KNAPSACK PROBLEMS WITH SETUP

Yanchun Yang

A Dissertation
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of

Doctor of Philosophy

Auburn, Alabama
August 7, 2006

KNAPSACK PROBLEMS WITH SETUPS

Except where reference in made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory
committee. This dissertation does not include proprietary or
classified information.

Certificate of Approval:

Yanchun Yang

Saeed Maghsoodloo
Professor
Industrial and Systems Engineering

Jorge Valenzuela
Associate Professor
Industrial and Systems Engineering

Robert L. Bulfin, Chairman
Technology Management Professor
Industrial and Systems Engineering

Stephen L. McFarland
Dean
Graduate School

KNAPSACK PROBLEMS WITH SETUP

Yanchun Yang

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon request of individuals or institutions and at their expense.
The author reserves all publication rights.

Signature of Author

Date of Graduation

VITA

Yanchun Yang, daughter of Jie Yang and Jianmei Zhao, was born on April 14, 1977,
in Jiagedagi Daxinganling, Heilongjiang Province, P.R.China. She graduated with the
degrees of Bachelor of Science (Industrial Engineering) in 1998 and Master of
Management Engineering in 2001, both from Northeastern University, Shenyang,

P.R.China. She entered Graduate School, Auburn University, in January, 2003.

DISSERTATION ABSTRACT

KNAPSACK PROBLEMS WITH SETUP

Yanchun Yang
Doctor of Philosophy, August 7, 2006

(MISE, Northeastern University, China, 2001)
(B.S., Northeastern University, China, 1998)

107 Typed Pages

Directed by Robert L. Bulfin

This research studies three integer programming models which can be applied to order
acceptance in make-to-order manufacturing or regional project selection in multiple
periods. All three models are the variations of the binary knapsack problems and they are
called the knapsack problem with setup (KPS), the multiple knapsacks problem with
setup (MKPS) and the multiple-choice knapsack problem with setup (MCKYS),
respectively. In all three models, jobs belong to different families and some variables
represent setup for a family of jobs: if a setup is not done, no jobs in this family can be

processed; if two jobs are processed sequentially, no setup is required.

Branch-and-bound algorithms are used to obtain the optimal solutions to all three
models. Setup variables are branched on. After all setup variables are fixed, the models
are transformed to a (several) knapsack problem(s). For each model, an independent
linear knapsack problem is developed to give an upper bound. When a setup variable is
fixed during branching, we update certain variables in the linear knapsack problem. The
optimal objective of the updated linear knapsack problem is an upper bound on the
generated sub-problem. The rounded LP solution of the linear knapsack problem for KPS
or MCKS corresponds to an incumbent of KPS or MCKS. A greedy algorithm is
developed to obtain a lower bound on MKPS. Computational experiments show the

effectiveness of these algorithms.

Vi

Style manual or journal used Bibliography conforms to those of European Journal of

Operational Research

Computer software used ANSI C, AMPL, Microsoft Office Excel and Microsoft

Office Word

vii

TABLE OF CONTENTS

LIST OF TABLES ...ttt ettt e Xi
LIST OF FIGURES ...ttt sttt sttt Xii
L. INTRODUCTION ...ttt e s e e e e enbaeeanbaeennes 1
1.1. ODbjectives and SIGNITICANCEcceiveiiiiririeeee e 1

1.2. Mathematical MOGEIooiiiiiie e 3
1.2.1. Order aCCEPLANCE ...cvveveiieeiieeiecire st e et e ettt e e te e be e saeereenee e 3

1.2.2. Regional project selection with a fixed budgetcccceeviviniininiinnienn 5

1.3. BasiC research Methodccooveiiiieiiee e 7
1.3.1. CULLING PIANE ...t 7

1.3.2. DyNamic Programmingccccceereeireiiereeieeseesteeseesreesaeseesseessesaesseesseenes 7

1.3.3. Branch and BOUNG ..o s 8

1.4 Relaxation MEthOd..........couiiiiiieece e 8
1.4.1. Linear REIAXALIONc.cciiiiiiiiieieie e 8

1.4.2. Surrogate Relaxationccccveiieiiiie i 9

1.4.3. Lagrangean Relaxationccooveiieiiin i 10

R E (=T =] 00T SR 11

II. KNAPSACK PROBLEM WITH SETUP ...coooiiiiiiiiiiee e 12
ADSTFACT. ..ot 12
2.1, INEFOTUCTION.eieeiiiieieee ettt st aesreenbe e 12
2.2. LITEIatUIE SUINVEY ..ottt bbbttt bbb 14
2.3, BACKGIOUNT....c.uiiiiiiiiiete ettt 16
2.4. SOIUtioN AlGOFItNM ...c.oec e 19
2.4.1. FiXiNg Variablesccveiiiie e 19

2.4.2. BOUNGAING ...ttt ettt et e st nreas 20

2.4.3. Choosing a new sub-problem ... 20

viii

A O TN 4 1Y ([T 21

2.5. Computational EXPErMENTScuiieieieieie e 21
2.6, CONCIUSIONS. ...ttt et bbbt nes 26
Appendix A. ryis greater thanr ;. ..., 27
RETEIBNCES. ... bbbt e s 27
[I. MULTIPLE KNAPSACK PROBLEM WITH SETUP.........coeiiiieieceiee e, 29
N o1 - Tod SRR 29
3L INEFOTUCTION. ...t bbbttt bbb 29
3.2. Linear knapsack problems and knapsack problem with setup............ccccccevvneen. 33
3.2.1. Linear knapsack problem ... 33
3.2.2. Algorithm fOor LKPSccooi s 34
3.2.3. An upper bound 0N MKPS ..o 36
3.3. Feasible solution (Iower bound) ..o 39
3.4. Branch-and-bound algorithm ... 40
341, Variable OFUEN ..o e 40
BA2. FIXING Yy v 41
3.4.3. Choosing a New SUb-problem ... 45
3.5. Computational EXPErIMENTScuiieieieiee e 46
3.6, CONCIUSIONS. ...ttt et sb bbb 54
Appendix A. The optimal objective of K1 is the upper bound on MKPS.................. 55
RETEIBNCES. ...ttt bbbt nr e e enes 58
IV.MULTIPLE-CHOICE KNAPSACK PROBLEM WITH SETUPc.cccoeniriririnnn. 59
ADSTTACT. ... b 59
4.1. Introduction and lITErature rEVIEWccccevereienininienieiesie e 59
4.2. An upper bound and feasible SOIULIONccceoiiiiiiiiie e 63
4.2.1. Linear knapsack problem ... 63
4.2.2. Transform a linear knapsack problem with setup to a linear knapsack
[01£0] o] 1= o [OOSR 64
4.2.3. The algorithm for the upper bound and feasible solution......................... 66
4.3, FIXING Yji oo s 70

4.3.1. FIXING Y 10 0Nt 70

4.3.2. FIXING Y 10 ZBIO...viiiciiiii e 71
4.3.4. Choosing a New Sub-problem............ccovveveiiiiieinc e 72
4.4. Computational eXPEriMENTS........cccueviiiieieee e areas 73
4.5, CONCIUSION ...ttt 79
Appendix A. The optimal objective of LKP, is an upper bound on MCKS. 79

Appendix B. The rounded solution of LKP, corresponds to a feasible solution of

VI S ettt et s et e bt et e e e re e neas 81
Appendix C. Three DOMINANCE FUIEScoiiiiiiiiieie e 83
RETEIEINCES. ...ttt b bbb 90
V. CONCLUSIONS ...ttt 91
BIBLIOGRAPHY ...ttt 94

Table 2.1.

Table 2.2.

Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

LIST OF TABLES

Solution time (seconds) fOr AKPS.........cooooi i 23
Comparing solution time (seconds) of CPLEX and AKPSc..cccccvvvennene. 26
Solution time (minute) for AMKPS for 5 periodscccocveveiiveieiiesineseenens 47
Solution time (minute) for AMKPS for 7 periodsccocvevvevieeveiiesineseenens 48
The lower bound, upper bound and optimal solutionc.cccceveveveiieieennnne 51
The comparison of solution time (Minute) between AMKPS and CPLEX 53

Solution time (minutes) with N =10andn. ~[10,30]ccccevvrvreriiinircenn, 74
Solution time (minutes) with N =30andn, ~[30,50]cccocevirniiinniirinnenen, 75
Solution time (minutes) with N =50andn, ~[50,70]cccccoviiiiiinincnnn, 75
The solution time (minute) comparison between AMCKS and CPLEX......... 78

Xi

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

2.1.

2.2.

3.1

3.2.

3.3.

3.4.

3.5.

3.6.

4.1.

4.2.

LIST OF FIGURES

Comparison of uncorrelated instances with similar total variables number....... 24

Comparison of correlated instances with similar total variables number........... 24
Solution time for average 45 jobs per family and 5 periods..........c.cccceeveveenne. 49
Solution time for average 65 jobs per family and 5 periods..........c.cccceccverveenne. 49
Solution time for average 85 jobs per family and 5 periods..........c.ccccoccvevvernne. 50
Solution time for average 45 jobs per family and 7 periods..........c.cccceeverveennne. 50
Solution time for average 65 jobs per family and 7 periods..........c.cccceecververnne. 50
Solution time for average 85 jobs per family and 7 periods..........c.ccccevveriernne. 51
Solution Time for N =50,T =15andn, ~[50,70]cccceovininiiniiecirees 76
Solution Time for N =50,T =20andn, ~[50,70]ccccecrriirnniiriiiiiciieeen, 76

Xii

I. INTRODUCTION

1.1. Objectives and significance

Make-to-order production is playing an increasingly important role in our economy,
partly due to the Internet and manufacturing technology advances. In make-to-order
production, price is dictated not only by cost, but also by the customer’s expectation as
well. Some customers are willing to pay a higher price for a short lead-time while others
are willing to wait for their products in exchange for lower prices. Thus prices can be
related to a product’s delivery date. Price, schedule and the total profit have very complex
connections. These connections are of extreme interest to businesses today.

Assume there is a manufacturing company. At time T, they receive some orders (jobs),

which belong to N families. Familyi,i=1,.N , has n, jobs. Also assume that these jobs

should be produced in the next planning period. The company’s manufacturing capacity
is fixed and can’t be changed in the short term. Setup cost and setup time occurs when
manufacturing changes from a job in one family to another job from a different family.
There is no setup between jobs of the same family. The company operates with a batch
delivery policy; products that are manufactured in the same period have the same
shipping date. This is a common scenario in many manufacturing companies. Then the
company needs to decide how to choose orders to maximize the total profit. In this case, a

single knapsack model with setup is used to solve this problem.

To extend this problem, jobs can be manufactured inT different periods, but a family
can only be produced in a single period. Here the price charged for the product many
relate to the customer’s desired due date; the price depends on the job’s completion time.
The price could be determined by this way: there would be a base price for a job
delivered at the customer’s desired due date; there will be “earliness” and “tardiness”
penalties for other delivery dates. These prices would depend on the deviation from the
desired due date and each customer’s tolerance for this deviation. Sometimes, the price
could be increased for urgent jobs; or the price could be decreased if the customer agrees
to allow more time for delivery. So in this system, prices are changed based on the
product’s actual delivery time. The company might negotiate the price based on customer
desires and company capabilities. Before making a production schedule, we should know
the prices of jobs as a function of different completion dates.

With the added price variability, this model is more complex than typical scheduling
models in make-to-order manufacturing. The company has to consider the marginal profit
for different jobs, the current production capacity, and each family’s setup cost and time
before choosing orders and deciding the job assignment to maximize its total profit. A
multiple knapsack problem with setup (MKPS) model can solve this problem.

In above scenario, if production inT periods need the same non-renewable material
and jobs from the same family can be manufactured in multiple periods, then a multiple-
choice knapsack problem with setup (MCKS) can model this problem. MCKS is more
helpful in an organization’s decision making on a fixed budget to invest a number of

projects in multiple areas in multiple periods. In order to do a project in an area, a project

office must be set up. The organization would like to decide where to set up offices and

which projects to do to maximize net profit subject to this budget restriction.

1.2. Mathematical Model
1.2.1. Order acceptance

In make-to-order, if all orders have to be finished in one time period, a knapsack
problem with setup (KPS) can be used to solve the orders acceptance problem. In this

situation, a company will decide which jobs will be produced in this period.

Given this model:

N n; N
M ax Z C;i X +Z fy,
i=1 j=1 i=1
S.t.
N n N
D> e+ dy <b 1)
i=1 j=1 i=1
X <Y, j=1n;i=1N (2)
Xy €08 j=Lnii=1N. @)

i -is index families,
J -is index jobs,
N -is the number of families,

n, -is the number of jobs in familyi,

c; -is the profit of job j in familyi,

a; -is the time to process job j in familyi,

f, -is the setup cost for familyi (f, <0),

d, -is the setup time for familyi,

b -is the time available for processing,

x; -is one if job j in familyi is produced, zero otherwise,
y, -is one if any job in familyi is produced, zero otherwise.

Constraint (1) requires that the total time used by jobs and setups cannot exceed the time
available for production (resource other than time could also be considered). Constraints
(2) prohibit a job from being processed if it belongs to a family that has not been setup.
If jobs can be manufactured in multiple periods, and all items in same family should
be manufactured together in one period, then this model could be described as a multiple

knapsack problem with setup (MKPS):

>

T N T N
Max Zz Cijtxijt+zzfityit

t=1 i=1 j=1 t=1 i=1

s.t.
N N N
ZZaijxijt+z Y. <b t=1.T, (1)
i=1 j= i=1
Xit < Yy J=1n;i=LN;t=1.T, (2)
.
>y, <1 i=1.N, (3)
t=1
x,ye{0,1} j=1.n;i=1.N;t=1.T. 4

x.. -is 1if the job j of family i is arranged into periodt, otherwise 0,

ijt
Yy, -is 1 if some job of familyi is arranged into periodt , otherwise O,

Cijt

-is the profit of job j of familyi in period t(c; >0),

f, -is the setup cost for familyi in periodt (f, <0),

a; -is the processing time for job j of family i(a; > 0),

d;, -is the setup time for family i (d, >0),

b, -isthe available resource for processing in period t(b, >0).

Constraint (1) requires that the total time used by jobs and setups cannot exceed the time
available in each period for production (resource other than time could also be
considered). Constraints (2) prohibit a job from being processed if it belongs to a family
that has not been setup. Constraints (3) guarantee setup of each family occurs once.

In this model, all jobs belong to N different families. If a job is chosen, then setup
time and setup costs must occur. A job may be put intoT different periods, but the profit
is different in different periods. The objective is to maximize the sum of the profits of

accepted jobs.

1.2.2. Regional project selection with a fixed budget

Select projects which can be invested in multiple periods and in different regions to
maximize net profit. This model can be described as a multiple-choice knapsack problem

with setup.

T N N T N

Max > > > cixu+ 2> fili

t=1 i=l j=1 t=1 i=1
st.

T N N T N

ZZ auXm+ZZdiyn <b, @)
t=1 i=1 j=1 t=1 i=1

XijISyit j=1;--ni1 |=1,N1 t=1!"Tl (2)
T

> xp<li=1..N, j=1.n, 3)
t=1

X Vi €€0.3 i=1,.N;j=1.n;t=1.T. (4)

c;. -is the profit of project j in area iin period t(c; >0),
f,, -is the setup cost for opening an office in areaiin period t(f, <0),

; -is the investment needed for project j in area i(a; >0),

d; -is the investment cost to open an office in area i (d, > 0),

b -is the budge available to invest (b > 0),

y,. - is one if office is set up in areai in periodt, otherwise zero,
x;; -is one if project jin areaiis done in periodt, otherwise zero,

N -is the number of areas,

T -is the number of periods.

Constraint (1) requires the total budget used by all projects and setup office can’t exceed
the budget available. Constraints (2) prohibit a project done before the office in this area
is set up. Constraints (3) guarantee a project in an area only can be invested once.

Constraints (4) require the variables to be binary.

1.3. Basic research method
These three models are integer programs (IPs). For integer programming, branch and
bound, cutting planes and dynamic programming could be used to optimally solve this

class problem.

1.3.1. Cutting Plane

Cutting plane algorithm is an important and well-known approach to solve IPs. It is
one of the purest methods in polyhedral description algorithms and an alternative to
enumeration. Cutting planes redefines the problem again and again by adding constraints
until the problem is solved.

In practice, a successful cutting plane algorithm depends on the relaxation method of
the original problem, and the choice of cutting inequalities. There must be a family of
valid inequalities, which define any optimal point, and a relaxation that is tractable. In
fact when we add valid inequalities to the relaxation, we solve a series of relaxed
problems. If this series of problems are easy to solve, that is better. But for these three
models, we did not find such an algorithm for the relaxations. Therefore, cutting plane
does not appear to be our best choice. For further study of cutting planes, refer to Parker

and Rardin (1988).

1.3.2. Dynamic Programming

Dynamic Programming is not a specific algorithm, but we can use dynamic
programming theory to design an algorithm for these three models. As the number of jobs
increase, that algorithm becomes worse, and storage space will increase exponentially.
We do not choose to use dynamic programming.

7

1.3.3. Branch and Bound

Branch and Bound belongs to the strategy of “partial enumeration”, just like cutting
planes belongs to” polyhedral description”. These two strategies are often used to solve
IPs. Though they are non-polynomial in the worst case, they can be effective solution
procedures for IPs in practice.

In a branch-and-bound algorithm, if a variable x is restricted to be binary, we can
separate the problem into two sub-problems: one with x = 0 and the other withx =1.
Successful applications for B&B need a good algorithm to calculate upper and lower
bounds for those sub-problems. The tighter the upper and lower bounds are, the more
effective the algorithm is. Only with strong bounds we can expect to fathom candidate
problems rapidly enough to avoid being overcome by the exponential growth in the
number of potential sub-problems.

Since we design a linear knapsack problem to supply the upper bound for each model
and the linear knapsack problem is easy to be solved by Danzig’s algorithm, B&B

becomes an attractive method to solve these problems.

1.4 Relaxation Method
1.4.1. Linear Relaxation

Linear programming is, without doubt, the most successful branch of optimization
(Parker and Rardin, 1988). Integer programming is usually changed to linear
programming by relaxing the integer constraints. Linear programs can be solved easily,
and may provide a good upper bound. Therefore, many integer program algorithms use a

linear relaxation to get the bound.

In this paper, we relax the integer constraints of job variables for all three models.

Linear knapsack problems are designed to give the upper bounds on these relaxations.

1.4.2. Surrogate Relaxation

A surrogate constraint is a linear combination of other constraints. The following is an

example of surrogate relaxation:

Max izn:cjxij

i=1 j=1

st
>ax, <b (i=1,..,m),
=1

x; €{0,1}

Then its surrogate relaxation is:

m n

Max > >'cx;
i=1 j=1
st
ivizn:ajxij sivibi
i1 j=1 i=1
x; €{0,1}

The original problem’s solution is also a feasible solution to the surrogate relaxation,
but the solution of surrogate relaxation is not necessarily feasible to the original problem.
The surrogate relaxation has a larger feasible space. The optimal solution to the surrogate
is an upper bound of the original problem. In this paper, surrogate relaxation along with

linear relaxation will be used in MKPS to obtain a good upper bound.

1.4.3. Lagrangean Relaxation

Lagrangean relaxation is also a common relaxation model. This is an example for
Lagrangean relaxation:

Give the model L1

Max ZN:iCinij
i1 j-1
S.t.
i“aijxijﬁbi i=1..,N
=1

x; €{0,1}

Its Lagrangean relaxation, L2, is:
N

Max Zicij i+ ZN:ui Che iaij Xi
i-1 -1

i1 1
st
x; €{0,1}

For each feasible solution of L1, we have

N N N n; N N
DX+ U(b =D %) = > D e,
i=1 j=1 i=1 j=1 i=1 j=1
and all feasible solutions of L1 must be feasible solutions of L2, but not vice versa.
If we use Lagrangean relaxation, the knapsack problem’s good structure is destroyed.

Also experimentation shows the bound is not tight enough. Therefore, Lagrangean

relaxation is not used in this paper.

10

References

Parker, R.G., Rardin, R. L. 1988. Discrete Optimization. Academic Press, Inc. San Diego,
CA.

1

II. KNAPSACK PROBLEM WITH SETUP

Abstract

This paper studies a 0-1 knapsack problem with setup (KPS) where one set of
variables serves as the upper bound of another set of variables. An efficient algorithm
presented by Bulfin (1988) for the linear relaxation of this problem is applied to obtain an
upper bound. Branch and bound is used to obtain the optimal solution, and the upper
bound variables are branched before the remaining variables so KPS becomes a single
knapsack problem. Computational experiments show that this algorithm is effective when
objective and constraint coefficients are uncorrelated. This model can be used in order

acceptance of single period in make-to-order manufacturing.

2.1. Introduction

A company makes metal door frames based on customer orders. Door frames have
different heights, widths, jamb sizes and a number of hinges and lock configurations. An
order can be for a single frame or for 1,000 identical frames. To make a particular frame,
the production machinery must be set up for the parameters of that door. Some setups,
like the height of the door are easily made, while others, like jamb size require much time
and labor. The actual cost to produce a frame depends on what other frames are being
produced; if many identical frames are made, economies of scale result in a low cost. On
the other hand, if a single frame is made, the setup cost dominates and the cost is high.

12

Thus which orders are accepted, when they are produced and the price charged are
critical to profitability.

This scenario describes the basic order acceptance problem faced by all make-to-order
manufacturers. Orders consist of jobs, and similar jobs make up a family. Families share
a setup; if two jobs from the same family are processed sequentially, no setup is required.
The manufacturer plans production for the next period based on orders received. An order
can be accepted or rejected for production in this period.

This problem can be formulated as a knapsack with setup. Let
i index families

J index jobs

N be the number of families,

n. be the number of jobs in familyi,

c,; be the profit of job j in familyi,

a;. be the time to process job j in familyi,
f, be the setup cost for familyi (f, <0),
d, be the setup time for familyi and

b be the time available for processing.
The decision variables are:

x; Isoneif job jin familyiis produced, zero otherwise and

y, isone if any job in familyiis produced, zero otherwise.

The model, which we call KPS, is:

13

n; N

Max ZN: Cyxy + 2 T,
i i=1

i=1l j=1

s.t.
N N N
> > ayx;+ . dy; <b (1)
i=1 j=1 i=1
X <Yy, J=Ln;i=LN)
%Y €{0,1} j=1n;i=LN. (3)

Constraint (1) requires that the total time to produce jobs cannot exceed the time
available. Constraints (2) ensure a job is processed only if it belongs to a family that has
been setup. Constraints (3) require the variables to be binary.

In the following section we give a brief literature review and discuss background used
in the solution methodology. In Section 2.3, we present an algorithm to solve KPS.

Computational results are given in Section 2.4. Finally, we give concluding remarks.

2.2. Literature survey

This linear relaxation of KPS was first introduced by Ham et al. (1985) as a cell
loading problem for a Group Technology production system. Bulfin (1988) developed a
polynomial algorithm for the linear relaxation of KPS. It is based on the ratio rule of
Dantzig (1957) for the linear knapsack problem.

Akinc (2004) derives an algorithm for a special case of KPS with no setup time, which
he called fixed-charge knapsack problem. His algorithm to solve the linear relaxation is
the same as the one in Bulfin (1988). He outlined a branch-and-bound algorithm to solve

the integer version and used this solution to compare heuristics. No solution times are

14

given for the branch-and-bound algorithm. He states “This problem is solved as an LP. If

all y, are integer, then the optimal solution of P (the fixed-charge knapsack problem) is

obtained from the solution of the ordinary 0/1 knapsack problem that optimally allocates

the available capacity to all x; for which'y; =1.” This statement is not true, as seen by the

following counter-example:

Max 6X;, +5X%, — Y, +5X,; +8X,, — Y,
S.t.
X,y +3X, + X, +4X,, <4

Xp S YL X, <Y
X1 SY X0 Y5

X111 Xi0» Xo1, Xy €40,1}

The LP’s optimal solution isy, =1,y, =1, and the objective is 13. Based on Akinc’s
claim, solving the integer knapsack with both setups included gives a solution value of 9,
withy, =1y, =1,x, =1and x, =1. But the solutiony, =1y, =0, X, =1and x,, =1has
objective 10. Hence, the optimal objective of knapsack problem when all y are integer in

LP solution is not necessarily optimal for the integer model. This brings the results of his
paper into question.
Chajakis and Guignard (1994) consider the setup knapsack problem which is similar

to ours except the setup cost f; and profit of jobc; can be positive or negative. An extra

constraint is added to make sure a setup does not occur if no job in this family is put into
knapsack. This is unnecessary in KPS since c; is positive and f; is negative. Chajakis
and Guignard transform the original problem to an equivalent formulation without setup

variables by two methods. Variablesy are described by a Boolean union of x variables

15

so that the constraints coupling xand y can be deleted and the problem becomes a

“knapsack problem” with a Boolean union of all variables. The second method is to
enumerate all non-dominated feasible solution for each family and define a pseudo-
variable corresponding to this solution. This transforms the setup knapsack to a multiple-
choice knapsack problem and only one pseudo-variable can be one in an optimal solution.
Dynamic programming is used to solve the first transformation; branch-and-bound and
dynamic programming are both used to solve the multiple-choice knapsack problem in
the second transformation. Instances with 5, 10, 20, 50, and 200 families are tested. A

maximum of 4000 total variables can be solved.

2.3. Background

The knapsack problem and its many variants are well-studied. For a discussion, see
Martello and Toth (1990) and Dudzinski and Walukiewicz (1987). We discuss some
basic results that will be used later in this paper. Dantzig (1957) defined the linear

knapsack problem as:

n
Max chxj
i1

st

n
Zajxj <b
=1

0<x;<1j=1.n

If the variables are ordered by‘%1 > % >..2> % , he showed the optimal solution is
2 n

given by

X;=1j<t

16

(b—tzlay
%= a

X; = 0,j>t
wheret =min{i|) a, > b}.
j=1
Similarly, we define the linear relaxation of KPS (LKPS), which is given by

Max ZN:icijxij + ZN: f.y.
i=1

i=1 j=1
s.t.

N n N

DD a% + D diy; <b,

i=1 j1 i-1

X <Y, J=Ln;i=LN,
;20 j=Ln;i=LN,
0<y, <1 i=1.N.

Definer; :% , 1=1L.N j=1.n,. Orderjobssothat r, >r, >r,....>r .

Let

10
doci+f Zk:cij + f
e

=max{~*———|k=12,.n}forieN.

0 t;
2.3+ 2.3 +d
j=1 j=1

r

Separate the jobs of familyi into two sets, XM, = {1...t;} and XT,={t;+1...n;}. Then
o2 T 2N, 2. 21, s aproofis given in the Appendix A.

For familyi, define:

17

&
Gy = Zcij + fi
j=1

I
a, = a; +d,

j=1
C;,j—ti+l =G j= t; +1"'ni
3 a, j=t+L.n

it = K

n=n—t+1
Then LKPS can be reformulated as a classical linear knapsack problem, which we call

LBKP:

Max iicu Z;

i=1 j=1

st

N N

2.2z <b

i=l j=1

0<z, <Li=1.N j=L..n

and solved by Dantzig’s ratio rule. If there is no fractional variable, KPS is also solved.
We know that, at most, one variable will have a fractional value.

Suppose z; = f ,0< f <1.If j>t, then jobt, + jin familyiwill be the only fractional
variable KPS and all setup times and costs are considered. On the other hand, if j=1,
z, represents a virtual job composed of setup and jobs 1 throught, of familyi .

Herey, = f andx; = f, j=1,.t so all are fractional in KPS and the setup time and cost
for familyi and the processing time and profit of the firstt, jobs are only partially

considered. If we round the fractional variable(s) to zero, then the current solution is

feasible to KPS, and can be used as a lower bound in the branch-and-bound algorithm.

18

2.4. Solution algorithm
To develop a branch-and-bound algorithm, we need to make several decisions. These
include how to fix variables, calculate bounds, choose the next sub-problem to explore

and obtain an initial incumbent solution. We discuss these now.

2.4.1. Fixing variables

We only fix setup variables y, to be zero or one in our main branch-and-bound scheme.
When a sub-problem is created with y. fixed to one, the right hand side is reduced
by d;and f;is added to objective directly in the sub-problem. Then all z;, j=1,..n;are
replaced by real variables x;,,...x,, of familyi. When a sub-problem is created with y;

fixed to zero, z.

i» 1 =1,..n,are removed from that sub-problem. Note that if all y; are

binary in the linear relaxation but some x; is fractional, solving a knapsack problem over
the x; with y, = 1 will not necessarily give the optimal solution as we showed in Section 2.

When all y,are fixed, we solve a knapsack over the remaining variables to obtain the best
solution with those variables fixed. If this produces a better solution than the incumbent,
it replaces the incumbent.

We order the z, variables byr, <r,, <..<r,,. Ifavariable has larger,,, it is more
likely to be one in an optimal solution, while those with smaller ratios are more likely to
be zero. We choose either the first or last variable to fix first and work toward the middle.

This tends to keep the number of active branches small.

19

2.4.2. Bounding

We use LBKP as an upper bound on KPS. It is a linear relaxation which allocates the

setup time and cost proportionally. It is initially solved by the ratio rule. When some y, is
fixed, it is easy to resolve the sub-problem. If we fix y, to one, we delete the pseudo
variables z,,..z;,and insert the new variables x;,,...x;, . This may require taking resource

from some free variables, which are chosen by the ratio rule to maintain optimality.

Similarly, fixing y, =0 may free up resource, which is then allocated to free variables

using the ratio rule.

2.4.3. Choosing a new sub-problem

When variables are fixed, two sub-problems are created. If a sub-problem’s upper
bound is no better than an incumbent solution it is discarded. When its bound indicates it
could contain a better solution to KPS we store it in a bucket. Each bucket contains sub-
problems with bounds that are about the same. LetUB be the best upper bound

and INC be the value of the current incumbent solution. If we want K buckets, calculate

UB-INC
A-UB-INC)/

Then bucket one will contain all sub-problems with upper bounds in the
interval [UB — A,UB], bucket two[UB —2A,UB — A], and bucket K [INC, INC + A].
Buckets can be updated as upper bounds or the incumbent change. When we choose a
new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-
empty bucket. This gives almost a “best-bound” strategy, but without the bookkeeping

overhead.

20

2.4.4. Heuristic

If the fractional valued variable of LBKP is z,

;» rounding down z;to O freesa; z;

resource. Allocate this resource to variables with processing time less than a; z; and

already has its family set up. Variables are chosen by the ratio rule until there are no more

variables which can use the remaining resource.

2.5. Computational experiments

Our experiments will be similar to previous experiments on knapsack problems.
However KPS has a setup requirement, so setup time and setup cost will be included in
this study. We wish to test our algorithm (AKPS) on a variety of problem instances to see
what problems can be solved. Instances will be generated by setting four parameters at
several levels. The parameters are the number of families, average number of jobs in a
family, proportion of setup time/cost relative to totals, and correlation between objective
function and constraint coefficients. All data will be integer valued.

The number of families will be fixed at 50 and 100. The number of jobs in familyiis a

uniformly distributed integer in either [40, 50] or [90,100]. Setup cost and time is given

by
fit =—€ (Z Cijt)
j=1
di =6, (z aij)
j=1

e ande, are uniform from [0.05, 0.15], [0.15, 0.25], [0.25, 0.35], and [0.35, 0.45].

21

We choose aandc two ways. First a; and c; are both chosen uniformly from [10,

ijt
10000]; thus they are independent. Next, a; is chosen uniformly from [10, 10000], while

C;; is chosen uniformly from [a; -1000, a; +1000], but if ¢, is less than 10 it is randomly

it
chosen from [10,100]; this introduces some correlation between the two coefficients.
In previous knapsack studies, instances tend to be the hardest when the available

resource is roughly one half the sums of the constraint coefficients. Therefore, we choose

b uniformly from [O.4*iiaij ,0.6*%‘%%].

i=1 j=1 i=1 j=1

For each level of the four factors we generate ten instances. AKPS was coded in C and
all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of
memory. In the following tables, we report the minimum (MIN), average (AVG) and
maximum solution time (MAX) in seconds. We also give the average ratio of initial
solution (INC) to initial upper bound (UB) and the average ratio of initial incumbent to

the optimal solution (OPT).

22

Table 2.1.
Solution time (seconds) for AKPS

uncorrelated correlated

n.
N ! Setup LB/UB LB/OPT MIN AVG MAX LB/UB LB/OPT MIN AVG MAX

[0.05-0.15] 1.00 1.00 0.03 0.06 0.27 0.98 0.98 8.05 17.46 29.28
[0.15-0.25] 0.99 0.99 0.06 0.53 1.72 0.97 0.97 2.25 16.63 30.73
[0.25-0.35] 0.99 0.99 0.03 0.49 117 0.97 0.97 1.09 2569 65.56
[0.35-0.45] 0.97 0.97 1.25 2.62 4.89 0.98 0.98 12.83 22.97 56.5

50 [40,60]

[0.05-0.15] 1.00 1.00 0.08 0.09 0.12 0.98 0.98 569 26.47 63.72
[0.15-0.25] 0.99 0.99 0.05 0.87 2.94 0.97 0.97 11.30 28.46 55.75
[0.25-0.35] 0.98 0.98 0.09 2.67 5.28 0.98 0.98 277 3452 8231
[0.35-0.45] 0.98 0.98 0.25 4.25 9.30 0.99 0.99 091 4936 1014

50 [90,110]

[0.05-0.15] 1.00 1.00 0.06 0.16 0.36 0.99 0.99 17.39 153.07 503.38
[0.15-0.25] 1.00 1.00 0.08 1.43 4.36 0.99 0.99 70.61 124.69 220.53
[0.25-0.35] 0.99 0.99 0.05 4.96 18.97 0.99 0.99 24.62 17551 315.67

[0.35-0.45] 0.99 0.99 241 14.34 29.62 0.99 0.99 22.11 131.22 305.85
[0.05-0.15] 1.00 1.00 0.14 0.24 0.39 0.99 0.99 121.86 385.44 877.19
[0.15-0.25] 1.00 1.00 0.28 4.02 7.50 0.99 0.99 58.69 *477.78 877.73

100 [40,60]

100 [90.110] [025.035] 099 099 133 11.86 3048 099 099 17.55 *468.23 953.29

[0.35-0.45] 099 099 108 31.26 107.09 099 099 11.48 *484.35 784.72
Note: “*” shows 3 of these instances ran out of memory; AVG, MAX, and MIN are calculated based on the

remaining seven instances.

Our heuristic solution is outstanding. On average, it was less than 2% from the optimal
over the entire range of instances tested. Based on the data from Table 2.1, correlated
instances are more difficult to solve than uncorrelated instances. The setup proportion has
a stronger effect on uncorrelated instances than correlated instances. With the same
number of variables, AKPS works better when there are fewer families and the number of
jobs per family is large. This makes sense since fewer family variables simplify the first
stage of the branching. Instances with 50 families and an average of 100 jobs per family
are much easier than instances with 100 families and an average of 50 jobs per family.

Fig. 2.1 shows the solution time of instances with N =50and an average of 100 jobs
per family and instances with N =100and an average of 50 jobs per family with

23

uncorrelated coefficients. With roughly the same number of variables, instances with
larger N are more difficult. Also, solution time increases as setup proportion increases.
The incumbent solution gets worse as setup proportion increases. Fig. 2.2 gives the
solution time with correlated coefficients. Instances with fewer families still work better
than the others but solution time is not changed too much as setup proportion increases.

In correlated instances, setup proportion does not have as much effect on the incumbent.

) uncorrelated
Time (Seconds)

16.00 -
14.00 |]
12.00 | ,
10.00 | . ——N=50
8.00 - L - - & - -N=100
6.00 - .
4.00
2.00 -
0.00

[0.05-0.15] [0.15-0.25] [0.25-0.35] [0.35-0.45]
Setup

Fig. 2.1. Comparison of uncorrelated instances with similar total variables number

correlated
Time (Seconds)

200.00 -

180.00 - =

160.00 - . .

140.00 - .

120.00 - bl ——N=50

100.00 |
80.00 -
60.00 -
40.00 ‘___’/,/’
20.00 -

0.00 T T T
[0.05-0.15] [0.15-0.25] [0.25-0.35] [0.35-0.45]

Setup

Fig. 2.2. Comparison of correlated instances with similar total variables number

24

Chajakis and Guignard only test uncorrelated instances with coefficients from a small
range. (i.e. one set of instances obtains setup cost, profit from [-100, 100] and setup time,
processing time from [1,10]). Since the dynamic programming used in their paper has a
pseudo-polynomial worst case complexity, the large coefficients will increase the
difficulty of instances and need more storage without doubt. The second approach
presented fail in instances with total 4000 variables because of storage used up. The first
one can solve the same instances but need over 1000 seconds. They permit job profit
negative and setup cost positive in their model, which, to some extent, make instances
easier due to parts of variables having fixed to 0 by a preprocessing, which reduce the
size of the problem remarkably. The total number of variables after preprocessing is only
about 40%-60% of the original one. For instances with 4000 variables, only 2500
variables are left after this preprocessing.

We also compare AKPS with CPLEX 9.1 (called by AMPL). We test instances with
50 families and an average of 100 jobs per family. For each setup, we test five instances.
AKPS takes much less time for uncorrelated problems. CPLEX takes from 12 to 96 times
longer; as setup proportion increases the difference becomes smaller. When the
coefficients are not independent, the difference is much smaller. AKPS is only 3 to 6
times faster on average, and a few instances take less time on CPLEX.

We also compared some instances with 100 families and 50 jobs per family, but do not

present the data. CPLEX is better than AKPS when a and c are correlated. But AKPS is

better than CPLEX if aand c are uncorrelated for instances with N =100, n. ~[40,60].

Therefore we suggest using AKPS whenaand c are uncorrelated; if they are correlated

and there are over 50 families CPLEX might be better.
25

Table 2.2.
Comparing solution time (seconds) of CPLEX and AKPS

Uncorrelated Correlated
SETUP AKPS CPLEX CPLEX/AKPS AKPS CPLEX CPLEX/AKPS
0.05 1.17 23.40 21.87 13.08 0.60
0.09 1.92 2133 13.64 491.73 36.05
0.05 1.06 21.20 44.06 253.78 5.76
[0:050.15] 45 1.08 21.60 34.00 381 0.11
0.06 0.86 1433 37.42 226.00 6.04
AVG 2037 9.71
0.05 4.67 93.40 24.58 411.08 16.72
0.41 26.28 64.10 56.78 929.03 16.36
o102 O 231 46.20 40.14 376.75 9.39
0.11 15.44 140.36 4022 269.69 6.71
0.05 6.97 139.40 81.39 215.44 2.65
AVG 96.69 10.36
475 15.52 3.27 23.64 6.67 0.28
1.95 12.09 6.20 46.01 514.64 11.19
0.61 16.97 27.82 88.14 5.75 0.07
[0.25-035] 575 17.39 6.32 7.67 14.86 1.94
155 26.58 17.15 72.03 102.00 1.42
AVG 1215 2.98
3.97 11.20 2.82 179.06 7.42 0.04
0.91 16.36 17.98 6.56 35.95 5.48
osos 65.77 46.65 36.91 283.38 7.68
7.42 2.91 0.39 107.62 265.69 2.47
458 12.78 2.79 22.16 96.05 433
AVG 1413 4.00

2.6. Conclusions

We investigate the knapsack problem with setup. This is an important problem,
modeling order acceptance, cell loading, project selection and others. We have developed
an exact algorithm for the problem. The first computational tests on exact solutions
indicate our algorithm is vastly superior to CPLEX for many instances, superior on others

and about the same for the rest. Further, we have determined what parameter values make

26

instances hard for our algorithm. Finally, the proposed heuristic is excellent, being within

2% of optimal for all the problems tested.

Appendix A. r,is greater thanr, ;.

Proof.

Assume a, b, ¢, d>0 andggg,thenaJrC
b d b+d

23. Since ad <bc from%ég,

then ab+ad <bc+ab, or a(b+d)<b(a+c), so ;1+;: 2%.Thus ifr,,., >r,, then job
N ,

t+1 should be included in XM;. Since it is not, thenr, ; > r,

it+1°"

Thereforer,, >, ., >1,.,>..21 . rrepresents familyi’s maximum ability to obtain

it+1 iLt+2 = = Ti,n;

profit for each unit of resource it consumes.

References

Akinc, U. 2004. Approximate and exact algorithm for the fixed-charge knapsack problem,
European Journal of Operational Research 170, 363-375.

Bulfin, R. L. 1988. An algorithm for the continuous variable upper bound knapsack
problem, OPSEARCH 25 (2), 119-125.

Chajakis, E.D., Guignard, M. 1994. Exact algorithms for the setup knapsack problem,
INFOR 32 (3), 124-142.

Dantzig, G.B. 1957. Discrete variable extremum problems, Operations Research 5,
266-277.

Dudzinski, K., Walukiewicz, S. 1987. Exact methods for the knapsack problem and its
generalizations. European Journal of Operational Research 28, 3-21.

Ham, I., Hitomi, K., Yoshida, T. 1985. Group Techonology, Kluwer Nijhoff Publishing,
Boston, Massachusetts.

27

Martello S. and Toth, P. 1990. Knapsack Problems: Algorithms and Computer

Implementations, John Wiley and Sons, New York.

28

[I. MULTIPLE KNAPSACK PROBLEM WITH SETUP

Abstract

We present a multiple knapsack problem with setup (MKPS). This problem can be
used to model order acceptance and production scheduling of multiple periods in make-
to-order manufacturing. Some variables represent setting up production for a family of
jobs; if a setup is not done, no jobs in the family can be processed. Further, a family can
only be set up in one period of the planning horizon. A linear knapsack problem is
designed to give an upper bound on MKPS. A greedy algorithm is developed to obtain a
lower bound. Setup variables are branched on; when all set up variables are fixed, MKPS
becomes several independent knapsack problems. Computational experiments show this

algorithm is effective, especially when resources are tight.

3.1. Introduction

The knapsack problem and its variants are well known problems in integer
programming. In this paper, we present a model that we call the multiple knapsack
problem with setup (MKPS). In this model, jobs belong to N different families. If a job is
processed, then a setup time and a setup cost are incurred. A job can be assigned
toT different periods, but only one setup for each family is allowed during the planning
horizon, so jobs in the same family must be processed in the same period. The profit for

job j of familyi processed in periodtisc.. , and varies for different periods, but the

ijt ?

29

processing time a; stays the same. The objective is to maximize the sum of the profits of

processed jobs. Formally, we have:

T N N T N
Max > > > cixy+ D 2 il
t=1 i=1 j=1 t=1 i=1
St.
N N N
D> ax + > Ay, <b, t=1.T (1)
i=1 j=1 i=1
X S Y J=Lngi=LN;t=1.T 2
T
>y <1 i=1.N ©)
t=1
x,ye{0,1} j=1.n;i=L.N;t=1.T 4
x.. -isoneifthe j" job of familyi is arranged into periodt, otherwise zero,

it
Yy, -isone if some job of familyi is arranged into periodt , otherwise zero,
c; -is the profit of job j of familyi in period t(c; >0),

-is the setup cost for familyi in periodt (f, <0),

a; -is the processing time for job j of family i (a; >0),

-is the setup time for family i (d, > 0),

b, -is the available resource for processing in period t(b, >0).

t

Constraints (1) require that the total resource used by jobs in each period can not exceed
the resource available. Constraints (2) prohibit a job from being processed if it belongs to
a family that has not been setup. Constraints (3) guarantee jobs in the same family

processed in a single period. Constraints (4) require all variables to be binary.

30

This formulation models order acceptance in make-to-order manufacturers. Assume a
manufacturer receives orders for jobs which belong to N different product families.
Orders can be manufactured inT periods. Setup time and setup cost occur between jobs of
different families. If jobs are accepted, jobs of the same family are done in the same
period.

In make-to-order production, price is dictated not only by cost, but also by the
customer’s expectation as well. Some customers are willing to pay a higher price for a
short lead-time, while others are not. Thus prices are related to a product’s completion
date, and different production schedules could produce different profits. The optimal
solution to MKPS gives the maximum profit, which orders to accept, and how to assign
jobs to periods.

The multiple knapsack problem assigns a set of items to multiple knapsacks with fixed
capacities so that the total profit of selected items is maximal. The multiple knapsack
problem is a special case of multiple knapsack problem with setup by ignoring the setup

variables and settingc;, = c;. The multiple knapsack problem has been widely

investigated. Martello and Toth (1980, 1981) discussed an upper bound algorithm using
Lagrangean relaxation. Pisinger (1999) presented an exact algorithm using a surrogate
relaxation to get an upper bound, and dynamic programming to get the optimal solution.
The surrogate relaxation of the multiple knapsack problem with identical multipliers is a
knapsack problem. Apparently, MKPS can not do in this way not only because each job
has the different profit coefficients in periods, but also there are the additional setup

variables in the model.

31

MKPS has multiple-choice constraints like the multiple-choice knapsack problem. An
efficient algorithm and two dominance properties exist for the linear multiple-choice
knapsack problem. More detail can be found in Pisinger (1995).

The knapsack problem with setup (KPS) is a special case of MKPS whenT =1. Bulfin
(1988) gave an efficient algorithm for its linear relaxation (LKPS), which is similar to
Dantzig’s algorithm for the linear knapsack problem. This transforms the LKPS into a
knapsack problem by using a modified ratio related to a job set. We state this algorithm
in the following section. Akinc (2004) describes algorithms for a fixed-charge knapsack
problem, which is a special case of MKPS with a single period and zero setup time.

Though the LP solution is often a good upper bound on integer programs such as
knapsack problem and multiple-choice knapsack problem, we do not solve the linear
relaxation of MKPS for obtaining an upper bound, but design a linear knapsack problem
formulation, whose optimal objective is the upper bound of MKPS. Since MKPS

becomes independent knapsack problems if all y, variables are fixed, branching is done in
two stages. The first stage is to branch on y, variables. When all y variables are fixed, the

second stage solves independent knapsack problems. There are many algorithms
available for knapsack problem. We just use a simple branch-and-bound algorithm for
knapsack problem.

Our approach (AMKPS) is outlined below:

Step 1. Do surrogate relaxation and linear relaxation for MKPS.

Step 2. Find an initial upper bound for MKPS.

Step 3. Find a feasible solution (incumbent) for MKPS.

Step 4. Determine a branching order for the y variables.
32

Step 5. Decide which y variable to fix in current node.

Step 6. Generate a new node by solving a sub-problem with y fixed to one; save this
node if its bound is better than the incumbent solution. If all y are fixed, then
solve a set of knapsack problems and update the incumbent solution if possible.

Step 7. Generate a new node by solving a sub-problem with y fixed to zero; save this
node if its bound is better than the incumbent solution. If all y are fixed, then
solve a set of knapsack problems and update the incumbent solution if possible.

Step 8. Choose a candidate node. If none exists, stop, the incumbent solution is optimal;
else go to Step 5.

The rest of the paper is organized as following: we discuss Steps 1 and 2 in section 3.2;
section 3.3 explains the approach used in Step 3 and section 3.4 presents the remaining
steps. Computational experiments are discussed in 3.5 and a summary is given in section

3.6.

3.2. Linear knapsack problems and knapsack problem with setup
We use the linear knapsack problem and linear knapsack problem with setup to obtain

an upper bound of MKPS. Let us review these two models firstly.

3.2.1. Linear knapsack problem

The linear knapsack problem is a well known integer program:

33

n
Max chxj
=

st

n
Zajxj <b
=1

0<x;<Lj=1.n
All variables are ordered by non-increasing profit-to-process ratio% . By Dantzig’s
k

t
algorithm, if variabletis the first one with Zak > b, then
k=1

X, =1 j=1.t-1

xj:O,j:t+1,..n

3.2.2. Algorithm for LKPS

Bulfin (1988) shows LKPS can be transformed to a linear knapsack problem. Consider

the LKPS:

N N N

Max > > cix +2 fy,
i-1 -1 i1

S.t.
N n N
.2 %+ dy <b
il -1 i1

X <Y, j=1n;i=1N
;20 j=ln;i=LN
0<y, <1 i=L1.N

34

. i . [f.+) c. I .
Bulfin’s algorithm uses the ratlo[' Z 1 as a criterion to assign the
d; + Zau]

resource.

Define
r ="/ i=1.N j=1.n.

Reorder jobs 1...n;, so thatr, >r,, >r,...>r, . Let

i,n

i
o+, Zk:cij + f
=i

- =max{~*———|k=12,.n}forieN.

D ay +d; D ay +d,

j=1 i=t
Then in familyi, jobs are separated into two sets: XM, ={1...t, }and XT.= {t,+1....n, }.
The jobs in XM, can be considered as a single job.

Now for familyi, define:
' ti
Gy = Zcij + fi
j=1

&
a, = a; +d,
=1

Ci‘,j—ti+l =Cj j=t+1.n,
ai‘,j—ti+1 = J =t +1"'ni
n=n—t+1

Then LKPS can be reformulated as:

35

0<z;<Li=1.N j=1..n
Pseudo job z;, is composed of jobs x,,..x, along with the setup cost and time, and

z. =x. ., for J=2,.n —t . Solve this linear knapsack problem. At most one variable can

ij — MNij+
have a fractional value, say f . Ifz,, = f , thenx, = f, j=1.1 . Ifz, = f, 11, then

X, = f.

3.2.3. An upper bound on MKPS
3.2.3.1. Relaxation

Surrogate relaxation (Pisinger, 1999) and Lagrangian relaxation (Martello and Toth,
1981) have been applied to obtain an upper bound on the multiple knapsack problem. In
this paper, surrogate relaxation with identical multipliers on constraints (1) is used.

Selecting identical multipliers keeps a; unrelated to periods after surrogate relaxation.

Relaxing integrality of the xvariables gives a mix-integer formulation SMKPS:

36

T N N T N

Max D D> X+ 2> fuVi

t=1 i=1 j=1 t=1 i=1
st.

n; T N

> >a+ X dy < Yh

i=1 j=1 t=1 i=1

:
>y, <1l i=1.N
t=1

X <Yy 1=L.N j=1.n t=1.T

t

0<x; <1 i=L.N j=l.n t=1.T
v, €{0,} i=1L.N t=1.T

SMKPS gives an upper bound on MKPS since every solution to MKPS is a feasible
solution for SMKPS, but not vice versa. Unlike the usual approach, we do not solve

SMKPS to obtain an upper bound on MKPS; we design a new knapsack problem based

on SMKPS whose optimal solution is an upper bound on MKPS

3.2.3.2. The knapsack problem giving the upper bound of MKPS
Using only the variables of familyi in periodt of SMKPS, we construct the linear

knapsack problem with setup:

Max Zc”txIJ + £y,

st

Zaijxij +d,y, <b
j=1

X <y, 1=Ln
X; 20 j=1n
0<y, <],

37

Based on Bulfin’s algorithm, this formulation can be transformed to a linear knapsack

problem with pseudo variablesZ, ...z, and their corresponding profit and processing

. _ C.
coefficientsc, ,..C, & .., . Pseudo variables are ordered by non-increasing ratio % .
j

t t
We define a set P, ={(0,0), (Z g, ,ZCJ.)|t=1,..n,}from these pseudo coefficients. For

= j=1

t t
the sake of brevity, record these points are p,,...p, With p.x=>a andp.y=> T, .
=L j=1

.
We can constructT point sets P, fort =1,.T . LetP = U P, and delete any repeated points.

i
t=1

Order all points by non-decreasing p.x . Apply the following rules to delete points from P .
1.If p,and p have p,.x< p..xandp,.y < p,.y, then delete p,

2.1f p,,p,, p, have p,.x< p,.x< pe.xand p,.y<p,.y<p,.y,and

pk.y—pr.y <ps_y_pk,y
P X— P, X" DX~ P X’ then delete p, .

These two dominance rules are called multiple-choice dominance rules in this paper,

and stems from the two dominance rules for the multiple-choice knapsack problem

(Sinha and Zoltners, 1979). Assume there are n, +1 points Pos--P_ (P, =(0,0)) remained,
ordered by increasing p.x and p.y . We can define n, pseudo variables Z,y,.-2 . by

settinga; = p;.X— P, ,.X andc; = p.y— P, .Y

38

N
Repeating this process for all N families, we obtain Z n, pseudo variables and a linear
i=1

:
knapsack problem K1 with resource b (b = Zbk):
k=1

Max ZN:icU Z

i=1 j=1
st

_ a;Z; < b

0<z;<1i=1.N j=1.n

N
=1

j=1
We prove the optimal objective of K1 is an upper bound on MKPS in Appendix B.

3.3. Feasible solution (lower bound)
A good initial feasible solution can fathom many candidate nodes and reduce the
search time. We will use a greedy algorithm to calculate one.

Algorithmassign(i, t) determines a feasible assignment of familyi’s jobs to
periodtwhen there isb, resource available. The algorithm returnsobj, , the total profit of
this assignment and res,, , the amount of resource actually used.

Algorithmassign(i,t) :
Step 1. Setb =b,,obj,, =0,res, =0, j=0

obj, < obj, + f,,b<«b—d,, res, =d,.
Step 2. j« j+1;if j>n,, stop.

Step3.1f b >a., then

ij?

obj,, < obj, + Cijt beb - a; , res; < res; +a;;

39

Ifb >0, then go to Step 2; else stop.
else go to Step 2

Algorithm feas is used to get the feasible solution. It usesobj, to assign a family to a
period and update the available resource. It continues until there is not enough resource
left for any job.

Step 1. Set NN ={1,..N}. Solveassign(i,t) fori=1,.N t=1,.T
Step 2. Choose{r, s}withobj,, = max{obj, |i e NN,t=1,.T}; ifobj, =0, stop.
Step 3. Ib <~ Ib+o0bj,, b, < b, —res. Deleter from NN . If NN = ¢, stop.

Step 4. Solve assign(i,s) i € NN . Go to Step 2.

3.4. Branch-and-bound algorithm
To develop a branch-and-bound algorithm, we need to make several decisions. These
include how to fix variables, calculate bounds, choose the next sub-problem to explore

and obtain an initial incumbent solution. Also, the order to fix variables has to be decided.

3.4.1. Variable order

Order all y, variables by non-increasing pro, = ZCijt +f, i=1L.N,t=1.T.If y,is

j=1
near the front, then this variable is more likely to be one. Similarly if y, is near the end, it

is more likely to be zero. Fixing variables first at the front or rear aid in keeping the

number of branches small. We fix y, variables by looking at the beginning and end of

40

this ordered list and working toward the middle. So familyi y,,t =1,..T has a search order:

if y, is thek" variable of theT variables related to familyi, then seto(y,) =k .

In the current node, we decide which variable will be fixed based on all variables fixed.

Assume we fix y,, . Since each family is assigned to at most one period,

theny, =0foro(y,) <o(y,) t=1.T.

3.4.2. Fixing y,,

As we proceed through branch-and-bound algorithm, we fix setup variables to zero or

one. Ify, is free, family r is represented by pseudo variablesz ;, j =1,..n]; these variables
are never fixed. If y,, is fixed at one, all pseudo variables z,;, j =1,..n; are removed and

real variablesx, , j =1,..n, are included in K1; x are always free in the branch-and-

rjk ? rjk

bound algorithm. If y,, is fixed at zero, all pseudo variables as well as their coefficients

are recalculated, excluding the possibility of family r being setup in periodk , and

included in K1; again the new Z;,j=1..nare always free. When
ally,,i=1..N t=1.T are fixed to either zero or one, a knapsack problem over the

appropriate x.. is solved to determine the optimal solution.

ijt
Wheny,, is fixed to one, the bounding problem K1 changes as follows:
the actual setup cost for family r in periodtis added to the objective;
the actual setup time for familyr is subtracted from the surrogate constraint;
pseudo variables for family r are removed, and

real variable x,, , j =1,..n, are added

41

Wheny,, is fixed to zero, the changes are removing pseudo variables for family r and

adding new pseudo variables.
We also tighten the relaxation by adding the constraint for periodk to the bounding

problem. Pseudo variables z, will only use the surrogate resource, but x,, variables will

ijk
use both the surrogate resource and the resource from periodk . Subtracting the setup
time will reduce the available surrogate resource and will reduce the resource from
period k . Removing pseudo variables may increase the surrogate resource, but will not
affect the resource for periodk . Thus, the previous optimal solution to the bounding
problem may no longer be feasible or optimal. We could re-solve it from scratch, but we
will show how to adjust the old solution to obtain the optimal solution to the new
bounding problem. First, we introduce some notations.

Let

obj : The current node’s upper bound,
G, ={i|y, =1}: Family fixed to periodt,

U ={i|y, is free}: Family free,

.
b =b->>"d; : Available resource for all variables,

t=1 ieG,

b, =b, —Zdi ,t=1.T : Available resource for families in periodt.
ieG,

The current node’s upper bound is the optimal objective of this formulation, K2. It can be

proved by an approach similar to what we used in Appendix A.

42

N

Max ancu Z; +iZZCithijt +i2 fi

ieU j=1 t=1 ieG, j=1 t=1 ieG,
S.t.
n; T n;
PIPICTIEDIDIPIC IR
ieU j=1 t=1 ieG, j=1
N
D > ayx <b,t=1.T
ieG, j=1

When we fix y,, to one, set

obj =obj+ f,
G, =G, u{r}
U =U \{r}and
Y, =0,t=1.Tt=k
The algorithm to fix y,, to one can be separated into three steps:

Step 1. Delete pseudo variablesz,,,...z_. from the outer knapsack.

Step 2. Restore feasibility (if necessary).

Step 2.1. Setb, «<— b, —d,. If > Z a; X, > b, find the variable x;, greater than zero

i
ieG, j=1

r.ll
with smallest ratio. Decrease it until either it is zero or Z Zaij X =By -
ieG, j=1

Repeat until)’ Zaij X; = by is achieved.

ieGy j=1

43

T N

Step 2.2. Seth «<— b —d, . IfZZa{j z;+ Y>> a;X; >b’, repeat the procedure in

ieU j=1 t=1 ieG, j=1

2.1, except choose either x;, or z; variables greater than zero with smallest

ratio.

Step 3. Restore optimality.
Step 3.1. Let V ={x;, | x;; =0,i gU}{z; | z; = 0,i e U} be the set of all zero-value
variables. Find the maximum ratior, . of all variables inV.

Step 3.2. Set all fractional-valued variables and all variables with value one and

ratio less thanr, ., to zero. Put these variables inVin the proper ratio order.
This releases resource for new variables to use. Variables in K2 now have
value one only and their ratio is no worse thanr_,
Step 3.3. Do the following sub-algorithm to obtain the optimal solution of K2.
Step a. Setk =1.
Step b. If thek" variable inV is x,, then go to Step c; else the k" variable
inV isz;, and go to Step d.

Stepc. Ifb, =0, thenk <k +1;

else
Ifb, > &, thenb, < b —a;,b «b —a;,obj < obj+c,,
and x;, =1;
else x;, = % b’ « b —b;,andobj « obj +¢;,X;, -
Go to Step e.

44

Stepd. Ifb >a.,thenb «b —a;

ij ! i ,0bj < obj +c..and Z -1.

!

Setk «— k +1.
else z :V ,b =0,andobj «-obj+¢;z; .
CH

Stepe. Ifb > 0andk <|V|| go to Step b; else stop.

When we fix y, to zero, pseudo variablesz,,,..z_.are deleted from variable set.
Sincey, =0,0(y,) <o(y,),t=1.T,update P = U P, . Apply the multiple-choice
O(yrt)>0()’rk)
dominance rules to delete dominated points. Use the remaining points to obtain the

updated pseudo variables z,;,..z .. We can resolve the problem with new variable set to

obtain the upper bound of the sub-problem withy, =0. In this case, only steps 1 and 3

are needed to resolve the problem.

3.4.3. Choosing a new sub-problem

When variables are fixed, two sub-problems are created. If a sub-problem’s upper
bound is no better than an incumbent solution it is discarded. When its bound indicates it
could contain a better solution to MKPS we store it in a bucket. Each bucket contains
sub-problems with bounds that are about the same. LetUB be the best upper bound

and INC be the value of the current incumbent solution. If we want K buckets, calculate

UB—INC
A= %<

Then bucket one will contain all sub-problems with upper bounds in the

interval [UB — A,UB], bucket two[UB —2A,UB — A], and bucket K [INC, INC + A].

45

Buckets can be updated as upper bounds or the incumbent change. When we choose a
new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-
empty bucket. This gives almost a “best-bound” strategy, but without the bookkeeping

overhead.

3.5. Computational experiments

We test AMKPS on a variety of problem instances to see what problems can be solved
in reasonable time. Instances are generated by setting four parameters at several levels.
The parameters are average number of jobs in a family, number of periods, proportion of
setup time/cost relative to totals, and resource tightness. The number of families is fixed
to ten (N =10). The number of jobs in a family is integer uniformly distributed from
three intervals [40, 50], [60, 70] and [80, 90]. The number of periods will be either five or

seven, corresponding to a work week. Setup cost and time are determined by

1:it =—€ (Z Cijt)
i1
d; =¢, (z a;)
-1

We choose e, and e, uniformly from [0.15, 0.25], [0.25, 0.35], [0.35, 0.45], and [0.45,

N N
(ZZ aij)
0.55]. Resource availability is determined byb, = = 1= K »WhereKis 10, 7.50r5.
Finally, c;, and a; are random integers chosen from[10, 10000].

For each level of the four factors we generate ten instances. AMKPS was coded in C
and all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of

46

memory. In the following tables, we report the minimum (MIN), average (AVG) and
maximum (MAX) solution time in minutes. A zero indicates less than one minute of
computational time. We also give the average ratio of initial solution (INC) to initial
upper bound (UB) and the average ratio of initial solution to the optimal solution (OPT).
Table 3.1 gives results for five period problems and Table 3.2 is for seven periods.

Table 3.1
Solution time (minute) for AMKPS for 5 periods

[40, 50] [60 70] [80, 90]

Resource Setup INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN

[0.150.25] 084 087 0O O O 08 08 0 0 0 08 08 0 0 0
[0250.35] 093 098 0 0O 0O 094 099 0 0 0 09 100 0 0 O
K=10 [035045] 096 099 0 0 0 097 09 0 O O 098 099 0 0 O
[0.45055] 092 099 0 0O 0O 092 099 0 0 0 091 09 0 0 O
Average 091 09 0 O O 092 096 0 0 0 092 097 0 0 0
[0.150.25] 073 074 0 O 0O 072 073 0 0O 0 071 072 0 0 O
[025035] 082 089 0O O O 08 087 1 0 0 08 08 1 0 0
K=75 [035045] 089 098 0 0O 0O 08 099 1 0 0O 08 09 1 0 0
[0.45055] 094 099 0 O O 09 099 0 0 0 09 100 0 0 O
Average 085 090 0 0O O 084 09 0 0 0 08 08 0 0 0
[0.150.25] 094 095 0 0 0O 09 09 0 0 0 09 095 0 0 0
[025035] 086 088 0O O O 08 09 0 0 O 08 09 0 0 0
K=5 [035045] 076 079 0O O O 078 08 O O O 076 078 0 0 O
[0.45055] 072 082 1 1 0O 0710 080 3 1 1 07 08 8 3 2
Average 082 08 0 0 0O 08 08 1 0 0 08 08 2 1 0

47

Table 3.2
Solution time (minute) for AMKPS for 7 periods

[40, 50] [60 70] 80, 90]

Resource Setup INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN

[0.15025] 0.87 092 2 086 091 5 3 086 090 9 5 2
[025035] 094 099 O 094 099 0 O 095 099 1 0 0
K=10 [035045] 096 099 0 096 099 0 0 097 099 0 0 0
[0.45055] 0.88 098 O 088 099 0 O 087 099 0 0 O
Average 091 097 1 091 097 1 1 091 097 3 1 0
[0.15025] 0.80 086 7 079 08 12 6 078 085 26 17 10

[0.250.35] 0.82 0.91 11 0.83 0.91 22 10 0.81 0.90 29 19 13

A P O O O FP B WO O O O
O B O O OO0 O O Fr B O o o o o
P W Rk, O Ok O O N NMN|O O O O -,

K=75 [0.35045] 090 098 2 091 100 12 3 091 099 10 4* 1
[0.45055] 0.94 099 0 095 100 0 0 096 100 0 0 ©

Average 087 094 5 087 094 12 5 087 094 16 10 6
[0.15025] 095 098 O 095 098 0 O 096 098 0 0 0
[0250.35] 090 095 1 091 096 1 O 090 0.95 0

K=5 [0.35045] 082 091 3 083 092 8 3 08 091 11 4 2
[0.45055] 0.75 089 9 074 087 16 9 074 08 19 10 5

Average 086 093 3 2 08 093 6 3 08 093 8 4 2

Note: “*” means some instances run out of memory, and the value of AVG in the table is the average of the

remaining instances, as are Max and Min.

AMKPS performs very well for five period problems, with the hardest taking less than
8 minutes. Seven period instances are harder, but most instances are solved in less than
30 minutes.

Seven of the 720 instances were not solved by AMKPS. These instances had seven
periods, and average of 85 jobs per family, resource tightness of k = 7 and setup
percentage of [0.25, 0.35] or [0.35, 0.45]. These instances used up memory. The Min,
Max, and Average are of the problems actually solved. Solution time increases as number
of period and number of jobs increase. We ran some instances with different
combinations of numbers of periods and jobs and found that the solution time changes in

almost the same way as for the test problems.

48

The relationships between setup and resource tightness are more complex. Fig. 3.1 to

3.6 demonstrate this.

40-50
Time(Minute)

0.60
0.50
0.40
0.30 -
0.20 -

— % -K=10
-- ®--K=75
—A—K=5

0.10 -
0.00 = :
[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]

Setup

Fig. 3.1. Solution time for average 45 jobs per family and 5 periods

60-70

Time (Minute)
1.60
1.40 -
1.20 -
1.00 -
0.80 -
0.60 -
0.40 -
0.20 -
0.00 -

[0.150.25] [0.250.35] [0.350.45] [0.450.55]
Setup

Fig. 3.2. Solution time for average 65 jobs per family and 5 periods

49

80-90

Time (Minute)
4.00 -
3.50
3.00
2.50
2.00
1.50 ~
1.00 +
0.50
0.00

[0.150.25] [0.250.35] [0.350.45] [0.450.55]
Setup

Fig. 3.3. Solution time for average 85 jobs per family and 5 periods

40-50
Time (Minute)

5,
4,
— -&— - K=10
-- % --K=75
—&—K=5

[0.150.25] [0.250.35] [0.350.45] [0.450.55]
Setup

Fig. 3.4. Solution time for average 45 jobs per family and 7 periods

60-70
Time (Minute)
12 -
— — -K=10
-- & --K=75
—&—K=5

[0.150.25] [0.250.35] [0.350.45] [0.450.55]
Setup

Fig. 3.5. Solution time for average 65 jobs per family and 7 periods

50

Time (Minute)

25 4

20 -

15 4

[0.15 0.25]

80-90

[0.250.35] [0.35 0.45]
Setup

[0.45 0.55]

— % -K=10
-- & --K=75

Fig. 3.6. Solution time for average 85 jobs per family and 7 periods

When K =10, the maximum time happens on instances with setup from [0.15, 0.25];

when K =7.5, the maximum time happens on instances with setup from [0.25, 0.35];

when K =5, instances with setup from [0.45, 0.55] use the most time. From these plots,

we conclude that problems become difficult whene*K ~ (2,3).

The heuristic algorithm given in this paper is very effective, especially when the

resources are tight. We give the quality (average proportion of lower bound to initial

upper bound and to optimal solution) in Table 3.3. The quality decreased as resources

increase in each period. For both five and seven period problems, the heuristic is good,

typically in the 85%-95% range.

Table 3.3
The lower bound, upper bound and optimal solution
[40 50] [60, 70] [80, 90]
Period Resource Setup INC/UB INC/OPT INC/UB INC/OPT INC/UB INC/OPT
K=10 Average 0.91 0.96 0.92 0.96 0.92 0.97
Period 5 K=7.5 Average 0.85 0.90 0.84 0.90 0.84 0.89
K=5 Average 0.82 0.86 0.83 0.86 0.82 0.86
K=10 Average 0.91 0.97 0.91 0.97 0.91 0.97
Period 7 K=7.5 Average 0.87 0.94 0.87 0.94 0.87 0.94
K=5 Average 0.86 0.93 0.86 0.93 0.86 0.93

51

We also compare AMKPS to CPLEX 9.1 (called by AMPL). We choose the hardest
instances for AMKPS (7 periods and n, ~[80,90]) to compare. Trial runs on other
instances showed these results are typical. Due to the difficulty of solving with CPLEX,
only five instances per level were solved. Table 3.4 shows the clear superiority of
AMKPS. CPLEX solved very few problems in less than two hours; we let one solve until

the optimal solution is obtained, and it took over 29 hours.

52

Table 3.4
The comparison of solution time (Minute) between AMKPS and CPLEX

K=10 K=7.5 K=5
Setup CPLEX AMKPS CPLEX AMKPS CPLEX AMKPS
* 2 * 13 26 0
* 1 * 16 7 0
[0.15,0.25] * 5 * 13 10 0
* 4 * 30 9 0
* 12 * 12 8 0
AVG * 7 * 17 12 0
* 1 116 21 36 0
* 0 * 10 * 1
[0.25, 0.35] * 0 * * 77 1
* 0 * 28 26 0
* 0 * * * 2
AVG * 0 * * * 1
* 0 * 6 * 2
N 0 * 2 * 3
[0.35, 0.45] * 0 * * * 4
* 0 * 6 * 3
* 0 * 2 * 9
AVG * 0 * * * 4
* 0 19 0 * 14
* 0 14 0 * 22
[0.45, 0.55] * 0 4 0 * 27
* 0 22 0 * 16
* 0 7 0 * 11
AVG * 0 13 0 * 18

Note: * means the instance uses more than 2 hours or uses up memory.

AMKPS use less time than CPLEX for all but three instances

whene*K ~ (2,3)and n, is from [80, 90]. We also do experiments with instances with

fewer variables and AMKPS also used less considerably time than CPLEX.

53

3.6. Conclusions

The MKPS model can be used for order selection in make-to-order manufacturing. In
this paper, we use branch-and-bound algorithm to solve MKPS and design a new method
to get an upper bound on MKPS. Rather than relaxing constraints of the original models
to an upper bound, we propose a new linear knapsack model to obtain an upper bound.
We prove the knapsack optimal objective solution is an upper bound on MKPS. In
branching, we add a resource constraint whose family has been fixed to that to tighten the
relaxation. This prohibits jobs from using more than the period capacity. This knapsack
problem can still be solved efficiently. We also give an effective greedy heuristic which

supplies a good feasible solution as a lower bound. After all y variables are branched on,

MKPS is transformed to knapsack problems. The computational experiments show that
AMKPS works well with a tight resource limit. Sixty seven-period instances are tested to
compare AMKPS with CPLEX: AMKPS solve 57 instances of them in less than 30
minutes but CPLEX fail in 46 instances and need more time than AMKPS for the
remaining 14 instances. In this paper, we only use a simple branch-and-bound algorithm
for the knapsack problem when all setup variables are fixed. If a better algorithm, e.g. the

one developed by Martello et al. (1999) is used, the solution time can be reduced.

54

Appendix A. The optimal objective of K1 is the upper bound on MKPS

Before proving the proposition, we need the following Lemma:

Lemma 1. A linear knapsack problem can be transformed to a concave piecewise
function

Proof.

For knapsack problem

n
Max chxj
=1

st

n
Zajxj <b
=1

0<x;<Lj=1.n

Order all variables by non-increasing ratlo% . Define a point

]

t t
set P ={(0,0), (Z aj,ch) |t =1,..n}. Put these points on coordinates and connect the

j=L j=1
adjacent points, we can obtain a concave piecewise function F and these points are the

breaking points of the piecewise function. F (b) is the optimal objective of the linear

knapsack problem.

Ifb>>a setF(b)=> c;;
j=1 =1

t
else x =1if Y a,<b
=

55

t-1
(b_zaj) t-1 t
x = A if Zaj£b<Zaj

t-1
x=0if b<>a
j=1

On the verse, if we know F (b) , we can construct an equivalent knapsack problem for
this piecewise function.
Proposition 1. The optimal objective of K1 is the upper bound on MKPS
Proof.

The coefficients of variables from familyi in periodt f,,c,,,...c

int ?

d,ay,..a,

construct a linear knapsack problem with setup, say LKPS, :

U]

Max z Cijt Xij + fit yi
j=1

s.t.

zaij X; + dy, <hb,
j=1

X <Y, j=Ln,
;20 j=1n
0<y, <1

Based on Bulfin’s algorithm, this formulation can be transformed to a linear knapsack

problem with pseudo variables z;;, ..z, and their corresponding profit and processing

. . - 1 i i [C.,.
coefficientsc; ,a; j=1,..n/. Pseudo variables are ordered by non-increasing ratio % :
J

Then we can obtain a piecewise function F, with its breaking point set P, so that for any
available resourceb,, F,(b,)is the optimal solution of the LKPS, .

56

.
We define P = U P, , and delete all dominated points by two multiple-choice dominance
t=1

rules for linear multiple-choice knapsack problem (Sinha and Zoltners, 1979).

Connecting the remaining points, we can obtain another piecewise function F,, which
has F,(b,) = F, (b,), b, >0.
If the optimal solution of MKPS is known, assume y, =1and the resources and profit

from familyiarew; and profit;,i =1,..N with solution set S;={x;, | x

=1}. ThenS,isa

ijt
feasible solution from the following linear knapsack problem (LKPS,) with setup and

profit; is the objective of the feasible solution

N
Max zcijtxij + fit Yi
j=1
st
N
Za‘ijxij +diyi W,
j=1

X; <Y,

j:11ni
20 j=Ln

0<y <1,

Since F, (w,) is the optimal objective of LKPS,, thus F,(w;) > profit,,i=1..N .

N N
Since F (W) > F (W) , then F, (w;) > profit;,i=1,..N and) F(w) > profit; . Set

i=1 i=1

ki +1

ki
z; =1 j=1.k ifZl:aij <w, <Zl:aij
j= j=

z;=0,j>k+1
57

N
Then the solution setz;, j =1,..n;,i =1,..N is a feasible solution of K1 since > w, <b.
i=1

N
Hence the optimal solution of K1 is greater or equal toz F.(w,), and an upper bound on
i=1

MKPS.

References

Akinc, U. 2004. Approximate and exact algorithm for the fixed-charge knapsack problem,
European Journal of Operational Research 170, 363-375.

Bulfin, R. L. 1988. An algorithm for the continous, variable upper bound knapsack
problem, OPSEARCH 25 (2), 119-125.

Dantzig, G.B. 1957. Discrete variable extremum problems, Operation Research 5, 266-
277.

Martello, S., Pisinger, D., Toth, P. 1999. Dynamic programming and strong bounds for
the 0-1 Knapsack Problem. Management Science 45 (3), 414-424.

Martello, S., Toth, P. 1980. Solution of the zero-one multiple knapsack problem,
European Journal of Operational Research 4, 276-283.

Martello, S., Toth, P. 1981. A bound and bound algorithm for the zero-one multiple
knapsack problem. Discrete Applied Mathematics 3, 275-288.

Pisinger, D. 1995. A minimal algorithm for the multiple-choice knapsack problem.
European Journal of Operational Research 83, 394-410.

Pisinger, D. 1999. An exact algorithm for large multiple knapsack problems. European
Journal of Operational Research 114, 528-541.

Sinha, A., Zoltners, A.A. 1979. The multiple-choice knapsack problem, Operations
Research 27, 503-515.

58

IV.MULTIPLE-CHOICE KNAPSACK PROBLEM WITH SETUP

Abstract

We present a multiple-choice knapsack problem with setup (MCKS). This model can
be applied to regional project selection in multiple periods. In the model, some variables
model setups and serve as the upper bound on the remaining ones. A linear knapsack
problem is designed to give an upper bound on MCKS, and a branch-and-bound
algorithm is used to optimally solve MCKS. Setup variables are branched on; when all
are fixed, MCKS becomes a knapsack problem. Computational experiments show this

algorithm is effective even for instances CPLEX can not solve in two hours.

4.1. Introduction and literature review

The multiple-choice knapsack problem (MCK) is well known in combinational
optimization. In this paper, we present a model we call a multiple-choice knapsack
problem with setup (MCKS). This model can be used in regional project selection in
multiple periods for an organization (country or company) which has a fixed budget to
invest in a number of projects in multiple areas which can be done in multiple periods. To
do a project in an area, a project office must be set up. The organization would like to
decide where to set up offices and which projects to do to maximize net present value

subject to a budget restriction.

59

Given the formulation of MCKS:

T N N T N
Max > > > cpxy+ 2, il
t=1 i=l j=1 t=1 i=1
st
T N N T N
Z ainijt +zzdiyit <b, (1)
t=1 i=l j=1 t=1 i=1
X <Yy J=L.n, i=L.N; t=1.T, (2)
T
> x <1 i=1..N, j=1.n, (3)
t=1
xijt,yite{O,l} i=L.N;j=1.n;t=1.T. 4)

c;; -is the profit of project j inarea iin period t(c; >0),

f,, -is the setup cost for opening an office in areai in period t(f, <0),

; -is the investment needed for project j in area i(a; >0),

d.

-is the investment cost to open an office in area i (d, > 0),

b -is the budge available to invest (b > 0),

Y, - 1s one if office is set up in areai in periodt, otherwise zero,
x;; -is one if project j in areai is done in periodt, otherwise zero,

N -is the number of areas,

T -is the number of periods.

Constraint (1) requires the total budget used by all projects and to setup offices can not
exceed the budget available. Constraints (2) prohibit a project being done unless the
office in this area is set up. Constraints (3) guarantee that a project can only be done once.

Constraints (4) require all variables to be binary.

60

Besides the application of regional development, this model can also be used in order
acceptance in multiple periods with a non-renewable resource.

We develop an upper bound and an effective heuristic for MCKS based on the linear
knapsack problem with setup and the linear multiple-choice knapsack problem.

Following traditional terminology, we call areai familyi, and the project j in areai job j
of familyi. We also call d, the setup time of familyiand f, the setup cost of familyiin

periodt.

For the linear knapsack problem, Dantzig (1957) gave an algorithm which allocates
the limited resource to jobs based on the non-increasing profit-to-processing ratio.
Without y variables, MCKS becomes a multiple-choice knapsack problem, another well-
studied problem. (See Pisinger,1995; Sarin and Karwan, 1989; Armstrong et al, 1983)
Two dominance rules for the linear multiple-choice knapsack problem (Sinha and
Zoltners, 1979) are used to develop a linear knapsack problem as an upper bound on
MCKS.

Without constraint (2), MCKS becomes a knapsack problem with setup. Bulfin (1988)
gave an efficient algorithm for its linear relaxation. We explain this algorithm in the
following section. Akinc (2004) describes algorithms for a fixed-charge knapsack
problem, which is a special case of MCKS; it has a single period and no setup time.

We use a branch-and-bound algorithm to obtain the optimal solution to MCKS. It can

be briefly described by two steps. We branch ony variables; when all y variables are

fixed, the problem is a knapsack problem in the x variables. We use a simple branch-and-

bound algorithm to solve this knapsack problem. To reduce the branches of the tree,

61

y variables are reordered before branching. The ordering process is as follows: Order

y,, variables by non-increasing pro, = Zcm +f.,i=1.N,t=1.T.If y,is near the front,
j=1

then this variable is more likely to be 1. Similarly if y, is near the end, it is more likely to
be 0. We fix y,, variables by looking at the beginning and end of this ordered list and
working toward the middle. Fixing variables first at the front or rear aids in keeping the
number of branches small. Renumber variables by this order so that y, will be branched
on beforey,.,.

The algorithm (AMCKYS) for solving MCKS is outlined below:
Step 1. Obtain an upper bound formulation for MCKS and a feasible solution for MCKS.
Step 2. Decide which variable to be fixed in the current node.

Step 2.1. Generate a new node by fixing some y to one; save this node if its bound
is better than the incumbent solution. If all y are fixed, solve a knapsack
problem and update the incumbent solution if possible.

Step 2.2. Generate a new node by fixing y to zero; save this node if its bound is
better than incumbent solution. If all y are fixed, then solve a knapsack
problem and update the incumbent solution if possible. Delete the
current candidate node.

Step 3. Choose a new candidate node. If none exists, stop, the incumbent solution is

optimal; else go to Step 2.

In the remaining of the paper, we discuss Step 1 in section 4.2. Section 4.3 explains the
algorithms used in Steps 2 and 3. Section 4.4 discusses computational experiments.

62

4.2. An upper bound and feasible solution

Unlike the usual approaches of relaxing some constraints of a formulation to obtain an
upper bound, we design a linear knapsack problem whose optimal objective is an upper
bound on MCKS. This approach uses the algorithm presented by Bulfin (1988) for the
linear knapsack problem with setup, which transforms a linear knapsack problem with

setup to a linear knapsack problem.

4.2.1. Linear knapsack problem

Consider a linear knapsack problem:

n
Max chxj
j=1

st

n
Zajxj <b
i1

OSXJ- <1

All variables are ordered by non-increasing % . By Dantzig’s algorithm (1957), if

]

k k+1

D a;<b<) a;, then
i1

=

x;=Lj=1.k

63

A linear knapsack problem corresponds to a concave piecewise function.

Kk Kk
Define P ={(0,0),(>_a;,>.c;)| k=1,..n}, and put thesen+1 points on coordinates and

j=1 j=1
connect the adjacent points. This defines a concave piecewise function F . This process is

independent of resourceb . For a given resourceb, F(b) is the optimal objective of the

linear knapsack problem with resourceb (Ifb > Zaj , setF(b) = ch). For brevity,
j=1

j=1
Kk Kk

denote these points as p,,..p, with p,.x = Zaj and p,.y = Zci k=1.n. p, k=1.nare
j=1 j=1

the break points of the piecewise function F . Conversely the nbreak points of a concave
piecewise function F define a linear knapsack problem with some resourceb by

defining x; corresponding toa; = p;.x—p;_,;.x andc; = p,.y-p, .y, j=1.n.

4.2.2. Transform a linear knapsack problem with setup to a linear knapsack problem

Consider the linear knapsack problem with setup:

N

Max Zicijxij +ZN: .y,
1

i1 j=1 i
s.t.

N n N

2. %+ diy; <b,

i1 =1 i-1

X <Y, J=Ln;i=LN,
20 j=Ln;i=1LN,
0<y, <1 i=1.N.

64

Bulfin (1988) proposed an efficient algorithm, similar to Dantzig’s algorithm for the

linear knapsack problem (1957). Reorder all jobs of familyi so

C: C.: .
ij > ij+l — o i —
thaté > Aﬂ’l 1.n-1,i=1.N.Let

&
>+ Zk:cij + f
=i

=max{~*——|k=12,.n}forieN.

&
D ay +d; D a; +d,
j=1 j=t
Then for family i, jobs can be separated into two sets: XM, = {1...t; }and XT, =

{t,+1....n, }. The jobs in XM, can be considered as a single job.

Now for familyi, define:
' ti
Gy = zcij + fi
j=1

&
a, = Zaij + di
j=1
Ciiwa=C;j J=t+Ll.n

& =8 j=t+1.n,

n=n-t+1

Then linear knapsack problem with setup can be reformulated as:

Max iicu Z

i=1 j=1
s.t.

N N

2.2z <b

i=l j=1

0<z, <Li=1.N j=L..n

65

Pseudo jobz, is composed of jobs x;,,X,,..x, and z; =x;.,, for j=2,.n,—t;. After

ij+t; ?
solving this linear knapsack problem, at most one variable can have a fractional value,

say f.Ifz,,=f, theny =fandx,=f,j=1.t. Ifz, =f, I=1 thenonlyx, =f.

4.2.3. The algorithm for the upper bound and feasible solution

Before we explain the approach to obtain an upper bound and a feasible solution for

MCKS, let us introduce the period subset’s piecewise function of familyi .

4.2.3.1. Subset’s piecewise function

If the optimal solution of MCKS is known, then S, ={t| y, =1}is the set of periods in
which familyi is processed. But before solving MCKS, S;is unknown. We know S, must
be a subset of {1,..T}. Set{l,.T} has total 2" —1non-empty subsets, which we denote
as$S,,..S,, K =2" —1and|S, |is the cardinality of the subset S, .

ForanyS, c{1,.T},k=1.K, define

Cjs, = Max{c;, [te S}

ijt

fisk = z fit

teS,
dis, =[] d;-
Using pseudo variables x; , y;, for each S, , we can formulate a linear knapsack problem

with setup:

66

rl|

’ [

Max Zcijskxij + £ Y,
i1

st

This problem can be transformed to a linear knapsack problem based on section 4.2.2,

the linear knapsack problem defines a concave piecewise function Fg with break points

setR . Thus K is the piecewise function of S, for familyi.

4.2.3.2. Upper bound formulation of MCKS

After obtaining F and its break points set B for each subsetS, ,k =1,..K of familyi,
K
we define P'= U Ps, and delete any repeated points in the set. Apply the following two
k=1

multiple-choice dominance rules (Sinha and Zoltners, 1979) toP’ :
Dominance rule 1. If p,and p have p,.x < p,.xand p,.y < p,.y, then delete p,

Dominance rule 2. If p,, p,, p, have p,. X< p,.X< p..X, p,.Y < p..y < p,.yand

pk'y_pr-y <ps.y—pk,y
P X— P, X" DX~ P X’ then delete p, .

Call the set of remaining points P and put them on coordinates. Connecting the

adjacent points in P, we obtain a concave piecewise function F, with break

points p;,...p,. . All points in P'are below the line of the piecewise function F, thus

67

F. (b)) F () by 20k =1.K.

Define n, pseudo variables z,,..z_with a; = p;.x—p,;.x andc; = p;.y—p,.y j=1.n/.

N
Repeating this process for all N families, we obtain z n, pseudo variables and
i=1

formulate a linear knapsack problem LKP, with resourceb .

We prove that the optimal objective of LKP, is an upper bound on MCKS. This
problem has at most one fractional variable. If we round this fractional variable to zero,
then we obtain a feasible integer solution for LKP, . The integer solution
of LKP, corresponds to a feasible solution of MCKS and its objective is a lower bound on

MCKS. (Refer to the Appendix C for their proofs).
This approach is impractical if T is large. We present three dominance rules to reduce

the number of subsets considered. (Refer to the Appendix D for their proofs).

Consider two subsetsS,, S, < {1,.T}of familyi: if Fg (b)) > Fg (b,)for allb, >0, then

S, dominates S, . All break points of Fg are below F , soP; & B which means Bg need

not be included inP". Consider S, ,..S, of familyi:

n n
Dominance rule 3. IfS, = S and D ¢;s + fs > ¢ + fis, . thenS, dominatesS, .
= -1

68

Dominance rule 4. Assume S, c S, and S, dominates S, . If there is another
subsetS, withS, NS, =¢, thenS, US_dominatesS, US, .
Dominance rule 5. Assume S, S, f; = f, =0andd;,, =d; =0. If there is a subset
S,withS, NS, =¢, thenS, US, dominatesS, US, .

With the help of dominance rules, the break points of some period subsets’ piecewise
functions need not be included into P" and thus reduce the effect to determine LKP, . After

finding all non-dominated subsets, we calculate the break points of their piecewise

functions. We do not put all break points together and apply dominance rules 1 and 2
once; rather we add these points into P"in a specific order and apply dominance rules 1
and 2 total T times.

Define S,, to be all non-empty subsets of{k,..T} for familyi and P; be all non-
dominated points set from the piecewise functions of all elements in S, . With the help of
Dominance rule 4, the algorithm to generate P, is:

Step 1. Setk =T -1.

Step 2. While (k >0)
{ SetS ={kuUS,|S, €5}
SetS, , =SUS,
Apply dominance rule 3 to delete dominated sets inS,,
k«k-11}

Step 3. Calculate R and P forS, €S,.

69

Step4.Set k=T andP;,,=¢.
Step 5. While (k> 0)
{ SetPi=PRi, U{P IS €Sy /S.}
Apply rules 1 and 2 to delete dominated points in P’
kek-1}
When the algorithm ends, P;is the P we need. After P ,i =1,..N are known, LKP,is

obtained.

4.3. Fixing y,
When we fix y, to one or zero, Y, ,k =1,.t—1have been fixed by the variable order.

Define S! ={k |y, =1k <t} and S'includes all non-empty subsets of S'.

4.3.1. Fixing y,, to one

When we fix y, to one, d, is subtracted fromb and f,, is added to the objective.
Then f, and d, can be viewed as zero. Coefficients f; andd, related to
subsetS,,teS,,S, e S,change. Therefore all F and P related to these subsets change,
which can cause a change of P..

We can calculate the new piecewise functions for all affected S, and apply the above
algorithm to obtain an updated P, . Then we obtain the new pseudo variables and their

processing time and profit coefficients of familyi from the updated P, .

70

This updating process can be simplified by applying dominance rule 5. Based on this,

subset S' dominates any subsetS, ,S, € S:". Therefore, we only need consider subsets
are{S; US,[S; e S...}US,.,. The process to update P can be described as:
Step 1. Calculate the piecewise function of subsetS".

Step 2. Calculate the piecewise functions of subsets{S; US| S, e S...}.

Step 3. P, corresponding to S, , is known from the calculation of the upper bound on
MCKS. SetR'= Py, U{P.}U{Ps IS, e{S;US,|S; €S, }}and apply rules 1
and 2 to delete dominated points in P"and obtain the updated P, .

After we obtain the updated P, we can obtain the new pseudo variables of familyi .

4.3.2. Fixing y, to zero

If we fix y, to 0, then all subsets includingt must delete this period, so their piecewise
functions change, resulting in a differentP, .
Assumel is the last period in S/, then S; stays the same since we fix y, to one. Al

subsets used to update P, when we fix y, to one are {S{ US| S, € S,..yandS, ,; all

subsets used to update P when we fix y, to zero is{S' US 1S, € S,..}andS

it+1 "

SinceS,,, = S,.,, then all subsets used when y, zero are part of the subsets for fixing y, to

it+1?

one. We save the P when we fix y, to one so we need not calculate the updated P. .

71

4.3.3. Bounding

After we obtain the new pseudo jobs z;,..z. . from the updated B, the node’s new
upper bound can be obtained by replacing the old pseudo variables z;;, ..z . of familyi with

the new ones. For the current node’s upper bound formulation:

N

Max Zicu z;

i=1 j=1
st

If we fix y, to 1, then reduce available resourceb byd.; delete all old pseudo

jobsz,,..z_.; replace by the new ones and find the new optimal. If we fix y, to O, then we

replace all old pseudo jobs z;,,..z_. by new ones and find the new optimal. We can prove

the new optimal is the upper bound of the current node by an approach similar to what we

used in Appendix A.

4.3.4. Choosing a New Sub-problem

When variables are fixed, two sub-problems are created. If a sub-problem’s upper
bound is no better than an incumbent solution it is discarded. When its bound indicates it
could contain a better solution to MCKS we store it in a bucket. Each bucket contains
sub-problems with bounds that are about the same. LetUB be the best upper bound

and INC be the value of the current incumbent solution. If we want K buckets, calculate

UB—INC
A=l Y.

72

Then bucket one will contain all sub-problems with upper bounds in the

interval [UB — A,UB], bucket two[UB — 2A,UB — A], and bucket K [INC, INC + A].

Buckets can be updated as upper bounds or the incumbent change. When we choose a
new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-
empty bucket. This gives an almost “best-bound” strategy, but without the bookkeeping

overhead.

4.4. Computational experiments

We test AMCKS on a variety of problem instances to see what problems can be solved.
Instances will be generated by setting five parameters at several levels. The parameters
are number of families, average number of jobs in a family, proportion of setup time/cost
relative to total time and cost, number of periods, and relationship betweenaandc. The
number of families will be fixed at 10, 30 and 50. The number of periods will be fixed at
5, 10, 15 and 20. The number of jobs in a family will be integer uniformly distributed

from [10, 30], [30, 50] and [50, 70]. Setup cost and time will be determined by

fit =—€ (Z Cijt)
=
di =6, (z aij)
=

We will choose e, and e, uniformly from [0.05, 0.1], [0.1, 0.15], [0.15, 0.2], and [0.2, 0.25].
aandc have three relationships: a; is uniformly chosen from [10, 10000], and c;; is
also uniformly chosen from [10, 10000] (uncorrelated relationship-U); a; is uniformly

chosen from[10, 10000] and t; is randomly chosen from[10, 10000], and c;, =t; +e, eis
73

randomly chosen from [0, 2000] (weak relationship-W); a; is uniformly chosen from[10,

10000], and c;, is randomly chosen from[a; -1000, a; +1000], if c;, is less than 10, then it

ijt ijt

is randomly chosen from [10,100] (strong relationship-S). Resource availability will be

uniform from 0.4*%‘%‘ a;, O.G*ii a;,

i=1 j=1 i=1 j=1
For each level of the five factors we generate ten instances. AMCKS was coded in C
and all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of
memory. In the following tables, we report the minimum (MIN), average (AVG) and
maximum (MAX) solution time in minutes. We also give the average ratio of initial
solution (INC) to initial upper bound (UB) and the average ratio of initial solution to the
optimal solution (OPT).

Table 4.1
Solution time (minutes) with N =10andn, ~ [10,30]

U W S
period Setup LB/UB LB/OPT MIN AVG MAX LB/UB LB/OPT MIN AVG MAX LB/UB LB/OPT MIN AVG MAX
[0.05-0.1] 0.977 0.978 0.00 0.00 0.00 0.991 0.991 0.00 0.00 0.00 0.902 0.903 0.00 0.00 0.01
[0.1-0.15] 0.976 0.977 0.00 0.00 0.00 0.988 0.989 0.00 0.00 0.00 0.843 0.845 0.00 0.00 0.01
[0.15-0.2] 0.953 0.953 0.00 0.00 0.00 0.991 0.991 0.00 0.00 0.00 0.878 0.883 0.00 0.00 0.01
[0.2-0.25] 0.912 0.913 0.00 0.00 0.00 0.929 0.930 0.00 0.00 0.00 0.893 0.900 0.00 0.00 0.01
[0.05-0.1] 0.992 0.992 0.00 0.00 0.00 0.997 0.997 0.00 0.00 0.00 0.903 0.904 0.00 0.01 0.02
[0.1-0.15] 0.978 0.978 0.00 0.00 0.01 0.990 0.990 0.00 0.00 0.01 0.894 0.896 0.00 0.01 0.02
[0.15-0.2] 0.973 0.974 0.00 0.00 0.00 0.997 0.997 0.00 0.00 0.01 0.833 0.838 0.00 0.01 0.02
[0.2-0.25] 0.947 0.949 0.00 0.00 0.00 0.919 0.921 0.00 0.01 0.01 0.905 0.910 0.01 0.01 0.03
[0.05-0.1] 0.993 0.993 0.02 0.02 0.03 0.996 0.996 0.00 0.00 0.01 0.862 0.862 0.00 0.02 0.03
[0.1-0.15] 0.992 0.993 0.00 0.01 0.01 0.989 0.990 0.00 0.00 0.01 0.893 0.895 0.00 0.02 0.05
[0.15-0.2] 0.967 0.968 0.00 0.00 0.01 0.996 0.996 0.00 0.01 0.02 0.895 0.899 0.01 0.04 0.07
[0.2-0.25] 0.935 0.936 0.00 0.00 0.01 0.945 0.946 0.00 0.01 0.03 0.837 0.842 0.03 0.05 0.07
[0.05-0.1] 0.994 0.994 0.09 010 0.1 0.997 0.998 0.01 0.01 0.01 0.904 0.905 0.02 0.04 0.05
[0.1-0.15] 0.978 0.979 0.02 0.02 0.03 0.985 0.985 0.00 0.01 0.03 0.907 0.908 0.00 0.04 0.08
[0.15-0.2] 0.978 0.979 0.01 0.01 0.02 0.997 0.998 0.01 0.02 0.04 0.919 0.923 0.01 0.08 0.19
[0.2-0.25] 0.958 0.959 0.01 0.01 0.01 0.950 0.952 0.00 0.03 0.12 0.845 0.851 0.05 0.12 0.41

10

15

20

74

Table 4.2
Solution time (minutes) with N =30andn, ~[30,50]

Period Setup

U

w

S

LB/UB LB/OPT

MIN AVG MAX LB/UB LB/OPT

MIN

AVG

MAX

LB/UB

LB/OPT

MIN AVG

MAX

[0.05-0.1]
[0.1-0.15]
[0.15-0.2]
[0.2-0.25]

0.996
0.991
0.987
0.974

0.996
0.991
0.987
0.974

0.00
0.00
0.00
0.00

0.02
0.02
0.01
0.02

0.07
0.04
0.04
0.04

0.999
0.989
0.984
0.977

0.999
0.989
0.984
0.977

0.00
0.00
0.00
0.00

0.02
0.08
0.12
0.11

0.08
0.25
0.35
0.34

0.949
0.954
0.958
0.964

0.950
0.954
0.958
0.965

0.04
0.04
0.00
0.00

0.41
0.19
0.22
0.27

0.76
0.30
0.49
0.63

10

0.997
0.999
0.990
0.980

[0.05-0.1]
[0.1-0.15]
[0.15-0.2]
[0.2-0.25]

0.997
0.999
0.990
0.980

0.01
0.01
0.00
0.00

0.05
0.01
0.03
0.05

0.17
0.01
0.05
0.13

0.999
0.997
0.983
0.983

0.999
0.997
0.983
0.983

0.01
0.00
0.00
0.01

0.03
0.09
0.20
0.29

0.06
0.46
0.64
0.57

0.966
0.952
0.961
0.964

0.966
0.952
0.962
0.965

0.07
0.08
0.11
0.33

0.79
0.69
1.08
1.51

1.57
1.04
2.01
3.67

15

[0.05-0.1]
[0.1-0.15]
[0.15-0.2]
[0.2-0.25]

0.997
0.996
0.982
0.974

0.997
0.996
0.982
0.974

0.06
0.02
0.01
0.05

0.09
0.04
0.08
0.09

0.18
0.09
0.18
0.15

0.999
0.996
0.990
0.983

0.999
0.996
0.990
0.983

0.00
0.01
0.01
0.00

0.05
0.15
0.28
0.88

0.21
0.44
1.25
5.57

0.972
0.970
0.962
0.959

0.972
0.971
0.962
0.959

0.24
0.12
0.06
0.01

0.97
0.89
1.69
2.86

1.92
1.46
2.74
6.17

20

0.997
0.999
0.987
0.977

[0.05-0.1]
[0.1-0.15]
[0.15-0.2]
[0.2-0.25]

0.997
0.999
0.987
0.977

0.87
0.07
0.03
0.03

1.74
0.08
0.08
0.14

3.68
0.09
0.17
0.26

0.999
0.997
0.994
0.977

0.999
0.997
0.994
0.977

0.03
0.02
0.02
0.11

0.10
0.09
0.16
1.28

0.34
0.16
0.49
7.92

0.982
0.971
0.975
0.942

0.982
0.971
0.976
0.943

0.05
0.12
0.22
1.18

0.97

1.75

2.18
12.42

2.10
591
8.73
51.60

Table 4.3
Solution time (minutes) with N =50and n, ~[50, 70]

Period Setup LB/UB LB/OPT MIN AVG

U

w

S

MAX

LB/UB

LB/OPT

MIN

AVG

MAX

LB/UB

LB/OPT

MIN AVG

MAX

[0.05-0.1] 0.997
[0.1-0.15] 0.997
[0.15-0.2] 0.991
[0.2-0.25] 0.987

0.997
0.997
0.991
0.987

0.01
0.00
0.00
0.00

0.15
0.07
0.14
0.13

0.82
0.51
0.36
0.36

1.000
0.995
1.000
0.983

1.000
0.995
1.000
0.983

0.00
0.01
0.10
0.08

0.09
0.39
1.74
0.92

0.34
0.93
4.49
1.76

0.979
0.980
0.984
0.980

0.979
0.980
0.984
0.980

0.05
0.21
0.03
0.30

2.12
1.64
1.03
3.09

4.25
3.70
3.43
5.78

10

[0.05-0.1] 0.998
[0.1-0.15] 1.000
[0.15-0.2] 0.991
[0.2-0.25] 0.985

0.998
1.000
0.991
0.985

0.03
0.01
0.02
0.01

0.39
0.04
0.16
0.42

1.88
0.09
0.48
141

1.000
0.999
1.000
0.986

1.000
0.999
1.000
0.986

0.02
0.02
0.02
0.21

0.17
0.29
2.00
2.65

0.52
1.26
4.56
6.05

0.988
0.976
0.970
0.971

0.988
0.976
0.970
0.971

0.02
0.12
0.86
4.23

3.10
4.46
9.72
16.20

6.99
8.44
19.66
28.67

15

[0.05-0.1] 0.997
[0.1-0.15] 0.998
[0.15-0.2] 0.993
[0.2-0.25] 0.987

0.997
0.998
0.993
0.987

0.20
0.05
0.03 0.35 0.96
0.02 043 1.01

0.80
0.13

2.10
0.33

1.000
0.997
1.000
0.990

1.000
0.997
1.000
0.990

0.02
0.05
0.01
0.04

0.14
0.95
2.24
1.89

0.31
3.95
5.83
3.75

0.984
0.979
0.969
0.976

0.984
0.979
0.970
0.976

0.36
0.06 8.33
0.06 17.70
0.07 30.40

7.29

22.69
17.03
35.68
82.01

20

[0.05-0.1] 0.997
[0.1-0.15] 0.998
[0.15-0.2] 0.991
[0.2-0.25] 0.990

0.997
0.998
0.991
0.990

19.50 29.00 44.47
0.17 045 135
0.13 0.52 1.08
0.09 0.64 1.53

1.000
0.998
1.000
0.991

1.000
0.998
1.000
0.991

0.08
0.03
0.12
0.03

0.26
0.41
2.08
541

0.53

271

7.84
21.96

0.983
0.981
0.973
0.978

0.983
0.981
0.973
0.979

0.11 8.88
0.44 13.60
3.15 34.10
1.34 41.10

27.13
29.35
125.01
95.54

75

Fig. 4.1 and Fig. 4.2 show when coefficients are uncorrelated, instances with small
setup proportion are more difficult than large setup proportion. The difference between

5% setup and 10% setup is apparent, but there is little difference between 10% setup and

15% setup.

Time (Minute) N=50;T=15
35
30
25
20 1 — 4 -U
15 1 --%--W
10 S

5 4

S PSP BRPETSL FELAELRE |

[0.05-0.1] [0.1-0.15] [0.15-0.2] [0.2-0.25]
Setup proportion

Fig. 4.1. Solution Time for N =50,T =15andn, ~[50, 70]

50 families, 20 periods

Time (Minute)

45 +
40 +
35
30 +
25 +
20 ~
15 -
10 +
5,
0

[0.05-0.1] [0.1-0.15] [0.15-0.2] [0.2-0.25]
setup proportion

Fig. 4.2. Solution Time for N =50,T =20andn, ~[50, 70]

The dominance rules are more effective when setup proportion is large and
when aand care uncorrelated. If the setup proportion is small, jobs are more often
assigned to multiple periods; the dominance rules are not as effective as for instances

with large setup proportion. But whenc is correlated over different periods, there is not
76

much difference in assigning a job to a particular period. Thus AMCKS can easily solve
an instance with small setup proportion.

When setup proportion increases, instances with a, ¢ having weak relationship and

strong relationship become harder. By the central limit theorem, the total setup cost and
time follow a normal distribution. Under the weak and strong relationships, the
correlation of setups in different periods increases. With setup proportion increasing,
setup has more effect on the optimal solution and differences in periods decrease. Hence
dominance rules are not as effective in this case. The other possible reason is the lower
bound. With setup proportion increasing, the lower bound becomes worse so we can not
fathom nodes as effectively.

Instances with aand c correlated are more difficult. The piecewise function for
different periods become flat, and the computation for the composite piecewise function
becomes complex. The knapsack problem when all setup variables fixed is also a hard
problem; we did not use a special algorithm to deal with correlation in the knapsack
problem. Some improvement can be expected if a special algorithm is used.

We use the rounded solution as a lower bound on MCKS, which is very effective. For

instances with N =30and N =50, the lower bound is at least 95% of the optimal.
When N =10, it is worse since there are fewer points on every piecewise function, so the
resource is much easier to use up before the first break point of the piecewise function. If
the fractional value is the first pseudo variable of some family, all variables corresponded
to this pseudo variable are rounded to zero, thus the lower bound is not as good.

We also compare AMCKS to CPLEX 9.1 (called by AMPL). We choose the hardest

instances for AMCKS (20 periods, 50 families, n. ~[80,90]) to compare. Trial runs on
77

other instances showed these results are typical on CPLEX. Due to the difficulty of

solving with CPLEX, only five instances per level were solved. Table 4 shows the clear

superiority of AMCKS.
Table 4.4
The solution time (minute) comparison between AMCKS and CPLEX
U W S
Setup CPLEX AMCKS CIA CPLEX AMCKS CIA CPLEX AMCKS C/IA
1 >12000 3982 301 451 1.31 3.45 5.12 0.77 6.65
2 >12000 1539 780 553 015 3758 590 8.46 0.70
[005-0.1] 3 >120.00 3131 383 505 016 31.06 13.68 1505 091
4 >120.00 1923 624 4.82 2.58 1.87 4.19 1.60 2.62
5 >120.00 1433 837 4.42 008 5828 5.07 1.47 3.45

AVG 5.85 26.45 2.87

>120.00 0.21 570.34 7.79 0.04 19061 5.03 1.79 2.82
>120.00 0.24 506.97 7.82 1.03 757 82.07 8.39 9.78
>120.00 0.22 54599 879 0.86 10.19 5.24 1.00 5.22
11711 020 590.17 8.59 5.23 1.64 >120.00 13.56 8.85
>120.00 0.17 72573 853 0.59 1456 13.23 1.59 8.33
AVG 587.84 44.91 7.00

[0.1-0.15]

a b~ W N P

50.85 0.09 566.01 7.47 0.13 56.14 12.68 17.14 0.74
7.41 0.08 91.82 7.10 0.19 38.35 >120.00 31.10 3.86
15.84 0.12 129.98 9.22 0.32 28.91 >120.00 33.79 3.55
15.52 0.16 97.24 8.92 4.89 1.82 29.80 8.90 3.35
17.36 0.91 19.08 9.18 0.33 2777 32.76 2.59 12.63
average 180.83 30.60 4.83

[0.15-0.2]

a b~ W N P

1 8.70 0.32 27.41 6.87 0.15 47.39 >120.00 28.72 4.18
2 7.59 0.84 8.99 7.11 12.00 059 >120.00 17.92 6.70
[0.2-0.25] 3 8.53 2.23 3.82 6.89 0.18 39.29 >120.00 47.09 2.55
4 7.08 0.20 34.63 6.29 4.88 129 >120.00 48.74 2.46
5 7.44 0.07 103.13 6.87 0.14 4742 >120.00 26.83 4.47
average 35.60 27.20 4.07

When aand c are uncorrelated, AMCKS is much better than CPLEX. Whenaandcare
correlated, AMCKS is still better than CPLEX except for instances with 5% setup and
both solvers take longer for instances with larger setup than those with smaller setup.
AMCKS solves problems with 5%-10% setup in about one-third hour; when setup

proportion is over 10%, AMCKS takes less than one hour. For problems with 10%, 15%
78

and 20% setups, CPLEX failed to solve many instances in two hours. Though CPLEX
can obtain a near optimal solution, it can’t prove it is optimal in two hours, which often

happens in many algorithms for integer programming.

4.5. Conclusion

MCKS can be used for project selection for a country or company. In this paper, we
use a branch-and-bound algorithm to solve the multiple-choice knapsack problem with
setup. A linear knapsack problem is designed to give an upper bound on MCKS. We
develop three dominance rules to simplify the process and save time to obtain an upper
bound model. The rounded solution of the linear knapsack problem provides a good
incumbent for MCKS. For instances with N greater than 30, the heuristic is over 95% of
the optimal solution. Computational experiments show the algorithm’s effectiveness.
Compared to CPLEX, the proposed algorithm obtains the optimal solution in less time for
most instances. Setup proportion has more effect on instances with uncorrelated
relationship instances than other instances. In this paper, we only use a simple branch-
and-bound algorithm for the knapsack problem when all setup variables are fixed. If a
better algorithm, e.g. the one developed by Martello et al. (1999) is used, the solution

time can be reduced.

Appendix A. The optimal objective of LKP, is an upper bound on MCKS.,

Proof.
If the optimal solution of MCKS is known, then we obtain the
setsS, ={t|y, =1},i =1,..N in the optimal solution of MCKS and the resource taken by

79

N
familyiisw. as well as contributed profit profit,,i =1,..N with Zwi <b and the optimal
i=1

N
objective Y profit; .
i=1

For the period setS;, there isc;s =max{c; .te S}, fg = f,,anddg =[S d;. Using

tes;
pseudo variables x; and y; , formulate a linear knapsack problem with setup LKP, by

these coefficients:

N

Max Z:Cijsk Xi'j + fiSk y;
=1

st.

N
' '
Zaijxij + disk Yi S W,
j=1

! !
Xi <V,

i=1.n,
;20 j=L.n,

0<y/ <L

T T
Since we know the optimal solution of MCKS, sety/ =>"y, andx; = > x, j=1.n;,
t=1 =1

so that y; and x; are a feasible solution of LKP; . We know

n; N T T

U] T n;
D Cis X = D Cis 2 X = 2, > Cyxy and fio yi ="y, thus Zciisk X + fis, ¥, > profit; .
1] t=1 j=1

i= i= t=1 j=1
Because F; (w;) is the optimal objective of LKF; , then Fg (w;) > profit;. The linear

knapsack problem obtained from F, (w,) is

80

i
Max > c;z
i1

st

n
2 Az <W,
1

0<z;<1j=1.n

Define its solution for this problem is Z,

N
|JZ; is a feasible solution for LKP,

i=1

NN

Max > > c;z;
i=1 j=1
s.t.
Nom
ZZaU z; <b
i=l j=1

0<z;<1i=1.N j=1.n

. Repeating this process for all families,

N
and its objective of this feasible solution isz F. (w;) which is less than the optimal

N
objective of LKP,. Since F(w) = Fg (w;) > profit; , then Z profit; is less than the optimal

objective of LKP,.

Appendix B. The rounded solution of LKP,

Proof.

i=1

corresponds to a feasible solution of MCKS

Assume resource taken by familyi in the break solution isw. and the corresponding profit

obtained by the family is obj; . For all pseudo variables z,,..z;,,, there is % > Ci
i

+1
’ .
aij +1

81

If z, =0forall j=1,..n;, then assign all variables of familyito zero. Ifz, =1in the
rounded solution, andz; =0 j >k, then the coefficients of z, comes from p, and p, ,in
point setP bya, = p,.X— p, ;.-xandc; = p,.y— p,,.Y . On the piecewise
functionF, p,.x =w,and p,.y = obj,. Assume this point p, comes from the break points of
piecewise function F; . Fg corresponds to a linear knapsack problem LKP; , but
this LKP; is the transformation of a linear knapsack problem with setup LKPSg

Max icijsk Xi + fis Vi
i1

st

N

! !
E , & X +disk Yi = bo'
j=1

Xilj < y;y J :1--niv
X 20 j=1l.n,
0<y/ <L

Based on Bulfin’s algorithm for linear knapsack problem with setup, the variables

in LKPS, can be separated into two set XM ={x;,..x;}and XT ={xi.,,..x, } . If z; is the

it+17°
first break point of K , then setx; =1 k =1,.t andx; =1 k=t+1,..n;; else

setx, =1 k=1..j+t-1. Ifx, =1, letx, =landy, =0ifc, =max{c; [teS};else

ijt

setx; =0,reS,. Then >’ icmxijt +> f.y, =objand > nz a,; X +>_d,y, =W, . Repeat

teS, j=1 teSy teSy, j=1 teSy
this process to all families, and we can obtain a feasible integer solution of MCKS with

the objective the same as the rounded solution’s objective of LKP,.

82

Appendix C. Three Dominance rules

Let us introduce two notations:
' _ pj+l'y_ p]y
F (b)) = , b, > 0: The derivative function of piecewise
Pja-X—P;X

functionF . p;, j=1,...narenbreak points of F and p, =(0,0). p,. x<b < p,,,.X.

Ifb, > p,.x, thenF’(b,) =0.
Jo={jl] :1,..ni,c”% > Fg (0)}: The job set to form the first line between p, and p,
i

of F .S, k=1.K are all subsets of{1,..T} for familyi.

Before proving Dominance rule 1, 2 and 3, we need the following Lemma:

Lemma 1. LetS ,S,,S, be three different subsets of{1,..T} for familyi, andS, US, =S,
S, NS, =¢.1fFg (0)>Fg (0), thenFg (0) > F¢ (0).

Proof.

Case 1: If thereis je J,n(J, W J,)

(1) oy =Gy

then C% > F, (0), but C% <F{ (0), thus Y (0) > L (0).

(2) Ifc =Gy »

then C% > FL(0), butc”% <F (0), thus F} (0) < F, (0)< FL (0).
Case 2: IfJ, J, U J,, then define J] ={j| jeJ,.C5 =Cys }

and J/ ={j| j € J,,cs =Gy }then

83

[(fisr + Z Ciss,)+ (fiSk + Z Cijs,)]
Fe (0) = - = (dig, +dis + D 8+ D @)

jedy jedf

(fisr + Z Cijs,)
Since e < R (0)in the same way,

(disr + Z aij)

jedf

(fiSk + Z Cijsk)
jedf

(ds + Y a,) <F¢ (0). Therefore, F (0) < max{F; (0),F (0)}=F¢ (0)

jedf

Lemma2. If d, =0, f, =0,t =1,..T ,and there are two sets S, and S, with S, = S, ,
then F (b,) < Fs (b;) and Fy, (by) < Fs (B,),0<b, <> a, .
j=1

Proof.

Consider knapsack problem A:

N
Max > cys X,
-1
St.
n
D aXs <b,
=i
0<x; <1 j=1.n

Fs. (by) is the optimal objective of the linear knapsack problem A with right-hand sideb, .

Consider the knapsack problem B:

84

n
Max Z Cis, Xis,
-1

St.

N
2.8 Xiis, < By
=1

0< Xy,

<l j=1.n
Fs, () is the optimal objective of the linear knapsack problem B with right-hand

sideb, .Since S, = S, , thencys <c;; and A’s feasible space is same with B’s,

ijs, — ™i

thus K (by) < Fg, (by) -

Let

setJ’ :{j|j:1,..ni,ci% >F, (bo)}andc”% =min{ "%/, jeJ/}then
ij 1), 1]

! Ci' .
FL (by) = % ,

setJ; ={j|] =1,--nwc”% >Ry (bo)}a”dc“% =min{ %/ j I }then
ij 1k]

i Ci'
R)=
Uk

ThenJ, ¢ J, .
Case 1: IfJ, =7/,

if j, = J,, thensincec; s <c; |

ifjr;sjk,men%y z%y z%s/ thus Fy, () < Fy, (,).
ay, &, a;, ' ‘

Case 2: IfJ, #J/,

thus F, (0,) < Fg, (0y) ;

85

memis&mbjeJ;mﬂngbtmmFﬁ(Q)ﬁqié;scf%gﬁF%A%).

Lemma 3. IfS, = S, , let p, and p, be the first points except (0, 0) on piecewise
functions F , and Fg_respectively. Defineb, = max{p, .x, p,.x}. Then forb, > b,
Fs, (by) < Fg (0y)

Proof.

If, [, <, + 3 a, , then Fy, (b,) = Fy (b) =0.
=1

ij !

U

I]|S, | *d; +iaij <b, <|S,[*d; +ia.. then Fg (b)) =0, Fg (b,)>0.
=t j=1

n . Ci' , Ci.k y
Ifb, <||S,||*di +J.Z=;4a‘i , then assume Fg (b,) = Jr%r , P, (b)) = J% .

Since|S,|*d; <||S,[*d;, thenb, —[S,[*d; > by —|S,[*d;. Then for the linear knapsack
problem

N
Max Zcijsr Xis,
-1

s.t.

D 2%, <by =[S, |*d;,
=L
0<x <L j=1.n

and its piecewise function Fg , there is F¢ (b, —[S, |*d,) = ”% :
i

For the linear knapsack problem

86

Max icijsk Xis,

s.t. a
2% Xis, < by =[S *d|
(J)is Xis <1, J=1.n,

iiSc —

.)] - L= C.
and its piecewise function Fg , there is B (b, —S,||*d,) = ”k% :
i

Based on lemma 2, there is R (b, S, |*d;) < Fg, (b, —S,[*d,).

Since piecewise function is concave function, then Fg (b, S, |*d;) < Fg (b, —[S,[*d;).

Thereforec”r% Sci,-k% 150 Fy (b,) <Fy (b))

Lemma 4. Assume S, < S, . If Fg (0) > Fg (0), then there is at most one intersection
of Fs and g except (0,0); if Fg (0) < Fg (0), then S, dominates S, .

Proof.

Case 1: Fg (0) > Fg (0)

Assume p, and p, are the first points respectively on piecewise functionF; and F . If
there are two intersections p;, p, of Fs and F , then there
isFg (p,-X) < Fg (ppx)and Fg (p,-x) > Fg (p,-X). Since Fg and Fg are concave
piecewise functions, there is p,.x > max{p,.x, p,.X}. But based on lemma 3,
Fs (p,-X) > Fg (p,-X) can not be true.

Therefore, there is no second intersection p, .

87

Case 2: Fg (0) <Fg (0).
If p,.x < p,.X, there is no intersection p between (0, p,.x). If there is an intersection
outside of (0, p,.x), then there is K (p,.x) > F¢ (p,.X) that is impossible based on lemma

3.

If p,. x> p,.X:

. - . . C. C.
Define J' = J, nJ, . Sincecy, <c;s,j=1.n;, then '% < L - We
ij

fisk + Z Cijs,
i 1
have Fg (p,.x+ 2 a;) jedr o

jedt

> Fg (p,-X) and

ds, + 2, &
jed, uit

P, X+ z a; = p,.x, thus Fg () > Fg () forb, € (0, p,.x) . If there is an intersection p

jedt
outside of (0, p,.x), then F¢ (p.x) > F¢ (p.x) that is impossible based on lemma 3.
Case 3: Fg (0) = Fg (0)
If p,.x< p.x, Fg (by)=Fg (1), b, €(0,p,.x), and
Fs () < Fg (1), by € (p, X p,.x) . If there is an intersection p outside of (0, p,.X) ,
then Fg (p.x) > Fg (p.x) that is impossible based on lemma 3.

p,.X> p,.x can not happen since if there isJ' = J, N J, , then
C”% > C‘% > F¢ (0), j e J*, thus J*should be included into J, . Then p,.x can not be
ij ij

larger than p, .x.

88

n; n;
Dominance rule 3. IfS, = S, , and Zciis, +fs, > Zcijsk + fi, . thenS, dominates S, .
j=1 j=1

Proof.

Forb, = Zaij +d;, , there isFg (b)) > Fg (b)), thus R (0) > Fg (0) based on case 2 of
1

j=
lemma 4. Based on case 1 of lemma 4, there is at most one intersection p

with F¢ (p.x) < Fg (p.x), p-x<by, thus Fg (b,) > Fg (b,) can not be true. Thus there is no

intersection of K and K , and S, dominates S, .

Dominance rule 4. If S, = S, and S, dominates S, , then for another
setS,withS, NS, =¢,S, NS, =¢,S, US, dominatesS, US, .
Proof.

—C.. ,AC.. =C <c¢.. ,then

Define variable Ac;s =cys —Cys , ACys = Cyjs, —Cyjs, - SINCE Cjs < Cy

n n
Acys = Acy ,and Z(Acier |Ac;s >0)> Z(AcijSk | Ays, >0).
= =1

We know:

n

n n
zcijsru3| = 2. Cis, "’Z:(Acijsr |Acijsr >0)
j=1 =1

j=1

n

n n
D Cisos, = 2. Cis, + 2, (ACys, [Acy, >0)
=1 =1

=

Since fg s = D, fu>fgus = >, fi,wecan

teS, U te§ uUS,

n

n
obtain Y Cys s + fis s, = D Cis.os, + fis, s, - BeCaUsES, US, = S, US,,
i '

=1

89

then S, dominates S, by dominance rule 3.

Dominance rule 5. IfS, =S, f; = fg =0,d;; =d,; =0 then for another period
setS,withS, NS, =¢,5, NS, =¢, S, US, dominatesS, US,.
Proof.
SinceS, =S, f, =fs =0, dg =dg =0,
then fis s = fis, s, dis s, = is, s, » &; Keeps same, and ¢ys s <C;s s , then for any

resourceb, there isFg s (b)) < Fg g (0), thus S, LS, dominatesS, US,.

References

Akinc, U. 2004. Approximate and exact algorithm for the fixed-charge knapsack problem,
European Journal of Operational Research 170, 363-375

Armstrong R.D, Kung D.S., Sinha P., Zoltners A.A. 1983. A computation study of a
multiple-choice knapsack problem, ACM Transactions on Mathematical Software, 9,
184-198.

Bulfin, R. L. 1988. An algorithm for the continous, variable upper bound knapsack
problem, OPSEARCH 25 (2), 119-125.

Dantzig, G.B. 1957. Discrete variable extremum problems, Operation Research 5, 266-
277

Martello, S., Pisinger, D., Toth, P. 1999. Dynamic programming and strong bounds for
the 0-1 Knapsack Problem. Management Science 45 (3), 414-424.

Pisinger, D. 1995. A minimal algorithm for the multiple-choice knapsack problem.
European Journal of Operational Research 83, 394-410.

Sarin S., Karwan MH. 1989. The linear multiple choice knapsack problem”, Operations
Research Letters, 8, 95-100.

90

V. CONCLUSIONS

This research investigated three integer programming models which can be applied to
order acceptance in make-to-order production and regional project selection in multiple
periods: the knapsack problem with setup (KPS), the multiple knapsack problem with
setup (MKPS) and the multiple-choice knapsack problem with setup (MCKS). The
common characteristics of all three models are: jobs belong to different families; setup
time and setup costs are incurred if a job is processed,; if two jobs from the same family
are processed sequentially, no setup is required; resource is limited and some jobs can be
selected to be manufactured. The objective is to maximize the sum of profits of processed
jobs.

KPS can be used in order acceptance of single period. The model selects the jobs to
be processed for maximizing the total profit. MKPS, as an extension of KPS, is used in
order acceptance of multiple periods. Besides selecting the jobs to be processed, it also
decides the periods which the selected jobs are arranged in. Jobs’ coefficients vary in
different periods, but the processing time stays the same. In MKPS, jobs’ profits affect
job’s production schedule and the chosen schedules decide the job’s profit. The two
factors are balanced by maximizing the total profit under a resource limit. MCKS is
applied to regional projects selection in multiple periods, and it can also be used in order

acceptance of multiple periods with a non-renewable resource.

91

Branch-and-bound algorithm is used to obtain the optimal solution for all three models.
The success of the algorithm relies on the effectiveness of the upper bound and lower
bound in branching and the effort to obtain them. Unlike the usual approaches of relaxing
some constraints of a formulation to obtain an upper bound, we design a linear knapsack
problem for each model, and its LP solution is the upper bound on the model.

As the simplest among the three models, KPS can be viewed as a special case of the
other two. Bulfin (1988) gave an algorithm for its linear relaxation, which transforms the
linear relaxation to a linear knapsack problem. We show a linear knapsack problem
corresponds to a concave piecewise function, and the concave piecewise function defines
the variables as well as their coefficients in the linear knapsack problem.

Multiple-choice constraints are on the setup variables in MKPS to guarantee the jobs
of the same family be processed in a single period. In MCKS, multiple-choice constraints
are on the job variables so that a family’s jobs can be processed in multiple periods.
Approaches to obtain the linear knapsack problems which give the upper bounds on
MKPS and MCKS are similar. We obtain a concave piecewise function for each family
with the help of two dominance rules for linear multiple-choice knapsack problem.
Pseudo variables as well as their profit and processing coefficients are defined from these
piecewise functions. We use these pseudo variables to construct the linear knapsack
problem. The process to obtain the concave piecewise functions in MCKS is more
complex than those in MKPS. We develop three dominance rules to simplify it.

If the LP solution of the linear knapsack problem for KPS or MCKS is rounded to
integers, we obtain an integer solution that corresponds to an incumbent of KPS or
MCKS. A greedy algorithm is developed to obtain a lower bound on MKPS.

92

Branching is done in two stages. The first stage is to branch on setup variables. After
all setup variables are fixed, the problem change to a (several) knapsack problem(s). A
simple branch-and-bound algorithm is used to solve these knapsack problems. The
computational experiments show these algorithms’ effectiveness. Compared to CPLEX,
the algorithms for all three models arrive at the optimal solution in less time for most

instances.

93

BIBLIOGRAPHY

Akinc, U. 2004. Approximate and exact algorithm for the fixed-charge knapsack problem,
European Journal of Operational Research 170, 363-375.

Armstrong R.D., Kung D.S., Sinha P., Zoltners A.A. 1983. A computation study of a
multiple-choice knapsack problem, ACM Transactions on Mathematical Software, 9,
184-198.

Bulfin, R. L. 1988. An algorithm for the continuous variable upper bound knapsack
problem, OPSEARCH 25 (2), 119-125.

Chajakis, E.D., Guignard, M. 1994. Exact algorithms for the setup knapsack problem,
INFOR 32 (3), 124-142.

Dantzig, G.B. 1957. Discrete variable extremum problems, Operation Research 5,
266-277.

Dudzinski, K., Walukiewicz, S. 1987. Exact methods for the knapsack problem and its
generalizations. European Journal of Operational Research 28, 3-21.

Ham, I., Hitomi, K., Yoshida, T. 1985 Group Techonology, Kluwer Nijhoff Publishing,
Boston, Massachusetts.

Martello, S., Pisinger, D., Toth, P. 1999. Dynamic programming and strong bounds for
the 0-1 Knapsack Problem. Management Science 45 (3), 414-424.

Martello, S., Toth, P. 1980. Solution of the zero-one multiple knapsack problem,
European Journal of Operational Research 4, 276-283.

Martello, S., Toth, P. 1981. A bound and bound algorithm for the zero-one multiple
knapsack problem. Discrete Applied Mathematics 3, 275-288.

Martello S., Toth, P. 1990. Knapsack Problems: Algorithms and Computer
Implementations, John Wiley and Sons, New York.

Parker, R. G., Rardin, R. L. 1988. Discrete Optimization. Academic Press, Inc. San Diego,
CA.

94

Pisinger, D. 1995. A minimal algorithm for the multiple-choice knapsack problem.
European Journal of Operational Research 83, 394-410.

Pisinger, D. 1999. An exact algorithm for large multiple knapsack problems. European
Journal of Operational Research 114, 528-541.

Sarin S., Karwan MH. 1989. The linear multiple choice knapsack problem”, Operations
Research Letters, 8, 95-100

Sinha, A., Zoltners, A.A. 1979. The multiple-choice knapsack problem, Operations
Research 27, 503-515.

95

