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Abstract

For any 2-regular spanning subgraph G and H of the complete multipartite graph K

with p parts each of size m, conditions are found which guarantee the existence of a 2-

factorization of K or of K − I (for some 1-factor I) in which

1. the first and second 2-factors are isomorphic to G and H respectively, and

2. each other 2-factor is a hamilton cycle.

These conditions are necessary and sufficient when m is odd, and solve the problem when m

is even providing that m and p are each at least 6.
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Chapter 1

Introduction

1.1 History

One of the challenging problems over the past 30 years has been the Oberwolfach

problem and its natural generalizations. The original problem requires one to find a 2-

factorization of Kn in which all the cycles have the same length; this problem was solved

over a decade ago [2, 8]. A much studied generalization of this problem is to simply require

that each of the 2-factors be isomorphic to each other. To solve this would be an amazing

feat, as so many possible 2-factors exist. Some progress has been made, including a com-

plete solution when n ≤ 17 [1], and in many cases where each 2-factor contains just two

cycle lengths (see [5] for a survey of results).

Another direction in which research has developed is to allow a small number of the

2-factors to be anything, but then stipulate that the remaining 2-factors be hamilton cycles.

Extending a result of Buchanan [6], in 2004 Bryant [4] found necessary and sufficient condi-

tions for the existence of 2-factorizations of Kn and of Kn− I, where Kn− I is the complete

graph on n vertices with a 1-factor I removed, in which the cycle lengths in up to three

of the 2-factors are freely specified, and all remaining 2-factors are hamilton cycles. Inde-

pendently, Rodger [10] used a similar observation to settle the existence of 2-factorizations

of all complete multipartite graphs, and of all complete multipartite graphs with a 1-factor

removed, in which one 2-factor is freely specified and the rest of the 2-factors are hamilton

cycles. One can think of this as the existence of a hamilton decomposition of the graph

formed from K(m, p) (the complete multipartite graph with m vertices in each of p parts)

or from K(m, p) − I by removing any 2-factor. Thought of in this way, the result has a

relative in the world of matchings, where Plantholt [9] showed that the removal of any set
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of x edges from K2x+1 results in a graph whose edges can be partioned into 2x matchings

(2x+ 1 matchings are needed if fewer edges are removed).

In this paper, we extend the result of Rodger, finding necessary and sufficient conditions

for the existence of a hamilton decomposition of the graph K(m, p) by removing the edges of

any two 2-factors. More formally, for any two 2-regular graphs G and H of order mp, when

m is odd we find necessary and sufficient conditions for the existence of a 2-factorization,

{F1, F2, ..., F⌊m(p−1)⌋/2}, of K(m, p) such that G ∼= F1, H ∼= F2, and Fi is a hamilton cycle for

3 ≤ i ≤ ⌊m(p− 1)⌋/2.

1.2 Preliminary Results

Before we can get to the results, some notation, lemmas, and theorems must be intro-

duced. In this paper we use Zn to denote the vertex set of a graph on n vertices. This allows

us to define the difference of the edge {i, j} to be d(i, j) = min{j − i, n − (j − i)} where

i < j; thus n/2 ≥ d(i, j) > 0. Let ⟨d1, d2, ..., dx⟩n be the subgraph induced by the edges with

differences in {d1, d2, ..., dx}. Bermond et al [[3]] proved the following useful result that shows

when the edges of two differences can be used to form two edge-disjoint hamilton cycles. If

A is a set of positive integers, let gcd(A) denote the greatest common divisor of the elements

of A. A hamilton cycle decomposition of the graph G is a 2-factorization of G, each 2-factor

in which is a hamilton cycle.

Theorem 1.1. [3] Let s, t, n be positive integers with s < t < n/2. If gcd({s, t, n}) = 1

then the graph ⟨s, t⟩n has a hamilton cycle decomposition.

The next lemma was proven separately by both Bryant and Rodger. It provides a key

method used to prove our results.

Lemma 1.2. [4, 10] Let n ≥ 5 and let F ′ be any 2-regular graph of order n. If gcd({x, n}) = 1

then the subgraph ⟨x, 2x⟩n of Kn has a 2-factorization {F,H} such that H is a hamilton

cycle and F ′ ∼= F . (See Figure 1.1)
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Figure 1.1: Referring to Lemma 1.2 with F ′ = C4 ∪ C5 and x = 1

Now, we will introduce some specific results that will be used to clear up some of the

cases we will encounter. Presented first is the result from Bryant’s paper previously alluded

to; one might also see the related results in [1, 7].

Theorem 1.3. [4] Let n ≥ 7 be odd and let F ′
1, F

′
2, and F ′

3 be any three 2-regular graphs

of order n. Then there exists a 2-factorization {F1, F2, ..., F(n−1)/2} of Kn in which F1
∼= F ′

1,

F2
∼= F ′

2, F3
∼= F ′

3, and Fi is a hamilton cycle for 4 ≤ i ≤ (n − 1)/2, except that when

(n, F ′
1, F

′
2, F

′
3) ∈ {(7, C3∪C4, C3∪C4, C7), (9, C3∪C3∪C3, C3∪C3∪C3, C3∪C3∪C3), (9, C3∪

C3∪C3, C3∪C3∪C3, C3∪C6), (9, C3∪C3∪C3, C3∪C3∪C3, C4∪C5)} no such two factorization

exists.

Next we present Rodger’s result.

Theorem 1.4. [10] Let p ≥ 3 and m ≥ 1. Let H be any 2-factor in K(m, p). There exists

a partition of the edge set of K(m, p), one set in which induces a graph isomorphic to H, if

m(p− 1) is odd then one set induces a 1-factor, and each other set induces a hamilton cycle.

The rest of the dissertation is organized as follows:
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Chapter 2

The Case when mp is Odd

In this chapter we settle the existence of the specified 2-factorization when mp is odd.

The proof relies heavily on Theorem 1.1, but in the case where (m, p) = (5, 3) several small

cases must be considered in another way; this is accomplished by using a neat switching

method.

Theorem 2.1. Let m be odd. Let G and H be any two 2-regular graphs of order mp. There

exists a 2-factorization {F1, F2, . . . , F⌊m(p−1)⌋/2} of K(m, p) such that F1
∼= G, F2

∼= H, Fi is

a hamilton cycle for 3 ≤ i ≤ ⌊m(p− 1)⌋/2, if and only if

1. p is odd, and

2. (m, p,G,H) /∈ {(1, 7, C3∪C4, C3∪C4), (3, 3, C3∪C3∪C3, C3∪C3∪C3), (3, 3, C3∪C3∪

C3, C3 ∪ C6), (3, 3, C3 ∪ C3 ∪ C3, C4 ∪ C5)}.

Proof. If K(m, p) is to have a 2-factorization, all vertices must have even degree, so m(p−1)

must be even, so the first condition is necessary since we are assuming that m is odd. Once

one observes that the edges removed from K9 to form K(3, 3) can be thought of as the edges

in C3 ∪C3 ∪C3, Theorem 1.3 clearly proves the four cases described in the second condition

cannot be obtained. So we now turn to a proof of the sufficiency.

Since K(m, p) is an m(p− 1)-regular graph, and since it is assumed to contain at least

two 2-factors, we know that m(p − 1) ≥ 4. So, since we also know that p is odd, clearly

p ≥ 3.

Notice that if we let the jth part ofK(m, p) be {ip+j | i ∈ Zm} for j ∈ Zp then the edges

of K(m, p) are the same as the edges of the complete graph Kmp with edges of difference

ip, 1 ≤ i ≤ ⌊m/2⌋ removed. Therefore we will partition the edges of K(m, p) by their
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differences, namely by the differences in the difference set D = {1, 2, . . . , ⌊(mp)/2⌋}\{ip |

1 ≤ i ≤ ⌊m/2⌋}. We now consider several cases in turn.

Case 1: Suppose mp ≥ 21. Then {1, 2, 4, 8} ⊂ D. By Lemma 1.2, ⟨1, 2⟩mp and ⟨4, 8⟩mp

each have a 2-factorization consisting of any 2-factor and a hamilton cycle; so we can choose

the two 2-factors to be isomorphic to G and H respectively. It remains to partition the

remaining edges into sets that induce hamilton cycles. We consider 4 subcases in turn.

Case 1(a): Suppose that p ≥ 9. By pairing all except possibly the last of the differences

in D\{1, 2, 4, 8} = D′ in increasing order (that is, form pairs {3, 5}, {6, 7}, . . . ) we produce

pairs of the form either {d, d+ 1} or {d, d+ 2}, for some d ∈ D′.

Since gcd({mp, (d+1)−d}) = gcd({mp, 1}) = 1, it follows that gcd({d, d+1,mp}) = 1.

Also, since mp is odd, gcd({mp, (d+ 2)− d}) = gcd({mp, 2}) = 1 means that gcd({mp, d+

2, d}) = 1. Also, if |D| is odd, then the last difference, (mp− 1)/2, is not paired, but since

gcd({mp, (mp − 1)/2}) = 1, the edges with difference (mp − 1)/2 form a hamilton cycle.

Therefore, by Theorem 1.1, there exists a hamilton cycle decomposition of the subgraph

induced by the remaining edges.

Case 1(b): Suppose that p = 7. If m = 3 then the result follows from Theorem

1.3, since we can choose each component in F ′
3 to be a 3-cycle, then remove these edges

to form the independent vertices in the parts of K(3, 7). In all other cases (so mp > 21),

first form the pairs {3, 5}, {6, 10}, and {9, 11} in turn (these exist since mp > 21). Notice

that: gcd(3, 5,mp) divides gcd(5 − 3,mp) = 1 since mp is odd; the gcd(6, 10,mp) divides

gcd(10− 6,mp) = 1 since mp is odd; and, similarly, gcd(9, 11,mp) = 1. All other pairs are

of the form {d, d + 1} or {d, d + 2}. Therefore we can apply Theorem 1.1 to each pair in

turn to form sets of edges that induce hamilton cycles.

Case 1(c): Suppose that p = 5. If mp ≥ 35 then apply Theorem 1.1 to each of the

pairs {3, 7}, {6, 14}, {12, 13}, and {9, 11} in turn. Pair the remaining differences in order

and proceed as in Case 1a.
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If mp < 35 then mp = 25. Apply Theorem 1.1 to each of the pairs {3, 6}, {7, 9}, and

{11, 12} in turn.

Case 1(d): Suppose that p = 3. Pair the remaining differences in order and proceed

as in Case 1a.

Case 2: Suppose mp ≤ 20 and (m, p) ̸= (5, 3). If m = 1 then K(1, p) is just the

complete graph Kp, so the result follows from Theorem 1.3. If m = 3 then p ∈ {3, 5} so the

result also follows from Theorem 1.3, since when m = 3, the edges one removes from Kmp

to form K(m, p) induce the 2-factor consisting of p 3-cycles; consider this to be the third

specified 2-factor.

Case 3: Suppose (m, p) = (5, 3). This case takes substantial effort to settle. It is

too small to be able to apply Lemma 1.2 twice and be left with a difference that induces

a hamilton cycle. The set of available differences is {1, 2, 4, 5, 7}, and Lemma 1.2 could be

applied to the graphs ⟨1, 2⟩15 and ⟨4, 8⟩15 (since difference 7 is the same as difference 8), but

that leaves difference 5 that induces five 3-cycles. So we do apply Lemma 1.2 to ⟨4, 8⟩15

to obtain F1, then obtain F2 from ⟨1, 2, 5⟩15 in such a way that the edges left over form

two hamilton cycles. We consider the various possible cycle lengths, c1, c2, ..., cx of the x

components of F2 in turn, written as l = (c1, c2, ..., cx).

We begin with the cases in which all the cycle lengths in F2 are divisible by 3. To

construct the required cycles, we always include the hamilton cycle ⟨2⟩15, then swap edges

in ⟨1⟩15 with edges in ⟨5⟩15 to fuse components in ⟨5⟩15. In each case, we begin with l, then

describe how to form F2.

(3, 3, 3, 3, 3) : ⟨1⟩15 and ⟨2⟩15 are hamilton cycles, and difference 5 induces F2.

(3, 3, 3, 6): Swap edges {0, 1} and {5, 6} in ⟨1⟩15 with edges {0, 5} and {1, 6} in ⟨5⟩15 to

produce the hamilton cycle (0, 5, 4, 3, 2, 1, 6, 7, . . . , 14) and the graph consisting of the

cycles (0, 1, 11, 6, 5, 10), (2, 7, 12), (3, 8, 13), and (4, 9, 14) respectively. The next few cases

proceed similarly, so we simply present the edges to be swapped. (Refer to Figure 2.1.)
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(3, 3, 9): Swap edges {0, 1}, {5, 6}, {6, 7}, and {11, 12} in ⟨1⟩15 with edges

{0, 5}, {1, 6}, {6, 11}, and {7, 12} in ⟨5⟩15 (so just switch two more edges from the (3, 3, 3, 6)

case).

(3, 12): Swap edges {0, 1}, {2, 3}, {5, 6}, {6, 7}, {7, 8}, and {11, 12} in ⟨1⟩15 with edges

{0, 5}, {1, 6}, {2, 7}, {3, 8}, {6, 11}, and {7, 12} in ⟨5⟩15 (so just switch two more edges from

the (3, 3, 9) case).

(3, 6, 6): Swap edges {0, 1}, {5, 6}, {7, 8}, and {12, 13} in ⟨1⟩15 with edges

{0, 5}, {1, 6}, {7, 12}, and {8, 13} in ⟨5⟩15 (so just switch two more edges from the (3, 3, 3, 6)

case).

(6, 9): Swap edges {0, 1}, {3, 4}, {5, 6}, {6, 7}, {8, 9}, and {11, 12} in ⟨1⟩15 with edges

{0, 5}, {1, 6}, {3, 8}, {4, 9}, {6, 11}, and {7, 12} in ⟨5⟩15 (so just switch two more edges from

the (3, 3, 9) case).

Figure 2.1: K(m, p), using differences of 1 and 5 to produce a C3 ∪ C3 ∪ C3 ∪ C6 and a
hamilton cycle

All but one of the remaining cases are obtained by producing F2 using Lemma 1.2, then

switching edges between the resulting hamilton cycle and ⟨5⟩15 to obtain 2 hamilton cycles.
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Since it is more complicated to describe, we simply provide the resulting decompositions of

⟨1, 2, 5⟩15.

(3, 4, 4, 4): (0, 1, 14, 13), (2, 3, 5, 4), (6, 7, 8), (9, 10, 12, 11),

(0, 5, 10, 8, 3, 13, 12, 7, 2, 1, 11, 6, 4, 9, 14),

(0, 2, 12, 14, 4, 3, 1, 6, 5, 7, 9, 8, 13, 11, 10).

(3, 3, 4, 5) : (4, 5, 6), (11, 12, 13), (7, 8, 10, 9), (0, 2, 3, 1, 14),

(0, 10, 12, 2, 7, 5, 3, 8, 6, 1, 11, 9, 4, 14, 13),

(0, 5, 10, 11, 6, 7, 12, 14, 9, 8, 13, 3, 4, 2, 1).

(5, 5, 5): (0, 2, 3, 1, 14), (4, 6, 8, 7, 5), (9, 10, 12, 13, 11),

(0, 5, 10, 11, 6, 1, 2, 12, 7, 9, 14, 4, 3, 8, 13),

(0, 10, 8, 9, 4, 2, 7, 6, 5, 3, 13, 14, 12, 11, 1).

(4, 5, 6): (10, 11, 13, 12), (5, 6, 8, 9, 7), (0, 2, 4, 3, 1, 14),

(0, 1, 11, 9, 4, 6, 7, 2, 12, 14, 13, 3, 8, 10, 5),

(0, 10, 9, 14, 4, 5, 3, 2, 1, 6, 11, 12, 7, 8, 13).

(4, 4, 7): (6, 8, 9, 7), (10, 12, 13, 11), (0, 2, 4, 5, 3, 1, 14)

(0, 5, 7, 2, 12, 14, 4, 6, 1, 11, 9, 10, 8, 3, 13),

(0, 10, 5, 6, 11, 12, 7, 8, 13, 14, 9, 4, 3, 2, 1).

(3, 5, 7): (11, 12, 13), (6, 7, 9, 10, 8), (0, 2, 4, 5, 3, 1, 14),

(0, 5, 7, 2, 1, 6, 11, 10, 12, 14, 4, 9, 8, 3, 13),

(0, 10, 5, 6, 4, 3, 2, 12, 7, 8, 13, 14, 9, 11, 1).

(3, 4, 8): (0, 5, 10), (1, 2, 7, 6), (3, 4, 14, 9, 11, 12, 13, 8),

(0, 1, 3, 2, 4, 5, 6, 11, 10, 9, 8, 7, 12, 14, 13),

(0, 2, 12, 10, 8, 6, 4, 9, 7, 5, 3, 13, 11, 1, 14).

(5, 10): (0, 2, 4, 6, 8, 7, 5, 3, 1, 14), (9, 11, 13, 12, 10),

(0, 5, 4, 14, 9, 8, 13, 3, 2, 12, 7, 6, 1, 11, 10),

(0, 1, 2, 7, 9, 4, 3, 8, 10, 5, 6, 11, 12, 14, 13).
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(4, 11): (0, 2, 4, 6, 8, 9, 7, 5, 3, 1, 14), (10, 12, 13, 11),

(0, 5, 4, 14, 12, 2, 7, 6, 1, 11, 9, 10, 8, 3, 13),

(0, 1, 2, 3, 4, 9, 14, 13, 8, 7, 12, 11, 6, 5, 10).
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Chapter 3

The Case when p is Even

3.1 A Number Theoretic Result

We begin this chapter with a general number theoretic result that will be used exten-

sively in Section 3.2. The rest of this chapter deals with the case where p is even.

Lemma 3.1. Let m, p ∈ Z+ with p ̸= 1. Then there exists an f ∈ Z such that gcd(f,mp) =

1, f ≡ −1(mod p), and 0 < f < mp.

Proof. Define Q = {q | q prime, q divides m, q does not divide p}. For each q ∈ Q, choose

1 ≤ aq ≤ q − 1. By the Chinese Remainder Theorem, there exists a unique f ∈ Z satisfying

1. f ≡ −1(mod p) and

2. f ≡ aq(mod q) for each q ∈ Q

with 0 ≤ f < pD, where D is the product of all the elements of Q. Obviously, f ̸= 0 since

p ≥ 2. Also, mp ≥ pD since D is a product of primes dividing m, so D divides m. Since

there are q− 1 for each aq, there are ϕ(D) such f in each of the ranges tpD < f < (t+1)pD

for each 0 ≤ t < m
p
.

Corollary 3.2. In Lemma 3.1, there are ϕ(D)m
D

such f ’s, where D is the product of all primes

which divide m but do not divide p, and ϕ is the Euler ϕ-function.

Proof. Referring to the proof of Lemma 3.1, each aq can be chosen in q − 1 ways, so the

family of aq’s can be chosen in a total of Πq∈Q(q − 1) = ϕ(D) ways. This gives ϕ(D) f ’s

(mod pD), and the interval from 0 to mp contains m
D

copies of the integers (mod pD).

Corollary 3.3. For p even, p ≥ 6,m ≥ 5, ϕ(D)m
D

≥ 4.
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Proof. Let us consider the possible value of ϕ(D)m
D

being 1, 2, or 3 in turn. First notice that,

by definition, 2 /∈ Q since p is even. Also, notice that ϕ(D) = 1 if and only if Q = {2}, by

definition of Q.

1. ϕ(D)m
D

= 1 if and only if both ϕ(D) and m
D

are 1. But we just showed that ϕ(D) ̸= 1.

2. ϕ(D)m
D

= 2 if and only if ϕ(D) = 2 and m
D

= 1 or ϕ(D) = 1 and m
D

= 2. The second

option is not possible since ϕ(D) ̸= 1. If ϕ(D) = 2 then either Q = {2, 3} or Q = {3}.

Since 2 /∈ Q, Q = {3}. Therefore D = 3. This implies that m is also 3 since m
D

= 1.

This contradicts the assumption that m ≥ 6.

3. ϕ(D)m
D

= 3 if and only if ϕ(D) = 3 and m
D

= 1 or ϕ(D) = 1 and m
D

= 3. The second

option is not possible since ϕ(D) ̸= 1. Also, since ϕ(D) = Πq∈Q(q − 1), where each q

is strictly prime, ϕ(D) ̸= 3.

Thus, ϕ(D)m
D

≥ 4.

3.2 The Case when p is Even

We now use Lemma 3.1 and Theorem 1.1 to settle the case when p is even, and m is

odd or even. When m is odd we will have the half-difference (1-factor), I.

Theorem 3.4. Let p be even, p ≥ 6,m ≥ 5, and suppose that G and H are any two 2-factors

ofK(m, p). Then there exists a 2-factorization S = {F1, F2, . . . , F⌊m(p−1)/2⌋} ofK(m, p) when

m is even and a 2-factorization of K(m, p) − I when m is odd, such that F1
∼= G,F2

∼= H,

and Fi is a hamilton cycle for 3 ≤ i ≤ ⌊m(p− 1)/2⌋.

Proof. Notice that if we let the jth part of K(m, p) be the vertex set {ip + j | i ∈ Zm} for

j ∈ Zp then K(m, p) is isomorphic to the subgraph of Kmp formed by removing the edges

of difference ip, 1 ≤ i ≤ ⌊m/2⌋. Therefore we will partition the edges of K(m, p) by their

differences in Kmp, namely by the differences in the difference set D = {1, 2, . . . ,mp/2}\{ip |

1 ≤ i ≤ ⌊m/2⌋}. (Refer to Figure 3.1.)
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Figure 3.1: K(3, 3) represented as a K9 with edges of difference 3 removed

We define

[f ] =

 f if f < mp/2, and

mp− f if f > mp/2

so ⟨f⟩mp = ⟨[f ]⟩mp. This special difference f will be chosen from D such that

1. f ≡ −1(mod p),

2. gcd(f,mp) = 1,

3. 0 < f < mp, and

4. f /∈ {mp/2− 1,mp− 1}.

Since property 4 excludes two possible values of f described in Lemma 3.1, by Corollary 3.3

there are at least two choices for f . In most cases, just one value is used, but in Case 2,

both will be needed.

By Lemma 1.2, ⟨1, 2⟩mp and ⟨f, 2f⟩mp each have a 2-factorization consisting of any 2-

factor and a hamilton cycle; so we can choose the two 2-factors to be isomorphic to G and

H respectively. It remains to partition the remaining edges (differences) into sets that will

induce hamilton cycles by applying Theorem 1.1. If m is odd the half difference, mp/2, will

induce the 1-factor, I. We now consider several cases in turn.

Case 1: Suppose that p ≡ 0, 1, or 3 (mod 4) or m ≡ 0, 1, or 2 (mod 4). Define

D′ = D\{1, 2, f, 2f,mp/2}. So either
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i: |D′| is even or

ii: |D′| is odd and mp/2− 1 is odd.

In the latter case, ⟨mp/2− 1⟩mp induces a hamilton cycle which will be placed in S; so, in

this case, further modify D′ by removing the difference mp/2 − 1. So in both cases, |D′| is

even. If there are an odd number of differences in D′ that are less than f or [f ], then modify

D′ to form D′′ as follows.

Case 1(a): If 3 does not divide m or if 3 does not divide f − 1 then remove the pair

{d, d+ 3} from D′ where

i: d = f − 1 if f < mp/2

ii: d = [f ]− 2 if f > mp/2.

Case 1(b): If 3 divides m and 3 divides f − 1 then remove the pair {d, d+ 9} from D′

where

i: d = f − 3 if f < mp/2

ii: d = [f ]− 4 if f > mp/2.

Consider this new set D′′ (possibly D′ = D′′). Now pair the differences in D′′ in

increasing order. We now show that Theorem 1.1 can be applied to each of the defined pairs.

That is, we will show that for each pair π = {z1, z2}, gcd(z1, z2,mp) = 1.

We consider each of the possible pairs π of differences in turn.

1. Suppose π = ⟨d, d+ 1⟩ for some d ∈ D′′. Then gcd(d, d+ 1,mp) divides gcd((d+ 1)−

(d),mp) = gcd(1,mp) = 1.

2. Suppose π = ⟨d, d+ 2⟩ for some d ∈ D′′. Notice that such a pair only occurs when

d+1 is a multiple of p, is 2f , is 2[f ], or is [2[f ]]. So, in each case, d and d+2 are both

odd. Thus, gcd(d, d+ 2,mp) divides gcd((d+ 2)− (d),mp) = gcd(2,mp) ∈ {1, 2}. So,

since d is odd, gcd(d, d+ 2,mp) = 1.

13



3. Suppose π = ⟨d, d+ 3⟩. Such pairs only occur in case 1(a). So, we consider the

situations in turn.

• 1(a)i: In this case d = f − 1, so we need to consider gcd(f − 1, f + 2,mp) which

divides gcd((f + 2)− (f − 1),mp) = gcd(3,mp) ∈ {1, 3}. Recall that in this case

3 does not divide m or 3 does not divide f −1. If 3 does not divide f −1 then the

gcd(f − 1, f + 2,mp) = 1. Otherwise, 3 does not divide m and 3 divides f − 1;

so 3 does not divide p since f ≡ −1( mod p). Thus, 3 does not divide mp. So,

gcd(f − 1, f + 2,mp) = gcd(3,mp) = 1.

• 1(a)ii: Here we have that d = [f ] − 2. We must consider gcd([f ] − 2, [f ] +

1,mp) which divides gcd(([f ] + 1)− ([f ]− 2)),mp) = gcd(3,mp) ∈ {1, 3}. Since

[f ] − 2 ≡ −1( mod p), 3 cannot divide both [f ] − 2 and p, so the only way for

gcd([f ] − 2, [f ] + 1,mp) = 3 is if 3 divides both [f ] − 2 and m. But [f ] − 2 =

mp − f − 2 ≡ mp − (f − 1(mod3) so then 3 would divide f − 1, contradicting

the assumption that either 3 does not divide m or 3 does not divide f − 1. Thus,

gcd([f ]− 2, [f ] + 1,mp) = gcd(3h,mp) = 1.

4. Suppose π = ⟨d, d + 9⟩. Such pairs only occur in case 1(b). So, we consider the cases

in turn.

• 1(b)i: In this case d = f − 3, so we need to consider gcd(f − 3, f + 6,mp) which

divides gcd((f + 6) − (f − 3),mp) = gcd(9,mp) ∈ {1, 3, 9}. Recall that in this

case 3 divides m, 3 divides f − 1, and f ≡ −1( mod p). So 3 does not divide

f − 3. Thus, gcd(f − 3, f + 6,mp) = gcd(9,mp) = 1.

• 1(b)ii: Here we have that d = [f ]−4. So we must consider gcd([f ]−4, [f ]+5,mp)

which divides gcd(([f ] + 5)− ([f ]− 4),mp) = gcd(9,mp) ∈ {1, 3, 9}. Notice that

[f ]− 4 = mp− f − 4 = mp− (f − 1)− 5. In this case, 3 divides m and 3 divides

(f − 1); so if 3 divides ([f ]− 4) then 3 divides −5, a contradiction. Thus 3 does

not divide [f ]− 4, so the gcd([f ]− 4, [f ] + 5,mp) = 1.
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Case 2: If p ≡ 2(mod4) and m ≡ 3(mod4), then mp/2 − 1 is even. Thus ⟨mp/2 − 1⟩mp is

not a hamilton cycle. Consider a difference, g, defined in the same way as f . That is, by

Lemma 3.1 there exists a g ∈ Zmp with g ≡ −1(modp), gcd(g,mp) = 1, g ̸= mp − 1, and

g ̸= f . Then ⟨g⟩mp is a hamilton cycle. Remove this difference as well from D; so in this

case define our new difference set D′ = D\{1, 2, f, 2f,mp/2, g}. In the following situations

we will modify D′ to form D′′ as follows.

• (a):

– i: If [f ] = g + 2, then remove {3, g + 3} from D′.

– ii: If [g] = f + 2, then remove the pair {3, f + 3} from D′.

• (b): If 2f = g − 1, then remove the pair {g − 2, g + 2} from D′.

Consider this new set D′′. Differences in D′′ are now paired in increasing order and The-

orem 1.1 applied to each pair. We now show that for each possible pair π = {z1, z2},

gcd(z1, z2,mp) = 1.

1. Suppose π = ⟨d, d+ 1⟩ for some d ∈ D′′. Then gcd(d, d+ 1,mp) divides gcd((d+ 1)−

(d),mp) = gcd(1,mp) = 1.

2. Suppose π = ⟨d, d+ 2⟩ for some d ∈ D′′. Notice that such a pair only occurs when

d + 1 is a multiple of p, is 2f , is 2[f ], or is [2[f ]]. In each situation, d and d + 2 are

both odd. Thus, gcd(d, d+2,mp) divides gcd((d+2)− (d),mp) = gcd(2,mp) ∈ {1, 2}.

So, since d is odd, gcd(d, d+ 2,mp) = 1.

3. Suppose π = ⟨3, d + 3⟩. Such pairs occur in case 2(a). So, we consider the situations

in turn.

• (Case 2i): In this case d = g, so we need to consider gcd(3, g + 3,mp) which

divides gcd((g + 3)− 3,mp) = gcd(g,mp). By definition of g, gcd(g,mp) = 1.
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• (Case 2ii): In this case d = f , so we need to consider gcd(3, f + 3,mp) which

divides gcd((f + 3)− 3,mp) = gcd(f,mp). By definition of f , gcd(f,mp) = 1.

4. Suppose π = ⟨g − 2, g + 2⟩. This pair occurs in case 2(b). We need to consider

gcd(g− 2, g+2,mp) which divides gcd((g+2)− (g− 2),mp) = gcd(4,mp) ∈ {1, 2, 4}.

Notice that in this case g − 2 is odd since g is odd, thus gcd(g − 2, g + 2,mp) is odd.

So, gcd(g − 2, g + 2,mp) = 1.

Thus every pair of differences induces two hamilton cycles to be placed into S. In some cases,

the differencemp/2−1 or g is used alone to form a hamilton cycle. The sets ⟨1, 2⟩mp, ⟨f, 2f⟩mp

induce G and H and two hamilton cycles in S. If the half-difference, mp/2, is present in

D, it induces the 1-factor, I. So the required 2-factorization has been constructed in all

cases.
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Chapter 4

Another Number Theoretic Result

In this section a result is obtained that was, early in the research, thought to be pivotal.

However, it was concluded that a simpler approach could be used. By adopting a different

approach in the proof of Theorem 3.4, it turns out that Lemma 4.1 was not needed. Never-

theless it is a result that may be of some consequence in future endeavors. For example, it

could be a useful tool in attacking results that would generalize Theorem 3.4.

Lemma 4.1. Let m ≥ 5. If m, p ∈ Z+ and p even, then there exists an f ∈ Z such that

gcd (f,mp) = 1, f ≡ p− 1(mod 2p), and 0 ≤ f < mp.

Proof. Let m, p ∈ Z+ and let p be even. Let Q = {qi | qi is prime, qi divides m, and qi

does not divide p}. Notice that the gcd (qi, 2p) = 1 for each qi ∈ Q since p is even. By

the Chinese Remainder Theorem, there exists a unique solution modulo 2p
∏

qi∈Q qi to the

system of congruences:

1. f ≡ p− 1(mod 2p)

2. f ≡ 1 or 2(mod qi) for each qi ∈ Q.

Notice that 0 ≤ f < 2p
∏

qi∈Q qi. (*) We first check that gcd (f,mp) = 1. Let r ∈ Z be

a prime such that r divides f and r divides mp. We consider two cases in turn.

Case 1: r divides f and r divides p

By (1), f = 2px + p− 1 for some x ∈ Z. Then, r divides 2px, r divides p, and r divides f ,

so r divides −1. This implies that r = 1, so gcd(f,mp) = 1.

Case 2: r divides f , r divides m, but r does not divide p

We can assume that r = qi for some qi ∈ Q. By (2), f = ry + 1 or f = rz + 2 for y, z ∈ Z.
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If f = ry + 1, then r divides 1, so gcd(f,mp) = 1. If f = rz + 2, then r divides 2, which

implies that r divides 1 since qi ̸= 2, so gcd(f,mp) = 1.

Now that we have an f such that gcd(f,mp) = 1 and f ≡ p − 1(mod 2p), and clearly,

by (1) and (2), 0 < f < 2mp, it just remains to show that f can be chosen so that f < mp.

We consider two cases in turn.

Case 1: Suppose m is not square free; say q21 divides m. Then, by (*) f < 2p
∏

qi∈Q qi ≤

2pm÷ q1 ≤ mp. So, f < mp as required.

Case 2: If m is square free, m ≥ 5, and gcd(m, p) = 1, then 2p
∏

qi = 2mp. An obvious

problem since we need f < mp, not just f < 2mp.

We know that f = 2px+p−1 for some x ∈ Z, and gcd(f, p) = 1. We need gcd(f,m) = 1.

Since 0 ≤ f < 2mp, we have 0 ≤ x ≤ m− 1. These m values for x form a complete residue

class modulo m. Then, since gcd(m, 2p) = 1, the resulting m values of f are a complete

residue class modulo m. Notice, because m is odd, there are m+ 1/2 possible values between

0 and mp, and m− 1/2 values between mp and 2mp. Thus, we have slighly more candidates

for f ’s in the desired range, [0,mp). We need to show that one of these values satisfies

gcd(f,mp) = 1.

Define two functions, g, h : Z → Z+, where g(x) = gcd(x,m) and h(x) = gcd(2px +

p− 1,m) = gcd(f,m).

We will now show that for some fixed y ∈ Z, h(x+ y) = g(x) for all x ∈ Zm.

Since gcd(2p,m) = 1, we can find an integer t satisfying 2pt ≡ 1(mod m). Let y = t(1− p).

Then:

h(x+ y) = gcd(2p(x+ y) + p− 1,m) = gcd(2px+ 2py + p− 1,m) = gcd(2px+ 2pt(1− p) +

p− 1,m) = gcd(2px+ 1− p+ p− 1,m) = gcd(2px,m) = gcd(x,m) = g(x).

Since g(−1) = g(1) = g((m − 1)/2) = g((m + 1)/2) − 1, it follows that if we evaluate h at

each of the values, −1 + y(mod m), 1 + y(mod m),
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(m − 1)/2 + y(mod m), and (m + 1)/2 + y(mod m), we get 1 in each case; and clearly at

least one of these four values, say xk, must be at most (m− 1)/2. So, let f = 2pxk + p− 1 ≤

2p((m− 1)/2) + p− 1 < mp.

19



Chapter 5

Conclusion

This dissertation shows the existence of the cases where mp is odd and is settled in

Theorem 2.1. However, there are many smaller cases where p is even that need to be

considered, namely, when either p ≤ 5 or m ≤ 4. The method used when settling the

existence problem when mp is small and odd may be able to be adapted for these unsettled

cases. Because we are looking for two 2-factors, the degree of each vertex must be at least

4, thus m(p− 1) ≥ 4. So to obtain a complete solution to this problem it suffices to consider

the following cases:

1. m = 2 and p ≥ 3

2. m = 3, p ≥ 4, and p is even

3. m = 4 and p ≥ 2

4. p = 2 and m ≥ 5

5. p = 3, m ≥ 6, and m is even

6. p = 4 and m ≥ 5

7. p = 5, m ≥ 6, and m is even.
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