

KNAPSACK PROBLEMS WITH SETUP

Yanchun Yang

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
August 7, 2006

KNAPSACK PROBLEMS WITH SETUPS

Except where reference in made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory

committee. This dissertation does not include proprietary or
classified information.

Yanchun Yang

Certificate of Approval:

_________________________ _________________________
Saeed Maghsoodloo Robert L. Bulfin, Chairman
Professor Technology Management Professor
Industrial and Systems Engineering Industrial and Systems Engineering

_________________________ _________________________
Jorge Valenzuela Stephen L. McFarland
Associate Professor Dean
Industrial and Systems Engineering Graduate School

 iii

KNAPSACK PROBLEMS WITH SETUP

Yanchun Yang

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon request of individuals or institutions and at their expense.

The author reserves all publication rights.

 Signature of Author

 Date of Graduation

 iv

VITA

Yanchun Yang, daughter of Jie Yang and Jianmei Zhao, was born on April 14, 1977,

in Jiagedaqi Daxinganling, Heilongjiang Province, P.R.China. She graduated with the

degrees of Bachelor of Science (Industrial Engineering) in 1998 and Master of

Management Engineering in 2001, both from Northeastern University, Shenyang,

P.R.China. She entered Graduate School, Auburn University, in January, 2003.

 v

DISSERTATION ABSTRACT

KNAPSACK PROBLEMS WITH SETUP

Yanchun Yang

Doctor of Philosophy, August 7, 2006
(MISE, Northeastern University, China, 2001)
(B.S., Northeastern University, China, 1998)

107 Typed Pages

Directed by Robert L. Bulfin

This research studies three integer programming models which can be applied to order

acceptance in make-to-order manufacturing or regional project selection in multiple

periods. All three models are the variations of the binary knapsack problems and they are

called the knapsack problem with setup (KPS), the multiple knapsacks problem with

setup (MKPS) and the multiple-choice knapsack problem with setup (MCKS),

respectively. In all three models, jobs belong to different families and some variables

represent setup for a family of jobs: if a setup is not done, no jobs in this family can be

processed; if two jobs are processed sequentially, no setup is required.

 vi

Branch-and-bound algorithms are used to obtain the optimal solutions to all three

models. Setup variables are branched on. After all setup variables are fixed, the models

are transformed to a (several) knapsack problem(s). For each model, an independent

linear knapsack problem is developed to give an upper bound. When a setup variable is

fixed during branching, we update certain variables in the linear knapsack problem. The

optimal objective of the updated linear knapsack problem is an upper bound on the

generated sub-problem. The rounded LP solution of the linear knapsack problem for KPS

or MCKS corresponds to an incumbent of KPS or MCKS. A greedy algorithm is

developed to obtain a lower bound on MKPS. Computational experiments show the

effectiveness of these algorithms.

 vii

 Style manual or journal used Bibliography conforms to those of European Journal of

Operational Research

Computer software used ANSI C, AMPL, Microsoft Office Excel and Microsoft

Office Word

 viii

TABLE OF CONTENTS

LIST OF TABLES... xi

LIST OF FIGURES .. xii

I. INTRODUCTION... 1

1.1. Objectives and significance .. 1

1.2. Mathematical Model... 3

1.2.1. Order acceptance .. 3

1.2.2. Regional project selection with a fixed budget .. 5

1.3. Basic research method .. 7

1.3.1. Cutting Plane .. 7

1.3.2. Dynamic Programming .. 7

1.3.3. Branch and Bound .. 8

1.4 Relaxation Method... 8

1.4.1. Linear Relaxation ... 8

1.4.2. Surrogate Relaxation .. 9

1.4.3. Lagrangean Relaxation... 10

References.. 11

Ⅱ. KNAPSACK PROBLEM WITH SETUP .. 12

Abstract.. 12

2.1. Introduction... 12

2.2. Literature survey... 14

2.3. Background... 16

2.4. Solution algorithm .. 19

2.4.1. Fixing variables .. 19

2.4.2. Bounding .. 20

2.4.3. Choosing a new sub-problem ... 20

 ix

2.4.4. Heuristic ... 21

2.5. Computational experiments .. 21

2.6. Conclusions... 26

Appendix A. is greater than 27 0ir 1, +tir

References.. 27

Ⅲ. MULTIPLE KNAPSACK PROBLEM WITH SETUP.. 29

Abstract.. 29

3.1. Introduction... 29

3.2. Linear knapsack problems and knapsack problem with setup............................ 33

3.2.1. Linear knapsack problem ... 33

3.2.2. Algorithm for LKPS ... 34

3.2.3. An upper bound on MKPS ... 36

3.3. Feasible solution (lower bound) ... 39

3.4. Branch-and-bound algorithm.. 40

3.4.1. Variable order ... 40

3.4.2. Fixing .. 41 rky

3.4.3. Choosing a new sub-problem ... 45

3.5. Computational experiments .. 46

3.6. Conclusions... 54

Appendix A. The optimal objective of K1 is the upper bound on MKPS 55

References.. 58

Ⅳ.MULTIPLE-CHOICE KNAPSACK PROBLEM WITH SETUP 59

Abstract.. 59

4.1. Introduction and literature review .. 59

4.2. An upper bound and feasible solution .. 63

4.2.1. Linear knapsack problem ... 63

4.2.2. Transform a linear knapsack problem with setup to a linear knapsack

problem ... 64

4.2.3. The algorithm for the upper bound and feasible solution......................... 66

4.3. Fixing ... 70 ity

 x

4.3.1. Fixing to one... 70 ity

4.3.2. Fixing to zero.. 71 ity

4.3.4. Choosing a New Sub-problem.. 72

4.4. Computational experiments .. 73

4.5. Conclusion .. 79

Appendix A. The optimal objective of is an upper bound on MCKS. 79 uLKP

Appendix B. The rounded solution of corresponds to a feasible solution of

MCKS.. 81

uLKP

Appendix C. Three Dominance rules .. 83

References.. 90

Ⅴ. CONCLUSIONS... 91

BIBLIOGRAPHY... 94

LIST OF TABLES

Table 2.1. Solution time (seconds) for AKPS... 23

Table 2.2. Comparing solution time (seconds) of CPLEX and AKPS 26

Table 3.1. Solution time (minute) for AMKPS for 5 periods ... 47

Table 3.2. Solution time (minute) for AMKPS for 7 periods ... 48

Table 3.3. The lower bound, upper bound and optimal solution 51

Table 3.4. The comparison of solution time (Minute) between AMKPS and CPLEX 53

Table 4.1. Solution time (minutes) with 10N = and 74 ~ [10,30]in

Table 4.2. Solution time (minutes) with 30N = and 75 ~ [30,50]in

Table 4.3. Solution time (minutes) with 50N = and 75 ~ [50,70]in

Table 4.4. The solution time (minute) comparison between AMCKS and CPLEX......... 78

 xi

LIST OF FIGURES

Fig. 2.1. Comparison of uncorrelated instances with similar total variables number....... 24

Fig. 2.2. Comparison of correlated instances with similar total variables number........... 24

Fig. 3.1. Solution time for average 45 jobs per family and 5 periods............................... 49

Fig. 3.2. Solution time for average 65 jobs per family and 5 periods............................... 49

Fig. 3.3. Solution time for average 85 jobs per family and 5 periods............................... 50

Fig. 3.4. Solution time for average 45 jobs per family and 7 periods............................... 50

Fig. 3.5. Solution time for average 65 jobs per family and 7 periods............................... 50

Fig. 3.6. Solution time for average 85 jobs per family and 7 periods............................... 51

Fig. 4.1. Solution Time for 50, 15N T= = and .. 76 ~ [50,70]in

Fig. 4.2. Solution Time for 50, 20N T= = and ... 76 ~ [50,70]in

 xii

I. INTRODUCTION

1.1. Objectives and significance

Make-to-order production is playing an increasingly important role in our economy,

partly due to the Internet and manufacturing technology advances. In make-to-order

production, price is dictated not only by cost, but also by the customer’s expectation as

well. Some customers are willing to pay a higher price for a short lead-time while others

are willing to wait for their products in exchange for lower prices. Thus prices can be

related to a product’s delivery date. Price, schedule and the total profit have very complex

connections. These connections are of extreme interest to businesses today.

 1

N

Assume there is a manufacturing company. At time T, they receive some orders (jobs),

which belong to families. Family i ,N 1,..i = , has jobs. Also assume that these jobs

should be produced in the next planning period. The company’s manufacturing capacity

is fixed and can’t be changed in the short term. Setup cost and setup time occurs when

manufacturing changes from a job in one family to another job from a different family.

There is no setup between jobs of the same family. The company operates with a batch

delivery policy; products that are manufactured in the same period have the same

shipping date. This is a common scenario in many manufacturing companies. Then the

company needs to decide how to choose orders to maximize the total profit. In this case, a

single knapsack model with setup is used to solve this problem.

in

To extend this problem, jobs can be manufactured inT different periods, but a family

can only be produced in a single period. Here the price charged for the product many

relate to the customer’s desired due date; the price depends on the job’s completion time.

The price could be determined by this way: there would be a base price for a job

delivered at the customer’s desired due date; there will be “earliness” and “tardiness”

penalties for other delivery dates. These prices would depend on the deviation from the

desired due date and each customer’s tolerance for this deviation. Sometimes, the price

could be increased for urgent jobs; or the price could be decreased if the customer agrees

to allow more time for delivery. So in this system, prices are changed based on the

product’s actual delivery time. The company might negotiate the price based on customer

desires and company capabilities. Before making a production schedule, we should know

the prices of jobs as a function of different completion dates.

With the added price variability, this model is more complex than typical scheduling

models in make-to-order manufacturing. The company has to consider the marginal profit

for different jobs, the current production capacity, and each family’s setup cost and time

before choosing orders and deciding the job assignment to maximize its total profit. A

multiple knapsack problem with setup (MKPS) model can solve this problem.

In above scenario, if production inT periods need the same non-renewable material

and jobs from the same family can be manufactured in multiple periods, then a multiple-

choice knapsack problem with setup (MCKS) can model this problem. MCKS is more

helpful in an organization’s decision making on a fixed budget to invest a number of

projects in multiple areas in multiple periods. In order to do a project in an area, a project

 2

office must be set up. The organization would like to decide where to set up offices and

which projects to do to maximize net profit subject to this budget restriction.

1.2. Mathematical Model

1.2.1. Order acceptance

In make-to-order, if all orders have to be finished in one time period, a knapsack

problem with setup (KPS) can be used to solve the orders acceptance problem. In this

situation, a company will decide which jobs will be produced in this period.

Given this model:

 1 1 1

. .

inN N

ij ij i i
i j i

Max c x f y

s t
= = =

+∑ ∑ ∑

1 1 1

inN N

ij ij i i
i j i

a x d y b
= = =

+∑∑ ∑ ≤ (1)

1, ; 1,ij iix y j n i N≤ = = (2)

, {0,1} 1, ; 1,ij i i .x y j n i∈ = = N

)

 (3)

i -is index families,

j -is index jobs,

N -is the number of families,

in -is the number of jobs in family i ,

ijc -is the profit of job j in family , i

ija -is the time to process job in family i , j

if -is the setup cost for family i (0if < ,

 3

id -is the setup time for family i ,

b -is the time available for processing,

ijx -is one if job in family is produced, zero otherwise, j i

iy -is one if any job in family is produced, zero otherwise. i

Constraint (1) requires that the total time used by jobs and setups cannot exceed the time

available for production (resource other than time could also be considered). Constraints

(2) prohibit a job from being processed if it belongs to a family that has not been setup.

If jobs can be manufactured in multiple periods, and all items in same family should

be manufactured together in one period, then this model could be described as a multiple

knapsack problem with setup (MKPS):

1 1 1 1 1

. .

inT N T N

ijt ijt it it
t i j t i

Max c x f y

s t
= = = = =

+∑∑∑ ∑∑

 , (1)
1 1 1

1,..
inN N

ij ijt i it t
i j i

a x d y b t T
= = =

+ ≤ =∑∑ ∑

1, ; 1, ; 1,..ijt iitx y j n i N t T≤ = = = , (2)

1
1 1,..

T

it
t

y i
=

≤ =∑ N , (3)

, {0,1} 1,.. ; 1,.. ; 1,..ix y j n i N t∈ = = = T . (4)

ijtx -is 1 if the job of family i is arranged into period t , otherwise 0, j

ity -is 1 if some job of family i is arranged into period t , otherwise 0,

ijtc -is the profit of job of family in period t (), j i 0ijtc ≥

itf -is the setup cost for family in period t (i 0itf)< ,

 4

ija -is the processing time for job of family (), j i 0ija >

 5

0

0

id -is the setup time for family i (), id >

tb -is the available resource for processing in period t (). tb >

Constraint (1) requires that the total time used by jobs and setups cannot exceed the time

available in each period for production (resource other than time could also be

considered). Constraints (2) prohibit a job from being processed if it belongs to a family

that has not been setup. Constraints (3) guarantee setup of each family occurs once.

In this model, all jobs belong to different families. If a job is chosen, then setup

time and setup costs must occur. A job may be put intoT different periods, but the profit

is different in different periods. The objective is to maximize the sum of the profits of

accepted jobs.

N

1.2.2. Regional project selection with a fixed budget

Select projects which can be invested in multiple periods and in different regions to

maximize net profit. This model can be described as a multiple-choice knapsack problem

with setup.

1 1 1 1 1

. .

inT N T N

ijt ijt it it
t i j t i

Max c x f y

s t
= = = = =

+∑∑∑ ∑∑

1 1 1 1 1

inT N T N

ij ijt i it
t i j t i

a x d y b
= = = = =

+∑∑∑ ∑∑ ≤ , (1)

1,.. , 1,.. ; 1,..ijt it ix y j n i N t T≤ = = = , (2)

1
1 1,... , 1,..

T

ijt i
t

x i N j
=

≤ = =∑ n , (3)

, {0,1} 1,.. ; 1,.. ; 1,.. .ijt it ix y i N j n t∈ = = = T (4)

ijtc -is the profit of project in area in period t (), j i 0ijtc ≥

itf -is the setup cost for opening an office in area in period t (i 0itf ≤),

ija -is the investment needed for project in area (), j i 0ija >

id -is the investment cost to open an office in area (), i 0id >

b -is the budge available to invest (), 0b >

ity - is one if office is set up in area i in period t , otherwise zero,

ijtx -is one if project in area is done in period , otherwise zero, j i t

N -is the number of areas,

T -is the number of periods.

Constraint (1) requires the total budget used by all projects and setup office can’t exceed

the budget available. Constraints (2) prohibit a project done before the office in this area

is set up. Constraints (3) guarantee a project in an area only can be invested once.

Constraints (4) require the variables to be binary.

 6

 7

1.3. Basic research method

These three models are integer programs (IPs). For integer programming, branch and

bound, cutting planes and dynamic programming could be used to optimally solve this

class problem.

1.3.1. Cutting Plane

Cutting plane algorithm is an important and well-known approach to solve IPs. It is

one of the purest methods in polyhedral description algorithms and an alternative to

enumeration. Cutting planes redefines the problem again and again by adding constraints

until the problem is solved.

In practice, a successful cutting plane algorithm depends on the relaxation method of

the original problem, and the choice of cutting inequalities. There must be a family of

valid inequalities, which define any optimal point, and a relaxation that is tractable. In

fact when we add valid inequalities to the relaxation, we solve a series of relaxed

problems. If this series of problems are easy to solve, that is better. But for these three

models, we did not find such an algorithm for the relaxations. Therefore, cutting plane

does not appear to be our best choice. For further study of cutting planes, refer to Parker

and Rardin (1988).

1.3.2. Dynamic Programming

Dynamic Programming is not a specific algorithm, but we can use dynamic

programming theory to design an algorithm for these three models. As the number of jobs

increase, that algorithm becomes worse, and storage space will increase exponentially.

We do not choose to use dynamic programming.

1.3.3. Branch and Bound

Branch and Bound belongs to the strategy of “partial enumeration”, just like cutting

planes belongs to” polyhedral description”. These two strategies are often used to solve

IPs. Though they are non-polynomial in the worst case, they can be effective solution

procedures for IPs in practice.

In a branch-and-bound algorithm, if a variable is restricted to be binary, we can

separate the problem into two sub-problems: one with

x

0x = and the other with 1x = .

Successful applications for B&B need a good algorithm to calculate upper and lower

bounds for those sub-problems. The tighter the upper and lower bounds are, the more

effective the algorithm is. Only with strong bounds we can expect to fathom candidate

problems rapidly enough to avoid being overcome by the exponential growth in the

number of potential sub-problems.

Since we design a linear knapsack problem to supply the upper bound for each model

and the linear knapsack problem is easy to be solved by Danzig’s algorithm, B&B

becomes an attractive method to solve these problems.

1.4 Relaxation Method

1.4.1. Linear Relaxation

Linear programming is, without doubt, the most successful branch of optimization

(Parker and Rardin, 1988). Integer programming is usually changed to linear

programming by relaxing the integer constraints. Linear programs can be solved easily,

and may provide a good upper bound. Therefore, many integer program algorithms use a

linear relaxation to get the bound.

 8

In this paper, we relax the integer constraints of job variables for all three models.

Linear knapsack problems are designed to give the upper bounds on these relaxations.

1.4.2. Surrogate Relaxation

A surrogate constraint is a linear combination of other constraints. The following is an

example of surrogate relaxation:

1 1

1

. .

(1,...,),

{0,1}

m n

j ij
i j

n

j ij i
j

ij

Max c x

s t

a x b i m

x

= =

=

≤ =

∈

∑∑

∑

Then its surrogate relaxation is:

 9

i

1 1

1 1 1

. .

{0,1}

m n

j ij
i j

m n m

i j ij i
i j i

ij

Max c x

s t

v a x v b

x

= =

= = =

≤

∈

∑∑

∑ ∑ ∑

The original problem’s solution is also a feasible solution to the surrogate relaxation,

but the solution of surrogate relaxation is not necessarily feasible to the original problem.

The surrogate relaxation has a larger feasible space. The optimal solution to the surrogate

is an upper bound of the original problem. In this paper, surrogate relaxation along with

linear relaxation will be used in MKPS to obtain a good upper bound.

1.4.3. Lagrangean Relaxation

Lagrangean relaxation is also a common relaxation model. This is an example for

Lagrangean relaxation:

Give the model L1

1 1

1

. .

1,...,

{0,1}

i

i

nN

ij ij
i j

n

ij ij i
j

ij

Max c x

s t

a x b i N

x

= =

=

≤ =

∈

∑∑

∑

Its Lagrangean relaxation, L2, is:

1 1 1 1

()

. .
{0,1}

i in nN N

ij ij i i ij ij
i j i j

ij

Max c x u b a x

s t
x

= = = =

+ −

∈

∑∑ ∑ ∑

For each feasible solution of L1, we have

1 1 1 1 1 1

()
i in nN N N

ij ij i i ij ij ij ij
i j i j i j

c x u b a x c x
= = = = = =

+ − ≥∑∑ ∑ ∑ ∑∑
in

and all feasible solutions of L1 must be feasible solutions of L2, but not vice versa.

If we use Lagrangean relaxation, the knapsack problem’s good structure is destroyed.

Also experimentation shows the bound is not tight enough. Therefore, Lagrangean

relaxation is not used in this paper.

 10

 11

References

Parker, R.G., Rardin, R. L. 1988. Discrete Optimization. Academic Press, Inc. San Diego,
CA.

 12

Ⅱ. KNAPSACK PROBLEM WITH SETUP

Abstract

This paper studies a 0-1 knapsack problem with setup (KPS) where one set of

variables serves as the upper bound of another set of variables. An efficient algorithm

presented by Bulfin (1988) for the linear relaxation of this problem is applied to obtain an

upper bound. Branch and bound is used to obtain the optimal solution, and the upper

bound variables are branched before the remaining variables so KPS becomes a single

knapsack problem. Computational experiments show that this algorithm is effective when

objective and constraint coefficients are uncorrelated. This model can be used in order

acceptance of single period in make-to-order manufacturing.

2.1. Introduction

A company makes metal door frames based on customer orders. Door frames have

different heights, widths, jamb sizes and a number of hinges and lock configurations. An

order can be for a single frame or for 1,000 identical frames. To make a particular frame,

the production machinery must be set up for the parameters of that door. Some setups,

like the height of the door are easily made, while others, like jamb size require much time

and labor. The actual cost to produce a frame depends on what other frames are being

produced; if many identical frames are made, economies of scale result in a low cost. On

the other hand, if a single frame is made, the setup cost dominates and the cost is high.

Thus which orders are accepted, when they are produced and the price charged are

critical to profitability.

This scenario describes the basic order acceptance problem faced by all make-to-order

manufacturers. Orders consist of jobs, and similar jobs make up a family. Families share

a setup; if two jobs from the same family are processed sequentially, no setup is required.

The manufacturer plans production for the next period based on orders received. An order

can be accepted or rejected for production in this period.

This problem can be formulated as a knapsack with setup. Let

i index families

j index jobs

N be the number of families,

in be the number of jobs in family i ,

ijc be the profit of job j in family , i

ija be the time to process job j in family i ,

if be the setup cost for family i (0if)< ,

id be the setup time for family and i

b be the time available for processing.

The decision variables are:

ijx is one if job j in family is produced, zero otherwise and i

iy is one if any job in family is produced, zero otherwise. i

The model, which we call KPS, is:

 13

1 1 1

. .

inN N

ij ij i i
i j i

Max c x f y

s t
= = =

+∑ ∑ ∑

1 1 1

inN N

ij ij i i
i j i

a x d y b
= = =

+∑∑ ∑ ≤ (1)

1, ; 1,ij iix y j n i N≤ = = (2)

, {0,1} 1, ; 1,ij i i .x y j n i∈ = = N (3)

Constraint (1) requires that the total time to produce jobs cannot exceed the time

available. Constraints (2) ensure a job is processed only if it belongs to a family that has

been setup. Constraints (3) require the variables to be binary.

In the following section we give a brief literature review and discuss background used

in the solution methodology. In Section 2.3, we present an algorithm to solve KPS.

Computational results are given in Section 2.4. Finally, we give concluding remarks.

2.2. Literature survey

This linear relaxation of KPS was first introduced by Ham et al. (1985) as a cell

loading problem for a Group Technology production system. Bulfin (1988) developed a

polynomial algorithm for the linear relaxation of KPS. It is based on the ratio rule of

Dantzig (1957) for the linear knapsack problem.

Akinc (2004) derives an algorithm for a special case of KPS with no setup time, which

he called fixed-charge knapsack problem. His algorithm to solve the linear relaxation is

the same as the one in Bulfin (1988). He outlined a branch-and-bound algorithm to solve

the integer version and used this solution to compare heuristics. No solution times are

 14

given for the branch-and-bound algorithm. He states “This problem is solved as an LP. If

all are integer, then the optimal solution of P (the fixed-charge knapsack problem) is

obtained from the solution of the ordinary 0/1 knapsack problem that optimally allocates

the available capacity to all

iy

ijx for which 1iy = .” This statement is not true, as seen by the

following counter-example:

11 12 1 21 22 2

11 12 21 22

11 1 12 1

21 2 22 2

11 12 21 22

6 5 5 8
. .

3 4 4

,

,

, , , {0,1}

Max x x y x x y
s t

x x x x

x y x y

x y x y

x x x x

+ − + + −

+ + + ≤

≤ ≤

≤ ≤

∈

The LP’s optimal solution is 1 21, 1y y= = , and the objective is 13. Based on Akinc’s

claim, solving the integer knapsack with both setups included gives a solution value of 9,

with , and1 21, 1y y= = 11 1x = 12 1x = . But the solution 1 21, 0y y= = , and11 1x = 12 1x = has

objective 10. Hence, the optimal objective of knapsack problem when all are integer in

LP solution is not necessarily optimal for the integer model. This brings the results of his

paper into question.

y

Chajakis and Guignard (1994) consider the setup knapsack problem which is similar

to ours except the setup cost if and profit of job can be positive or negative. An extra

constraint is added to make sure a setup does not occur if no job in this family is put into

knapsack. This is unnecessary in KPS since is positive and

ijc

ijc if is negative. Chajakis

and Guignard transform the original problem to an equivalent formulation without setup

variables by two methods. Variables y are described by a Boolean union of x variables

 15

so that the constraints coupling and can be deleted and the problem becomes a

“knapsack problem” with a Boolean union of all variables. The second method is to

enumerate all non-dominated feasible solution for each family and define a pseudo-

variable corresponding to this solution. This transforms the setup knapsack to a multiple-

choice knapsack problem and only one pseudo-variable can be one in an optimal solution.

Dynamic programming is used to solve the first transformation; branch-and-bound and

dynamic programming are both used to solve the multiple-choice knapsack problem in

the second transformation. Instances with 5, 10, 20, 50, and 200 families are tested. A

maximum of 4000 total variables can be solved.

x y

2.3. Background

The knapsack problem and its many variants are well-studied. For a discussion, see

Martello and Toth (1990) and Dudzinski and Walukiewicz (1987). We discuss some

basic results that will be used later in this paper. Dantzig (1957) defined the linear

knapsack problem as:

 16

..

1

1

. .

0 1, 1,

n

j j
j

n

j j
j

j

Max c x

s t

a x b

x j n

=

=

≤

≤ ≤ =

∑

∑

If the variables are ordered by 1 2

1 2
... n

n

cc c
a a≥ ≥ ≥ a , he showed the optimal solution is

given by

1,jx j t= <

1

1

()
t

j
j

t
t

b a
x a

−

=

−
=

∑

0,jx j t= >

where .
1

min{ | }
i

j
j

t i a
=

= >∑ b

Similarly, we define the linear relaxation of KPS (LKPS), which is given by

1 1 1

1 1 1

. .

,

1, ; 1, ,

0 1, ; 1, ,

0 1, 1,.. .

i

i

nN N

ij ij i i
i j i

nN N

ij ij i i
i j i

ij ii

ij i

i

Max c x f y

s t

a x d y b

x y j n i N

x j n i N

y i N

= = =

= = =

+

+ ≤

≤ = =

≥ = =

≤ ≤ =

∑∑ ∑

∑∑ ∑

Define , 1,.. 1,..ij
ij i

ij

cr i N ja= = = n . Order jobs so that .
iniiii rrrr ,321 ≥≥≥

Let

1 1
0

11

max{ | 1, 2,.. }

i

i

t k

ij i ij i
j j

i it k

ij iij i
jj

c f c f
r k

a da d

= =

==

+ +
= = =

++

∑ ∑

∑∑
n for i N∈ .

Separate the jobs of family i into two sets, iXM = {1… } and it iXT = { +1.... }. Then

; a proof is given in the Appendix A.

it in

inititii rrrr ,2,1,0, ... ≥≥≥≥ ++

For family i , define:

 17

 18

n

n

n

'
1

1

'
1

1

'
, 1

'
, 1

'

1,..

1,..

1

i

i

i

i

t

i ij i
j

t

i ij i
j

i j t ij i i

i j t ij i i

i i i

c c f

a a d

c c j t

a a j t

n n t

=

=

− +

− +

= +

= +

= = +

= = +

= − +

∑

∑

Then LKPS can be reformulated as a classical linear knapsack problem, which we call

LBKP:

'

'

'

1 1

'

1 1

. .

0 1, 1,.. 1,...

i

i

nN

ij ij
i j

nN

ij ij
i j

ij i

Max c z

s t

a z b

z i N j

= =

= =

≤

′≤ ≤ = =

∑∑

∑∑

and solved by Dantzig’s ratio rule. If there is no fractional variable, KPS is also solved.

We know that, at most, one variable will have a fractional value.

Suppose , . Ifijz f= 0 1f< < ij t> , then job it j+ in family i will be the only fractional

variable KPS and all setup times and costs are considered. On the other hand, if 1j = ,

represents a virtual job composed of setup and jobs 1 through of family .

Here and

1iz it i

iy f= ijx f= , 1,.. ij t= so all are fractional in KPS and the setup time and cost

for family i and the processing time and profit of the first jobs are only partially

considered. If we round the fractional variable(s) to zero, then the current solution is

feasible to KPS, and can be used as a lower bound in the branch-and-bound algorithm.

it

2.4. Solution algorithm

To develop a branch-and-bound algorithm, we need to make several decisions. These

include how to fix variables, calculate bounds, choose the next sub-problem to explore

and obtain an initial incumbent solution. We discuss these now.

2.4.1. Fixing variables

We only fix setup variables to be zero or one in our main branch-and-bound scheme.

When a sub-problem is created with fixed to one, the right hand side is reduced

by and

iy

iy

id if is added to objective directly in the sub-problem. Then all , ijz 1,.. ij n= are

replaced by real variables 1,... ii inx x of family i . When a sub-problem is created with

fixed to zero, ,

iy

ijz 1,.. ij n= are removed from that sub-problem. Note that if all iy are

binary in the linear relaxation but some ijx is fractional, solving a knapsack problem over

the ijx with = 1 will not necessarily give the optimal solution as we showed in Section 2.

When all are fixed, we solve a knapsack over the remaining variables to obtain the best

solution with those variables fixed. If this produces a better solution than the incumbent,

it replaces the incumbent.

iy

iy

We order the variables by1iz 10 20 0... Nr r r≤ ≤ ≤ . If a variable has large , it is more

likely to be one in an optimal solution, while those with smaller ratios are more likely to

be zero. We choose either the first or last variable to fix first and work toward the middle.

This tends to keep the number of active branches small.

0ir

 19

2.4.2. Bounding

 20

n n

We use LBKP as an upper bound on KPS. It is a linear relaxation which allocates the

setup time and cost proportionally. It is initially solved by the ratio rule. When some is

fixed, it is easy to resolve the sub-problem. If we fix to one, we delete the pseudo

variables and insert the new variables

iy

iy

1,..i iz z 1,... ii ix x . This may require taking resource

from some free variables, which are chosen by the ratio rule to maintain optimality.

Similarly, fixing may free up resource, which is then allocated to free variables

using the ratio rule.

0iy =

2.4.3. Choosing a new sub-problem

When variables are fixed, two sub-problems are created. If a sub-problem’s upper

bound is no better than an incumbent solution it is discarded. When its bound indicates it

could contain a better solution to KPS we store it in a bucket. Each bucket contains sub-

problems with bounds that are about the same. LetUB be the best upper bound

and be the value of the current incumbent solution. If we wantINC K buckets, calculate

()UB INC
K

−∆ = .

Then bucket one will contain all sub-problems with upper bounds in the

interval[, bucket two[2,UB UB− ∆]],UB UB− ∆ − ∆ , and bucket K [,INC INC + ∆] .

Buckets can be updated as upper bounds or the incumbent change. When we choose a

new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-

empty bucket. This gives almost a “best-bound” strategy, but without the bookkeeping

overhead.

2.4.4. Heuristic

If the fractional valued variable of LBKP is , rounding down to 0 frees

resource. Allocate this resource to variables with processing time less than and

already has its family set up. Variables are chosen by the ratio rule until there are no more

variables which can use the remaining resource.

ijz ijz '
ij ija z

'
ij ija z

2.5. Computational experiments

Our experiments will be similar to previous experiments on knapsack problems.

However KPS has a setup requirement, so setup time and setup cost will be included in

this study. We wish to test our algorithm (AKPS) on a variety of problem instances to see

what problems can be solved. Instances will be generated by setting four parameters at

several levels. The parameters are the number of families, average number of jobs in a

family, proportion of setup time/cost relative to totals, and correlation between objective

function and constraint coefficients. All data will be integer valued.

The number of families will be fixed at 50 and 100. The number of jobs in family i is a

uniformly distributed integer in either [40, 50] or [90,100]. Setup cost and time is given

by

1
1

()
in

it ijt
j

f e c
=

= − ∑

2
1

()
in

i i
j

d e a
=

= ∑ j

1e and are uniform from [0.05, 0.15], [0.15, 0.25], [0.25, 0.35], and [0.35, 0.45]. 2e

 21

We choose and two ways. First and are both chosen uniformly from [10,

10000]; thus they are independent. Next, is chosen uniformly from [10, 10000], while

is chosen uniformly from [-1000, +1000], but if is less than 10 it is randomly

chosen from [10,100]; this introduces some correlation between the two coefficients.

a c ija ijtc

ija

ijtc ija ija ijtc

In previous knapsack studies, instances tend to be the hardest when the available

resource is roughly one half the sums of the constraint coefficients. Therefore, we choose

 uniformly from [,b
1 1

0.4*
inN

ij
i j

a
= =
∑∑

1 1
0.6*

inN

ij
i j

a
= =
∑∑].

For each level of the four factors we generate ten instances. AKPS was coded in C and

all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of

memory. In the following tables, we report the minimum (MIN), average (AVG) and

maximum solution time (MAX) in seconds. We also give the average ratio of initial

solution (INC) to initial upper bound (UB) and the average ratio of initial incumbent to

the optimal solution (OPT).

 22

Table 2.1.
Solution time (seconds) for AKPS

uncorrelated correlated

N in Setup LB/UB LB/OPT MIN AVG MAX LB/UB LB/OPT MIN AVG MAX

[0.05-0.15] 1.00 1.00 0.03 0.06 0.27 0.98 0.98 8.05 17.46 29.28

[0.15-0.25] 0.99 0.99 0.06 0.53 1.72 0.97 0.97 2.25 16.63 30.73

[0.25-0.35] 0.99 0.99 0.03 0.49 1.17 0.97 0.97 1.09 25.69 65.56 50

[40,60]

 [0.35-0.45] 0.97 0.97 1.25 2.62 4.89 0.98 0.98 12.83 22.97 56.5

[0.05-0.15] 1.00 1.00 0.08 0.09 0.12 0.98 0.98 5.69 26.47 63.72

[0.15-0.25] 0.99 0.99 0.05 0.87 2.94 0.97 0.97 11.30 28.46 55.75

[0.25-0.35] 0.98 0.98 0.09 2.67 5.28 0.98 0.98 2.77 34.52 82.31 50

[90,110]

 [0.35-0.45] 0.98 0.98 0.25 4.25 9.30 0.99 0.99 0.91 49.36 101.4

[0.05-0.15] 1.00 1.00 0.06 0.16 0.36 0.99 0.99 17.39 153.07 503.38

[0.15-0.25] 1.00 1.00 0.08 1.43 4.36 0.99 0.99 70.61 124.69 220.53

[0.25-0.35] 0.99 0.99 0.05 4.96 18.97 0.99 0.99 24.62 175.51 315.67 100

[40,60]

 [0.35-0.45] 0.99 0.99 2.41 14.34 29.62 0.99 0.99 22.11 131.22 305.85

[0.05-0.15] 1.00 1.00 0.14 0.24 0.39 0.99 0.99 121.86 385.44 877.19

[0.15-0.25] 1.00 1.00 0.28 4.02 7.50 0.99 0.99 58.69 *477.78 877.73

[0.25-0.35] 0.99 0.99 1.33 11.86 30.48 0.99 0.99 17.55 *468.23 953.29 100

[90,110]

 [0.35-0.45] 0.99 0.99 1.08 31.26 107.09 0.99 0.99 11.48 *484.35 784.72

Note: “*” shows 3 of these instances ran out of memory; AVG, MAX, and MIN are calculated based on the

remaining seven instances.

Our heuristic solution is outstanding. On average, it was less than 2% from the optimal

over the entire range of instances tested. Based on the data from Table 2.1, correlated

instances are more difficult to solve than uncorrelated instances. The setup proportion has

a stronger effect on uncorrelated instances than correlated instances. With the same

number of variables, AKPS works better when there are fewer families and the number of

jobs per family is large. This makes sense since fewer family variables simplify the first

stage of the branching. Instances with 50 families and an average of 100 jobs per family

are much easier than instances with 100 families and an average of 50 jobs per family.

Fig. 2.1 shows the solution time of instances with 50N = and an average of 100 jobs

per family and instances with 100N = and an average of 50 jobs per family with

 23

uncorrelated coefficients. With roughly the same number of variables, instances with

larger are more difficult. Also, solution time increases as setup proportion increases.

The incumbent solution gets worse as setup proportion increases. Fig. 2.2 gives the

solution time with correlated coefficients. Instances with fewer families still work better

than the others but solution time is not changed too much as setup proportion increases.

In correlated instances, setup proportion does not have as much effect on the incumbent.

N

uncorrelated

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00

[0.05-0.15] [0.15-0.25] [0.25-0.35] [0.35-0.45]

Setup

N=50
N=100

Time (Seconds)

Fig. 2.1. Comparison of uncorrelated instances with similar total variables number

correlated

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00
200.00

[0.05-0.15] [0.15-0.25] [0.25-0.35] [0.35-0.45]
Setup

N=50
N=100

Time (Seconds)

Fig. 2.2. Comparison of correlated instances with similar total variables number

 24

Chajakis and Guignard only test uncorrelated instances with coefficients from a small

range. (i.e. one set of instances obtains setup cost, profit from [-100, 100] and setup time,

processing time from [1,10]). Since the dynamic programming used in their paper has a

pseudo-polynomial worst case complexity, the large coefficients will increase the

difficulty of instances and need more storage without doubt. The second approach

presented fail in instances with total 4000 variables because of storage used up. The first

one can solve the same instances but need over 1000 seconds. They permit job profit

negative and setup cost positive in their model, which, to some extent, make instances

easier due to parts of variables having fixed to 0 by a preprocessing, which reduce the

size of the problem remarkably. The total number of variables after preprocessing is only

about 40%-60% of the original one. For instances with 4000 variables, only 2500

variables are left after this preprocessing.

We also compare AKPS with CPLEX 9.1 (called by AMPL). We test instances with

50 families and an average of 100 jobs per family. For each setup, we test five instances.

AKPS takes much less time for uncorrelated problems. CPLEX takes from 12 to 96 times

longer; as setup proportion increases the difference becomes smaller. When the

coefficients are not independent, the difference is much smaller. AKPS is only 3 to 6

times faster on average, and a few instances take less time on CPLEX.

We also compared some instances with 100 families and 50 jobs per family, but do not

present the data. CPLEX is better than AKPS when and c are correlated. But AKPS is

better than CPLEX if and are uncorrelated for instances with

a

a c 100, ~ [40,60]iN n= .

Therefore we suggest using AKPS when a and c are uncorrelated; if they are correlated

and there are over 50 families CPLEX might be better.

 25

 26

Table 2.2.
Comparing solution time (seconds) of CPLEX and AKPS

 Uncorrelated Correlated

SETUP AKPS CPLEX CPLEX/AKPS AKPS CPLEX CPLEX/AKPS

0.05 1.17 23.40 21.87 13.08 0.60

0.09 1.92 21.33 13.64 491.73 36.05

0.05 1.06 21.20 44.06 253.78 5.76

0.05 1.08 21.60 34.00 3.81 0.11 [0.05-0.15]

 0.06 0.86 14.33 37.42 226.00 6.04

AVG 20.37 9.71

0.05 4.67 93.40 24.58 411.08 16.72

0.41 26.28 64.10 56.78 929.03 16.36

0.05 2.31 46.20 40.14 376.75 9.39

0.11 15.44 140.36 40.22 269.69 6.71
[0.15-0.25]

 0.05 6.97 139.40 81.39 215.44 2.65

AVG 96.69 10.36

4.75 15.52 3.27 23.64 6.67 0.28

1.95 12.09 6.20 46.01 514.64 11.19

0.61 16.97 27.82 88.14 5.75 0.07

2.75 17.39 6.32 7.67 14.86 1.94 [0.25-0.35]

 1.55 26.58 17.15 72.03 102.00 1.42

AVG 12.15 2.98

3.97 11.20 2.82 179.06 7.42 0.04

0.91 16.36 17.98 6.56 35.95 5.48

1.41 65.77 46.65 36.91 283.38 7.68

7.42 2.91 0.39 107.62 265.69 2.47
[0.35-0.45]

 4.58 12.78 2.79 22.16 96.05 4.33

AVG 14.13 4.00

2.6. Conclusions

We investigate the knapsack problem with setup. This is an important problem,

modeling order acceptance, cell loading, project selection and others. We have developed

an exact algorithm for the problem. The first computational tests on exact solutions

indicate our algorithm is vastly superior to CPLEX for many instances, superior on others

and about the same for the rest. Further, we have determined what parameter values make

instances hard for our algorithm. Finally, the proposed heuristic is excellent, being within

2% of optimal for all the problems tested.

Appendix A. is greater than . 0ir 1, +tir

Proof.

Assume and0,,, >dcba
d
c

b
a
≤ , then

b
a

db
ca
≥

+
+ . Since frombcad ≤

d
c

b
a
≤ ,

then , or abbcadab +≤+)()(cabdba +≤+ , so
b
a

db
ca
≥

+
+ . Thus if , then job

 should be included in

, 1 0i t ir + ≥ r

1t + iXM . Since it is not, then ,0 , 1i i tr r +> .

Therefore . represents family ’s maximum ability to obtain

profit for each unit of resource it consumes.

inititii rrrr ,2,1,0, ... ≥≥≥≥ ++ 0ir i

References

Akinc, U. 2004. Approximate and exact algorithm for the fixed-charge knapsack problem,
European Journal of Operational Research 170, 363-375.

Bulfin, R. L. 1988. An algorithm for the continuous variable upper bound knapsack

problem, OPSEARCH 25 (2), 119-125.

Chajakis, E.D., Guignard, M. 1994. Exact algorithms for the setup knapsack problem,

INFOR 32 (3), 124-142.

Dantzig, G.B. 1957. Discrete variable extremum problems, Operations Research 5,
 266-277.

Dudzinski, K., Walukiewicz, S. 1987. Exact methods for the knapsack problem and its

generalizations. European Journal of Operational Research 28, 3-21.

Ham, I., Hitomi, K., Yoshida, T. 1985. Group Techonology, Kluwer Nijhoff Publishing,

Boston, Massachusetts.

 27

 28

Martello S. and Toth, P. 1990. Knapsack Problems: Algorithms and Computer

Implementations, John Wiley and Sons, New York.

Ⅲ. MULTIPLE KNAPSACK PROBLEM WITH SETUP

Abstract

We present a multiple knapsack problem with setup (MKPS). This problem can be

used to model order acceptance and production scheduling of multiple periods in make-

to-order manufacturing. Some variables represent setting up production for a family of

jobs; if a setup is not done, no jobs in the family can be processed. Further, a family can

only be set up in one period of the planning horizon. A linear knapsack problem is

designed to give an upper bound on MKPS. A greedy algorithm is developed to obtain a

lower bound. Setup variables are branched on; when all set up variables are fixed, MKPS

becomes several independent knapsack problems. Computational experiments show this

algorithm is effective, especially when resources are tight.

3.1. Introduction

The knapsack problem and its variants are well known problems in integer

programming. In this paper, we present a model that we call the multiple knapsack

problem with setup (MKPS). In this model, jobs belong to different families. If a job is

processed, then a setup time and a setup cost are incurred. A job can be assigned

toT different periods, but only one setup for each family is allowed during the planning

horizon, so jobs in the same family must be processed in the same period. The profit for

job

N

j of family i processed in period t is , and varies for different periods, but the ijtc

 29

processing time stays the same. The objective is to maximize the sum of the profits of

processed jobs. Formally, we have:

ija

1 1 1 1 1

. .

inT N T N

ijt ijt it it
t i j t i

Max c x f y

s t
= = = = =

+∑∑∑ ∑∑

 (1)
1 1 1

, 1,..
inN N

ij ijt i it t
i j i

a x d y b t T
= = =

+ ≤ =∑∑ ∑

 , 1, ; 1, ; 1,..ijt iitx y j n i N t T≤ = = = (2)

 (3)
1

1 1,..
T

it
t

y i
=

≤ =∑ N

 , {0,1} 1,.. ; 1,.. ; 1,..ix y j n i N t∈ = = = T (4)

ijtx -is one if the thj job of family i is arranged into period t , otherwise zero,

ity -is one if some job of family is arranged into period , otherwise zero, i t

ijtc -is the profit of job j of family in period t (), i 0ijtc ≥

itf -is the setup cost for family in period t (i 0itf)< ,

ija -is the processing time for job j of family (), i 0ija >

id -is the setup time for family i (), 0

0

id >

tb -is the available resource for processing in period t (). tb >

Constraints (1) require that the total resource used by jobs in each period can not exceed

the resource available. Constraints (2) prohibit a job from being processed if it belongs to

a family that has not been setup. Constraints (3) guarantee jobs in the same family

processed in a single period. Constraints (4) require all variables to be binary.

 30

This formulation models order acceptance in make-to-order manufacturers. Assume a

manufacturer receives orders for jobs which belong to different product families.

Orders can be manufactured inT periods. Setup time and setup cost occur between jobs of

different families. If jobs are accepted, jobs of the same family are done in the same

period.

N

In make-to-order production, price is dictated not only by cost, but also by the

customer’s expectation as well. Some customers are willing to pay a higher price for a

short lead-time, while others are not. Thus prices are related to a product’s completion

date, and different production schedules could produce different profits. The optimal

solution to MKPS gives the maximum profit, which orders to accept, and how to assign

jobs to periods.

The multiple knapsack problem assigns a set of items to multiple knapsacks with fixed

capacities so that the total profit of selected items is maximal. The multiple knapsack

problem is a special case of multiple knapsack problem with setup by ignoring the setup

variables and setting . The multiple knapsack problem has been widely

investigated. Martello and Toth (1980, 1981) discussed an upper bound algorithm using

Lagrangean relaxation. Pisinger (1999) presented an exact algorithm using a surrogate

relaxation to get an upper bound, and dynamic programming to get the optimal solution.

The surrogate relaxation of the multiple knapsack problem with identical multipliers is a

knapsack problem. Apparently, MKPS can not do in this way not only because each job

has the different profit coefficients in periods, but also there are the additional setup

variables in the model.

ijt ijc c=

 31

MKPS has multiple-choice constraints like the multiple-choice knapsack problem. An

efficient algorithm and two dominance properties exist for the linear multiple-choice

knapsack problem. More detail can be found in Pisinger (1995).

The knapsack problem with setup (KPS) is a special case of MKPS when . Bulfin

(1988) gave an efficient algorithm for its linear relaxation (LKPS), which is similar to

Dantzig’s algorithm for the linear knapsack problem. This transforms the LKPS into a

knapsack problem by using a modified ratio related to a job set. We state this algorithm

in the following section. Akinc (2004) describes algorithms for a fixed-charge knapsack

problem, which is a special case of MKPS with a single period and zero setup time.

1T =

Though the LP solution is often a good upper bound on integer programs such as

knapsack problem and multiple-choice knapsack problem, we do not solve the linear

relaxation of MKPS for obtaining an upper bound, but design a linear knapsack problem

formulation, whose optimal objective is the upper bound of MKPS. Since MKPS

becomes independent knapsack problems if all variables are fixed, branching is done in

two stages. The first stage is to branch on variables. When all

ity

ity y variables are fixed, the

second stage solves independent knapsack problems. There are many algorithms

available for knapsack problem. We just use a simple branch-and-bound algorithm for

knapsack problem.

Our approach (AMKPS) is outlined below:

Step 1. Do surrogate relaxation and linear relaxation for MKPS.

Step 2. Find an initial upper bound for MKPS.

Step 3. Find a feasible solution (incumbent) for MKPS.

Step 4. Determine a branching order for the variables. y
 32

Step 5. Decide which variable to fix in current node. y

Step 6. Generate a new node by solving a sub-problem with fixed to one; save this

node if its bound is better than the incumbent solution. If all are fixed, then

solve a set of knapsack problems and update the incumbent solution if possible.

y

y

Step 7. Generate a new node by solving a sub-problem with fixed to zero; save this

node if its bound is better than the incumbent solution. If all are fixed, then

solve a set of knapsack problems and update the incumbent solution if possible.

y

y

Step 8. Choose a candidate node. If none exists, stop, the incumbent solution is optimal;

else go to Step 5.

The rest of the paper is organized as following: we discuss Steps 1 and 2 in section 3.2;

section 3.3 explains the approach used in Step 3 and section 3.4 presents the remaining

steps. Computational experiments are discussed in 3.5 and a summary is given in section

3.6.

3.2. Linear knapsack problems and knapsack problem with setup

We use the linear knapsack problem and linear knapsack problem with setup to obtain

an upper bound of MKPS. Let us review these two models firstly.

3.2.1. Linear knapsack problem

The linear knapsack problem is a well known integer program:

 33

 34

..

1

1

. .

0 1, 1,

n

j j
j

n

j j
j

j

Max c x

s t

a x b

x j n

=

=

≤

≤ ≤ =

∑

∑

All variables are ordered by non-increasing profit-to-process ratio k

k

c
a . By Dantzig’s

algorithm, if variable is the first one with , then t
1

t

k
k

a
=

>∑ b

1, 1,.. 1jx j t= = −

1

1

t

k
k

t
t

b a
x a

−

=

−
=

∑

0, 1,..jx j t n= = +

3.2.2. Algorithm for LKPS

Bulfin (1988) shows LKPS can be transformed to a linear knapsack problem. Consider

the LKPS:

1 1 1

1 1 1

,

. .

1, ; 1,

0 1, ; 1,

0 1, 1,..

i

i

nN N

ij ij i i
i j i

nN N

ij ij i i
i j i

ij ii

ij i

i

Max c x f y

s t

a x d y b

x y j n i N

x j n i N

y i N

= = =

= = =

+

+ ≤

≤ = =

≥ = =

≤ ≤ =

∑∑ ∑

∑∑ ∑

Bulfin’s algorithm uses the ratio[]i ij

i i

f c
d a

+

j⎡ ⎤+⎣ ⎦
∑

∑
 as a criterion to assign the

resource.

Define

, 1,.. 1,..ij
ij i

ij

cr i N ja= = = n .

Reorder jobs 1… , so that . Let in
iniiii rrrr ,321 ≥≥≥

1 1

11

max{ | 1, 2,.. }

i

i

t k

ij i ij i
j j

it k

ij iij i
jj

c f c f
k n

a da d

= =

==

+ +
= =

++

∑ ∑

∑∑
for i N∈ .

Then in family i , jobs are separated into two sets: iXM = {1… }andit iXT = { +1.... }.

The jobs in

it in

iXM can be considered as a single job.

Now for family , define: i

'
1

1

'
1

1

'
, 1

'
, 1

'

1,..

1,..

1

i

i

i

i

t

i ij i
j

t

i ij i
j

i j t ij i i

i j t ij i i

i i i

c c f

a a d

c c j t

a a j t

n n t

=

=

− +

− +

= +

= +

= = +

= = +

= − +

∑

∑
n

n

Then LKPS can be reformulated as:

 35

 36

n

'

'

'

1 1

'

1 1

. .

0 1, 1,.. 1,...

i

i

nN

ij ij
i j

nN

ij ij
i j

ij i

Max c z

s t

a z b

z i N j

= =

= =

≤

′≤ ≤ = =

∑∑

∑∑

Pseudo job is composed of jobs 1iz 1,.. ii itx x along with the setup cost and time, and

, for
iij ij tz x += 2,.. i ij n t= − . Solve this linear knapsack problem. At most one variable can

have a fractional value, say . Iff 1kz f= , then , 1,..kj kx f j t= = . If , then , 1klz f l= ≠

kk l tx f+ = .

3.2.3. An upper bound on MKPS

3.2.3.1. Relaxation

Surrogate relaxation (Pisinger, 1999) and Lagrangian relaxation (Martello and Toth,

1981) have been applied to obtain an upper bound on the multiple knapsack problem. In

this paper, surrogate relaxation with identical multipliers on constraints (1) is used.

Selecting identical multipliers keeps unrelated to periods after surrogate relaxation.

Relaxing integrality of the variables gives a mix-integer formulation SMKPS:

ija

x

1 1 1 1 1

1 1 1 1 1 1

1

. .

1 1,..

1,.. 1,.. 1,..

0 1 1,.. 1,.. 1,..

{0,1} 1,.. 1,..

i

i

nT N T N

ijt ijt it it
t i j t i

nT N T N T

ij ijt i it t
t i j t i t

T

it
t

ijt it i

ijt i

it

Max c x f y

s t

a x d y b

y i N

x y i N j n t T

x i N j n t T

y i N t T

= = = = =

= = = = = =

=

+

+ ≤

≤ =

≤ = = =

≤ ≤ = = =

∈ = =

∑∑∑ ∑∑

∑∑∑ ∑∑ ∑

∑

SMKPS gives an upper bound on MKPS since every solution to MKPS is a feasible

solution for SMKPS, but not vice versa. Unlike the usual approach, we do not solve

SMKPS to obtain an upper bound on MKPS; we design a new knapsack problem based

on SMKPS whose optimal solution is an upper bound on MKPS

3.2.3.2. The knapsack problem giving the upper bound of MKPS

Using only the variables of family in period t of SMKPS, we construct the linear

knapsack problem with setup:

i

1

1

,

. .

1,

0 1,

0 1,

i

i

n

ijt ij it i
j

n

ij ij i i
j

ij ii

ij i

i

Max c x f y

s t

a x d y b

x y j n

x j n

y

=

=

+

+ ≤

≤ =

≥ =

≤ ≤

∑

∑

 37

Based on Bulfin’s algorithm, this formulation can be transformed to a linear knapsack

problem with pseudo variables 1 ,...
itnz z and their corresponding profit and processing

coefficients 1 ,...
itnc c 1 ,...

itna a . Pseudo variables are ordered by non-increasing ratio j

j

c
a .

We define a set
1 1

{(0,0), (,) | 1,.. }
t t

it j j it
j j

P a c t
= =

= ∑ ∑ n= from these pseudo coefficients. For

the sake of brevity, record these points are with0 ,...
itnp p

1
.

t

t j
j

p x a
=

=∑ and
1

.
t

t j
j

p y c
=

=∑ .

We can constructT point sets foritP 1,..t T= . Let and delete any repeated points.

Order all points by non-decreasing . Apply the following rules to delete points from .

'

1

T

i
t

P
=

=∪ itP

.p x '
iP

1. If rp and sp have . .r sp x p x≤ and . .r sp y p y≤ , then delete sp

2. If , ,r k sp p p have . . .r k sp x p x p x≤ ≤ and . . .r k sp y p y p y≤ ≤ , and

. . .

k r s k

k r s k

p y p y p y p y
.p x p x p x p x

− −≤− − , then delete kp .

These two dominance rules are called multiple-choice dominance rules in this paper,

and stems from the two dominance rules for the multiple-choice knapsack problem

(Sinha and Zoltners, 1979). Assume there are ' 1in + points '0 ,...
in

p p () remained,

ordered by increasing and . We can define pseudo variables by

setting and .

0 (0,0)p =

.p x .p y '
in '1,..

i
i in

z z

'
1. .ij j ja p x p −= − x y'

1. .ij j jc p y p −= −

 38

Repeating this process for all families, we obtainN '

1

N

i
i

n
=
∑ pseudo variables and a linear

knapsack problem K1 with resource b (
1

T

k
k

b b
=

= ∑):

'

'

'

1 1

'

1 1

'

. .

0 1, 1,.. 1,..

i

i

nN

ij ij
i j

nN

ij ij
i j

ij i

Max c z

s t

a z b

z i N j

= =

= =

≤

≤ ≤ = =

∑∑

∑∑
n

it itres= = 0j

We prove the optimal objective of K1 is an upper bound on MKPS in Appendix B.

3.3. Feasible solution (lower bound)

A good initial feasible solution can fathom many candidate nodes and reduce the

search time. We will use a greedy algorithm to calculate one.

Algorithm determines a feasible assignment of family ’s jobs to

period when there is resource available. The algorithm returns , the total profit of

this assignment and , the amount of resource actually used.

(,)assign i t i

t tb itobj

itres

Algorithm : (,)assign i t

Step 1. Set , obj ,tb b= 0, 0 =

 , ,it it itobj obj f← + ib b d← − it ires d= .

Step 2. ; if 1j j← + ij n> , stop.

Step 3. If , then ijb a≥

 it it ijtobj obj c← + , ijb b a← − , it it ijres res a← + ;

 39

 If , then go to Step 2; else stop. 0b >

 else go to Step 2

Algorithm is used to get the feasible solution. It uses to assign a family to a

period and update the available resource. It continues until there is not enough resource

left for any job.

feas itobj

 40

TStep 1. Set . Solve for{1,.. }NN N= (,)assign i t 1,.. 1,..i N t= =

Step 2. Choose{ , with}r s max{ | , 1,.. }rs itobj obj i NN t T= ∈ = ; if , stop. 0rsobj =

Step 3. ,rslb lb obj← + s sb b res← − rs . Delete r from . IfNN NN φ= , stop.

Step 4. Solve . Go to Step 2. (,)assign i s i NN∈

3.4. Branch-and-bound algorithm

To develop a branch-and-bound algorithm, we need to make several decisions. These

include how to fix variables, calculate bounds, choose the next sub-problem to explore

and obtain an initial incumbent solution. Also, the order to fix variables has to be decided.

3.4.1. Variable order

Order all variables by non-increasingity
1

, 1,.. , 1,..
in

it ijt it
j

pro c f i N t T
=

= + = =∑ . If is

near the front, then this variable is more likely to be one. Similarly if is near the end, it

is more likely to be zero. Fixing variables first at the front or rear aid in keeping the

number of branches small. We fix variables by looking at the beginning and end of

ity

ity

ity

this ordered list and working toward the middle. So family i , 1,..ity t T= has a search order:

if is the variable of theT variables related to family , then set . ity thk i ()ito y k=

In the current node, we decide which variable will be fixed based on all variables fixed.

Assume we fix . Since each family is assigned to at most one period,

then for

rky

0rty = () (rt rko y o y<) 1,..t T= .

3.4.2. Fixing rky

As we proceed through branch-and-bound algorithm, we fix setup variables to zero or

one. If is free, family is represented by pseudo variablesrky r , 1,..rj rz j n′= ; these variables

are never fixed. If is fixed at one, all pseudo variablesrky , 1,..rjz j rn′= are removed and

real variables , 1,..rjk rx j = n are included in K1; rjkx are always free in the branch-and-

bound algorithm. If is fixed at zero, all pseudo variables as well as their coefficients

are recalculated, excluding the possibility of family r being setup in period , and

included in K1; again the new

rky

k

, 1,..rj rz j n′= are always free. When

all are fixed to either zero or one, a knapsack problem over the

appropriate

, 1,.. 1,..ity i N t T= =

ijtx is solved to determine the optimal solution.

When is fixed to one, the bounding problem K1 changes as follows: rky

the actual setup cost for family in period t is added to the objective; r

the actual setup time for family is subtracted from the surrogate constraint; r

pseudo variables for family are removed, and r

real variable , 1,..rjk rx j = n are added

 41

When is fixed to zero, the changes are removing pseudo variables for family and

adding new pseudo variables.

rky r

We also tighten the relaxation by adding the constraint for period to the bounding

problem. Pseudo variables will only use the surrogate resource, but

k

itz ijkx variables will

use both the surrogate resource and the resource from period . Subtracting the setup

time will reduce the available surrogate resource and will reduce the resource from

period . Removing pseudo variables may increase the surrogate resource, but will not

affect the resource for period . Thus, the previous optimal solution to the bounding

problem may no longer be feasible or optimal. We could re-solve it from scratch, but we

will show how to adjust the old solution to obtain the optimal solution to the new

bounding problem. First, we introduce some notations.

k

k

k

Let

obj : The current node’s upper bound,

{ | 1}t itG i y= = : Family fixed to period t ,

{ | }itU i y is free= : Family free,

'

1 t

T

i
t i G

b b d
= ∈

= −∑∑ : Available resource for all variables,

' , 1,..
t

t t i
i G

b b d t T
∈

= − =∑ : Available resource for families in period t .

The current node’s upper bound is the optimal objective of this formulation, K2. It can be

proved by an approach similar to what we used in Appendix A.

 42

'

'

'

1 1 1 1

' '

1 1 1

'

1

. .

, 1,..

i i

t t

i i

t

i

t

n nT T

ij ij ijt ijt it
i U j t i G j t i G

n nT

ij ij ij ijt
i U j t i G j

n

ij ijt t
i G j

Max c z c x f

s t

a z a x b

a x b t T

∈ = = ∈ = = ∈

∈ = = ∈ =

∈ =

+ +

+ ≤

≤ =

∑∑ ∑∑∑ ∑∑

∑∑ ∑∑∑

∑∑

When we fix to one, set rky

' '
k k rb b d= −

' '
rb b d= −

rkobj obj f= +

{ }k kG G r= ∪

\{ }U U r= and

0, 1,..rty t T t= = ≠ k

r

The algorithm to fix to one can be separated into three steps: rky

Step 1. Delete pseudo variables from the outer knapsack. '1,...
r

r rn
z z

Step 2. Restore feasibility (if necessary).

Step 2.1. Set . If , find the variable' '
k kb b d← − '

1

i

k

n

ij ijk k
i G j

a x b
∈ =

>∑∑ ijkx greater than zero

with smallest ratio. Decrease it until either it is zero or '

1

i

k

n

ij ijk k
i G j

a x b
∈ =

=∑∑ .

Repeat until '

1

i

k

n

ij ijk k
i G j

a x b
∈ =

=∑∑ is achieved.

 43

 44

1 1 1

i i

t

n nT

ij ij ij ijt
i U j t i G j

a z a x b
∈ = = ∈ =

Step 2.2. Set . If '' '
rb b d← − ' + >∑∑ ∑∑∑ , repeat the procedure in

2.1, except choose either ijtx or variables greater than zero with smallest

ratio.

ijz

Step 3. Restore optimality.

Step 3.1. Let be the set of all zero-value

variables. Find the maximum ratio of all variables in

{ | 0, } { | 0,ijt ijt ij ijV x x i U z z i U= = ∉ ∪ = ∈ }

maxr V .

Step 3.2. Set all fractional-valued variables and all variables with value one and

ratio less than to zero. Put these variables inmaxr Vin the proper ratio order.

This releases resource for new variables to use. Variables in K2 now have

value one only and their ratio is no worse than maxr

Step 3.3. Do the following sub-algorithm to obtain the optimal solution of K2.

Step a. Set . 1k =

Step b. If the variable inV isthk ijtx , then go to Step c; else the variable

inV is , and go to Step d.

thk

ijz

Step c. If , then' 0tb = 1k k← + ;

else

If , thenb b'
tb a≥ ij a' '

t t ij← − ' '
ij,b b a← − ijtobj c← +, obj ,

and 1ijtx = ;

else
'
t

ijt
ij

bx a= , 'b b' '
tb← − ,and ijt ijtobj obj c x← + .

Go to Step e.

 45

'
ijaStep d. If , thenb b'

ijb a≥ ' ' '← − '
ijobj c, obj ← + , and . 1ijz =

Set 1k k← + .

else
'

'ij
ij

bz a= , ' 0b = ,and . '
ij ijobj obj c z← +

Step e. If and' 0b > k V≤ go to Step b; else stop.

When we fix to zero, pseudo variables are deleted from variable set.

Since , update . Apply the multiple-choice

dominance rules to delete dominated points. Use the remaining points to obtain the

updated pseudo variables . We can resolve the problem with new variable set to

obtain the upper bound of the sub-problem with

rky '1,..
i

r rn
z z

0, () (), 1,..rt rt rky o y o y t= < = T itP'

() ()rt rk

i
o y o y

P
>

= ∪

'1,..
i

r rn
z z

0rky = . In this case, only steps 1 and 3

are needed to resolve the problem.

3.4.3. Choosing a new sub-problem

When variables are fixed, two sub-problems are created. If a sub-problem’s upper

bound is no better than an incumbent solution it is discarded. When its bound indicates it

could contain a better solution to MKPS we store it in a bucket. Each bucket contains

sub-problems with bounds that are about the same. LetUB be the best upper bound

and be the value of the current incumbent solution. If we wantINC K buckets, calculate

()UB INC
K

−∆ = .

Then bucket one will contain all sub-problems with upper bounds in the

interval[, bucket two[2,UB UB− ∆]],UB UB− ∆ − ∆ , and bucket K [,INC INC + ∆] .

Buckets can be updated as upper bounds or the incumbent change. When we choose a

new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-

empty bucket. This gives almost a “best-bound” strategy, but without the bookkeeping

overhead.

3.5. Computational experiments

We test AMKPS on a variety of problem instances to see what problems can be solved

in reasonable time. Instances are generated by setting four parameters at several levels.

The parameters are average number of jobs in a family, number of periods, proportion of

setup time/cost relative to totals, and resource tightness. The number of families is fixed

to ten (). The number of jobs in a family is integer uniformly distributed from

three intervals [40, 50], [60, 70] and [80, 90]. The number of periods will be either five or

seven, corresponding to a work week. Setup cost and time are determined by

10N =

1
1

()
in

it ijt
j

f e c
=

= − ∑

2
1

()
in

i i
j

d e a
=

= ∑ j

We choose and uniformly from [0.15, 0.25], [0.25, 0.35], [0.35, 0.45], and [0.45,

0.55]. Resource availability is determined by

1e 2e

1 1
()

inN

ij
i j

t

a
b K

= ==
∑∑

, where K is 10, 7.5 or 5.

Finally, and are random integers chosen from[10, 10000]. ijtc ija

For each level of the four factors we generate ten instances. AMKPS was coded in C

and all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of

 46

 47

memory. In the following tables, we report the minimum (MIN), average (AVG) and

maximum (MAX) solution time in minutes. A zero indicates less than one minute of

computational time. We also give the average ratio of initial solution (INC) to initial

upper bound (UB) and the average ratio of initial solution to the optimal solution (OPT).

Table 3.1 gives results for five period problems and Table 3.2 is for seven periods.

Table 3.1
Solution time (minute) for AMKPS for 5 periods
 [40, 50] [60 70] [80, 90]

Resource Setup INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN

[0.15 0.25] 0.84 0.87 0 0 0 0.85 0.88 0 0 0 0.85 0.88 0 0 0

[0.25 0.35] 0.93 0.98 0 0 0 0.94 0.99 0 0 0 0.95 1.00 0 0 0

[0.35 0.45] 0.96 0.99 0 0 0 0.97 0.99 0 0 0 0.98 0.99 0 0 0

[0.45 0.55] 0.92 0.99 0 0 0 0.92 0.99 0 0 0 0.91 0.99 0 0 0

K=10

 Average 0.91 0.96 0 0 0 0.92 0.96 0 0 0 0.92 0.97 0 0 0

[0.15 0.25] 0.73 0.74 0 0 0 0.72 0.73 0 0 0 0.71 0.72 0 0 0

[0.25 0.35] 0.82 0.89 0 0 0 0.81 0.87 1 0 0 0.80 0.85 1 0 0

[0.35 0.45] 0.89 0.98 0 0 0 0.89 0.99 1 0 0 0.89 0.99 1 0 0

[0.45 0.55] 0.94 0.99 0 0 0 0.95 0.99 0 0 0 0.96 1.00 0 0 0

K=7.5

 Average 0.85 0.90 0 0 0 0.84 0.90 0 0 0 0.84 0.89 0 0 0

[0.15 0.25] 0.94 0.95 0 0 0 0.94 0.95 0 0 0 0.94 0.95 0 0 0

[0.25 0.35] 0.86 0.88 0 0 0 0.89 0.90 0 0 0 0.89 0.90 0 0 0

[0.35 0.45] 0.76 0.79 0 0 0 0.78 0.80 0 0 0 0.76 0.78 0 0 0

[0.45 0.55] 0.72 0.82 1 1 0 0.71 0.80 3 1 1 0.70 0.80 8 3 2

K=5

 Average 0.82 0.86 0 0 0 0.83 0.86 1 0 0 0.82 0.86 2 1 0

Table 3.2
Solution time (minute) for AMKPS for 7 periods

 [40, 50] [60 70] [80, 90]

Resource Setup INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN

[0.15 0.25] 0.87 0.92 2 1 0 0.86 0.91 5 3 1 0.86 0.90 9 5 2

[0.25 0.35] 0.94 0.99 0 0 0 0.94 0.99 0 0 0 0.95 0.99 1 0 0

[0.35 0.45] 0.96 0.99 0 0 0 0.96 0.99 0 0 0 0.97 0.99 0 0 0

[0.45 0.55] 0.88 0.98 0 0 0 0.88 0.99 0 0 0 0.87 0.99 0 0 0

K=10

 Average 0.91 0.97 1 0 0 0.91 0.97 1 1 0 0.91 0.97 3 1 0

[0.15 0.25] 0.80 0.86 7 3 1 0.79 0.85 12 6 2 0.78 0.85 26 17 10

[0.25 0.35] 0.82 0.91 11 4 1 0.83 0.91 22 10 2 0.81 0.90 29 19* 13

[0.35 0.45] 0.90 0.98 2 1 0 0.91 1.00 12 3 0 0.91 0.99 10 4* 1

[0.45 0.55] 0.94 0.99 0 0 0 0.95 1.00 0 0 0 0.96 1.00 0 0 0

K=7.5

 Average 0.87 0.94 5 2 0 0.87 0.94 12 5 1 0.87 0.94 16 10 6

[0.15 0.25] 0.95 0.98 0 0 0 0.95 0.98 0 0 0 0.96 0.98 0 0 0

[0.25 0.35] 0.90 0.95 1 0 0 0.91 0.96 1 0 0 0.90 0.95 3 1 0

[0.35 0.45] 0.82 0.91 3 1 0 0.83 0.92 8 3 1 0.82 0.91 11 4 2

[0.45 0.55] 0.75 0.89 9 4 1 0.74 0.87 16 9 3 0.74 0.87 19 10 5

K=5

 Average 0.86 0.93 3 2 0 0.86 0.93 6 3 1 0.86 0.93 8 4 2

Note: “*” means some instances run out of memory, and the value of AVG in the table is the average of the

remaining instances, as are Max and Min.

AMKPS performs very well for five period problems, with the hardest taking less than

8 minutes. Seven period instances are harder, but most instances are solved in less than

30 minutes.

Seven of the 720 instances were not solved by AMKPS. These instances had seven

periods, and average of 85 jobs per family, resource tightness of 7k = and setup

percentage of [0.25, 0.35] or [0.35, 0.45]. These instances used up memory. The Min,

Max, and Average are of the problems actually solved. Solution time increases as number

of period and number of jobs increase. We ran some instances with different

combinations of numbers of periods and jobs and found that the solution time changes in

almost the same way as for the test problems.

 48

The relationships between setup and resource tightness are more complex. Fig. 3.1 to

3.6 demonstrate this.

40-50

0.00

0.10

0.20

0.30

0.40

0.50

0.60

[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]

Setup

K=10
K=7.5
K=5

Time(Minute)

Fig. 3.1. Solution time for average 45 jobs per family and 5 periods

60-70

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]

Setup

K=10

K=7.5

K=5

Time (Minute)

Fig. 3.2. Solution time for average 65 jobs per family and 5 periods

 49

80-90

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]

Setup

K=10
K=7.5
K=5

Time (Minute)

Fig. 3.3. Solution time for average 85 jobs per family and 5 periods

 Fig. 3.4. Solution time for average 45 jobs per family and 7 periods

40-50

0

1

2

3

4

5

[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]

Setup

K=10
K=7.5
K=5

Time (Minute)

60-70

0

2

4

6

8

10

12

[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]

Setup

K=10
K=7.5
K=5

Time (Minute)

Fig. 3.5. Solution time for average 65 jobs per family and 7 periods

 50

80-90

0

5

10

15

20

25

[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]

Setup

K=10
K=7.5
K=5

Time (Minute)

Fig. 3.6. Solution time for average 85 jobs per family and 7 periods

When , the maximum time happens on instances with setup from [0.15, 0.25];

when , the maximum time happens on instances with setup from [0.25, 0.35];

when , instances with setup from [0.45, 0.55] use the most time. From these plots,

we conclude that problems become difficult when .

10K =

7.5K =

5K =

* ~ (2,3)e K

The heuristic algorithm given in this paper is very effective, especially when the

resources are tight. We give the quality (average proportion of lower bound to initial

upper bound and to optimal solution) in Table 3.3. The quality decreased as resources

increase in each period. For both five and seven period problems, the heuristic is good,

typically in the 85%-95% range.

Table 3.3
The lower bound, upper bound and optimal solution

[40 50] [60, 70] [80, 90]
Period Resource Setup INC/UB INC/OPT INC/UB INC/OPT INC/UB INC/OPT

K=10 Average 0.91 0.96 0.92 0.96 0.92 0.97

K=7.5 Average 0.85 0.90 0.84 0.90 0.84 0.89 Period 5

 K=5 Average 0.82 0.86 0.83 0.86 0.82 0.86

K=10 Average 0.91 0.97 0.91 0.97 0.91 0.97

K=7.5 Average 0.87 0.94 0.87 0.94 0.87 0.94 Period 7

 K=5 Average 0.86 0.93 0.86 0.93 0.86 0.93

 51

We also compare AMKPS to CPLEX 9.1 (called by AMPL). We choose the hardest

instances for AMKPS (7 periods and) to compare. Trial runs on other

instances showed these results are typical. Due to the difficulty of solving with CPLEX,

only five instances per level were solved. Table 3.4 shows the clear superiority of

AMKPS. CPLEX solved very few problems in less than two hours; we let one solve until

the optimal solution is obtained, and it took over 29 hours.

~ [80,90]in

 52

Table 3.4
The comparison of solution time (Minute) between AMKPS and CPLEX

K=10 K=7.5 K=5

 Setup CPLEX AMKPS CPLEX AMKPS CPLEX AMKPS

* 2 * 13 26 0

* 11 * 16 7 0

* 5 * 13 10 0

* 4 * 30 9 0
[0.15,0.25]

 * 12 * 12 8 0

AVG * 7 * 17 12 0

* 1 116 21 36 0

* 0 * 10 * 1

* 0 * * 77 1

* 0 * 28 26 0
[0.25, 0.35]

 * 0 * * * 2

AVG * 0 * * * 1

* 0 * 6 * 2

* 0 * 2 * 3

* 0 * * * 4

* 0 * 6 * 3
[0.35, 0.45]

 * 0 * 2 * 9

AVG * 0 * * * 4

* 0 19 0 * 14

* 0 14 0 * 22

* 0 4 0 * 27

* 0 22 0 * 16

[0.45, 0.55]

 * 0 7 0 * 11

AVG * 0 13 0 * 18

Note: * means the instance uses more than 2 hours or uses up memory.

AMKPS use less time than CPLEX for all but three instances

when and is from [80, 90]. We also do experiments with instances with

fewer variables and AMKPS also used less considerably time than CPLEX.

* ~ (2,3)e K in

 53

3.6. Conclusions

The MKPS model can be used for order selection in make-to-order manufacturing. In

this paper, we use branch-and-bound algorithm to solve MKPS and design a new method

to get an upper bound on MKPS. Rather than relaxing constraints of the original models

to an upper bound, we propose a new linear knapsack model to obtain an upper bound.

We prove the knapsack optimal objective solution is an upper bound on MKPS. In

branching, we add a resource constraint whose family has been fixed to that to tighten the

relaxation. This prohibits jobs from using more than the period capacity. This knapsack

problem can still be solved efficiently. We also give an effective greedy heuristic which

supplies a good feasible solution as a lower bound. After all variables are branched on,

MKPS is transformed to knapsack problems. The computational experiments show that

AMKPS works well with a tight resource limit. Sixty seven-period instances are tested to

compare AMKPS with CPLEX: AMKPS solve 57 instances of them in less than 30

minutes but CPLEX fail in 46 instances and need more time than AMKPS for the

remaining 14 instances. In this paper, we only use a simple branch-and-bound algorithm

for the knapsack problem when all setup variables are fixed. If a better algorithm, e.g. the

one developed by Martello et al. (1999) is used, the solution time can be reduced.

y

 54

Appendix A. The optimal objective of K1 is the upper bound on MKPS

Before proving the proposition, we need the following Lemma:

Lemma 1. A linear knapsack problem can be transformed to a concave piecewise

function

Proof.

For knapsack problem

 55

..

1

1

. .

0 1, 1,

n

j j
j

n

j j
j

j

Max c x

s t

a x b

x j n

=

=

≤

≤ ≤ =

∑

∑

Order all variables by non-increasing ratio j

j

c
a . Define a point

set . Put these points on coordinates and connect the

adjacent points, we can obtain a concave piecewise function and these points are the

breaking points of the piecewise function. is the optimal objective of the linear

knapsack problem.

1 1

{(0,0), (,) | 1,.. }
t t

j j
j j

P a c t
= =

= ∑ ∑ n=

F

()F b

If , set ;
1

n

j
j

b a
=

≥∑
1

()
n

j
j

F b c
=

=∑

else if 1tx =
1

t

j
j

a b
=

<∑

1

1
()

t

j
j

t
t

b a
x a

−

=

−
=

∑
if

1

1 1

t t

j j
j j

a b a
−

= =

≤ <∑ ∑

0tx = if
1

1

t

j
j

b a
−

=

≤∑

On the verse, if we know , we can construct an equivalent knapsack problem for

this piecewise function.

()F b

Proposition 1. The optimal objective of K1 is the upper bound on MKPS

Proof.

The coefficients of variables from family i in period t 1, ,...
iit i t in tf c c ,

construct a linear knapsack problem with setup, say :

1, ,...
ii i ind a a

itLKPS

1

0
1

,

. .

1,

0 1,

0 1,

i

i

n

ijt ij it i
j

n

ij ij i i
j

ij ii

ij i

i

Max c x f y

s t

a x d y b

x y j n

x j n

y

=

=

+

+ ≤

≤ =

≥ =

≤ ≤

∑

∑

Based on Bulfin’s algorithm, this formulation can be transformed to a linear knapsack

problem with pseudo variables 1,... ii inz z ′ and their corresponding profit and processing

coefficients . Pseudo variables are ordered by non-increasing ratio, 1,ij ij ic a j n′ ′ = .. ′ ij

ij

c
a

′
′ .

Then we can obtain a piecewise function with its breaking point set so that for any

available resource , is the optimal solution of the .

itF itP

0b 0()itF b itLKPS

 56

 57

itPWe define , and delete all dominated points by two multiple-choice dominance

rules for linear multiple-choice knapsack problem (Sinha and Zoltners, 1979).

Connecting the remaining points, we can obtain another piecewise function , which

has .

'

1

T

i
t

P
=

=∪

iF

0 0 0() (), 0i itF b F b b≥ >

If the optimal solution of MKPS is known, assume 1ity = and the resources and profit

from family are andi iw , 1,..iprofit i N= with solution set ={ | . Then is a

feasible solution from the following linear knapsack problem () with setup and

iS 1ijt ijtx x = } iS

1LKPS

iprofit is the objective of the feasible solution

1

1

,

. .

1,

0 1,

0 1,

i

i

n

ijt ij it i
j

n

ij ij i i i
j

ij ii

ij i

i

Max c x f y

s t

a x d y w

x y j n

x j n

y

=

=

+

+ ≤

≤ =

≥ =

≤ ≤

∑

∑

Since is the optimal objective of , thus .

Since , then and

()it iF w 1LKPS () , 1,..it i iF w profit i N≥ =

() ()i i it iF w F w≥ () , 1,..i i iF w profit i N≥ =
1 1

()
N N

i i i
i i

F w profit
= =

≥∑ ∑ . Set

1, 1,..ijz j k= =
1

' '

1 1

i ik k

ij i ij
j j

a w a
+

= =

≤ <∑ ∑ if

'

1
'1

1
i

k

i ij
j

ik
ik

w a
z a

=
+

+

−
=

∑
if

1

1 1

t t

j j
j j

a b a
−

= =

≤ <∑ ∑

0, 1ijz j k= > +

Then the solution set ', 1,.. , 1,..ij iz j n i= = N is a feasible solution of K1 since
1

N

i
i

w b
=

≤∑ .

Hence the optimal solution of K1 is greater or equal to
1

()
N

i i
i

F w
=
∑ , and an upper bound on

MKPS.

References

Akinc, U. 2004. Approximate and exact algorithm for the fixed-charge knapsack problem,
European Journal of Operational Research 170, 363-375.

Bulfin, R. L. 1988. An algorithm for the continous, variable upper bound knapsack

problem, OPSEARCH 25 (2), 119-125.

Dantzig, G.B. 1957. Discrete variable extremum problems, Operation Research 5, 266-

277.

Martello, S., Pisinger, D., Toth, P. 1999. Dynamic programming and strong bounds for

the 0-1 Knapsack Problem. Management Science 45 (3), 414-424.

Martello, S., Toth, P. 1980. Solution of the zero-one multiple knapsack problem,

European Journal of Operational Research 4, 276-283.

Martello, S., Toth, P. 1981. A bound and bound algorithm for the zero-one multiple

knapsack problem. Discrete Applied Mathematics 3, 275-288.

Pisinger, D. 1995. A minimal algorithm for the multiple-choice knapsack problem.

European Journal of Operational Research 83, 394-410.

Pisinger, D. 1999. An exact algorithm for large multiple knapsack problems. European

Journal of Operational Research 114, 528-541.

Sinha, A., Zoltners, A.A. 1979. The multiple-choice knapsack problem, Operations

Research 27, 503-515.

 58

 59

Ⅳ.MULTIPLE-CHOICE KNAPSACK PROBLEM WITH SETUP

Abstract

We present a multiple-choice knapsack problem with setup (MCKS). This model can

be applied to regional project selection in multiple periods. In the model, some variables

model setups and serve as the upper bound on the remaining ones. A linear knapsack

problem is designed to give an upper bound on MCKS, and a branch-and-bound

algorithm is used to optimally solve MCKS. Setup variables are branched on; when all

are fixed, MCKS becomes a knapsack problem. Computational experiments show this

algorithm is effective even for instances CPLEX can not solve in two hours.

4.1. Introduction and literature review

The multiple-choice knapsack problem (MCK) is well known in combinational

optimization. In this paper, we present a model we call a multiple-choice knapsack

problem with setup (MCKS). This model can be used in regional project selection in

multiple periods for an organization (country or company) which has a fixed budget to

invest in a number of projects in multiple areas which can be done in multiple periods. To

do a project in an area, a project office must be set up. The organization would like to

decide where to set up offices and which projects to do to maximize net present value

subject to a budget restriction.

Given the formulation of MCKS:

1 1 1 1 1

. .

inT N T N

ijt ijt it it
t i j t i

Max c x f y

s t
= = = = =

+∑∑∑ ∑∑

1 1 1 1 1

inT N T N

ij ijt i it
t i j t i

a x d y b
= = = = =

+∑∑∑ ∑∑ ≤ , (1)

1,.. , 1,.. ; 1,..ijt it ix y j n i N t T≤ = = = , (2)

1

1 1,... , 1,..
T

ijt i
t

x i N j
=

≤ = =∑ n , (3)

, {0,1} 1,.. ; 1,.. ; 1,.. .ijt it ix y i N j n t∈ = = = T (4)

ijtc -is the profit of project j in area in period t (), i 0ijtc ≥

itf -is the setup cost for opening an office in area in period t (i 0itf ≤),

ija -is the investment needed for project j in area (), i 0ija >

id -is the investment cost to open an office in area (), i 0id >

b -is the budge available to invest (), 0b >

ity - is one if office is set up in area i in period t , otherwise zero,

ijtx -is one if project j in area is done in period , otherwise zero, i t

N -is the number of areas,

T -is the number of periods.

Constraint (1) requires the total budget used by all projects and to setup offices can not

exceed the budget available. Constraints (2) prohibit a project being done unless the

office in this area is set up. Constraints (3) guarantee that a project can only be done once.

Constraints (4) require all variables to be binary.

 60

Besides the application of regional development, this model can also be used in order

acceptance in multiple periods with a non-renewable resource.

We develop an upper bound and an effective heuristic for MCKS based on the linear

knapsack problem with setup and the linear multiple-choice knapsack problem.

Following traditional terminology, we call area i family , and the projecti j in area jobi j

of family i . We also call the setup time of family i andid itf the setup cost of family in

period .

i

t

For the linear knapsack problem, Dantzig (1957) gave an algorithm which allocates

the limited resource to jobs based on the non-increasing profit-to-processing ratio.

Without y variables, MCKS becomes a multiple-choice knapsack problem, another well-

studied problem. (See Pisinger,1995; Sarin and Karwan, 1989; Armstrong et al, 1983)

Two dominance rules for the linear multiple-choice knapsack problem (Sinha and

Zoltners, 1979) are used to develop a linear knapsack problem as an upper bound on

MCKS.

Without constraint (2), MCKS becomes a knapsack problem with setup. Bulfin (1988)

gave an efficient algorithm for its linear relaxation. We explain this algorithm in the

following section. Akinc (2004) describes algorithms for a fixed-charge knapsack

problem, which is a special case of MCKS; it has a single period and no setup time.

We use a branch-and-bound algorithm to obtain the optimal solution to MCKS. It can

be briefly described by two steps. We branch on variables; when all variables are

fixed, the problem is a knapsack problem in the variables. We use a simple branch-and-

bound algorithm to solve this knapsack problem. To reduce the branches of the tree,

y y

x

 61

y variables are reordered before branching. The ordering process is as follows: Order

variables by non-increasingity
1

, 1,.. , 1,..
in

it ijt it
j

pro c f i N t T
=

= + = =∑ . If is near the front,

then this variable is more likely to be 1. Similarly if is near the end, it is more likely to

be 0. We fix variables by looking at the beginning and end of this ordered list and

working toward the middle. Fixing variables first at the front or rear aids in keeping the

number of branches small. Renumber variables by this order so that will be branched

on before .

ity

ity

ity

ity

1ity +

The algorithm (AMCKS) for solving MCKS is outlined below:

Step 1. Obtain an upper bound formulation for MCKS and a feasible solution for MCKS.

Step 2. Decide which variable to be fixed in the current node.

Step 2.1. Generate a new node by fixing some to one; save this node if its bound

is better than the incumbent solution. If all are fixed, solve a knapsack

problem and update the incumbent solution if possible.

y

y

Step 2.2. Generate a new node by fixing to zero; save this node if its bound is

better than incumbent solution. If all are fixed, then solve a knapsack

problem and update the incumbent solution if possible. Delete the

current candidate node.

y

y

Step 3. Choose a new candidate node. If none exists, stop, the incumbent solution is

optimal; else go to Step 2.

In the remaining of the paper, we discuss Step 1 in section 4.2. Section 4.3 explains the

algorithms used in Steps 2 and 3. Section 4.4 discusses computational experiments.

 62

4.2. An upper bound and feasible solution

Unlike the usual approaches of relaxing some constraints of a formulation to obtain an

upper bound, we design a linear knapsack problem whose optimal objective is an upper

bound on MCKS. This approach uses the algorithm presented by Bulfin (1988) for the

linear knapsack problem with setup, which transforms a linear knapsack problem with

setup to a linear knapsack problem.

4.2.1. Linear knapsack problem

Consider a linear knapsack problem:

1

1

. .

0 1

n

j j
j

n

j j
j

j

Max c x

s t

a x b

x

=

=

≤

≤ ≤

∑

∑

All variables are ordered by non-increasing j

j

c
a . By Dantzig’s algorithm (1957), if

1

1 1

k k

j j
j j

a b a
+

= =

≤ <∑ ∑ , then

1, 1,...jx j k= =

1
1

1

k

j
j

k
k

b a
x a

=
+

+

−
=

∑

0, 2,..jx j k n= = +

 63

 64

n

A linear knapsack problem corresponds to a concave piecewise function.

Define , and put these
1 1

{(0,0), (,) | 1,.. }
k k

j j
j j

P a c k
= =

= =∑ ∑ 1n+ points on coordinates and

connect the adjacent points. This defines a concave piecewise function . This process is

independent of resourceb . For a given resourceb , is the optimal objective of the

linear knapsack problem with resource (If

F

()F b

b
1

n

j
j

b
=

> a∑ , set
1

()
n

j
j

F b c
=

=∑). For brevity,

denote these points as 0 ,.. np p with
1

.
k

k j
j

p x a
=

= ∑ and
1

.
k

k j
j

p y c
=

= ∑ 1,..k n= . 1,..kp k n= are

the break points of the piecewise function . Conversely the break points of a concave

piecewise function define a linear knapsack problem with some resource by

defining

F n

F b

jx corresponding to 1. .j j ja p x p − x= − and 1. .j j jc p y p y−= − 1,..j n=

,

, .

4.2.2. Transform a linear knapsack problem with setup to a linear knapsack problem

Consider the linear knapsack problem with setup:

1 1 1

1 1 1

. .

,

1, ; 1, ,

0 1, ; 1,

0 1, 1,.. .

i

i

nN N

ij ij i i
i j i

nN N

ij ij i i
i j i

ij ii

ij i

i

Max c x f y

s t

a x d y b

x y j n i N

x j n i N

y i N

= = =

= = =

+

+ ≤

≤ = =

≥ = =

≤ ≤ =

∑∑ ∑

∑∑ ∑

Bulfin (1988) proposed an efficient algorithm, similar to Dantzig’s algorithm for the

linear knapsack problem (1957). Reorder all jobs of family so

that

i

1

1
, 1,.. 1ij ij

i
ij ij

j na a
+

+
≥ = − 1,..i N

c c , = . Let

1 1

11

max{ | 1, 2,.. }

i

i

t k

ij i ij i
j j

it k

ij iij i
jj

c f c f
k n

a da d

= =

==

+ +
= =

++

∑ ∑

∑∑
for i N∈ .

Then for family , jobs can be separated into two sets: i iXM = {1… }andit iXT =

{ +1.... }. The jobs init in iXM can be considered as a single job.

Now for family , define: i

'
1

1

'
1

1

'
, 1

'
, 1

'

1,..

1,..

1

i

i

i

i

t

i ij i
j

t

i ij i
j

i j t ij i i

i j t ij i i

i i i

c c f

a a d

c c j t

a a j t

n n t

=

=

− +

− +

= +

= +

= = +

= = +

= − +

∑

∑
n

n

n

Then linear knapsack problem with setup can be reformulated as:

'

'

'

1 1

'

1 1

. .

0 1, 1,.. 1,...

i

i

nN

ij ij
i j

nN

ij ij
i j

ij i

Max c z

s t

a z b

z i N j

= =

= =

≤

′≤ ≤ = =

∑∑

∑∑

 65

Pseudo job is composed of jobs 1iz 1 2, ,..
ii i itx x x and

iij ij tz x += , for 2,.. i ij n t= − . After

solving this linear knapsack problem, at most one variable can have a fractional value,

say . If , then andf 1kz = f ky f= , 1,..kj kx f j t= = . If , 1klz f l= ≠ , then only
kk l tx f+ = .

4.2.3. The algorithm for the upper bound and feasible solution

Before we explain the approach to obtain an upper bound and a feasible solution for

MCKS, let us introduce the period subset’s piecewise function of family . i

4.2.3.1. Subset’s piecewise function

If the optimal solution of MCKS is known, then { | 1}i itS t y= = is the set of periods in

which family is processed. But before solving MCKS, is unknown. We know must

be a subset of{1 . Set{1 has total

i iS iS

,.. }T ,.. }T 2 1T − non-empty subsets, which we denote

as 1,.. KS S , 2 and1TK = − kS is the cardinality of the subset . kS

For any , define {1,.. }, 1,..kS T k⊆ = K

Smax{ | }
kijS ijt kc c t= ∈

k

k

iS it
t S

f f
∈

= ∑

kiS k id S= d .

Using pseudo variables ijx′ , , for each , we can formulate a linear knapsack problem

with setup:

iy′ kS

 66

1

0
1

. .

,

1, ,

0 1, ,

0 1.

i

k k

i

k

n

ijS ij iS i
j

n

ij ij iS i
j

ij ii

ij i

i

Max c x f y

s t

a x d y b

x y j n

x j n

y

=

=

′ ′+

′ ′+ ≤

′ ′≤ =

′ ≥ =

′≤ ≤

∑

∑

This problem can be transformed to a linear knapsack problem based on section 4.2.2,

the linear knapsack problem defines a concave piecewise function with break points

set . Thus

kiSF

kiSP
kiSF is the piecewise function of for family . kS i

4.2.3.2. Upper bound formulation of MCKS

After obtaining
kiSF and its break points set for each subset of family i ,

we define and delete any repeated points in the set. Apply the following two

multiple-choice dominance rules (Sinha and Zoltners, 1979) to

kiSP , 1,..kS k K=

1
k

K

i
k

P P
=

′=∪ iS

iP′ :

Dominance rule 1. If rp and sp have . .r sp x p x≤ and . .r sp y p y≤ , then delete sp

Dominance rule 2. If , ,r k sp p p have . . .r k sp x p x p x≤ ≤ , . . .r k sp y p y p y≤ ≤ and

. . . .
. . .

k r s k

k r s k

p y p y p y p y
.p x p x p x p x

− −≤− − , then delete kp .

Call the set of remaining points and put them on coordinates. Connecting the

adjacent points in , we obtain a concave piecewise function with break

points

iP

iP iF

'1,...
in

p p . All points in iP′ are below the line of the piecewise function thus iF

 67

0 0 0() () 0, 1,..
ki iSF b F b b k K≥ ≥ = .

 68

x −= −Define pseudo variables with and'
in '1,..

i
i in

z z '
1. .ij j ja p x p −= − '

1. .ij j jc p y p y 1,.. ij n′= .

Repeating this process for all families, we obtainN '

1

N

i
i

n
=
∑ pseudo variables and

formulate a linear knapsack problem with resource . uLKP b

'

'

'

1 1

'

1 1

'

. .

0 1, 1,.. 1,.

i

i

nN

ij ij
i j

nN

ij ij
i j

ij i

Max c z

s t

a z b

z i N j

= =

= =

≤

≤ ≤ = =

∑∑

∑∑
.n

We prove that the optimal objective of is an upper bound on MCKS. This

problem has at most one fractional variable. If we round this fractional variable to zero,

then we obtain a feasible integer solution for . The integer solution

of corresponds to a feasible solution of MCKS and its objective is a lower bound on

MCKS. (Refer to the Appendix C for their proofs).

uLKP

uLKP

uLKP

This approach is impractical if T is large. We present three dominance rules to reduce

the number of subsets considered. (Refer to the Appendix D for their proofs).

Consider two subsets of family : if , {1,.. }r kS S T⊆ i 0 0() ()
r kiS iSF b F b≥ for all , then

dominates . All break points of are below , so

0 0b >

rS kS
kiSF

riSF
kiS iP P⊄ which means need

not be included in . Consider

kiSP

iP′ 1,.. KS S of family i :

Dominance rule 3. If and , then dominates . rS S⊂ k k
1 1

r r k

n n

ijS iS ijS iS
j j

c f c f
= =

+ > +∑ ∑ rS kS

Dominance rule 4. Assume and dominates . If there is another

subset with

r kS S⊂ rS kS

lS l kS S φ∩ = , then dominates . lS S∪ r l kS S∪

Dominance rule 5. Assume , r kS S⊂ 0
r kiS iSf f= = and 0

r kiS iSd d= = . If there is a subset

withlS l kS S φ∩ = , then dominates . lS S∪ k l rS S∪

With the help of dominance rules, the break points of some period subsets’ piecewise

functions need not be included into iP′ and thus reduce the effect to determine . After

finding all non-dominated subsets, we calculate the break points of their piecewise

functions. We do not put all break points together and apply dominance rules 1 and 2

once; rather we add these points into

uLKP

iP′ in a specific order and apply dominance rules 1

and 2 totalT times.

 Define ikS to be all non-empty subsets of{ , for family i and be all non-

dominated points set from the piecewise functions of all elements in

.. }k T ikP′

ikS . With the help of

Dominance rule 4, the algorithm to generate is: iP

Step 1. Set . 1k T= −

Step 2. While () 0k >

{ Set { |j j ikS k S S S= ∪ ∈ }

 Set 1ik ikS S S− = ∪

 Apply dominance rule 3 to delete dominated sets in 1ikS −

 } 1k k← −

Step 3. Calculate and for
kiSF

kiSP 1k iS S∈ .

 69

Step 4. Set k andT= 1iTP φ+′ = .

Step 5. While () 0k >

{ Set 1 1{ | /
kik ik iS k ik ikP P P S S S+ +′ ′= ∪ ∈ }

 Apply rules 1 and 2 to delete dominated points in iP′

 } 1k k← −

When the algorithm ends, is the we need. After ,1iP′ iP iP 1,..i N= are known, is

obtained.

uLKP

4.3. Fixing ity

When we fix to one or zero, ity , 1,.. 1iky k t= − have been fixed by the variable order.

Define and 1 { | 1, }i ikS k y k t= = ≤ 1
iS includes all non-empty subsets of . 1

iS

4.3.1. Fixing to one ity

When we fix to one, is subtracted from andity id b itf is added to the objective.

Then itf and can be viewed as zero. Coefficientsid
kiSf and related to

subset

kiSd

1, ,k k kS t S S S∈ ∈ i change. Therefore all and related to these subsets change,

which can cause a change of .

F P

iP

We can calculate the new piecewise functions for all affected and apply the above

algorithm to obtain an updated . Then we obtain the new pseudo variables and their

processing time and profit coefficients of family from the updated .

kS

iP

i iP

 70

This updating process can be simplified by applying dominance rule 5. Based on this,

subset dominates any subset1
iS 1,k k iS S S∈ . Therefore, we only need consider subsets

are 1
1{ | }i j j it itS S S S S+∪ ∈ ∪ 1+ . The process to update can be described as: iP

Step 1. Calculate the piecewise function of subset . 1
iS

Step 2. Calculate the piecewise functions of subsets 1
1{ |i j j itS S S S +∪ ∈ }.

Step 3. corresponding to1itP +′ 1itS + is known from the calculation of the upper bound on

MCKS. Set 1
'

1 1{ } { | { | }}
ki

i it iS k i j j itiS
P P P P S S S S S+ +′ ′= ∪ ∪ ∈ ∪ ∈ and apply rules 1

and 2 to delete dominated points in iP′and obtain the updated . iP

After we obtain the updated , we can obtain the new pseudo variables of family . iP i

4.3.2. Fixing to zero ity

If we fix it to 0, then all subsets including t must delete this period, so their piecewise

functions change, resulting in a different .

y

iP

 Assume l is the last period in 1 , then 1 stays the same since we fix y to one. All

subsets used to update when we fix to one are

iS iS il

iP ily 1
1{ | }andi j j ilS S S S +∪ ∈ 1ilS + ; all

subsets used to update P when we fix y to zero isi it
1

1{ | }S∈ andi j j itS S S +∪ 1itS + .

Since 1 1il itS S+ + to

when we fi

⊂ , then all subsets used when zero are part of the subsets for fixing

one. We save the P x y to one so we need not calculate the updated

ity ily

i il iP .

 71

4.3.3. Bounding

 72

iable z a

n:

.n

 After we obtain the new pseudo jobs from the updated i , the node’s new

upper bound can be obtained by replacing the old pseudo var '1,..
i

i in
z of f mily i with

the new ones. For the current node’s upper bound formulatio

'1,..
i

i in
z z P

s

'

'

'

1 1

'

1 1

'

. .

0 1, 1,.. 1,.

i

i

nN

ij ij
i j

nN

ij ij
i j

ij i

Max c z

s t

a z b

z i N j

= =

= =

≤

≤ ≤ = =

∑∑

∑∑

If we fix it to 1, then reduce available resourceb by id ; delete all old pseudo

jobs ; replace by the new ones and find the new optimal. If we fix to 0, then we

replace all old pseudo jobs by new ones and find the new optimal. We can prove

the new optimal is the upper bound of the current node by an approach similar to what we

used in Appendix A.

y

'1,..
i

i in
z z ity

'1,..
i

i in
z z

4.3.4. Choosing a New Sub-problem

When variables are fixed, two sub-problems are created. If a sub-problem’s upper

bound is no better than an incumbent solution it is discarded. When its bound indicates it

could contain a better solution to MCKS we store it in a bucket. Each bucket contains

sub-problems with bounds that are about the same. Let B be the best upper bound

and be the value of the current incumbent solution. If we want

U

INC K buckets, calculate

()UB INC
K

−∆ = .

 73

]UB− ∆ , bucket]UB

Then bucket one will contain all sub-problems with upper bounds in the

interval[UB two[2UB, ,− ∆ cket− ∆ , and bu K [,]INC INC + ∆ .

Buckets can be updated as upper bounds or the incumbent change. When we choose a

new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-

empty bucket. This gives an almost “best-bound” strategy, but without the bookkeeping

overhead.

4.4

d.

t

buted

from 10, 30], [30, 50] and [50, 70]. Setup cost and time will be determined by

. Computational experiments

We test AMCKS on a variety of problem instances to see what problems can be solve

Instances will be generated by setting five parameters at several levels. The parameters

are number of families, average number of jobs in a family, proportion of setup time/cos

relative to total time and cost, number of periods, and relationship between a and c . The

number of families will be fixed at 10, 30 and 50. The number of periods will be fixed at

5, 10, 15 and 20. The number of jobs in a family will be integer uniformly distri

 [

1
1

()
in

it ijt
j

f e c
=

= − ∑

2
1

()
in

d e a= ∑ i ij
j=

We will choose and uniformly from [0.05, 0.1], [0.1, 0.15], [0.15, 0.2], and [0.2, 0.25].

and have three relationships: is uniformly chosen from [10, 10000], and is

chosen from[10, 10000] and is randomly chosen from[10, 10000], and = + , is

1 2

ij

also uniformly chosen from [10, 10000] (uncorrelated relationship-U); ija is uniformly

e e

a c a ijtc

ijt ijt ijc t e e

 74

n it

sen from [10,100] (stron ti

uni
⎡ ⎤

randomly chosen from [0, 2000] (weak relationship-W); ija is uniformly chosen from[10,

10000], and ijtc is randomly chosen from[ija -1000, ija +1000], if ijtc is less than 10, the

is randomly ch lao g re onship-S). Resource availability will be

form from
1 1 1 1

0.4* ,0.6* ,ij ij
i j i j

a a
= = = =

⎢ ⎥
⎣ ⎦

i in nN N

∑∑ ∑∑

pper bound (UB) and the average ratio of initial solution to the

Table 4.1
o e

.

For each level of the five factors we generate ten instances. AMCKS was coded in C

and all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of

memory. In the following tables, we report the minimum (MIN), average (AVG) and

maximum (MAX) solution time in minutes. We also give the average ratio of initial

solution (INC) to initial u

optimal solution (OPT).

Soluti n tim (minutes) with N 10= and ~in [10,30]
 U S W

pe d L L L rio Setup LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX

[0.05-0.1] 0.977 0.978 0.00 0.00 0.00 0.991 0.991 0.00 0.00 0.00 0.902 0.903 0.00 0.00 0.01

[0.1-0.15] 0.976 0.977 0.00 0.00 0.00 0.988 0.989 0.00 0.00 0.00 0.843 0.845 0.00 0.00 0.01

[0.15-0.2] 0.953 0.953 0.00 0.00 0.00 0.991 0.991 0.00 0.00 0.00 0.878 0.883 0.00 0.00 0.01
5

 [0.2-0.25] 0.912 0.913 0.00 0.00 0.00 0.929 0.930 0.00 0.00 0.00 0.893 0.900 0.00 0.00 0.01

[0.05-0.1] 0.992 0.992 0.00 0.00 0.00 0.997 0.997 0.00 0.00 0.00 0.903 0.904 0.00 0.01 0.02

[0.1-0.15] 0.978 0.978 0.00 0.00 0.01 0.990 0.990 0.00 0.00 0.01 0.894 0.896 0.00 0.01 0.02

[0.15-0.2] 0.973 0.974 0.00 0.00 0.00 0.997 0.997 0.00 0.00 0.01 0.833 0.838 0.00 0.01 0.02
10

 [0.2-0.25] 0.947 0.949 0.00 0.00 0.00 0.919 0.921 0.00 0.01 0.01 0.905 0.910 0.01 0.01 0.03

[0.05-0.1] 0.993 0.993 0.02 0.02 0.03 0.996 0.996 0.00 0.00 0.01 0.862 0.862 0.00 0.02 0.03

[0.1-0.15] 0.992 0.993 0.00 0.01 0.01 0.989 0.990 0.00 0.00 0.01 0.893 0.895 0.00 0.02 0.05

[0.15-0.2] 0.967 0.968 0.00 0.00 0.01 0.996 0.996 0.00 0.01 0.02 0.895 0.899 0.01 0.04 0.07
15

 [0.2-0.25] 0.935 0.936 0.00 0.00 0.01 0.945 0.946 0.00 0.01 0.03 0.837 0.842 0.03 0.05 0.07

[0.05-0.1] 0.994 0.994 0.09 0.10 0.11 0.997 0.998 0.01 0.01 0.01 0.904 0.905 0.02 0.04 0.05

[0.1-0.15] 0.978 0.979 0.02 0.02 0.03 0.985 0.985 0.00 0.01 0.03 0.907 0.908 0.00 0.04 0.08

[0.15-0.2] 0.978 0.979 0.01 0.01 0.02 0.997 0.998 0.04 0.919 0.923 0.01 0.08 0.19
20

 [0.2-0.25] 0.958 0.959 0.01 0.01 0.01 0.950 0.952 0.00 0.12 0.845 0.851 0.05 0.12 0.41

0.01 0.02

0.03

 75

Ta le 4.2
o e

b
Soluti n tim (minutes) with N 30= and ~n [30,50] i

 S U W

Pe d L L L rio Setup LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX

[0.05-0.1] 0.996 0.996 0.00 0.02 0.07 0.999 0.999 0.00 0.02 0.08 0.949 0.950 0.04 0.41 0.76

[0.1-0.15] 0.991 0.991 0.00 0.02 0.04 0.989 0.989 0.00 0.08 0.25 0.954 0.954 0.04 0.19 0.30

[0.15-0.2] 0.987 0.987 0.00 0.01 0.04 0.984 0.984 0.00 0.12 0.35 0.958 0.958 0.00 0.22 0.49
5

 [0.2-0.25] 0.974 0.974 0.00 0.02 0.04 0.977 0.977 0.00 0.11 0.34 0.964 0.965 0.00 0.27 0.63

[0.05-0.1] 0.997 0.997 0.01 0.05 0.17 0.999 0.999 0.01 0.03 0.06 0.966 0.966 0.07 0.79 1.57

[0.1-0.15] 0.999 0.999 0.01 0.01 0.01 0.997 0.997 0.00 0.09 0.46 0.952 0.952 0.08 0.69 1.04

[0.15-0.2] 0.990 0.990 0.00 0.03 0.05 0.983 0.983 0.00 0.20 0.64 0.961 0.962 0.11 1.08 2.01
10

 [0.2-0.25] 0.980 0.980 0.00 0.05 0.13 0.983 0.983 0.01 0.29 0.57 0.964 0.965 0.33 1.51 3.67

[0.05-0.1] 0.997 0.997 0.06 0.09 0.18 0.999 0.999 0.00 0.05 0.21 0.972 0.972 0.24 0.97 1.92

[0.1-0.15] 0.996 0.996 0.02 0.04 0.09 0.996 0.996 0.01 0.15 0.44 0.970 0.971 0.12 0.89 1.46

[0.15-0.2] 0.982 0.982 0.01 0.08 0.18 0.990 0.990 0.01 0.28 1.25 0.962 0.962 0.06 1.69 2.74
15

 [0.2-0.25] 0.974 0.974 0.05 0.09 0.15 0.983 0.983 0.00 0.88 5.57 0.959 0.959 0.01 2.86 6.17

[0.05-0.1] 0.997 0.997 0.87 1.74 3.68 0.999 0.999 0.03 0.10 0.34 0.982 0.982 0.05 0.97 2.10

[0.1-0.15] 0.999 0.999 0.07 0.08 0.09 0.997 0.997 0.02 0.09 0.16 0.971 0.971 0.12 1.75 5.91

.2] 0.987 0.987 0.03 0.08 0.17 0.994 0.994 0.02 0.16 0.49 0.975 0.976 0.22 2.18 8.73

0.26 0.977 0.977 0.11 1.28 7.92 0.942 0.943 1.18 12.42 51.60

[0.15-0
20

 [0.2-0.25] 0.977 0.977 0.03 0.14

Table 4.3

oSoluti n time (minutes) with N 50= and ~n [50,70] i

 U W S

Period L L L Setup LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX

[0.05-0.1] 0.997 0.997 0.01 0.15 0.82 1.000 1.000 0.00 0.09 0.34 0.979 0.979 0.05 2.12 4.25

[0.1-0.15] 0.997 0.997 0.00 0.07 0.51 0.995 0.995 0.01 0.39 0.93 0.980 0.980 0.21 1.64 3.70

[0.15-0.2] 0.991 0.991 0.00 0.14 0.36 1.000 1.000 0.10 1.74 4.49 0.984 0.984 0.03 1.03 3.43
5 [0.2-0.25] 0.987 0.987 0.00 0.13 0.36 0.983 0.983 0.08 0.92 1.76 0.980 0.980 0.30 3.09 5.78

[0.05-0.1] 0.998 0.998 0.03 0.39 1.88 1.000 1.000 0.02 0.17 0.52 0.988 0.988 0.02 3.10 6.99

[0.1-0.15] 1.000 1.000 0.01 0.04 0.09 0.999 0.999 0.02 0.29 1.26 0.976 0.976 0.12 4.46 8.44

[0.15-0.2] 0.991 0.991 0.02 0.16 0.48 1.000 1.000 0.02 2.00 4.56 0.970 0.970 0.86 9.72 19.66
10 [0.2-0.25] 0.985 0.985 0.01 0.42 1.41 0.986 0.986 0.21 2.65 6.05 0.971 0.971 4.23 16.20 28.67

[0.05-0.1] 0.997 0.997 0.20 0.80 2.10 1.000 1.000 0.02 0.14 0.31 0.984 0.984 0.36 7.29 22.69

[0.1-0.15] 0.998 0.998 0.05 0.13 0.33 0.997 0.997 0.05 0.95 3.95 0.979 0.979 0.06 8.33 17.03

[0.15-0.2] 0.993 0.993 0.03 0.35 0.96 1.000 1.000 0.01 2.24 5.83 0.969 0.970 0.06 17.70 35.68
15 [0.2-0.25] 0.987 0.987 0.02 0.43 1.01 0.990 0.990 0.04 1.89 3.75 0.976 0.976 0.07 30.40 82.01

[0.05-0.1] 0.997 0.997 19.50 29.00 44.47 1.000 1.000 0.08 0.26 0.53 0.983 0.983 0.11 8.88 27.13

[0.1-0.15] 0.998 0.998 0.17 0.45 1.35 0.998 0.998 0.03 0.41 2.71 0.981 0.981 0.44 13.60 29.35

[0.15-0.2] 0.991 0.991 0.13 0.52 1.08 1.000 1.000 0.12 2.08 7.84 0.973 0.973 3.15 34.10 125.01
2 .540 [0.2-0.25] 0.990 0.990 0.09 0.64 1.53 0.991 0.991 0.03 5.41 21.96 0.978 0.979 1.34 41.10 95

 76

tion are more difficult than large setup proportion. The difference between

5% setup and 10% setup is apparent, but there is little difference between 10% setup and

15% setup.

Fig. 4.1 and Fig. 4.2 show when coefficients are uncorrelated, instances with small

setup propor

N=50;T=15

0
5

10
15
20
25

30
35

[0.05-0.1] [0.1-0.15] [0.15-0.2] [0.2-0.25]

Setup proportion

U
W
S

Time (Minute)

~ [50,70]in Fig. 4.1. Solution Time for 50N T and, 15= =

50 families, 20 periods

0
5

10

20
25

35
40
45

[0.05-0.1] [0.1-0.15]

15

30

[0.15-0.2] [0.2-0.25]

setup proportion

U
W
S

Time (Minute)

Fig. 4.2. Solution Time for 50, 20N T= = and ~ [50,70]in

The dominance rules are more effective when setup proportion is large and

when a and c are uncorrelated. If the setup proportion is small, jobs are more often

assigned to multiple periods; the dominance rules are not as effective as for instances

with large setup proportion. But when s correlated over different periods, there is not c i

 77

eases, instances wit having weak relationship and

str m t and

nce

 the lower

bo

n

rd

knapsack

pro

d on MCKS r

 use up before the first break point of the piecewise function. If

e fractional value is the first pseudo variable of some family, all variables corresponded

as good.

lso c mp C X ll M . W s rd

instances fo M 0 ds m 90]in om Tr ns

much difference in assigning a job to a particular period. Thus AMCKS can easily solve

an instance with small setup proportion.

When setup proportion incr h ,a c

ong relationship beco e harder. By the central limit theorem, the total setup cos

time follow a normal distribution. Under the weak and strong relationships, the

correlation of setups in different periods increases. With setup proportion increasing,

setup has more effect on the optimal solution and differences in periods decrease. He

dominance rules are not as effective in this case. The other possible reason is

und. With setup proportion increasing, the lower bound becomes worse so we can not

fathom nodes as effectively.

Instances with a and c correlated are more difficult. The piecewise function for

different periods become flat, and the computation for the composite piecewise functio

becomes complex. The knapsack problem when all setup variables fixed is also a ha

problem; we did not use a special algorithm to deal with correlation in the

blem. Some improvement can be expected if a special algorithm is used.

We use the rounded solution as a lower boun , which is very effective. Fo

instances with 30N = and 50N = , the lower bound is at least 95% of the optimal.

When 10N = , it is worse since there are fewer points on every piecewise function, so the

resource is much easier to

th

to this pseudo variable are rounded to zero, thus the lower bound is not

We a o are AMCKS to PLE 9.1 (ca ed by A PL) e choo e the ha est

r A CKS (2 perio , 50 fa ilies, ~ [80,) to c pare. ial ru on

 78

other instan lts are ty on CPLEX to iff of

solving with P l ins s p el so ab sho e c

superiority of AMCKS.

Table 4.4
The solution m e pa et A S a L

 S

ces showed these resu pical . Due the d iculty

 C LEX, on y five tance er lev were lved. T le 4 ws th lear

 ti e (minut) com rison b ween MCK nd CP EX
U W

Setup AMCKS C/A C AMCKS C/A CPLEX PLEX CPLEX AMCKS C/A

1 > 120.00 39.82 3.01 4.51 1.31 3.45 5.12 0.77 6.65
2 >

>
>

[0.05-0.1]

>12 .00 14 3 4. 2 0. 5. 1. 7
AVG

> 5 1

120.00 15.39 7.80 5.53 0.15 37.58 5.90 8.46 0.70
3 120.00 31.31 3.83 5.05 0.16 31.06 13.68 15.05 0.91
4 120.00 19.23 6.24 4.82 2.58 1.87 4.19 1.60 2.62

 5 0 .3 8.37 4 08 58.28 07 4 3.45

 5.85 26.45 2.87
1 120.00 0.21 70.34 7.79 0.04 90.61 5.03 1.79 2.82
2 > 5

>
1

[0.1-0.15]

120.00 0.17 8. 3 0. 13 3 1. 9
VG 587.84 44.91 7.00

4 0.

120.00 0.24 06.97 7.82 1.03 7.57 82.07 8.39 9.78
3 120.00 0.22 545.99 8.79 0.86 10.19 5.24 1.00 5.22
4 17.11 0.20 590.17 8.59 5.23 1.64 >120.00 13.56 8.85

 5 > 725.73 5 59 14.56 .2 5 8.33

A

1 50.85 0.09 566.01 7.47 0.13 56.14 12.68 17.1 74
2 7.41 0.08 91.82 7.10 0.19 38.35 >120.00 31.1 .86
3 15.84 0.12 129.98 9.22 0.32 28.91 >120.00 33.79 3.55
4 15.52 0.16 97.24 8.92 4.89 1.82 29.80 8.90 3.35

[0.15-0.2]

5

average 180.83 30.60 4.83
1 8.70 0.32 27.41 6.87 0.15 47.39 >120.00 28.72

0 3

 17.36 0.91 19.08 9.18 0.33 27.77 32.76 2.59 12.63

4.18
2 7.59 0.84 8.99 7.11 12.00 0.59 >120.00 17.92
3

4 7.08 0.20 34.63 6.29 4.88 1.29 >120.00 48.74 2.46

5

average 35.60 27.20 4.07

6.70
8.53 2.23 3.82 6.89 0.18 39.29 >120.00 47.09 2.55 [0.2-0.25]

 7.44 0.07 103.13 6.87 0.14 47.42 >120.00 26.83 4.47

Whe and are uncorrelated, AMCKS is much better than CPLEX. When and are

correlated, AMCKS is still better than CPLEX except for instances with 5% setup and

both solvers take longer for instances with larger setup than those with smaller setup.

AMCKS solves problems with 5%-10% setup in about one-third hour; when setup

proportion is over 10%, AMCKS takes less than one hour. For problems with 10%, 15%

n a c a c

 79

CPLEX failed to solve many instances in two hours. Though CPLEX

can

e

od

f

 for

roportion has more effect on instances with uncorrelated

relationship instances than other instances. In this paper, we only use a simple branch-

fixed. If a

gorithm, e.g. the one developed by Martello et al. (1999) is used, the solution

tim

Appendix A. The optimal objective of is an upper bound on MCKS.

If the optimal solution of MCKS is known, then we obtain the

sets in the optimal solution of MCKS and the resource taken by

and 20% setups,

 obtain a near optimal solution, it can’t prove it is optimal in two hours, which often

happens in many algorithms for integer programming.

4.5. Conclusion

MCKS can be used for project selection for a country or company. In this paper, w

use a branch-and-bound algorithm to solve the multiple-choice knapsack problem with

setup. A linear knapsack problem is designed to give an upper bound on MCKS. We

develop three dominance rules to simplify the process and save time to obtain an upper

bound model. The rounded solution of the linear knapsack problem provides a go

incumbent for MCKS. For instances with N greater than 30, the heuristic is over 95% o

the optimal solution. Computational experiments show the algorithm’s effectiveness.

Compared to CPLEX, the proposed algorithm obtains the optimal solution in less time

most instances. Setup p

and-bound algorithm for the knapsack problem when all setup variables are

better al

e can be reduced.

Proof.

uLKP

{ | 1}i itS t y= = , 1,..i N=

 80

fam s e profit 1ily i is iw as well a contribut d , ,..iprof it i N= with iw b≤∑ and th optimal

objective
N

iprofit∑ .

1

N

i=
e

=

For the period set , there is c c t

1i

i iijS ijt iS max{ , }S ,
i

i

iS it
t S

f f
∈

=∑ , and
iiS i id S= d . Using = ∈

pseudo variables ijx′ and , formulate a linear knapsack problem with setup iy′
iSLKP by

these coefficients:

,

1,.. ,

0 1.

i

k k

i

k

n

ijS ij iS i
j

n

ij ij iS i i
j

ij ii

i

Max c x f y

a x d y w

x y j n

y

=

=

′ ′+

′ ′+ ≤

′ ′≤ =

′

∑

∑

Since we know the optimal solution of MCKS, se t

1

1

,

. .s t

0 1,.. ,ij ix j n≥ =

′≤ ≤

t
1

T

i i
t

y y
=

′ = ∑ and
1

T

ij ijt
t

x x
=

′ = ∑ 1,.. ij n= ,

so that iy′and ijx′ are a feasible solution of
iSLK know

1 1
i iijS ij ijS i

j j t
c x c x

= = =

′ =∑ ∑ ∑
1

it
t

P . We

1 1

in n nT T

jt ijt ijt
t j

c x
= =

≥∑∑ and
1

i i

i

T

iS i itf y f′
n

y
=

= ∑ , thus
1

k kijS ij iS i i
j

c x f y profit
=

′ ′
i

+ ≥

Because

∑ .

()
iiS iF w is the optimal objective of

iSLKP , then ()
iiS i iF w profi≥ t . The linear

knapsack problem obtained from is ()i iF w

 81

1

'

1

'

i

ij ij
j

n

ij
j

Max c z

a

=

=

∑

∑

D ne its solution for this problem

'

'

. .

in

s t
'

0 1, 1..

ij i

ij i

z w

z j n

≤

≤ ≤ =

efi is iZ . Repeating this process f

i

or all families,

i 1

N

Z
=

fe

. .

0 1, 1,.. 1,..

i

ij ij
j

nN

ij ij

ij i

Max c z

s t

a z b

z i N j n

=

≤

≤ ≤ = =

∑∑

∑∑

easible solution is

∪ is a asible solution for uLKP

'
inN

i=

'

'

1 1

'

1 1

'

i j= =

and its objective of this f ()i i
i

N

F w ich is les than the optimal

ective of LKP e i iS i iF w profit≥ ≥ , the
i=

Appendix B. The rounded solution of corresponds to a feasible solution of MCKS

in the brea and the corresponding profit

obtained by the family is . For all pseudo variables n

∑ wh s

obj u . Sinc (iF w n iprofit∑ is less than the optimal

objective of uLKP .

) ()
i

1

N

uLKP

Proof.

k solution isAssume resource taken by family i iw

iobj 1,.. ii iz z ′ , there is 1

1

ij ij

ij ij

c c
a a

+

+

′ ′
≥′ ′ .

 82

If for al then as g

rounded solution, and k , then the coefficients of z comes from

si n all variables of family i to zero. If 1ikz = in the

k

0ijz = l '1,.. ij n= ,

0ijz j= > i kp and 1kp − in

point set by x and yiP 1. .ik k ka p x p −′ = − 1. .ik k kc p y p −′ = − . On the piecewise

function iF , .k ip x w= and .k ip y obj= . Assume this point kp comes from the break points of

c wise functiopie e n
kiSF .

kiSF corre ponds to a lines ar knapsack problem , but
kSLKP

this
kSLKP is the transformation of a linear knapsack problem with setup LKP

kSS

iS i

n

ij ij iS i
j

ij ii

ij i

Max c x f y

s t

a x d y b

x y j n

x j n

y

=

′ ′+

′ ′+ ≤

′ ′≤ =

′ ≥ =

′≤ ≤

∑

∑

Based on Bulfin’s algorithm for linear knapsack problem with setup, the variables

1
ijS ij

j=

0
1

,

. .

,

1.. ,

0 1.. ,

0 1.

i

k k

i

k

n

i

kSLKPS can be separated into two set 1{ ,.. }i itXM x x′ ′= and }1{ ,..
iit inXT x x+′ ′= . If is the

reak point of

ijzin

first b
kiSF , then set 1 1,..ik k t′ = = andx 1 1,..ik ix k t n′ = = + ; else

set 1 1,... 1ikx k j t′ = = + − . If 1ikx′ = , let 1ijrx = and 0iry = if Smax{ | }ijr ijt kc c t= ∈ ; else

set 0,ijr kx r S= ∈ . Then and
1

i

k k

n

ijt ijt it it i
t S j t S

c x f y obj
∈ = ∈

+ =∑∑ ∑
1

i

k k

n

ij ijt i it i
t S j t S

a x d y w
∈ = ∈

+ =∑∑ ∑

asible integer solution of MCK

. Repeat

this process to all families, and we can obtain a fe S with

e rounded solution’s objective ofthe objective the same as th u . LKP

 83

Appendix C. Three Dominance rules

Let us introduce two notations:

' 1
0

1

. .() . .
j j

j j

p y p yF b p x p x
+

+

−
= − , : The derivative function of piecewise

eak points o and

0 0b ≥

function F . , 1,...jp j n= are n br f F 0 (0,0)p = . 1. .j jp x b p x+≤ < .

Ifb p>0 .n x , then 0() 0F b′ = .

{ | 1,.. , (0)}k
k

ijS
k i

ij

c
J j j n Fa ′= = ≥ iS : The job set to form the first line between 0p and 1p

of
kiSF . , 1,..kS k K= are all subsets of for family

Before proving Dominance rule 1, 2 and 3, we need the following Lemma:

Lemma 1. Le be three different subsets of for famil , and l

{1,.. }T i .

t , ,r k lS S S {1,.. }T y i r kS S S∪ = ,

r kS S φ∩ = . If , then(0) (0)
r kiS iSF F′ ′> (0) (0)

r liS iSF F′ ′≥ .

Proof.

Case 1: If there is ()l r sj J J J∈ ∩ ∪

(1) If ,

then

l rijS ijSc c=

(0)l
l

ijS
iS

ija
c

F ′≥ , but (0)l
r

ijS
iS

ij

c
Fa ′< , thus

li iSF F(0) (0)
rS′ ′> .

(2) If ,

then

l kijS ijSc c=

(0)l
l

ijS
iS

ij

c
Fa ′≥ , but (0)k

k

ijS
iS

ij

c
Fa ′< , thus (0) (0) (0)

l k riS iS iSF F F′ ′ ′< < .

l rJ J J⊆ ∪ s , then define ijS

,
ll ijSJ c c=

{ | , }
l r

r
l l ijSJ j j J c c= ∈ = Case 2: If

an { | }
k

k
l ijSJ j j= ∈ thend

[()]
r kiS ijSf c+ +∑) (

(0) ())
r k

r k
l l

r k
r k
l l

iS ijS
j J j J

iS
iS iS ij ij

j J j J

f c
F d d a a

∈ ∈

∈ ∈

+
′ =

+ + +

∑
∑ ∑ .

Since

l

 84

()
r riSf c+

(0)()
r
l

r
r

r
l

ijS
j J

iS
iS ij

j J

Fd a
∈

∈

′≤
+ ∑ in the same way,

∑

()

()
k

k
k
l

iS ijS

iS
j J

f c

d a
∈

+

+

∑
∑ (0)

kk
l

k

j J
iS

ij
F∈ ′≤ . Therefore,

r
(0) max{ (0), (0)} (0)

l r kiS iS iS iSF F F F′ ′ ′ ′≤ =

Le ma 2. 1,m If ..i itd f t T= = = ,and there are two sets and with

) (
r kiS iSF b≤ and

 0, 0, rS kS r kS S⊂ ,

then ()F b0 0
' '

0 0 0
1

() (),0
i

r k

n

iS iS ij
j

F b F b b a
=

≤ ≤ ≤∑ .

Proof.

 A:

0 1, 1,..

i

r r

r

n

ijS ijS
j

n

ijS i

Max c x

Consider knapsack problem

1

. .s t

0
1

,
rij ijS

j
a x b

x j n

=

≤

≤ ≤ =

∑

is the optimal objective of the linear knapsack problem A with right-hand side

Consider the knapsack problem B:

=
∑

0()
riSF b 0b .

 85

0 1, 1,..

k k

i

k

k

ijS ijS

n

ij ijS
j

ijS i

a x b

in

Max c x
1

. .
j

s t
=
∑

0
1

x j n
=

≤

≤ ≤ =

∑

0()
kiSF b is the op imal linear knapsack problem B with right-

sid 0b .Since r kS S⊆ , then
r kS ijc

t objective of the hand

Sce ij ≤ a s le space is same with B’s,

iS

nd A’s fea ib

thus iSF 0 0() ()
r k

b F b≤ .

set

Let

0{ | 1,.. , ()}r
r

ijScJ j F b′ ′r i iS
ij

j n a= = min{ , }r r r

r

ij S ijSc c
j J ′= ∈ then≥ and r

ij ija a

0(r r
r

r

ij S
iS

ij
F b a′ ;

set

)
c

=

0{ | 1,.. , ()}kijSc
J j j n F b′ ′= = ≥

kk i iSa and
ij

min{ , }k k k

k

ij S ijS
k

ij ij

c c
j Ja a ′= ∈ then

0()
k

ij
iSF b′ k k

k

S

ij

c
a= .

Then ''
r kJ J⊄ .

Case 1: If J J′ ′= , k r

if r kj j= , then since , thus ;

if

r r k kij S ij Sc c≤ ' '
0 0() ()

r kiS iSF b F b≤

r kj j≠ , then k k k r r r

k k

ij S ij S ij S

ij ij ij

c c c
a a≥ ≥

r
a , thus

Case 2: If ,

' '
0 0() ()

r kiS iSF b F b≤ .

k rJ J′ ′≠

 86

 jo 0 0() ()kr
r k

ijSijS
iS iS

ij ij

ccF b F ba a′ ′≤ ≤ ≤b rj J ′∈ but kj J ′there is a , thus∉ .

, letf r kS S⊂ rp kpLemma 3. I and be the first points except (0, 0) on piecewise

functions
riSF , and

kiSF respectivel max{ . , }p x p= . Then forb b> ,

' '

y. Define .r sb x

Proof.

If

1 0 1

0 0() ()
r kiS iSF b F b≤ .

0
1

*
in

k i i
j

b S d a
=

≥ +∑ j , then ' '
0 0() () 0

r kiS iSF b F b= = .

If 0
1 1

r i ij k i ij
j j= =

0riS* *
i in n

S d a b S d a+ ≤ < +∑ ∑ , then ()F b' 0= , '
0() 0F b > .

If

kiS

0
1

*
in

r i
j

b S d a
=

< +∑ ij , then assume '
0() r r

r
r

ij S
iS

ij

c
F b a= , ' ij Sc

0() k k
k

k
iS

ij
F b a= .

Since * *r i kS d S d< i , then 0 0* *r i kb S d b S d− > − i . Then for the linear knapsack

problem

1

0
1

. .

* ,i∑
0 1, 1,..

i

r r

r

r

n

ijS ijS
j

n

ij ijS r
j

ijS i

c x

s t

a x b S d

x j n

=

=

≤ −

≤ ≤ =

∑

and its piecewise function

Max

riSF , there is 0(*) r r
r

r

ij S
iS r i

ij

c
F b S d a′ − = .

For the linear knapsack problem

1

0
1

. .

*

0 1, 1,..
kijS i

b S d

x j n

−

≤ =

a

i

k k

i

k

n

ijS ijS
j

n

ij ijS k i
j

Max c x

s t

a x

=

=

≤

≤

∑

∑

nd its piecewise function
kiSF , there is 0(*) k r

k
k

ij S
iS k i

ij

c
F b S d a′ − = .

Based on lemma 2, there is 0 0(*) (*
r kiS r i iS r iF b S d F b S d′ − ≤ −) .

Since piecewise function is concave function, then 0 0(*) (*
k kiS r i iS k iF b S d F b S d− ≤ − .)

Therefore k kr r

r k

ij Sij S

ij ij

cc
a a≤ , so (

kiSF F

Lemma 4. Assume . If

' '
0 0())

r iSb b≤ .

r kS S⊂ (0) (0)
r kiS iSF F′ ′> , then there is at most one intersection

of and except (0,0); if
r kiSF iSF (0) (0)

r kiS iSF F′ ′≤ , then dominates .

Pro

kS rS

of.

Case 1: (0) (0)
r kiS iSF F′ ′>

Assume

 87

rp kp are the first points respectively on piecewise function
riSF and

kiSFand . If

there are two intersections 1 2,p p of
riSF and , then there

kiSF

is 1 1(.) (.)
r kiS iSF p x F p x′ ′< and 2 2(.) (.)

r kiS iSF p x F p x′ ′> . Since
riSF and

kiSF are concave

piecewise functions, there is 2. max{ . , . }r kp x p x p x> . But based on lemma 3,

2 2(.) (.)
r kiS iSF p x F p x′ ′> can not be true.

Therefore, there is no second intersection 2p .

Case 2: (0) (0)
r kiS iSF F′ ′< .

 88

If . .r kp x p x≤ , there is no intersectio between (0n p , .kp x). If there is an intersection

outside of (0, .kp x), then there is 1 1(.) (.)
r kiS iSF p x F p x′ ′> that is impossible based on lemma

3.

If . .r kp x p x> :

Define 1
r kJ J J= ∩ . Since n, 1,..

r kijS ijS ic c j≤ = , then kr ijSijS

ij ij

cc
a a≤ . We

have
1

1

1

(.) (.)
k k

k
k r

k

k

iS ijS
j J J

iS k ij iS k
j J

iS ij
j J J

f c
F p x a F p x

d a
∈ ∪

∈

∈ ∪

+
′ ′+ ≥ ≥

+

∑
∑

∑

1

.k ij r
j J

and

p x a p
∈

+ ≥∑ x , thus 0 0() ()
k riS iSF b F b> for x0 (0, .)rb p∈ . If there is an intersection p

outside of (0, .)rp x , then that is impossible based on lemma 3.

Case 3:

If

(.) (.)
r kiS iSF p x F p x′ ′>

 (0) (0)
r kiS iSF F′ ′=

. .r kp x p x≤ , 0 0 0() (), (0, .)
r kiS iS rF b F b b p x= ∈ , and

0 0 0() (), (. , .)
r kiS iS r kF b F b b p x p x< ∈ . If there is an intersection outside ofp (0, .)kp x ,

then that is impossible based on lemma 3. (.) (.)
r kiS iSF p x F p x′ ′>

. .r kp x p x> can not happen since if there is 1
r kJ J J= ∩ , then

1(0),k r
k

ijS ijS
iS

ij ij

c c F ja a ′≥ ≥ ∈ J , thus should be included into . Then1J kJ .rp x can not be

larger than .kp x .

 89

Dominance rule 3. If , and
k
, then dominates

Proof.

For , there is , thus

r kS S⊂
1 1

i i

r r k

n n

ijS iS ijS iS
j j

c f c f
= =

+ > +∑ ∑ rS kS .

0
1

i

r

n

ij iS
j

b a d
=

= +∑ 0 0() ()
r kiS iSF b F b> (0) (0)

r kiS iSF F′ ′> based on case 2 of

lemma 4. Based on case 1 of lemma 4, there is at most one intersection p

with (.) (.)F p x F p x′ ′< , 0.
r kiS iS p x b< , thus 0 0() ()F b F b> can not be true. Thus there is no

intersection of
r

r kiS iS

iSF and
kiSF , and dominates

r k r k

set lS with ,r l k lS S S S

irS ikS .

Dominance rule 4. If and dominates , then for another S S⊂ S S

φ φ∩ = ∩ = , r lS S∪ dominates k lS S∪ .

Proof.

Define variabl ijS ijS ijSc c c∆ = −
k

e
r l r

,
k lijS ijS ijSc c c∆ = − . Since

r kijS ijSc c≤ , then

kijS ijS ijS ijS

r l r r r
j j j= = =

r kijS ijSc c∆ ≥ ∆ ,and
1 1
(| 0) (| 0)

n n

j j
c c c c

= =

∆ ∆ > ≥ ∆ ∆ >∑ ∑ .

We know:

(| 0)
n n n

ijS S ijS ijS ijSc c c c∪ = + ∆ ∆ >∑ ∑ ∑

1 1 1
(| 0)

k l k k kijS S ijS ijS ijS
j j j

c c c c∪
= = =

= + ∆ ∆ >∑ ∑ ∑

Since
r l

r l

iS S it
t S S

r k

1 1 1

n n n

f f∪
∈ ∪

= ∑ >
k l

k l

iS S it
t S S

f f∪
∈ ∪

= ∑ , we can

n n

obtain ijS S iS S ijS S iS S
j j

c f c f∪ ∪ ∪ ∪
= =

+ ≥ +∑ ∑ . Because l ,
1 1

r l r l k l k l r l kS S S S∪ ⊆ ∪

then rS dominates kS by dominance rule 3.

Dominance rule 5. If r kS S⊂ , 0f f
r kiS iS= = , 0d d

r kiS iS= = then for another period

set ith ,S S S SlS w

 90

l r l kφ φ∩ = ∩ = , dominatesl kS S∪ r lS S∪ .

Proof.

Since f f= = , d dr k r kiS iS r kiS iSS S⊂ , 0 0= = ,

then ,
r l k l r l k liS S iS S iS S iS Sf f d d∪ ∪ ∪ ∪= = , ija keeps same, and

r l k lijS S ijS Sc c∪ ∪≤ , then for any

resource 0b there is 0 0() ()
r l k liS S iS SF b F b∪ ∪≤ , thus l kS S∪ dominates r lS S∪ .

Re

European Journal of Operational Research 170, 363-375

Armstrong R.D, Kung D.S., Sinha P., Zoltners A.A. 1983. A computation study of a
, 9,

184-198.

Bulfin, R. L. 1988. An algorithm for the continous, variable upper bound knapsack

277

Martello, S., Pisinger, D., Toth, P. 1999. Dynamic programming and strong bounds for

.

European Journal of Operational Research 83, 394-410.

Sarin S., Karwan MH. 1989. The linear multiple choice knapsack problem”, Operations

ferences

Akinc, U. 2004. Approximate and exact algorithm for the fixed-charge knapsack problem,

multiple-choice knapsack problem, ACM Transactions on Mathematical Software

problem, OPSEARCH 25 (2), 119-125.

Dantzig, G.B. 1957. Discrete variable extremum problems, Operation Research 5, 266-

the 0-1 Knapsack Problem. Management Science 45 (3), 414-424.

Pisinger, D. 1995. A minimal algorithm for the multiple-choice knapsack problem

Research Letters, 8, 95-100.

 91

This research investigated three integer programming models which can be applied to

order acceptance in make-to-order production and regional project selection in multiple

periods: the knapsack problem with setup (KPS), the multiple knapsack problem with

setup (MKPS) and the multiple-choice knapsack problem with setup (MCKS). The

common characteristics of all three models are: jobs belong to different families; setup

time and setup costs are incurred if a job is processed; if two jobs from the same family

are processed sequentially, no setup is required; resource is limited and some jobs can be

selected to be manufactured. The objective is to maximize the sum of profits of processed

jobs.

 KPS can be used in order acceptance of single period. The model selects the jobs to

be processed for maximizing the total profit. MKPS, as an extension of KPS, is used in

order acceptance of multiple periods. Besides selecting the jobs to be processed, it also

decides the periods which the selected jobs are arranged in. Jobs’ coefficients vary in

different periods, but the processing time stays the same. In MKPS, jobs’ profits affect

job’s production schedule and the chosen schedules decide the job’s profit. The two

factors are balanced by maximizing the total profit under a resource limit. MCKS is

applied to regional projects selection in multiple periods, and it can also be used in order

acceptance of multiple periods with a non-renewable resource.

Ⅴ. CONCLUSIONS

Branch-and-bound algorithm is used to obtain the optimal solution for all three models.

The success of the algorithm relies on the effectiveness of the upper bound and lower

bound in branching and the effort to obtain them. Unlike the usual approaches of relaxing

 92

some constraints of a formulation to obtain an upper bound, we design a linear knapsack

As the simplest among the three models, KPS can be viewed as a special case of the

oth

near relaxation to a linear knapsack problem. We show a linear knapsack problem

co , and the concave piecewise function defines

Multiple-choice constraints are on the setup variables in MKPS to guarantee the jobs

mily be processed in a single period. In MCKS, multiple-choice constraints

pproaches to obtain the linear knapsack problems which give the upper bounds on

MK e obtain a concave piecewise function for each family

seudo variables as well as their profit and processing coefficients are defined from these

pie truct the linear knapsack

omplex than those in MKPS. We develop three dominance rules to simplify it.

KPS or MCKS is rounded to

CKS. A greedy algorithm is developed to obtain a lower bound on MKPS.

problem for each model, and its LP solution is the upper bound on the model.

er two. Bulfin (1988) gave an algorithm for its linear relaxation, which transforms the

li

rresponds to a concave piecewise function

the variables as well as their coefficients in the linear knapsack problem.

of the same fa

are on the job variables so that a family’s jobs can be processed in multiple periods.

A

PS and MCKS are similar. W

with the help of two dominance rules for linear multiple-choice knapsack problem.

P

cewise functions. We use these pseudo variables to cons

problem. The process to obtain the concave piecewise functions in MCKS is more

c

If the LP solution of the linear knapsack problem for

integers, we obtain an integer solution that corresponds to an incumbent of KPS or

M

 93

fter

ll setup variables are fixed, the problem change to a (several) knapsack problem(s). A

sim e these knapsack problems. The

e algorithms for all three models arrive at the optimal solution in less time for most

ins

Branching is done in two stages. The first stage is to branch on setup variables. A

a

ple branch-and-bound algorithm is used to solv

computational experiments show these algorithms’ effectiveness. Compared to CPLEX,

th

tances.

 94

BIBLIOGRAPHY

Akinc, U. 2004. Approximate and exact algorithm for the fixed-charge knapsack problem,
European Journal of Operational Research 170, 363-375.

Armstrong R.D., Kung D.S., Sinha P., Zoltners A.A. 1983. A computation study of a

multiple-choice knapsack problem, ACM Transactions on Mathematical Software, 9,
184-198.

Bulfin, R. L. 1988. An algorithm for the continuous variable upper bound knapsack

problem, OPSEARCH 25 (2), 119-125.

Chajakis, E.D., Guignard, M. 1994. Exact algorithms for the setup knapsack problem,

INFOR 32 (3), 124-142.

Dantzig, G.B. 1957. Discrete variable extremum problems, Operation Research 5,
 266-277.

Dudzinski, K., Walukiewicz, S. 1987. Exact methods for the knapsack problem and its

generalizations. European Journal of Operational Research 28, 3-21.

Ham, I., Hitomi, K., Yoshida, T. 1985 Group Techonology, Kluwer Nijhoff Publishing,

Boston, Massachusetts.

Martello, S., Pisinger, D., Toth, P. 1999. Dynamic programming and strong bounds for

the 0-1 Knapsack Problem. Management Science 45 (3), 414-424.

Martello, S., Toth, P. 1980. Solution of the zero-one multiple knapsack problem,

European Journal of Operational Research 4, 276-283.

Martello, S., Toth, P. 1981. A bound and bound algorithm for the zero-one multiple

knapsack problem. Discrete Applied Mathematics 3, 275-288.

Martello S., Toth, P. 1990. Knapsack Problems: Algorithms and Computer

Implementations, John Wiley and Sons, New York.

Parker, R. G., Rardin, R. L. 1988. Discrete Optimization. Academic Press, Inc. San Diego,

CA.

 95

Pisinger, D. 1995. A minimal algorithm for the multiple-choice knapsack problem.
European Journal of Operational Research 83, 394-410.

Pisinger, D. 1999. An exact algorithm for large multiple knapsack problems. European

Journal of Operational Research 114, 528-541.

Sarin S., Karwan MH. 1989. The linear multiple choice knapsack problem”, Operations

Research Letters, 8, 95-100

Sinha, A., Zoltners, A.A. 1979. The multiple-choice knapsack problem, Operations

Research 27, 503-515.

