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Abstract 
 
 

The use of precast, three-sided arch culverts has become fairly popular for new short-

span bridges and bridge replacements due to their rapid construction time, aesthetic appeal, and 

minimal impact to the waterway, but little research has been performed into the strength of these 

structures.  It has been thought that, due to arching action, large lateral earth pressures can be 

developed in the backfill behind the legs, and that these pressures allow the bridge to achieve 

strengths much larger than possible without the confinement of the backfill soil.  The research 

detailed in this thesis sought verify the behavior of this bridge system through field testing of an 

existing bridge, as well as two ultimate load tests on individual bridge units.   

It was concluded that the test bridges were too stiff to cause enough lateral deflection to 

activate passive earth pressures in the backfill, and the earth pressures had a minimal effect.  

Furthermore, it was found that non-ductile shear failures can occur in certain bridge designs, and 

the ductility of the steel used for reinforcement was not sufficient to allow flexural hinges to 

form.   

 

  



iii 
 

 
 
 
 
 

Acknowledgements 
 
 

I would first like to thank my committee members for their support during this project.  I 

would like to thank Dr. Anderson for his insight and assistance, especially during the field testing, 

and for his help throughout the project.  I would particularly like to thank Dr. Barnes for his 

guidance and insight during the laboratory load testing portion of the project.  Finally, I would 

like to thank Dr. Marshall, my major professor, for his constant help, guidance, and organization 

throughout the entire project.  I would further like to thank the faculty at Auburn University; it 

has truly been a pleasure to learn from so many outstanding professors during my total of six 

years here.   

I would like to also thank all those who assisted in the research, both during the field and 

laboratory testing portions of the project.  I would especially like to thank my partner in research, 

Jared Jensen.  I appreciate his attitude and willingness to help throughout the project, but more 

importantly, I appreciate his friendship.   

I also want to thank my entire family, especially my mother, whose constant support and 

encouragement have helped me get to this point. 

Finally, I would like to express my appreciation for my wife, Rachel.  Without her 

support and love during these past two years, I would not nearly be the man I am today.  I want to 

thank her for her love and her presence in my life.  I know we are both very excited to see where 

this next chapter in life takes us together.   

  



iv 
 

 
 

 

 

 
Table of Contents 

 
 
Abstract ............................................................................................................................................ ii 

Acknowledgements ......................................................................................................................... iii 

List of Tables ................................................................................................................................ viii 

List of Figures ................................................................................................................................. ix 

Chapter 1 Introduction ..................................................................................................................... 1 

1.1 Overview ....................................................................................................................... 1 

1.2 Motivation ..................................................................................................................... 1 

1.3 Research Objectives ...................................................................................................... 1 

1.4 Testing Overview .......................................................................................................... 1 

1.5 Thesis Organization ...................................................................................................... 1 

Chapter 2 Background and Literature Review ................................................................................. 3 

2.1 Background and Description of Bridge System ............................................................ 3 

2.1.1 Overall System Description .......................................................................... 3 

2.1.2 Unit Description ............................................................................................ 3 

2.1.3 Production and Shipping ............................................................................... 4 

2.1.4 System Advantages ....................................................................................... 7 

2.2 Previous Research ......................................................................................................... 7 

2.2.1 Zoghi and Farhey (2006) .............................................................................. 7 

2.2.2 McGrath and Mastroianni (2002) ................................................................. 8 

2.2.3 McGrath, Selig and Beach (1996) ................................................................ 9 

2.2.4 Beach (1988) ............................................................................................... 10 

2.3 Research Summary and Contribution ......................................................................... 10 

Chapter 3 Field Test – 42 ft Span .................................................................................................. 12 

3.1 Introduction ................................................................................................................. 12 

3.2 Instrumentation ........................................................................................................... 15 



v 
 

3.2.1 Instrumentation Layout ............................................................................... 15 

3.2.2 Vibrating Wire Strain Gages ....................................................................... 17 

3.2.3 Earth Pressure Cells .................................................................................... 19 

3.2.4 Displacement String Pots ............................................................................ 20 

3.3 Testing Setup and Equipment ..................................................................................... 21 

3.3.1 Backfill Soil ................................................................................................ 21 

3.3.2 Truck Live Load ......................................................................................... 21 

3.3.3 Data Acquisition ......................................................................................... 22 

3.4 Testing Procedure ....................................................................................................... 22 

3.4.1 Data Acquisition During Backfill Process .................................................. 22 

3.4.2 Live Load Test ............................................................................................ 22 

3.5 Analysis, Results, and Discussion of Testing ............................................................. 23 

3.5.1 Concrete Material Properties ...................................................................... 23 

3.5.2 Strains ......................................................................................................... 23 

3.5.3 Moment and Axial Force Calculations from Strain .................................... 25 

3.5.4 Moments and Axial Forces ......................................................................... 25 

3.5.5 Lateral Earth Pressures ............................................................................... 28 

3.5.6 Displacement String Pots ............................................................................ 30 

3.5.7 Bridge Behavior .......................................................................................... 30 

3.6 Chapter Summary ....................................................................................................... 30 

Chapter 4 Laboratory Test – 20 ft Span ......................................................................................... 32 

4.1 Introduction ................................................................................................................. 32 

4.2 Instrumentation ........................................................................................................... 34 

4.2.1 Instrumentation Layout ............................................................................... 34 

4.2.2 Sister Bar Strain Gages ............................................................................... 35 

4.2.3 Concrete Surface Strain Gages ................................................................... 37 

4.2.4 Displacement Wirepots ............................................................................... 38 

4.2.5 Load Cells ................................................................................................... 39 

4.3 Testing Setup and Equipment ..................................................................................... 39 

4.3.1 Lateral Resistance Frame ............................................................................ 40 

4.3.2 Load Framing System ................................................................................. 42 

4.3.3 Actuators ..................................................................................................... 44 



vi 
 

4.3.4 Data Acquisition ......................................................................................... 44 

4.3.5 Additional Vertical Loading Frame ............................................................ 44 

4.4 Testing Procedure ....................................................................................................... 45 

4.4.1 Calibration of Gaged Threaded Rods ......................................................... 45 

4.4.2 Concrete Cylinder Testing .......................................................................... 46 

4.4.3 Service Level Test ...................................................................................... 48 

4.4.4 First Ultimate Load Test ............................................................................. 49 

4.4.5 Second Ultimate Load Test ......................................................................... 50 

4.5 Analysis, Results, and Discussion of Testing ............................................................. 52 

4.5.1 Concrete Material Properties ...................................................................... 52 

4.5.2 Strains ......................................................................................................... 52 

4.5.3 Moment and Axial Force Calculations from Strains .................................. 53 

4.5.4 Moments and Axial Forces ......................................................................... 55 

4.5.5 Horizontal Reactions ................................................................................... 57 

4.5.6 Displacement Wirepots ............................................................................... 59 

4.5.7 Observed Bridge Behavior and Failure ....................................................... 61 

4.5.8 Lateral Resistance Frame – Reactions and Effects ..................................... 68 

4.5.9 Effects of Multiple Ultimate Load Tests .................................................... 71 

4.6 Chapter Summary ....................................................................................................... 72 

Chapter 5 Laboratory Test – 36 ft Span ......................................................................................... 73 

5.1 Introduction ................................................................................................................. 73 

5.2 Instrumentation ........................................................................................................... 76 

5.2.1 Instrumentation Layout ............................................................................... 76 

5.2.2 Sister Bar Strain Gages ............................................................................... 78 

5.2.3 Concrete Surface Strain Gages ................................................................... 78 

5.2.4 Displacement Wirepots ............................................................................... 78 

5.2.5 Load Cells ................................................................................................... 78 

5.3 Testing Setup and Equipment ..................................................................................... 78 

5.3.1 Load Framing System ................................................................................. 79 

5.3.2 Actuators ..................................................................................................... 79 

5.3.3 Data Acquisition ......................................................................................... 79 

5.4 Testing Procedure ....................................................................................................... 79 



vii 
 

5.4.1 Concrete Cylinder Tests .............................................................................. 79 

5.4.2 Steel Reinforcement Tensile Testing .......................................................... 79 

5.4.3 Ultimate Load Test ..................................................................................... 80 

5.5 Analysis, Results, and Discussion of Testing ............................................................. 81 

5.5.1 Concrete Material Properties ...................................................................... 81 

5.5.2 Steel Reinforcement Testing ....................................................................... 81 

5.5.3 Strains ......................................................................................................... 82 

5.5.4 Moment and Axial Force Calculations from Strain .................................... 82 

5.5.5 Moments and Axial Forces ......................................................................... 83 

5.5.6 Horizontal Reactions ................................................................................... 84 

5.5.7 Displacement Wirepots ............................................................................... 85 

5.5.8 Observed Bridge Behavior and Failure ....................................................... 86 

5.5.9 Observations During Bridge Demolition .................................................... 95 

5.5.10 Comparisons to 20 ft Bridge Unit ............................................................. 96 

5.6 Chapter Summary ....................................................................................................... 96 

Chapter 6 Summary, Conclusions, and Recommendations ........................................................... 98 

6.1 Summary ..................................................................................................................... 98 

6.2 Conclusions ................................................................................................................. 98 

6.3 Recommendations ....................................................................................................... 99 

References .................................................................................................................................... 100 

Appendix A: Gaged Threaded Rod Calibration ........................................................................... 101 

Appendix B: Concrete Material Data and Behavior .................................................................... 102 

 

  



viii 
 

 

 

 

List of Tables 
 
 
Table 3-1 42 ft Bridge Unit Reinforcement Details (FoleyArch 2010) ......................................... 15 

Table 3-2 Acceptable Engineering Backfill (FoleyArch 2010) ..................................................... 21 

Table 4-1 20 ft Bridge Unit Reinforcement Details (FoleyArch 2010) ......................................... 34 

Table 5-1 36 ft Bridge Unit Reinforcement Details (FoleyArch 2011) ......................................... 76 

Table B-1 Cylinder Test Data – 20 ft span .................................................................................. 102 

Table B-2 Cylinder Test Data - 36 ft span ................................................................................... 103 

  



ix 
 

 

 
 
 
 

List of Figures 
 
 
Figure 2-1 Typical Three-sided Arch Culvert System (FoleyArch 2010) ....................................... 3 

Figure 2-2 Installed Three-sided Arch Culvert System ................................................................... 3 

Figure 2-3 Typical Three-sided Arch Culvert Unit ......................................................................... 4 

Figure 2-4 Deformed Welded Wire Fabric ...................................................................................... 5 

Figure 2-5 Steel Mat Bowing to Fit Arch Radius ............................................................................ 5 

Figure 2-6 Casting of Bridge Unit ................................................................................................... 6 

Figure 2-7 Arch Culvert Unit Being Shipped .................................................................................. 6 

Figure 2-8 Arch Culvert Unit Being Rotated ................................................................................... 7 

Figure 3-1 42 ft Bridge Unit Overall Dimensions (FoleyArch 2010) ............................................ 13 

Figure 3-2 42 ft Bridge Unit Reinforcement Layout (FoleyArch 2010) ........................................ 14 

Figure 3-3 42 ft Bridge Structure ................................................................................................... 15 

Figure 3-4 Field Test Strain Gage Layout ..................................................................................... 16 

Figure 3-5 Earth Pressure Cell Layout ........................................................................................... 16 

Figure 3-6 Bridge Unit Layout ...................................................................................................... 17 

Figure 3-7 Vibrating Wire Strain Gage.......................................................................................... 18 

Figure 3-8 Strain Gage Protective Cover ....................................................................................... 19 

Figure 3-9 Earth Pressure Cell ....................................................................................................... 20 

Figure 3-10 String Pot .................................................................................................................... 21 

Figure 3-11 Live Load Testing ...................................................................................................... 23 

Figure 3-12 Cross Section Layout ................................................................................................. 23 

Figure 3-13 Strain in Highly-Instrumented Unit During Backfill Operation................................. 24 

Figure 3-14 Strains in Highly-Instrumented Unit During Live Load Test .................................... 25 

Figure 3-15 Moments due to Live Load Only Versus Time .......................................................... 26 

Figure 3-16 Live Load Moment vs. Rear Axle Location - Run 1 .................................................. 27 

Figure 3-17 Live Load Moment vs. Rear Axle Location - Run 2 .................................................. 27 

Figure 3-18 Live Load Moment vs. Rear Axle Location - Run 3 .................................................. 27 

Figure 3-19 Lateral Earth Pressure due to Live Load Only Versus Time ..................................... 28 

Figure 3-20 Live Load Lateral Earth Pressure vs. Rear Axle Location - Run 1 ............................ 29 



x 
 

Figure 3-21 Live Load Lateral Earth Pressure vs. Rear Axle Location - Run 2 ............................ 29 

Figure 3-22 Live Load Lateral Earth Pressure vs. Rear Axle Location - Run 3 ............................ 29 

Figure 4-1 20 ft Bridge Unit Reinforcement Layout (FoleyArch 2010) ........................................ 33 

Figure 4-2 20 ft Cross Section Layout ........................................................................................... 35 

Figure 4-3 20 ft Wirepot and Load Cell Layout ............................................................................ 35 

Figure 4-4 Sister Bar Installed in Reinforcement Cage ................................................................. 36 

Figure 4-5 Concrete Strain Gage ................................................................................................... 38 

Figure 4-6 Displacement Wirepot .................................................................................................. 39 

Figure 4-7 Load Cell ...................................................................................................................... 39 

Figure 4-8 Three Foot Gaged Thread Rods ................................................................................... 40 

Figure 4-9 Lateral Resistance Frame near Bridge Legs ................................................................. 41 

Figure 4-10 Lateral Resistance Frame Spanning Bridge Unit ....................................................... 42 

Figure 4-11 Actuator Loading Frames ........................................................................................... 43 

Figure 4-12 Illustration of Rollers ................................................................................................. 43 

Figure 4-13 Bridge Baseplate ........................................................................................................ 44 

Figure 4-14 Additional Vertical Load ............................................................................................ 45 

Figure 4-15 Gaged Threaded Rod Calibration ............................................................................... 46 

Figure 4-16 Concrete Cylinder Testing Machine .......................................................................... 47 

Figure 4-17 Compressometer ......................................................................................................... 47 

Figure 4-18 Failed Cylinder ........................................................................................................... 48 

Figure 4-19 Addition of Concrete Blocks for Loading .................................................................. 50 

Figure 4-20 Crane Support Illustration .......................................................................................... 51 

Figure 4-21 Tightening of Additional Vertical Loading Frame ..................................................... 52 

Figure 4-22 Strain and Stress Distribution ..................................................................................... 54 

Figure 4-23 Moment - Service Load Test ...................................................................................... 56 

Figure 4-24 Moment - First Ultimate Load Test ............................................................................ 56 

Figure 4-25 Moment - Second Ultimate Load Test ....................................................................... 57 

Figure 4-26 Load Cell Reaction - Service Load Test .................................................................... 58 

Figure 4-27 Load Cell Reaction - First Ultimate Load Test .......................................................... 58 

Figure 4-28 Load Cell Reaction - Second Ultimate Load Test ...................................................... 59 

Figure 4-29 Deflection - Service Load Test ................................................................................... 60 

Figure 4-30 Deflection - First Ultimate Load Test ........................................................................ 60 

Figure 4-31 Deflection - Second Ultimate Load Test .................................................................... 61 

Figure 4-32 Initial Cracks in Leg ................................................................................................... 62 



xi 
 

Figure 4-33 Initial Cracks near Corner .......................................................................................... 63 

Figure 4-34 Initial Cracks at Midspan ........................................................................................... 63 

Figure 4-35 Corner Crack at 120 kip Total Load ........................................................................... 64 

Figure 4-36 Corner Crack at 156 kip Total Load ........................................................................... 65 

Figure 4-37 175 kip Total Load ..................................................................................................... 66 

Figure 4-38 Immediately Prior to Failure ...................................................................................... 66 

Figure 4-39 Failure Mechanism ..................................................................................................... 67 

Figure 4-40 Failure Load Configuration ........................................................................................ 67 

Figure 4-41 Failed Structure .......................................................................................................... 68 

Figure 4-42 Lateral Resistance Frame Force Calculation .............................................................. 69 

Figure 4-43 Force in Lateral Resistance Frame ............................................................................. 69 

Figure 4-44 Lateral Displacement Comparison ............................................................................. 70 

Figure 4-45 Vertical Displacement Comparison ........................................................................... 70 

Figure 4-46 Service Load Midspan Moment Comparison ............................................................. 71 

Figure 4-47 Ultimate Load Midspan Moment Comparison ........................................................... 72 

Figure 5-1 36 ft Bridge Unit Overall Dimensions (FoleyArch 2011) ............................................ 74 

Figure 5-2 36 ft Bridge Unit Reinforcement Layout (FoleyArch 2011) ........................................ 75 

Figure 5-3 36 ft Cross Section Locations....................................................................................... 77 

Figure 5-4 36 ft Wirepot and Load Cell Layout ............................................................................ 77 

Figure 5-5 Extensometer ................................................................................................................ 80 

Figure 5-6 Steel Reinforcement Testing Results ........................................................................... 82 

Figure 5-7 Steel Stress vs. Strain ................................................................................................... 83 

Figure 5-8 Moment vs. Load ......................................................................................................... 84 

Figure 5-9 Load Cell Reaction vs. Load ........................................................................................ 85 

Figure 5-10 Deflection vs. Load .................................................................................................... 86 

Figure 5-11 Exaggerated Angled Bearing Surface ........................................................................ 87 

Figure 5-12 Initial Spalling on Bridge Leg .................................................................................... 87 

Figure 5-13 Spalling at 96 kips Total Load ................................................................................... 88 

Figure 5-14 Midspan Cracking – 120 kips Total Load .................................................................. 89 

Figure 5-15 Midspan Cracking – After Failure ............................................................................. 89 

Figure 5-16 Corner Cracks – 144 kips Total Load ........................................................................ 90 

Figure 5-17 Eventual Failure Surface – 72 kips Total Load .......................................................... 91 

Figure 5-18 Immediately Prior to Failure ...................................................................................... 91 

Figure 5-19 Immediately After Failure .......................................................................................... 92 



xii 
 

Figure 5-20 Failure Mechanism – Crushed Concrete .................................................................... 92 

Figure 5-21 Ruptured Tension Steel .............................................................................................. 93 

Figure 5-22 Failure Load Configuration ........................................................................................ 93 

Figure 5-23 Lifter at Concrete Surface .......................................................................................... 94 

Figure 5-24 Failure Through Lifter Location ................................................................................ 94 

Figure 5-25 Reinforcement Cut at Lifter Location ........................................................................ 95 

Figure 5-26 Steel Layers Delaminating ......................................................................................... 96 

Figure 5-27 Demolished Bridge Unit ............................................................................................ 96 

Figure A-0-1 Gaged Threaded Rod Calibration Graphs .............................................................. 101 

Figure B-0-1 Assumed Concrete Compressive Behavior - 20 ft Span ........................................ 104 

Figure B-0-2 Assumed Concrete Compressive Behavior - 36 ft Span ........................................ 104 



1 
 

 
 

 
 

 
Chapter 1 Introduction 

1.1 Overview 

The use of precast, three-sided arch culverts has begun to become fairly popular for new 

bridges and bridge replacements, due to their rapid construction time, aesthetic appeal, and 

minimal impact to the waterway.  However, little research has been performed into the strength of 

these structures.  Many have speculated that, due to arching action, large lateral earth pressures 

can be developed in the backfill behind the legs, and that these pressures allow the bridge to 

achieve strengths much larger than possible without the confinement of the backfill soil.  The 

research detailed in this thesis sought to verify this behavior through field testing of an existing 

bridge, as well as two ultimate load tests on bridge units.   

1.2 Motivation 

Foley Arch, a division of Foley Products, was seeking to have their arch culvert product 

tested in order to confirm that the arch meets strength design requirements.   

1.3 Research Objectives 

 Verify the effectiveness of the Foley Arch culvert system at both service load levels and 

at ultimate strength levels. 

 Contribute additional research on the strength and effectiveness of precast, three-sided 

arch concrete culvert systems. 

1.4 Testing Overview 

 Test a newly constructed bridge for design load/service load behavior.  

 Test a shorter span bridge unit for ultimate load capacities. 

 Test a longer span bridge unit for ultimate load capacities. 

1.5 Thesis Organization 

This thesis is divided into six chapters.  Chapter 1 is an introduction to the research 

project, providing the motivation, objectives, and overview of research performed. Chapter 2 

provides background on precast, three-sided arch culverts, as well as a literature review of 

previous testing.  Chapter 3 details the testing, results, and analysis of a 42 ft span bridge 

constructed in Cabarrus County, NC.  Chapter 4 details the testing, results, and analysis of an 
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individual 20 ft span bridge unit tested in the Structures Research Laboratory in Auburn, AL.  

Chapter 5 details the testing, results, and analysis of an individual 36 ft span bridge unit tested in 

the Structures Research Laboratory in Auburn, AL.  Finally, Chapter 6 summarizes the project 

and provides conclusions based on the testing.  
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The middle unit was the most highly instrumented, and also the designated test unit. 

Instrumentation consisted of earth pressure cells at top and bottom of the legs on both sides and 

dial gages measuring deflections at seven locations.  Dial gages were placed at the top and bottom 

of both legs to measure horizontal deflections, and at midspan and quarter span to measure 

vertical deflections.  Backfill up to three feet of cover was placed and compacted over the bridge. 

A hydraulic jack capable of 200 kips of load was placed over a roughly four foot by four foot area 

over midspan of the middle unit.  Load was applied in 20 kip increments, with readings being 

taken at each increment.   

In addition, vertical deflections in adjacent units were measured.  However, it was found 

that those units had negligible deflections, which is expected since the units are not tied together 

in any way (Zoghi and Farhey 2006).   

Test results show that the unit was very stiff, having a minimal response to the load.  

Even after applying the full 200 kips of load, only 1.5 in of vertical deflection was measured.  

After removing the load, no significant damage to the concrete was found and the steel did not 

yield.  Virtually no horizontal displacement at the bottom of the legs was measured, and it was 

concluded that a pin support condition at the bridge foundation is reasonable.  Maximum 

measured deflections at the top of the legs were around 0.25 in.  Researchers did conclude that 

arching action helps develop passive earth pressures which aid in bridge strength, saying “an 

extreme overload capacity can be developed by mobilizing the passive earth pressures along the 

side walls without concern for local failures” (Zoghi and Farhey 2006).  However, the effects of 

lateral earth pressure are not significant until higher loads are reached. Measured data shows “the 

contribution of earth pressure is relatively small under normal operating loads” (Zoghi and 

Farhey 2006).  Earth pressures greater than 6.25 ksf were measured at the top of the legs, and 

pressures of 1.00 ksf were measured at the bottom of the legs.  However, ultimate load capacity 

of the bridge could not be surpassed with the equipment used (Zoghi and Farhey 2006).   

2.2.2 McGrath and Mastroianni (2002) 

Researchers field tested two 28 ft span bridges, both 6.5 ft tall, but each with slightly 

different designs.  One bridge had two layers of steel, one near both the inner and outer surface, 

while the other bridge only had a single layer of steel near the inner surface.  After testing, 

CANDE was used to model the bridges in 2-D, while ABAQUS, a general purpose finite element 

analysis program, was used to model the bridges in 3-D.  Since this thesis is focused primarily on 

testing, the results from finite element modeling are not discussed.   

The field test measurements included arch deflections, earth pressures, concrete strains, 

and reinforcing bar strains.  Two types of loading were used for the field testing procedure, 
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tandem-axle load conditions and HS-20 load conditions. Tandem-axle loading was performed at 

three feet, two feet, and one foot of cover using two tandem-axle trucks with 71 kips on each pair 

of axles.  The HS-20 loading condition was performed using a hydraulic jack, at one foot of 

cover.  The HS-20 loading condition was calculated to be 87 kips in the jack; however, the 

hydraulic jack was used to provide much higher load as well.   

Both bridges carried the maximum load that the equipment being used could apply. In 

both bridges, the test was terminated due to bearing failure of the soil under the load plates.  The 

single layer of steel design resisted a load of 236 kips, while the double layer of steel design 

resisted a load of 296 kips prior to failure of the cover soil.  Even at these high loads, no failure or 

yielding of the reinforcement occurred.  Cores were cut from the tested structure and it was 

determined that the reinforcement at the crown of the structure had not yielded at the maximum 

load applied during the test (McGrath and Mastroianni 2002).  

2.2.3 McGrath, Selig and Beach (1996) 

Researchers field tested a 36 ft span bridge, composed of ten units, each 5.25 ft wide and 

11 ft tall.  After testing, CANDE was used to create a model that fit the tested bridge.  Since this 

thesis is focused primarily on testing, the results from modeling are not discussed.   

The seventh, eighth, and ninth units were instrumented with soil stress cells and tape 

extensometers to measure lateral earth pressures and bridge deflections, respectively.  Soil stress 

cells were placed at the top and midheight of both legs.  Tape extensometers measuring lateral 

deflections were placed at the top and midheight of both legs, also, while tape extensometers 

measuring vertical deflections were placed at quarter span and midspan.  At one foot of cover 

over the bridge, a live load test was performed by driving a three axle truck over the bridge and 

stopping at specific locations, taking measurements at each location.  The load on the truck was 

meant to represent an HS-25+30% AASHTO truck load.  One side of the truck axle was centered 

over the seventh unit, with the other side extending over the eighth unit.  After load test, two 

additional feet of cover were added to the bridge and pavement was placed, bringing the bridge to 

the design backfill cover of three feet.  Additional measurements were taken after the backfill 

process was completed and at six, 12, 18, and 24 months after construction completion. 

Researchers found that the live load test had very little impact on the bridge.  The 

maximum vertical deflection was 0.1 in due to live load, while the maximum soil pressures were 

0.50 ksf in the middle cells and 0.17 ksf in the top cells.  Both deflections and soil pressure were 

more significantly affected by the addition of the final two feet of cover, but the measured values 

were still very small (McGrath, Selig and Beach 1996).   
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2.2.4 Beach (1988) 

Researchers field tested a 19 ft span bridge, composed of three units, each eight feet wide 

and seven feet tall.  Unlike other tests, however, they were able to achieve the ultimate failure of 

the bridge.  After testing, CANDE was used to model the bridge.  Since this thesis is focused 

primarily on testing, the results from modeling are not discussed.  

The middle unit was instrumented with deflection gages at six locations.  Horizontal 

deflections were measured at the bottom of both legs and top on one leg.  Vertical deflections 

were measured at midspan and quarter spans.  Connection plates between the units are normally 

installed, but were not for this test because they wanted the units to behave independently (Beach 

1988).  Backfill was placed up to one foot of cover over the units.  A 200 kip capacity actuator 

was used to apply load on a beam that spread the load evenly across the width of the middle unit.   

Load was applied in increments of 6.2 kips, and the ultimate load was achieved at 133.5 

kips.  At ultimate load, the bridge continued deflecting without resisting additional load.  A 

midspan deflection of about 2.75 in was measured prior to unit failure, which also occurred at 

midspan.  At failure of the culvert, three distinct hinges formed at the corner haunches and at 

midspan.  At all three locations the tension steel yielded and ruptured, while the concrete never 

crushed in compression.  The culvert still held the 133.5 kip load even after this failure, 

supposedly due to the backfill pressure supporting the legs.  Researchers also noted that the legs 

behaved as pin supported (Beach 1988).   

The researchers conclude “because of the relatively high stiffness of the culvert, the 

predominant effect in this test was the structural behavior of the precast unit” (Beach 1988).  

They also speculate that the soil-structure interaction would have more effect on longer spans and 

higher fills. 

2.3 Research Summary and Contribution 

Previous research concludes that the effects of backfill are significant, but only at very 

high load levels.  This conclusion could not be verified, however, because the majority of 

previous research did not achieve ultimate loading and failure of the structures.  The only 

research that did achieve failure found that the structure was too stiff to cause significant lateral 

earth pressures (Beach 1988).  Research also did not detail internal forces, such as moments and 

axial forces, felt by the structure, presenting only measured deflections and earth pressures.   

This thesis contributes to the body of work by presenting research on the internal forces 

and lateral earth pressures measured in a field test.  It also contributes by testing two separate 

units through ultimate load and failure.  Even though ultimate load testing took place in a 
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laboratory setting, conclusions about the effects of backfill soil on ultimate strength can be made 

based on measured displacements of the units laterally.   
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Chapter 3 Field Test – 42 ft Span 

3.1 Introduction 

A 42 ft span bridge constructed in Cabarrus County, NC was used for a field test of the 

Foley precast arch culvert bridge system.  The bridge consisted of 13 units placed next to each 

other, spanning over Wiley Branch Creek on Cabarrus Station Road.  Each unit was 42 ft long 

clear span, four feet wide, and has a 14ft inside clear height at midspan.  An image of unit overall 

dimensions taken from the design drawings can be seen in Figure 3-1.  An image of the 

reinforcement layout in half of a unit can be seen in Figure 3-2, with the specified reinforcement 

areas detailed in Table 3-1.  The reinforcement layouts in the two halves of each unit were 

mirrors of each other.  Though the exact reinforcement details are not shown here, calculations 

later on are based on gross concrete properties, and therefore not dependent on reinforcement.  

Note that transverse steel runs parallel to the roadway, meaning that it is the primary flexural 

resistance steel.  This is the nomenclature used by Foley Arch, and will continue to be used 

throughout this thesis.  Backfill was placed and compacted along the sides and top of the bridge 

up to a total of approximately two feet of cover over the midspan prior to live load testing.  

Wingwalls and headwalls are used to retain the backfill soil.  The bridge units were grouted into a 

keyed strip-footing foundation to prevent lateral movement of the bottom of the bridge.  An 

image of the bridge structure prior to placement of backfill can be seen in Figure 3-3.   
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truck, which can be seen in Figure 3-11, was 20.5ft from front axle to rear axle.  The total width 

of the truck was seven feet measured across the rear axle. 

3.3.3 Data Acquisition 

 A CR1000 datalogger from Campbell Scientific was used to record data from the strain 

gages, earth pressure cells, and string pots.  During the backfill process, data was recorded once 

every 30 minutes over 11 days.  During the live load test, data was recorded once every 45 

seconds.   

3.4 Testing Procedure 

This section consists of the procedure used during testing.  For this test, two sets of data 

were recorded.  The first set is recorded during the backfill process to measure construction loads 

on the bridge.  The second set is recorded during a live load test on the bridge after the backfill 

process was completed. 

3.4.1 Data Acquisition During Backfill Process 

 On September 7, 2010, after the bridge units had been placed and grouted into the 

footings, the strain gages and earth pressure cells were installed.  Data was taken with these 

instruments over the next 12 days.  During this time, backfill was placed around the legs and over 

the top of the bridge using standard construction practices up to a total cover of two feet.  This 

data was recorded to see if the stresses on the structure during construction were more critical 

than those experienced during regular use. 

3.4.2 Live Load Test 

 On September 19, 2010, a live load test using a full dump truck was performed.  The 

strategy was to have the truck drive over the bridge, stopping at set intervals long enough for the 

data acquisition system to take several measurements, and then proceeding along the bridge.  At 

each stop, the location of either the front axle or the centerline of the two rear axles was measured 

using a 100ft measuring tape that spanned the bridge.  The truck made a total of three passes over 

the bridge, two heading toward the northeastern side and one heading toward the southwestern 

side.  For the first and third run, traveling toward the northeastern side, the truck was aligned 

along the roadway such that the outside wheels ran over the highly-instrumented unit.  For the 

second run, traveling toward the southwestern side, the truck was aligned such that the outside 

wheels were four feet over from the highly-instrumented unit.  An image of the live load testing 

can be seen in Figure 3-11. 
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Lateral earth pressures that developed during the live load testing indicate that the largest 

pressures are felt at the top of the wall, with very small or even no lateral earth pressure 

developing near the bottom of the wall.  This means that the grouted bottom of the bridge 

behaved as a pin, with backfill acting as a distributed spring resistance to the lateral displacement 

of the bridge.  The largest measured earth pressures also occurred when the centerline of the two 

rear axles was over midspan, which is the expected time when there would be the most thrust.  

The development of the thrust as the truck moved along the bridge is also interesting.  When the 

truck was on the left side of the bridge, earth pressures on the right side of the bridge were higher, 

due to the live load basically pushing the entire bridge laterally.  The thrust on the two sides of 

the bridge evens out as the truck is over midspan.  As the truck continues over the right side of 

the bridge, thrust is then higher in the left side.  This was due to the off-centered truck load 

causing sway of the bridge frame.  It is important to note that the thrusts caused by sway are small 

compared to the thrusts caused by the weight of the truck bending the arch and pushing it 

outward.   

3.5.6 Displacement String Pots 

It was discovered afterwards that the changing temperature in the field caused the string 

pot wire and no yield wire to expand, which affected the raw data.  While this effect could be 

accounted for in the string pot wire itself, there was no way to account for the effect on the no 

yield wire used to bridge the gap between the string pot and the anchor points, as the exact 

properties of the wire were not known.  Therefore, displacement string pot results are not 

available for this test.   

3.5.7 Bridge Behavior 

The bridge performed as expected.  The backfill soil around and above the arch bridge 

caused compression in each cross section, which helped prevent cracking of the bridge.  No 

cracking was found in any of the bridge units.   

3.6 Chapter Summary 

The 42 ft bridge behaved exceptionally well and was very stiff.  Measurements taken 

during the backfill operation indicate that no cracking was caused during construction, and that 

the presence of backfill creates a net compression in the bridge.  Under a live load test using a 

truck weighing 56,820lbs, the bridge showed no signs of cracking.  Measured moment 

magnitudes were within reason, and relatively small lateral earth pressures were recorded.  

Pinned support behavior at the keyed footings was verified by the negligible buildup of lateral 

earth pressures near the bottom of the bridge.   
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Chapter 4 Laboratory Test – 20 ft Span 

4.1 Introduction 

A 20 ft span bridge unit was used for a laboratory test of the Foley Arch precast arch 

culvert bridge system.  The single unit of a multi-unit bridge was designed for ten feet of backfill 

plus live load.  The unit has a 20 ft clear span, an inside clear height of eight feet at midspan, and 

is four feet wide.  An image of the overall dimensions and the reinforcement layout in the unit 

can be seen in Figure 4-1, with the exact reinforcement used detailed in Table 4-1.  Note that 

transverse steel runs parallel to the roadway, meaning that it is the primary flexural resistance 

steel.   



 

Fiigure 4-1 20 fft Bridge Un
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Table 4-1 20 ft Bridge Unit Reinforcement Details (FoleyArch 2010) 

 

The bridge unit was cast on March 2, 2011 at the Foley plant in Winder, GA, and shipped 

to the Structures Research Laboratory at Auburn University on June 1, 2011.  Due to the unit 

geometry, it was able to be shipped standing up.  The unit was light enough that it was able to be 

picked up using the laboratory crane alone.  Three load tests were performed on the bridge 

between August 3 and August 10, 2011.  At ultimate load conditions, the unit held more than 182 

kips before failing.   

This chapter details how the 20 ft unit was tested, as well as the results of that testing.  It 

contains sections on the instrumentation, setup, and procedure used for testing.  It also contains 

analysis and results from testing, followed by discussion of those results. 

4.2 Instrumentation 

This section contains a detailed description of the instrumentation used on the 20 ft span 

bridge unit.  It also contains details about the different types of instruments used, including how 

each was installed. 

4.2.1 Instrumentation Layout 

The 20 ft clear span bridge unit was initially instrumented  with 15 sister bar strain gages, 

ten concrete surface strain gages, three displacement potentiometers, or wirepots, and four load 

cells.  Two additional wirepots were added later.   

Strain gages were placed at five cross section locations on the bridge: at midspan, at the 

corners where the section began to increase in thickness, and on the legs where the section began 

to increase in thickness.  The layout of the instrumented cross sections can be seen in Figure 4-2.  

Three sister bar gages were placed at each location and tied to the reinforcing cage.   These sister 

bar gages were tied on the side of the cross section that would be the expected tension side, 

meaning the inner side of the bridge at midspan, and the outer side of the bridge at the corners 

and legs.  Two concrete surface strain gages were placed at each cross section, at third points 

Designation: Mesh Size Length (ft)
Transverse Area 
Supplied (in2/ft)

Longitudinal 
Area Supplied 

(in2/ft)

A1A D16.7xD8     2x4.75 16'-6" 1.002 0.202
A1B D16.7xD8     2x4.75 14'-0" 1.002 0.202
A2 D10.5xD8     4x7 11'-2" 0.315 0.137
A3 D10.5xD8     2x7 15'-0" 0.63 0.137
A4 D10.5xD8     4x4 10'-9" 0.315 0.24

Design based on uncoated reinforcing meeting ASTM A-615, Grade 60, fy = 60,000psi
Minimum Yield Strength for welded wire fabric shall be 65,000 psi
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protection.  Finally, heat shrink tubing and electric tape were placed around the gage area to 

provide more protection and water-tightness. 

Prior to placement, each sister bar strain gage was checked with a P3 Strain Indicator and 

Recorder to make sure the gages were working.  It was found that two gages in different cross 

sections were faulty at this point.   

4.2.3 Concrete Surface Strain Gages 

Once the bridge was in the lab, concrete surface electrical resistance strain gages were 

attached to the bridge surface.  The area where the strain gage was to be installed was firmly 

brushed with a metal wire brush, and then an air hose was used to remove excess concrete dust 

from the surface.  Next, a back-coat of M-Bond GA-2 Adhesive was applied to the surface, 

ensuring all holes were filled and a relatively smooth surface was formed.  The next day, after the 

adhesive cured, the back-coat layer was sanded smooth down to nearly the concrete surface, and 

then a damp paper towel was used to remove dust from that surface.  A 20CLW strain gage with a 

two inch gage length from Vishay Micro-Measurements was picked up using PCT-2M gage 

installation tape.  Finally, the gage was installed by applying a thin layer of five minute epoxy to 

the back-coat surface and pressing and holding the gage into place for upwards of five minutes, 

while ensuring no air bubbles were allowed to form.  The piece of tape was left in place to 

provide some minimal amount of protection to the gage and because removal of the tape risked 

debonding the strain gage. An installed concrete surface strain gage can be seen in Figure 4-5. 
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4.4.4 First Ultimate Load Test 

 On the afternoon of August 3, 2011, an ultimate level load test was performed on the 20 

ft bridge unit.  The lateral resistance frame was removed, so that the only load applied to the 

structure was from the actuators pulling down.  It was observed during the service level test that 

horizontal deflections were not maximum at the top of the walls, due to the side walls themselves 

experiencing flexure.  To account for this, two rotational dial gages were arranged to measure 

deflections at approximately midheight of the legs.  It was observed that measurements from 

wirepot gages added prior to the second ultimate load test showed approximately the same 

behavior as the dial gages, but at greater accuracy.  Therefore, the dial gage data is not shown or 

discussed.  The bridge was loaded using the actuators as before, at increments of two kips per 

actuator.  The load was brought up to approximately 53 kips per actuator, at which point the 

actuators were maxed out and could not apply anymore load.   

In an attempt to fail the bridge unit, the load was dropped down to 40 kips per actuator, 

and two concrete blocks, each weighing roughly 1,900lbs, were placed on either side of the 

midspan actuator.  An image of the test with the concrete blocks can be seen in Figure 4-19.  The 

load was then increase back to 53 kips per actuator, but the additional weight of the concrete 

blocks was not enough to fail the bridge unit.  The concrete blocks and actuator load was 

removed and hydraulics turned off.  The effects of this reloading using the concrete blocks was 

negligible, and is not did not impact the results of the test.   
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gages became faulty during the course of the three tests, drastically rising and flattening at a peak 

strain orders of magnitude higher than other gages.  In such cases, those particular strain gages 

were neglected for calculating moments and axial forces.  At all cross sections, at least one sister 

bar strain gage measured properly.   

It was observed that very small strains were measured at the corner cross sections, 

locations two and four.  In some cases these cross sections measured strains opposite the 

anticipated sign, for example, concrete gages in tension.  It was determined that the location of 

these gages was further out on the arch than intended, near the inflection points.  For these gages, 

uncracked section analysis similar to what was used for the field test was used to determine 

moments and axial forces. 

Near the very end of testing, just prior to failure of the bridge unit, some sections 

measured a strain higher that the assumed reinforcement yield strain of 0.00207.  However, this 

yielding did not significantly affect the calculated internal forces.   

4.5.3 Moment and Axial Force Calculations from Strains 

Using the strains measured on the concrete compressive surface and within the cross 

section near the steel, moments and axial forces were calculated.  Assuming plane sections 

remain plane, a linear strain distribution was used across the entire concrete section.  This strain 

distribution and its curvature were used to find the neutral axis, a distance “c” from the concrete 

compressive surface, as well as strains in the concrete and steel.  Stresses in both the tension and 

compression steel were calculated using a modulus of elasticity of 29,000 ksi, with a yield plateau 

of 60 ksi.  Concrete tension stresses were calculated using the modulus of elasticity of the 

concrete up to the calculated rupture stress, fr, which is 840 psi.  Concrete compressive stresses 

were calculated using an assumed stress-strain curve taken from Wight and MacGregor which 

uses the measured strength and modulus of the concrete to calculate a stress-strain relationship for 

concrete compressive strengths from 2,000 psi to 18,000 psi (Wight and MacGregor 2009).  The 

relationship between concrete stress, fc, and strain, εc, is as follows: 

௙௖

௙ᇲ௖
ൌ

௡∗ቀ
ഄ೎
ഄ೚
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௡ିଵାቀ
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ഄ೚
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where 

f’c = peak stress obtained from a cylinder test 

εo = strain at peak stress 

n = curve fitting factor 

k = slope controlling factor 
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is opposite of what would be expected, this analysis returns faulty results.  However, this 

generally happens only at very low load levels.  It is also worth noting that the concrete tension 

force calculation does not factor in when the bridge was loaded, cracked, unloaded, and then 

reloaded again.  However, the concrete tension force does not have a substantial effect on the 

axial force or moment calculations above a relatively low load level. 

 It was found that cross section two and cross section four were placed near the inflection 

point.  They therefore experienced relatively low strains and curvature opposite of what was 

expected.  For these sections, an analysis similar to what was used on the 42 ft field test was used. 

Calculations of moment and axial force in the cross sections were done assuming a linear elastic, 

homogeneous, rectangular cross section.  Using the strains from the two strain gages and their 

locations in the cross section, a linear strain profile was assumed.  The strain profile was then 

turned into a stress profile using the modulus of elasticity of the concrete.  The average of the two 

stresses on the top and bottom of the cross section was used as the axial stress.  The axial stress 

was then multiplied by the area of the cross section to determine the axial force.  The difference 

between the average stress and one of the extreme fiber stresses was used as the bending stress.  

The bending stress was then multiplied by the moment of inertia and divided by half of the 

section thickness to determine the moment.  This is based on the linear elastic behavior, stress = 

My/I.   

4.5.4 Moments and Axial Forces 

Moments in the five cross sections during the service load test, first ultimate load test, 

and second ultimate load test can be seen in Figure 4-23, Figure 4-24, and Figure 4-25 

respectively.  Moments were calculated using the full four foot width of the section.  Note that the 

sign associated with the moment is relative to the position of the concrete and sister bar strain 

gages.  Therefore a positive sign means that the moment is such that tension is in the sister bars 

and compression is in the concrete surface gages.  Also note that for each of the service load test 

and first ultimate test graphs, the moment builds up to a peak at the peak load, and then follows 

an unloading curve back to a non-zero number.  This represents the permanent strain that the 

section sustains due to loading.  This fictitious moment is subtracted out for the subsequent test 

because while there is permanent deformation, all loading is removed, so the moment due to load 

is still simply the dead weight of the bridge.  The second ultimate test graph does not contain this 

unloading curve, because the bridge was loaded up to its ultimate load, at which point failure 

occurred. 
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Chapter 5 Laboratory Test – 36 ft Span 

5.1 Introduction 

A 36 ft span bridge unit was used for a laboratory test of the Foley Arch precast arch 

culvert bridge system.  The single unit of a multi-unit bridge was designed for five feet of backfill 

plus live load.  The unit has a 36 ft clear span, an inside clear height of nine feet at midspan, and 

is four feet wide.  An image of unit overall dimensions taken from the design drawings can be 

seen in Figure 5-1.  An image of the reinforcement layout in half of the unit can be seen in Figure 

5-2, with the exact reinforcement used detailed in Table 5-1.  The reinforcement layout in the two 

halves of the unit was mirrored.  Note that transverse steel runs parallel to the roadway, meaning 

that it is the primary flexural resistance steel.   



 

FFigure 5-1 366 ft Bridge U
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Unit Overall DDimensions ((FoleyArch 22011) 



 

Fiigure 5-2 36 fft Bridge Un
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it Reinforcemment Layoutt (FoleyArch 2011) 
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Table 5-1 36 ft Bridge Unit Reinforcement Details (FoleyArch 2011) 

 

 

The bridge unit was cast on December 1, 2011 at the Foley plant in Winder, GA, and 

shipped to Auburn University on December 14, 2011.  The unit was shipped on its side and 

brought to Scott Bridge Company of Opelika, AL, where it was taken off the truck with a crane, 

rotated so that it was standing upright, and then placed back on the truck with the forward most 

leg on rollers.  The unit was then brought to the Structures Research Laboratory at Auburn 

University, where, with the use of the laboratory crane and a forklift, the rear end of the bridge 

was lifted and the bridge was rolled into the lab.  The weight of the unit was more than the 

laboratory crane’s capacity, so positioning the bridge was done by placing one end on rollers, 

lifting up the other end, and using the forklift to push or pull the bridge into place.  This process 

caused some minor cracking in the unit, as well as some slight misalignment of the legs, which 

will be discussed more in section 5.5.8.   

A single load test was performed on the bridge on January 6, 2012.  At ultimate load 

conditions, the unit held more than 151 kips before failing.   

This chapter details how the 36 ft unit was tested, as well as the results of that testing.  It 

contains sections on the instrumentation, setup, and procedure used for testing.  It also contains 

analysis and results from testing, followed by discussion of those results 

5.2 Instrumentation 

This section contains a detailed description of the instrumentation used on the 36 ft span 

bridge unit.  It also contains details about the different types of instruments used, including how 

each was installed. 

5.2.1 Instrumentation Layout 

The 36 ft clear span bridge unit was instrumented  with 15 sister bar strain gages, ten 

concrete surface strain gages, three displacement potentiometers, or wirepots, and four load cells.   

Designation: Mesh Size Length (ft)
Transverse Area 
Supplied (in2/ft)

Longitudinal 
Area Supplied 

(in2/ft)

A1A D10xD10     2x3.8 24'-0" 0.6 0.315
A1B D13.2xD5.5     2x16 30'-0" 0.792 0.041
A2 D5.5xD10     2x8 9'-9" 0.33 0.15

A3A D10xD10     2x8 16'-1" 0.6 0.15
A3B D10xD5.5     2x16 13'-1" 0.6 0.041
A4 D5.5xD10     2x3.8 26'-0" 0.33 0.315
A5 D5.5xD10     2x8 7'-10" 0.33 0.15

Design based on uncoated reinforcing meeting ASTM A-615, Grade 60, fy = 60,000psi
Minimum Yield Strength for welded wire fabric shall be 65,000 psi
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5.2.2 Sister Bar Strain Gages 

The sister bar strain gages were created using the same method and materials described in 

Chapter 4.  For details, see section 4.2.2.   

Prior to placement, each sister bar strain gage was checked with a P3 Strain Indicator and 

Recorder to make sure the gages were working.  It was found that only one gage was faulty at this 

point.   

5.2.3 Concrete Surface Strain Gages 

The concrete surface strain gages were created using the same method and materials 

described in Chapter 4.  For details, see section 4.2.3.   

Concrete gages were also checked with the P3 Strain Indicator, and all gages were found 

to be working satisfactorily.   

5.2.4 Displacement Wirepots 

WDS P-60 series draw wire sensors from Micro-Epsilon were used to measure 

deflections of the bridge unit.  From henceforth, these sensors will be referred to as wirepots.  The 

wirepots were attached to the bridge by drilling a small hole into the concrete, tapping in a light 

duty plug anchor, screwing in a small eyebolt and attaching the end of the wirepot string to the 

eyebolt.  For wirepots measuring lateral deflection, holes were drilled into the side of the bridge 

unit.  For the wirepot measuring vertical deflection at midspan, the hole was drilled in the bottom 

of the bridge arch.  The lateral wirepot units were mounted to the lateral resistance frame to serve 

as a fixed point, even though the frame itself was not used during testing.  The vertical wirepot 

was mounted to a frame built to house the wirepot and gage wire hookups around the center 

actuator.  

5.2.5 Load Cells 

Four LPSW-B model load cells from Load Cell Central were used to measure the 

horizontal reaction at the base of the bridge unit.  Each load cell has a 50,000lb capacity.  The 

four load cells were simply placed in between the bridge and the HSS section that served as our 

base horizontal reaction, with a 6in x 6in x 0.25in plate bearing between the load cell contact 

point and the concrete surface to prevent damage due to the concentrated force of the load cell.   

5.3 Testing Setup and Equipment 

This section contains some details on testing setup outside of instrumentation.  It includes 

details on the loading frame used for testing, the actuators used to apply the load, and the data 

acquisition system.   
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5.3.1 Load Framing System 

 The load frame used for testing the 36 ft bridge unit is the same frame used during the 20 

ft bridge unit test.  Details on the load frame can be found in 4.3.2.  Once again, the three 

actuators were spaced at four feet, with the middle actuator corresponding to midspan.   

5.3.2 Actuators 

The actuators used are model number 243.35 Single Ended Actuators from MTS.  They 

have an 82 kip capacity in compression and a 54 kip capacity in tension with a 10 in total stroke.  

The load framing system was such that the actuators were in tension, giving them a capacity of 54 

kips per actuator.  MTS Model 407 controllers were used to control each actuator independently 

using displacement control.   

5.3.3 Data Acquisition 

A Pacific Instruments 6000 Data Acquisition System was used for collecting data.  A 

sample rate of one sample per second was used for all testing.  Data was monitored throughout 

testing and saved and recorded after the test was finished.   

5.4 Testing Procedure 

This section consists of the procedure used during testing.  For this bridge unit, a single 

ultimate load level test was performed.   

5.4.1 Concrete Cylinder Tests 

Eight concrete cylinders were created when the bridge unit was cast.  The cylinders were 

eight inches long with a four inch diameter.  These cylinders were kept under the same conditions 

as the bridge unit until testing.  Strength tests were performed on two of the cylinders at Auburn 

Universtiy on January 6, 2012.  Strength and modulus tests were performed on the remaining 

cylinders on January 9, 2012.  Compressive strength tests conformed to ASTM C39 (ASTM 

International 2005), and modulus of elasticity tests conformed to ASTM C469 (ASTM 

International 2002).  For more details on how cylinder tests were performed, see section 4.4.2 in 

Chapter 4.   

5.4.2 Steel Reinforcement Tensile Testing  

In order to better understand the stress-strain behavior of the reinforcement used for this 

bridge unit, seven bars taken from steel reinforcement samples were tested in a tension testing 

machine.  Four of the bars were cut from extra mats prior to casting.  These bars are the same 

size, D10 bars, as the bars used as primary negative moment reinforcement in the legs and the 

corners.  The remaining three bars were cut directly from the bridge unit during demolition after 
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The lateral resistance frame used for the 20 ft bridge unit service load test was not used at 

all on the 36 ft unit.  Due to the negligible effects it had on the 20 ft unit, as well as the shortened 

leg height of the 36 ft unit, which would not deflect as much as longer leg heights, it was 

determined that the lateral resistance frame would not have an impact on the 36 ft unit’s behavior.   

In anticipation of failure, the crane in the laboratory was centered over the bridge, with 

straps placed loosely underneath the bridge to “catch” the bridge.  The ten ton capacity laboratory 

crane was manually controlled, and had enough capacity to keep the arch from falling on the 

testing equipment should a complete collapse of the structure occur.   

For the ultimate load test, load was applied slowly and evenly in the same manner as the 

preliminary load test.  Near the end of the actuators’ capacity, the bridge failed when a hinge 

formed near the corner within the arch, in between the two gage locations in that corner.   

5.5 Analysis, Results, and Discussion of Testing 

This section contains the measured data as well as calculated results from the 36 ft bridge 

test.  For analysis purposes, the bridge is divided into seven instrumented cross sections based on 

the strain gage layout.  Two cross sections are on the legs, two are near the corners where it is 

thicker, two are near the corners where the thinner arch begins, and one is at midspan.  The cross 

sections are the same as those in Figure 5-3.  

5.5.1 Concrete Material Properties 

Cylinder tests revealed the concrete to have a compressive strength, f’c, of 7,040 psi.  

Modulus of elasticity tests show the concrete to have a modulus, Ec, of 4,100 ksi.  This 

compressive strength value is fairly typical of precast, three-sided arch units, which have a typical 

28 day compressive strength of 6,000 psi to 7,000 psi. 

5.5.2 Steel Reinforcement Testing 

It was found that reinforcement had both sufficient strength as well as ductility.  A graph 

showing the full stress-strain curves for each of the seven steel samples can be seen in Figure 5-6.   

Data showed that the modulus of elasticity was approximately 26,500 ksi, however, which is 

unusual for steel.  Data showed that the steel stress-strain curve increases linearly before 

beginning to flatten out at a yield plateau.  Specimens did not exhibit strain hardening, increasing 

strength after yielding, but instead continued to deform with very little strength increase prior to 

break.  In addition to the smaller modulus of elasticity, one other anomaly was noted.  It was 

found that yielding of the smaller D10 bars was around 70 ksi, while the larger D13.2 bars did not 

yield until roughly 90 ksi, which is very high for this steel.  However, due to the range of strains 

measured during testing, this anomaly did not prove to be significant.   
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However, unlike the 20 ft span bridge unit, flexural cracks propagated, widened, and increased in 

number with a fairly uniform spacing underneath midspan and on top near the corners.  The 

bridge unit held 151.9 kips of force before failure.  Immediately prior to failure, maximum 

deflections were 5.96 in downward at midspan, and 0.93 in laterally in the walls.  The failure 

mechanism was a flexural failure near one of the corners.  The tension steel ruptured, quickly 

causing the concrete to crush in compression.   
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Chapter 6 Summary, Conclusions, and Recommendations 

6.1 Summary 

The use of precast, three-sided arch culverts has become fairly popular for new bridges 

and bridge replacements, but little research has been performed into the strength of these 

structures.  Many have speculated that, due to arching action, large lateral earth pressures can be 

developed in the backfill behind the legs, and that these pressures allow the bridge to achieve 

strengths much larger than possible without the confinement of the backfill soil.  The research in 

this thesis was performed to verify the behavior of these arch culverts through field testing of an 

existing bridge, as well as two ultimate load tests on bridge units.   

It was discovered that, while the test bridges were capable of achieving very high 

strengths, they were too stiff to cause enough lateral deflection to activate passive earth pressures, 

and the earth pressures had a minimal effect.  In addition, it was found that undesirable shear 

failures can occur in certain bridge designs, and the ductility of the steel used for reinforcement 

was not sufficient to allow flexural hinges to form.   

6.2 Conclusions 

Based on the field testing of a full 42 ft span bridge: 

 The bridge had excellent service level behavior.  While being subjected to two feet of 

backfill cover, as well as the load of a 56,820 lb truck, no cracking was observed in the 

structure and measured strains remained below the theoretical cracking strain.   

 The largest lateral earth pressures were measured at the top of the side walls due to the 

arch thrusting outwards.   

 Negligible lateral earth pressures were measured near the bottom of the side walls, 

indicating that the bridge supports act as a pinned connection. 

 Lateral earth pressure magnitudes were relatively small and no passive earth pressures 

were activated in the backfill.   

 Measurements during the backfill operation indicate no cracking in the structure, and that 

the presence of backfill causes a net compression throughout the bridge.   

Based on the laboratory testing of a 20 ft span individual bridge unit: 

 Due to their stiffness and strength, shorter spans designed for large amounts of fill could 

be subject to non-ductile shear failures in the concrete. 
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 Due to stiffness in both the legs and the arch, measured lateral deflections were small, 

indicating that passive earth pressures would not be developed in backfill soil.   

 A critical area for failure is near the corners, where negative moment and shear are 

highest. 

Based on the laboratory testing of a 36 ft span individual bridge unit: 

 Longer spans behave much more flexibly, achieving much higher deflections before 

failure. 

 Based on the observation that the tension steel ruptured prior to concrete crushing, 

ductility of steel reinforcement may not be high enough to fully develop hinges. 

 Due to shortness of the legs, measured lateral deflections were small, indicating that 

passive earth pressures would not be developed in backfill soil.   

 A critical area for failure is in the negative moment regions near the corners of bridge 

units. 

 For heavier, longer span, more flexible bridge units, additional care should be taken 

during shipping and placement to prevent premature cracking. 

 Steel reinforcement removed to place the lifters should be replaced and adequately 

developed in order to prevent loss of strength. 

6.3 Recommendations 

The following recommendations for further research were determined: 

 Ultimate load testing of full sized bridges with backfill resistance 

 Testing of longer span units with taller leg heights to research effect of lateral 

displacements and backfill pressure 

 Comparison testing of similar units in both a laboratory and field setting 
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