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This research studies three integer programming models which can be applied to order 

acceptance in make-to-order manufacturing or regional project selection in multiple 

periods. All three models are the variations of the binary knapsack problems and they are 

called the knapsack problem with setup (KPS), the multiple knapsacks problem with 

setup (MKPS) and the multiple-choice knapsack problem with setup (MCKS), 

respectively. In all three models, jobs belong to different families and some variables 

represent setup for a family of jobs: if a setup is not done, no jobs in this family can be 

processed; if two jobs are processed sequentially, no setup is required.  
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Branch-and-bound algorithms are used to obtain the optimal solutions to all three 

models. Setup variables are branched on. After all setup variables are fixed, the models 

are transformed to a (several) knapsack problem(s). For each model, an independent 

linear knapsack problem is developed to give an upper bound. When a setup variable is 

fixed during branching, we update certain variables in the linear knapsack problem. The 

optimal objective of the updated linear knapsack problem is an upper bound on the 

generated sub-problem. The rounded LP solution of the linear knapsack problem for KPS 

or MCKS corresponds to an incumbent of KPS or MCKS. A greedy algorithm is 

developed to obtain a lower bound on MKPS. Computational experiments show the 

effectiveness of these algorithms. 
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I. INTRODUCTION 

1.1. Objectives and significance 

Make-to-order production is playing an increasingly important role in our economy, 

partly due to the Internet and manufacturing technology advances. In make-to-order 

production, price is dictated not only by cost, but also by the customer’s expectation as 

well. Some customers are willing to pay a higher price for a short lead-time while others 

are willing to wait for their products in exchange for lower prices. Thus prices can be 

related to a product’s delivery date. Price, schedule and the total profit have very complex 

connections. These connections are of extreme interest to businesses today.  

 1

N

Assume there is a manufacturing company. At time T, they receive some orders (jobs), 

which belong to families. Family i ,N 1,..i = , has  jobs. Also assume that these jobs 

should be produced in the next planning period. The company’s manufacturing capacity 

is fixed and can’t be changed in the short term. Setup cost and setup time occurs when 

manufacturing changes from a job in one family to another job from a different family. 

There is no setup between jobs of the same family. The company operates with a batch 

delivery policy; products that are manufactured in the same period have the same 

shipping date. This is a common scenario in many manufacturing companies. Then the 

company needs to decide how to choose orders to maximize the total profit. In this case, a 

single knapsack model with setup is used to solve this problem.

in

 



 

To extend this problem, jobs can be manufactured inT different periods, but a family 

can only be produced in a single period. Here the price charged for the product many 

relate to the customer’s desired due date; the price depends on the job’s completion time. 

The price could be determined by this way: there would be a base price for a job 

delivered at the customer’s desired due date; there will be “earliness” and “tardiness” 

penalties for other delivery dates. These prices would depend on the deviation from the 

desired due date and each customer’s tolerance for this deviation. Sometimes, the price 

could be increased for urgent jobs; or the price could be decreased if the customer agrees 

to allow more time for delivery. So in this system, prices are changed based on the 

product’s actual delivery time. The company might negotiate the price based on customer 

desires and company capabilities. Before making a production schedule, we should know 

the prices of jobs as a function of different completion dates. 

With the added price variability, this model is more complex than typical scheduling 

models in make-to-order manufacturing. The company has to consider the marginal profit 

for different jobs, the current production capacity, and each family’s setup cost and time 

before choosing orders and deciding the job assignment to maximize its total profit. A 

multiple knapsack problem with setup (MKPS) model can solve this problem. 

In above scenario, if production inT periods need the same non-renewable material 

and jobs from the same family can be manufactured in multiple periods, then a multiple-

choice knapsack problem with setup (MCKS) can model this problem. MCKS is more 

helpful in an organization’s decision making on a fixed budget to invest a number of 

projects in multiple areas in multiple periods. In order to do a project in an area, a project 
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office must be set up. The organization would like to decide where to set up offices and 

which projects to do to maximize net profit subject to this budget restriction. 

1.2. Mathematical Model 

1.2.1. Order acceptance 

In make-to-order, if all orders have to be finished in one time period, a knapsack 

problem with setup (KPS) can be used to solve the orders acceptance problem. In this 

situation, a company will decide which jobs will be produced in this period.  

Given this model: 

 1 1 1

. .

inN N

ij ij i i
i j i

Max c x f y

s t
= = =

+∑ ∑ ∑  

1 1 1

inN N

ij ij i i
i j i

a x d y b
= = =

+∑∑ ∑ ≤                                                                                          (1) 

1, ; 1,ij iix y j n i N≤ = =                                                                                          (2) 

, {0,1} 1, ; 1,ij i i .x y j n i∈ = = N

)

                                                                             (3) 

i  -is index families, 

j  -is index jobs, 

N -is the number of families, 

in  -is the number of jobs in family i , 

ijc  -is the profit of job j in family , i

ija  -is the time to process job in family i , j

if  -is the setup cost for family i ( 0if < , 
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id  -is the setup time for family i , 

b  -is the time available for processing, 

ijx  -is one if job in family is produced, zero otherwise, j i

iy  -is one if any job in family is produced, zero otherwise. i

Constraint (1) requires that the total time used by jobs and setups cannot exceed the time 

available for production (resource other than time could also be considered). Constraints 

(2) prohibit a job from being processed if it belongs to a family that has not been setup. 

If jobs can be manufactured in multiple periods, and all items in same family should 

be manufactured together in one period, then this model could be described as a multiple 

knapsack problem with setup (MKPS): 

1 1 1 1 1

. .

inT N T N

ijt ijt it it
t i j t i

Max c x f y

s t
= = = = =

+∑∑∑ ∑∑  

   ,                                                             (1)                              
1 1 1

1,..
inN N

ij ijt i it t
i j i

a x d y b t T
= = =

+ ≤ =∑∑ ∑

1, ; 1, ; 1,..ijt iitx y j n i N t T≤ = = = ,                                                                (2)                             

1
1 1,..

T

it
t

y i
=

≤ =∑ N ,                                                                                      (3)                              

, {0,1} 1,.. ; 1,.. ; 1,..ix y j n i N t∈ = = = T .                                                        (4) 

ijtx    -is 1 if the job  of family i  is arranged into period t , otherwise 0, j

ity    -is 1 if some job of family i  is arranged into period t  , otherwise 0, 

ijtc    -is the profit of job of family  in period t ( ), j i 0ijtc ≥

itf    -is the setup cost for family  in period t  (i 0itf )< , 

 4



 

ija    -is the processing time for job  of family ( ), j i 0ija >

 5

0

0

id    -is the setup time for family i ( ), id >

tb    -is the available resource for processing in period t ( ). tb >

Constraint (1) requires that the total time used by jobs and setups cannot exceed the time 

available in each period for production (resource other than time could also be 

considered). Constraints (2) prohibit a job from being processed if it belongs to a family 

that has not been setup. Constraints (3) guarantee setup of each family occurs once. 

In this model, all jobs belong to different families. If a job is chosen, then setup 

time and setup costs must occur. A job may be put intoT different periods, but the profit 

is different in different periods. The objective is to maximize the sum of the profits of 

accepted jobs. 

N

1.2.2. Regional project selection with a fixed budget 

Select projects which can be invested in multiple periods and in different regions to 

maximize net profit. This model can be described as a multiple-choice knapsack problem 

with setup. 

 

 

 

 

 

 



 

1 1 1 1 1

. .

inT N T N

ijt ijt it it
t i j t i

Max c x f y

s t
= = = = =

+∑∑∑ ∑∑  

1 1 1 1 1

inT N T N

ij ijt i it
t i j t i

a x d y b
= = = = =

+∑∑∑ ∑∑ ≤ ,                                                                      (1) 

1,.. , 1,.. ; 1,..ijt it ix y j n i N t T≤ = = = ,                                                          (2) 

1
1 1,... , 1,..

T

ijt i
t

x i N j
=

≤ = =∑ n ,                                                                      (3) 

, {0,1} 1,.. ; 1,.. ; 1,.. .ijt it ix y i N j n t∈ = = = T                                                        (4) 

ijtc  -is the profit of project  in area in period t ( ),  j i 0ijtc ≥

itf  -is the setup cost for opening an office in area in period t (i 0itf ≤ ),  

ija  -is the investment needed for project  in area ( ),  j i 0ija >

id  -is the investment cost to open an office in area ( ), i 0id >

b  -is the budge available to invest ( ), 0b >

ity  - is one if office is set up in area i in period t , otherwise zero, 

ijtx  -is one if project in area is done in period , otherwise zero, j i t

N  -is the number of areas, 

T  -is the number of periods.  

Constraint (1) requires the total budget used by all projects and setup office can’t exceed 

the budget available. Constraints (2) prohibit a project done before the office in this area 

is set up. Constraints (3) guarantee a project in an area only can be invested once. 

Constraints (4) require the variables to be binary. 
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1.3. Basic research method 

These three models are integer programs (IPs). For integer programming, branch and 

bound, cutting planes and dynamic programming could be used to optimally solve this 

class problem. 

1.3.1. Cutting Plane 

Cutting plane algorithm is an important and well-known approach to solve IPs. It is 

one of the purest methods in polyhedral description algorithms and an alternative to 

enumeration. Cutting planes redefines the problem again and again by adding constraints 

until the problem is solved. 

In practice, a successful cutting plane algorithm depends on the relaxation method of 

the original problem, and the choice of cutting inequalities. There must be a family of 

valid inequalities, which define any optimal point, and a relaxation that is tractable. In 

fact when we add valid inequalities to the relaxation, we solve a series of relaxed 

problems. If this series of problems are easy to solve, that is better. But for these three 

models, we did not find such an algorithm for the relaxations. Therefore, cutting plane 

does not appear to be our best choice. For further study of cutting planes, refer to Parker 

and Rardin (1988). 

1.3.2. Dynamic Programming 

Dynamic Programming is not a specific algorithm, but we can use dynamic 

programming theory to design an algorithm for these three models. As the number of jobs 

increase, that algorithm becomes worse, and storage space will increase exponentially. 

We do not choose to use dynamic programming. 



 

1.3.3. Branch and Bound 

Branch and Bound belongs to the strategy of “partial enumeration”, just like cutting 

planes belongs to” polyhedral description”. These two strategies are often used to solve 

IPs. Though they are non-polynomial in the worst case, they can be effective solution 

procedures for IPs in practice.  

In a branch-and-bound algorithm, if a variable  is restricted to be binary, we can 

separate the problem into two sub-problems: one with

x

0x = and the other with 1x = . 

Successful applications for B&B need a good algorithm to calculate upper and lower 

bounds for those sub-problems. The tighter the upper and lower bounds are, the more 

effective the algorithm is. Only with strong bounds we can expect to fathom candidate 

problems rapidly enough to avoid being overcome by the exponential growth in the 

number of potential sub-problems. 

Since we design a linear knapsack problem to supply the upper bound for each model 

and the linear knapsack problem is easy to be solved by Danzig’s algorithm, B&B 

becomes an attractive method to solve these problems.  

1.4 Relaxation Method 

1.4.1. Linear Relaxation 

Linear programming is, without doubt, the most successful branch of optimization 

(Parker and Rardin, 1988). Integer programming is usually changed to linear 

programming by relaxing the integer constraints. Linear programs can be solved easily, 

and may provide a good upper bound. Therefore, many integer program algorithms use a 

linear relaxation to get the bound. 
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In this paper, we relax the integer constraints of job variables for all three models. 

Linear knapsack problems are designed to give the upper bounds on these relaxations. 

1.4.2. Surrogate Relaxation 

A surrogate constraint is a linear combination of other constraints. The following is an 

example of surrogate relaxation: 

1 1

1

. .

( 1,..., ),

{0,1}

m n

j ij
i j

n

j ij i
j

ij

Max c x

s t

a x b i m

x

= =

=

≤ =

∈

∑∑

∑      

Then its surrogate relaxation is: 
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1 1

1 1 1

. .

{0,1}

m n

j ij
i j

m n m

i j ij i
i j i

ij

Max c x

s t

v a x v b

x

= =

= = =

≤

∈

∑∑

∑ ∑ ∑
 

The original problem’s solution is also a feasible solution to the surrogate relaxation, 

but the solution of surrogate relaxation is not necessarily feasible to the original problem. 

The surrogate relaxation has a larger feasible space. The optimal solution to the surrogate 

is an upper bound of the original problem. In this paper, surrogate relaxation along with 

linear relaxation will be used in MKPS to obtain a good upper bound.  



 

1.4.3. Lagrangean Relaxation 

Lagrangean relaxation is also a common relaxation model. This is an example for 

Lagrangean relaxation: 

Give the model L1 

1 1

1

. .

1,...,

{0,1}

i

i

nN

ij ij
i j

n

ij ij i
j

ij

Max c x

s t

a x b i N

x

= =

=

≤ =

∈

∑∑

∑          

Its Lagrangean relaxation, L2, is: 

1 1 1 1

( )

. .
{0,1}

i in nN N

ij ij i i ij ij
i j i j

ij

Max c x u b a x

s t
x

= = = =

+ −

∈

∑∑ ∑ ∑
 

For each feasible solution of L1, we have 

1 1 1 1 1 1

( )
i in nN N N

ij ij i i ij ij ij ij
i j i j i j

c x u b a x c x
= = = = = =

+ − ≥∑∑ ∑ ∑ ∑∑
in

 

and all feasible solutions of L1 must be feasible solutions of L2, but not vice versa. 

If we use Lagrangean relaxation, the knapsack problem’s good structure is destroyed. 

Also experimentation shows the bound is not tight enough. Therefore, Lagrangean 

relaxation is not used in this paper. 
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Ⅱ. KNAPSACK PROBLEM WITH SETUP 

Abstract 

This paper studies a 0-1 knapsack problem with setup (KPS) where one set of 

variables serves as the upper bound of another set of variables. An efficient algorithm 

presented by Bulfin (1988) for the linear relaxation of this problem is applied to obtain an 

upper bound. Branch and bound is used to obtain the optimal solution, and the upper 

bound variables are branched before the remaining variables so KPS becomes a single 

knapsack problem. Computational experiments show that this algorithm is effective when 

objective and constraint coefficients are uncorrelated. This model can be used in order 

acceptance of single period in make-to-order manufacturing. 

2.1. Introduction 

A company makes metal door frames based on customer orders. Door frames have 

different heights, widths, jamb sizes and a number of hinges and lock configurations. An 

order can be for a single frame or for 1,000 identical frames. To make a particular frame, 

the production machinery must be set up for the parameters of that door.  Some setups, 

like the height of the door are easily made, while others, like jamb size require much time 

and labor. The actual cost to produce a frame depends on what other frames are being 

produced; if many identical frames are made, economies of scale result in a low cost. On 

the other hand, if a single frame is made, the setup cost dominates and the cost is high. 



 

Thus which orders are accepted, when they are produced and the price charged are 

critical to profitability. 

This scenario describes the basic order acceptance problem faced by all make-to-order 

manufacturers. Orders consist of jobs, and similar jobs make up a family. Families share 

a setup; if two jobs from the same family are processed sequentially, no setup is required. 

The manufacturer plans production for the next period based on orders received. An order 

can be accepted or rejected for production in this period. 

This problem can be formulated as a knapsack with setup.  Let 

i  index families 

j  index jobs 

N  be the number of families, 

in   be the number of jobs in family i , 

ijc  be the profit of job j in family , i

ija  be the time to process job j in family i , 

if   be the setup cost for family i ( 0if )< , 

id   be the setup time for family  and i

b   be the time available for processing. 

The decision variables are: 

ijx     is one if job j in family is produced, zero otherwise and i

iy     is one if any job in family is produced, zero otherwise. i

The model, which we call KPS, is: 
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1 1 1

. .

inN N

ij ij i i
i j i

Max c x f y

s t
= = =

+∑ ∑ ∑  

1 1 1

inN N

ij ij i i
i j i

a x d y b
= = =

+∑∑ ∑ ≤                                                                                          (1) 

1, ; 1,ij iix y j n i N≤ = =                                                                                          (2) 

, {0,1} 1, ; 1,ij i i .x y j n i∈ = = N                                                                              (3) 

 

Constraint (1) requires that the total time to produce jobs cannot exceed the time 

available. Constraints (2) ensure a job is processed only if it belongs to a family that has 

been setup. Constraints (3) require the variables to be binary. 

In the following section we give a brief literature review and discuss background used 

in the solution methodology. In Section 2.3, we present an algorithm to solve KPS. 

Computational results are given in Section 2.4. Finally, we give concluding remarks. 

2.2. Literature survey 

This linear relaxation of KPS was first introduced by Ham et al. (1985) as a cell 

loading problem for a Group Technology production system. Bulfin (1988) developed a 

polynomial algorithm for the linear relaxation of KPS. It is based on the ratio rule of 

Dantzig (1957) for the linear knapsack problem.  

Akinc (2004) derives an algorithm for a special case of KPS with no setup time, which 

he called fixed-charge knapsack problem. His algorithm to solve the linear relaxation is 

the same as the one in Bulfin (1988). He outlined a branch-and-bound algorithm to solve 

the integer version and used this solution to compare heuristics. No solution times are 
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given for the branch-and-bound algorithm. He states “This problem is solved as an LP. If 

all are integer, then the optimal solution of P (the fixed-charge knapsack problem) is 

obtained from the solution of the ordinary 0/1 knapsack problem that optimally allocates 

the available capacity to all

iy

ijx for which 1iy = .” This statement is not true, as seen by the 

following counter-example: 

11 12 1 21 22 2

11 12 21 22

11 1 12 1

21 2 22 2

11 12 21 22

6 5 5 8
. .

3 4 4

,

,

, , , {0,1}

Max x x y x x y
s t

x x x x

x y x y

x y x y

x x x x

+ − + + −

+ + + ≤

≤ ≤

≤ ≤

∈

 

The LP’s optimal solution is 1 21, 1y y= = , and the objective is 13. Based on Akinc’s 

claim, solving the integer knapsack with both setups included gives a solution value of 9, 

with , and1 21, 1y y= = 11 1x = 12 1x = . But the solution 1 21, 0y y= = , and11 1x = 12 1x = has 

objective 10. Hence, the optimal objective of knapsack problem when all are integer in 

LP solution is not necessarily optimal for the integer model. This brings the results of his 

paper into question. 

y

Chajakis and Guignard (1994) consider the setup knapsack problem which is similar 

to ours except the setup cost if  and profit of job  can be positive or negative. An extra 

constraint is added to make sure a setup does not occur if no job in this family is put into 

knapsack.  This is unnecessary in KPS since  is positive and 

ijc

ijc if  is negative.  Chajakis 

and Guignard transform the original problem to an equivalent formulation without setup 

variables by two methods.  Variables y  are described by a Boolean union of x variables 
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so that the constraints coupling and can be deleted and the problem becomes a 

“knapsack problem” with a Boolean union of all variables. The second method is to 

enumerate all non-dominated feasible solution for each family and define a pseudo-

variable corresponding to this solution. This transforms the setup knapsack to a multiple-

choice knapsack problem and only one pseudo-variable can be one in an optimal solution. 

Dynamic programming is used to solve the first transformation; branch-and-bound and 

dynamic programming are both used to solve the multiple-choice knapsack problem in 

the second transformation. Instances with 5, 10, 20, 50, and 200 families are tested. A 

maximum of 4000 total variables can be solved.  

x y

2.3. Background 

The knapsack problem and its many variants are well-studied. For a discussion, see 

Martello and Toth (1990) and Dudzinski and Walukiewicz (1987). We discuss some 

basic results that will be used later in this paper. Dantzig (1957) defined the linear 

knapsack problem as: 
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If the variables are ordered by 1 2

1 2
... n

n

cc c
a a≥ ≥ ≥ a , he showed the optimal solution is 

given by  

1,jx j t= <  



 

1

1

( )
t

j
j

t
t

b a
x a

−

=
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∑
 

0,jx j t= >  
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1

min{ | }
i

j
j

t i a
=

= >∑ b

Similarly, we define the linear relaxation of KPS (LKPS), which is given by 

1 1 1

1 1 1

. .

,

1, ; 1, ,

0 1, ; 1, ,

0 1, 1,.. .

i

i

nN N

ij ij i i
i j i
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Let 

1 1
0

11

max{ | 1, 2,.. }

i

i

t k

ij i ij i
j j

i it k

ij iij i
jj

c f c f
r k

a da d

= =

==

+ +
= = =

++

∑ ∑

∑∑
n  for i N∈ .  

Separate the jobs of family i  into two sets, iXM = {1… } and it iXT = { +1.... }. Then 

; a proof is given in the Appendix A. 

it in

inititii rrrr ,2,1,0, ... ≥≥≥≥ ++

For family i , define: 
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Then LKPS can be reformulated as a classical linear knapsack problem, which we call 

LBKP: 

'

'

'

1 1

'

1 1

. .

0 1, 1,.. 1,...

i

i

nN

ij ij
i j

nN

ij ij
i j

ij i

Max c z

s t

a z b

z i N j

= =

= =

≤

′≤ ≤ = =

∑∑

∑∑
  

and solved by Dantzig’s ratio rule. If there is no fractional variable, KPS is also solved. 

We know that, at most, one variable will have a fractional value. 

Suppose , . Ifijz f= 0 1f< < ij t> , then job it j+ in family i will be the only fractional 

variable KPS and all setup times and costs are considered. On the other hand, if 1j = , 

represents a virtual job composed of setup and jobs 1 through of family . 

Here and

1iz it i

iy f= ijx f= , 1,.. ij t= so all are fractional in KPS and the setup time and cost 

for family i and the processing time and profit of the first jobs are only partially 

considered. If we round the fractional variable(s) to zero, then the current solution is 

feasible to KPS, and can be used as a lower bound in the branch-and-bound algorithm. 

it



 

2.4. Solution algorithm 

To develop a branch-and-bound algorithm, we need to make several decisions. These 

include how to fix variables, calculate bounds, choose the next sub-problem to explore 

and obtain an initial incumbent solution. We discuss these now. 

2.4.1. Fixing variables 

We only fix setup variables  to be zero or one in our main branch-and-bound scheme. 

When a sub-problem is created with  fixed to one, the right hand side is reduced 

by and

iy

iy

id if is added to objective directly in the sub-problem. Then all , ijz 1,.. ij n= are 

replaced by real variables 1,... ii inx x  of family i . When a sub-problem is created with  

fixed to zero, ,

iy

ijz 1,.. ij n= are removed from that sub-problem. Note that if all iy  are 

binary in the linear relaxation but some ijx is fractional, solving a knapsack problem over 

the ijx with = 1 will not necessarily give the optimal solution as we showed in Section 2. 

When all are fixed, we solve a knapsack over the remaining variables to obtain the best 

solution with those variables fixed.  If this produces a better solution than the incumbent, 

it replaces the incumbent. 

iy

iy

We order the variables by1iz 10 20 0... Nr r r≤ ≤ ≤ . If a variable has large , it is more 

likely to be one in an optimal solution, while those with smaller ratios are more likely to 

be zero. We choose either the first or last variable to fix first and work toward the middle. 

This tends to keep the number of active branches small. 

0ir
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2.4.2. Bounding 

 20

n n

We use LBKP as an upper bound on KPS. It is a linear relaxation which allocates the 

setup time and cost proportionally. It is initially solved by the ratio rule. When some is 

fixed, it is easy to resolve the sub-problem. If we fix  to one, we delete the pseudo 

variables and insert the new variables

iy

iy

1,..i iz z 1,... ii ix x . This may require taking resource 

from some free variables, which are chosen by the ratio rule to maintain optimality. 

Similarly, fixing  may free up resource, which is then allocated to free variables 

using the ratio rule. 

0iy =

2.4.3. Choosing a new sub-problem 

When variables are fixed, two sub-problems are created. If a sub-problem’s upper 

bound is no better than an incumbent solution it is discarded. When its bound indicates it 

could contain a better solution to KPS we store it in a bucket. Each bucket contains sub-

problems with bounds that are about the same. LetUB be the best upper bound 

and be the value of the current incumbent solution. If we wantINC K buckets, calculate  

( )UB INC
K

−∆ = . 

Then bucket one will contain all sub-problems with upper bounds in the 

interval[ , bucket two[ 2,UB UB− ∆ ] ],UB UB− ∆ − ∆ , and bucket K [ ,INC INC + ∆] . 

Buckets can be updated as upper bounds or the incumbent change. When we choose a 

new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-

empty bucket. This gives almost a “best-bound” strategy, but without the bookkeeping 

overhead. 



 

2.4.4. Heuristic 

If the fractional valued variable of LBKP is , rounding down to 0 frees  

resource. Allocate this resource to variables with processing time less than and 

already has its family set up. Variables are chosen by the ratio rule until there are no more 

variables which can use the remaining resource. 

ijz ijz '
ij ija z

'
ij ija z

2.5. Computational experiments 

Our experiments will be similar to previous experiments on knapsack problems. 

However KPS has a setup requirement, so setup time and setup cost will be included in 

this study. We wish to test our algorithm (AKPS) on a variety of problem instances to see 

what problems can be solved. Instances will be generated by setting four parameters at 

several levels. The parameters are the number of families, average number of jobs in a 

family, proportion of setup time/cost relative to totals, and correlation between objective 

function and constraint coefficients. All data will be integer valued.  

The number of families will be fixed at 50 and 100. The number of jobs in family i is a 

uniformly distributed integer in either [40, 50] or [90,100]. Setup cost and time is given 

by 

1
1

( )
in

it ijt
j

f e c
=

= − ∑  

2
1

( )
in

i i
j

d e a
=

= ∑ j  

1e and  are uniform from [0.05, 0.15], [0.15, 0.25], [0.25, 0.35], and [0.35, 0.45].   2e
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We choose and  two ways.  First  and  are both chosen uniformly from [10, 

10000]; thus they are independent. Next, is chosen uniformly from [10, 10000], while 

is chosen uniformly from [ -1000, +1000], but if is less than 10 it is randomly 

chosen from [10,100]; this introduces some correlation between the two coefficients.  

a c ija ijtc

ija

ijtc ija ija ijtc

In previous knapsack studies, instances tend to be the hardest when the available 

resource is roughly one half the sums of the constraint coefficients. Therefore, we choose 

 uniformly from [ ,b
1 1

0.4*
inN

ij
i j

a
= =
∑∑

1 1
0.6*

inN

ij
i j

a
= =
∑∑ ].  

For each level of the four factors we generate ten instances. AKPS was coded in C and 

all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of 

memory. In the following tables, we report the minimum (MIN), average (AVG) and 

maximum solution time (MAX) in seconds. We also give the average ratio of initial 

solution (INC) to initial upper bound (UB) and the average ratio of initial incumbent to 

the optimal solution (OPT).  
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Table 2.1.  
Solution time (seconds) for AKPS 

uncorrelated correlated 

N  in  Setup LB/UB LB/OPT MIN AVG MAX LB/UB LB/OPT MIN AVG MAX 

[0.05-0.15] 1.00 1.00 0.03 0.06 0.27 0.98 0.98 8.05 17.46 29.28 

[0.15-0.25] 0.99 0.99 0.06 0.53 1.72 0.97 0.97 2.25 16.63 30.73 

[0.25-0.35] 0.99 0.99 0.03 0.49 1.17 0.97 0.97 1.09 25.69 65.56 50 
 
 

[40,60] 
 
 [0.35-0.45] 0.97 0.97 1.25 2.62 4.89 0.98 0.98 12.83 22.97 56.5 

[0.05-0.15] 1.00 1.00 0.08 0.09 0.12 0.98 0.98 5.69 26.47 63.72 

[0.15-0.25] 0.99 0.99 0.05 0.87 2.94 0.97 0.97 11.30 28.46 55.75 

[0.25-0.35] 0.98 0.98 0.09 2.67 5.28 0.98 0.98 2.77 34.52 82.31 50 
 
 

[90,110] 
 
 [0.35-0.45] 0.98 0.98 0.25 4.25 9.30 0.99 0.99 0.91 49.36 101.4 

[0.05-0.15] 1.00 1.00 0.06 0.16 0.36 0.99 0.99 17.39 153.07 503.38 

[0.15-0.25] 1.00 1.00 0.08 1.43 4.36 0.99 0.99 70.61 124.69 220.53 

[0.25-0.35] 0.99 0.99 0.05 4.96 18.97 0.99 0.99 24.62 175.51 315.67 100 
 
 

[40,60] 
 
 [0.35-0.45] 0.99 0.99 2.41 14.34 29.62 0.99 0.99 22.11 131.22 305.85 

[0.05-0.15] 1.00 1.00 0.14 0.24 0.39 0.99 0.99 121.86 385.44 877.19 

[0.15-0.25] 1.00 1.00 0.28 4.02 7.50 0.99 0.99 58.69 *477.78 877.73 

[0.25-0.35] 0.99 0.99 1.33 11.86 30.48 0.99 0.99 17.55 *468.23 953.29 100 
 
 

[90,110] 
 
 [0.35-0.45] 0.99 0.99 1.08 31.26 107.09 0.99 0.99 11.48 *484.35 784.72 

Note: “*” shows 3 of these instances ran out of memory; AVG, MAX, and MIN are calculated based on the 

remaining seven instances. 

Our heuristic solution is outstanding. On average, it was less than 2% from the optimal 

over the entire range of instances tested. Based on the data from Table 2.1, correlated 

instances are more difficult to solve than uncorrelated instances. The setup proportion has 

a stronger effect on uncorrelated instances than correlated instances. With the same 

number of variables, AKPS works better when there are fewer families and the number of 

jobs per family is large. This makes sense since fewer family variables simplify the first 

stage of the branching. Instances with 50 families and an average of 100 jobs per family 

are much easier than instances with 100 families and an average of 50 jobs per family. 

Fig. 2.1 shows the solution time of instances with 50N = and an average of 100 jobs 

per family and instances with 100N = and an average of 50 jobs per family with 

 23



 

uncorrelated coefficients. With roughly the same number of variables, instances with 

larger  are more difficult. Also, solution time increases as setup proportion increases. 

The incumbent solution gets worse as setup proportion increases. Fig. 2.2 gives the 

solution time with correlated coefficients. Instances with fewer families still work better 

than the others but solution time is not changed too much as setup proportion increases. 

In correlated instances, setup proportion does not have as much effect on the incumbent. 

N

uncorrelated
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Fig. 2.1. Comparison of uncorrelated instances with similar total variables number  

 
 

correlated
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Fig. 2.2. Comparison of correlated instances with similar total variables number 
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Chajakis and Guignard only test uncorrelated instances with coefficients from a small 

range. (i.e. one set of instances obtains setup cost,  profit from [-100, 100] and setup time, 

processing time from [1,10]). Since the dynamic programming used in their paper has a 

pseudo-polynomial worst case complexity, the large coefficients will increase the 

difficulty of instances and need more storage without doubt. The second approach 

presented fail in instances with total 4000 variables because of storage used up. The first 

one can solve the same instances but need over 1000 seconds. They permit job profit 

negative and setup cost positive in their model, which, to some extent, make instances 

easier due to parts of variables having fixed to 0 by a preprocessing, which reduce the 

size of the problem remarkably. The total number of variables after preprocessing is only 

about 40%-60% of the original one. For instances with 4000 variables, only 2500 

variables are left after this preprocessing.  

We also compare AKPS with CPLEX 9.1 (called by AMPL). We test instances with 

50 families and an average of 100 jobs per family. For each setup, we test five instances. 

AKPS takes much less time for uncorrelated problems. CPLEX takes from 12 to 96 times 

longer; as setup proportion increases the difference becomes smaller. When the 

coefficients are not independent, the difference is much smaller. AKPS is only 3 to 6 

times faster on average, and a few instances take less time on CPLEX. 

We also compared some instances with 100 families and 50 jobs per family, but do not 

present the data. CPLEX is better than AKPS when  and c  are correlated. But AKPS is 

better than CPLEX if and are uncorrelated for instances with

a

a c 100, ~ [40,60]iN n= . 

Therefore we suggest using AKPS when a and c are uncorrelated; if they are correlated 

and there are over 50 families CPLEX might be better.  
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Table 2.2.  
Comparing solution time (seconds) of CPLEX and AKPS 

  
 

     Uncorrelated                  Correlated        

SETUP AKPS CPLEX CPLEX/AKPS AKPS CPLEX CPLEX/AKPS 

0.05 1.17 23.40 21.87 13.08 0.60 

0.09 1.92 21.33 13.64 491.73 36.05 

0.05 1.06 21.20 44.06 253.78 5.76 

0.05 1.08 21.60 34.00 3.81 0.11 [0.05-0.15] 
 
 0.06 0.86 14.33 37.42 226.00 6.04 

AVG   20.37   9.71 

0.05 4.67 93.40 24.58 411.08 16.72 

0.41 26.28 64.10 56.78 929.03 16.36 

0.05 2.31 46.20 40.14 376.75 9.39 

0.11 15.44 140.36 40.22 269.69 6.71 
[0.15-0.25] 

 
 0.05 6.97 139.40 81.39 215.44 2.65 

AVG   96.69   10.36 

4.75 15.52 3.27 23.64 6.67 0.28 

1.95 12.09 6.20 46.01 514.64 11.19 

0.61 16.97 27.82 88.14 5.75 0.07 

2.75 17.39 6.32 7.67 14.86 1.94 [0.25-0.35] 
 
 1.55 26.58 17.15 72.03 102.00 1.42 

AVG   12.15   2.98 

3.97 11.20 2.82 179.06 7.42 0.04 

0.91 16.36 17.98 6.56 35.95 5.48 

1.41 65.77 46.65 36.91 283.38 7.68 

7.42 2.91 0.39 107.62 265.69 2.47 
[0.35-0.45] 

 
 4.58 12.78 2.79 22.16 96.05 4.33 

AVG   14.13   4.00 

2.6. Conclusions 

We investigate the knapsack problem with setup. This is an important problem, 

modeling order acceptance, cell loading, project selection and others. We have developed 

an exact algorithm for the problem. The first computational tests on exact solutions 

indicate our algorithm is vastly superior to CPLEX for many instances, superior on others 

and about the same for the rest. Further, we have determined what parameter values make 



 

instances hard for our algorithm. Finally, the proposed heuristic is excellent, being within 

2% of optimal for all the problems tested. 

Appendix A. is greater than . 0ir 1, +tir
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Therefore . represents family ’s maximum ability to obtain 

profit for each unit of resource it consumes.  
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Ⅲ. MULTIPLE KNAPSACK PROBLEM WITH SETUP 

Abstract 

We present a multiple knapsack problem with setup (MKPS). This problem can be 

used to model order acceptance and production scheduling of multiple periods in make-

to-order manufacturing. Some variables represent setting up production for a family of 

jobs; if a setup is not done, no jobs in the family can be processed. Further, a family can 

only be set up in one period of the planning horizon. A linear knapsack problem is 

designed to give an upper bound on MKPS. A greedy algorithm is developed to obtain a 

lower bound. Setup variables are branched on; when all set up variables are fixed, MKPS 

becomes several independent knapsack problems. Computational experiments show this 

algorithm is effective, especially when resources are tight.  

3.1. Introduction 

The knapsack problem and its variants are well known problems in integer 

programming. In this paper, we present a model that we call the multiple knapsack 

problem with setup (MKPS). In this model, jobs belong to different families. If a job is 

processed, then a setup time and a setup cost are incurred. A job can be assigned 

toT different periods, but only one setup for each family is allowed during the planning 

horizon, so jobs in the same family must be processed in the same period. The profit for 

job

N

j of family i processed in period t is , and varies for different periods, but the ijtc
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processing time stays the same. The objective is to maximize the sum of the profits of 

processed jobs.  Formally, we have: 

ija

1 1 1 1 1

. .

inT N T N

ijt ijt it it
t i j t i

Max c x f y

s t
= = = = =

+∑∑∑ ∑∑   

                                                                    (1) 
1 1 1

, 1,..
inN N

ij ijt i it t
i j i

a x d y b t T
= = =

+ ≤ =∑∑ ∑

               , 1, ; 1, ; 1,..ijt iitx y j n i N t T≤ = = =                                                                     (2)                     

                                                                                              (3) 
1

1 1,..
T

it
t

y i
=

≤ =∑ N

    , {0,1} 1,.. ; 1,.. ; 1,..ix y j n i N t∈ = = = T                                                             (4) 

ijtx    -is one if the thj  job of family i is arranged into period t , otherwise zero, 

ity    -is one if some job of family  is arranged into period  , otherwise zero, i t

ijtc    -is the profit of job j of family  in period t ( ), i 0ijtc ≥

itf    -is the setup cost for family  in period t  (i 0itf )< , 

ija   -is the processing time for job j  of family ( ), i 0ija >

id    -is the setup time for family i ( ), 0

0

id >

tb    -is the available resource for processing in period t ( ). tb >

Constraints (1) require that the total resource used by jobs in each period can not exceed 

the resource available. Constraints (2) prohibit a job from being processed if it belongs to 

a family that has not been setup. Constraints (3) guarantee jobs in the same family 

processed in a single period. Constraints (4) require all variables to be binary.   
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This formulation models order acceptance in make-to-order manufacturers. Assume a 

manufacturer receives orders for jobs which belong to  different product families. 

Orders can be manufactured inT periods. Setup time and setup cost occur between jobs of 

different families. If jobs are accepted, jobs of the same family are done in the same 

period.  

N

In make-to-order production, price is dictated not only by cost, but also by the 

customer’s expectation as well. Some customers are willing to pay a higher price for a 

short lead-time, while others are not. Thus prices are related to a product’s completion 

date, and different production schedules could produce different profits. The optimal 

solution to MKPS gives the maximum profit, which orders to accept, and how to assign 

jobs to periods. 

The multiple knapsack problem assigns a set of items to multiple knapsacks with fixed 

capacities so that the total profit of selected items is maximal. The multiple knapsack 

problem is a special case of multiple knapsack problem with setup by ignoring the setup 

variables and setting . The multiple knapsack problem has been widely 

investigated. Martello and Toth (1980, 1981) discussed an upper bound algorithm using 

Lagrangean relaxation. Pisinger (1999) presented an exact algorithm using a surrogate 

relaxation to get an upper bound, and dynamic programming to get the optimal solution. 

The surrogate relaxation of the multiple knapsack problem with identical multipliers is a 

knapsack problem. Apparently, MKPS can not do in this way not only because each job 

has the different profit coefficients in periods, but also there are the additional setup 

variables in the model. 

ijt ijc c=
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MKPS has multiple-choice constraints like the multiple-choice knapsack problem. An 

efficient algorithm and two dominance properties exist for the linear multiple-choice 

knapsack problem. More detail can be found in Pisinger (1995). 

The knapsack problem with setup (KPS) is a special case of MKPS when . Bulfin 

(1988) gave an efficient algorithm for its linear relaxation (LKPS), which is similar to 

Dantzig’s algorithm for the linear knapsack problem. This transforms the LKPS into a 

knapsack problem by using a modified ratio related to a job set. We state this algorithm 

in the following section. Akinc (2004) describes algorithms for a fixed-charge knapsack 

problem, which is a special case of MKPS with a single period and zero setup time.  

1T =

Though the LP solution is often a good upper bound on integer programs such as 

knapsack problem and multiple-choice knapsack problem, we do not solve the linear 

relaxation of MKPS for obtaining an upper bound, but design a linear knapsack problem 

formulation, whose optimal objective is the upper bound of MKPS. Since MKPS 

becomes independent knapsack problems if all variables are fixed, branching is done in 

two stages. The first stage is to branch on variables. When all

ity

ity y variables are fixed, the 

second stage solves independent knapsack problems. There are many algorithms 

available for knapsack problem. We just use a simple branch-and-bound algorithm for 

knapsack problem.  

Our approach (AMKPS) is outlined below: 

Step 1. Do surrogate relaxation and linear relaxation for MKPS. 

Step 2. Find an initial upper bound for MKPS. 

Step 3. Find a feasible solution (incumbent) for MKPS. 

Step 4. Determine a branching order for the variables. y
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Step 5. Decide which variable to fix in current node.  y

Step 6. Generate a new node by solving a sub-problem with fixed to one; save this 

node if its bound is better than the incumbent solution. If all are fixed, then 

solve a set of knapsack problems and update the incumbent solution if possible. 

y

y

Step 7. Generate a new node by solving a sub-problem with fixed to zero; save this 

node if its bound is better than the incumbent solution. If all are fixed, then 

solve a set of knapsack problems and update the incumbent solution if possible. 

y

y

Step 8. Choose a candidate node. If none exists, stop, the incumbent solution is optimal; 

else go to Step 5. 

The rest of the paper is organized as following: we discuss Steps 1 and 2 in section 3.2; 

section 3.3 explains the approach used in Step 3 and section 3.4 presents the remaining 

steps. Computational experiments are discussed in 3.5 and a summary is given in section 

3.6. 

3.2. Linear knapsack problems and knapsack problem with setup 

We use the linear knapsack problem and linear knapsack problem with setup to obtain 

an upper bound of MKPS. Let us review these two models firstly. 

3.2.1. Linear knapsack problem 

The linear knapsack problem is a well known integer program:  

 33



 

 34

..

1

1

. .

0 1, 1,

n

j j
j

n

j j
j

j

Max c x
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All variables are ordered by non-increasing profit-to-process ratio k

k

c
a . By Dantzig’s 

algorithm, if variable is the first one with , then  t
1

t

k
k

a
=

>∑ b

1, 1,.. 1jx j t= = −  

1

1

t

k
k

t
t

b a
x a

−

=

−
=

∑
 

0, 1,..jx j t n= = +  

3.2.2. Algorithm for LKPS 

Bulfin (1988) shows LKPS can be transformed to a linear knapsack problem. Consider 

the LKPS: 

1 1 1

1 1 1

,

. .

1, ; 1,

0 1, ; 1,

0 1, 1,..

i

i

nN N

ij ij i i
i j i

nN N

ij ij i i
i j i

ij ii

ij i

i

Max c x f y

s t

a x d y b

x y j n i N

x j n i N

y i N

= = =

= = =

+

+ ≤

≤ = =

≥ = =

≤ ≤ =

∑∑ ∑

∑∑ ∑   



 

Bulfin’s algorithm uses the ratio[ ]i ij

i i

f c
d a

+

j⎡ ⎤+⎣ ⎦
∑

∑
 as a criterion to assign the 

resource.  

Define 

, 1,.. 1,..ij
ij i

ij

cr i N ja= = = n .  

Reorder jobs 1… , so that . Let in
iniiii rrrr ,321 ...... ≥≥≥

1 1

11

max{ | 1, 2,.. }

i

i

t k

ij i ij i
j j

it k

ij iij i
jj

c f c f
k n

a da d

= =

==

+ +
= =

++

∑ ∑

∑∑
for i N∈ .  

Then in family i , jobs are separated into two sets: iXM = {1… }andit iXT = { +1.... }. 

The jobs in

it in

iXM can be considered as a single job. 

Now for family , define: i

'
1

1

'
1

1

'
, 1

'
, 1

'

1,..

1,..

1

i

i

i

i

t

i ij i
j

t

i ij i
j

i j t ij i i

i j t ij i i

i i i

c c f

a a d

c c j t

a a j t

n n t

=

=

− +

− +

= +

= +

= = +

= = +

= − +

∑

∑
n
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Then LKPS can be reformulated as: 
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i

i

nN
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i j

nN

ij ij
i j

ij i

Max c z

s t

a z b

z i N j
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= =
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′≤ ≤ = =

∑∑
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Pseudo job  is composed of jobs 1iz 1,.. ii itx x along with the setup cost and time, and 

, for 
iij ij tz x += 2,.. i ij n t= − . Solve this linear knapsack problem. At most one variable can 

have a fractional value, say . Iff 1kz f= , then , 1,..kj kx f j t= = .  If , then , 1klz f l= ≠

kk l tx f+ = .  

3.2.3. An upper bound on MKPS 

3.2.3.1. Relaxation 

Surrogate relaxation (Pisinger, 1999) and Lagrangian relaxation (Martello and Toth, 

1981) have been applied to obtain an upper bound on the multiple knapsack problem. In 

this paper, surrogate relaxation with identical multipliers on constraints (1) is used. 

Selecting identical multipliers keeps unrelated to periods after surrogate relaxation. 

Relaxing integrality of the variables gives a mix-integer formulation SMKPS:  

ija

x



 

1 1 1 1 1

1 1 1 1 1 1

1

. .

1 1,..

1,.. 1,.. 1,..

0 1 1,.. 1,.. 1,..

{0,1} 1,.. 1,..
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ijt ijt it it
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nT N T N T

ij ijt i it t
t i j t i t

T

it
t

ijt it i

ijt i
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Max c x f y
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a x d y b

y i N

x y i N j n t T

x i N j n t T

y i N t T

= = = = =

= = = = = =

=

+

+ ≤

≤ =

≤ = = =

≤ ≤ = = =

∈ = =

∑∑∑ ∑∑

∑∑∑ ∑∑ ∑

∑  

SMKPS gives an upper bound on MKPS since every solution to MKPS is a feasible 

solution for SMKPS, but not vice versa. Unlike the usual approach, we do not solve 

SMKPS to obtain an upper bound on MKPS; we design a new knapsack problem based 

on SMKPS whose optimal solution is an upper bound on MKPS 

3.2.3.2. The knapsack problem giving the upper bound of MKPS 

Using only the variables of family in period t of SMKPS, we construct the linear 

knapsack problem with setup: 

i

1

1

,

. .

1,

0 1,

0 1,

i

i

n

ijt ij it i
j

n

ij ij i i
j

ij ii

ij i

i

Max c x f y

s t

a x d y b

x y j n

x j n

y

=

=

+

+ ≤

≤ =

≥ =

≤ ≤

∑

∑  
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Based on Bulfin’s algorithm, this formulation can be transformed to a linear knapsack 

problem with pseudo variables 1 ,...
itnz z and their corresponding profit and processing 

coefficients 1 ,...
itnc c 1 ,...

itna a . Pseudo variables are ordered by non-increasing ratio j

j

c
a . 

We define a set
1 1

{(0,0), ( , ) | 1,.. }
t t

it j j it
j j

P a c t
= =

= ∑ ∑ n= from these pseudo coefficients. For 

the sake of brevity, record these points are  with0 ,...
itnp p

1
.

t

t j
j

p x a
=

=∑ and
1

.
t

t j
j

p y c
=

=∑ . 

We can constructT point sets foritP 1,..t T= . Let and delete any repeated points. 

Order all points by non-decreasing . Apply the following rules to delete points from . 

'

1

T

i
t

P
=

=∪ itP

.p x '
iP

1. If rp and sp have . .r sp x p x≤ and . .r sp y p y≤ , then delete sp  

2. If , ,r k sp p p  have . . .r k sp x p x p x≤ ≤ and . . .r k sp y p y p y≤ ≤ , and  

    . . . .
. . .

k r s k

k r s k

p y p y p y p y
.p x p x p x p x

− −≤− − , then delete kp . 

These two dominance rules are called multiple-choice dominance rules in this paper, 

and stems from the two dominance rules for the multiple-choice knapsack problem 

(Sinha and Zoltners, 1979). Assume there are ' 1in +  points '0 ,...
in

p p ( ) remained, 

ordered by increasing and . We can define pseudo variables by 

setting  and .  

0 (0,0)p =

.p x .p y '
in '1,..

i
i in

z z

'
1. .ij j ja p x p −= − x y'

1. .ij j jc p y p −= −
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Repeating this process for all families, we obtainN '

1

N

i
i

n
=
∑ pseudo variables and a linear 

knapsack problem K1 with resource b (
1

T

k
k

b b
=

= ∑ ): 

'

'

'

1 1

'

1 1

'

. .

0 1, 1,.. 1,..

i

i

nN

ij ij
i j

nN

ij ij
i j

ij i

Max c z

s t

a z b

z i N j

= =

= =

≤

≤ ≤ = =

∑∑

∑∑
n

it itres= = 0j

 

We prove the optimal objective of K1 is an upper bound on MKPS in Appendix B.  

3.3. Feasible solution (lower bound) 

A good initial feasible solution can fathom many candidate nodes and reduce the 

search time. We will use a greedy algorithm to calculate one.  

Algorithm determines a feasible assignment of family ’s jobs to 

period when there is resource available. The algorithm returns , the total profit of 

this assignment and , the amount of resource actually used.  

( , )assign i t i

t tb itobj

itres

Algorithm : ( , )assign i t

Step 1. Set , obj ,tb b= 0, 0 =  

       , ,it it itobj obj f← + ib b d← − it ires d= . 

Step 2. ; if 1j j← + ij n> , stop. 

Step 3. If , then ijb a≥

                 it it ijtobj obj c← + , ijb b a← − , it it ijres res a← + ;  
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  If , then go to Step 2; else stop. 0b >

           else  go to Step 2 

Algorithm is used to get the feasible solution. It uses to assign a family to a 

period and update the available resource. It continues until there is not enough resource 

left for any job. 

feas itobj

 40

TStep 1. Set . Solve for{1,.. }NN N= ( , )assign i t 1,.. 1,..i N t= =  

Step 2. Choose{ , with}r s max{ | , 1,.. }rs itobj obj i NN t T= ∈ = ; if , stop. 0rsobj =

Step 3. ,rslb lb obj← + s sb b res← − rs . Delete r from . IfNN NN φ= , stop.  

Step 4. Solve . Go to Step 2. ( , )assign i s i NN∈

3.4. Branch-and-bound algorithm 

To develop a branch-and-bound algorithm, we need to make several decisions. These 

include how to fix variables, calculate bounds, choose the next sub-problem to explore 

and obtain an initial incumbent solution. Also, the order to fix variables has to be decided.  

3.4.1. Variable order 

Order all variables by non-increasingity
1

, 1,.. , 1,..
in

it ijt it
j

pro c f i N t T
=

= + = =∑ . If is 

near the front, then this variable is more likely to be one. Similarly if is near the end, it 

is more likely to be zero. Fixing variables first at the front or rear aid in keeping the 

number of branches small.  We fix variables by looking at the beginning and end of 

ity

ity

ity



 

this ordered list and working toward the middle. So family i , 1,..ity t T= has a search order: 

if is the variable of theT variables related to family , then set . ity thk i ( )ito y k=

In the current node, we decide which variable will be fixed based on all variables fixed. 

Assume we fix . Since each family is assigned to at most one period, 

then for

rky

0rty = ( ) (rt rko y o y< ) 1,..t T= . 

3.4.2. Fixing  rky

As we proceed through branch-and-bound algorithm, we fix setup variables to zero or 

one. If is free, family is represented by pseudo variablesrky r , 1,..rj rz j n′= ; these variables 

are never fixed. If is fixed at one, all pseudo variablesrky , 1,..rjz j rn′= are removed and 

real variables , 1,..rjk rx j = n are included in K1; rjkx are always free in the branch-and-

bound algorithm. If is fixed at zero, all pseudo variables as well as their coefficients 

are recalculated, excluding the possibility of family r being setup in period , and 

included in K1; again the new

rky

k

, 1,..rj rz j n′= are always free. When 

all are fixed to either zero or one, a knapsack problem over the 

appropriate

, 1,.. 1,..ity i N t T= =

ijtx is solved to determine the optimal solution. 

When is fixed to one, the bounding problem K1 changes as follows: rky

the actual setup cost for family in period t is added to the objective; r

the actual setup time for family is subtracted from the surrogate constraint; r

pseudo variables for family are removed, and r

real variable , 1,..rjk rx j = n are added 
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When is fixed to zero, the changes are removing pseudo variables for family and 

adding new pseudo variables.  

rky r

We also tighten the relaxation by adding the constraint for period to the bounding 

problem. Pseudo variables will only use the surrogate resource, but

k

itz ijkx variables will 

use both the surrogate resource and the resource from period . Subtracting the setup 

time will reduce the available surrogate resource and will reduce the resource from 

period . Removing pseudo variables may increase the surrogate resource, but will not 

affect the resource for period . Thus, the previous optimal solution to the bounding 

problem may no longer be feasible or optimal. We could re-solve it from scratch, but we 

will show how to adjust the old solution to obtain the optimal solution to the new 

bounding problem. First, we introduce some notations. 

k

k

k

Let 

obj : The current node’s upper bound, 

{ | 1}t itG i y= = : Family fixed to period t , 

{ | }itU i y is free= : Family free, 

'

1 t

T

i
t i G

b b d
= ∈

= −∑∑ : Available resource for all variables, 

' , 1,..
t

t t i
i G

b b d t T
∈

= − =∑ : Available resource for families in period t . 

The current node’s upper bound is the optimal objective of this formulation, K2. It can be 

proved by an approach similar to what we used in Appendix A. 
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n nT
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ij ijt t
i G j

Max c z c x f
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When we fix to one, set rky

' '
k k rb b d= −  

' '
rb b d= −  

rkobj obj f= +  

{ }k kG G r= ∪   

\{ }U U r= and 

0, 1,..rty t T t= = ≠ k

r

 

The algorithm to fix to one can be separated into three steps: rky

Step 1. Delete pseudo variables from the outer knapsack. '1,...
r

r rn
z z

Step 2. Restore feasibility (if necessary). 

Step 2.1. Set . If , find the variable' '
k kb b d← − '

1

i

k

n

ij ijk k
i G j

a x b
∈ =

>∑∑ ijkx greater than zero 

with smallest ratio. Decrease it until either it is zero or '

1

i

k

n

ij ijk k
i G j

a x b
∈ =

=∑∑ . 

Repeat until '

1

i

k

n

ij ijk k
i G j

a x b
∈ =

=∑∑ is achieved. 
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1 1 1

i i

t

n nT

ij ij ij ijt
i U j t i G j

a z a x b
∈ = = ∈ =

Step 2.2. Set . If '' '
rb b d← − ' + >∑∑ ∑∑∑ , repeat the procedure in 

2.1, except choose either ijtx or variables greater than zero with smallest 

ratio. 

ijz

Step 3. Restore optimality. 

Step 3.1. Let be the set of all zero-value 

variables. Find the maximum ratio of all variables in

{ | 0, } { | 0,ijt ijt ij ijV x x i U z z i U= = ∉ ∪ = ∈ }

maxr V . 

Step 3.2. Set all fractional-valued variables and all variables with value one and 

ratio less than to zero. Put these variables inmaxr Vin the proper ratio order. 

This releases resource for new variables to use. Variables in K2 now have 

value one only and their ratio is no worse than  maxr

Step 3.3. Do the following sub-algorithm to obtain the optimal solution of K2. 

Step a. Set . 1k =

Step b. If the variable inV isthk ijtx , then go to Step c; else the variable 

inV is , and go to Step d. 

thk

ijz

Step c.  If , then' 0tb = 1k k← + ; 

else  

If , thenb b'
tb a≥ ij a' '

t t ij← − ' '
ij,b b a← − ijtobj c← +, obj , 

and 1ijtx = ; 

else
'
t

ijt
ij

bx a= , 'b b' '
tb← − ,and ijt ijtobj obj c x← + . 

Go to Step e. 
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'
ijaStep d.  If , thenb b'

ijb a≥ ' ' '← − '
ijobj c, obj ← + , and .  1ijz =

Set 1k k← + . 

else
'

'ij
ij

bz a= , ' 0b = ,and . '
ij ijobj obj c z← +

Step e. If and' 0b > k V≤  go to Step b; else stop. 

When we fix to zero, pseudo variables are deleted from variable set. 

Since , update . Apply the multiple-choice 

dominance rules to delete dominated points. Use the remaining points to obtain the 

updated pseudo variables . We can resolve the problem with new variable set to 

obtain the upper bound of the sub-problem with

rky '1,..
i

r rn
z z

0, ( ) ( ), 1,..rt rt rky o y o y t= < = T itP'

( ) ( )rt rk

i
o y o y

P
>

= ∪

'1,..
i

r rn
z z

0rky = . In this case, only steps 1 and 3 

are needed to resolve the problem.  

3.4.3. Choosing a new sub-problem 

When variables are fixed, two sub-problems are created. If a sub-problem’s upper 

bound is no better than an incumbent solution it is discarded. When its bound indicates it 

could contain a better solution to MKPS we store it in a bucket. Each bucket contains 

sub-problems with bounds that are about the same. LetUB be the best upper bound 

and be the value of the current incumbent solution. If we wantINC K buckets, calculate  

( )UB INC
K

−∆ = . 

Then bucket one will contain all sub-problems with upper bounds in the 

interval[ , bucket two[ 2,UB UB− ∆ ] ],UB UB− ∆ − ∆ , and bucket K [ ,INC INC + ∆] . 



 

Buckets can be updated as upper bounds or the incumbent change. When we choose a 

new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-

empty bucket. This gives almost a “best-bound” strategy, but without the bookkeeping 

overhead. 

3.5. Computational experiments 

We test AMKPS on a variety of problem instances to see what problems can be solved 

in reasonable time. Instances are generated by setting four parameters at several levels. 

The parameters are average number of jobs in a family, number of periods, proportion of 

setup time/cost relative to totals, and resource tightness. The number of families is fixed 

to ten ( ). The number of jobs in a family is integer uniformly distributed from 

three intervals [40, 50], [60, 70] and [80, 90]. The number of periods will be either five or 

seven, corresponding to a work week. Setup cost and time are determined by 

10N =

1
1

( )
in

it ijt
j

f e c
=

= − ∑  

2
1

( )
in

i i
j

d e a
=

= ∑ j  

We choose and uniformly from [0.15, 0.25], [0.25, 0.35], [0.35, 0.45], and [0.45, 

0.55].  Resource availability is determined by

1e 2e

1 1
( )

inN

ij
i j

t

a
b K

= ==
∑∑

, where K is 10, 7.5 or 5. 

Finally, and are random integers chosen from[10, 10000]. ijtc ija

For each level of the four factors we generate ten instances. AMKPS was coded in C 

and all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of 
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memory. In the following tables, we report the minimum (MIN), average (AVG) and 

maximum (MAX) solution time in minutes. A zero indicates less than one minute of 

computational time. We also give the average ratio of initial solution (INC) to initial 

upper bound (UB) and the average ratio of initial solution to the optimal solution (OPT). 

Table 3.1 gives results for five period problems and Table 3.2 is for seven periods. 

Table 3.1 
Solution time (minute) for AMKPS for 5 periods 
  [40, 50] [60 70] [80, 90] 

Resource Setup INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN

[0.15 0.25] 0.84 0.87 0 0 0 0.85 0.88 0 0 0 0.85 0.88 0 0 0 

[0.25 0.35] 0.93 0.98 0 0 0 0.94 0.99 0 0 0 0.95 1.00 0 0 0 

[0.35 0.45] 0.96 0.99 0 0 0 0.97 0.99 0 0 0 0.98 0.99 0 0 0 

[0.45 0.55] 0.92 0.99 0 0 0 0.92 0.99 0 0 0 0.91 0.99 0 0 0 

K=10 
 
 
 Average 0.91 0.96 0 0 0 0.92 0.96 0 0 0 0.92 0.97 0 0 0 

[0.15 0.25] 0.73 0.74 0 0 0 0.72 0.73 0 0 0 0.71 0.72 0 0 0 

[0.25 0.35] 0.82 0.89 0 0 0 0.81 0.87 1 0 0 0.80 0.85 1 0 0 

[0.35 0.45] 0.89 0.98 0 0 0 0.89 0.99 1 0 0 0.89 0.99 1 0 0 

[0.45 0.55] 0.94 0.99 0 0 0 0.95 0.99 0 0 0 0.96 1.00 0 0 0 

K=7.5 
 
 
 Average 0.85 0.90 0 0 0 0.84 0.90 0 0 0 0.84 0.89 0 0 0 

[0.15 0.25] 0.94 0.95 0 0 0 0.94 0.95 0 0 0 0.94 0.95 0 0 0 

[0.25 0.35] 0.86 0.88 0 0 0 0.89 0.90 0 0 0 0.89 0.90 0 0 0 

[0.35 0.45] 0.76 0.79 0 0 0 0.78 0.80 0 0 0 0.76 0.78 0 0 0 

[0.45 0.55] 0.72 0.82 1 1 0 0.71 0.80 3 1 1 0.70 0.80 8 3 2 

K=5 
 
 
 Average 0.82 0.86 0 0 0 0.83 0.86 1 0 0 0.82 0.86 2 1 0 

 



 

Table 3.2 
Solution time (minute) for AMKPS for 7 periods 

 [40, 50] [60 70] [80, 90] 

Resource Setup INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN

[0.15 0.25] 0.87 0.92 2 1 0 0.86 0.91 5 3 1 0.86 0.90 9 5 2 

[0.25 0.35] 0.94 0.99 0 0 0 0.94 0.99 0 0 0 0.95 0.99 1 0 0 

[0.35 0.45] 0.96 0.99 0 0 0 0.96 0.99 0 0 0 0.97 0.99 0 0 0 

[0.45 0.55] 0.88 0.98 0 0 0 0.88 0.99 0 0 0 0.87 0.99 0 0 0 

K=10 
 
 
 Average 0.91 0.97 1 0 0 0.91 0.97 1 1 0 0.91 0.97 3 1 0 

[0.15 0.25] 0.80 0.86 7 3 1 0.79 0.85 12 6 2 0.78 0.85 26 17 10 

[0.25 0.35] 0.82 0.91 11 4 1 0.83 0.91 22 10 2 0.81 0.90 29 19* 13 

[0.35 0.45] 0.90 0.98 2 1 0 0.91 1.00 12 3 0 0.91 0.99 10 4* 1 

[0.45 0.55] 0.94 0.99 0 0 0 0.95 1.00 0 0 0 0.96 1.00 0 0 0 

K=7.5 
 
 
 Average 0.87 0.94 5 2 0 0.87 0.94 12 5 1 0.87 0.94 16 10 6 

[0.15 0.25] 0.95 0.98 0 0 0 0.95 0.98 0 0 0 0.96 0.98 0 0 0 

[0.25 0.35] 0.90 0.95 1 0 0 0.91 0.96 1 0 0 0.90 0.95 3 1 0 

[0.35 0.45] 0.82 0.91 3 1 0 0.83 0.92 8 3 1 0.82 0.91 11 4 2 

[0.45 0.55] 0.75 0.89 9 4 1 0.74 0.87 16 9 3 0.74 0.87 19 10 5 

K=5 
 
 
 Average 0.86 0.93 3 2 0 0.86 0.93 6 3 1 0.86 0.93 8 4 2 

Note: “*” means some instances run out of memory, and the value of AVG in the table is the average of the 

remaining instances, as are Max and Min.  

AMKPS performs very well for five period problems, with the hardest taking less than 

8 minutes. Seven period instances are harder, but most instances are solved in less than 

30 minutes. 

Seven of the 720 instances were not solved by AMKPS. These instances had seven 

periods, and average of 85 jobs per family, resource tightness of 7k = and setup 

percentage of [0.25, 0.35] or [0.35, 0.45]. These instances used up memory. The Min, 

Max, and Average are of the problems actually solved. Solution time increases as number 

of period and number of jobs increase. We ran some instances with different 

combinations of numbers of periods and jobs and found that the solution time changes in 

almost the same way as for the test problems. 
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The relationships between setup and resource tightness are more complex. Fig. 3.1 to 

3.6 demonstrate this. 
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Fig. 3.1. Solution time for average 45 jobs per family and 5 periods 
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Fig. 3.2. Solution time for average 65 jobs per family and 5 periods 
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Fig. 3.3. Solution time for average 85 jobs per family and 5 periods 

 
 

 Fig. 3.4. Solution time for average 45 jobs per family and 7 periods 
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Fig. 3.5. Solution time for average 65 jobs per family and 7 periods 

 50



 

 
80-90

0

5

10

15

20

25

[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]

Setup

K=10
K=7.5
K=5

Time (Minute)

 
Fig. 3.6. Solution time for average 85 jobs per family and 7 periods 

 
When , the maximum time happens on instances with setup from [0.15, 0.25]; 

when , the maximum time happens on instances with setup from [0.25, 0.35]; 

when , instances with setup from [0.45, 0.55] use the most time. From these plots, 

we conclude that problems become difficult when .  

10K =

7.5K =

5K =

* ~ (2,3)e K

The heuristic algorithm given in this paper is very effective, especially when the 

resources are tight. We give the quality (average proportion of lower bound to initial 

upper bound and to optimal solution) in Table 3.3. The quality decreased as resources 

increase in each period. For both five and seven period problems, the heuristic is good, 

typically in the 85%-95% range. 

Table 3.3 
The lower bound, upper bound and optimal solution 

[40 50] [60, 70] [80, 90] 
Period Resource Setup INC/UB INC/OPT INC/UB INC/OPT INC/UB INC/OPT 

K=10 Average 0.91 0.96 0.92 0.96 0.92 0.97 

K=7.5 Average 0.85 0.90 0.84 0.90 0.84 0.89 Period 5 
 
 K=5 Average 0.82 0.86 0.83 0.86 0.82 0.86 

K=10 Average 0.91 0.97 0.91 0.97 0.91 0.97 

K=7.5 Average 0.87 0.94 0.87 0.94 0.87 0.94 Period 7 
 
 K=5 Average 0.86 0.93 0.86 0.93 0.86 0.93 
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We also compare AMKPS to CPLEX 9.1 (called by AMPL). We choose the hardest 

instances for AMKPS (7 periods and ) to compare. Trial runs on other 

instances showed these results are typical.  Due to the difficulty of solving with CPLEX, 

only five instances per level were solved. Table 3.4 shows the clear superiority of 

AMKPS. CPLEX solved very few problems in less than two hours; we let one solve until 

the optimal solution is obtained, and it took over 29 hours.  

~ [80,90]in
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Table 3.4 
The comparison of solution time (Minute) between AMKPS and CPLEX  

K=10 K=7.5 K=5 

 Setup CPLEX AMKPS CPLEX AMKPS CPLEX AMKPS 

* 2 * 13 26 0 

* 11 * 16 7 0 

* 5 * 13 10 0 

* 4 * 30 9 0 
[0.15,0.25] 
 
 
 * 12 * 12 8 0 

AVG * 7 * 17 12 0 

* 1 116 21 36 0 

* 0 * 10 * 1 

* 0 * * 77 1 

* 0 * 28 26 0 
[0.25, 0.35] 
 
 
 * 0 * * * 2 

AVG * 0 * * * 1 

* 0 * 6 * 2 

* 0 * 2 * 3 

* 0 * * * 4 

* 0 * 6 * 3 
[0.35, 0.45] 
 
 
 * 0 * 2 * 9 

AVG * 0 * * * 4 

* 0 19 0 * 14 

* 0 14 0 * 22 

* 0 4 0 * 27 

* 0 22 0 * 16 

[0.45, 0.55] 
 
 
 * 0 7 0 * 11 

AVG * 0 13 0 * 18 

 
Note: * means the instance uses more than 2 hours or uses up memory.  

 
AMKPS use less time than CPLEX for all but three instances 

when and is from [80, 90]. We also do experiments with instances with 

fewer variables and AMKPS also used less considerably time than CPLEX. 

* ~ (2,3)e K in
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3.6. Conclusions 

The MKPS model can be used for order selection in make-to-order manufacturing. In 

this paper, we use branch-and-bound algorithm to solve MKPS and design a new method 

to get an upper bound on MKPS. Rather than relaxing constraints of the original models 

to an upper bound, we propose a new linear knapsack model to obtain an upper bound. 

We prove the knapsack optimal objective solution is an upper bound on MKPS. In 

branching, we add a resource constraint whose family has been fixed to that to tighten the 

relaxation. This prohibits jobs from using more than the period capacity. This knapsack 

problem can still be solved efficiently. We also give an effective greedy heuristic which 

supplies a good feasible solution as a lower bound. After all variables are branched on, 

MKPS is transformed to knapsack problems. The computational experiments show that 

AMKPS works well with a tight resource limit. Sixty seven-period instances are tested to 

compare AMKPS with CPLEX: AMKPS solve 57 instances of them in less than 30 

minutes but CPLEX fail in 46 instances and need more time than AMKPS for the 

remaining 14 instances.  In this paper, we only use a simple branch-and-bound algorithm 

for the knapsack problem when all setup variables are fixed. If a better algorithm, e.g. the 

one developed by Martello et al. (1999) is used, the solution time can be reduced.  

y
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Appendix A. The optimal objective of K1 is the upper bound on MKPS 

Before proving the proposition, we need the following Lemma:  

Lemma 1. A linear knapsack problem can be transformed to a concave piecewise 

function 

Proof.  

For knapsack problem 
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Order all variables by non-increasing ratio j

j
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a . Define a point 

set . Put these points on coordinates and connect the 

adjacent points, we can obtain a concave piecewise function and these points are the 

breaking points of the piecewise function. is the optimal objective of the linear 

knapsack problem.  
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On the verse, if we know , we can construct an equivalent knapsack problem for 

this piecewise function.  

( )F b

Proposition 1. The optimal objective of K1 is the upper bound on MKPS  

Proof. 

The coefficients of variables from family i in period t 1, ,...
iit i t in tf c c ,  

construct a linear knapsack problem with setup, say : 

1, ,...
ii i ind a a

itLKPS

1

0
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. .

1,

0 1,

0 1,

i
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ijt ij it i
j
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a x d y b

x y j n
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≥ =
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∑
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Based on Bulfin’s algorithm, this formulation can be transformed to a linear knapsack 

problem with pseudo variables 1,... ii inz z ′ and their corresponding profit and processing 

coefficients . Pseudo variables are ordered by non-increasing ratio, 1,ij ij ic a j n′ ′ = .. ′ ij

ij

c
a

′
′ . 

Then we can obtain a piecewise function with its breaking point set so that for any 

available resource , is the optimal solution of the .  

itF itP

0b 0( )itF b itLKPS

 56



 

 57

itPWe define , and delete all dominated points by two multiple-choice dominance 

rules for linear multiple-choice knapsack problem (Sinha and Zoltners, 1979). 

Connecting the remaining points, we can obtain another piecewise function , which 

has .   

'

1

T

i
t

P
=

=∪

iF

0 0 0( ) ( ), 0i itF b F b b≥ >

If the optimal solution of MKPS is known, assume 1ity = and the resources and profit 

from family are andi iw , 1,..iprofit i N= with solution set ={ | . Then is a 

feasible solution from the following linear knapsack problem ( ) with setup and 

iS 1ijt ijtx x = } iS

1LKPS

iprofit is the objective of the feasible solution 
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Since is the optimal objective of , thus . 

Since , then  and

( )it iF w 1LKPS ( ) , 1,..it i iF w profit i N≥ =

( ) ( )i i it iF w F w≥ ( ) , 1,..i i iF w profit i N≥ =
1 1

( )
N N

i i i
i i
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Then the solution set ', 1,.. , 1,..ij iz j n i= = N is a feasible solution of K1 since
1

N

i
i

w b
=

≤∑ . 

Hence the optimal solution of K1 is greater or equal to
1

( )
N

i i
i

F w
=
∑ , and an upper bound on 

MKPS. 
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Ⅳ.MULTIPLE-CHOICE KNAPSACK PROBLEM WITH SETUP 

Abstract 

We present a multiple-choice knapsack problem with setup (MCKS). This model can 

be applied to regional project selection in multiple periods. In the model, some variables 

model setups and serve as the upper bound on the remaining ones. A linear knapsack 

problem is designed to give an upper bound on MCKS, and a branch-and-bound 

algorithm is used to optimally solve MCKS. Setup variables are branched on; when all 

are fixed, MCKS becomes a knapsack problem. Computational experiments show this 

algorithm is effective even for instances CPLEX can not solve in two hours.  

4.1. Introduction and literature review 

The multiple-choice knapsack problem (MCK) is well known in combinational 

optimization. In this paper, we present a model we call a multiple-choice knapsack 

problem with setup (MCKS). This model can be used in regional project selection in 

multiple periods for an organization (country or company) which has a fixed budget to 

invest in a number of projects in multiple areas which can be done in multiple periods. To 

do a project in an area, a project office must be set up. The organization would like to 

decide where to set up offices and which projects to do to maximize net present value 

subject to a budget restriction.

 



 

Given the formulation of MCKS: 

1 1 1 1 1

. .

inT N T N

ijt ijt it it
t i j t i

Max c x f y

s t
= = = = =

+∑∑∑ ∑∑  

1 1 1 1 1

inT N T N

ij ijt i it
t i j t i

a x d y b
= = = = =

+∑∑∑ ∑∑ ≤ ,                                                                      (1) 

1,.. , 1,.. ; 1,..ijt it ix y j n i N t T≤ = = = ,                                                          (2) 

1

1 1,... , 1,..
T

ijt i
t

x i N j
=

≤ = =∑ n ,                                                                      (3) 

, {0,1} 1,.. ; 1,.. ; 1,.. .ijt it ix y i N j n t∈ = = = T                                                        (4) 

ijtc  -is the profit of project j  in area in period t ( ),  i 0ijtc ≥

itf  -is the setup cost for opening an office in area in period t (i 0itf ≤ ),  

ija  -is the investment needed for project j  in area ( ),  i 0ija >

id  -is the investment cost to open an office in area ( ), i 0id >

b  -is the budge available to invest ( ), 0b >

ity  - is one if office is set up in area i in period t , otherwise zero, 

ijtx  -is one if project j in area is done in period , otherwise zero, i t

N  -is the number of areas, 

T  -is the number of periods.  

Constraint (1) requires the total budget used by all projects and to setup offices can not 

exceed the budget available. Constraints (2) prohibit a project being done unless the 

office in this area is set up. Constraints (3) guarantee that a project can only be done once. 

Constraints (4) require all variables to be binary. 
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Besides the application of regional development, this model can also be used in order 

acceptance in multiple periods with a non-renewable resource. 

We develop an upper bound and an effective heuristic for MCKS based on the linear 

knapsack problem with setup and the linear multiple-choice knapsack problem. 

Following traditional terminology, we call area i family , and the projecti j in area  jobi j  

of family i . We also call the setup time of family i andid itf the setup cost of family in 

period . 

i

t

For the linear knapsack problem, Dantzig (1957) gave an algorithm which allocates 

the limited resource to jobs based on the non-increasing profit-to-processing ratio. 

Without y variables, MCKS becomes a multiple-choice knapsack problem, another well-

studied problem. (See Pisinger,1995; Sarin and Karwan, 1989; Armstrong et al, 1983 ) 

Two dominance rules for the linear multiple-choice knapsack problem (Sinha and 

Zoltners, 1979) are used to develop a linear knapsack problem as an upper bound on 

MCKS.   

Without constraint (2), MCKS becomes a knapsack problem with setup. Bulfin (1988) 

gave an efficient algorithm for its linear relaxation. We explain this algorithm in the 

following section. Akinc (2004) describes algorithms for a fixed-charge knapsack 

problem, which is a special case of MCKS; it has a single period and no setup time.  

We use a branch-and-bound algorithm to obtain the optimal solution to MCKS. It can 

be briefly described by two steps. We branch on variables; when all variables are 

fixed, the problem is a knapsack problem in the variables. We use a simple branch-and-

bound algorithm to solve this knapsack problem. To reduce the branches of the tree, 

y y

x
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y variables are reordered before branching. The ordering process is as follows: Order 

variables by non-increasingity
1

, 1,.. , 1,..
in

it ijt it
j

pro c f i N t T
=

= + = =∑ . If is near the front, 

then this variable is more likely to be 1. Similarly if is near the end, it is more likely to 

be 0. We fix variables by looking at the beginning and end of this ordered list and 

working toward the middle. Fixing variables first at the front or rear aids in keeping the 

number of branches small. Renumber variables by this order so that will be branched 

on before .   

ity

ity

ity

ity

1ity +

The algorithm (AMCKS) for solving MCKS is outlined below: 

Step 1. Obtain an upper bound formulation for MCKS and a feasible solution for MCKS. 

Step 2. Decide which variable to be fixed in the current node. 

Step 2.1. Generate a new node by fixing some to one; save this node if its bound 

is better than the incumbent solution. If all are fixed, solve a knapsack 

problem and update the incumbent solution if possible. 

y

y

Step 2.2. Generate a new node by fixing to zero; save this node if its bound is 

better than incumbent solution. If all are fixed, then solve a knapsack 

problem and update the incumbent solution if possible. Delete the 

current candidate node. 

y

y

Step 3. Choose a new candidate node. If none exists, stop, the incumbent solution is 

optimal; else go to Step 2.  

In the remaining of the paper, we discuss Step 1 in section 4.2. Section 4.3 explains the 

algorithms used in Steps 2 and 3. Section 4.4 discusses computational experiments. 
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4.2. An upper bound and feasible solution  

Unlike the usual approaches of relaxing some constraints of a formulation to obtain an 

upper bound, we design a linear knapsack problem whose optimal objective is an upper 

bound on MCKS. This approach uses the algorithm presented by Bulfin (1988) for the 

linear knapsack problem with setup, which transforms a linear knapsack problem with 

setup to a linear knapsack problem.  

4.2.1. Linear knapsack problem 

Consider a linear knapsack problem: 

1

1

. .
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n

j j
j
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j j
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a x b
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All variables are ordered by non-increasing j

j

c
a . By Dantzig’s algorithm (1957), if  
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0, 2,..jx j k n= = +  
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n

A linear knapsack problem corresponds to a concave piecewise function. 

Define , and put these
1 1

{(0,0), ( , ) | 1,.. }
k k

j j
j j

P a c k
= =

= =∑ ∑ 1n+  points on coordinates and 

connect the adjacent points. This defines a concave piecewise function . This process is 

independent of resourceb . For a given resourceb , is the optimal objective of the 

linear knapsack problem with resource  (If

F

( )F b

b
1

n

j
j

b
=
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=∑ ). For brevity, 

denote these points as 0 ,.. np p with
1

.
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k j
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p x a
=

= ∑ and
1

.
k

k j
j

p y c
=

= ∑ 1,..k n= . 1,..kp k n= are 

the break points of the piecewise function . Conversely the break points of a concave 

piecewise function define a linear knapsack problem with some resource by 

defining

F n

F b

jx corresponding to 1. .j j ja p x p − x= −  and 1. .j j jc p y p y−= − 1,..j n=

,

, . 

4.2.2. Transform a linear knapsack problem with setup to a linear knapsack problem 

Consider the linear knapsack problem with setup: 
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Bulfin (1988) proposed an efficient algorithm, similar to Dantzig’s algorithm for the 

linear knapsack problem (1957).  Reorder all jobs of family so 

that

i

1

1
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for i N∈ .  

Then for family , jobs can be separated into two sets: i iXM = {1… }andit iXT = 

{ +1.... }. The jobs init in iXM can be considered as a single job.  

Now for family , define: i

'
1

1

'
1

1

'
, 1

'
, 1

'

1,..

1,..

1

i

i

i

i

t

i ij i
j

t

i ij i
j

i j t ij i i

i j t ij i i

i i i

c c f

a a d

c c j t

a a j t

n n t

=

=

− +

− +

= +

= +

= = +

= = +

= − +

∑

∑
n

n

n

 

Then linear knapsack problem with setup can be reformulated as: 
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Pseudo job  is composed of jobs 1iz 1 2, ,..
ii i itx x x and

iij ij tz x += , for 2,.. i ij n t= − . After 

solving this linear knapsack problem, at most one variable can have a fractional value, 

say . If , then andf 1kz = f ky f= , 1,..kj kx f j t= = .  If , 1klz f l= ≠ , then only
kk l tx f+ = . 

4.2.3. The algorithm for the upper bound and feasible solution 

Before we explain the approach to obtain an upper bound and a feasible solution for 

MCKS, let us introduce the period subset’s piecewise function of family . i

4.2.3.1. Subset’s piecewise function 

If the optimal solution of MCKS is known, then { | 1}i itS t y= = is the set of periods in 

which family is processed. But before solving MCKS, is unknown. We know must 

be a subset of{1 . Set{1 has total

i iS iS

,.. }T ,.. }T 2 1T − non-empty subsets, which we denote 

as 1,.. KS S , 2 and1TK = − kS is the cardinality of the subset .  kS

For any , define {1,.. }, 1,..kS T k⊆ = K

Smax{ | }
kijS ijt kc c t= ∈  

k

k

iS it
t S

f f
∈

= ∑  

kiS k id S= d . 

Using pseudo variables ijx′ , , for each , we can formulate a linear knapsack problem 

with setup: 

iy′ kS
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This problem can be transformed to a linear knapsack problem based on section 4.2.2, 

the linear knapsack problem defines a concave piecewise function with break points 

set . Thus

kiSF

kiSP
kiSF is the piecewise function of for family . kS i

4.2.3.2. Upper bound formulation of MCKS 

After obtaining 
kiSF and its break points set for each subset of family i , 

we define and delete any repeated points in the set. Apply the following two 

multiple-choice dominance rules (Sinha and Zoltners, 1979) to

kiSP , 1,..kS k K=

1
k

K

i
k

P P
=

′=∪ iS

iP′ : 

Dominance rule 1. If rp and sp have . .r sp x p x≤ and . .r sp y p y≤ , then delete sp  

Dominance rule 2. If , ,r k sp p p  have . . .r k sp x p x p x≤ ≤ , . . .r k sp y p y p y≤ ≤ and 

. . . .
. . .

k r s k

k r s k

p y p y p y p y
.p x p x p x p x

− −≤− − , then delete kp . 

Call the set of remaining points  and put them on coordinates. Connecting the 

adjacent points in , we obtain a concave piecewise function  with break 

points

iP

iP iF

'1,...
in

p p . All points in iP′ are below the line of the piecewise function thus iF
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0 0 0( ) ( ) 0, 1,..
ki iSF b F b b k K≥ ≥ = . 
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x −= −Define pseudo variables with  and'
in '1,..

i
i in

z z '
1. .ij j ja p x p −= − '

1. .ij j jc p y p y 1,.. ij n′= .  

Repeating this process for all families, we obtainN '

1

N

i
i

n
=
∑ pseudo variables and 

formulate a linear knapsack problem  with resource . uLKP b

'

'

'

1 1

'

1 1

'

. .

0 1, 1,.. 1,.

i

i

nN

ij ij
i j

nN

ij ij
i j

ij i

Max c z

s t

a z b

z i N j

= =

= =

≤

≤ ≤ = =

∑∑

∑∑
.n

 

We prove that the optimal objective of  is an upper bound on MCKS. This 

problem has at most one fractional variable. If we round this fractional variable to zero, 

then we obtain a feasible integer solution for . The integer solution 

of corresponds to a feasible solution of MCKS and its objective is a lower bound on 

MCKS. (Refer to the Appendix C for their proofs). 

uLKP

uLKP

uLKP

This approach is impractical if T is large. We present three dominance rules to reduce 

the number of subsets considered. (Refer to the Appendix D for their proofs).  

Consider two subsets of family : if , {1,.. }r kS S T⊆ i 0 0( ) ( )
r kiS iSF b F b≥ for all , then 

dominates . All break points of are below , so

0 0b >

rS kS
kiSF

riSF
kiS iP P⊄  which means need 

not be included in . Consider

kiSP

iP′ 1,.. KS S of family i : 

Dominance rule 3. If and , then dominates .  rS S⊂ k k
1 1

r r k

n n

ijS iS ijS iS
j j

c f c f
= =

+ > +∑ ∑ rS kS



 

Dominance rule 4. Assume and dominates . If there is another 

subset with

r kS S⊂ rS kS

lS l kS S φ∩ = , then dominates . lS S∪ r l kS S∪

Dominance rule 5. Assume , r kS S⊂ 0
r kiS iSf f= = and 0

r kiS iSd d= = . If there is a subset 

withlS l kS S φ∩ = , then dominates . lS S∪ k l rS S∪

With the help of dominance rules, the break points of some period subsets’ piecewise 

functions need not be included into iP′ and thus reduce the effect to determine . After 

finding all non-dominated subsets, we calculate the break points of their piecewise 

functions. We do not put all break points together and apply dominance rules 1 and 2 

once; rather we add these points into

uLKP

iP′ in a specific order and apply dominance rules 1 

and 2 totalT times. 

 Define ikS to be all non-empty subsets of{ ,  for family i  and be all non-

dominated points set from the piecewise functions of all elements in

.. }k T ikP′

ikS . With the help of 

Dominance rule 4, the algorithm to generate is: iP

Step 1. Set . 1k T= −

Step 2. While ( ) 0k >

{  Set { |j j ikS k S S S= ∪ ∈ }  

   Set 1ik ikS S S− = ∪  

 Apply dominance rule 3 to delete dominated sets in 1ikS −  

        } 1k k← −

Step 3. Calculate and for
kiSF

kiSP 1k iS S∈ .  
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Step 4. Set k andT= 1iTP φ+′ = . 

Step 5. While ( ) 0k >

{   Set 1 1{ | /
kik ik iS k ik ikP P P S S S+ +′ ′= ∪ ∈ }  

   Apply rules 1 and 2 to delete dominated points in iP′  

     } 1k k← −

When the algorithm ends, is the we need. After ,1iP′ iP iP 1,..i N= are known, is 

obtained. 

uLKP

4.3. Fixing  ity

When we fix to one or zero, ity , 1,.. 1iky k t= − have been fixed by the variable order. 

Define  and 1 { | 1, }i ikS k y k t= = ≤ 1
iS includes all non-empty subsets of .  1

iS

4.3.1. Fixing to one ity

When we fix to one,  is subtracted from andity id b itf is added to the objective. 

Then itf and can be viewed as zero.  Coefficientsid
kiSf and related to 

subset

kiSd

1, ,k k kS t S S S∈ ∈ i change. Therefore all and related to these subsets change, 

which can cause a change of .  

F P

iP

We can calculate the new piecewise functions for all affected and apply the above 

algorithm to obtain an updated . Then we obtain the new pseudo variables and their 

processing time and profit coefficients of family  from the updated . 

kS

iP

i iP
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This updating process can be simplified by applying dominance rule 5.  Based on this, 

subset dominates any subset1
iS 1,k k iS S S∈ . Therefore, we only need consider subsets 

are 1
1{ | }i j j it itS S S S S+∪ ∈ ∪ 1+ . The process to update can be described as: iP

Step 1. Calculate the piecewise function of subset . 1
iS

Step 2. Calculate the piecewise functions of subsets 1
1{ |i j j itS S S S +∪ ∈ }. 

Step 3. corresponding to1itP +′ 1itS + is known from the calculation of the upper bound on 

MCKS. Set 1
'

1 1{ } { | { | }}
ki

i it iS k i j j itiS
P P P P S S S S S+ +′ ′= ∪ ∪ ∈ ∪ ∈ and apply rules 1 

and 2 to delete dominated points in iP′and obtain the updated .  iP

After we obtain the updated , we can obtain the new pseudo variables of family . iP i

4.3.2. Fixing to zero ity

If we fix it to 0, then all subsets including t must delete this period, so their piecewise

functions change, resulting in a different . 

y  

iP

 Assume l is the last period in 1 , then 1 stays the same since we fix y to one. All 

subsets used to update  when we fix to one are

iS iS il

iP ily  1
1{ | }andi j j ilS S S S +∪ ∈ 1ilS + ; all 

subsets used to update P  when we fix y to zero isi it
1

1{ | }S∈ andi j j itS S S +∪ 1itS + .  

Since 1 1il itS S+ + to 

when we fi

⊂ , then all subsets used when zero are part of the subsets for fixing

one. We save the P x y to one so we need not calculate the updated

ity ily

i il iP . 
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4.3.3. Bounding 

 72

iable z a  

n: 

.n

 

 

 

 After we obtain the new pseudo jobs from the updated i , the node’s new 

upper bound can be obtained by replacing the old pseudo var '1,..
i

i in
z of f mily i with

the new ones. For the current node’s upper bound formulatio

'1,..
i

i in
z z P

s

'

'

'

1 1

'

1 1

'

. .

0 1, 1,.. 1,.

i

i

nN

ij ij
i j

nN

ij ij
i j

ij i

Max c z

s t

a z b

z i N j

= =

= =

≤

≤ ≤ = =

∑∑

∑∑
 

If we fix it to 1, then reduce available resourceb  by id ; delete all old pseudo

jobs ; replace by the new ones and find the new optimal. If we fix to 0, then we

replace all old pseudo jobs by new ones and find the new optimal. We can prove 

the new optimal is the upper bound of the current node by an approach similar to what we 

used in Appendix A. 

y

'1,..
i

i in
z z ity

'1,..
i

i in
z z

4.3.4. Choosing a New Sub-problem 

When variables are fixed, two sub-problems are created. If a sub-problem’s upper 

bound is no better than an incumbent solution it is discarded. When its bound indicates it 

could contain a better solution to MCKS we store it in a bucket. Each bucket contains 

sub-problems with bounds that are about the same. Let B be the best upper bound

and be the value of the current incumbent solution. If we want

U

INC K buckets, calculate  

( )UB INC
K

−∆ = . 
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]UB− ∆ , bucket ]UB

Then bucket one will contain all sub-problems with upper bounds in the 

interval[UB  two[ 2UB, ,− ∆ cket− ∆ , and bu K [ , ]INC INC + ∆ . 

Buckets can be updated as upper bounds or the incumbent change. When we choose a 

new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-

empty bucket. This gives an almost “best-bound” strategy, but without the bookkeeping 

overhead. 

4.4

d. 

t 

buted 

from 10, 30], [30, 50] and [50, 70]. Setup cost and time will be determined by 

. Computational experiments 

We test AMCKS on a variety of problem instances to see what problems can be solve

Instances will be generated by setting five parameters at several levels. The parameters 

are number of families, average number of jobs in a family, proportion of setup time/cos

relative to total time and cost, number of periods, and relationship between a and c . The 

number of families will be fixed at 10, 30 and 50. The number of periods will be fixed at 

5, 10, 15 and 20. The number of jobs in a family will be integer uniformly distri

 [

1
1

( )
in

it ijt
j

f e c
=

= − ∑  

2
1

( )
in

d e a= ∑  i ij
j=

We will choose and uniformly from [0.05, 0.1], [0.1, 0.15], [0.15, 0.2], and [0.2, 0.25].   

and have three relationships:  is uniformly chosen from [10, 10000], and  is 

chosen from[10, 10000] and  is randomly chosen from[10, 10000], and = + , is 

1 2

ij

also uniformly chosen from [10, 10000] (uncorrelated relationship-U); ija  is uniformly 

e e

a c a ijtc

ijt ijt ijc t e e
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n it 

sen from [10,100] (stron ti

uni
⎡ ⎤

randomly chosen from [0, 2000] (weak relationship-W); ija is uniformly chosen from[10, 

10000], and ijtc is randomly chosen from[ ija -1000, ija +1000], if ijtc is less than 10, the

is randomly ch lao g re onship-S). Resource availability will be 

form from
1 1 1 1

0.4* ,0.6* ,ij ij
i j i j

a a
= = = =

⎢ ⎥
⎣ ⎦

i in nN N

∑∑ ∑∑

 

 

 

pper bound (UB) and the average ratio of initial solution to the 

Table 4.1 
o e

. 

For each level of the five factors we generate ten instances. AMCKS was coded in C

and all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of

memory. In the following tables, we report the minimum (MIN), average (AVG) and

maximum (MAX) solution time in minutes. We also give the average ratio of initial 

solution (INC) to initial u

optimal solution (OPT). 

Soluti n tim  (minutes) with N 10= and ~in [10,30]  
 U S  W  

pe d L  L L  rio  Setup LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX

[0.05-0.1] 0.977 0.978 0.00 0.00 0.00 0.991 0.991 0.00 0.00 0.00 0.902 0.903 0.00 0.00 0.01

[0.1-0.15] 0.976 0.977 0.00 0.00 0.00 0.988 0.989 0.00 0.00 0.00 0.843 0.845 0.00 0.00 0.01

[0.15-0.2] 0.953 0.953 0.00 0.00 0.00 0.991 0.991 0.00 0.00 0.00 0.878 0.883 0.00 0.00 0.01
5 
 
 [0.2-0.25] 0.912 0.913 0.00 0.00 0.00 0.929 0.930 0.00 0.00 0.00 0.893 0.900 0.00 0.00 0.01

[0.05-0.1] 0.992 0.992 0.00 0.00 0.00 0.997 0.997 0.00 0.00 0.00 0.903 0.904 0.00 0.01 0.02

[0.1-0.15] 0.978 0.978 0.00 0.00 0.01 0.990 0.990 0.00 0.00 0.01 0.894 0.896 0.00 0.01 0.02

[0.15-0.2] 0.973 0.974 0.00 0.00 0.00 0.997 0.997 0.00 0.00 0.01 0.833 0.838 0.00 0.01 0.02
10 

 
 [0.2-0.25] 0.947 0.949 0.00 0.00 0.00 0.919 0.921 0.00 0.01 0.01 0.905 0.910 0.01 0.01 0.03

[0.05-0.1] 0.993 0.993 0.02 0.02 0.03 0.996 0.996 0.00 0.00 0.01 0.862 0.862 0.00 0.02 0.03

[0.1-0.15] 0.992 0.993 0.00 0.01 0.01 0.989 0.990 0.00 0.00 0.01 0.893 0.895 0.00 0.02 0.05

[0.15-0.2] 0.967 0.968 0.00 0.00 0.01 0.996 0.996 0.00 0.01 0.02 0.895 0.899 0.01 0.04 0.07
15 

 
 [0.2-0.25] 0.935 0.936 0.00 0.00 0.01 0.945 0.946 0.00 0.01 0.03 0.837 0.842 0.03 0.05 0.07

[0.05-0.1] 0.994 0.994 0.09 0.10 0.11 0.997 0.998 0.01 0.01 0.01 0.904 0.905 0.02 0.04 0.05

[0.1-0.15] 0.978 0.979 0.02 0.02 0.03 0.985 0.985 0.00 0.01 0.03 0.907 0.908 0.00 0.04 0.08

[0.15-0.2] 0.978 0.979 0.01 0.01 0.02 0.997 0.998 0.04 0.919 0.923 0.01 0.08 0.19
20 

 
 [0.2-0.25] 0.958 0.959 0.01 0.01 0.01 0.950 0.952 0.00 0.12 0.845 0.851 0.05 0.12 0.41

0.01 0.02

0.03
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Ta le 4.2
o e

 
 

b  
Soluti n tim  (minutes) with N 30= and ~n [30,50] i

 S U W  

Pe d L  L L  rio  Setup LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX

[0.05-0.1] 0.996 0.996 0.00 0.02 0.07 0.999 0.999 0.00 0.02 0.08 0.949 0.950 0.04 0.41 0.76

[0.1-0.15] 0.991 0.991 0.00 0.02 0.04 0.989 0.989 0.00 0.08 0.25 0.954 0.954 0.04 0.19 0.30

[0.15-0.2] 0.987 0.987 0.00 0.01 0.04 0.984 0.984 0.00 0.12 0.35 0.958 0.958 0.00 0.22 0.49
5 
 
 [0.2-0.25] 0.974 0.974 0.00 0.02 0.04 0.977 0.977 0.00 0.11 0.34 0.964 0.965 0.00 0.27 0.63

[0.05-0.1] 0.997 0.997 0.01 0.05 0.17 0.999 0.999 0.01 0.03 0.06 0.966 0.966 0.07 0.79 1.57

[0.1-0.15] 0.999 0.999 0.01 0.01 0.01 0.997 0.997 0.00 0.09 0.46 0.952 0.952 0.08 0.69 1.04

[0.15-0.2] 0.990 0.990 0.00 0.03 0.05 0.983 0.983 0.00 0.20 0.64 0.961 0.962 0.11 1.08 2.01
10 

 
 [0.2-0.25] 0.980 0.980 0.00 0.05 0.13 0.983 0.983 0.01 0.29 0.57 0.964 0.965 0.33 1.51 3.67

[0.05-0.1] 0.997 0.997 0.06 0.09 0.18 0.999 0.999 0.00 0.05 0.21 0.972 0.972 0.24 0.97 1.92

[0.1-0.15] 0.996 0.996 0.02 0.04 0.09 0.996 0.996 0.01 0.15 0.44 0.970 0.971 0.12 0.89 1.46

[0.15-0.2] 0.982 0.982 0.01 0.08 0.18 0.990 0.990 0.01 0.28 1.25 0.962 0.962 0.06 1.69 2.74
15 

 
 [0.2-0.25] 0.974 0.974 0.05 0.09 0.15 0.983 0.983 0.00 0.88 5.57 0.959 0.959 0.01 2.86 6.17

[0.05-0.1] 0.997 0.997 0.87 1.74 3.68 0.999 0.999 0.03 0.10 0.34 0.982 0.982 0.05 0.97 2.10

[0.1-0.15] 0.999 0.999 0.07 0.08 0.09 0.997 0.997 0.02 0.09 0.16 0.971 0.971 0.12 1.75 5.91

.2] 0.987 0.987 0.03 0.08 0.17 0.994 0.994 0.02 0.16 0.49 0.975 0.976 0.22 2.18 8.73

0.26 0.977 0.977 0.11 1.28 7.92 0.942 0.943 1.18 12.42 51.60

[0.15-0
20 

 
 [0.2-0.25] 0.977 0.977 0.03 0.14

 
Table 4.3 

oSoluti n time (minutes) with N 50= and ~n [50,70]  i

 U  W S 

Period L  L L   Setup LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX 

[0.05-0.1] 0.997 0.997 0.01 0.15 0.82 1.000 1.000 0.00 0.09 0.34 0.979 0.979 0.05 2.12 4.25 

[0.1-0.15] 0.997 0.997 0.00 0.07 0.51 0.995 0.995 0.01 0.39 0.93 0.980 0.980 0.21 1.64 3.70 

[0.15-0.2] 0.991 0.991 0.00 0.14 0.36 1.000 1.000 0.10 1.74 4.49 0.984 0.984 0.03 1.03 3.43 
5 [0.2-0.25] 0.987 0.987 0.00 0.13 0.36 0.983 0.983 0.08 0.92 1.76 0.980 0.980 0.30 3.09 5.78 

[0.05-0.1] 0.998 0.998 0.03 0.39 1.88 1.000 1.000 0.02 0.17 0.52 0.988 0.988 0.02 3.10 6.99 

[0.1-0.15] 1.000 1.000 0.01 0.04 0.09 0.999 0.999 0.02 0.29 1.26 0.976 0.976 0.12 4.46 8.44 

[0.15-0.2] 0.991 0.991 0.02 0.16 0.48 1.000 1.000 0.02 2.00 4.56 0.970 0.970 0.86 9.72 19.66
10 [0.2-0.25] 0.985 0.985 0.01 0.42 1.41 0.986 0.986 0.21 2.65 6.05 0.971 0.971 4.23 16.20 28.67

[0.05-0.1] 0.997 0.997 0.20 0.80 2.10 1.000 1.000 0.02 0.14 0.31 0.984 0.984 0.36 7.29 22.69

[0.1-0.15] 0.998 0.998 0.05 0.13 0.33 0.997 0.997 0.05 0.95 3.95 0.979 0.979 0.06 8.33 17.03

[0.15-0.2] 0.993 0.993 0.03 0.35 0.96 1.000 1.000 0.01 2.24 5.83 0.969 0.970 0.06 17.70 35.68
15 [0.2-0.25] 0.987 0.987 0.02 0.43 1.01 0.990 0.990 0.04 1.89 3.75 0.976 0.976 0.07 30.40 82.01

[0.05-0.1] 0.997 0.997 19.50 29.00 44.47 1.000 1.000 0.08 0.26 0.53 0.983 0.983 0.11 8.88 27.13

[0.1-0.15] 0.998 0.998 0.17 0.45 1.35 0.998 0.998 0.03 0.41 2.71 0.981 0.981 0.44 13.60 29.35

[0.15-0.2] 0.991 0.991 0.13 0.52 1.08 1.000 1.000 0.12 2.08 7.84 0.973 0.973 3.15 34.10 125.01
2 .540 [0.2-0.25] 0.990 0.990 0.09 0.64 1.53 0.991 0.991 0.03 5.41 21.96 0.978 0.979 1.34 41.10 95
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tion are more difficult than large setup proportion. The difference between 

5% setup and 10% setup is apparent, but there is little difference between 10% setup and 

15% setup. 

Fig. 4.1 and Fig. 4.2 show when coefficients are uncorrelated, instances with small 

setup propor

N=50;T=15
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~ [50,70]in  Fig. 4.1. Solution Time for 50N T and, 15= =

50 families, 20 periods
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Fig. 4.2. Solution Time for 50, 20N T= = and ~ [50,70]in  

The dominance rules are more effective when setup proportion is large and 

when a and c are uncorrelated. If the setup proportion is small, jobs are more often 

assigned to multiple periods; the dominance rules are not as effective as for instances 

with large setup proportion. But when s correlated over different periods, there is not c i
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eases, instances wit having weak relationship and 

str m t and 

nce 

 the lower 

bo

n 

rd 

knapsack 

pro

d on MCKS r 

 

 use up before the first break point of the piecewise function. If 

e fractional value is the first pseudo variable of some family, all variables corresponded 

as good. 

lso c mp  C X ll M . W s rd

instances fo M 0 ds m 90]in om  Tr ns 

much difference in assigning a job to a particular period. Thus AMCKS can easily solve

an instance with small setup proportion.  

When setup proportion incr h ,a c

ong relationship beco e harder. By the central limit theorem, the total setup cos

time follow a normal distribution. Under the weak and strong relationships, the 

correlation of setups in different periods increases. With setup proportion increasing, 

setup has more effect on the optimal solution and differences in periods decrease. He

dominance rules are not as effective in this case. The other possible reason is

und. With setup proportion increasing, the lower bound becomes worse so we can not 

fathom nodes as effectively.  

Instances with a and c correlated are more difficult. The piecewise function for 

different periods become flat, and the computation for the composite piecewise functio

becomes complex. The knapsack problem when all setup variables fixed is also a ha

problem; we did not use a special algorithm to deal with correlation in the 

blem. Some improvement can be expected if a special algorithm is used. 

We use the rounded solution as a lower boun , which is very effective. Fo

instances with 30N = and 50N = , the lower bound is at least 95% of the optimal. 

When 10N = , it is worse since there are fewer points on every piecewise function, so the

resource is much easier to

th

to this pseudo variable are rounded to zero, thus the lower bound is not 

We a o are AMCKS to PLE 9.1 (ca ed by A PL) e choo e the ha est 

r A CKS (2  perio , 50 fa ilies, ~ [80, ) to c pare. ial ru on 
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other instan lts are ty on CPLEX  to iff of

solving with P l ins s p el  so ab sho e c

superiority of AMCKS.  

 
Table 4.4 
The solution m e pa et  A S a L

  S

ces showed these resu pical .  Due  the d iculty  

 C LEX, on y five tance er lev were lved. T le 4 ws th lear 

 ti e (minut ) com rison b ween MCK nd CP EX 
U W  

Setup AMCKS C/A C  AMCKS C/A  CPLEX PLEX CPLEX AMCKS C/A 

1 >  120.00 39.82 3.01 4.51 1.31 3.45 5.12 0.77 6.65 
2 >  

>  
>  

[0.05-0.1] 

>12 .00 14 3 4. 2 0.  5.  1. 7 
AVG 

>  5  1  

120.00 15.39 7.80 5.53 0.15 37.58 5.90 8.46 0.70 
3 120.00 31.31 3.83 5.05 0.16 31.06 13.68 15.05 0.91 
4 120.00 19.23 6.24 4.82 2.58 1.87 4.19 1.60 2.62  

 
 5 0 .3 8.37 4 08 58.28 07 4 3.45 

   5.85   26.45   2.87 
1 120.00 0.21 70.34 7.79 0.04 90.61 5.03 1.79 2.82 
2 >  5  

>  
1  

[0.1-0.15] 

120.00 0.17 8. 3 0.  13 3 1. 9 
VG    587.84   44.91   7.00 

4 0.

120.00 0.24 06.97 7.82 1.03 7.57 82.07 8.39 9.78 
3 120.00 0.22 545.99 8.79 0.86 10.19 5.24 1.00 5.22 
4 17.11 0.20 590.17 8.59 5.23 1.64 >120.00 13.56 8.85  

 
 5 > 725.73 5 59 14.56 .2 5 8.33 

A

1 50.85 0.09 566.01 7.47 0.13 56.14 12.68 17.1 74 
2 7.41 0.08 91.82 7.10 0.19 38.35 >120.00 31.1 .86 
3 15.84 0.12 129.98 9.22 0.32 28.91 >120.00 33.79 3.55 
4 15.52 0.16 97.24 8.92 4.89 1.82 29.80 8.90 3.35

[0.15-0.2] 
 
 

5 

average    180.83   30.60   4.83 
1 8.70 0.32 27.41 6.87 0.15 47.39 >120.00 28.72 

0 3

 
 17.36 0.91 19.08 9.18 0.33 27.77 32.76 2.59 12.63 

4.18 
2 7.59 0.84 8.99 7.11 12.00 0.59 >120.00 17.92 
3 

4 7.08 0.20 34.63 6.29 4.88 1.29 >120.00 48.74 2.46  
 

5 

average      35.60   27.20   4.07

6.70 
8.53 2.23 3.82 6.89 0.18 39.29 >120.00 47.09 2.55 [0.2-0.25] 

 7.44 0.07 103.13 6.87 0.14 47.42 >120.00 26.83 4.47 
 

 

Whe and are uncorrelated, AMCKS is much better than CPLEX. When and are 

correlated, AMCKS is still better than CPLEX except for instances with 5% setup and 

both solvers take longer for instances with larger setup than those with smaller setup. 

AMCKS solves problems with 5%-10% setup in about one-third hour; when setup 

proportion is over 10%, AMCKS takes less than one hour. For problems with 10%, 15% 

n a c a c
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CPLEX failed to solve many instances in two hours. Though CPLEX 

can

e 

od 

f 

 for 

roportion has more effect on instances with uncorrelated 

relationship instances than other instances. In this paper, we only use a simple branch-

fixed. If a 

gorithm, e.g. the one developed by Martello et al. (1999) is used, the solution 

tim

Appendix A. The optimal objective of  is an upper bound on MCKS. 

If the optimal solution of MCKS is known, then we obtain the 

sets in the optimal solution of MCKS and the resource taken by 

and 20% setups, 

 obtain a near optimal solution, it can’t prove it is optimal in two hours, which often 

happens in many algorithms for integer programming.  

4.5. Conclusion 

MCKS can be used for project selection for a country or company. In this paper, w

use a branch-and-bound algorithm to solve the multiple-choice knapsack problem with 

setup. A linear knapsack problem is designed to give an upper bound on MCKS. We 

develop three dominance rules to simplify the process and save time to obtain an upper 

bound model. The rounded solution of the linear knapsack problem provides a go

incumbent for MCKS. For instances with N greater than 30, the heuristic is over 95% o

the optimal solution. Computational experiments show the algorithm’s effectiveness. 

Compared to CPLEX, the proposed algorithm obtains the optimal solution in less time

most instances. Setup p

and-bound algorithm for the knapsack problem when all setup variables are 

better al

e can be reduced.  

Proof.  

uLKP

{ | 1}i itS t y= = , 1,..i N=
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fam s e profit 1ily i is iw as well a  contribut d , ,..iprof it i N= with iw b≤∑  and th optimal

objective
N

iprofit∑ .  

1

N

i=
e  

=

For the period set , there is c c t

1i

i iijS ijt iS max{ , }S ,
i

i

iS it
t S

f f
∈

=∑ , and
iiS i id S= d . Using = ∈

pseudo variables ijx′ and , formulate a linear knapsack problem with setup iy′
iSLKP by 

these coefficients: 

,

1,.. ,

0 1.

i

k k

i

k

n

ijS ij iS i
j

n

ij ij iS i i
j

ij ii

i

Max c x f y

a x d y w

x y j n

y

=

=

′ ′+

′ ′+ ≤

′ ′≤ =

′

∑

∑  

Since we know the optimal solution of MCKS, se t

1

1

,

. .s t

0 1,.. ,ij ix j n≥ =

′≤ ≤

t
1

T

i i
t

y y
=

′ = ∑ and
1

T

ij ijt
t

x x
=

′ = ∑ 1,.. ij n= , 

so that iy′and ijx′ are a feasible solution of
iSLK know 

1 1
i iijS ij ijS i

j j t
c x c x

= = =

′ =∑ ∑ ∑
1

it
t

P . We 

1 1

in n nT T

jt ijt ijt
t j

c x
= =

≥∑∑ and
1

i i

i

T

iS i itf y f′
n

y
=

= ∑ , thus
1

k kijS ij iS i i
j

c x f y profit
=

′ ′
i

+ ≥

Because

∑  . 

( )
iiS iF w is the optimal objective of

iSLKP , then ( )
iiS i iF w profi≥ t . The linear 

knapsack problem obtained from is  ( )i iF w
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1

'

1

'

i

ij ij
j

n

ij
j

Max c z

a

=

=

∑

∑
 

D ne its solution for this problem

'

'

. .

in

s t
'

0 1, 1..

ij i

ij i

z w

z j n

≤

≤ ≤ =

efi  is iZ . Repeating this process f

i

or all families, 

i 1

N

Z
=

fe

. .

0 1, 1,.. 1,..

i

ij ij
j

nN

ij ij

ij i

Max c z

s t

a z b

z i N j n

=

≤

≤ ≤ = =

∑∑

∑∑
 

easible solution is

∪ is a asible solution for uLKP  

'
inN

i=

'

'

1 1

'

1 1

'

i j= =

and its objective of this f ( )i i
i

N

F w ich is les  than the optimal 

ective of LKP e i iS i iF w profit≥ ≥ , the
i=

Appendix B. The rounded solution of  corresponds to a feasible solution of MCKS 

in the brea and the corresponding profit 

obtained by the family is . For all pseudo variables n

∑ wh s

obj u . Sinc (iF w n iprofit∑ is less than the optimal 

objective of uLKP . 

 ) ( )
i

1

N

uLKP

Proof.   

k solution isAssume resource taken by family i iw

iobj 1,.. ii iz z ′ , there is 1

1

ij ij

ij ij

c c
a a

+

+

′ ′
≥′ ′ . 
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If for al  then as g

rounded solution, and k , then the coefficients of z comes from

si n all variables of family i to zero. If 1ikz = in the 

k

0ijz = l '1,.. ij n= ,

0ijz j= > i kp and 1kp − in 

point set by x and yiP 1. .ik k ka p x p −′ = − 1. .ik k kc p y p −′ = − . On the piecewise 

function iF , .k ip x w= and .k ip y obj= . Assume this point kp comes from the break points of 

c wise functiopie e n
kiSF .  

kiSF corre ponds to a lines ar knapsack problem , but 
kSLKP

this
kSLKP is the transformation of a linear knapsack problem with setup LKP

kSS  

iS i

n

ij ij iS i
j

ij ii

ij i

Max c x f y

s t

a x d y b

x y j n

x j n

y

=

′ ′+

′ ′+ ≤

′ ′≤ =

′ ≥ =

′≤ ≤

∑

∑  

Based on Bulfin’s algorithm for linear knapsack problem with setup, the variables 

1
ijS ij

j=

0
1

,

. .

,

1.. ,

0 1.. ,

0 1.

i

k k

i

k

n

i

kSLKPS can be separated into two set 1{ ,.. }i itXM x x′ ′= and }1{ ,..
iit inXT x x+′ ′= . If is the 

reak point of

ijzin

first b
kiSF , then set 1 1,..ik k t′ = =  andx 1 1,..ik ix k t n′ = = + ; else 

set 1 1,... 1ikx k j t′ = = + − .  If 1ikx′ = , let 1ijrx = and 0iry = if Smax{ | }ijr ijt kc c t= ∈ ; else 

set 0,ijr kx r S= ∈ . Then and
1

i

k k

n

ijt ijt it it i
t S j t S

c x f y obj
∈ = ∈

+ =∑∑ ∑
1

i

k k

n

ij ijt i it i
t S j t S

a x d y w
∈ = ∈

+ =∑∑ ∑

asible integer solution of MCK

. Repeat 

this process to all families, and we can obtain a fe S with 

e rounded solution’s objective ofthe objective the same as th u . LKP
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Appendix C. Three Dominance rules 

Let us introduce two notations: 
 

' 1
0

1

. .( ) . .
j j

j j

p y p yF b p x p x
+

+

−
= − , : The derivative function of piecewise 

eak points o and

0 0b ≥

function F . , 1,...jp j n= are n br f F 0 (0,0)p = . 1. .j jp x b p x+≤ < . 

Ifb p>0 .n x , then 0( ) 0F b′ = . 

{ | 1,.. , (0)}k
k

ijS
k i

ij

c
J j j n Fa ′= = ≥ iS : The job set to form the first line between 0p and 1p  

of
kiSF . , 1,..kS k K= are all subsets of for family

Before proving Dominance rule 1, 2 and 3, we need the following Lemma: 

Lemma 1. Le  be three different subsets of for famil , and l

{1,.. }T i . 

t , ,r k lS S S {1,.. }T y i r kS S S∪ = , 

r kS S φ∩ = . If , then(0) (0)
r kiS iSF F′ ′> (0) (0)

r liS iSF F′ ′≥ . 

Proof. 

Case 1: If there is ( )l r sj J J J∈ ∩ ∪  

(1)  If , 

then

l rijS ijSc c=

(0)l
l

ijS
iS

ija
c

F ′≥ , but (0)l
r

ijS
iS

ij

c
Fa ′< , thus

li iSF F(0) (0)
rS′ ′> . 

(2) If , 

then 

l kijS ijSc c=

(0)l
l

ijS
iS

ij

c
Fa ′≥ , but (0)k

k

ijS
iS

ij

c
Fa ′< , thus (0) (0) (0)

l k riS iS iSF F F′ ′ ′< < . 

l rJ J J⊆ ∪ s , then define ijS

,
ll ijSJ c c=

{ | , }
l r

r
l l ijSJ j j J c c= ∈ =  Case 2: If

an { | }
k

k
l ijSJ j j= ∈ thend



 

[( )]
r kiS ijSf c+ +∑ ) (

(0) ( ))
r k

r k
l l

r k
r k
l l

iS ijS
j J j J

iS
iS iS ij ij

j J j J

f c
F d d a a

∈ ∈

∈ ∈

+
′ =

+ + +

∑
∑ ∑ . 

Since

l
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( )
r riSf c+

(0)( )
r
l

r
r

r
l

ijS
j J

iS
iS ij

j J

Fd a
∈

∈

′≤
+ ∑ in the same way, 

∑

( )

( )
k

k
k
l

iS ijS

iS
j J

f c

d a
∈

+

+

∑
∑ (0)

kk
l

k

j J
iS

ij
F∈ ′≤ . Therefore, 

r
(0) max{ (0), (0)} (0)

l r kiS iS iS iSF F F F′ ′ ′ ′≤ =  

 

Le ma 2. 1,m   If ..i itd f t T= = = ,and there are two sets and with 

) (
r kiS iSF b≤ and

 0, 0, rS kS r kS S⊂ , 

then ( )F b0 0
' '

0 0 0
1

( ) ( ),0
i

r k

n

iS iS ij
j

F b F b b a
=

≤ ≤ ≤∑ . 

Proof.  

 A: 

0 1, 1,..

i

r r

r

n

ijS ijS
j

n

ijS i

Max c x

Consider knapsack problem

1

  
. .s t

0
1

,
rij ijS

j
a x b

x j n

=

≤

≤ ≤ =

∑

is the optimal objective of the linear knapsack problem A with right-hand side

Consider the knapsack problem B: 

       

=
∑

0( )
riSF b 0b . 
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0 1, 1,..

k k

i

k

k

ijS ijS

n

ij ijS
j

ijS i

a x b

in

Max c x
1

. .
j

s t
=
∑

0
1

x j n
=

≤

≤ ≤ =

 

∑

0( )
kiSF b is the op imal  linear knapsack problem B with right-

sid 0b .Since r kS S⊆ , then
r kS ijc

t  objective of the hand 

Sce ij ≤ a s le space is same with B’s, 

iS

nd A’s fea ib

thus iSF 0 0( ) ( )
r k

b F b≤  . 

set

Let 

0{ | 1,.. , ( )}r
r

ijScJ j F b′ ′r i iS
ij

j n a= = min{ , }r r r

r

ij S ijSc c
j J ′= ∈ then≥ and r

ij ija a

0( r r
r

r

ij S
iS

ij
F b a′  ; 

set

)
c

=

0{ | 1,.. , ( )}kijSc
J j j n F b′ ′= = ≥

kk i iSa and
ij

min{ , }k k k

k

ij S ijS
k

ij ij

c c
j Ja a ′= ∈ then

0( )
k

ij
iSF b′ k k

k

S

ij

c
a= . 

Then ''
r kJ J⊄ . 

Case 1: If J J′ ′= ,  k r

if r kj j= , then since , thus ; 

if

r r k kij S ij Sc c≤ ' '
0 0( ) ( )

r kiS iSF b F b≤

r kj j≠ , then k k k r r r

k k

ij S ij S ij S

ij ij ij

c c c
a a≥ ≥

r
a , thus

Case 2: If ,  

' '
0 0( ) ( )

r kiS iSF b F b≤ . 

k rJ J′ ′≠
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 jo 0 0( ) ( )kr
r k

ijSijS
iS iS

ij ij

ccF b F ba a′ ′≤ ≤ ≤b rj J ′∈ but kj J ′there is a , thus∉ . 

 

, letf r kS S⊂ rp kpLemma 3. I and be the first points except (0, 0) on piecewise 

functions
riSF , and

kiSF respectivel max{ . , }p x p= . Then forb b> , 

' '

y.  Define .r sb x

Proof. 

If

1 0 1

0 0( ) ( )
r kiS iSF b F b≤ . 

0
1

*
in

k i i
j

b S d a
=

≥ +∑ j , then ' '
0 0( ) ( ) 0

r kiS iSF b F b= = . 

If 0
1 1

r i ij k i ij
j j= =

0riS* *
i in n

S d a b S d a+ ≤ < +∑ ∑ , then ( )F b' 0= , '
0( ) 0F b > . 

If

kiS

0
1

*
in

r i
j

b S d a
=

< +∑ ij , then assume '
0( ) r r

r
r

ij S
iS

ij

c
F b a= , ' ij Sc

0( ) k k
k

k
iS

ij
F b a= .  

Since * *r i kS d S d< i , then 0 0* *r i kb S d b S d− > − i .  Then for the linear knapsack 

problem  

 

1

0
1

. .

* ,i∑
0 1, 1,..

i

r r

r

r

n

ijS ijS
j

n

ij ijS r
j

ijS i

c x

s t

a x b S d

x j n

=

=

≤ −

≤ ≤ =

∑

 

and its piecewise function

Max

riSF , there is 0( * ) r r
r

r

ij S
iS r i

ij

c
F b S d a′ − = . 

For the linear knapsack problem  



 

1

0
1

. .

*

0 1, 1,..
kijS i

b S d

x j n

−

≤ =

 

a

i

k k

i

k

n

ijS ijS
j

n

ij ijS k i
j

Max c x

s t

a x

=

=

≤

≤

∑

∑

nd its piecewise function
kiSF , there is 0( * ) k r

k
k

ij S
iS k i

ij

c
F b S d a′ − = . 

Based on lemma 2, there is 0 0( * ) ( *
r kiS r i iS r iF b S d F b S d′ − ≤ − ) . 

Since piecewise function is concave function, then 0 0( * ) ( *
k kiS r i iS k iF b S d F b S d− ≤ − . )

Therefore k kr r

r k

ij Sij S

ij ij

cc
a a≤ , so (

kiSF F

Lemma 4. Assume . If 

' '
0 0( ) )

r iSb b≤ . 

 

r kS S⊂ (0) (0)
r kiS iSF F′ ′> , then there is at most one intersection 

of and except (0,0); if
r kiSF iSF (0) (0)

r kiS iSF F′ ′≤ , then dominates . 

Pro

kS rS

of.  

Case 1: (0) (0)
r kiS iSF F′ ′>  

Assume
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rp kp are the first points respectively on piecewise function
riSF and

kiSFand . If 

there are two intersections 1 2,p p  of
riSF and , then there 

kiSF

is 1 1( . ) ( . )
r kiS iSF p x F p x′ ′< and 2 2( . ) ( . )

r kiS iSF p x F p x′ ′> . Since
riSF and

kiSF are concave 

piecewise functions, there is 2. max{ . , . }r kp x p x p x> . But based on lemma 3, 

2 2( . ) ( . )
r kiS iSF p x F p x′ ′> can not be true. 

Therefore, there is no second intersection 2p . 



 

Case 2: (0) (0)
r kiS iSF F′ ′< . 
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If . .r kp x p x≤ , there is no intersectio between (0n p , .kp x ).  If there is an intersection 

outside of (0, .kp x ), then there is 1 1( . ) ( . )
r kiS iSF p x F p x′ ′> that is impossible based on lemma 

3. 

If . .r kp x p x> : 

Define 1
r kJ J J= ∩ . Since n, 1,..

r kijS ijS ic c j≤ = , then kr ijSijS

ij ij

cc
a a≤ . We 

have
1

1

1

( . ) ( . )
k k

k
k r

k

k

iS ijS
j J J

iS k ij iS k
j J

iS ij
j J J

f c
F p x a F p x

d a
∈ ∪

∈

∈ ∪

+
′ ′+ ≥ ≥

+

∑
∑

∑

1

.k ij r
j J

and

p x a p
∈

+ ≥∑ x , thus 0 0( ) ( )
k riS iSF b F b> for x0 (0, . )rb p∈ . If there is an intersection p  

outside of (0, . )rp x , then  that is impossible based on lemma 3. 

Case 3:

If

( . ) ( . )
r kiS iSF p x F p x′ ′>

 (0) (0)
r kiS iSF F′ ′=  

. .r kp x p x≤ , 0 0 0( ) ( ), (0, . )
r kiS iS rF b F b b p x= ∈ , and 

0 0 0( ) ( ), ( . , . )
r kiS iS r kF b F b b p x p x< ∈  . If there is an intersection  outside ofp (0, . )kp x , 

then  that is impossible based on lemma 3. ( . ) ( . )
r kiS iSF p x F p x′ ′>

. .r kp x p x> can not happen since if there is 1
r kJ J J= ∩ , then 

1(0),k r
k

ijS ijS
iS

ij ij

c c F ja a ′≥ ≥ ∈ J , thus should be included into . Then1J kJ .rp x can not be 

larger than .kp x .  



 

 89

Dominance rule 3. If , and
k
, then dominates

Proof.  

For , there is , thus

r kS S⊂
1 1

i i

r r k

n n

ijS iS ijS iS
j j

c f c f
= =

+ > +∑ ∑ rS kS . 

0
1

i

r

n

ij iS
j

b a d
=

= +∑ 0 0( ) ( )
r kiS iSF b F b> (0) (0)

r kiS iSF F′ ′>  based on case 2 of 

lemma 4. Based on case 1 of lemma 4, there is at most one intersection p  

with ( . ) ( . )F p x F p x′ ′< , 0.
r kiS iS p x b< , thus 0 0( ) ( )F b F b> can not be true. Thus there is no

intersection of
r

r kiS iS  

iSF and
kiSF , and dominates

r k r k

set lS with ,r l k lS S S S

irS ikS . 

 

Dominance rule 4. If and dominates , then for another S S⊂ S S

φ φ∩ = ∩ = , r lS S∪  dominates k lS S∪ . 

Proof.  

Define variabl ijS ijS ijSc c c∆ = −
k

e
r l r

,
k lijS ijS ijSc c c∆ = − . Since 

r kijS ijSc c≤ , then 

kijS ijS ijS ijS

r l r r r
j j j= = =

r kijS ijSc c∆ ≥ ∆ ,and 
1 1
( | 0) ( | 0)

n n

j j
c c c c

= =

∆ ∆ > ≥ ∆ ∆ >∑ ∑ . 

We know: 

( | 0)
n n n

ijS S ijS ijS ijSc c c c∪ = + ∆ ∆ >∑ ∑ ∑  

1 1 1
( | 0)

k l k k kijS S ijS ijS ijS
j j j

c c c c∪
= = =

= + ∆ ∆ >∑ ∑ ∑  

Since
r l

r l

iS S it
t S S

r k

1 1 1

n n n

f f∪
∈ ∪

= ∑ >
k l

k l

iS S it
t S S

f f∪
∈ ∪

= ∑ , we can 

n n

obtain ijS S iS S ijS S iS S
j j

c f c f∪ ∪ ∪ ∪
= =

+ ≥ +∑ ∑ . Because l , 
1 1

r l r l k l k l r l kS S S S∪ ⊆ ∪



 

then rS dominates kS by dominance rule 3. 

 

Dominance rule 5. If r kS S⊂ , 0f f
r kiS iS= = , 0d d

r kiS iS= =  then for another period 

set ith ,S S S SlS w
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l r l kφ φ∩ = ∩ = , dominatesl kS S∪ r lS S∪ . 

Proof.  

Since f f= = , d dr k r kiS iS r kiS iSS S⊂ , 0 0= = , 

then ,
r l k l r l k liS S iS S iS S iS Sf f d d∪ ∪ ∪ ∪= = , ija keeps same, and

r l k lijS S ijS Sc c∪ ∪≤ , then for any 

resource 0b  there is 0 0( ) ( )
r l k liS S iS SF b F b∪ ∪≤ , thus l kS S∪ dominates r lS S∪ .  
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This research investigated three integer programming models which can be applied to 

order acceptance in make-to-order production and regional project selection in multiple 

periods: the knapsack problem with setup (KPS), the multiple knapsack problem with 

setup (MKPS) and the multiple-choice knapsack problem with setup (MCKS). The 

common characteristics of all three models are: jobs belong to different families; setup 

time and setup costs are incurred if a job is processed; if two jobs from the same family 

are processed sequentially, no setup is required; resource is limited and some jobs can be 

selected to be manufactured. The objective is to maximize the sum of profits of processed 

jobs.  

 KPS can be used in order acceptance of single period. The model selects the jobs to 

be processed for maximizing the total profit. MKPS, as an extension of KPS, is used in 

order acceptance of multiple periods. Besides selecting the jobs to be processed, it also 

decides the periods which the selected jobs are arranged in. Jobs’ coefficients vary in 

different periods, but the processing time stays the same. In MKPS, jobs’ profits affect 

job’s production schedule and the chosen schedules decide the job’s profit. The two 

factors are balanced by maximizing the total profit under a resource limit. MCKS is 

applied to regional projects selection in multiple periods, and it can also be used in order 

acceptance of multiple periods with a non-renewable resource.  

Ⅴ. CONCLUSIONS 

 



 

Branch-and-bound algorithm is used to obtain the optimal solution for all three models. 

The success of the algorithm relies on the effectiveness of the upper bound and lower 

bound in branching and the effort to obtain them. Unlike the usual approaches of relaxing 
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some constraints of a formulation to obtain an upper bound, we design a linear knapsack 

As the simplest among the three models, KPS can be viewed as a special case of the 

oth

near relaxation to a linear knapsack problem. We show a linear knapsack problem 

co , and the concave piecewise function defines 

Multiple-choice constraints are on the setup variables in MKPS to guarantee the jobs 

mily be processed in a single period. In MCKS, multiple-choice constraints 

pproaches to obtain the linear knapsack problems which give the upper bounds on 

MK e obtain a concave piecewise function for each family 

seudo variables as well as their profit and processing coefficients are defined from these 

pie truct the linear knapsack 

omplex than those in MKPS. We develop three dominance rules to simplify it.  

KPS or MCKS is rounded to 

CKS. A greedy algorithm is developed to obtain a lower bound on MKPS.  

problem for each model, and its LP solution is the upper bound on the model. 

er two. Bulfin (1988) gave an algorithm for its linear relaxation, which transforms the 

li

rresponds to a concave piecewise function

the variables as well as their coefficients in the linear knapsack problem. 

of the same fa

are on the job variables so that a family’s jobs can be processed in multiple periods. 

A

PS and MCKS are similar. W

with the help of two dominance rules for linear multiple-choice knapsack problem. 

P

cewise functions. We use these pseudo variables to cons

problem. The process to obtain the concave piecewise functions in MCKS is more 

c

If the LP solution of the linear knapsack problem for 

integers, we obtain an integer solution that corresponds to an incumbent of KPS or 

M
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fter 

ll setup variables are fixed, the problem change to a (several) knapsack problem(s). A 

sim e these knapsack problems. The 

e algorithms for all three models arrive at the optimal solution in less time for most 

ins

Branching is done in two stages. The first stage is to branch on setup variables. A

a

ple branch-and-bound algorithm is used to solv

computational experiments show these algorithms’ effectiveness. Compared to CPLEX, 

th

tances.  
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