based application programmers themselves

are faced with the difficult problem of interconnecting sensor networks with IP-based hosts.

Therefore, a main motivation of this research is to ease the data-gathering problems that

IP-based programmers face when gathering data from one or more remote WSNs.

DS, a middleware solution built on top of the DD networking protocol, attempts to

alleviate some of the programming and data-gathering problems associated with gathering

data from a data-centric WSN from IP-based hosts by providing a neat and clean interface to

the DD network. This DS service layer is also meant to conserve energy on the sensor nodes

by eliminating the polling feature of pure DD sensor applications. Also, through employing

a gateway-based approach for the task of interfacing with and information retrieval from the

WSN, the solution provided in this thesis allows IP-based hosts to gather data from one or

multiple remote WSNs concurrently with an easy-to-use API. Therefore, a major motivation

for building a system of this type would be to decrease time-to-market of various applications

which depend how much time application programmers spend on various programming tasks

by simplifying said programming tasks.

A motivation for using an application-layer gateway can be found by analyzing more

closely a statement found in [21]. In [21], Zhang et al. claim that an application-layer

8

gateway-based approach, the approach employed in this thesis, is application-specific. Let

this statement stand disputed with this: a well-built application-layer gateway is not nec-

essarily application-specific and can be used in a variety of different applications. The real

power comes from the flexibility of the gateway node and the interface used to facilitate

communication through that gateway node. In this thesis, the application-layer gateway

presented is a protocol converter which is not application-specific. Therefore, any new

application can be deployed over the WSN or developed on the IP network side with no

reprogramming of the gateway node for each new sensor application deployed.

Finally, the literature discusses various SQL-like (Structured Query Language) WSN

query languages for querying WSNs. The services provided by the application-layer gateway-

based approach described in this thesis could be used as a back end for these SQL-like WSN

query implementations. The SQL-like query implementation could use the API provided in

this thesis to actually perform the querying of one or more remote WSNs. As an example

scenario, an Internet user could submit SQL-like queries to his local machine located on the

IP network. This Internet-based machine would have the task of translating that query into

a named interest destined for one or more WSNs. The machine would then send that interest

to one or more application-layer gateways located around the Internet and possibly receive

data from the WSN(s). The IP-based machine could then display the information received

from the WSN(s) to the user according to the initial query.

9

Chapter 5

Challenges

There are a few challenges that programmers face when trying to determine how to har-

vest information from a remote WSN. This thesis partly focuses on the challenge of actually

retrieving named data from possibly many remote data-centric WSNs and delivering that

information, via IP networks, to interested IP-based hosts. Therefore, IP-based and sensor

node programmers must in some way agree on the mapping from the “name” of the data and

the structure which embodies the actual data. Put in the form of a concrete example, if an

IP-based host wishes to query a sensor network for the named data “TEMPERATURE,” the

sensor node should recognize “TEMPERATURE” and produce the data which corresponds

to the data definition or data structure of that named data. It is up to the sensor network

programmer to ensure that data produced by sensor nodes in the WSN matches the data

name requested by IP-based hosts — that is, that the IP-based host receives the correct and

proper data he thinks he is receiving from the WSN. In other words, IP-based programmers

and sensor node programmers must be in agreement regarding the actual data structure

which is produced by sensor nodes in the WSN and the data structure which is consumed

by IP-based hosts on the IP network. A mismatch in the way the sensor node programmer

or the IP-based programmer interprets or defines the data definition or data structure can

be a major pitfall and cause of application errors.

This thesis assumes a data-centric networking protocol in the WSN and consequently

implies that the TCP/IP protocol stack is not available in the sensor nodes. Consequently,

another issue that may arise due to the missing TCP/IP protocol stack is reliable delivery of

large files. However, there are reliable transport protocols for data-centric networking proto-

cols which can be used to accommodate reliable routing of large files inside the data-centric

10

network. Reliable Multi-Segment Transport (RMST) is an example of such a transport pro-

tocol for use in a Directed Diffusion-based WSN [9]. After RMST has routed and reassembled

the data at the gateway node, the gateway node could then, by way of TCP and IP, reliably

transmit the large file(s) to IP-based host(s).

Another challenge of this research concerns IP addressing of gateway nodes around

the Internet, and specifically, how IP-based hosts determine the IP addresses of gateway

nodes in order to query or task the WSN. This thesis leaves this an open problem, but

does give a suggestion. Consider an application of a WSN in which weather information is

gathered from several remote WSN locations by a weather broadcasting company. In this

case, the company’s administrative unit itself would be responsible for keeping track of the

IP addresses of their various remote WSN gateway nodes and delivering this information

to their programming team(s). An assumption of this thesis is that IP-based hosts some

how have access to the IP address information of remote WSN gateway nodes, whether

it be through some administrative unit of a company, like in this example, or some other

yet-to-be-designed WSN gateway node discovery protocol.

Most challenging of this research was, by far, the creation of Dynamic Services. DS’s

role in the system is very important and should not be overlooked or taken lightly. Without

DS, tasking of the sensor nodes would not be possible given only a “data name,” which

originates from the IP-based hosts. DS serves to, essentially, tie the IP-based hosts’ API to

the sensor node API and allow data to be transferred from each sensor node application to

IP-based hosts via the application-layer gateway node. Again, see Figure 3.1 for a simplified

illustration.

11

Chapter 6

Limitations

This thesis employs an application-layer, gateway-based approach for information re-

trieval from data-centric networks from IP-based hosts. While this technology will aid in

simple and efficient information retrieval, it does have its limitations.

In this approach, the full TCP/IP networking stack is not available to sensor nodes,

making remote reprogramming or administrative tasks on the individual sensor nodes very

difficult or impossible. However, if the sensor nodes are pre-programmed with all of the

necessary software, settings and parameters, this should not be an issue. It should be said

that before any group deploys the actual WSN, all sensor nodes should be programmed

beforehand with all necessary components already in place. This is actually not such a

problem and makes logical sense. The reason is that since IP-based hosts must know the

format of the data for which they are querying the WSN, it would be difficult and annoying

to users of the IP-side API, especially if the system were widespread with many active IP-

based hosts frequently querying the WSNs, to change or update all IP-based hosts’ data

type definitions each time a change is made to any data type(s) inside the WSN.

This thesis assumes that there is an operating system on the WSN nodes, and, thus,

assumes that the sensors are at least SBCs capable of running at least a small version of the

Linux operating system (OS). Therefore, this research is not specifically meant to be used

in deeply embedded WSNs. This assumption puts a lower bound on the size and power of

the sensor node because the smallest of current sensor nodes, the Mica2Dot and SmartDust

nodes, for example, are not capable of running a complete OS due to energy, memory and

processing constraints.

12

Considering mobile data-centric networks, although the data-centric networking proto-

col investigated in this thesis is not specifically designed for mobile WSNs, a similar imple-

mentation of DS over a mobile data-centric networking protocol could be realized.

This thesis does not provide nor does it claim to provide any WSN discovery protocol.

Administrators of the remote WSNs themselves must keep track of the IP addresses and

port numbers of the remote gateway nodes. On the same token, there is also no WSN data

discovery protocol. With the current system, administrators also must keep track of the

types of data that each remote WSN can produce. However, there is at least one simple, but

not currently implemented, solution to the latter problem of WSN data type discovery. The

application-layer gateway node could be given the responsibility of keeping track of which

types of data are available to be produced in each remote WSN to which it is the gateway.

When an IP-based host wishes to retrieve a certain type of data from a remote WSN, it

could first query the remote WSN gateway node to determine if that remote WSN can, in

fact, produce the given type of data. If the response returned from the gateway node answers

in the affirmative, then the IP-based host could then submit a request for that data type.

The gateway node could be made aware of these data types by the sensor nodes residing

inside the WSN. When each sensor node application starts up, it could send a registration

message to the gateway node signaling the type of data it intends to produce. The gateway

node should maintain a list of all of these data type names which the local sensor node

applications can produce. In this way, the IP-based hosts can determine which data types

can be produced by remote WSNs before submitting requests. The gateway node could also

send a list of all data types its associated WSN can produce and let the IP-based host decide

which data type(s) it wishes to consume by looking into this list.

13

Chapter 7

Related Work

Many researchers have done previous work on interconnecting wireless sensor and IP

networks and gathering data from WSNs. The majority of the techniques, like the one pre-

sented in this thesis, treat WSNs as a separate entity from the Internet [13]. The techniques

are divided into two main approaches: a gateway-based approach and an approach in which

all sensor nodes are TCP/IP-enabled — that is, capable of direct, end-to-end communication

with IP-based hosts.

7.1 Gateway- or Proxy-Based Approaches

The most common approach to connecting a WSN with an IP network is through a

gateway or proxy node. In this approach, the gateway node acts as a relay to translate

and forward packets from one network to the other [3, 17, 25]. The authors of [3] describe

two gateway-based approaches: using the gateway as a relay or as a front-end. When the

gateway acts as a relay to the WSN, it simply relays any information from the WSN to any

registered IP-based host that wants that information — the approach taken in this thesis.

When the gateway node acts as a front-end to the WSN, it actively collects and stores data

from the WSN in some kind of database that users can query with SQL-like query languages.

A representative networking architecture of a general gateway-based approach is shown in

Figure 7.1. In this approach, a gateway or proxy node is directly connected to both the IP

and wireless sensor networks and acts by translating packets from the IP networking protocol

to the WSN networking protocol and vice versa.

[25] notes a challenge in gateway-based approaches. Specifically, Song et al. in [25]

suggest that the gateway node can be a bottleneck to the flow of network traffic, especially

14

Figure 7.1: This figure represents the network architecture of an approach to connecting a
WSN to the Internet via a gateway node. The gateway node communicates wirelessly with
the nodes in the WSN within its communication range. The gateway node is responsible for
translating packets from the IP networking protocol to the WSN networking protocol and
vice versa.

if a surge of data need to be transmitted from the gateway node to an IP-based host,

and consequently developed an application-layer gateway based on the PXA270 SBC using

embedded Linux designed to meet this throughput requirement. The authors, however,

do not mention any specific WSN routing protocol and largely focus on the hardware and

software requirements of a gateway node specifically designed to transmit TCP/IP packets

from the WSN to the IP network. This suggests WSN nodes should be TCP/IP enabled,

but leaves the problem of actual gathering of the data from the sensor nodes an open issue.

15

One advantage of gateway-based approaches is the two communication networks are

totally decoupled, allowing for specialized protocols to be implemented in the WSN [3]. The

gateway node can also act as a mediator for WSN data transmission — and in the case of

this thesis, named interest acceptance or denial by the gateway node — by implementing

security features such as user and data authentication [3].

Both the relay and front-end gateway-based approaches, however, suffer from the fact

that direct access to individual sensor nodes is impossible. This does not represent a problem

as far as gathering data is concerned; however, if it is necessary to reprogram or administer

sensor nodes, this may be an issue. Further, schemes generally based on this gateway- or

proxy-based approach do not necessarily ease the task of gathering sensor node data alone.

7.2 IP-Enabled Approaches

Besides gateway-based approaches to interconnecting wireless sensor and IP networks,

IP-enabled WSNs have also been explored. One approach of this type assumes a full TCP/IP

stack on each sensor node. In this approach, the WSN is directly connected to the IP network

to enable direct communication between WSN sensor nodes and IP-based hosts. A repre-

sentative networking architecture of a general IP-enabled approach is shown in Figure 7.2.

The main advantage of using TCP/IP in this way is that now there is no need for

protocol conversion or gateways. However, the overhead for the full networking stack on

an energy-constrained sensing device may be prohibitive, especially when the end-to-end

retransmissions incurred by the TCP protocol cause even more undue retransmissions at

intermediate nodes. It has been shown that the majority of energy in a WSN is used for

wireless communication [10]. Therefore, if one considers the protocol overhead for TCP/IP

networks in the context of WSNs, it can be seen that this overhead is prohibitive. As an

illustrative example, consider the fact that in IPv6, packet overhead is more than 40 bytes

per packet. What impact does this have on the cost of radio transmission compared to

16

Figure 7.2: This figure represents the network architecture of an approach in which the
WSN is directly connected to the Internet, and each WSN node contains the full TCP/IP
networking stack. The node directly connected to the IP network communicates wirelessly
with the nodes in the WSN within its communication range and forwards information on
behalf of IP-based hosts and other wireless sensor nodes. This node is the last hop from the
WSN to the IP network.

computation? In one scenario, Pottie and Kaiser observe that 3000 instructions could be

executed for the same energy cost of sending a single bit 100 meters by radio [10]. This implies

the full networking stack should not be included in WSN nodes due to high energy usage

and communication overhead. Rather than employing the full networking stack, data-centric

networking protocols route data in the network using named data attributes, eliminating

the need for host-specific addressing. Therefore, the only transmitted information is that of

sending the actual data, not wasting energy on high per-packet overhead.

17

A further disadvantage of this approach is that just because each sensor node is ad-

dressable does not necessarily ease the task of gathering data the sensors can produce. In

this case, IP hosts must be supplied with each individual WSN node IP address it wishes

to query for data. There could potentially be many WSN nodes in possibly multiple remote

WSNs so this may be an inefficient method of information retrieval, especially considering

the wasted energy with TCP retransmission attempts. Moreover, this solution does not lend

itself well to specialized and energy-efficient WSN protocols inside the WSN.

7.3 Overlay Approaches

In overlay approaches, gateway nodes are used to interconnect WSNs with IP networks

and assign virtual identification information to either IP-based hosts, sensor nodes or both.

According to [13], overlay approaches come in two basic forms: sensor network overlay IP

network and IP network overlay sensor network. These two approaches employ application-

layer gateways through which the WSN is identified and information is passed.

7.3.1 Sensor Network Overlay IP Network

In the sensor network overlay IP network approach, IP-based hosts are required to

register with the WSN application-layer gateway node and be assigned a virtual sensor node

ID by the gateway node. IP-based hosts are assigned a virtual sensor node ID because they

are not sensor nodes actually located inside the WSN. Thus, the gateway node must keep

track of a mapping from virtual sensor node ID to IP address for information coming from

a sensor node destined for a virtual sensor node. If a sensor node wishes to communicate

with a registered IP-based host — a virtual sensor node — it simply uses the virtual sensor

node ID assigned by the gateway node for communication. Once a packet from a sensor

node destined for a virtual sensor node ID reaches the gateway node, the gateway node

encapsulates the whole packet into a TCP or UDP and IP packet, including any and all

WSN protocol headers (e.g., network-, transport- and application-layer headers), and sends

18

this new packet to the IP host. An illustration of what happens at the gateway node for this

approach is shown in Figure 7.3.

Figure 7.3: This figure, taken from [13], shows the packet translation by the overlay gateway
in the sensor network overlay IP network architecture.

The IP-based host communicates with sensor nodes in much the same way, by supplying

the sensor node ID to the gateway node. The gateway node then forwards this information

onward to the WSN. A major disadvantage of this approach is that it requires the IP-based

hosts to be aware of the WSN protocol as it must be able to recognize the encapsulated

WSN packet in its entirety. This causes undue complexity in the IP-based hosts and im-

plies this approach may not be well suited for less capable IP-based devices such as PDAs,

SmartPhones or other lower energy or hand-held devices.

7.3.2 IP Network Overlay Sensor Network

In this approach, sensor nodes are required to register with the WSN gateway node and

are assigned a virtual IP address; however, this is a little misleading as the individual sensors

themselves do not actually possess an IP address in the WSN. Sensor nodes are instead

assigned a WSN-wide unique standard 16-bit TCP/UDP port number by the gateway node.

19

IP-based hosts communicate with individual WSN nodes by supplying the IP address of the

gateway node and port of the sensor node with which it wishes to communicate. In this way,

the gateway node acts as a NAT router by mapping the supplied port number to individual

sensor nodes; thus, a requirement of this approach is that the gateway node must keep track

of the mapping from TCP/UDP port number to sensor node ID.

This scheme has its issues. Firstly, if the standard 16-bit unassigned TCP/IP port

numbers are used to identify individual sensor nodes, only around 16,000 nodes can be

uniquely addressed. This may be prohibitive if a large number of sensors are expected to

be deployed. This approach also suffers from the protocol overhead attributable to TCP/IP.

This approach may also suffer from large routing tables due to the fact that the gateway

node must keep track of two different mappings: a sensor node ID-to-IP address map and an

IP address-to-sensor node ID map. It is possible to overload the memory of a gateway node

if a very large number of sensor nodes and a very large number of IP-based hosts wish to

communicate. Also, the gateway node is being given a substantial amount of responsibility

in assigning unique identification information to all of the sensor nodes, making the gateway

node more complex.

Aside from these issues, there is still the issue of actually gathering the data from each

individual sensor node and neither of these two overlay approaches truly simplifies the task

of gathering data from WSNs.

7.4 6LoWPAN and IEEE 802.15.4 Standards

6LoWPAN is an acronym of IPv6 over Low power Wireless Personal Area Networks

and is the name of a working group in the Internet area of the Internet Engineering Task

Force (IETF). Contributors and the IETF have published several Requests for Comment1

(RFCs) which were intended to standardize mechanisms that allow IPv6 packets to be sent

to and received from IEEE 802.15.4-based networks. IEEE 802.15.4 networks are based

1RFCs 4919 and 4944

20

on low-rate wireless personal area networks (LR-WPANs) and are very well-suited for low-

power devices. The IEEE 802.15.4 standard defines the physical layer and media access

control for the wireless personal area network, and the proposed 6LoWPAN standard defines

encapsulation and header compression mechanisms that allow seamless IP integration over

IEEE 802.15.4. In 6LoWPAN, individual sensor nodes are addressable with standard IPv6

IP addresses without the overhead of sending full IP addresses when routing messages inside

the WSN. This is because a gateway node connected to an IP network maps full IP addresses

into 16-bit node IDs for more efficient bandwidth usage along wireless hops.

This standard, however, is only in its preliminary stages and thus will probably un-

dergo more changes before the final standard is widely available. Like other IP-enabled

approaches to interconnecting WSNs, this approach also requires that IP-based hosts know

the specific IP addresses of sensor nodes with whom they wish to gather data. Further, the

IEEE 802.15.4 standard defines a maximum bandwidth that may be unsuitable for WSN

applications requiring larger bandwidths. Moreover, these standards together or separately

do not necessarily ease the task of gathering data from sensor nodes in one or more WSNs

although it does reduce the amount of wasted energy with respect to transmitting end-point

identification information for each packet along every wireless hop.

The following section focuses on methods of actually collecting data from sensor nodes

within WSNs rather than on interconnection techniques to enable information to flow from

WSNs to IP networks.

7.5 Data Collection from WSNs

Much research has also been done in the actual collection of data from nodes in WSNs

in recent years. Different clustering [32, 6, 12], routing [23, 19, 15, 14], data-centric storage

[20] and query optimization [22, 16] protocols have been theorized and implemented in the

past and are concerned with, for the most part, energy efficiency since most of these ideas

have been developed for energy-constrained wireless sensor nodes. Among these ideas, too,

21

are service-oriented middleware approaches [31, 18]. These techniques and approaches are

discussed further in the following subsections only for informational purposes. The middle-

ware-based approach to gathering sensed data from WSNs from IP-based hosts discussed

in this thesis could conceivably be built on a number of the following techniques, methods

and/or protocols, but, until the writing of this thesis, no definitive API for both WSN sensor

nodes nor IP-based hosts has been discussed in the literature.

7.5.1 Clustering, Routing and Data-Centric Storage Protocols

Several clustering, routing and data-centric storage protocols have been discussed in

the literature. Most relevant to this thesis are protocols which enable efficient informa-

tion retrieval. This retrieval of information uses energy resources and, therefore, efficient

information retrieval protocols should be used to maximize the lifetime of the system.

As far as clustering protocols are concerned, the most notable contributions are those

described in [32, 6, 12]. Clustering protocols achieve energy efficiency primarily by issuing

commands to only a subset of sensor nodes at any given time. The authors of [12] propose

a Low-Energy Adaptive Clustering Hierarchy (LEACH), a clustering-based protocol that

periodically rotates local clusterheads to evenly distribute the energy load among the sensor

nodes in the network. LEACH uses localized coordination to enable scalability and robust-

ness for dynamic networks, and incorporates data fusion into the routing protocol to reduce

the amount of information that must be transmitted at each hop. The authors of [6] take the

ideas contained in LEACH a bit further and develop a power efficient data query processing

protocol (PEDQPP). PEDQPP essentially marks the sensor node area with a virtual grid

and sensor nodes located within the same cell of the virtual grid form a sensor node cluster.

A local clusterhead located within a cell aggregates and stores data. Once a query task

is sent to the WSN, a minimum spanning tree is formed with the base station as the root

and all the clusterheads in each virtual grid cell as children. The query task floods only

along the minimum spanning tree therefore reducing the amount of energy in transmitting

22

queries. The authors of [32] take a similar approach to PEDQPP except that clusters are

constructed online from knowledge of sensor node and query locations only in the query area

and only when required to complete a query. This kind of on-demand clustering protocol

has been shown to save energy in simulations but requires quite a bit more knowledge of the

environment than the other two approaches.

WSN routing protocols take a different approach to achieve energy efficiency by forming

paths in ways that cause less energy to be consumed in the routing of information. The

authors of [23] describe the collection tree protocol (CTP), one of a family of tree collection

protocols which forms a spanning tree between nodes in the sensor network and rooted at

some collection entity. Queries and information are routed along this tree to reduce energy

consumption at each intermediate node. Cross-layer link estimation is at the core of this

approach. Rather than sending probe control packets, the authors use data traffic as active

topology probes, requiring control packets to be sent only periodically when the network

typology is static. The authors of [19] describe TAG, a T iny AGgregation scheme based on

TinyOS and a spanning tree protocol used to aggregate information at nodes’ parents while

drawing the information to the tree’s root. The authors of [15] take a different approach and

present a family of adaptive protocols they dubbed SPIN (Sensor Protocols for Information

via Negotiation). In this family of routing protocols, data is named using high-level data

descriptors called meta-data. Sensor nodes negotiation this meta-data in order to eliminate

the transmission of unnecessary redundant information. The authors of [14] describe a

gateway discovery protocol for sensor nodes inside a WSN that wish to send information to

an Internet host. The WSN is assumed to have multiple gateway nodes, and sensor nodes

begin by sending out special probe packets a single hop, then two hops and then three hops

until such time the closest gateway node connected to the Internet is reached. This gateway

node then sends a reply back to the sensor node and the sensor node then begins transmitting

information to this gateway node to forward to the IP network.

23

The authors of [20] describe a protocol in which information is distributed over a WSN

which acts as a database for sensed information in a manner known as data-centric storage

(DCS). When a sensor node detects an event, it decides which location is responsible for

keeping the information and the information is automatically sent to a node in that location.

The location depends on the type of data sensed and can be computed from a globally-known

hash function. Then, when a node requests a particular piece of information, it can find out

the location through the use of the same globally-known hash function. Queries are hashed

in a similar manner and are sent only to the locations in the WSN where the data can be

retrieved. In this way, energy is conserved because only nodes along a path to a query’s

“answer” are involved in transmission. Queries and data are routed inside the network

using greedy perimeter stateless routing (GPSR). However, protocols relying on DCS suffer

from the hot-spot problem where any localized area in a WSN where relatively more radio

transmissions take place diminish the energy of nodes in that area.

7.5.2 Query Optimization

The authors of [16] implement a system called TinyDB that runs in networks of TinyOS-

based Berkeley motes. It is based on the TAG scheme as described above and is based on

simple and declarative SQL-like query semantics. In [22], the authors similarly use declara-

tive queries posed in a variant of SQL, but focus on multi-query optimization in which data

and query dissemination are optimized with respect to the multiple submitted queries.

7.5.3 Middleware Solutions

The authors of [31] categorize and summarize several different middleware approaches

and highlight some of the associated challenges. The two main approaches for middle-

ware solutions are to provide programming abstractions and programming support. Middle-

ware solutions range from virtual machines where developers write applications in separate,

small modules and the system injects and distributes the modules through the network to

24

databases where the entire WSN is viewed as a virtual database system which can be queried.

Most similar to the middleware approach used in this thesis is the programming support

abstraction. Another middleware solution can be found in [18]. The authors of [18] describe

the use of Global Sensor Network (GSN) middleware which supports the flexible integration

and discovery of sensor networks and sensor data, enables fast deployment and addition

of new platforms, provides distributed querying, filtering, and combination of sensor data

and supports the dynamic adaptation of the system configuration during operation. GSN’s

central concept is the virtual sensor abstraction which enables the user to declaratively

specify XML-based deployment descriptors in combination with the possibility to integrate

sensor network data through plain SQL queries over local and remote sensor data sources.

These clustering, routing and data-centric storage protocols and query optimization

and middleware solutions just discussed in the previous subsections do not alone solve the

problem of retrieving information from one or multiple WSNs and delivering that information

to interested IP-based hosts. A system overview is given in the next chapter to describe the

data-harvesting service provided by the system described in this thesis.

25

Chapter 8

System Overview

The overall architecture of the system introduced in this thesis plays a very important

role. A more natural architecture will ease implementation issues and make the system more

scalable and robust. Using the proven existing IP infrastructure is at the heart of the overall

network architecture. The Internet already connects billions of computers and users across

all continents on earth, so what better way to connect those computers and users to sensed

data provided by WSNs? By connecting these WSNs to the Internet, different people from

around the world will be able to use sensed information in ways never before imagined.

The overall network architecture is meant to be flexible enough to allow any host around

the world connected to the Internet to gather sensed data from one or more WSNs. In

Figure 8.1 below, note the many different types of IP-enabled devices that can gather data

from one or more WSNs. Many different IP-enabled devices — from PDAs on wireless

LANs and SmartPhones with cellular service providers and laptops and desktops on wired

and wireless LANs to servers that can act as front-ends to other yet-to-be-discovered services

— can all benefit from this all-encompassing architecture. These devices can even access

data from more than one WSN located remotely connected to the Internet (Figure 8.2). The

Internet can connect these different devices, possibly having different hardware platforms,

to facilitate ease of gathering data from WSNs.

A sample query using this architecture is shown below in Figures 8.3 and 8.4. First, an

External Agent submits a request to the gateway node with the name of the named data it

wishes to consume, shown with a dotted red line in Figure 8.3. The gateway node translates

this request into an interest that the Directed Diffusion networking protocol can understand.

26

Figure 8.1: This figure is a representative network architecture showing various heteroge-
neous IP hosts — External Agents with respect to the interior of the WSN — and a single
WSN. Below and/or to the right of the curved dotted line, a gateway node communicates
wirelessly with the nodes in the WSN within its communication range. The gateway node is
responsible for forwarding interests from IP hosts to the sensor nodes in the WSN and data
from the WSN sensor nodes to IP hosts.

The interest is then flooded to the other nodes in the WSN, shown with a solid green line

in Figure 8.3.

All sensor nodes, upon receiving this interest, check to see if it can, in fact, produce data

corresponding to the name of the received interest. If a sensor node is capable of producing

data corresponding to the interest — these sensor nodes are marked by the lighter yellow

color — it then transmits its data back to the gateway node, shown with a solid purple line

in Figure 8.4. The gateway node, recognizing that the name of the received data matches an

earlier subscription to this named data, forwards the payload of the DD data packet, shown

with a dark dotted red line in Figure 8.4, onward to the proper External Agent(s).

27

Figure 8.2: This figure is another representative network architecture showing IP hosts and
multiple WSNs. The figure is meant to show the possibility that a single IP host can gather
data from not just a single WSN, but multiple WSNs using a single, simple interface.

Figure 8.5 shows the various network layers through which requests travel from an IP-

based host on the Internet, up and down the IP and diffusion networking protocol stacks on

the gateway node, respectively, and finally traveling up the DS-enabled DD network stack

of the sensor node. Data traveling from a sensor node to an IP-based host follows the same

path but in the reverse direction. It is important to note here that DS does not replace

the transport layer of the traditional networking stack. As a matter of fact, the Directed

Diffusion layer in the sensor nodes in the WSN actually takes care of the data transport and

networking layer functionality.

Also important to note here is the fact that the gateway node does not require the use

of DS. Only sensor nodes which have running applications which produce data require the

use of DS.

28

Figure 8.3: This figure shows an IP-based host querying a wireless sensor network through
the gateway node situated on the boundary of the WSN. The External Agent’s request
travels through the IP network — the Internet — and is delivered to the gateway node. The
gateway node processes the interest and transmits the interest to the WSN in the form of a
Directed Diffusion interest message.

In the sections that follow in this system overview, a discussion is given of Directed

Diffusion (DD) and its role in the WSN as the data-centric networking protocol. A brief

introduction to Dynamic Services and the different agent roles at play within the overall

system is also given.

8.1 Directed Diffusion

This research uses and is enabled by Directed Diffusion (DD), a relatively new data-

centric ad-hoc networking protocol capable of robust, scalable and energy-efficient multi-hop

communication [5]. It was the brainchild of researchers from the Scalable Coordination

29

Figure 8.4: This figure shows an IP-based host receiving data from a wireless sensor net-
work via the Internet. Directed diffusion data matching the interest previously sent by the
External Agent is transmitted through the Directed Diffusion network back to the gateway
node. The gateway then forwards this data back to the External Agent(s) who previously
requested the data.

Architecture for Deeply Distributed Systems (SCADDS) Lab at the University of Southern

California circa 2000 funded by the Defense Advanced Research Projects Agency (DARPA).

The software — the DD networking protocol algorithms — they implemented has gone

through a few revisions including adding reliable multi-segment transport (RMST). The

version used to construct the solution provided in this thesis is currently the latest version

of diffusion, v3.2.0.

An attractive feature of DD, especially in the context of wireless sensor networks, is

that broken paths mend themselves. Periodically, exploratory data is flooded throughout

the network for this purpose.

30

Figure 8.5: This figure shows the various networking layers through which requests travel
from an IP-based host, up and down the IP and diffusion networking protocol stacks, respec-
tively, and finally arriving at the application layer of a sensor node. The API layer of the
IP host on the left is the API presented in Chapter 10. Notice that the EA API, DS API,
Dynamic Services and Gateway Application are shaded — these are major contributions of
this thesis.

Another attractive feature of DD is that sensor nodes do not generally have a uniquely

identifiable address, causing less energy to be used along each wireless hop in communicating

node identification information in the TCP or UDP and IP protocols. Instead, data is named

using attribute-value pairs rather than the individual nodes themselves.

DD was chosen as the data-centric networking protocol to use in this thesis, in part,

because it makes routing of the sensed data within the WSN more efficient compared to

using TCP/IP on the sensor nodes. The responsibility of passing interests from the gateway

node to individual sensor nodes, and subsequent passing of data from sensor nodes back to

the gateway node, is given to DD. This makes the task of routing inside the network very

simple, convenient and efficient.

Another compelling reason to choose DD is because it keeps routing tables inside the

gateway node rather small — smaller than, say, keeping track of both end-points of a con-

versation as in the other gateway-based approaches mentioned in the Related Work chapter

31

above (Chapter 7). Now, at the gateway node, it is only necessary to keep track of unique

interests (subscriptions) and any IP address and port number of IP-based hosts interested

in data provided by the WSN.

Because individual sensor nodes are not named in a DD network, there is no overhead

in keeping track of or assigning sensor nodes unique IDs nor is there any sensor node energy

wasted in transmitting endpoint identification information with each transmitted packet.

8.1.1 Directed Diffusion Basics

The basic DD protocol is very straightforward. When a sensor node has the ability

to produce named data, it specifies the name of this named data to the core DD routing

algorithm. When the DD core receives an interest for named data that has previously been

registered, a callback function — the tasking thread — is invoked to handle the production of

data corresponding to this named interest. On the other hand, when the DD core inside the

sensor node receives a named interest for named data that has not been previously registered,

the DD core will either forward the interest message to its neighbors or drop the interest

message altogether. An example DD query is shown below in Figure 8.6 while the data

returned from the query is shown in Figure 8.7. Figures 8.6(a)–(b) show a sink node, a node

interested in some data, along with other sensors in some WSN. When a node is interested

in some data, it sends out an interest for that data. The node is then referred to as the

“sink” node, the node to which data will be “pulled” if any data matching the interest can

be produced by any other sensor node(s) in the WSN receiving the interest. Figure 8.6(a)

shows interests being flooded throughout the network, starting from the sink and diffusing

to all nodes in the sensor network. As these interests are diffused throughout the network,

gradients are set up along the reverse path of travel of the interests (Figure 8.6(b)).

Figures 8.7(a)–(c) show what happens after the interest is diffused throughout the net-

work. Once a sensor node receives an interest for data it can produce, it begins producing

that data. This node is now known as the “source” of data production/transmission. Data

32

(a) Interest propagation (b) Initial gradients constructed

Figure 8.6: These figures show the most basic stages of interest propagation in a Directed
Diffusion wireless sensor network. Subfigure (a) shows an interest message flowing from the
sink — the node which sent out the interest — to the other nodes in the WSN. Subfigure (b)
shows the gradients which were set up by that propagating interest.

is forwarded hop-by-hop along multiple gradients and back toward the sink, establishing an

empirically fastest path from the sink node to the source of the data, by way of exploratory

data as shown in Figure 8.7(a). This exploratory data diffuses back across the network across

the gradients previously created by the interest’s propagation. The empirically fastest path

is chosen for reinforcement by the sink for fast data reception of future data packets trans-

mitted from the source. This path is chosen based on which neighbor first transmits data

to the sink node. Figure 8.7(b) shows the sink node transmitting a positive reinforcement

message to the neighbor from which exploratory data was first received. Subsequently, each

node along this path will send positive reinforcement messages along the gradient path until

the reinforcement message reaches the source node. From this time onward, data is sent

along this positively reinforced path, shown in Figure 8.7(c).

Periodically, however, interests and gradients time out. Therefore, it is necessary for

sinks to retransmit the fact they are interested in certain data, reestablishing gradients which

have also timed out. This may seem inefficient as far as wireless communication is concerned,

but the fact that we are dealing with possibly unreliable sensor nodes and unreliable wireless

links means that node and/or link failure or quality degradation may occur. In this case,

33

(a) Exploratory data sent (b) Reinforcement message sent along empirically
fastest path

(c) Data delivered along reinforced path

Figure 8.7: [These figures are continued from Figure 8.6.] Subfigure (a) shows a node
(the node filled with white) who has the capability to produce data matching the interest
forwarding that data back to the sink across the gradients. After the exploratory data reaches
the sink, the sink sends out a positive reinforcement from the neighbor who delivered the
data with shortest delay, shown in subfigure (b), and subsequent nodes along that gradient
are positively reinforced. Subfigure (c) shows data being forwarded along the reinforced
gradient back toward the sink. In this way, the sink “pulls” data from data sources along
gradients towards itself.

gradients and data paths once deemed useful are rendered useless by this dynamic network

topology making it necessary to reestablish paths from sources to sinks. The fact that paths

mend themselves in an on-demand fashion in a DD network is a very attractive feature of

the protocol, especially considering the unreliable nature of WSN nodes and their wireless

links.

34

8.1.2 Directed Diffusion and the Publish/Subscribe Messaging Paradigm

DD follows the publish/subscribe messaging paradigm. In this paradigm, data is divided

into various pre-determined classes, and any entity interested in any data must express

interest in the data by providing a key word corresponding to the name of the pre-determined

class of data. Senders (publishers) of data are not given any information of specific receivers

(subscribers) to which their data will be sent. Instead, senders simply wait until some entity

expresses an interest in some named data and only then do they begin sending out that

data. In general, publishers send out data only when they know some subscriber wants, or is

interested in, that class of data. In this way, subscribers subscribe only to information they

want, and publishers only send data when they know someone wants the data they publish.

Considering Figures 8.6 and 8.7 again, the sink node is considered to be a subscriber

because it is interested in data from some other entity in the network. The sink node

subscribes to some named data by sending out an interest. A sensor node, the source,

responds to the subscription by publishing data corresponding to the received interest.

8.1.3 Directed Diffusion Sensor Node Application Programming

To understand how DS itself functions, it becomes necessary for the reader to understand

how DD functions, and, in particular, it is necessary to understand how DD tasks sensor

node applications using the pure DD API.

In any pure DD sensor node application, there are at least two threads of control which

run concurrently. The sensor node application programmer creates what is defined as the

tasking thread — it is specified by the pure DD API that the programmer must create

this tasking thread. This tasking thread’s only purpose is to wait for an interest message

coming from DD. This interest message serves to task the sensor node application. Once

this interest message arrives at the tasking thread, a simple integer variable (originally set

to zero) which is shared between the two threads is incremented by one to alert the other

thread, which is defined as the main thread, that the sensor application has been tasked.

35

All this time, the main thread busily waits checking to determine if the shared variable has

been incremented past zero. Once this shared variable has been incremented past zero, the

sensor node application should begin its job. Still, the tasking thread continues to run in

the background ready to receive what the DD authors call a disinterest message. Once the

tasking thread receives this disinterest message, it decrements the shared variable. Because

the variable is shared, the main thread “sees” this change as soon as it next gains more

CPU cycles and continues to busily wait for the shared variable to be incremented past zero

once again by an interest message arriving at the tasking thread. In this way, the sensor

node application can be tasked, untasked and retasked indefinitely. To see how the main

and tasking threads using the pure DD API interact with each other, please see Figure 8.8.

sensor_app_main_thread() { sensor_app_tasking_thread() {
while (1) { if (interest)

if (shared_var > 0) shared_var++;

/* sensor code */ if (disinterest)

} shared_var--;

} if (data)

/* send to app */

}

Figure 8.8: These two threads of execution illustrate — in pseudo-code — how the main and
tasking threads are expected to be implemented when using the pure DD API. Notice the
shared variable which is incremented and decremented when the tasking thread receives an
interest or disinterest, respectively.

In Chapter 9, it will become clear why this detour with the explanation of how pure

DD applications function was taken.

8.2 Dynamic Services

Dynamic Services (DS) is an integral part of this solution of information retrieval from

the DD WSN, and there is a convenient API that will be detailed in Chapter 9 for sensor node

applications to be built on top of DS using DS as a service layer. As previously mentioned, DS

is a middleware layer built on top of the DD protocol on wireless sensor nodes to provide the

36

services necessary to facilitate IP-based information retrieval from sensor node applications

built with this type of architecture. Note the difference between the normal DD network

stack and the new network stack including the middleware layer DS shown in Figure 8.9. DS

is placed between the DD network layer and the application layer. The services provided by

the DS middleware layer to the sensor node application programmer allows the sensor node

application programmer to ignore the details of the DD networking protocol. The sensor

node application programmer need only worry about the neat and clean API to the DD

protocol provided by DS. This flexible way to program these WSN nodes is one of the nicest

features of the DS service layer.

Figure 8.9: This figure shows the difference between the original Directed Diffusion network
stack and the modified network stack detailed in this thesis. The major difference is the
Dynamic Services service layer included between the application and Directed Diffusion
layers.

DS also allows tasking of nodes, specifically for information or data production. Ap-

plications register the name of data they can provide with the DS service layer. Until an

application receives an interest for this registered named data, it sleeps. Upon receipt of an

interest for this registered named data, the sensor node application is awakened by the DS

service layer to begin producing the corresponding data. Sensor node applications then send

out their produced data, again, through the DS service layer.

37

8.3 Device Roles

There are three main devices which act in this system. They are External Agents, sensor

nodes and the gateway node. These will be introduced and summarized in the sections that

follow.

8.3.1 External Agents

An IP-based host that is not a part of the WSN is termed an External Agent, or EA.

This is because, with respect to the sensor nodes in the WSN and the gateway node that

connects the WSN to the Internet, the IP hosts are external to the WSN. Notice the curved

dotted line in Figures 8.1 and 8.2. This dotted line represents the boundary between External

Agents and the WSN. EAs use the API given in Chapter 10 to query and task the sensor

nodes in the WSN via the gateway node used to identify the WSN. It is assumed that EAs

are full-fledged computers with a full TCP/IP networking stack and can access the Internet

or IP network on which the WSN resides.

The EA stack is shown in detail in Figure 8.10. Each EA application running on an EA

node possesses its own copy of the EA API. EA applications use this API to submit requests

to and receive data from remote WSNs.

8.3.2 Sensor Nodes

The wireless sensor nodes and the data they provide are one of the main components

of the system. Sensor nodes must be programmed to recognize interests for which they can

supply data. When a sensor node receives an interest for which it can supply data, routines

are activated to actually produce the named data. All sensor nodes are assumed to have an

antenna capable of wireless communication and sensors that are able to produce some data.

Sensor nodes are also assumed to have at least a minimal multitasking operating system

(OS) as the middleware layer DS running on each node is its own unique process.

38

Figure 8.10: This figure shows the networking stack of External Agents in detail. The
highlighted area — the EA API (External Agent API) — is a major contribution of this
thesis. This layer provides services to the External Agent applications and utilizes the
transport services of the lower layers.

The DS-enabled DD networking stack is shown again with more detail in Figure 8.11.

Each sensor node application possesses its own version of the DS API. Sensor applications

use the API to communicate with the DS service layer, and DS communicates with sensor

applications through the DS API.

Figure 8.11: This figure shows the Dynamic Services-enabled Directed Diffusion networking
stack in detail. The highlighted areas — the DS API and Dynamic Services layers — are a
major contribution of this thesis.

39

8.3.3 Gateway Node

The gateway node sits on the boundary of the WSN and directs traffic coming into and

going out of the WSN. Any interest or subscription from an IP-based host first arrives and

is processed through the gateway node before the interest enters the WSN. In this way, the

gateway node acts on behalf of IP-based hosts in the act of forwarding interest messages

onward to the WSN. From the point of view of the WSN, the gateway node acts as a sink

for requests originating from External Agents. Therefore, any named data or publication

from a sensor node is first routed through the WSN using the DD networking protocol to the

gateway node. The gateway node then matches the received data name to named interests

from External Agents who have previously subscribed to this named data and forwards the

data through IP to the interested IP-based host(s).

The gateway node’s networking stack is shown with more detail in Figure 8.12. When the

gateway node receives a request from an EA on its IP networking stack, the request travels

up the IP-side networking stack to the gateway node application. The gateway application

processes this request and converts it into an interest understood by the Directed Diffusion

networking protocol. The gateway application then forwards this new packet onward through

its Directed Diffusion networking stack onward to the Directed Diffusion network.

Figure 8.12: This figure shows the networking stacks of the gateway node in detail. The
highlighted “Gateway Application” is a major contribution of this thesis.

40

Chapter 9

Dynamic Services

Dynamic Services is a new middleware layer presented in this thesis built on top of DD

which makes the programming of individual wireless sensor nodes and data gathering tasks

over a DD network easier. In this chapter, details of DS and how it is used in the overall

system are given.

There are at least two types of programmers which must be involved in programming

this type of WSN querying architecture, the WSN programmer using the DS API and the

IP-based application programmer using the External Agent API. IP-based application pro-

grammers use the EA API provided in Chapter 10 and sensor network node programmers use

a simplified DD API provided as an interface to DS discussed further later in this chapter.

From the point of view of the sensor nodes in the WSN, no sensor node is aware that a

host on another network is retrieving information from or tasking a sensor node. IP-based

hosts simply “request” that the gateway node submit interests on their behalf. The gateway

node maintains a map of this information, a map from named data to IP address, so that

once data is received from the WSN by the gateway node, the gateway node can simply look

into this map, retrieve the IP address(es) corresponding to the name of the data received,

and forward the data packet payload onward to the IP host(s).

9.1 Dynamic Services Include Structure

To understand the rest of this paper, it becomes important to understand the include

structure of the software in this system. The include dependency graph is shown in Fig-

ure 9.1.

41

(a) dynServ.cc (b) <sensorApp>.cc

(c) gateway.cc (d) <externalAgent>.cc

Figure 9.1: Subfigures (a)–(d) show the dependence among the different header files of DS,
the gateway node and sensor and External Agent applications. Files near the root (bottom)
of the graph depend on files nearer to the leaves (top) of the graph. dynServExt.h defines
each data types’ formal structure definition. gatewayDefs.h define some useful definitions
which enable the External Agent API to submit requests to the gateway node. dynServ-

DiffDefs.h define methods which allow DS and the gateway node to extract information
from DD packets. dynServAPI.h contains function definitions which enable sensor node
applications to communicate with and use the services provided by DS.

Figure 9.1(a) represents the include structure of DS. dynServ.cc — also known as DS

— is, at its heart, a DD application and therefore requires access to the pure DD API.

diffapp.h is provided by the authors of DD for just this purpose. diffapp.h is included in

dynServDiffDefs.h, a header file which contains certain definitions that allow DS to pack

data into and extract data from DD packets. This header file, in turn, is included in dyn-

Serv.h, the main header file for DS containing mostly class definition information. Extra

information used mostly by DS but also needed in the gateway node, External Agents and

42

sensor nodes is included in dynServExt.h. This extra information is stored here so that it

is not necessary for External Agents and the gateway and sensor nodes to include all of the

class information for DS contained in dynServ.h. For instance, dynServExt.h contains the

actual data structure definitions supported by DS corresponding to the names reserved for

named data. This information is needed by both the gateway node and DS in the sensor

nodes so that the gateway node can have knowledge of the size of data packets and so that

sensor node and External Agent applications can have access to the structure definitions

they produce and consume, respectively.

The gateway node’s software structure, shown in Figure 9.1(c), also contains diff-

app.h and dynServDiffDefs.h because the gateway node also needs direct access to the

DD network as well as information on how to extract data destined for IP-based hosts from

DD packets. dynServDiffDefs.h and diffapp.h are included for this reason. The gateway

node, like DS running on the sensor nodes, needs access to dynServExt.h because the actual

data structure definitions are defined here. This is so that the gateway node knows the size

of data packets to transmit to External Agents. gateway.h contains mostly class definition

information and is supplemented by gatewayDefs.h. gatewayDefs.h contains information

needed by External Agents to enable them to send requests to the gateway node.

Sensor node applications, represented by Figure 9.1(b) should include, at a minimum,

the header file dynServAPI.h. This header file contains function declarations of the services

provided by the DS API and enables sensor node applications to use the services provided

by DS. It is also necessary for sensor node applications to be aware of the associated data

structure definitions, located in the file dynServExt.h, as these are the actual data structure

definitions the sensor node applications will fill in order to later transmit in response to

interests.

Finally, Figure 9.1(d) represents an External Agent’s dependency graph. EA code should

include, at a minimum, the header file externalAgentAPI.h. External Agents need access

to subscribe, unsubscribe and receive functions, and these are defined here. Furthermore,

43

External Agents also require access to the named data structure definitions provided in

dynServExt.h since these structures are to be received from the remote WSN(s).

9.2 Inside Dynamic Services

The main idea of DS is to move the complexity out of the individual sensor node

applications and into the DS service layer. For sensor node applications to be able to use the

services provided by DS, DD and the DS service layer must first be running on the sensor

node. Then, sensor node applications can begin running. The DS API functions available

to the sensor node application are called within the sensor node application and information

is passed from the sensor node application, through a message passing interface (MPI), to

the DS service layer. Any information coming from DS to the sensor node application must

also pass through this MPI.

As mentioned previously in Chapter 8, DS is a regular DD application and, therefore,

contains a tasking thread and a main thread. However, in DS, these threads do not function

exactly as the DD authors intended. Put another way, these threads’ jobs have been redefined

to better suit DS as a service layer. Now, there is no shared variable through which the main

thread is tasked by the tasking thread. Rather, each thread now has some job to perform on

behalf of the sensor node application or on behalf of the DD network. Please see Table 9.1

for a summary of the redefinition of the tasking and main threads.

To better understand how the two threads inside of DS work, know that communication

from the DS API to DS and from DS to the DS API takes place using standard System V

Message Queues. The DS API will be introduced in detail shortly in the section which

follows. In short, sensor node applications send register and unregister, data, check publish

status and subscription and unsubscription messages to DS through the DS API through

the Dynamic Service Message Queue. Tasking, data and check publish status responses are

sent from DS to the DS API Message Queue reserved inside of each copy of the DS API.

See Figure 9.2 for a simplified diagram of the types of messages which the DS service layer

44

Pure DD With DS

Tasking Thread increments or decre-
ments value of shared
variable

tasks sensor node applications through
their respective Message Queues when
a tasking message is received from DD
and passes data to the appropriate sensor
node applications through their respec-
tive Message Queues when a data mes-
sage is received from DD

Main Thread polls shared variable to
determine if tasking of
the sensor application
has taken place

waits at Message Queue for sensor node
application requests or data

Table 9.1: This table summarizes the redefinition of the main and tasking threads using the
pure DD API versus using the services provided by DS.

and the DS API communicate with each other and through which Message Queues this

communication takes place. It is worth mentioning here that the Message Queues used as

the MPI for information passing from the DS API to DS and from DS to the DS API are

totally hidden from sensor applications. That is, sensor applications are totally unaware

that information is being passed to and from DS and the DS API through Message Queues.

The main thread in DS sleeps while awaiting requests sent through its own Message

Queue eliminating the polling, or busy waiting, of pure DD sensor node applications. See

Figure 9.3 for the pseudo-code corresponding to the main and tasking threads inside DS.

Note the difference between the main and tasking threads in DS (Figure 9.3) versus the main

and tasking threads in pure DD applications (Figure 8.8).

The register and subscription messages sent to DS through the DS API through DS’s

own Message Queue enter information into one or more internal map structures which DS

maintains to keep track of sensor node applications. These map structures retain information

regarding the data type each sensor node application produces and the data types to which

the sensor node applications are subscribed as well as the Message Queue information of each

sensor node application through which DS sends responses or data to the sensor application.

45

Figure 9.2: This figure shows a simple illustration of which messages are passed between the
DS API and the DS Message Queue and from DS to the DS API’s Message Queue. Notice
that each sensor application’s DS API has its own Message Queue which it maintains. The
DS API receives tasking, data and check status responses through this Message Queue.
There is only one globally accessible Message Queue which is used to input information from
the DS API to the Dynamic Service Message Queue.

DS_main_thread() { DS_tasking_thread() {
while (1) { if (interest)

/* block at DS /* task app(s) via

Message Queue */ DS API Message Queue */

} if (disinterest)

} /* untask app(s) via

DS API Message Queue */

if (data)

/* send to app(s) via

DS API Message Queue */

}

Figure 9.3: These two threads of execution illustrate — in pseudo-code — how the main and
tasking threads are implemented inside Dynamic Services.

After sensor applications are up and running, interests coming from the DD network ar-

rive at the tasking thread in DS. Because the tasking thread also has access to the previously-

mentioned internal map structures, DS can use the information contained in these map struc-

tures to task the appropriate sensor node application(s). DS looks into these map structures,

46

locates the Message Queue information of the sensor application(s) and sends tasking mes-

sages up to sensor node application through the DS API Message Queue, a Message Queue

maintained in each sensor application’s DS API. For data arriving at the sensor node after

a sensor applications submits a subscription request for named data, named data arriving

at DS through the tasking thread is sent to the sensor application in a similar manner as

tasking information is sent.

9.3 Dynamic Services API Available to Sensor Role

The DS API provides the interface between the application layer and the Directed

Diffusion layer on the sensor nodes. There are eight basic functions which were implemented

to enable DS to perform its job. The C++ function declarations and explanations are as

follows:

• int REGISTER DATA TO PRODUCE(const char *dataType, int *msgQueueID, char

*appID, int *DSmsgQueueID);

– The REGISTER DATA TO PRODUCE function takes in four parameters. The

first parameter is the name of the data type this particular sensor node application

can produce. The second and third parameters are a returned Message Queue ID

— to enable DS to communicate with the sensor application — and an application

ID assigned by DS. Process communication between sensor applications and DS

take place through System V Message Queues, and these returned values aid in

this communication. The last parameter is the Message Queue ID of DS returned

from the function to enable quicker access to DS’s Message Queue from the sensor

application. This function acts to register the sensor node application with DS. A

successful call to this function returns one, otherwise it returns negative one. This

function effectively tells the DD core that any interests matching this registered

data type should not be dropped but instead handed over to the DS tasking

47

thread so that DS can alert the sensor node application to begin producing data

corresponding to the received data type name. No other function from this API

should be called without first calling this function.

• int UNREGISTER DATA TO PRODUCE(const char *appID, const char *dataType,

int DSmsgQueueID);

– The UNREGISTER DATA TO PRODUCE function takes in three parameters.

The first and last parameters are the returned application ID and DS Message

Queue ID from the function REGISTER DATA TO PRODUCE. The second pa-

rameter is the data type name the sensor node application no longer wishes to

produce. This function tells the diffusion core that the DS tasking thread no

longer wants to receive any interest of the data type name specified in the second

parameter. In effect, this tells the DD core that this particular sensor node appli-

cation can not or will not produce any more data corresponding to the data type

name given as the second parameter to this function. One is returned on success,

and negative one is returned on failure.

• void AWAIT TASK(int msgQueueID);

– After the sensor node registers the data type it can produce through calling the

REGISTER DATA TO PRODUCE function above, it should call the AWAIT -

TASK function with the returned Message Queue ID from the function REGIS-

TER DATA TO PRODUCE to wait for any interests, also called subscriptions,

coming from DD that matches its previous registration. When the AWAIT TASK

function returns, the sensor node application programmer should then begin pro-

ducing its registered type of data and send it out into the DD network using the

PUBLISH DATA function described next.

• int PUBLISH DATA(int DSmsgQueueID, const Data *data);

48

– When a sensor node application has been tasked and is ready to send data onto

the DD network, it simply calls PUBLISH DATA with the second parameter

pointing to the data it wishes to transmit and with the first parameter being DS’s

Message Queue ID returned from the call to the function REGISTER DATA -

TO PRODUCE. This sends out the data through the DS layer onto the Directed

Diffusion network. If the data were published successfully, one is returned; other-

wise, negative one is returned. The sensor node application programmer should

be careful not to publish data for data type names for which he has not previously

registered through a call to the function REGISTER DATA TO PRODUCE.

• int SUBSCRIBE TO DATA(const vector<string> *dataTypeNameVector, const char

*appID, int DSmsgQueueID);

– Some sensor node applications need one or more different types of data from other

sensor nodes within the same WSN in order to produce their named data. The

function SUBSCRIBE TO DATA takes care of this functionality of requesting

other named data types from inside the WSN. The function takes in a pointer

to a C++ STL vector of strings, the application ID and DS’s Message Queue

ID returned from the function REGISTER DATA TO PRODUCE. strings are

loaded into the vector container in the standard manner using the vector class’s

member function “push back.” SUBSCRIBE TO DATA returns one on success

and negative one on failure. This function effectively sends out a named interest

onto the DD network for the names of data types packed into the vector structure.

• int UNSUBSCRIBE FROM DATA(const vector<string> *dataTypeNameVector, const

char *appID, int DSmsgQueueID);

– Sensor nodes that require data from other sensor nodes within the same WSN may,

at some point, not require the named data for which it was previously interested.

A call to UNSUBSCRIBE TO DATA with the data types packed into the C++

49

STL vector the application no longer wishes to receive and the application ID

returned from the function REGISTER DATA TO PRODUCE will alert the DD

core that the sensor node application no longer wishes to receive this named data.

DS’s Message Queue ID is also required. The function returns one on success and

negative one on failure.

• void AWAIT DATA(int msgQueueID, const Data *data);

– After a sensor node application calls the SUBSCRIBE TO DATA function, it

should immediately call the AWAIT DATA function with the Message Queue ID

returned from the function REGISTER DATA TO PRODUCE and a pointer to a

Data buffer. This blocking function call simply waits for data. When the function

returns, the Data structure pointed to by the second parameter will be filled with

the received data. The function assumes the programmer has reserved sufficient

storage space for the returned data type Data. The function returns nothing.

• int CHECK PUBLISH DATA STATUS(int DSmsgQueueID, int msgQueueID, const

char *appID, const char *dataType);

– After a node is tasked and begins publishing, or sending, data, the node should

periodically check to see if it should continue producing data for interests it re-

ceived in the past. This is done with the CHECK PUBLISH DATA STATUS

function. The programmer should supply CHECK PUBLISH DATA STATUS

with DS’s Message Queue ID, its own Message Queue ID and application ID and

the data type name the programmer wishes to check to see if data production

should continue. The function returns one if and only if data should continue

to be produced and returns negative one if and only if data production should

discontinue to be produced for the specified data type.

50

9.4 DS API Example Usage

This section gives a simple example usage of the DS API as it is important to understand

the DS API for implementing wireless sensor network applications.

There are two different classes of sensor node applications. One class of sensor node

application, when tasked, simply produces the requested named data. These sensor node

applications are called simple producers. The other class of sensor node applications, however,

depends upon other named data types in the local WSN in order to produce its named data.

These sensor node applications are called complex producers. Example API usage details

and examples of each type of sensor application are now given.

9.4.1 Simple Producer API Usage Details & Example

Simple producers, when tasked, simply produce the named data which they were pro-

grammed to produce.

When viewed from the network level, the simple producer messaging process looks like

that shown in Figures 9.4(a)–(b). See Figure 9.5 to see how messages are communicated

between the DS API and the DS service layer for simple producers.

As can be seen in Figure 9.5, sensor applications must first register their intent to

publish data. This registration message is passed to the DS service layer through the DS

API, reaches the DD core and a registration response message is eventually passed back to the

sensor application through the DS service layer and through the DS API. If this registration

response indicates a successful registration, the sensor application begins to await tasking.

At some point in the future, an interest message flooding the DD network arrives at the

sensor node at the DD core. The DD core realizes that a registration for this data type has

been received in the past and invokes the tasking thread in DS. The tasking thread in DS

then tasks the sensor application through the DS API. The sensor application then begins

producing the named data it was programmed to produce. Once the sensor application has

data to send out onto the network, it publishes this data through the DS API, through the

51

(a) Simple Producer Interest Propagation (b) Simple Producer Data Production

Figure 9.4: These figures show how data production takes place when a sensor node ap-
plications known as a simple producer is tasked. Subfigure (a) shows a tasking message
originating from the IP network arriving at the gateway node. The gateway node converts
this message into a DD interest message which is flooded to the rest of the nodes in the
WSN. Subfigure (b) shows the simple producer simply sending or publishing its named data
onto the network. This data flows to the gateway node, and the gateway node forwards the
data along to the interested IP-based hosts.

DS service layer, and the DD core, at last, actually sends the data out onto the network. A

publish success message is propagated up to the sensor application through the DS service

layer and through the DS API. Ever so often, the sensor application should check whether it

should continue producing the data it was once tasked to produce. The sensor application

submits a message to the DS service layer requesting its status to continue producing data.

If a disinterest message were received from the DD network before this request is made, the

DS service layer replies to the check publication status message with a message indicating

that data production should cease. The sensor application should then halt data production

and continue to await tasking. The whole simple producer process repeats thus, henceforth.

Now that the reader has been acclimated to what is actually happening at the network

layer and between the various layers of the networking stack, this thesis now continues with

the example DS API usage for simple producers: At a minimum, all sensor node applications

52

Figure 9.5: This figure shows, in detail, how messages are exchanged for simple producers.

that wish to use the DS API must include the header file dynServAPI.h to enable access to

the DS API functions described in the previous section.

First, simple producers must declare the data type name it wishes to produce and the

Data structure it intends to send out onto the DD network. This can be done, simply, using

the following:

1: char *dataTypeToProduce = "HUMIDITY";

2: Data humidityData;

Since there are three return values from the function REGISTER DATA TO PRODUCE,

space should be reserved for these values thus:

1: int myMsgQueueID;

2: char myAppID[MAX APP ID LENGTH];

3: int DSMsgQueueID;

53

MAX APP ID LENGTH is a constant defined in the included dynServAPI.h header

file.

Once this has been done, the sensor node application can call REGISTER DATA TO -

PRODUCE thus:

1: if (REGISTER DATA TO PRODUCE(dataTypeToProduce, &myMsgQueueID, myAppID,

&DSMsgQueueID) != 1) {

2: /* failure code */

3: }

4: /* success code */

Immediately after a successful function call to REGISTER DATA TO PRODUCE, the

simple producer should call the function AWAIT TASK as follows:

1: AWAIT TASK(myMsgQueueID);

The simple producer will block at this AWAIT TASK function, and the whole simple

producer process will sleep. The function returns nothing so there is no need to save any re-

turn value. Once this blocking function returns, the simple producer should begin producing

the named data it registered to produce. Following is an example of named data production

and sending the data onto the DD network using the PUBLISH DATA function:

1: strcpy(humidityData.dataType, dataTypeToProduce);

2: humidityData.DataUnion.humidityStruct.dataField1 = /* some data */;

3: humidityData.DataUnion.humidityStruct.dataField2 = /* some data */;

4: /* and so on filling each data field in the Data structure */

5: if (PUBLISH DATA(DSMsgQueueID, &humidityData) != 1) {

6: /* failure code */

7: }

54

As previously mentioned, the sensor node application should periodically check with

DS to determine if named data production should continue or cease. Recall named data

production should cease if and only if -1 is returned and should continue if and only if 1

is returned from the CHECK PUBLISH DATA STATUS function. This can be done as

follows:

1: if (CHECK PUBLISH DATA STATUS(DSMsgQueueID, myMsgQueueID, myAppID,

dataTypeToProduce) == -1) {

2: /* code to halt data production */

3: }

If data production should cease, the long-lived sensor node application could return

control to the AWAIT TASK function to await further tasking. Otherwise, the sensor node

application could unregister from DS in order to shut down gracefully. This can be done as

follows:

1: if (UNREGISTER DATA TO PRODUCE(myAppID, dataTypeToProduce, DSMsgQueueID)

== -1) {

2: /* failure code */

3: }

4: /* graceful exit code */

This concludes the simple producer example DS API usage. In the next section, an

example of a complex producer’s usage of the DS API is given.

9.4.2 Complex Producer API Usage Details & Example

Unlike simple producers, when complex producers are tasked, they require named data

produced by other sensor node applications within the local WSN in order to produce their

named data.

55

When viewed from the network level, the complex producer messaging process looks

like that shown in Figures 9.6(a)–(d). See Figure 9.7 to see how messages are communicated

between the DS API and the DS service layer for complex producers.

As can be seen in Figure 9.7, like simple producers, sensor applications must first register

their intent to publish data. This registration message is passed to the DS service layer

through the DS API, reaches the DD core and a registration response message is eventually

passed back to the sensor application through the DS service layer and through the DS

API. If this registration response indicates a successful registration, the sensor application

begins to await tasking. At some point in the future, an interest message flooding the DD

network arrives at the sensor node at the DD core. The DD core realizes that a registration

for this data type has been received in the past and invokes the tasking thread in DS. The

tasking thread in DS then tasks the sensor application through the DS API. At this point,

the difference between a simple producer and a complex producer become apparent. When

a complex producer is tasked, unlike a simple producer, the complex producer subscribes

to one or more other data types. This subscription travels through the DS API and into

the DS service layer. The DS service layer then submits these subscriptions to the DD core

where the subscriptions are turned into DD interest packets which flood the DD network.

Upon successfully transmitting this/these interest(s) onto the DD network, a subscription

success message is passed up through the DS service layer and up to the sensor application

through the DS API. The complex producer then begins to await data from other sensor

applications. Eventually, another/other sensor(s) begin(s) to produce the named data for

which the complex producer sent (a) subscription(s). The data eventually arrives at the DD

core and is passed up to the DS service layer. The DS service layer looks into its internal

map structures, determines the sensor applications which subscribed to this data and sends

the data to the appropriate sensor applications through the DS API. The data arrives at the

sensor application through the DS API. It is advised that after data is received that a check

publication status message should be sent to DS; otherwise, the application continues to block

56

(a) Complex Producer Interest Propagation (b) Complex Producer Being Tasked and Subscribing
to Data

(c) Complex Producer Receiving Subscription Data (d) Complex Producer Producing Data

Figure 9.6: These figures show how data production takes place when a sensor node ap-
plications known as a complex producer is tasked. Subfigure (a) shows a tasking message
originating from the IP network arriving at the gateway node. The gateway node converts
this message into a DD interest message which is flooded to the rest of the nodes in the
WSN. Subfigure (b) shows the tasking of the complex producer. After a complex producer
is tasked, it sends out interest messages for other named data types in the local WSN. Other
simple (or complex) producers within the WSN are then tasked to produce their named
data (Subfigure (c)). Subfigure (d) shows this data flowing from the simple (or complex)
producers to the originating complex producer. The complex producer then uses this other
named data to produce its own named data. This data flows to the gateway node, and the
gateway node forwards the data along to the interested IP-based hosts.

awaiting data or publishing data unnecessarily and also causing other sensor applications

to produce data unnecessarily. In the diagram, the first check publication status returns a

57

Figure 9.7: This figure shows, in detail, how messages are exchanged for complex producers.

message indicating that data production should continue because no disinterest message has

been received to indicate data production should halt. Then, the received data is processed

and its own named data is sent through the DS API, through the DS service layer, to DD

and eventually out onto the DD network. Just like for a simple producer, the fact that the

data was published successfully is returned to the sensor application. The sensor application

should then continue to await data. At some point, a disinterest may be received to untask

the complex producer. After the next data is received at the complex producer application,

the returned check publication status message indicates that data production should halt.

58

Since this complex producer has previously subscribed to data which is no longer needs, it

send (an) unsubscription(s) through the DS API, through the DS service layer and to the

DD core. The DD core converts this/these unsubscription request(s) into (a) disinterest(s)

and transmits them onto the DD network. Upon successfully transmitting the disinterest(s),

the DD core responds to the DS service layer with a success which is propagated up to the

sensor application via the DS API. The complex producer should then await further tasking,

and the process repeats henceforth.

In the rest of this section, an example usage of a complex producer is given. Again, a

complex producer is a sensor node application which requires named data from other sensor

node applications in order to produce its registered named data type.

In this example, assume that this complex producer wishes to produce data which is a

composite of other sensor node applications’ humidity readings. First, complex producers,

like simple producers, must declare the data type name it wishes to produce and the Data

structure it intends to send out onto the DD network. Also, the complex producer needs to

reserve space for Data returned from the DD network. This can be done using the following:

1: char *dataTypeToProduce = "COMPOSITE HUMIDITY DATA";

2: Data compositeHumidityData, dataFromDD;

Complex producers also need to reserve space for the same three returned values from

the function REGISTER DATA TO PRODUCE. This is done thus:

1: int myMsgQueueID, DSMsgQueueID;

2: char myAppID[MAX APP ID LENGTH];

Again, MAX APP ID LENGTH is a constant defined in the included dynServAPI.h

header file.

Just like the simple producer, the sensor node application can then call REGISTER -

DATA TO PRODUCE thus:

59

1: if (REGISTER DATA TO PRODUCE(dataTypeToProduce, &myMsgQueueID, myAppID,

&DSMsgQueueID) != 1) {

2: /* failure code */

3: }

4: /* success code */

Immediately after a successful function call to REGISTER DATA TO PRODUCE, the

simple producer should call the function AWAIT TASK as follows:

1: AWAIT TASK(myMsgQueueID);

Once this blocking function returns, the complex producer should subscribe to the

named data types it requires in order to produce its registered named data type with a call

to SUBSCRIBE TO DATA. Since this complex producer needs only “HUMIDITY” to do

its job, this is the only named data type to which it should subscribe. The subscription is

made thus:

1: vector<string> dtNameVec;

2: dtNameVec.push back(string("HUMIDITY"));

3: if (SUBSCRIBE TO DATA(&dtNameVec, myAppID, DSMsgQueueID) == -1) {

4: /* failure code */

5: }

Immediately after this function call to SUBSCRIBE TO DATA, the complex producer

should wait for this data to arrive AWAIT DATA. This is accomplished thus:

1: AWAIT DATA(myMsgQueueID, &dataFromDD);

There is no return value for this function so there is no need to reserve space or check

for a returned value. AWAIT DATA is also a blocking function call so, once the function

call has returned, the sensor node application programmer can rest assured there is some

60

data available for processing. At this point, he/she cannot be sure what type of named data

is available. Recall in the previous section which provides an example for a simple producer,

there is a step just before sending where produced data type name is copied into the structure

which is to be sent. In receivers, this data type name must be checked to determine which

data type has actually been received. If the complex producer only subscribed to one named

data type — as in this example — the data type name of the received data may not need to

be checked. But, for other complex producers which subscribe to two or more named data

types, it becomes necessary to distinguish the received data type with a simple check. This

is done as follows:

1: if (strcmp(dataFromDD.dataType, "HUMIDITY") == 0) {

2: /* process the data type accordingly */

3: } else if (strcmp(dataFromDD.dataType, /* some other data type */"")

== 0) {

4: /* code to process some other data type */

5: } else {

6: /* code to handle unknown data type */

7: }

Code to handle publishing of data is the same for complex producers as it is for simple

producers. See the simple producer example in the previous section.

Just like the simple producer, the sensor node application should periodically check

with DS to determine if named data production should continue or cease. Recall named

data production should cease if and only if -1 is returned and should continue if and only

if 1 is returned from the CHECK PUBLISH DATA STATUS function. This can be done as

follows:

1: if (CHECK PUBLISH DATA STATUS(DSMsgQueueID, myMsgQueueID, myAppID,

dataTypeToProduce) == -1) {

61

2: /* code to halt data production */

3: }

In the body of the block of code in the preceding paragraph containing /* code to

halt data production */, should data production discontinue in the complex producer,

the sensor node application should unsubscribe from the named data types in this block of

code to which it is currently subscribed. This can be accomplished with a call to the function

UNSUBSCRIBE FROM DATA thus:

1: if (UNSUBSCRIBE FROM DATA(&dtNameVec, myAppID, DSMsgQueueID) == -1) {

2: /* failure code */

3: }

4: /* success code */

Again, just like in the simple producer, complex producers should, to exit gracefully,

unregister with a call to the function UNREGISTER DATA TO PRODUCE. Complex pro-

ducers should also, before unregistering, be sure to unsubscribe from any named data types

for which it currently hold subscriptions.

62

Chapter 10

External Agent Role

An External Agent is any IP-based host not directly connected to the WSN and can

include anything from SmartPhones and PDAs to fully-functioning computers or servers.

The key idea is that these devices are decoupled from the WSN protocol and are not a part

of the WSN.

One feature of this architecture is that sensor nodes do not expend energy on any sensing

or transmission task until an External Agent submits an interest to the WSN. Therefore,

External Agents are key players in this network architecture — they actually drive the

activities of the WSN sensor nodes by sending requests to the gateway node. To see this,

consider the API for sensor node applications given above. Applications first register a data

type it can produce and AWAIT TASK ing. That is, sensor node applications sleep until

they receive tasking information from some External Agent. This increases the lifetime of

the WSN because sensor nodes sleep until they receive tasking information.

10.1 External Agent API

To demonstrate the approach in this thesis actually works from an External Agents’

point of view, a simple API was written in C++ that allows any External Agent to be able

to retrieve information from a Dynamic Services-enabled Directed Diffusion WSN. External

agents must include the header file externalAgentAPI.h in order to gain access to these

functions.

There are three basic functions, each with a specific job. The function prototypes are

shown and described thus:

63

• int GATEWAY SUBSCRIBE(const vector<struct sockaddr in> *addrVec, const vector<string>

*dataTypeVec);

– The GATEWAY SUBSCRIBE function take in two parameters. The first param-

eter is a pointer to a standard C++ STL (Standard Template Library) vector

of struct sockaddr in structures that the programmer has already filled with

the appropriate remote WSN gateway IP address and port number information.

These struct sockaddr in structures are filled the normal way as for UDP socket

programming. The function’s second parameter is a pointer to a vector of names

of data the agent wishes to receive from the remote WSN(s). The standard C++

STL type string that is loaded into the vector represents the named data type

the External Agent is requesting from the DD network. The External Agent

packs strings into this vector just as he would a normal C++ STL vector.

The int that is returned from this function call is actually a UDP socket descrip-

tor through which the gateway node will send data back to the External Agent.

The socket descriptor is then used in the RECEIVE FROM GATEWAY function

to actually receive the data sent from the remote gateway node(s).

• void RECEIVE FROM GATEWAY(int sock, const Data *data);

– After the External Agent application calls GATEWAY SUBSCRIBE, it then

needs to prepare itself to receive any information sent by the gateway node in

response to the subscription. The socket descriptor returned from GATEWAY -

SUBSCRIBE is used as the first parameter to RECEIVE FROM GATEWAY,

and the underlying implementation simply uses this socket descriptor in the fa-

miliar recv from the standard transport layer’s socket library. This function is a

blocking call so the External Agent code will block at this function until any data

is received from the gateway node, just like the standard TCP/UDP socket blocks

until data is received. The second parameter is a pointer to the placeholder where

64

the data should be stored once this function returns. The function assumes the

programmer has reserved sufficient storage space for the returned data.

• int GATEWAY UNSUBSCRIBE(int sock, const vector<struct sockaddr in> *addrVec,

const vector<string> *dataTypeVec);

– After the External Agent is no longer interested in a particular type of data from

one or more remote WSNs, it uses the socket descriptor returned from GATE-

WAY SUBSCRIBE as the first parameter. The External Agent can choose from

which remote WSN(s) it wishes to unsubscribe by packing into the second vector

the struct sockaddr in structures corresponding to those remote WSNs. The

data types in which the External Agent is no longer interested is packed into the

second vector. This makes the gateway node aware of when an External Agent is

no longer interested in a particular type of named data. Once no External Agents

are interested in a particular type of data, the gateway node sends a disinterest

into the WSN so that data production for that named data is no longer wasting

energy resources producing named data in which no entity is interested.

10.2 External Agent API Example Usage

The External Agent API was defined in the previous section while this section aims to

provide a simple example usage of each of the functions. At a very minimum, the External

Agent application programmer must include the header file externalAgentAPI.h to access

the functions available to External Agents.

First, an External Agent must reserve space for the socket descriptor returned from

GATEWAY SUBSCRIBE and for the vectors of struct sockaddr in structures and str-

ings which are used to identify remote WSNs and data types, respectively.

1: int socketDesc;

2: vector<struct sockaddr in> remoteGatewaysVec;

65

3: vector<string> dtVec;

Now, the External Agent must create the struct sockaddr in structure, assign it the

information of a remote gateway node and pack it into the correct vector. This is done

thus:

1: struct sockaddr in gatewayAddr;

2: memset(&gatewayAddr, 0, sizeof(gatewayAddr));

3: gatewayAddr.sin family = AF INET;

4: gatewayAddr.sin addr.s addr = inet addr("131.204.142.200");

5: gatewayAddr.sin port = htons(8989);

6: remoteGatewaysVec.push back(gatewayAddr);

Then, the External Agent must pack strings representing named data types it wishes

to extract from these remote WSNs and reserve space for data coming from these remote

WSNs thus:

1: dtVec.push back(string("HUMIDITY"));

2: Data dataFromWSN;

All that remains to subscribe to named data from remote WSNs is to call the function

GATEWAY SUBSCRIBE. This is done as follows:

1: if ((socketDesc = GATEWAY SUBSCRIBE(&remoteGatewaysVec, &dtVec))

== -1) {

2: /* failure code */

3: }

4: /* success code */

At this point, the IP-based application programmer simply needs to await named data

being sent from the remote WSN(s) with a call to the blocking function RECEIVE FROM -

GATEWAY. There is no return value from this function so there is no need to reserve space

or check for any returned value. The function call is made thus:

66

1: RECEIVE FROM GATEWAY(socketDesc, &dataFromWSN);

When the function returns, named data is available in the Data buffer. A programmer

can check the type of data returned to be sure it is the named data type he/she expects

thus:

1: if (strcmp(dataFromWSN.dataType, "HUMIDITY") == 0) {

2: /* process the named data type accordingly */

3: } else {

4: /* ignore the unexpected named data type */

5: }

When an External Agent application no longer wishes to receive the data types from

the remote WSN(s), it simply calls the function GATEWAY UNSUBSCRIBE as follows:

1: if (GATEWAY UNSUBSCRIBE(socketDesc, &remoteGatewaysVec, &dtVec) == -1) {

2: /* failure code */

3: }

When the External Agent has unsubscribed from all named data types, he can close the

socket descriptor and exit gracefully in the normal fashion as follows:

1: close(socketDesc);

2: /* code to exit gracefully */

This concludes the simple External Agent API example.

67

Chapter 11

Gateway Role

The gateway role is a very important role in this architecture as it is the entity which

physically enables communication from one network to the other. When the gateway node

powers on, it simply waits for requests from External Agents in its main thread. When it

receives a request from an External Agent, it translates this request into an interest packet

that the Directed Diffusion networking protocol can understand. As this interest is diffused

throughout the network, gradients are set up along the reverse path of this interest propa-

gation. Named data later produced by a sensor node will traverse the network along these

gradients, and the gateway will eventually positively reinforce gradients with empirically

shortest delay.

In this way, named data is drawn towards the gateway node for which the gateway

node previously sent out interest requests on behalf of External Agents. If the gateway node

receives data for which there is no External Agent subscribed, the gateway node simply

discards the packet. This could happen if the gateway node receives data from a sensor node

that has not yet received the command to stop producing data.

The gateway node software is relatively simple and straightforward. The gateway node

is a regular Directed Diffusion application which sits on the boundary of the wireless sensor

and IP networks. The gateway node’s main thread, upon starting up, prepares an incoming

socket on which to receive Requests from External Agents. The Request structure is totally

hidden from External Agents, and therefore, the only thing that External Agents need to

know is the IP address and port number of the gateway node, the name of the named interest,

the structure of the expected data and how to use the External Agent API. The Request

data structure is shown thus:

68

1: typedef struct {

2: RequestType requestType;

3: char dataType[MAX DATA TYPE NAME LENGTH];

4: } Request;

RequestType on line 2 is either SUBSCRIBE or UNSUBSCRIBE and is defined in

gatewayDefs.h thus:

1: typedef enum {SUBSCRIBE, UNSUBSCRIBE} RequestType;

The External Agent API actually sends this Request to the remote WSN(s). These

data structures are never directly manipulated by any External Agent.

When a Request is received from the an External Agent in the gateway node’s main

thread, an entry is added to a local map structure. This map structure contains the IP

address and port number on which the External Agent is awaiting named data. When

named data arrives at the gateway node from the WSN, the DD core triggers the gateway

node’s tasking thread. However, the tasking thread’s role in the gateway node has been

redefined. Rather than using the tasking thread for tasking, the gateway node’s tasking

thread looks into the IP address-port number map structure to determine to which External

Agent(s) to forward this named data. If any External Agents are found, the named data

is forwarded to these External Agents accordingly. If no External Agents are found which

has previously subscribed to this named data, the tasking thread completes dropping the

received DD packet.

69

Chapter 12

Integrating the WSN with the IP Network

So far in this thesis a discussion has only been given for each role separately. In this

chapter, the reader will be taken on a journey from building a sensor node and IP-based

application using the different roles’ respective APIs to retrieving named information from

a WSN from an IP-based host.

12.1 Building a Sensor Network Application

First, sensor network applications should be built. Only then can an External Agent

query the network. When building a sensor network node application, one must first con-

sider what data the sensor node will provide. Let us assume, for the sake of this example

application, that a sensor node application wishes to aggregate the temperatures received

from three sensor nodes. This sensor node application is a complex producer since it needs

named data from other sensor nodes in order to perform its job. Inside DS, and specifically

dynServExt.h, we need to define the actual data structure of this aggregated named data.

For this sensor node application, let us assume that the data structure needs a latitude and

longitude position, a sensor node ID and the actual aggregated temperature reading. There-

fore, in dynServExt.h, a new data structure should be defined for this new named Directed

Diffusion data type. In C++, the result should look something like this:

1: typedef struct {

2: unsigned short nodeID;

3: unsigned long latitude;

4: unsigned long longitude;

70

5: signed short temperature;

6: } AGGTEMP struct ;

This example assumes there is already a data structure corresponding to “TEMPER-

ATURE” data inside the DataUnion which will be produced by other sensor nodes. The

“TEMPERATURE” data structure is defined thus:

1: typedef struct {

2: signed short temperature;

3: } TEMPERATURE struct ;

After creating the new structure definition, the new structure should be added to the

DataUnion union in the Data structure along with possibly many more named data type

structure definitions shown thus:

1: typedef struct {

2: DataType type;

3: union {

4: TEMPERATURE struct TEMPERATURE struct

5: AGGTEMP struct AGGTEMP struct;

6: ...

7: } DataUnion;

8: } Data;

All of the new named data type structure definitions should be added to this DataUnion

to decrease complexity in DS and in the gateway node.

At this point, a new sensor node application can be built to produce this new data type.

The sensor node applications should include, at a minimum, the header file dynServ-

API.h. Space should be reserved for the sensor application’s Message Queue ID and ap-

plication ID, DS’s Message Queue ID, and the received and outgoing Data. It is also good

71

programming practice to reserve space for the name of the data type produced and consumed.

This can be done thus:

1: #include "dynServAPI.h"

2: int myMsgQueueID, dsMsgQueueID;

3: char myAppID[MAX APP ID LENGTH];

4: Data temperatureData, aggTemperatureData;

5: char *toProduce = "AGGTEMP";

6: char *toConsume = "TEMPERATURE";

Next, we get into the main coding section of the sensor node application where regis-

tration takes place. Again, for continuity, registration takes place like this:

1: if (REGISTER DATA TO PRODUCE(toProduce, &myMsgQueueID, myAppID,

&dsMsgQueueID) == -1) {

2: /* failure code */

3: }

Since it is desirable to have this application continually run on the sensor nodes long-

term in case there are any External Agents which want to gather data from this application,

an infinite loop situation should be achieved to enable this. The body of this infinite loop is

where most all of the controlling and named data production action takes place. Inside this

loop, the application will await tasking, subscribe to the named data “TEMPERATURE,”

check its publish data status, aggregate the temperatures and fill the aggTemperatureData

Data structure, publish the named data “AGGTEMP” and eventually unsubscribe from data

if data production should cease. This is all done as follows:

1: aggTemperatureData.DataUnion.AGGTEMP struct.nodeID = getMyID();

2: aggTemperatureData.DataUnion.AGGTEMP struct.latitude = getMyLat();

3: aggTemperatureData.DataUnion.AGGTEMP struct.longitude = getMyLong();

72

4: while (1) {

5: AWAIT TASK(myMsgQueueID);

6: vector<string> vecOfSubs;

7: vecOfSubs.push back(string(toConsume));

8: SUBSCRIBE TO DATA(&vecOfSubs, dsMsgQueueID, myAppID);

9: vector<short> threeTemperatures;

10: bool keepProducing = true;

11: while (keepProducing == true) {

12: AWAIT DATA(myMsgQueueID, &temperatureData);

13: if (CHECK PUBLISH DATA STATUS(dsMsgQueueID, myMsgQueueID,

myAppID, toProduce) == -1) {

14: keepProducing = false;

15: UNSUBSCRIBE FROM DATA(&vecOfSubs, dsMsgQueueID, myAppID);

16: } else {

17: if (strcmp(temperatureData.dataType, toConsume) == 0) {

18: threeTemperatures.push back(temperatureData.DataUnion.

TEMPERATURE.temperature);

19: if (threeTemperatures.size() == 3) {

20: short avgTemp = /* average the three temperatures */;

21: threeTemperatures.clear();

22: aggTemperatureData.DataUnion.AGGTEMP struct.

temperature = avgTemp;

23: PUBLISH DATA(dsMsgQueueID, &aggTemperatureData);

24: }

25: }

26: }

27: }

73

28: }

Notice after the flag keepProducing is set to false in line 14 after CHECK PUB-

LISH DATA STATUS returns -1 on line 13, the application unsubscribes from the named

data “TEMPERATURE” to which it was previously subscribed on line 15. Then, the test

in the while-loop on line 11 fails, and control returns to AWAIT TASK on line 5 so that

future tasking of the application can occur.

12.2 Building an External Agent Application & Performing a Query

Now that a sensor node application has been built, an External Agent application can

be built to take advantage of the named data-gathering service provided by the remote WSN.

Building an IP-based application is even simpler than building a sensor node application,

but like the sensor node application, the IP-based application programmer must also include

a header file, namely externalAgentAPI.h.

As previously mentioned, External Agents must some how know the IP address and

port number of remote WSN gateway nodes. Let us assume, for the sake of this example,

that the remote WSN gateway IP address and port number are 131.204.142.200 and 8989,

respectively. The External Agent application programmer can now begin the task of building

the External Agent code using the External Agent API.

First, the application programmer must create an integer socket descriptor representing

the socket through which network communication will take place between the External Agent

and the gateway node. Then, the application must prepare the data types it wishes to

consume from the remote WSN and pack them into the vector taken as a parameter to

GATEWAY SUBSCRIBE.

Next, the vector of struct sockaddr in structures and the struct sockaddr in

structure itself should be defined and then filled with the IP address and port number

of the remote gateway node. Then, this structure should be packed into the vector.

74

The subscription should then be transmitted to the remote WSNs and the application

should reserve space for and begin waiting for data from the WSNs. Awaiting for named

data should take place in a loop to continue checking the socket for named data that has

arrived.

The process is shown thus:

1: int sock;

2: char *subscribeData = "AGGTEMP";

3: vector<string> dtVec;

4: vec.push_back(string(subscribeData));

5: vector<struct sockaddr in> addrVec;

6: struct sockaddr in gatewayAddr;

7: memset(&gatewayAddr, 0, sizeof(gatewayAddr));

8: gatewayAddr.sin family = AF INET;

9: gatewayAddr.sin addr.s addr = inet addr("131.204.142.200");

10: gatewayAddr.sin port = htons(8989);

11: remoteGatewaysVec.push back(gatewayAddr);

12: sock = GATEWAY SUBSCRIBE(&remoteGatewaysVec, &vec);

13: Data dataPkt;

14: while (1 /* or some other halting criteria */) {

15: RECEIVE FROM GATEWAY(sock, &dataPkt);

16: if (strcmp(dataPkt.dataType, subscribeData) == 0) {

17: /* accept and process data */

18: } else {

19: /* drop data */

20: }

21: if (/*stopping criteria reached*/)

22: break;

75

23: }

24: GATEWAY UNSUBSCRIBE(sock, &remoteGatewaysVec, &dtVec);

25: /* code to exit gracefully */

76

Chapter 13

PC104 Testbed & Case Studies

This chapter presents the hardware and software specifications of the PC104 testbed

used as the sensor nodes in the WSN and details two sample applications already imple-

mented which use these APIs to show the utility of this approach.

13.1 PC104 Testbed Specifications

In the current version of the PC104-based WSN, we use three PC104-compliant modules,

the main CPU module, the PCMCIA module and the Power Supply module.

13.1.1 Hardware

The PC104 CPU module (Figure 13.1), PFM-550S, is manufactured by Aaeon. It has

a 533MHz VIA Mark processor and has features such as 10/100Base-TX Fast Ethernet

port, one RS-232 port and one RS-232/485 port, four USB 1.1 ports, a SDRAM-SODIMM

socket for up to 512 megabytes of RAM and supports type I compact flash cards. It sup-

ports 36-bit TL and 18/36-bit dual LVDS LCD panel, has a watchdog timer and fully

supports ISA. It is also fanless with an operating temperature of 0 to +60 degrees Celsius.

It requires +5V for operation. More information can be found online at http://www.tri-

m.com/products/aaeon/pfm550s.html.

The PCMCIA module (Figure 13.2) PCM-3115C, is manufactured by Aaeon. It is a 2-

slot PCMCIA module which supports two Type I/II cards or one Type III card. It complies

with PCMCIA v2.1 and JEIDA v4.2. It has a 16-bit data bus and a busy status LED.

It requires +5V for operation. More information can be found online at http://www.tri-

m.com/products/aaeon/pcm3115c.html.

77

Figure 13.1: This figure shows a view of the PC104 CPU module from the top.

Figure 13.2: This figure shows a view of the PC104 PCMCIA module from the top.

78

The Power Supply module (Figure 13.3), PFM-P13DW2, is manufactured by Aaeon. It

has an input range of +7V to +30V and an output of +5V and +12V. It is used to intake

+12V from the AC power supply or battery and convert it into the +5V used by the CPU

and PCMCIA modules.

The remaining hardware items described are more commonplace items.

Shown in Figure 13.4 is the Orinoco Gold wireless PCMCIA LAN (Local Area Network)

card we use. The wireless LAN card is a 2.4 GHz radio which supports the four IEEE 802.11

High-Speed compliant speeds 11Mb/s, 5.5 Mb/s, 2 Mb/s and 1 Mb/s within the IEEE 802.11

standard for wireless LANs.

Shown in Figure 13.5 is a 2.4-2.5 GHz omnidirectional external antenna used to boost

the wireless signal with a +5dBi gain and a 60” cable.

A standard type I compact flash card is shown in Figure 13.6.

The RAM used is a 256MB, 144 pin Synchronous Dynamic RAM high-density memory

module at 133 Mhz. Its technical specifications can be found at http://www.transcendusa.-

com/Support/DLCenter/Datasheet/TS32MSS64V6G 6755.pdf. Please see Figure 13.7 for

an image.

A plastic USB microphone, manufactured by Sound Professionals, is a mono, high

sensitivity, omnidirectional microphone with headphone amplifier. Its dimensions measure

1.5”x1.0”x0.25”, and it can detect frequencies from 20-20,000 Hz. More information can

be found online at http://www.soundprofessionals.com/cgi-bin/gold/item/SP-USB-MIC-1.

Please see Figure 13.8 for an image.

The AC Power Supply, shown in Figure 13.9, is manufactured by Sunny Computer

Technology. It has an input range of 100-240V and an output of +12V. Accompanying

the AC Power Supply is the power input connector used to supply power to the PC104

Power Supply module. The +12V AC Power Supply or the +12V battery is connected to

the power input connector. We solder wire onto the power input connector here in the lab

79

Figure 13.3: This figure shows a view of the PC104 Power Supply module from the top.

Figure 13.4: This figure shows a view of the Orinoco Gold wireless PCMCIA LAN card.

80

Figure 13.5: This figure shows a view of the Lucent omnidirectional external antenna used
to boost the signal range of the wireless sensor nodes.

Figure 13.6: This figure shows a standard compact flash card which is the main storage of
the PC104 sensor node.

Figure 13.7: This figure shows the 256MB, 144 pin Synchronous Dynamic RAM high-density
memory module which is the RAM of the PC104 sensor node.

81

to connect the wire to the power input connector. For more information, please refer to

http://www.sunny-euro.com/HTML/PRODUCTS/POWERSPL/SYS1183UP.html online.

The battery, shown in Figure 13.10, is used to power the PC104 when away from the

lab and outputs +12V at 5.0 amp hr. It is sealed and rechargeable. For more information,

please refer to http://www.power-sonic.com/site/doc/prod/86.pdf online.

A completed PC104 assembly can be seen in Figure 13.11 and in its protective casing

in Figure 13.12. A closeup of the completed PC104 assembly can be seen in Figure 13.13.

13.1.2 Operating System

The PC104 sensor nodes use the Linux-based operating system Slax, v6.0.7, to run

all sensor node application software. We chose Slax to use on the PC104 testbed, in part,

because it is very small. We removed the GUI (Graphical User Interface) to further save

space on the compact flash card. All software used in the testbed, including the operating

system, uses around 75MB.

13.2 Sample Case Studies

In this section, two different External Agent applications are discussed which use data

supplied by two related wireless sensor network applications in different ways. First, a

description will be given of the WSN applications in sufficient detail so the reader can fully

understand the basics of the application from the WSN sensor applications to the External

Agent applications that use the WSN named data.

Research has shown that algorithms exist for determining the location (at a particular

point in time), speed and direction of movement of a target which emits acoustic sound waves

traveling through an array of acoustic sensors. The research was first mathematically formal-

ized for flying airplanes in the more general three-dimensional scenario by F. M. Dommer-

muth in [8] and modified to the two-dimensional scenario by Qing Yang et al. in [28, 27, 26]

for use in tracking ground-based targets through an acoustic WSN.

82

Figure 13.8: This figure shows the USB microphone which acts as an acoustic sensor for the
PC104 sensor node.

Figure 13.9: This figure shows the +12V AC power supply for the PC104 sensor node used
in the lab.

83

Figure 13.10: This figure shows the +12V battery used to supply power to the PC104 sensor
node out in the field.

Figure 13.11: This figure shows the completed PC104 sensor node without its protective
casing.

84

Figure 13.12: This figure shows the completed PC104 sensor node with its protective casing.

Figure 13.13: This figure shows a close-up of the completed PC104 sensor node in its pro-
tective casing.

85

The sensor network application is easy enough to understand: Each sensor node records

acoustic sound signals when a target travels through the acoustic sensors. Each time-

synchronized, location-aware sensor node decides the time stamp at which the moving tar-

get’s sound signal is maximal — presumably the time stamp when the target is physically

closest to that acoustic sensor node. This is known as the CPA (closest-point-of-approach)

time for that sensor node. This CPA time and sensor location data is relayed from each

acoustic sensor node to a cluster head which has the responsibility of actually calculating

the target’s location (the point at which the moving target is closest to the cluster head),

speed and direction.

Figure 13.14 shows a sample wireless sensor network deployment scenario. The lightning

bolt shows the wireless communication links between the nodes. Note the “X” in the center

of the dotted circle. This position is the returned location — in the form of latitude and

longitude — from the cluster head. The cluster head considers the GPS (Global Positioning

System) coordinates of latitude and longitude to correspond with an imaginary X-axis and

Y-axis, respectively, which spans the entire globe. The direction returned by the cluster

head corresponds to the slope of the path of travel made by the moving target. The slope

is of the target’s path is defined in the usual way of rise divided by run. Or, in this case,

the slope is defined to be the change in latitude divided by the change in longitude. The

speed, returned by the cluster head in miles per hour, is also calculated using Qing et al.’s

algorithm.

At this point, only part of the system has been described by explaining the role of the

sensor node applications. To complete the description of the entire system, an explanation

must now be given of the main External Agent which drives these sensor node applications.

An External Agent known as the camera controller is responsible for setting these two sensor

node applications into motion by subscribing to “TARG INFO” via the gateway node. Using

the time stamp and the data fields of the named data “TARG INFO”, the camera controller

86

Figure 13.14: This figure shows a sample deployment of a WSN showing the wireless com-
munication links with a lightning bolt. The “X” in the dotted circle shows the location that
is calculated by the cluster head. Note that the “X” is directly out from the cluster head at
a right angle to the target’s path of travel.

can calculate the current position of the moving target to enable a pan-tilt-zoom camera

(shown in Figure 13.15) to swivel to capture video or images of the moving target.

Figure 13.16 shows the entire WSN including the main External Agent, the camera

controller. The camera controller and the gateway node is attached to an improvised IP

Ethernet network to allow the External Agent API to send subscriptions for the named data

“TARG INFO” to the gateway. A video capture PC (Personal Computer) is connected to

the PTZ camera through an RCA-to-USB cable. Because the PC104s have relatively little

storage, it is necessary to use this video capture PC to store the large video files of the

87

Figure 13.15: This figure shows the Sony EVI-D30 Pan-Tilt-Zoom camera controlled by the
camera controller External Agent.

moving target captured by the PTZ camera. For our experiments, we assume the video

capture unit is always connected to the PTZ camera via the RCA-to-USB cable. When the

camera controller software starts up, it first gains access to the PTZ camera via the serial

cable. After successfully gaining access to the PTZ camera, the camera controller sends a

subscription for the named data “TARG INFO” to the gateway node.

In the following subsection, a description will be given of the two sensor node applica-

tions.

13.2.1 Sensor Node Applications

In this subsection, a description will be given of the two sensor node applications and

how they relate. The main code will also be given so the reader can see exactly how one of

these real-world applications is written for the actual WSN environment.

88

Figure 13.16: This figure shows the experimental setup including the entire network archi-
tecture.

“CPA INFO” Simple Producer

First, there is the sensor node application which produces “CPA INFO.” This applica-

tion, a simple producer, when tasked, simply waits for a target to appear.

The sensor node application code which produces “CPA INFO” is shown thus:

1: #include "dynServAPI.h"

2: #include "cpadetector.h"

3: Data cpaData;

4: int myMsgQueueID, dsMsgQueueID;

5: char myAppID[MAX APP ID LENGTH];

6: char *toProduce = "CPA INFO";

7: int main() {

8: REGISTER DATA TO PRODUCE(toProduce, &myMsgQueueID, myAppID,

89

&dsMsgQueueID);

9: while (1) {

10: cout << "waiting to be tasked" << endl;

11: AWAIT TASK(myMsgQueueID);

12: CPADetector *cpa = new CPADetector();

13: /* these three values do not change, so just set them once */

14: strcpy(cpaData.dataType, toProduce);

15: cpaData.DataUnion.cpaStruct.myLat = getLatitude();

16: cpaData.DataUnion.cpaStruct.myLong = getLongitude();

17: bool keepProducing = true;

18: while (keepProducing == true) {

19: /* program will block here waiting for a target to appear */

20: cpa->daemon();

21: /* if daemon returns, target has appeared and

CPA time is ready */

22: cpaData.DataUnion.cpaStruct.cpatime = cpa->getCPATime();

23: if (CHECK PUBLISH DATA STATUS(dsMsgQueueID, myMsgQueueID,

myAppID, toProduce) == -1) {

24: keepProducing = false;

25: delete cpa;

26: } else {

27: /* CONTINUE producing data" */

28: PUBLISH DATA(dsMsgQueueID, &cpaData);

29: }

30: }

31: }

32: return EXIT_SUCCESS;

90

33: }

This simple producer is tasked to produce “CPA INFO.” This can be understood

through taking a look at Figure 13.17. This figure shows a graph of the sound intensity

as a target approaches the sensor node, moves through the closest-point-of-approach (CPA)

relative to the sensor node and begins moving away from the node. The vertical line rep-

resents the time at which the target is at its closest-point-of-approach. This time stamp is

that which is produced by this sensor application and is forwarded to the cluster head.

Figure 13.17: This figure shows the sound signature and closest-point-of-approach time of a
target moving relative to a single acoustic sensor.

“TARG INFO” Complex Producer

Next, there is the sensor node application which actually calculates the target’s location,

speed and direction using “CPA INFO” obtained from other sensor nodes. This sensor node

is known as the cluster head and produces the named data “TARG INFO.” For the cluster

head, a complex producer, to produce the named data “TARG INFO,” it must have the

91

named data “CPA INFO” to perform its job. Therefore, once the cluster head is tasked, it

must subscribe to “CPA INFO” in order to produce “TARG INFO.”

The sensor node application which depends on the named data “CPA INFO” to calcu-

late the target’s location, speed and direction to produce its named data “TARG INFO” is

shown thus:

1: #include "dynServAPI.h"

2: #include "targInfoApp.h"

3: int myMsgQueueID, dsMsgQueueID;

4: char myAppID[MAX APP ID LENGTH];

5: char *toProduce = "TARG INFO";

6: char *toConsume = "CPA INFO";

7: int main() {

8: REGISTER DATA TO PRODUCE(toProduce, &myMsgQueueID, myAppID,

&dsMsgQueueID);

9: while (1) {

10: cout << "waiting to be tasked" << endl;

11: AWAIT TASK(myMsgQueueID);

12: vector<string> vecOfSubs;

13: vecOfSubs.push back(string(toConsume));

14: SUBSCRIBE TO DATA(&vecOfSubs, dsMsgQueueID, myAppID);

15: targInfoApp *ta = new targInfoApp();

16: Data cpaInfoData;

17: bool keepProducing = true;

18: while (keepProducing == true) {

19: AWAIT DATA(myMsgQueueID, &cpaInfoData);

20: if (CHECK PUBLISH DATA STATUS(dsMsgQueueID, myMsgQueueID,

myAppID, toProduce) == -1) {

92

21: keepProducing = false;

22: delete ta;

23: UNSUBSCRIBE FROM DATA(&vecOfSubs, dsMsgQueueID,

myAppID);

24: } else {

25: /* CONTINUE producing data */

26: ta->recvCPAData(&cpaInfoData);

27: }

28: }

29: }

30: return EXIT SUCCESS;

31: }

32: void targInfoApp::recvCPAData(Data *data) {

33: /* perform calculations and store them in class variables */

34: if (/*received sufficient "CPA INFO" from different nodes*/) {

35: Data targInfoData;

36: strcpy(targInfoData.dataType, toProduce);

37: targInfoData.DataUnion.targInfoStruct.Lat = this.getLat();

38: targInfoData.DataUnion.targInfoStruct.Long = this.getLong();

39: targInfoData.DataUnion.targInfoStruct.Speed = this.getSpeed();

40: targInfoData.DataUnion.targInfoStruct.Direction =

this.getDirection();

41: targInfoData.DataUnion.targInfoStruct.CPATime =

this.getCPATime();

42: PUBLISH DATA(dsMsgQueueID, &visualData);

43: }

44: }

93

This concludes the details pertaining to the sensor node applications located inside

the WSN. Next, a discussion of the camera controller application and introduction of an

application for logging and monitoring will be given.

13.2.2 External Agent Applications

Target Tracking

An External Agent application which relies on the named data “TARG INFO” has

also been implemented. In a nutshell, the External Agent application uses the named data

“TARG INFO” from a WSN to drive a PTZ camera to track a target moving. The main

camera controller code to track a moving target is given thus:

1: #include "EVI-D30.h"

2: #include "externalAgentAPI.h"

3: void SendInfoToCamera(long Lat, long Long, double Speed, double Slope,

double timeStamp);

4: int socketDesc;

5: vector<struct sockaddr in> remoteGatewaysVec;

6: char *toConsume = "TARG INFO";

7: /* allows access to Sony EVI-D30 PTZ camera */

8: EVI D30 *cam;

9: int main() {

10: /* gain access to the camera */

11: cam = NULL;

12: cam = new EVI D30();

13: if (cam == NULL) {

14: DieWithError("cannot create internal camera structure");

15: }

16: /* open serial port */

94

17: if (cam->Init() != 1) {

18: DieWithError("cannot initialize camera structure");

19: }

20: char serialPort[20] = "/dev/ttyS0";

21: if (cam->Open(1, serialPort) != 1) {

22: DieWithError("cannot access to camera through serial port");

23: }

24: /* grab the information about the camera’s orientation

and position */

25: long camLat = getLat();

26: long camLong = getLong();

27: string camOrientation = getOrientation();

28: /* set up remote WSN gateway info */

29: struct sockaddr in gatewayAddr;

30: memset(&gatewayAddr, 0, sizeof(gatewayAddr));

31: gatewayAddr.sin family = AF INET;

32: gatewayAddr.sin addr.s addr = inet addr("131.204.142.200");

33: gatewayAddr.sin port = htons(8989);

34: remoteGatewaysVec.push back(gatewayAddr);

35: /* set up subscription to gateway */

36: vector<string> dataTypeVec;

37: dataTypeVec.push back(string(toConsume));

38: if ((socketDesc = GATEWAY SUBSCRIBE(&remoteGatewaysVec,

&dataTypeVec)) < 0) {

39: DieWithError("GATEWAY SUBSCRIBE failed");

40: }

41: Data pktFromGateway;

95

42: while (1) {

43: cout << "awaiting data from gateway" << endl;

44: if (RECEIVE FROM GATEWAY(socketDesc, &pktFromGateway) < 0) {

45: DieWithError("RECEIVE FROM GATEWAY failed");

46: }

47: if (strcmp(pktFromGateway.dataType, toConsume) == 0) {

48: double ts = pktFromGateway.DataUnion.TARG INFOStruct.CPATime;

49: long Lat = pktFromGateway.DataUnion.TARG INFOStruct.Lat;

50: long Long = pktFromGateway.DataUnion.TARG INFOStruct.Long;

51: double Speed = pktFromGateway.DataUnion.TARG INFOStruct.Speed;

52: double Slope = pktFromGateway.DataUnion.TARG INFOStruct.Slope;

53: SendInfoToCamera(Lat, Long, Speed, Slope, ts);

54: } else {

55: /* drop unexpected data type */

56: }

57: }

58: return 1;

59: }

Logging and Monitoring

The logging and monitoring application implemented simply subscribes to all of the data

types the WSN can produce. Upon receiving named data, the application checks the named

data type and simply writes its contents to an appropriate log file for long-term storage or

further offline analysis at a later time. The application code is given thus:

1: #include "externalAgentAPI.h"

2: int socketDesc;

3: char *targInfo = "TARG INFO";

96

4: char *cpaInfo = "CPA INFO";

5: int main() {

6: /* set up log files */

7: ofstream targInfoLog("./TARG INFO log.txt", ios base::app);

8: ofstream cpaInfoLog("./CPA INFO log.txt", ios base::app);

9: /* set up remote WSN gateway info */

10: vector<struct sockaddr in> remoteGatewaysVec;

11: struct sockaddr in gatewayAddr;

12: memset(&gatewayAddr, 0, sizeof(gatewayAddr));

13: gatewayAddr.sin family = AF INET;

14: gatewayAddr.sin addr.s addr = inet addr("131.204.142.200");

15: gatewayAddr.sin port = htons(8989);

16: remoteGatewaysVec.push back(gatewayAddr);

17: /* setup subscriptions to gateway */

18: vector<string> subVec;

19: subVec.push back(string(targInfo));

20: subVec.push back(string(cpaInfo));

21: if ((socketDesc = GATEWAY SUBSCRIBE(&remoteGatewaysVec,

&subVec)) < 0) {

22: DieWithError("GATEWAY SUBSCRIBE failed");

23: }

24: Data dataFromWSN;

25: time t ts;

26: while (1/* or some other halting criteria */) {

27: cout << "Waiting for data ..." << endl;

28: if (RECEIVE FROM GATEWAY(socketDesc, &dataFromWSN) < 0) {

29: DieWithError("RECEIVE FROM GATEWAY failed");

97

30: }

31: time(&ts);

32: if (strcmp(dataFromWSN.dataType, targInfo) == 0) {

33: printTargInfoToFile(targInfoLog, ts, &dataFromWSN);

34: } else if (strcmp(dataFromWSN.dataType, cpaInfo) == 0) {

35: printCpaInfoToFile(cpaInfoLog, ts, &dataFromWSN);

36: } else {

37: /* drop unrecognized data types */

38: }

39: }

40: return 1;

41: }

13.3 Target Tracking Experimental Results

Table 13.1 and Figure 13.18 show experimental results of several experiments where a

moving target travels through the acoustic WSN used for target tracking.

Table 13.1 shows the results of eight experiment runs with the error for position, speed

and angle of the target. The minimum, maximum and average error for each of target

position, speed and angle is aggregated at the bottom of the table.

Figure 13.18 shows the expected and actual lines of travel of the moving target. As you

can see, the WSN can quite accurately calculate the target’s CPA position, speed and direc-

tion with very little error. According to the authors of [29], Differential Global Positioning

System (GPS) is only accurate to around three feet on average. According to Table 13.1,

our target tracking system based on gathering CPA data from acoustic sensors is nearly as

accurate as the GPS system.

Figure 13.19 shows a snapshot taken of a moving target after it has been detected in the

acoustic WSN. After the named data “TARG INFO” reaches the camera controller External

98

Target Position (feet) Speed (mph) Angle (degree)
Run Computed Error Computed Error Computed Error
1st (3608558, 641360) 3.3 28 2 90 3
2nd (3608558, 641360) 3.3 27 3 90 3
3rd (3608559, 641357) 7.3 42 12 84 3
4th (3608552, 641359) 19.7 27 3 111 24
5th (3608545, 641358) 3.3 29 1 127 1
6th (3608544, 641359) 3.3 28 2 130 2
7th (3608544, 641359) 3.3 29 1 131 3
8th (3608545, 641360) 3.3 32 2 132 4

Min 3.3 1 1
Max 19.7 12 24
Avg 5.85 3.25 5.375

Table 13.1: Target Tracking Experimental Results
This table shows the test results of several runs of a target through the WSN dedicated to

tracking moving targets.

Agent, snapshots are taken of the target. This is one such snapshot. In another application,

video could be taken and recorded or relayed to a manned base station for further analysis

or action.

99

Figure 13.18: This figure shows the expected and actual lines of travel of the moving target
in the target tracking experiment. Please refer to Table 13.1 for the target attributes and
errors resulting from experiment runs 1–4 and 5–8 shown here.

100

Figure 13.19: This figure shows a snapshot of a moving target after it has been detected
by the acoustic WSN. In this frame, the camera has rotated in order to have the target’s
position within its viewing range.

101

Chapter 14

Experiment Design & Performance Evaluation

In this chapter details of the experiment design and performance evaluation are given.

14.1 Experiment Design

To evaluate the performance of DS, it is necessary to evaluate the impact of DS on

sensor node applications. In particular, assurance must be made that the DS service layer

does not impact the time to task a sensor application nor the time for a sensor application

to publish data.

A relatively simple timing analysis is employed to evaluate the impact of DS on sensor

node applications’ ability to be tasked and to publish data. Recall that there are two threads

running in any pure DD application: a tasking thread and a main thread. It is critical to

take time stamps for the timing analysis at appropriate points inside these threads.

First, a consideration is made for the tasking time of pure DD and DS sensor node

applications. For pure DD sensor applications, the tasking time is defined as the time

between when the tasking thread is first entered and when the main thread realizes it has

been tasked. For DS sensor applications, tasking time is defined as the time between when

DS’s tasking thread is first entered and when the application realizes it has been tasked.

For DS, this will give us an idea of the length of time it takes for this information to travel

through DS, through the Message Queue and into the sensor application.

Publishing time is defined as the time between when the sensor node application is

tasked and when the data is handed over to DD for network transmission. For pure DD

sensor applications, the publishing time is the time between when the application is tasked

and when the application finished handing over the data to DD. For DS sensor applications,

102

the publishing time is the time between when the application is tasked and when DS hands

over the data to DD. For DS, this will give us an idea of the length of time it takes for this

information to travel through DS’s Message Queue and through DS to the DD network.

14.2 Performance Evaluation

From the beginning, one of the goals has been to reduce the workload of DD application

programmers by simplifying their programming task. With the DS API, there is no need

for sensor node application programmers to understand the complexities of the pure DD

API. Before the timing analysis is presented, let us first compare the complexity of sensor

application code which uses the DS API versus sensor application code which uses the pure

DD API.

In the following subsections a description is given for what is meant by the claim that

the DS API makes programming over this type of system easier and give some very simple

performance metrics which show that the overhead incurred by DS and the DS API is

negligible when compared to that of using the pure DD API.

It should be said that it does not make sense to compare External Agent code “before”

and “after” DS because, before DS, there is no concept of an External Agent. Therefore, it

is only possible to compare a sensor application’s LOC count before and after DS was imple-

mented. This thesis takes on the LOC metric in determining to what degree programming

using the DS API is more or less easy compared to not using the DS API.

14.2.1 LOC Metric

The LOC count comparison is given in Table 14.1 for two different sensor node applica-

tions, a sensor node application which produces the named data “CPA INFO” and the other

application which depends on “CPA DATA” to produce its named data “TARG INFO.”

For the sensor node application which produces the named data “CPA INFO,” the

number of LOC required just to complete the implementation part which directly uses the

103

Sensor Node Application Name LOC Without DS LOC With DS

“CPA INFO” Application >50 <10
“TARG INFO” Application >65 <15

Table 14.1: This table compares the lines of code required to write two different applications
both with and without the DS API. Note that application-specific code is not counted.

DD API was more than 50 lines of code. Compare 50 LOC with less than 10 LOC, the

number of LOC to write the same sensor application using the DS API. For the sensor

node application which produces the named data “TARG INFO,” the number of LOC to

complete the sensor node implementation using the pure DD API was more than 65 lines of

code. With DS, this number is reduced to less than 15 LOC. Using LOC count as the metric

to determine the relative “easiness” of building sensor node applications, it is clear that the

new DS API simplifies the programming task of sensor node applications. These data are

summarized in Table 14.1.

14.2.2 DS Delay Analysis

Another metric of interest is how much overhead is incurred by the DS service layer. For

this investigation, an application was written both with and without DS to investigate the

relative delay of first being tasked and publishing the first data packet onto the DD network.

Let us first see the definitions of tasking time and publishing time as they are defined with

using DS with two figures (Figures 14.1 and 14.2, respectively). Tasking time with the DS

service layer (Figure 14.1) is defined as the length of time between when Dynamic Services’

tasking thread is first invoked after DD receives an interest from the network and when the

sensor node application is aware there is some interest in the data it can produce. Publishing

time with the DS service layer (Figure 14.2) is defined as the length of time between when

the application is first tasked and when the publish success of the first published data packet

is returned from DS.

104

Figure 14.1: This figure shows tasking time for sensor node applications with Dynamic
Services. Tasking time with DS is defined as the length of time between when Dynamic
Services’ tasking thread is first invoked after DD receives an interest from the network and
when the sensor node application is aware there is some interest in the data it can produce.

Next, let us see the definitions of tasking time and publishing time as they are defined

without using DS with two figures (Figures 14.3 and 14.4, respectively). Tasking time with-

out the DS service layer (Figure 14.3) is defined as the length of time between when a sensor

application’s tasking thread is invoked after an interest is received from the DD network and

when the application’s main thread realizes its shared variable has been updated. Publishing

time without the DS service layer (Figure 14.4) is defined as the length of time between

when the application’s main thread realizes its shared variable has been updated and when

the publish success of the first published data packet is returned from DD.

Figures 14.5 and 14.6 show the tasking time and publishing time, respectively, incurred

by the sensor application both with and without DS. Figure 14.5 shows the tasking time

(in milliseconds) incurred. In the case of tasking, DS has the ability to task the application

in less than one millisecond whereas the busy waiting, or polling, of pure DD applications

105

Figure 14.2: This figure shows publishing time for sensor node applications with Dynamic
Services. Publishing time with DS is defined as the length of time between when the appli-
cation is first tasked and when the publish success of the first data packet is returned from
DS.

increases the time to task the application dramatically as the number of running sensor

applications increases.

It is important to note here that the internal clock on the PC104 sensor nodes on which

these experiments were carried out were accurate only to the millisecond. On these graphs,

a plotted point of zero milliseconds merely means less than one millisecond.

Figure 14.6 shows the delay incurred in the publishing process. With only a few ap-

plications running, DS publishes just as quickly as pure DD applications. As the number

of running applications increases, however, it becomes clear that DS is the winner. Since

DS sensor applications are sleeping while awaiting tasking at their own Message Queues

rather than busily waiting like pure DD sensor applications, the publishing time remains

consistently better than the publishing time for pure DD sensor applications because it is

not necessary for the tasked sensor node application to compete for CPU cycles.

106

Figure 14.3: This figure shows tasking time for sensor node applications without Dynamic
Services. Tasking time without DS is defined as the length of time between when sensor
application’s tasking thread is invoked after an interest is received from the DD network and
when the application’s main thread realizes its shared variable has been updated.

Just by looking at these data graphs — where a lower plotted value is better in terms

of delay — it is clear that the Message Queues provided by the Linux kernel of the Slax OS

used in DS and the DS API actually make the operations of tasking and publishing quicker.

Rather than the Slax CPU scheduler scheduling processes to busily wait and waste CPU and

energy resources like in pure DD sensor applications, DS sensor applications sleep awaiting

for tasking at Message Queues. This is why it actually takes pure DD applications longer to

be tasked and to publish. This is a nice feature of Message Queues in that they eliminate

the need for busy waiting.

107

Figure 14.4: This figure shows publishing time for sensor node applications without Dynamic
Services. Publishing time without DS is defined as the length of time between when the
application’s main thread realizes its shared variable has been updated and when the publish
success of the first data packet is returned from DD.

108

Number of Concurrent Running Sensor Applications

T
a
sk

in
g

T
im

e
(i

n
M

il
li

se
co

n
d
s)

1 2 3 4 5 6 7 8 9 10 11

5

10

15

20

25

30

35

40

45

LEGEND:
tasking time WITHOUT DS

tasking time WITH DS

Figure 14.5: This graph shows the tasking time for sensor applications both with and without
Dynamic Services as the number of running sensor applications varies. Since DD sensor
applications busily wait, the tasking time of pure DD sensor applications is greater. A lower
plotted point on the graph is better in terms of delay than a higher plotted point.

109

Number of Concurrent Running Sensor Applications

P
u

b
li
sh

in
g

T
im

e
(i

n
M

il
li
se

co
n
d

s)

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

LEGEND:
publishing time WITHOUT DS

publishing time WITH DS

Figure 14.6: This graph shows the publishing time for sensor applications both with and
without Dynamic Services as the number of running sensor applications varies. The publish-
ing time remains consistent for DS sensor applications as the number of sensor applications
increases whereas for pure DD sensor applications, busy waiting takes a toll on performance.
A lower plotted point on the graph is better in terms of delay than a higher plotted point.

110

Chapter 15

Future Work

Future work could follow many different paths. As mentioned earlier in this thesis, there

are many different roles at play within the entire system; therefore, a few avenues of future

work is given for sensor node applications, the application-layer gateway node and External

Agents individually.

15.1 Concerning Sensor Applications

Further research could be done on extending the DS API to include all of the flexibility

of the pure DD API. One could also port DS to other data-centric networking protocols or

come up with other schemes which enables DS to be used over non-data-centric networking

protocols.

Further work could be done in allowing sensor nodes in a WSN to submit interests for

named data types to other remote WSNs. For this scheme to work, gateway nodes would

have to be aware of one another to facilitate sending of interests and data to and from

remote WSNs. This would inherently create complexity in the gateway nodes, but sensor

node applications would largely be unaware of this complexity. Sensor applications would

simply do what they have always done.

Further work could also be done in allowing sensor applications to submit interests for

named data to External Agents. This scheme would require External Agents to register with

gateway nodes and would create more complexity in the External Agents. This could be

prohibitive for smaller, hand-held devices.

111

Currently, the DS API does not support guaranteed delivery of data. DD is a best effort

service but essentially does not guarantee delivery of data. The DS API could be extended

to ensure guaranteed delivery of data to the gateway node or to other sensor nodes.

15.2 Concerning the Application-Layer Gateway

As was previously mentioned, the gateway-based solution provided in this thesis is an

application-layer gateway. Work could be done on making the application-layer gateway

implementation be a network-layer gateway. This would require mapping an IP address

in an IP packet to a named data type at the network-layer gateway. Currently, there is

no technology available which implements any such mapping. One idea is to have sensor

applications register with the network-layer gateway node so the gateway node can assign

specific IP addresses to certain named data types. External agents could request the names of

named data types from this network-layer gateway node and the corresponding IP addresses

of these data types would be sent back to the External Agent. An External Agent could use

this information to request data types by IP address only.

15.3 Concerning External Agent Applications

The current External Agent API only supports UDP. Extensions could be made to the

API that also allow for TCP connections between the External Agent and the remote gateway

node. The External Agent API could also be extended in such a way as to allows External

Agents to request guaranteed delivery within the WSN using DD’s RMST, for example.

Combining DD’s RMST with a TCP connection between the External Agent and the gateway

node could guarantee delivery of packets from individual sensor node applications to External

Agents who desire this service.

112

Chapter 16

Conclusions

This thesis has presented an architecture which allows IP-based hosts to easily task

and harvest data from remote Dynamic Services-enabled Directed Diffusion wireless sensor

networks. A presentation of APIs for both IP-based and sensor node application program-

mers has been given. The DS middleware service layer which eases sensor node application

programmers’ programming tasks and a performance analysis of the system showing the

relative benefit of using the DS service layer has also been given. Results of an “ease of

programming” metric to show the relative benefit to programmers when using the DS API

versus programming directly over the DD protocol was also given.

A description of an application-layer gateway has been given which is used to enable

IP-based hosts to gather data from one or more remote WSNs. Through using an IP address-

to-named data type map inside of the gateway node, IP-based hosts can gather data from

the data-centric DD wireless sensor network through the use of a simple API.

A LOC count comparison has been given comparing the pure DD API versus using the

DS API presented in this thesis. In the two applications implemented using both the pure DD

API and the DS API, it has been shown that the DS API significantly reduces the amount

of programming work which must be done in implementing a sensor node application versus

using the pure DD API. A performance analysis which clearly shows the value of using DS

rather than relying on the polling of pure DD sensor applications is also shown. In short, the

performance impact of DS, since it mostly relies on System V Message Queues for tasking and

publishing, is negligible when compared to the performance of pure DD sensor applications

for the same operations and actually improves performance due to the fact that pure DD

applications busily wait to be tasked.

113

All in all, it has been determined that with a flexible API, many more tasks can be

accomplished with more complexity while a simple API may cause simple tasks to become

more difficult but may allow more devices to use it. There should be a balance struck between

these two competing ideals. On one hand, if we make the API too large and complex, it

may squeeze out smaller, hand-held devices. However, if we make the API too simple and

trivial, we lose the power that comes with greater flexibility.

We have also seen that it is possible to, at least partially, bridge the gap between

data-centric networks and host-centric networks like IP. Through using the gateway node’s

mapping service, it is possible to transfer data from a data-centric WSN to interested IP-

based hosts.

114

Bibliography

[1] A. Dunkels, T. Voigt, N. Bergman, and M. Jnsson. “An IP-based Sensor Network as
a Rapidly Deployable Building Security System.” In Swedish National Computer Net-
working Workshop, Karlstad, Sweden, November 2004.

[2] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. “Wireless sensor
networks for habitat monitoring.” In First ACM Workshop on Wireless Sensor Networks
and Applications (WSNA 2002), Atlanta, GA, USA, September 2002.

[3] Adam Dunkels, Thiemo Voigt, Juan Alonso, Hartmut Ritter, and Jochen Schiller. “Con-
necting Wireless Sensornets with TCP/IP Networks.” In Proceedings of the Second
International Conference on Wired/Wireless Internet Communications (WWIC2004),
Frankfurt (Oder), Germany, February 2004.

[4] Archana Bharathidasan, Vijay Anand Sai Ponduru. “Sensor Networks: An Overview.”
IEEE Infocom, 2004.

[5] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin. “Directed Diffusion:
A Scalable and Robust Communication Paradigm for Sensor Networks.” In Proceedings
of the Sixth Annual International Conference on Mobile Computing and Networking
(MobiCOM ’00), Boston, Mass., August 2000.

[6] CUI Yanrong and CAO Jiaheng. “Power Efficient Data Query Processing Protocol for
Wireless Sensor Networks.” IEEE, 2007.

[7] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks,” IEEE Com-
puter, pp. 41–49, August 2004.

[8] F. M. Dommermuth, ”The estimation of target motion parameters from cpa time mea-
surements in a field of acoustic sensors,” The Journal of the Acoustical Society of Amer-
ica, vol. 83, no. 4, pp. 1476–1480, 1988.

[9] Fred Stann and John Heidemann. “RMST: Reliable Data Transport in Sensor Net-
works,” Appearing in 1st IEEE International Worlshop on Sensor Net Protocols and
Applications (SNPA), Anchorage, Alaska, USA. May 11, 2003.

[10] G. J. Pottie and W. J. Kaiser. “Embedding the Internet: Wireless Integrated Network
Sensors.” Communications of the ACM, 43(5):5158, May 2000.

[11] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh. “Monitoring volcanic
eruptions with a wireless sensor network.” In Proceedings of the Second European Work-
shop on Sensor Networks, 2005.

115

[12] Heinzelman W, Chandrakasan A and Balakrishnan H. “Energy-Efficient Communica-
tion Protocol for Wireless Microsensor Networks.” In IEEE Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences, IEEE Computer Society,
2000.

[13] Hui Dai, Richard Han. “Unifying Micro Sensor Networks with the Internet via Overlay
Networking,” In Proceedings of the 29th Annual IEEE International Conference on Local
Computer Networks (LCN), Tampa, FL, November 2004.

[14] Jin Zhang, Daxin Liu, Yuezhu Xu and Tong Wang. “Dissymmetrical Wireless Sensor
Network Internet Access Technology Based on Optimum Gateway.” In IEEE Interna-
tional Conference on Computer Science and Information Technology, 2008.

[15] Joanna Kulik, Wendi Rabiner and Hari Balakrishnan. “Adaptive Protocols for Infor-
mation Dissemination in Wireless Sensor Networks.” In MobiCom, 1999.

[16] Joseph M. Hellerstein, Wei Hong, Samuel Madden and Kyle Stanek. “Beyond Average:
Toward Sophisticated Sensing with Queries.” In IPSN, 2003.

[17] Karim A. Emara, Mohammad Abdeen, Mohammad Hashem. “A Gateway-based Frame-
work for Transparent Interconnection between WSN and IP Network.” IEEE, 2009.

[18] Karl Aberer, Manfred Hauswirth, Ali Salehi. “A Middleware for Fast and Flexible Sensor
Network Deployment.” ACM VLDB ’06, September 2006.

[19] Samuel Madden, Michael J. Franklin, Joseph Hellerstein and Wei Hong. “TAG: A Tiny
AGgregation Service for Ad-Hoc Sensor Networks.” SIGOPS Oper Syst Rev 36(SI):131–
146.

[20] Man-Hon Chan, King-Shan Lui and Vincent Tam. “Efficient Event and Query Distri-
bution in Sensor Networks.” IEEE, 2005.

[21] Min Zhang, Sangheon Pack, Kideok Cho, Dukhyun Chang, Yanghee Choi, and Taeky-
oung Kwon, “An Extensible Interworking Architecture (EIA) for Wireless Sensor Net-
works and Internet,” In Proc. Asia-Pacific Network Operations and Management Sym-
posium (APNOMS) 2006 Poster Sessions, Busan, Korea, September 2006.

[22] N. Trigoni, Y. Yao, A Demers, J. Gehrke, R. Rajaraman. “Multi-query optimization for
sensor networks.”

[23] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss and Philip Levis.
“Collection Tree Protocol.” Technical Report SING-09-01.

[24] Pardeep K. Mohanty. “A Framework for Interconnecting Wireless Sensor and IP Net-
works.” Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE
18th International Symposium.

[25] Ping Song, Chang Chen, Kejie Li and Li Sui. “The Design and Realization of Embedded
Gateway Based on WSN.” In IEEE 2008 International Conference on Computer Science
and Software Engineering, 2008.

116

[26] Qing Yang, Alvin Lim, Kenan Casey, Raghu Neelisetti. “An Empirical Study on Real-
Time Target Tracking with Enhanced CPA Algorithm in Wireless Sensor Networks,” Ad
Hoc & Sensor Wireless Networks An International Journal. vol. 7, no. 3–4, pp. 251–271,
May 2009.

[27] Qing Yang, Alvin Lim, Kenan Casey, Raghu-Kisore Neelisetti. “An Enhanced CPA
Algorithm for Real-Time Target Tracking in Wireless Sensor Networks,” International
Journal of Distributed Sensor Networks. vol. 5, no. 5, pp. 619–643, September 2009.

[28] Qing Yang, Alvin Lim, Kenan Casey and Raghu-Kisore Neelisetti. “Real-Time Target
Tracking with CPA Algorithm in Wireless Sensor Networks.” IEEE SECON 2008, 2008.

[29] Rashmi Bajaj, Samantha Lalinda Ranaweera and Dharma P. Agrawal. “GPS: Location-
Tracking Technology,” Computer, vol. 35, no. 4, pp. 92–94, April 2002.

[30] S. N. Simic and S. Sastry. “Distributed environmental monitoring using random sensor
networks.” In Proceedings of the 2nd International Workshohp on Information Process-
ing in Sensor Networks, pages 582-592, Palo Alto, California, 2003.

[31] Salem Hadim and Nader Mohamed. “Middleware: Middleware Challenges and Ap-
proaches for Wireless Sensor Networks.” In IEEE Computer Society Vol. 7, No. 3,
March 2006.

[32] Yun Hu, Fengqi Yu and Ping Deng. “A Novel Data Query Method for Wireless Sensor
Networks.” IEEE, 2007.

117

