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Abstract 

 

 

 The present work analyzes land use land cover changes in the Saugahatchee watershed 

through the use of remotely sensed satellite imagery. Urban growth has effect on the land use 

pattern in the local as well as in the surrounding region. Various models of land use change are 

extensively used for forecasting urban growth and future land use patterns. Modeling land use 

conversion patterns is the first step to understand the urban growth process. This work develops a 

land transformation model of urban growth to forecast land use changes in the saugahatchee sub-

watershed surrounding Auburn-Opelika metropolitan area in the state of Alabama. This work 

uses GIS and image processing software namely ERDAS Imagine to process land use data and 

performs logistic regression analysis. Logistic regression is used to model land use change 

pattern in the area under investigation. The modeling is done in the GIS environment and spatial 

output of the model is fed into biophysical models, SWAT, to help determine the impact that 

LULC has on water quality and quantity and help resource manager evaluate future scenario of 

development. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1  Study background: 

 

Changes in landscape development patterns occur in time and space due to complex 

interactions of physical, biological and social factors. Landscapes are influenced by human land 

use and the resultant landscape is a mosaic of landscape patches which vary in size, shape and 

spatial arrangement (Turner, 1987). Land use is a term used to describe human uses of the 

landscape through conversion and modification. Land use includes a variety of human uses such 

as urban or rural settlement, agriculture, transportation infrastructure, and recreation. Change in a 

land use often results in a change in the land cover. Land cover is characterized by climate and 

topography and includes number of categories like, forest, savannah, tundra, desert, etc. Land 

use changes over time in natural and human environments can result from processes of 

development. Conversion is a change from one land use to another. For example, forest 

clearance for pasture, wetland drainage for agriculture, and cropland conversion to urban 

settlement all constitute conversion. Modification is an alteration of the existing land cover that 

does not convert it to a different cover type such as, thinning of forest, intensification of 

cultivation, redevelopment of urban infrastructure (Meyer and Turner, 1994; Meyer, 1996). 

In the past decade the land use land cover change (LULCC) Project, an international 

initiative to study changes in land use and land cover (LULC), has gained great momentum in its 



2 
 

efforts to understand driving forces of  land use change through comparative case studies. The 

project has developed diagnostic models of land-cover change, and produced regionally and 

globally integrated models (Geist and Lambin, 2001). The strong interest in LULC results from 

the direct relationship of LULC to many of the earth’s fundamental characteristics and processes. 

This includes the productivity of the land, species diversity, and biochemical and hydrological 

cycles amongst many others. Land cover is continually shaped and transformed by land use 

changes such as, when a forest is converted to pasture or crop-land. Land use change often 

causes land-cover change. The underlying driving forces can be traced to a number of economic, 

technological, cultural and demographic factors and often, humans are recognized as a dominant 

force in local and global environmental change (Moran, 1993; Turner et al., 1994; Lambin et al., 

2001). Understanding LULC is essential for many natural resource management and planning 

decision. It is important to have timely and precise information about LULC change detection of 

earth’s surface for understanding relationships and interactions between human and their 

environment for better management of decision making (Lu et al., 2004). 

Geospatial technologies such as Geographical Information System (GIS) and Remote 

Sensing (RS) have made it possible to develop spatially-explicit models of the social and 

environmental implications of LULCC. These models can define and test relationships between 

environmental and social variables using a combination of existing data (census data, LULC 

maps, and RS data), and field observations (ecological measurements; and surveys). These 

spatial models of LULC change drivers and their associated impacts can be used to evaluate 

cause and effects in LULC change observed in the past and are also extremely useful tools for 

offering forecasts of future land use changes and their effects on the environment and in the case 

of this proposed study; effects on water quality and quantity. Models of LULC change based on 
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political, economic, environmental and other drivers can then be used to explore the impacts of 

policy decisions and other factors using scenario analysis and modeling techniques to make 

sustainable land management decisions (Heisterman et al., 2006). 

From the methodological point of view the implementation of a GIS and RS with the 

support spatial analysis models facilitate the study of these spatial transformations, contributing 

to the understanding of these changes. This understanding will enable resource managers to 

visualize future scenarios that can be evaluated to assess their impact on water resources and thus 

will help to formulate appropriate developmental policies for sustainable development 

(Heisterman et al., 2006). 

 

1.2  Statement of the Problem: 

 

Through use of land, as reflected by water usage, human beings have appropriated as 

much as 40 percent of the net primary productivity of the earth. Changes in land are likely to 

alter ecosystem services. By altering ecosystem services, changes in land use and cover affect the 

ability of biological systems to support human needs (Vitousek et al., 1997). These changes in 

land use make places and people vulnerable to the changes in functions of economic and socio-

political systems.  

The Auburn-Opelika metropolitan area is one of the fastest growing Metropolitan 

Statistical Area (MSA) in Alabama (U.S. Census Bureau, 2009) and therefore has experienced 

rapid land cover change (Reutebuch et al., 2008).  The metropolitan area encompasses the 

Saugahatchee sub-watershed which was identified to include two stream segments that the 

Alabama Department of Environmental Management (ADEM) has classified as impaired. The 



4 
 

two impaired stream segments namely, Pepperell Branch and Saugahatchee Creek (Yates 

reservoir embayment) listed under 303d list of ADEM (see Figure 1) are polluted due to nutrient 

and organic enrichment flowing from industrial, municipal, non-irrigated crop production and 

pasture grazing uses. Land use changes associated with urbanization and forestry/agricultural 

land conversions within the Saugahatchee watershed have been shown to impact the water 

quality substantially and this study proposes to address some of these concerns (ADEM, 2010 ). 

This study models and interprets urbanization patterns in Saugahatchee watershed, 

encompassing City of Auburn and Opelika in the State of Alabama, using a GIS and RS methods 

coupled with a logistic regression model to assess LULC change and the impacts on water 

quantity and quality. Analysis of future  LULC change within the Saugahatchee sub-watershed is 

important in view of water quality and its supply for the community. Land use models are useful 

to better our understanding of the drivers of change, as well as associated consequences of 

changes and feedbacks. Land use models provide tools to predict and project changes in the land 

and the resultant consequences of such changes (Heistermann et al., 2006).  

  
Figure 1.1 Saugahatchee sub-watershed showing two impaired streams on Saugahatchee creek. 
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1.3  Study Area: 

 

The study site, Saugahatchee sub-watershed, is in the Lower Tallapoosa River Sub-Basin. 

Saugahatchee Creek has been identified as a high priority watershed by the Lower Tallapoosa 

Clean Water Partnership, the Alabama Soil and Water Conservation Committee, US 

Environmental Protection Agency and the Alabama Department of Environmental Management. 

(SWaMP, 2005).  Figure 2 depicts various land uses in 2007 in Saugahatchee Watershed.   

  

Figure 1.2 LULC (acres) within the Saugahatchee sub-watershed in the year 2007 

 

According to a study done by Reutebuch et al. (2008) the area under forest cover is 72% 

of watershed area and urban development, mainly observed in southeastern part of the watershed 
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occupies 7.9% of watershed area. Other predominant activity observed in the watershed is 

pastureland covering 10.5% of the area. It is posited that increasing Urban land use and pasture 

land have impact on the water quality and quantity in the watershed. Increasing impervious 

surfaces contribute to increases in surface runoff and pollutants, such as oil, sediments, and 

nutrients in runoff water. Conversion of forest to pasturelands also increases sediments and 

nutrient loads in the Saugahatchee creek (SWaMP, 2005).  

 

1.4  Aim and Objectives: 

 

The aim of this study is to analyze historical land use trends and evaluate  

various methods to detect, quantify, analyze, and forecast land use changes in the Saugahatchee 

Watershed. The study proposes to evaluate future land use scenarios and their impact on water 

quality and quantity.  

 

The following are the specific objectives of the thesis: 

 Quantify and examine the characteristics of land use change over the study area using RS 

and GIS analysis and ancillary information 

 Compare Pixel Based and Object Based image classification 

 Examine spatial transitions between different Land use categories 

 Develop a model to predict and assess future land use changes and their impact on the 

water quality.  

 Evaluate impact of future land use scenario on hydrologic changes in the watershed using 

biophysical models such as SWAT. 
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1.5 Research Questions: 

 

The underlying basis of this study is that there have been considerable LULC changes in 

the Saugahatchee sub-watershed which have had a detrimental impact on the water quality in 

portions of the watershed.  

 

In this investigation the following research questions are posed: 

 

 Can improvements be made to traditional multi-spectral Pixel Based land use land cover 

classification through Object Based Image Analysis? 

 What are the changes in land use and land cover in the study areas that are having the 

most substantial impact on water quality? 

 What is the spatial and temporal extent of the land use and land cover change and where 

have the highest rates of changes have occurred? 

 What are the major driving forces for the land use and land cover changes? 

 What will be the extent of the land use and land cover changes in the future?  

 What is the impact of future development scenarios on the water quality and quantity? 

 

1.6 Thesis Outline: 

   

Chapter1:  

Introduction: 

Statement of the Problem 



8 
 

Study Area 

Aim and Objectives 

Research Questions  

Thesis Outline 

Methodology 

Significance of the Study  

 Chapter2:  

  Remote Sensing Image Analysis and Classification of land use land cover in the  

  Saugahatchee watershed:   

  Introduction 

Data and Methods 

Spatial Data Processing 

Data Processing Utilizing Unsupervised classification for Pixel based 

Multispectral Remote Sensing 

Data Processing Utilizing Unsupervised with Cluster Busting for Pixel based 

Multispectral Remote Sensing 

  Data Processing Utilizing GeOBIA 

  Accuracy Assessment 

  Evaluation of Classification Results 

  Urban Land Use Change 

  Results and Discussion   
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Chapter3: 

Multiple Logistic Regression and GIS to Model Land Use Change in 

Saugahatchee Watershed: 

  Introduction 

  Logistic Regression 

  Data and Methods 

  Results and Discussion  

Logistic Regression Modeling 

  Model Validation 

  Land Use Land Cover Projection 

  Conclusion 

 Chapter4: 

Use of SWAT for Assessing Water Quality and Quantity Impact of Land Use  

Change in the Saugahatchee Watershed: 

Introduction 

Data and Methods 

  Results and Discussion 

  Conclusion  

 Chapter5:  

  Summary  
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1.7 Methodology: 

 

Various geospatial methodologies are used in this study to process, quantify, analyze and 

model the land use change. Image analysis of Landsat 5TM imagery is done by implementing 

traditional pixel-based classification methods utilizing unsupervised classification and cluster 

busting methods utilizing ERDAS Imagine 9.3. The results are compared with object oriented 

image analysis (OBIA) in Definiens 8.0 by developing a set of rules to hierarchically classify 

image segments. ArcGIS 9.3 version is used for spatial analysis of the land use changes. For the 

modeling part, this study has developed GIS based multi-criteria evaluation and logistic 

regression analysis to forecast land use change. This modeling is developed in the GIS 

environment and provides spatial outputs which are fed into biophysical models, SWAT, to help 

determine the impact that LULC change has on water quality and quantity which ideally may 

help resource managers evaluate and assess development scenarios. 

 

1.8 Significance of the Study: 

 

One of the major impacts of land use and land cover change is a loss of silviculture/ 

agriculture land through various development projects. Municipal developments in a watershed 

have substantial impact on the surface water quality and supply.  Therefore, land use change 

studies are important tools for planners and decision makers to address the impact of urban 

growth. The proposed study is expected to provide resource managers with information on the 

condition and dynamics of the land use change in the Saugahatchee watershed through the use of 

remotely sensed satellite imagery for such analysis. The study shall provide tools to model land 
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use changes and evaluate future development scenarios. The study underscores use of analytical 

tools for planners and decision makers to predict and compare impacts of different management 

options/policies. The study shall offer information related to dynamics of natural resources and 

may provide a basis for further research on assessing impacts of future land use on water quality 

and quantity in watersheds.  
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CHAPTER 2 

 

REMOTE SENSING IMAGE ANALYSIS AND CLASSIFICATION OF LAND USE LAND 

COVER IN THE SAUGAHATCHEE WATERSHED 

 

 

2.1  Introduction: 

 

Human land-use activities impact the environment. Changes in land are likely to alter 

ecosystem services. By altering ecosystem services, changes in land-use and land-cover impacts 

the ability of biological systems to support human needs (Vitousek et al., 1997). Monitoring of 

land cover and its change thus is of critical importance. Remotely sensed data are widely used in 

land cover mapping, and monitoring of our environment. Remotely sensed (RS) satellite imagery 

and aerial photography have been widely used in many studies in urban area analysis and in 

various scientific research studies aiding in resource management decisions. It facilitates spatio-

temporal analysis of our environment and the impact of human activities on it (Zhou et al., 

2004). RS data provide a view of spatio-temporal patterns for a particular time period associated 

with change in a landscape, and thus are found useful for studying landscape dynamics and 

modeling of changes in the landscape (Yeh and Li, 1997; Longley, 2002; Herold et al., 2003). 

RS imagery analysis has been commonly used for change detection analysis (Im et al., 2008) and 

has potential use in management and planning of urban areas through gaining an understanding 

of land-use information (Herold et al., 2002).   

The methods employing remote sensing techniques for analysis of urban land-use 

information have evolved from the very basic visual interpretation into a complex computer 
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based analysis. However, automatic delineation of urban areas and differentiation of land cover 

types is still a challenge (Erbek et al., 2004; Lo and Choi, 2004; Qian et al., 2005). At present, 

the extraction accuracy of built-up areas is still unsatisfactory, which usually varies around 70%-

80% for Landsat imagery. This is mainly due to the heterogeneity of urban areas, where 

continuous and discrete elements occur side by side (Aplin, 2003). Another reason is the problem 

of a mixed pixel, especially in an urban environment where the land cover is very heterogeneous 

at the local scale (Lo and Choi, 2004). A commonly used approach to image analysis is image 

classification. The purpose of classification is to tag meaningful information to pixels in an 

image. Through classification of digital remote sensing imagery, thematic maps having the 

information such as the land cover types and their extent can be obtained (Tso and Mather, 2001; 

Matinfar et al., 2007). 

One popular and commonly used approach to image analysis is digital image 

classification. The purpose of image classification is to label the pixels in the image with 

meaningful information representing the real world (Jensen and Gorte, 2001). Through 

classification of digital remote sensing image, thematic maps bearing the information such as the 

land cover type; vegetation type etc. can be obtained (Tso and Mather, 2001). 

 

2.1.1 Objectives: 

 

In this study three classification approaches are selected and compared and contrasted. 

Two involve traditional pixel based image analysis approaches and the other one is the object 

oriented image analysis approach commonly known as Geographic Object Based Image Analysis 

(GeOBIA). Typical methods of classification of remote sensing imagery have used Pixel Based 
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Analysis (PBA). Normally, multispectral data are used to perform the classification and, the 

spectral pattern present within the data for each pixel is used as the numerical basis for 

categorization (Price, 1994; Lillesand et al., 2004). The PBA approach is based on conventional 

statistical techniques utilized in supervised and unsupervised classification. GeOBIA approaches 

image analysis by combining spectral information as well as spatial information such as texture 

and contextual information in the image (Flanders et al., 2003). 

Earlier methods employed to do land use land cover classification using remotely sensed 

imagery were predominantly by PBA methods, where land cover classes are assigned to 

individual pixels. Although PBA method of classification is widely used, working at the pixel 

scale can have major drawbacks. Main among these is the problem of mixed pixels, whereby a 

pixel represents more than a single type of land cover (Fisher, 1997), which often times lead to 

misclassification. By removing the possibility of misclassifying individual pixels, object-based 

classification can improve pixel-based classification (Aplin et al., 1999; Platt and Rapoza, 2008). 

The object-oriented processing technique segments the images into homogenous regions based 

on neighboring pixels’ spectral and spatial properties (Carleer et al., 2005; Alpin and Smith, 

2008). One of the segmentation processes in eCognition is known as a “multi-resolution 

segmentation” and is based on “region growing approach” (Im et al., 2008).  

GeOBIA uses the spatial scale of the object instead of the pixel. For example, the 

maximum likelihood classification algorithm has been used for object based classification either 

for classifying objects directly (Kiema, 2002; Dean and Smith, 2003; Walter, 2004) or by first 

classifying pixels individually and then grouping these to populate each object (Aplin et al., 

1999; Geneletti and Gorte, 2003). Benz et al. (2004) reported use of fuzzy classification for 

object-based analysis. Aplin and Atkinson (2001) located fuzzy (sub-pixel) land cover class 
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proportions spatially by segmenting pixels according to polygon boundaries, while Shackleford 

and Davis (2003) used combination of pixel based and object based approach using sub-pixel 

class proportions to derive new land cover classes at the object based scale.  

Since the objective of the present study was to use remotely sensed image analysis to 

produce reasonably accurate (85% and above) land use classification of the imagery, as 

suggested by Fitzpatrick-Lins (1981), two methods of classifications namely; pixel based and 

object based were used. The traditional PBA method often exhibit salt and pepper effect to the 

classification. In unsupervised classification it is common for multiple classes to represent a 

single land cover type. After an initial classification is complete, multiple classes are recoded to 

the same land cover type. In PBA it is not uncommon for multiple land cover types to exist 

within one class which represent error.  To correct these errors cluster busting is often done 

(Jensen, 2000). Thus, three methods of classification namely, unsupervised PBA, unsupervised 

PBA with cluster busting, and GeOBIA are compared in the present study.  The results of the 

classification were statistically tested to determine which method will produce more accurate 

LULC classification than other methods. In GeOBIA the automated segmentation process of 

imagery has the advantage of being less time consuming.  The whole classification process can 

be saved as a rule set. The advantage of creating a rule set is that it is much more flexible and can 

be modified to rectify any mistakes in the classification process. Further, the rule set developed 

on a data set can be applied to other similar data sets. For the present study the most accurate 

classification is used in land use projections using logistic regression as described in Chapter 3. 

The Soil Water Analysis Tool (SWAT) model is then used to make a decision on the suitable 

land use projection based on the effect of land use projections on the water quality within the 

Saugahatchee watershed as described in Chapter 4.    
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2.2 Data and Methods 

2.2.1 Spatial data processing: 

 

 In various environmental studies (Aplin et al., 1999; Harold et al., 2002; Yang and Lo, 

2002; Dean and Smith, 2003; Lo and Choi, 2004; Fan et al., 2007; Lathrop et al., 2007; Dappen 

et al., 2008), such as mapping and land use change detection, image analysis is based on the 

analysis of satellite data. While conducting image analysis for multi-temporal data, consideration 

must be given to the season of image acquisition, as well as cloud cover and impacts of the sun’s 

inclination as these factors would affect the quantitative analysis of the changes. To overcome 

the impact of these factors anniversary images with similar characteristics such as sun angle and 

percent cloud cover are to be used (Singh, 1989). In this study, multi-temporal datasets of 

historical satellite imagery, aerial photographs and other vector datasets were used to determine 

LULC changes over the study period from 1991 to 2009.  The Landsat 5 Thematic Mapper (TM) 

imagery for the study area was searched for using the USGS Global Visualization Viewer 

(GloVis) for the years 1991, 2001, and 2009 and downloaded from the EROS data center using 

the Earth Explorer interface. The acquisition dates of the three imageries were Sept. 27, 1991; 

Oct. 25, 2001; and Sept. 29, 2009 with 0% cloud cover. The images downloaded from USGS 

GloVis were georeferenced and radiometrically corrected.  

The Landsat 5 platform operates from a Sun-synchronous, near-polar orbit, imaging the 

115 miles ground swath every 16 days. The Landsat 5TM sensor has a spatial resolution of 30 

meters for bands 1 through 5, and band 7, and a spatial resolution of 120 meters for band 6.  

Each TM band has a characteristic to maximize detecting and monitoring different types of earth 

surfaces. For example, TM band 1 penetrates water for bathymetric mapping along coastal areas 



17 
 

and is useful for soil-vegetation differentiation and for distinguishing forest types. TM band 2 

detects green reflectance from healthy vegetation, and TM band 3 is useful for detecting 

chlorophyll absorption in vegetation. TM Band 4 data is good for detecting near-IR reflectance 

peaks in healthy green vegetation and for detecting water-land interfaces. The two mid-IR red 

bands on TM (bands 5 and 7) are useful for vegetation and soil moisture studies and for 

discriminating between rock and mineral types. The thermal-IR band on TM (band 6) is designed 

to assist in thermal mapping, and is used for soil moisture and vegetation studies (USGS, 2011; 

Jensen, 2000).  

For the present study TM Bands 1-7 are used in classification for both PBA and GeOBIA 

methods. For image interpretation bands 4, 3, and 2 are combined to make false-color composite 

images where band 4 represents the red, band 3 represents the green, and band 2 represents the 

blue portions of the electromagnetic spectrum. This 4-3-2 band combination makes vegetation 

appear as shades of red, with brighter reds indicating more abundant and productive vegetation. 

For soils with no or sparse vegetation color range from white to greens or browns depending on 

moisture and organic matter content. Water bodies appear blue in color. Deep and clear water 

appears dark blue to black in color, while shallow waters or water with sediments appear lighter 

in color. Urban areas appear blue-gray in color. This color information is then used to help 

classify imagery into five land use land cover categories for the present study. 

Historical analysis of LULC change is done from year 1991, 2001, and 2009 with 

Landsat 5 Thematic Mapper (TM) imagery, 30 meter resolution, using a variety of traditional 

(unsupervised classification and cluster busting) and newer techniques including segmentation, 

classification, and change detection procedures to understand  the trends of the LULC change.  
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The spatial extent of the study area was extracted by overlaying a boundary file (HUC 11 

– 03150110030) of the Saugahatchee watershed with the Landsat 5 TM imagery and cropping 

imagery to the extent of the Saugahatchee watershed boundary. In order to view and distinguish 

the surface features clearly, all the input images were composed using the RGB false color 

composition in 4-3-2 bands. Although, the 4-3-2 false color composite is good for interpreting 

imagery it is important to realize both traditional PBA and GeOBIA (in generating a segmented 

image) considers all 7 bands. Since the present study is concerned mainly with the change in the 

urban/built up area and its impact on the water quality within the Saugahatchee watershed, only 

the major categories of LULC are considered for classification. The urban/ built-up areas have 

spatially heterogeneous features and such surface features have similar spectral response thus 

making it difficult to discriminate some of the features. In the present study the urban class 

includes all forms of built structure including residential, commercial, industrial, road and other 

impervious surfaces. A modified Anderson land use land cover classification system (Anderson 

et al., 1976) at Level I was used to classify land cover into 5 major land cover categories namely; 

water, forest, open/transition, urban, and ag/pasture. Ancillary data such as existing land cover 

maps, Digital Orhto Quad Quadrangles (DOQQs), obtained from Alabama Cooperative 

Extension System GIS portal, and Google maps were integrated in the classification study. These 

classified land use maps are used to carry out the analysis of LULC changes in a Geographic 

Information System (GIS).  
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2.2.2  Data Processing Utilizing Unsupervised classification for Pixel based Multispectral 

Remote Sensing: 

 

Registration and rectification of anniversary Landsat 5 TM images from 1991, 2001, and 

2009 was done to align the imagery properly. For classification of the imagery first unsupervised 

classification followed by cluster busting was implemented in ERDAS IMAGINE 9.3. In 

unsupervised classification method, the ISODATA clustering algorithm (Jensen, 2005) is used to 

classify the image into 100 classes. The 100 classes were derived in the unsupervised 

classification with maximum number of iterations set to 10 and convergence threshold set to 

0.95. The pixels were identified for each of the categories, by referring to the 4-3-2 FCC and 

reference DOQQ aerial photos from corresponding time periods (obtained from alabamaview.org 

and City of Aburn), and were grouped into land cover categories: Water, Forest, Open/ 

Transition, Urban, and Ag/Pasture. The classified land cover map was produced as shown in 

Figure 2.1.  

 

2.2.3  Data Processing Utilizing Unsupervised with Cluster Busting for Pixel based 

Multispectral Remote Sensing:  

 

To separate the mixed up classes, especially in the urban areas, cluster busting is done to 

improve the classification.  While doing pixel based classification of urban areas, often times 

open areas such as large bare soil areas, worn playgrounds and cemeteries are mixed up with 

urban features like large parking lots.  A cluster busting technique to reclassify mixed pixels 

(Jensen, 2005) was employed to break out smaller clusters from larger ones that represented 
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more than one distinct land cover type. Cluster busting is a procedure designed to separate pixels 

that are spectrally similar to one another by progressively decreasing the spectral variance 

between classes. First, candidate pixels were identified and masked from the raw TM data. The 

candidate pixels were then reclassified using an unsupervised classification approach. The 

resulting output clusters were reassigned to the output land-cover classes they most closely 

resembled. This method is useful in clearing up much of the mixed pixels in the urban areas. 

Using aerial photos to guide the classification process, final cluster assignments were made to 

the five land-cover classes to produce the land cover map. The results of the classification maps 

are shown in Figure 2.1. 

The PBA is done in two ways; the first with only unsupervised and, the second with 

unsupervised combined with cluster busting. This is done to compare these two methods with 

GeOBIA method for time required for classification and accuracy of the classification. Using the 

unsupervised classification, the classification of imagery into specified classes is done relatively 

quickly using ISODATA clustering algorithm. Most time is spent in analyzing the 100 classes 

and comparing individual classes to the 4-3-2 false color composites and the DOQQs in order to 

assign each class to one of the 5 classes in the selected scheme.  This takes less time than cluster 

busting because the user does not take the time to correct errors from mixed classes but the 

resultant classification has a salt and pepper effect and often times multiple land cover types 

exist within one class.  Although cluster busting helps improve the unsupervised classification it 

is a time consuming process.  
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2.2.4  Data Processing Utilizing GeOBIA : 

  

The GeOBIA approach considers groups of pixels and the geometric properties of image 

objects. It segments the imagery into homogenous regions based on neighboring pixels’ spectral 

and spatial properties. In this analysis the image objects are classified based on a supervised 

maximum likelihood classification. The object-based image analysis approach to a certain extent 

avoids the mixed pixel problems commonly observed in the traditional pixel based method (Mori 

et al., 2004).  

 In this study eCognition Version 8.0  is used to classify Landsat imagery. Landsat 5 TM 

imagery with the 7 bands was loaded into eCognition as image layers. In Object-oriented image 

analysis the first step is to segment the image into vector polygons.  Multiresolution 

Segmentation was done followed by the creation of a class hierarchy and then, classification rule 

sets were developed. During the image segmentation process image segments are defined and 

calculated. Parameters for segmentation are defined for the scale, shape and compactness 

properties. These image segments have to be calculated on different scale in a “trial and error” 

process to result in final image segments to represent single objects of interest having least 

mixing of classes (Benz et al., 2004; Laliberte et al., 2004).   

In the process of segmentation spatial dimensions in image analysis are included by 

identifying  relatively homogenous regions and treating them as objects. One of the segmentation 

processes in eCognition is known as a “multi-resolution segmentation” where the smallest 

objects containing single pixels are merged into larger objects based on the defined segmentation 

parameters. The multiresolution segmentation process requires users to set scale parameters 

ranging from 1 to 100.  In this case, all the image layers were given equal importance 1 and 
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different scale parameters were attempted based on visual analysis of the segmentation results.  

The segmentation parameters, which yielded the least mixing of classes with the Landsat TM 

datasets analyzed in the study area, were set as; image layer weight as 1, Scale to 3, Shape to 0.1, 

and Compactness to 0.5. 

After creating 5 major  categories of land cover at the modified Anderson Level I 

scheme, classification samples were selected for each category.  Based on the samples collected, 

a nearest neighbor algorithm was applied. The ruleset created for classification is depicted in the 

Figure 2.1. Finally, the classified image objects were merged into respective classes and then the 

merged classes were exported in a vector format as an output to produce the land cover maps as 

shown in Figure 2.2. 

 

Figure 2.1 Ruleset for classification of the LandSat5-TM imagery 

From the classified land cover maps shown in Figure 2.2 it can be deduced that the forest 

area has remained relatively stable over last 20 years. There is a distinct increased in 

urbanization within the Saugahatchee watershed, indicated by red color, over the last decade. 

Also the Ag/ Pasture area has reduced over the period from 2001 to 2009 which, indicate 
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conversion of Ag/ Pasture land partly to urbanization and to regeneration of forest. The area in 

acres under each land use land cover category is presented in Tables 2.1, 2.2, and 2.3 for 

Unsupervised, Unsupervised with cluster busting and GeOBIA classification respectively. The 

accuracy of classification results are evaluated below in section 2.3.1.    

Figure 2.2 Land use land cover classifications maps 

 

(a) Unsupervised with cluster busting, 1991 
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(b) Object based, 1991 

 
(c) Unsupervised, 1991 
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(d) Unsupervised with cluster busting, 2001 

 

 
(e) Object based, 2001 
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(f) Unsupervised, 2001 

 

 
(g) Unsupervised with cluster busting, 2009 
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(h) Object based, 2009 

 

 
(i) Unsupervised, 2009 
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Table: 2.1: Area in acres computed for unsupervised classification 

 Year 1991 Year 2001 Year 2009 

Water 1,360 904 1,079 

Forest 101,989 99,299 101,023 

Open 18,612 19,765 24,666 

Urban 5,717 3,659 5,541 

Ag/Pasture 12,069 16,119 7,437 

 

Table: 2.2: Area in acres computed for unsupervised classification with cluster busting. 

 Year 1991 Year 2001 Year 2009 

Water 1,293 1,151 1,267 

Forest 102,386 99,680 103,448 

Open 19,980 20,419 20,386 

Urban 5,154 6,038 7,035 

Ag/Pasture 10,933 12,458 7,611 

 

Table: 2.3: Area in acres computed for GeOBIA classification 

 Year 1991 Year 2001 Year 2009 

Water 1,408 1,307 1,649 

Forest 105,612 110,970 108,987 

Open 15,080 9,506 7,856 

Urban 5,637 6,070 7,086 

Ag/Pasture 9,361 9,329 11,454 
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2.3  Classification Accuracy Assessment:  

 

Accuracy assessment is a process used to estimate the accuracy of image classification by 

comparing the classified map with a reference map (Congalton and Green, 1999). With the 

advancement of digital satellite remote sensing analysis the need for the advanced accuracy 

assessment received new interest (Congalton and Green, 1999). At present accuracy assessment 

is considered as an integral part of any image classification. This is because image classification 

using different classification algorithms may classify pixels or group of pixels to wrong classes. 

The most noticeable types of error that occurs in image classifications are errors of exclusion or 

inclusion. The classification accuracy is represented in the form of an error matrix. An error 

matrix is a square array of rows and columns and presents the relationship between the classes in 

the classified and reference maps. Using error matrix to represent accuracy is recommended and 

adopted as the standard reporting convention (Congalton and Green, 1999).  

Error matrix is a simple cross-tabulation of the mapped class label against that observed 

in the ground or reference data for a sample of cases at specified locations (Qian et al., 2005). 

The overall accuracy is calculated by dividing the number of correctly classified pixels 

(presented as entries in the major diagonal of the confusion matrix) by the total number of 

reference pixels. Though simple, the overall accuracy has been the most conventional approach 

accuracy assessment (Woodcock, 2002; Qian et al., 2005). An improvement to this overall 

accuracy assessment metric is the Kappa coefficient of agreement, which expresses the 

proportionate reduction in error generated by a classifier compared with the error of a completely 

random classification. Beyond the compensation for chance agreement, the Kappa coefficient 

can be used in the z-test of the significance of the difference between two coefficients, thus 
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enabling a comparison between different classifications in terms of accuracy. (Congalton and 

Green, 1999; Qian et al., 2005).  

In this paper, Overall Accuracy, Producer’s Accuracy and User’s Accuracy were 

calculated. The Kappa coefficient, which is a statistical measure of the difference between the 

actual agreement and chance agreement, was also calculated. The Kappa statistics is a discrete 

multivariate technique used in accuracy assessment for statistically determining if one error 

matrix is significantly different than the other error matrix (Congalton and Green, 1999; Fan et 

al., 2007).  

The reference data used for accuracy assessment included a combination of high 

resolution (1m) aerial imagery, land cover maps, and Landsat imagery used for the initial 

classification. Based on guidelines set by Congalton and Green (1999) for accuracy assessment a 

sample unit of a cluster of pixels (3X3 size) was used. Based on many empirical studies, 

Congalton and Green (1999) have suggested collecting minimum of 50 samples for each land 

cover category in the error matrix which provides a statistically sound and practically attainable 

sample collection. The number of referenced sample points (n) required for the accuracy 

classification was determined by the following equation, suggested by Fitzpatrick-Lins (1981);          

                                                                  

 where, p is the expected percent accuracy, q= 100 – p, and E is the allowable error, and 

Z=2 from the standard normal deviation of 1.96 for the 95% 2-sided confidence level. 

Fitzpatrick-Lins (1981) has also suggested an accuracy of at least 85% for each category. In the 

study an allowable error of 2% was taken since the study involved some field work. For the 

present study allowable error of 5% was considered to be reasonable as no field work was 

involved. 
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 Substituting these values in the equation (1) result in:  

                                                                         

 The total number of sample points was estimated to be 204. A minimum of 50 samples 

for each land cover category were randomly generated. Thus, for five land cover categories a 

total of 250 random reference points were generated using the Accuracy Assessment tools in 

ERDAS IMAGINE 9.3. The classified map and reference aerial photo for the corresponding year 

were geolinked and then samples points on the classified map were labeled for accuracy by 

referring to the aerial photo.  

Error matrices were then designed to assess the quality of the classification accuracy of 

all the maps. These error matrices were used for descriptive and analytical statistical techniques 

to examine accuracy of classification (Congalton, 1991). The Overall Accuracy, User’s and 

Producer’s Accuracies, as well as the Kappa statistic were then derived from the error matrices. 

The error matrix designed in object based image classification was compared with error matrix 

designed in initial unsupervised classification for pairwise comparison of z statistics to determine 

if they are significantly different.  The object based image classification was also compared with 

the unsupervised classification improved by cluster busting method for pairwise comparison of 

error matrices. The results of statistical evaluation of classification accuracy are presented in the 

following section. 

 

2.3.1 Evaluation of Classification Results: 

 

As stated above the accuracy assessment was carried out and results of error matrix are 

presented in TABLE 2.4 to 2.12. The procedure outlined by Congalton and Green (1999) was 
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followed to determine Overall Accuracy, Producer’s Accuracy, User’s Accuracy, and Kappa 

statistics from the error matrix.  

Overall Accuracy: 

This is computed by dividing the total correct number of pixels (i.e. summation of the 

diagonal) to the total number of pixels in the matrix (grand total). The overall accuracies for the 

pixel based unsupervised classification with cluster busting for year 1991, 2001, and 2009 were 

90.00%, 90.00%, and 90.40%, respectively. The overall accuracy of the object based 

classification for 1991, 2001, and 2009 were 82.00%, 82.00%, and 84.40%, respectively. 

Similarly the overall accuracy of the pixel based unsupervised classification for 1991, 2001, and 

2009 were 84.00%, 82.40%, and 84.00%, respectively. Anderson et al., (1976) noted that a 

minimum accuracy value of 85% is required for effective and reliable land cover change analysis 

and modeling. The pixel based classification with cluster busting carried out in this study 

produces an overall accuracy of 90.00%, which fulfils the minimum accuracy threshold defined 

by Anderson (1976).  

Producer’s Accuracy: 

This refers to the likelihood of a reference pixel being classified correctly. It is also 

known as exclusion error because it only gives the proportion of the correctly classified pixels. It 

is obtained by dividing the number of correctly classified pixels in the category by the total 

number of pixels of the category (Column total) in the reference data. The overall result of the 

producer’s accuracy for pixel based unsupervised classification with cluster busting ranges from 

77% to 100%. For the object based classification the producer’s accuracy ranges from 65% to 

100%. Similarly, the producer’s accuracy for the pixel based unsupervised classification ranges 

from 55% to 100%. The lowest producer’s accuracy exists in the land cover classes 
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open/transition. This is probably attributed to the similar spectral properties of some of the land 

cover classes (e.g. bare land in urban areas, bare land within the Ag/pasture, open areas within 

forest land etc).  

User’s Accuracy: 

This evaluates the likelihood that the pixels in the classified map represent that class on 

the ground (Congalton, 1991). It is obtained by dividing the total number of correctly classified 

pixels in the category by the total number of pixels on the classified map. User’s accuracy of 

individual land cover classes for pixel based unsupervised classification with cluster busting 

ranges from 86% to 96%. For the object based classification the producer’s accuracy ranges from 

78% to 94%. Similarly, the producer’s accuracy for the pixel based unsupervised classification 

ranges from 76% to 96%. From user’s point of view the lowest producer’s accuracy exists in the 

land cover classes, ag/pasture, urban areas, and open/transition land. The Ag/pasture and urban 

were, to some extent, misclassified as open/transition and ag/pasture, respectively. This is 

probably caused by the spectral signature of the features.  

Kappa Statistics: 

The Kappa coefficient, which is a measure of agreement, can also be used to determine 

the classification accuracy. It expresses how well the classified map agrees with the reference 

data (Congalton and Green, 1999). The Kappa statistic incorporates the off-diagonal elements of 

the error matrices (i.e., classification errors) and represents agreement obtained after removing 

the proportion of agreement that could be expected to occur by chance. To determine if the 

overall accuracies were statistically significant, Kappa coefficients were calculated for all the 

three methods of classification and a pair-wise Z test was calculated using the information in 

Tables 2.4, to 2.10 and the following formula given by Congalton and Green (1997):  
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where,  represents actual agreement,  represents chance agreement, and  and  represents 

the Kappa coefficients for the pixel-based classification, and object-based classifications, 

respectively. The Kappa coefficient is a measure of the agreement between observed and 

predicted values and whether that agreement is by chance. A Kappa value ranges from 0 to 1, 

with values closer to zero indicating higher chance agreement. The Kappa coefficients for the 

pixel-based unsupervised with cluster busting classifications were 0.87, 0.87 and 0.88 for the 

classified maps of 1991, 2001, and 2009 respectively. These Kappa results are considered to be a 

good result. The Kappa coefficients for the object-based classifications were 0.77, 0.77 and 0.80 

for the classified maps of 1991, 2001, and 2009 respectively. Similarly, the Kappa coefficients 

for the initial pixel-based unsupervised classifications were 0.80, 0.78 and 0.80 for the classified 

maps of 1991, 2001, and 2009 respectively (Table 2.13).  

Pairwise Comparison: 

The Kappa values and a pair-wise Z test were calculated. The Z-scores and P-values are 

given in the table 2.14 and 2.15 for pair-wise comparison of Pixel-based unsupervised with 

cluster busting Vs. Object-based and pair-wise Comparison of initial Pixel-based unsupervised 

Vs. Object-based, respectively. The Z statistic is used for determining if the classification is 

significantly better than a random result. At 95% confidence level, the critical value would be 

1.96. Therefore, an absolute value of pair-wise Z test greater than 1.96 indicates that the two 
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error matrices are significantly different. The Z score and P-value in Table 2.14 indicates a 

statistically significant difference between pixel-based unsupervised with cluster busting 

classification and the object-based classification. The result of the pairwise test for significance 

(Table 2.15) between initial pixel-based unsupervised classification and object-based 

classification shows that the two matrices are not significantly different.  

 

Table 2.4 Pixel-Based Unsupervised Classification after cluster busting, Year 1991 

 

 

Reference Map 

 

Water Forest 

Open/ 

Transition Urban 

Ag/ 

Pasture 

Row 

Total 

User's 

Accuracy 

C
la

ss
if

ie
d
 M

ap
 

Water 44 2 3 0 1 50 88.00 

Forest 0 48 1 0 1 50 96.00 

Open/Transition 0 4 44 0 2 50 88.00 

Urban 0 1 4 44 1 50 88.00 

Ag/Pasture 0 0 5 0 45 50 90.00 

 

Column Total 44 55 57 44 50 250 

  Producer's Accuracy 100.00 87.27 77.19 100.00 90.00 

  

 

Table 2.5 Object-Based Classification, Year 1991 

 

 

Reference Map 

 

Water Forest 

Open/ 

Transition Urban 

Ag/ 

Pasture 

Row 

Total 

User's 

Accuracy 

C
la

ss
if

ie
d

 M
ap

 

Water 43 3 4 0 0 50 86.00 

Forest 0 44 5 0 1 50 88.00 

Open/Transition 0 4 39 2 5 50 78.00 

Urban 0 1 6 39 4 50 78.00 

Ag/Pasture 0 5 4 1 40 50 80.00 

 

Column Total 43 57 58 42 50 250 

 

Producer's Accuracy 100.00 77.19 67.24 92.86 80.00 
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Table 2.6 Initial Pixel-Based Unsupervised Classification, Year 1991 

 

Reference Map 

 

Water Forest 

Open/ 

Transition Urban 

Ag/ 

Pasture 

Row 

Total 

User's 

Accuracy 

C
la

ss
if

ie
d

 M
ap

 

Water 44 4 0 2 0 50 88.00 

Forest 0 48 2 0 0 50 96.00 

Open/Transition 0 6 40 0 4 50 80.00 

Urban 0 2 6 40 2 50 80.00 

Ag/Pasture 0 2 8 2 38 50 76.00 

 

Column Total 44 62 56 44 44 250 

 

Producer's Accuracy 100.00 77.42 71.43 90.91 86.36 

  

 

Table 2.7 Pixel-Based Unsupervised Classification after cluster busting, Year 2001 

 

 

Reference Map 

 

Water Forest 

Open/ 

Transition Urban 

Ag/ 

Pasture 

Row 

Total 

User's 

Accuracy 

C
la

ss
if

ie
d
 M

ap
 

Water 43 1 2 4 0 50 86.00 

Forest 0 48 2 0 0 50 96.00 

Open/Transition 0 2 44 0 4 50 88.00 

Urban 0 1 3 45 1 50 90.00 

Ag/Pasture 0 1 4 0 45 50 90.00 

 

Column Total 43 53 55 49 50 250 

 

Producer's Accuracy 100.00 90.57 80.00 91.84 90.00 

  

 

 

Table 2.8 Object-Based Classification, Year 2001 

 

 

Reference Map 

 

Water Forest 

Open/ 

Transition Urban 

Ag/ 

Pasture 

Row 

Total 

User's 

Accuracy 

C
la

ss
if

ie
d

 M
ap

 

Water 39 8 3 0 0 50 78.00 

Forest 0 44 5 0 1 50 88.00 

Open/Transition 0 5 40 1 4 50 80.00 

Urban 0 0 7 41 2 50 82.00 

Ag/Pasture 0 2 6 1 41 50 82.00 

 

Column Total 39 59 61 43 48 250 

 

Producer's Accuracy 100.00 74.58 65.57 95.35 85.42 
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Table 2.9 Initial Pixel-Based Unsupervised Classification, Year 2001 

 

 

Reference Map 

 

Water Forest 

Open/ 

Transition Urban 

Ag/ 

Pasture 

Row 

Total 

User's 

Accuracy 

C
la

ss
if

ie
d

 M
ap

 

Water 42 2 6 0 0 50 84.00 

Forest 0 44 6 0 0 50 88.00 

Open/Transition 0 2 40 2 6 50 80.00 

Urban 0 0 8 42 0 50 84.00 

Ag/Pasture 0 0 12 0 38 50 76.00 

 

Column Total 42 48 72 44 44 250 

 

Producer's Accuracy 100.00 91.67 55.56 95.45 86.36 

  

 

Table 2.10 Pixel-Based Unsupervised Classification after cluster busting, Year 2009 

 

 

Reference Map 

 

Water Forest 

Open/ 

Transition Urban 

Ag/ 

Pasture 

Row 

Total 

User's 

Accuracy 

C
la

ss
if

ie
d
 M

ap
 

Water 45 4 0 1 0 50 90.00 

Forest 0 47 3 0 0 50 94.00 

Open/Transition 0 2 45 1 2 50 90.00 

Urban 0 1 5 44 0 50 88.00 

Ag/Pasture 0 0 4 1 45 50 90.00 

 

Column Total 45 54 57 47 47 250 

 

Producer's Accuracy 100.00 87.04 78.95 93.62 95.74 

  

 

Table 2.11 Object-Based Classification, Year 2009 

 

 

Reference Map 

 

Water Forest 

Open/ 

Transition Urban 

Ag/ 

Pasture 

Row 

Total 

User's 

Accuracy 

C
la

ss
if

ie
d

 M
ap

 

Water 40 6 3 1 0 50 80.00 

Forest 1 47 2 0 0 50 94.00 

Open/Transition 0 1 43 3 3 50 86.00 

Urban 0 1 6 41 2 50 82.00 

Ag/Pasture 0 1 8 1 40 50 80.00 

 

Column Total 41 56 62 46 45 250 

 

Producer's Accuracy 97.56 83.93 69.35 89.13 88.89 
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Table 2.12 Initial Pixel-Based Unsupervised Classification, Year 2009 

  

 

Reference Map 

 

Water Forest 

Open/ 

Transition Urban 

Ag/ 

Pasture 

Row 

Total 

User's 

Accuracy 

C
la

ss
if

ie
d

 M
ap

 

Water 46 2 1 0 1 50 92.00 

Forest 0 44 6 0 0 50 88.00 

Open/Transition 0 2 42 2 4 50 84.00 

Urban 0 0 12 38 0 50 76.00 

Ag/Pasture 0 0 10 0 40 50 80.00 

 

Column Total 46 48 71 40 45 250 

 

Producer's Accuracy 100.00 91.67 59.15 95.00 88.89 

  

 

Table 2.13 Error Matrix Kappa Analysis 

 

  
Pixel-Based Unsupervised/    

cluster busting 
Object-Based Pixel-Based Unsupervised 

Year 

Overall 

Accuracy 

Kappa 

Statistics 

Overall 

Accuracy 

Kappa 

Statistics 

Overall 

Accuracy 

Kappa 

Statistics 

1991 90% 0.8750 82% 0.7750 84% 0.8000 

2001 90% 0.8750 82% 0.7750 82.40% 0.7800 

2009 90.40% 0.8800 84.40% 0.8050 84% 0.8000 

 

Table 2.14 Pairwise Comparison: Pixel-based unsupervised with clusterbusting Vs. Object-based 

 

Year Z Statistics P-value 

1991 2.5945 0.0096 

2001 2.5951 0.0096 

2009 2.0311 0.0424 

 

Table 2.15 Pairwise Comparison: Initial Pixel-based unsupervised Vs. Object-based 

 

Year Z Statistics P-value 

1991 0.5957 0.5552 

2001 0.1168 0.9124 

2009 0.1226 0.9044 
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2.4  Urban Land Use Change: 

 

Since, the accuracy assessment results indicate unsupervised classification with cluster 

busting is more accurate over other classification methods used in this study; the maps derived 

from unsupervised classification with cluster busting were used for urban change analysis in the 

Saugahatchee watershed. Change detection is the process used in remote sensing to determine 

changes in the land use land cover between different time periods. To examine the urban land 

use changes, a “post-classification” change analysis was employed in ERDAS Imagine for the 

study area. The “post-classificaiton” is common and suitable method for land cover change 

detection. This method compares two independently classified images to produce a change map 

of matrix of changes (Singh, 1989; Araya and Cabral, 2010) 

 The land cover maps for the years 1991, 2001 and 2009 were first reclassified into two 

classes: Urban and Other areas. The post-classification comparison was then applied by 

overlaying the reclassified maps of 1991 with 2001 and 2001 with 2009 in ERDAS Imagine. 

Image interpretation was done by performing matrix function to generate change maps.  

The matrix function creates an output file that contains classes that indicate how class 

values of two input images overlap. The accuracy of change map of two images depends on the 

accuracies of each individual classification. Image classification and post-classification 

techniques are, therefore, iterative and require further refinement to produce more reliable and 

accurate change detection results (Fan et al., 2007).The results from change detection for period 

from 1991 to 2001 and from 2001 to 2009 indicate significant changes in urban land use in the 

saugahatchee watershed. Most of the urban changes occurred around the peripheries of the 
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existing urban land use areas. The changes in the urban areas shows spread of urban land use in 

the surrounding areas and also infill growth of the urban area within the study area as shown in  

the Figure 2.3 (a) and (b).  

 
Figure 2.3 (a) Change from 1991 To 2001 
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Figure 2.3 (b) Change from 2001 To 2009 

Similarly the classified land cover maps for the years 1991, 2001 and 2009 were overlaid 

and  matrix output for all five classes for the  period from 1991 to 2001 and from 2001 to 2009 is 

generated. The Figure 2.3 (a) and (b) show the  resultant map interpreting land use change from 

forest, open and pasture areas to urban over the study period.  In the Figure 2.4 (a) and (b) the 

green color indicate conversions from forest to urban, yellow is conversion from Ag/Pasture to 

urban and black is conversion from Open/Transition to urban. The results of the change detection 

indicate that for both the study periods there were conversions of forested areas to urban. The 

open areas, which were within and immediate vicinity of the urban areas, were converted to 

urban. The land conversions of pasture to urban were relatively less and were observed mainly 

for the period from 2001 to 2009.  
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Figure 2.4 (a) Change from 1991 To 2001 

 
Figure 2.4 (a) Change from 2001 To 2009 
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2.5 Results and Discussion: 

 

Pixel-based unsupervised classification with cluster busting and object-based image 

classification methods have been performed by classifying the remote sensing image of LandSat-

5TM imagery. Accuracy of the classification results were assessed for unsupervised 

classification with cluster busting, object-based image classification and initial pixel-based 

unsupervised classification by creating the error matrix. Comparison of the result of the accuracy 

assessment shows that unsupervised classification with cluster busting has higher overall 

accuracy and higher individual producer’s and user’s accuracy for each classified land cover 

category. Tables 2.1 to 2.9 show the accuracy assessment results of the classification with pixel-

based and object-based image analysis. The pair-wise comparison of Z test indicates 

unsupervised classification with cluster busting is significantly better than the pixel-based 

classification scheme followed in this work. But, the pixel-based and initial pixel-based 

unsupervised classification is not significantly different. If two different techniques are shown to 

be not significantly different, then it would be prudent to use the quicker and more efficient 

method, which in this case is the object-based classification.  

  Assessing the accuracy of image classification is fundamental in land use studies. Maps 

developed from remote sensing data contain errors due to inefficient number of training sites or 

lack of reference data. Accuracy levels that are acceptable for certain tasks may not be suitable 

for other tasks.  Hence, classification accuracy of 85% is defined as minimum classification 

accuracy for effective LULC change analysis and modeling. The results obtained from pixel-

based unsupervised with cluster busting classification and the validation of statistical results 

were higher than the minimum validation threshold defined. Therefore, it was reasonable to 
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employ the maps derived from pixel-based unsupervised with cluster busting for further studies. 

However, it is noted that the GeOBIA methods could utilize contextual information to improve 

classifications and this will be explored in future given the overall speed of applying rule sets to 

multiple images in change detection.  

 A study area analysis was carried out on spatio-temporal changes in the Saugahatchee 

watershed with the most common change detection method. Results of the analysis indicate that 

there have been a remarkable urban land use changes during the study period. The post-

classification overlay method used in the present study presents only the spatial extent of urban 

land use changes. 

TABLE 2.16 Percent change in land use land cover 

 Year 1991 Year 2009 Percent Change 

Water 1,293 1,267 -2.01 

Forest 102,386 103,448 1.04 

Open 19,980 20,386 2.03 

Urban 5,154 7,035 36.50 

Ag/Pasture 10,933 7,611 -30.39 

  

From the analysis of land use land cover changes in the Saugahatchee watershed as 

shown in TABLE 2.13 it can be deduced that from the year 1991 footprint of urban area within 

the Saugahatchee watershed has increased by 36.50% to 7,035 acres in year 2009. Although the 

area of urbanization is only about 5.04% of the total area of Saugahatchee watershed, the 

urbanization has likely played a role in impairment of the Pepperell branch of the Saugahatchee 

creek. Like the urban land use the Ag/ Pasture land also has significant impact on the water 

quality and quantity in the watershed. Impervious surfaces contribute to increases in surface 

runoff and pollutants, in runoff water. To evaluate impact of future land uses on water quality a 
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logistic regression model is used to forecast future growth and a biophysical model called SWAT 

is used to assess sediment and nutrient loadings reaching the water bodies. The results of the 

logistic regression modeling and SWAT model are discussed in the Chapter 4. 
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CHAPTER 3 

 

MULTIPLE LOGISTIC REGRESSION AND GIS TO MODEL THE LAND USE CHANGE IN 

SAUGAHATCHEE WATERSHED 

 

 

3.1  Introduction: 

 

Changes in landscape development patterns occur in time and space due to complex 

interactions of physical, biological and social factors. Landscapes are influenced by human land 

use and the resultant landscape is a mosaic of landscape patches which vary in size, shape and 

spatial arrangement (Turner, 1987). Geospatial technologies such as Geographic Information 

System (GIS) and Remote Sensing (RS) have made it possible to develop spatially-explicit 

models of the social and environmental implications of land use land cover changes (LULCC). 

These models can define and test relationships between environmental and social variables using 

a combination of existing data (census data, land use land cover (LULC) maps, and RS data), 

and field observations (ecological measurements, and surveys). These spatial models of LULC 

change drivers and their associated impacts can be used to evaluate cause and effects in LULC 

change observed in the past and are also extremely useful tools for offering forecasts of future 

land use changes and their effects on the environment and in the case of this proposed study; 

effects on water quality and quantity (Heistermann et al., 2006). 

This study models and interprets urbanization patterns in Saugahatchee watershed, 

encompassing City of Auburn and Opelika in the state of Alabama, using RS imagery and GIS 

coupled with a logistic regression model. Locally, the Auburn-Opelika metropolitan area is one 



47 
 

of the fastest growing Metropolitan Statistical Area (MSA) in Alabama (U.S. Census Bureau, 

2009) and therefore has experienced rapid land cover change. Analysis of future land use change 

within the Saugahatchee sub-watershed is important in view of water quality and its supply for 

the community. Land use models are useful to better our understanding of drivers of change, 

consequences of changes and feedbacks. Land use models provide tools to predict and project 

changes in the land and the resultant consequences of such changes (Heistermann et al., 2006).   

To understand past land use patterns and for forecasting future land use patterns 

reviewing the driving forces behind LULC change is necessary (Ellis, 2007). Changes in LULC 

in Saugahatchee Watershed are impacting water quality. Population growth, increase in 

impervious surfaces, sediments, and quarries and mining are some of the factors that are 

impacting water quality and quantity in the Saugahatchee Watershed (SWaMP, 2005). The 

change detection analysis done in chapter2 shows conversion of forest to municipal land use in 

the Saugahatchee watershed has been the most dominant LULC change in the past two decades. 

It is essential to understand how land use patterns evolve and what drives those changes in land 

use patterns. Land use models are useful to improve our understanding of drivers of change, 

consequences of changes and feedbacks. They are used to project how much and where land will 

be used and for what purpose it will be used. Land use models support the analysis of underlying 

forces of land use change and the consequence of such processes. A land use model serves as a 

tool used to analyze changes in land and the resultant consequences of such changes 

(Heistermann et al., 2006). 

This chapter provides an overview of the statistical and GIS techniques used in the spatial 

analysis of LULCC. The overall objective is to use the developed models to help forecast future 

LULC. The first section of this paper reviews literature on land use and modeling. The second 
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section explains the logistic regression characteristics and the underlying assumptions. The third 

section details the data collection procedure and delineates the processes involved in building an 

efficient spatial database. Details of regression analysis are provided in the fourth part followed 

by a section detailing the validation technique. Section five describes the land use projection for 

2030 using logistic regression model. The last section is the conclusion of logistic regression 

modeling for the land use land cover change study. 

Patterns of LULCC are formed by the interaction of economic, environmental, social, 

political, and technological forces. These drivers may have considerable effects on future land 

use and cover (CCSP, 2003). The majority of land use change in general is due to human use 

(Turner et. al., 1993). With the changes in the land use the climate, biodiversity, agriculture, and 

hydrology of the region also change (Turner et. al., 1993; Schneider and Pontius, 2001; Vitousek 

et. al., 1997; Theobald and Hobbs, 1998). This also affects the functioning of ecosystems 

(Vitousek et al., 1997). Examination of historic land use change can inform us about the drivers 

of changes as well as the individual impacts of population growth, and demographics on land use 

change (Turner et al., 1993).  

Logistic regression is a frequently used methodology in LULCC research. Serneels and 

Lambin (2001) used logistic regression to identify how much of an understanding of the driving 

forces of land use changes can be gained through a spatial statistical analysis for the Mara 

ecosystem in Kenya. All predictive variables suggested by the conceptual model for the study 

area were introduced in the statistical model. The analysis was carried out, based on the full 

model information, for identifying which variables contributed significantly to the land use 

changes. Schneider and Pontius (2001) used logistic regression for modeling deforestation in the 

Ipswich watershed of Massachusetts. Geoghegan et al. (2001) used logistic regression to model 
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tropical deforestation and land use intensification in the southern Yucatán peninsular region, in 

combination with household survey data on agricultural practices.  

Xie et al. (2005) developed a spatial logistic regression model to obtain the development 

patterns in the New Castle County, Delaware and to assess the predictive capacity of the model. 

The study also used GIS to develop the spatial, predictor drivers and performed spatial analysis 

on the results. The model is built using land use changes between1984-1992 and 1992-1997. 

Seven predictive variables based on three classes of variables namely; site specific 

characteristics; proximity; and neighborhoods were employed.  

Allen and Lu (2003) in their research developed a GIS-based integrated approach to 

modeling and prediction of urban growth in terms of land use change in the Charleston region of 

South Carolina. The model was built upon a binomial logistic framework, coupled with a rule-

based suitability module and focus group involvement. It was modeled to predict land transition 

probabilities and simulate urban growth, through the year 2030, under different scenarios. The 

model was calibrated through a GIS-facilitated participatory process involving both statistical 

assessment and human evaluation. Although the model’s predictive power varied spatially and 

temporally with different types of land use, it achieved reasonably high overall success rates.  

Theobald and Hobbs (1998) examined two ways to model land use change at a landscape 

scale. The first model assumed the location factor such as proximity to towns and highways and 

assumed that likelihood of development decreases with increasing distance from urban areas. 

The second model assumed that future development patterns respond to development patterns of 

existing development and that the likelihood of development is higher in areas of higher 

neighboring density. The forecasted development patterns of these two models were compared 

with the observed historical development patterns. The second model, which is a spatial 
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transition model, produced better observed land use patterns compared to the other aspatial 

model.  

The overall objective of this chapter is to develop a land transformation model of urban 

growth to forecast land use changes in the saugahatchee sub-watershed surrounding Auburn-

Opelika metropolitan area in the state of Alabama. 

 

3.2  Logistic Regression:  

 

Logistic regression is useful for situations where the dependent variable has a binary 

output, e.g. the presence or absence of outcome. In the present study dependent variable (y) has 

two outcomes namely, parcel land use either urban or not urban.  The independent variables of 

logistic regression could be a mixture of continuous and categorical variables. Normality 

assumption is not needed for logistic regression. Hence, logistic regression is advantageous 

compared to linear regression and log-linear regression. It is an approach to extract the 

coefficients of explanatory factors from the observation of land use conversion, since 

urbanization does not usually follow normal assumption and its influential factors are usually a 

mixture of continuous and categorical variables (Menard, 2001). 

The equation for the relationship between the dependent variable and the independent 

variables becomes: 

y = a + b1x1 + b2x2 +…+ bmxm 

y = loge (P/1-P) = logit(P) 

P = e
y
/1 + e

y
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where x1, x2,…, xm are independent variables, y is a linear combination function of the 

independent variables representing a linear relationship. The parameters b1, b2,…, bm are the 

regression coefficients to be estimated. If y is denoted as a binary response variable (0 or 1), 

value 1 (y = 1) means the occurrence of new unit such as transition from other type of land use to 

urban, and value 0 (y = 0) indicates no change. P refers to the probability of occurrence of a new 

unit, i.e. 1. Function y is represented as logit(P), i.e. the log (to base e) of the odds or likelihood 

ratio that the dependent variable is 1 (Xie et al., 2005). Probability P increases when y value 

increases. Regression coefficients, b1-bm, imply the contribution of each predictive variable on 

probability value P. A positive sign means that the predictive variable helps to increase the 

probability of change and a negative sign implies the opposite effect.  

In spatial land use analysis the linear and logistic regression methods assume the 

observations to be statistically independent and identically distributed (Cliff and Ord, 1981; 

Lesschen et al., 2005). However, spatial land use data have the tendency to be dependent, a 

phenomenon known as spatial autocorrelation. Spatial autocorrelation may be defined as the 

property of random variables to take values over distance that are more similar or less similar 

than expected for randomly associated pairs of observations, due to geographic proximity 

(Legendre and Legendre, 1998; Lesschen et al., 2005).   

To overcome spatial dependence a spatial sampling scheme was adopted to expand 

spatial distance interval between sampled sites. First systematic sampling was done by selecting 

parcels every 0.5 miles in x and y direction within a study area.  Ideally the points would be 3000 

feet apart, at which distance spatial autocorrelation would have been absent (Rutherford et al., 

2007). This may result into even less sample size (Rutherford et al., 2007).  For the present study 

total 656 samples were systematically selected. After this the stratified sampling was done as the 
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population density varied over the study area. In order to represent the true population in the 

sampling the data was stratified into four classes based on the population density (See Figure 

3.1). The random sampling was then done for each stratum to select candidate parcels to 

represent the true population. Total of 164 samples were selected for the analysis (Xie et al., 

2005).  

 

Figure 3.1 Population density map for the year 2009. 
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3.3  Data and Methods: 

3.3.1 LULC Data: 

The methods using remote sensing techniques for LULCC analysis have evolved from 

the basic visual interpretation into a computer based analysis. Commonly used approach to 

image analysis is multispectral image classification. The extraction of urban areas and 

differentiation of various land cover types is still a challenge (Erbek et al., 2004; Lo and Choi, 

2004; Qian et al., 2005). At present, the extraction accuracy of built-up area is still 

unsatisfactory, which usually varies around 70%-80%. This is mainly due to the heterogeneous 

character of urban areas, where continuous and discrete elements occur side by side (Aplin, 

2003). Another reason is the problem of mixed pixels, especially in an urban environment (Lo 

and Choi, 2004). The purpose of classification is to assign meaningful information to pixels in an 

image. Through classification of digital remote sensing images, thematic maps can be produced 

that have information such as the land cover types and their extent can be obtained (Tso and 

Mather, 2001; Matinfar et al., 2007).  

For the purpose of present study LULC datasets derived from LandSat-5TM Thematic 

Mapper (TM)  were obtained from USGS Global Visualization Viewer (GLOVIS) for the 

anniversary images for year 1991, 2001 and 2009 (as described in detail in Chapter 2).  Five 

types of land use classification were employed: Water, Forest, Open/Transition, Urban and 

Ag/Pasture. For classification two approaches are used including unsupervised classification 

followed by cluster busting of urban areas. The LULC classification of LandSat-5TM was done 

using algorithms utilized in ERDAS Imagine 9.3. For modeling purposes the spatial unit utilized 

is the Lee County tax parcels. The raster dataset for the three time periods was then transferred 

from the image pixels to vector dataset of Lee County parcels using a ‘Majority’ algorithm in 
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ERDAS Imagine. The resultant parcel land cover maps in vector dataset are given the Figure 3.2, 

3.3 and 3.4. 

 
Figure 3.2 Parcel land use land cover map for the year 1991. 

 
Figure 3.3 Parcel land use land cover map for the year 2001. 
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Figure 3.4 Parcel land use land cover map for the year 2009. 

 

3.3.2 Census Data: 

The County parcel data were obtained from Lee County revenue commissioner for the 

Saugahatchee Watershed. The demographic data were obtained from the US Census Bureau’s 

1990 and 2000 corresponding census block group GIS layers. Since the population data for 2009 

were not available, they were then obtained by interpolation. Census track and block group 

population data exist for 1990 and 2000, but at the time of this research, only census track 

population data were available for 2010. Therefore we applied the census track population 

change trend from 2000 to 2010 to all census blocks in 2009 (Deichnann et al., 2001).  To 

estimate census track population for 2009 we used census track data for 2000 and 2010 to 

compute average annual population growth rate, as given below: 

Pop Future = Pop Present x (1 + i)
n
     ………I 

Where,  
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Pop Future = Future Population 

Pop Present  = Present Population 

i = Growth Rate (Unkown) 

n = 10 

Therefore, solving equation I for i calculates the annual growth rate for the period 2000 to 

2010. This census track growth rate was then applied to compute census block population for 

2009. After this, the population densities of 1990, 2000 and 2009 were calculated and then 

transferred to the attributes of County parcel data. The road vector data were obtained from the 

City of Auburn. Using 2009 road network to serve as 1990 and 2001 road network will definitely 

reduce the accuracy of land transformation model. Since only major road network is used for the 

analysis the effect is minimal. The nearest distance analysis for parcels was carried out in a GIS 

for distance from the major road and also from the commercial areas of the city of Auburn and 

Opelika.  

3.3.3. Drivers of LULC Variables: 

The land use change is influenced by number of factors. In various land use studies 

(Turner et al., 1995; Verburg et al., 2001; Landis and Zhang, 2000) different drivers of land use 

change have been used. The proximity factors appear to drive land use conversions in these 

studies. In the present study proximity to road, school, commercial and industrial areas have 

considered as predictor variables as people tend to live close to such facilities. Further, provision 

of utilities is assumed to be an important factor for urban growth. Since the previous studies on 

land use indicates growth occur within and around the areas having high population density, the 

conversion of a parcel into urban use is assumed for the parcels located within the high 

population density areas. The datasets for the predictor variables used in the present study were 
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obtained from the planning departments of City of Auburn and City of Opelika were in ESRI 

shape file format. The dataset layers were further processed in ArcGIS ArcView to extract 

desirable features of the predictor variables. For example, for the major road network in the 

study area only the major roads were selected from the road layer and clipped to the 

Saugahatchee watershed boundary layer. For utility, only areas served with the utility in the year 

1991, 2001 and 2009 for the study area were selected from the utility layer. Similarly for other 

predictor variables school, commercial and industrial areas the location of these variables in the 

year 1991, 2001 and 2009 were extracted from the parcel layer dataset. The predictor variables 

which were found to have significant effect on parcel land use change to urban in the year 2009, 

for the present study, are shown in the Figure 3.5, 3.6, and 3.7. The summary of predictor 

variables is given in the TABLE 3.1  

 
Figure 3.5 Major road network in year 2009 
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Figure 3.6 Utility served  area in year 2009 

 
Figure 3.7 Commercial  area in year 2009 
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Table 3.1 Predictor variables 

Predictor Variable Description 

Dist_Road Distance from the parcel centroid to the nearest major road 

 
Dist_Utly Distance from the parcel centroid to the nearest Utility 

 
Dist_Sch Distance from the parcel centroid to the nearest school 

 
Pop_Den Population Density of a Parcel 

Dist_Comm Distance from the parcel centroid to the nearest commercial area 

 
Dist_Ind Distance from the parcel centroid to the nearest Industrial area 

 
 

Two classes of predictors were used: site specific and proximity. The site specific factor, 

was population density. The population density was scaled into three levels ranging from 1 to 3 

with 3 as the highest density of more than 2 persons per acres. A total of five proximity variables 

were used for parcel distance from major road, utility, school, commercial area and distance 

from the industrial parcel. Weightage is given to scale the distance of five predictors from a 

parcel. For example, the proximity predictor for distance from road was scaled into five levels 1 

to 5 with 5 as the nearest and proximity predictor for distance from commercial was scaled into 

three levels 1 to 3 with 3 as the nearest. The weightage given to different predictors is given 

below in the Table 3.2 A and B. 

The major urban uses are confined to south-east corner of the Saugahatchee watershed. 

The north-west and west part of the study area is mainly a forested landscape. Most of the 

conversion of the land into urban area occurred, in subsequent years, was along the boundary of 

the original urban land uses.  
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Table 3.2 A Proximity predictors 

Predictor Variable Distance (miles) Weightage 

Dist_Road 0 to 0.25 5 

 0.25 to 0.5 4 

 0.5 to 1.0 3 

 1.0 to 2.0 2 

 > 2.0 1 

Dist_Utly 0 3 

 0 to 0.5 2 

 > 0.5 1 

Dist_Sch 0 to 2.0 3 

 2.0 to 4.0 2 

 > 4.0 1 

Dist_Comm 0 to 2.0 3 

 2.0 to 4.0 2 

 > 4.0 1 

Dist_Ind 0 to 2.0 3 

 2.0 to 6.0 2 

 > 6.0 1 

 

Table 3.2 B Site Specific Predictor 

Predictor Variable Population Density (per Acre) Weightage 

Pop_Den > 2 3 

 1 to 2 2 

 0 to 1 1 
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3.4  Results and Discussion: 

3.4.1  Logistic regression modeling: 

 

The land conversion models of 1991- 2001 and 2001- 2009 were analyzed using 

SAS/STAT software and the regression results are presented in TABLE 3.3 A & B. When all the 

five predictors were used together to formulate the regression equation for the period 1991 to 

2001 and 2001 to 2009, the SAS results indicate that the p-values (Pr >ChiSq) of predictor 

variables Road, Utility and Commercial are less than 0.05 and therefore, they are significant for 

both periods as shown in the Table 3.3 A & B. The Chi-Square test indicates that the coefficients 

of above three predictors are not equal to zero and are needed in the model to explain the 

variation in the response variable. 

Table 3.3 A. Analysis of Maximum Likelihood Estimates Year 1991 to 2001 

 

 

Parameter DF Parameter 

Estimate 

Standard Error Wald Chi-Square Pr > 

Chi Sq 

Intercept 1 -7.2229 1.2475 33.5232 <.0001 

Road 1 0.9633 0.2415 15.9164 <.0001 

Utility 1 1.1561 0.4926 5.5071 0.0189 

School 1 0.2561 0.4716 0.2948 0.5872 

Population 

Density 
1 0.6216 0.4116 2.2815 0.1309 

Commercial 1 1.2061 0.4806 6.2979 0.0121 

Industrial 1 -1.2549 0.6692 3.5167 0.0608 
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Table 3.3 B. Analysis of Maximum Likelihood Estimates Year 2001 to 2009 

Parameter DF Parameter 

Estimate 

Standard Error Wald Chi-Square Pr > Chi 

Sq 

Intercept 1 -17.6412 127.5 0.0191 0.8900 

Road 1 1.2674 0.3382 14.0448 0.0002 

Utility 1 1.4461 0.7084 4.1675 0.0412 

School 1 1.3661 0.8811 2.4039 0.1210 

Population 

Density 
1 6.8867 127.5 0.0029 0.9569 

Commercial 1 1.7697 0.8559 4.2754 0.0425 

Industrial 1 0.4984 1.0148 0.2412 0.6233 

 

Therefore, in order to predict conversion to urban only significant variables were 

considered for these data to fit the model. Predictive variable, population density, was not found 

to be a significant predictor (alpha = 0.05) of urban land use for both models. This may be 

attributed to wider spread of the medium and low density residential population in the study area 

resulting into less effect of high population density on the dependent variable.   The distance to 

the major road and distance to utility were found to be significant predictors of urban land use 

along with the distance to commercial area. Similarly, when backward selection was done, the 

predicators Dist_Road, Dist_Utly and Dist_Sch together were found significant. When 

Dist_Road, Dist_Utly, Dist_Sch and Dist_Comm were taken together then both Dist_Sch and 

Dist_Comm were found redundant. Therefore, the model with three predictors namely, 

Dist_Road, Dist_Utly, Dist_Comm were considered for determining urban conversion in the 



63 
 

study area. Multiple Logistic Regression results of land conversion models of 1991-2001 and 

2001- 2009 are given in the Table 3.4 A & B).  

Table 3.4 A. Analysis of Parameter Estimates (1991- 2001) 

 

TABLE- 3.4 B Analysis of Parameter Estimates (2001- 2009) 

 

Land conversion model for year 1991- 2001: 

Logit(P) = -7.4469 + 0.8912X1 + 0.6248X2 + 1.2437X3 

Land conversion model for year 2001- 2009 

Logit(P) = -10.3352 + 1.3340X1 + 1.8851X2 + 1.6526X3 

Parameter DF Parameter 

Estimate 

Standard Error Wald Chi-Square Pr > Chi 

Sq 

Intercept 1 -7.4469 1.2750 34.1131 <.0001 

Road 1 0.8912 0.2235 15.8962 <.0001 

Utility 1 0.6248 0.3086 4.0982 0.0429 

Commercial 1 1.2437 0.2970 17.5313 <.0001 

Parameter DF Parameter 

Estimate 

Standard Error Wald Chi-Square Pr > Chi 

Sq 

Intercept 1 -10.3352 2.0882 24.4951 <.0001 

Road 1 1.3340 0.3362 15.7438 <.0001 

Utility 1 1.8851 0.4985 14.2980 0.0002 

Commercial 1 1.6526 0.6367 6.7369 0.0094 
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To check the adequacy of the models for the two periods, 1991- 2001 and 2001-2009, a 

likelihood ratio test was carried out. The results of the test given below in the Table 3.5 A & B. 

From the test results it can be deduced that these two models adequately fit the data. 

 

TABLE 3.5 A. Likelihood ratio test period: 1991- 2001 

Test Chi-Square DF Pr > Chi Sq 

Likelihood Ratio 109.4444 3 <.0001 

                               

Testing Null Hypothesis: BETA = 0 against alternative hypothesis BETA≠0 The 

likelihood ratio test statistic is G2 = 109.4444 with 3 degrees of freedom and the p-value is 

<0.0001. Hence, we reject the Null Hypothesis.  This model adequately models the variability in 

data. 

TABLE 3.5 B. Likelihood ratio test period: 2001- 2009 

Test Chi-Square DF Pr > Chi Sq 

Likelihood Ratio 147.6705 3 <.0001 

 

Testing Null Hypothesis: BETA = 0. The likelihood ratio test statistic is G2 = 147.6705 

with 3 degrees of freedom and the p-value is <0.0001. Hence, we reject the Null Hypothesis. 

This model adequately models the variability in data. 

From the result obtained from the two models in different periods, it can be deduced that 

the pattern of land use conversion to urban land varies with location and also with time. 

Therefore, the land conversion model developed for a specific period for one area may not fit 

well for the same area in another time period. A simple averaging of coefficients cannot model 
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the non-linear relationship between response variable and predictor variables.  However, for 

obtaining coefficients for a whole period i.e. from 1991 to 2009, weighted average operation can 

be used for the two sub periods 1991-2001 and 2001-2009. Thus, the model for period 1991-

2009 was obtained as follows: 

Logit(P) = -9.3543 + 1.3201X1 + 1.5760X2 + 1.6174X3 

Table 3.6 Analysis of Parameter Estimates 

Parameter DF Parameter 

Estimate 

Standard Error Wald Chi-Square Pr > Chi 

Sq 

Intercept 1 -9.3543 1.8016 26.9600 <.0001 

Road 1 1.3201 0.3000 19.3610 <.0001 

Utility 1 1.5760 0.4892 10.3763 0.0013 

Commercial 1 1.6174 0.6127 6.9689 0.0083 

 

The logistic procedure of Analysis of Maximum Likelihood Estimates was done for the model to 

determine the significance of the three predictor variables (Table 3.6) 

Further, testing Global Null Hypothesis: BETA = 0 is carried out for the model to assess 

the fitness of model for the data (Table 3.7) 

Table 3.7 Goodness of fit 

Test Chi-Square DF Pr > Chi Sq 

Likelihood Ratio 142.5320 3 <.0001 

 

The likelihood ratio test statistic is G2 = 142.5320  with 3 degrees of freedom and the p-value is 

<0.0001. This model adequately model the variability in data. 
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3.4.2  Model Validation: 

 

The model validation for accuracy is performed for the period of 1991- 2009. For this the 

study area parcels and their development status of 1991- 2009 is first determined. For each parcel 

probability of change is computed with the fitted model. The probability of conversion is 

compared with the critical probability. A critical probability is selected, which makes the area of 

urban land use calculated with model is almost equal to the area of urban land use observed. If 

the probability of conversion of parcel is greater than critical probability, which is 0.9850 for the 

present model, then the parcel is treated as urban, otherwise the land use of parcel remains 

unchanged.  

Figure 3.8 and 3.9 illustrates visual comparison of  the urban area indicated by model 

prediction with the observed urban area for the year 2009. From the TABLE 3.8 the overall 

accuracy of the model determined as 70.39%, with accuracy of correct prediction of urban area is 

74.96%.  

Table 3.8 Results of model prediction with the observed land conversion for year 2009 

Observed Predicated Percent Correct 

Urban Non-urban 

Urban 7,519 2,512 74.96 

Non-urban 2,519 4,424 63.78 

Overall 10,031 6,936 70.39 
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Figure 3.8 Existing land cover in year 2009 

 
Figure 3.9 Estimated land cover in year 2009 
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3.5 Land Use Land Cover Projection: 

 

 The logistic model is then utilized to predict development for the year 2030. To 

determine the major road network, utility provision and commercial development in the year 

2030, guidelines of Comprehensive plan for City of Auburn and zoning regulation for Opelika 

was used (CoA; CoO). Discussion with the city officials helped determine the future 

development areas for the study areas. The areas that will be served with utility by 2030 in the 

study area are determined Thus a future road network, utility provision and commercial areas are 

marked for 2030 scenario generation as shown in the Figure 3.10.  

 For each parcel probability of change is computed with the fitted model for the 2030 

scenario. The projection of the development pattern for the year 2030 is given in the Figure 3.11. 

 
Figure 3.10 Predictor Variables for year 2030. 
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Figure 3.11 Land Cover projection for year 2030 

 

3.6  Conclusion: 

 

This study used the road network, utility provision, commercial area, and land cover data 

to develop a predicting model of land conversion to urban in the Saugahatchee sub-watershed. 

The model based on multiple logistic regression analysis is found to be partially significant in 

revealing land use conversion pattern. However, the model is not efficient due to lack of relevant 

land use change factors such as parcel neighborhood analysis. The model also needs to 

incorporate other important factors like socio-economic factors of near neighborhoods, policy 

decisions about growth. Results of model validations over the period 1991 to 2009 indicate that 

the logistic model is statistically reliable for short-term prediction, but becomes less reliable once 

the time-span becomes longer. The logistic model was found useful for identifying three 
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significant predictors of land use conversion and has achieved moderate prediction success rate 

for the land use categories as a whole. The model has moderate success rate for the urban use 

projection for a 20-year time period. The year 2030 projection of land use using logistic 

regression is later used in analyzing effect of urban growth on the water quality and quantity 

within the Saugahatchee watershed. In the Chapter 4 the base line LULC data developed for 

1991, 2001 and 2009 was evaluated in the SWAT model.  The year 2030 projection of land use 

using logistic regression are also used in the SWAT model to analyze effects of urban growth on 

the water quality and quantity within the Saugahatchee watershed.  
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CHAPTER 4 

 

 

USE OF SWAT FOR ASSESSING WATER QUALITY AND QUANTITY IMPACT OF 

LAND USE CHANGE IN THE SAUGAHATCHEE WATERSHED 

 

 

4.1  Introduction: 

 

Soil erosion, sedimentation, and contamination of water bodies through nonpoint sources 

are major environmental, social and economical problems in many states of the US (Borah et al., 

2003, 2004). Nonpoint source pollution (NPP) is caused by the movement of water, over and 

through the ground, generally after a precipitation event. The runoff water picks up and carries 

away with it natural and manmade pollutants. These pollutants eventually get deposited in lakes, 

rivers and coastal waters. The U.S. Environmental Protection Agency (USEPA) found that over 

one-third of streams, lakes, rivers, and estuaries surveyed nationally in 1996 did not fully support 

their designated uses such as for drinking water or recreation (USEPA, 1998), citing NPP as the 

major cause of water quality degradation. According to USEPA (1998) the agricultural sector is 

the largest contributor to NPP through runoff of nutrients, sediment, pesticides, and other 

contaminants to water bodies. Besides agricultural lands, land in residential and developed areas 

have lawns and gardens which are managed more intensively resulting in the generation of more 

pollutants. Urban areas tend to have higher percentages of impervious surface that results in 

lower soil infiltration and higher runoff amounts. Runoff generated due to precipitation carries 

nutrients and sediment from agricultural and residential land, to receiving water bodies. Thus, 
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increasing urbanization coupled with increasing use of nutrients and chemicals in agricultural 

lands creates significant challenges for water quality protection and enhancement. (Bhattarai et 

al., 2008) 

There are many watershed models available today for studying NPP (Borah and Bera, 

2004).  One such model is the Soil Water Assessment Tool (SWAT), developed by the U.S. 

Department of Agriculture-Agricultural Research Service’s (USDA-ARS) Grassland, Soil and 

Water Research Laboratory in Temple, TX, is used in the present study to evaluate impact of 

land use changes from 1991 to 2009 on the water quality and quantity in the Saugahatchee 

watershed. SWAT is also used to assess the impact of the future development projection on 

water quality for the year 2030 in the Saugahatchee watershed. SWAT is a basin scale, 

continuous time model that operates on a daily time step. It is useful for long−term continuous 

storm event simulation and is designed to predict the impact of Best Management Practices 

(BMPs) on water, sediment, and agricultural chemical yields in large watersheds and river 

basins. Major model components include weather data, hydrology, soil temperature and 

properties, plant growth, nutrients, pesticides, bacteria and pathogens, and land management 

(Borah and Bera, 2004; Gassman et al., 2007). The model predicts the average impact of land use 

and management practices on water, sediment, and agricultural chemical yields in large, complex 

watersheds with varying soils, land uses, and management conditions over long periods of time 

(DiLuzio et al., 2002; Winchell et al., 2007). In comparative studies using hydrologic and NPP 

models, SWAT has been shown to be among the most promising for simulating long-term NPP 

in agricultural watersheds (Borah et al., 2003).  

In SWAT, a watershed is divided into multiple subwatersheds, which are then further 

subdivided into hydrologic response units (HRUs) that consist of homogeneous land use, 
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management, and soil characteristics. The HRUs represent percentages of the subwatershed area 

and are not identified spatially within a SWAT simulation. Alternatively, a watershed can be 

subdivided into only subwatersheds that are characterized by dominant land use, soil type, and 

management (Borah et al., 2003; Gassman et al., 2007; Bhattarai et al., 2008).   

 

4.2  Data and Methods: 

 

The study site, Saugahatchee sub-watershed (HUC # 03150110030), covering an area of 

220 square miles, is located in the Lower Tallapoosa River Basin in east-central Alabama, 

primarily in Lee and Tallapoosa counties. Saugahatchee Creek has been identified as a high 

priority watershed by the Lower Tallapoosa Clean Water Partnership, the Alabama Soil and 

Water Conservation Committee, US Environmental Protection Agency and the Alabama 

Department of Environmental Management (SWaMP, 2005). Based on present study the area 

under forest cover is around 72% of watershed area and urban development, mainly observed in 

southeastern part of the watershed occupies 7.9% of watershed area. Other predominant activity 

observed in the watershed is pasture land covering 10.5% of the area. Urban land use and pasture 

land has substantial impact on the water quality and quantity in the watershed. Impervious 

surfaces contribute to increases in surface runoff and pollutants, such as oil, sediments, and 

nutrients in runoff water. Conversion of forest to pasturelands also increases sediments and 

nutrient loads in the Saugahatchee creek as pasture lands are more intensively cultivated with 

application of fertilizers and tillage operations (SWaMP, 2005).  

The SWAT model used in this study was developed in collaboration with partners in the 

Biosystems Engineering Department at Auburn University for the Saugahatchee watershed as a 
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part of the Auburn University Water Resources Center funding of the interdisciplinary project 

titled “Bridging the Gap Between Science, People and Policy for Sustainable Watershed 

Management in theTallapoosa River Basin and Beyond.” The calibrated SWAT model was used 

in the present study utilizing the land use land cover (LULC) datasets developed for the 1991, 

2001, 2009 and projected land use land cover for 2030 (Chapter 2).  Other input variables 

included he precipitation data used in the model for a twelve year period from January 1997 to 

December 2008. Daily streamflow data were collected from USGS station (ID# 02418230) 

located at the Loachapoka near Auburn for the same twelve year period. The 30m digital 

elevation model was used to help model flow and the Soil Survey Geographic (SSURGO) 

database provided by the Natural Resources Conservation Service as an estimator of infiltration. 

The SWAT model was run on monthly steps for the baseline years 1991, 2001 and 2009 

followed by the land cover projected for the 2030 to assess the annual changes in variables for 

the average stream flow, sediment, total nitrogen and phosphorous load for the twelve year 

period. The watershed was divided into 84 hydraulic response units (HRU). Out of the 84 HRU 

the HRU#61 which covers the Auburn Opelika drainage area and flows to Loachapoka USGS 

station (See figure 4.1) was assessed for studying the impact of land use land cover change based 

on the four variables mentioned above. The HRUs created in SWAT were with dominant land 

use observed within them. Figure 4.1 shows a relative location of HRU #61 within the 

watershed. In Figure 4.2, 4.3, 4.4, and 4.5 HRUs having dominant urban land cover in year 1991. 

2001, 2009, and 2030 are illustrated. These HRUs are the major sources of non point source 

pollution contributing to streams in the Saugahatchee watershed. 

http://waterdata.usgs.gov/al/nwis/uv?site_no=02418230&format=gif&period=31
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Figure 4.1 Location map of HRU#61 and Gauge station at Loachapoka 

 
Figure 4.2 HRU having dominant urban land cover in year 1991 
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Figure 4.3 HRUs having dominant urban land cover in year 2001 

 
Figure 4.4: HRUs having dominant urban land cover in year 2009 
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Figure 4.5: HRUs having dominant urban land cover in year 2030 

 

4.3 Results and Discussion: 

 

In Table 4.1 LULC distribution in the Saugahatchee watershed is compared for the study 

period. Over the study period from 1991 to 2009 the area under urban land use has increased by 

1,881 acres. If we assume this trend of urbanization to continue in the Saugahatchee watershed 

with the resultant urban growth as predicted by the regression model (Chapter 3) for the year 

2030 will be 2.6 times the area in 2009. Impact of projected future development, in 2030, on the 

water quality and quantity was evaluated by using the SWAT model. The SWAT model 

generated sub-basin areas, also known as HRU with a dominant land cover. Table 4.2 shows the 

relative number and area coverage of dominant HRUs under four land use scenarios namely; 

1991, 2001, 2009 and 2030. There was only one dominant urban land cover HRU in 1991, which 
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increased to 4 urbanized HRUs in 2009. The urbanized HRUs for a projected future development 

are 15 and only 69 HRUs have forested HRUs. 

Table 4.1 Land use land cover distribution in the Saugahatchee watershed 

 Year 1991 Year 2001 Year 2009 Year 2030 

Water 1,293 1,151 1,267 423 

Forest 102,386 99,680 103,448 101,737 

Open/Transition 19,980 20,419 20,386 11,160 

Urban 5,154 6,038 7,035 18,417 

Ag/Pasture 10,933 12,458 7,611 7,024 

 

Table 4.2 Area coverage of dominant HRUs 

Major land use Number of HURs 

 Year 1991 Year 2001 Year 2009 Year 2030 

Forest 83 82 80 69 

Urban 1 2 4 15 

Open/Transition 0 0 0 0 

Ag/Pasture 0 0 0 0 

Water 0 0 0 0 

 

The land use and land cover for the study areas was evaluated for four time periods for 

stream flow generating estimates of sediments loads, total nitrogen and total phosphorus for each 

time period. The output of SWAT for the four variables is given in the TABLE 4.3 below. The 

average annual stream outflow from the HRU# 61 for the land use land cover analysis from year 

1991 to 2030 indicates a slightly decreasing trend. This may be attributed to the suitability of the 

SWAT model to predict monthly stream flow than annual or daily flows (Borah and Bera, 2004). 

The stream flow data were further evaluated for the winter season period in the month of March 
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to see any changes in streamflow due to changes in the land use land cover. The average flow in 

the month of March, for changes in the land use land cover, indicates increase in the stream flow 

with increase in urbanization of the watershed (See TABLE 4.4). The streamflow output by the 

SWAT model underscores the impact of impervious surface increases on the water quantity in 

the Saugahatchee watershed.  

The other attributes such as sediments load and total nitrogen (N) and total phosphorus 

(P) also show increase in the load of pollutants over the study period with the increase in the 

urbanization (See TABLE 4.3). 

Table 4.3 Annual estimates of pollutant loads 

Variables Annual total flowing out of HRU#61 

 Year 1991 Year 2001 Year 2009 Year 2030 

Stream Flow (M
3
/S) 4.70 4.69 4.66 4.63 

Sediments (Tons) 206.07 229.56 492.74 641. 

Total N (Tons) 199.82 203.99 218.27 236.43 

Total P (Tons) 12.96 14.16 17.74 22.46 

 

Table 4.4 Estimates of pollutant loads for the month of March 

Variables Land use land cover Average for the month of March 

 Year 1991 Year 2001 Year 2009 Year 2030 

Stream Flow (M
3
/S) 7.16 8.35 8.60 9.18 
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4.4  Conclusion:  

 Biophysical models such as SWAT used in the present study are found to be useful in 

assessing the impacts of urbanization on quantity and quality of water bodies in a given 

watershed. They are useful tools for policy planners to assess water quality and plan for 

intervention through Best Management Practices. The SWAT model has been found to show 

increase in pollution load in the streams with increase in urban land cover for the study period.  

The impervious surface generates more runoff which carries with it sediments and other 

pollutants and moves quickly over the surface thus contributing increase in the stream flow 

during a storm event. The model has responded to variables as expected with the changes in the 

land cover to impact the water quality and quantity.  
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CHAPTER 5 

 

 

SUMMARY 

 

The Auburn-Opelika metropolitan area is the fastest growing Metropolitan Statistical 

Area (MSA) in Alabama (U.S. Census Bureau, 2009) and therefore has experienced rapid land 

cover change.  The metropolitan area encompasses the Saugahatchee sub-watershed which was 

identified to include two stream segments that the Alabama Department of Environmental 

Management (ADEM) has classified as impaired. The two impaired stream segments namely, 

Pepperell Branch and Saugahatchee Creek (Yates reservoir embayment) listed under 303d list of 

ADEM (see figure 1) are polluted due to nutrient and organic enrichment flowing from non point 

source pollution from construction activities,  non-irrigated crop production and pasture grazing 

uses, home gardens, and runoff from parking lots and roads. Land use changes associated with 

urbanization and forestry/agricultural land conversions within the Saugahatchee watershed has 

also been shown to impact the water quality substantially (ADEM, 2010). 

This study interprets and models urbanization patterns in Saugahatchee watershed, using 

a GIS and RS imagery coupled with a logistic regression model. Analysis of future land use 

change within the Saugahatchee sub-watershed is important in view of water quality and its 

supply for the community. Land use models are useful to better our understanding of drivers of 

change, consequences of changes and feedbacks. These models also provide tools to predict and 

project changes in the land and the resultant consequences of such changes (Heistermann et al., 

2006).  
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The aim of this study was to analyze historical land use trends and evaluate various 

methods to detect, quantify, analyze, and forecast land use changes in the Saugahatchee 

Watershed. The present study has evaluated future land use scenario and its impact on water 

quality and quantity.  

The following are the research questions posed in the study and summary of the findings: 

 Can we improve traditional multi-spectral pixel based land use land cover classification 

through Object Based Image Analysis? 

In the present study to improve unsupervised classification method, Pixel Based Analysis 

unsupervised classification with cluster busting and object-based image classification methods 

have been performed by classifying the remote sensing image of LandSat-5TM imagery. The 

accuracy assessment shows that unsupervised classification with cluster busting has higher 

overall accuracy of 90 percent and higher individual producer’s and user’s accuracy for each 

classified land cover category. The overall accuracy of 82 percent was achieved for both PBA 

unsupervised classification and GeOBIA classification without cluster busting. Cluster busting 

methods could also be performed on the GeOBIA classification to improve the accuracy.  It is 

noted that the GeOBIA methods could utilize contextual information to improve classifications 

as well. The major advantage of using object based image analysis is that after the rule sets are 

created they can then be readily applied for to other dates for multi-temporal change detection 

image analysis.  

 What are the changes in land use and land cover in the study areas that are having the 

most substantial impact on water quality?  

The analysis of land use land cover changes in the Saugahatchee watershed shows that from 

the year 1991 footprint of urban area within the Saugahatchee watershed has increased by 
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36.50% to 7,035 acres in year 2009. Although the area of urbanization is only about 5.04% of the 

total area of Saugahatchee watershed, the urbanization has likely played a role in impairment of  

the Pepperell branch of the Saugahatchee creek. The results of the change detection indicate that 

for both the study periods, from 1991 to 2001 and from 2001 to 2009, there were conversions of 

forested areas to urban. The open areas, which were within and immediate vicinity of the urban 

areas, were converted to urban. The land conversions of pasture to urban were relatively less and 

were observed mainly for the period from 2001 to 2009.  

 What is the spatial and temporal extent of the land use and land cover change and where 

have the highest rates of changes have occurred? 

The results from change detection for both the study periods indicate significant changes in 

urban land use in the Saugahatchee watershed. Most of the urban changes occurred around the 

peripheries of the existing urban land use areas. The changes in the urban areas shows spread of 

urban land use in the surrounding areas, where utility has been provided along with the proximity 

of the development site to major roads and commercial areas. An infill development was also 

observed within the existing urban area.  

 What are the major driving forces for the land use and land cover changes? 

  The logistic model analysis done for the present study has identified three significant 

predictors of land use conversion to urban namely; major roads, provision of utility and 

commercial area for the Saugahatchee watershed. The model has achieved moderate prediction 

success rate for the land use categories as a whole. It also has a moderate success rate for the 

urban use projection for a 20-year time period. The land conversion model based on multiple 

logistic regression analysis is found to be partially significant in revealing land use conversion 

pattern. The accuracy level of 70 percent for the land use prediction model developed in the 
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present study is found to be satisfactory for a statistical based model. The urban land conversions 

predicted by the model are mainly confined to south-east corner of the Saugahatchee watershed. 

The north-west and west part of the study area is mainly a forested landscape. Most of the 

conversion of the land into urban area that occurred in subsequent years was along the boundary 

of the original urban land uses and also the infill development.  

 What will be the extent of the land use and land cover changes in the future?  

The three significant predictors of land use conversion to urban, as identified through 

regression analysis of the predictor variables, namely; major roads, provision of utility and 

commercial area are assumed to dictate future land use land cover changes in the Saugahatchee 

watershed. After discussion with the city officials and analysis of the 2030 plan of the City of 

Auburn, the locations of these driving forces of LULC were determined in the Saugahatchee 

watershed to project future development for the year 2030.  The logistic regression model then 

used to project extent of land use land cover change in the future, based on provision of driving 

forces of LULCC.  

 What is the impact of future development scenarios on the water quality and quantity? 

It was assumed that the increasing urban area in the watershed shall have an impact on 

the water quality and quantity within the watershed. The Soil and Water Assessment Tool 

(SWAT) model used in the present study to assess the impact of urbanization on the water 

quality and quantity showed increases in sediment load and total nitrogen and phosphorus in the 

streams with increases in the urbanization in the Saugahatchee watershed. The effect of stream 

flow increase with increasing urban areas was distinct when the analysis of monthly flows was 

done for the study period. The stream flow increased with an increase in impervious area in the 

watershed along with associated sediments and nutrients. SWAT model may be useful for 
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planners to evaluate the impact of Best Management Practices and policy decisions such as 

conservation of open spaces and forest preservation and the kind of future development 

anticipated on the water quality and quantity.  For the future study alternate scenarios of 

development looking at policy decisions integrating a planning support systems such as “WhatIf” 

with SWAT can be a useful tool to assess our precious water resources and how future 

development decisions may impact them. The change detection remotely sensed imagery 

analysis will also be useful to planners to study the historical land use patterns and make 

decisions about the future developments.  
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