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Abstract
 
 

In civil structures, the members often encounter a combined loading of flexure and 

torsion, which has a strong influence on the members’ behavior and capacity, especially for 

those beam sections with relatively weak torsional resistance, such as the commonly used 

I-shaped sections.  To ensure both the safety and the economy of design result, the validity 

of different design methods for combined flexure and torsion should be investigated before 

any practical applications are attempted.  

In this thesis, finite Element (FE) models are developed and verified using 

theoretical analysis and experimental results in the literature. The influence of a number of 

key parameters on the behavior, ultimate strength, and serviceability of representative I-

shaped beam members are investigated via the finite element method FEM approach. The 

current main design methods for combined flexure and torsion are also evaluated based on 

the FE simulation results. Suggestions are made regarding the applicability of the design 

methods studied in this thesis for the ultimate strength prediction of I-shaped beam 

members.  
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Chapter 1.  Introduction 

1.1. Overview 
Commonly used open sections in steel building construction (e.g., wide flange I-shapes) are 

poor in resisting torsion. Therefore, it has been advisable in practice to design and detail members 

with open sections in such a way to eliminate or minimize torsional effects. However, in practice, 

the loads may not act through the shear center of the section, in which case the member is subject 

to a mixture of torsion and flexure.   

 

Figure 1 Torsion in spandrel beam 

For example, for the structure shown in Figure 1, the weight of the vertical rigid façade 

elements is transferred eccentrically with respect to the shear center of the spandrel beam, thus 

causing torsion.  Moreover, the vertical load acting between the two end supports produces 

bending moment about the strong axis of the spandrel beam. Hence, the spandrel beam is subject to 

combined flexure and torsion. Similarly, for the structure shown in Figure 2, the weight of the wall 

and the slab also cause both flexure and torsion in the beam. Proper design criteria are needed to 

address design situations such as those depicted in Figures 1 and 2.  
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Figure 2 Torsional load in a support beam.  

1.2. Motivation 
Current AISC design provisions for I-sections under combined flexure and torsion are based 

upon an elastic analysis approach that involves the superposition of stresses caused by flexure and 

torsion. Stresses are usually calculated using established theories of structural mechanics, and the 

beam is designed such that the resulting maximum stress anywhere in the beam does not exceed a 

limiting stress that depends upon the limit state considered. This approach is used whether the 

Allowable Strength Design (ASD) method or Load and Resistance Factor Design (LRFD) method is 

used (AISC 2010). Elastic analysis of I-sections subject to torsion requires the solution of a third or 

fourth order ordinary differential equation (ODE) whose independent variable is the angle of twist. 

Although closed-form mathematical solutions are available for beams with standard support and 

loading conditions, they are considered impractical for use in design. Seaburg and Cater (2003) 

present these solutions graphically in the form of normalized charts for beams with standard 

support and loading conditions. Nonetheless, this procedure is often viewed by engineers to be 

cumbersome and onerous. 

Researchers at the University of Alberta in Canada (Estabrooks and Grodin, 2008) and the 

University of Sydney in Australia (Pi and Trahair, 1994b) have recently proposed to use an ultimate 

strength limit state design approach in lieu of the elastic analysis approach described above. This 

approach can significantly simplify the design process by eliminating the need to solve the ODE or 

investigate critical combinations of flexural and torsional stresses.  
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In this thesis, the viability of this recently-proposed strength limit state design approach 

will be assessed in comparison with the AISC elastic design approach. 

1.3. Research Objectives 
The objectives of this research were as follows: 

• Generate finite element (FE) analysis results that can be used to assess the AISC design 

provisions for I-shaped steel beams under combined flexure and torsion. 

• Investigate the effect of a number of key parameters on the behavior of I-shaped steel 

beams under combined flexure and torsion. 

• Assess recently proposed ultimate strength design approaches for combined flexure and 

torsion. 

1.4. Scope and Approach 
The scope of this research study is analytical in nature. The general-purpose commercially 

available finite element (FE) analysis package ABAQUS was employed.  Because FE analysis was 

used as the only means of analysis in this research, it was necessary to ensure that the FE models 

could accurately predict the behavior in both the elastic and inelastic range of behavior. To this end, 

FE models were developed, then their results validated via two means: (1) the models’ elastic 

response was validated by comparison with well-established elastic analysis theories, and (2) the 

models’ inelastic response was validated by comparison with experimental results reported in 

(Estabrooks and Grondin 2008). After the models were validated, they were used in a subsequent 

parametric study to investigate the influence of several key parameters on the behavior.  

Instead of performing a comprehensive study of all parameters affecting the behavior of 

I-shaped steel beams subject to combined flexure and torsion, this research focuses on a small 

number of key parameters and some variables. These parameters and variables include the beam 

slenderness ratio, the moment-to-torque ratio, the ratio of pure warping to torsional resistance, and 

the ratio of flexural to torsional stiffness. The parametric study included a total of 30 simulations of 

simply supported beams with varying lengths and moment-to-torque ratios under an eccentrically-

applied load at the mid-span section. 

1.5. Tasks 
To achieve the objectives of this research, the following tasks were completed: 
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• Review previous research  

• Develop and verify FE models in ABAQUS 

• Validate the FE analysis results 

• Develop and conduct a parametric study 

• Analyze the influence of the parameters on the behavior  

• Compare FE analysis results with AISC design criteria and recently proposed ultimate 

strength design approaches 

• Make recommendations and suggestions for future research 

1.6. Thesis Organization 
This thesis is organized into five chapters. Chapter 1 provides a brief overview of the 

problem considered in this thesis, and introduces the objectives as well as the approach of this 

research. In Chapter 2, relevant theories and current methodologies for predicting the elastic and 

inelastic behavior of I-shaped beams under combined bending and torsion are reviewed. The FE 

modeling approach and validations studies are presented in Chapter 3.  The parametric study and 

its results are reported in Chapter 4. Finally, in Chapter 5, the main results and conclusions of this 

thesis as well as recommendations for future research are presented.  

1.7. Notation 
The notation used in this thesis follows AISC Steel Construction Manual 13th Edition (2010) 

and is listed in Appendix A. United States customary units of measurement are used throughout this 

thesis unless otherwise specified.  
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Chapter 2 Literature Review 

2.1. Overview 
Current AISC design provisions for I-shaped steel beams restrict the stresses due to 

combined flexural and torsional loading effects to within the elastic range of behavior (AISC 2010). 

However, recent research studies have shown that the load-carrying capacity can be significantly 

higher if post-yielding behavior is considered. In this chapter, first, existing theories and 

methodologies for the elastic analysis of I-shaped beams subject to flexure, torsion, and combined 

flexure and torsion are reviewed. Then, theoretical and research results pertaining to the ultimate 

capacity of I-shaped beams subject to combined flexural and torsional loading are presented, with a 

primary focus on interaction equations proposed in the literature for the ultimate strength limit 

state. Finally, research results that employed finite element (FE) analysis studies for members 

under combined flexure and torsion will be reviewed.  

2.2. Elastic Analysis 

2.2.1 Elastic Analysis for Torsion 

The torsional resistance of a given member is attributed to two distinct resistance 

mechanisms as established by Saint Venant in the 1850s. These resistances are pure (St. Venant, 

uniform) torsion and warping torsion, which are established separately as a function of rotational 

deformation. 

Pure torsion is characterized by the development of cross-sectional shear stresses as each 

cross-section resists the adjacent cross-section’s twist; the pure torsion resistance is thus a function 

of longitudinal rotation and shear rigidity. Certain cross sections (e.g., circular cross sections) resist 

the applied torsional loads by pure torsion solely. This may be attributed to the fact that such cross 

sections do not warp even if the applied torsional loads are nonuniform or if the member is 

rotationally restrained. For open I-shaped thin-walled cross sections, however, the applied 

torsional loads will be resisted by pure torsion only if the applied torsional loads are uniform and 

the member is not rotationally restrained. This may be attributed to the fact that I-shaped cross 

sections do experience cross-sectional warping due to torsional loads (Seaburg and Carter, 2003).  

The shear stress distribution of a typical I-shaped section in pure torsion is shown in Figure 3. An 

illustration of aarping deformations in I-shaped sections is shown in Figure 4. 
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Figure 3 Shear stress distribution due to pure torsion, (Estabrooks and Grondin, 2008). 

 

 

 

 

 

 

Figure 4 Idealized warping deformation of I-shapes (Seaburg and Carter, 2003). 

Galambos (1968) expresses the maximum shear stress due to pure torsion for open cross-

sections composed of thin-walled rectangular elements as: 

 
sv mGtτ θ ′=  (2.1) 

where G  is the shear modulus of rigidity, mt  is the maximum cross-sectional thickness , andθ ′  is 

the change of the rotation angle per unit length.  The total pure torsion resisted by a particular 

cross-section is represented by: 
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svT GJθ ′=  (2.2) 

where J  is the polar moment of inertia which is a geometric property of the cross-section. For I- 

sections, J  can be closely approximated using the following equation: 

 3 3J bt=∑  (2.3) 

where b  and t are the length and thickness of each cross-sectional element, respectively. Various 

modifications have been proposed to adjust the J  term for end effects and fillet geometry, as 

referenced by Driver and Kennedy (1987).  

Cross-sections that do not exhibit uniform shear strains at all points on the same radius, 

with respect to the shear center, will warp when subjected to torsion (Hibbeler 2008). Warping 

effects cause cross-sectional elements to deform out of plane. When this tendency to deform is 

restrained or when the applied torsional loads are nonuniform, shear and normal warping stresses 

will develop.  

       

Figure 5 (a) Shear stress in flanges due to warping torsion. (b) Normal stress distribution due to warping torsion.  

The warping deformations of I-shaped cross sections can be visualized as the lateral 

deformation of the flanges in opposite directions as shown in Figure 4. The warping resistance of I-

shaped cross sections can be represented by equal and opposite transverse shear stresses in the 

flange that occur in conjunction with transverse flange bending (bi-moment), as shown in Figure 

5(a). Figure 5(b) shows the distribution of normal stress due to warping torsion. The shear and 

normal stresses in the flanges of I-shaped cross sections can be expressed respectively as: 

 
w wESτ θ ′′′= −  (2.4) 

𝜎𝜎𝑤𝑤  

𝜎𝜎𝑤𝑤  

𝜎𝜎𝑤𝑤  

𝜎𝜎𝑤𝑤  

(b) 

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑤𝑤  

(a) 
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and 

 
w nEWσ θ′′= −  (2.5) 

where E  is the modulus of elasticity, the normalized warping function nW  and the warping static 

moment wS  are determined by the section geometry, and θ ′′  and θ ′′′  are the second and third 

derivatives of the angle of twist with respect to the distance along the length of the beam.  

The resultant of the shear stresses represents the transverse shear force, while, the 

resultant of the normal stresses represents the bi-moment. The transverse shear force and the bi-

moment are self equilibrating forces that act on the cross-section. The total warping torsion 

resisted by a particular cross-section is represented by: 

 
w wT EC θ ′′′= −  (2.6) 

where wC  is the warping constant of the cross-section. The resistance due to the combination of 

pure and warping torsion for concentrated torque is given by the following differential equation: 

 
sv w wT T T GJ ECθ θ′ ′′′= + = −  (2.7) 

The solution of this differential equation depends upon loading and boundary conditions, 

and requires the determination of constants of integration. Statically determinant members require 

three boundary conditions to be satisfied, while an additional boundary condition is required for 

each additional degree of indeterminacy (Pi and Trahair 1995a). It is important to note that web 

deformations are neglected in the development of warping resistance, which provides approximate 

but adequate solutions (Kubo et al. 1956) except for unstiffened plate girders (Salmon and Johnson 

1980), as reported by Driver and Kennedy (1987). Also, interactions between normal and shear 

stress are neglected in the equations used; Pastor and Dewolf (1979) developed differential 

equations that consider such interactions, as reported by Bremault et al. (2008), however, their 

equations are complicated, and are not suitable for design purpose.  

2.2.2 Elastic Analysis for Flexure 

The elastic analysis for flexure of I-sections is well established and prior knowledge of 

theory supporting this section is assumed, as it is not covered here. The stress distributions due to 

flexure and shear are generally determined based upon generalized distributions based on basic 

structural mechanics theories. The internal moment is carried by normal stresses that vary linearly 

from zero at the elastic neutral axis to a maximum at the extreme fibers of a cross-section. The 
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shear stress distribution generally follows a pattern where the transverse shear is carried primarily 

by the web, while offsetting shear stresses occur in the flanges. These stress distributions are 

developed and superimposed with those obtained through the elastic torsion methods to obtain the 

maximum normal and shear stresses which are generally restricted to elastic behavior as described 

below. 

2.2.3 Elastic Analysis for Combined Flexure and Torsion 

For the elastic analysis of I-shaped steel beams under combined flexure and torsion, 

generally two sets of stresses are superimposed: (1) normal stresses due to flexure and warping 

torsion, and (2) shear stresses due to flexure, pure torsion, and warping torsion. The equations 

used are presented in detail in Chapter 3 with the aid of an example. Determining the cross section 

that controls design of an open section can be the most challenging part of the analysis, as each 

stress effect changes along the length of the member according to its loading and support 

conditions. In addition, each force effect distributes stress differently within a given cross-section. 

The stress values are typically obtained by solving for the exact solution using graphical design aids 

such those provided by Seaburg and Carter (1997), and any interactions between normal and shear 

stresses are assumed to be negligible. This is justified due to the rarity that the maximum shear and 

normal stresses occur at the same cross-section and location within that cross-section to warrant 

interaction consideration.  

There are alternative design procedures based upon elastic theory as summarized by Driver 

and Kennedy (1987). Such methods include the flexural analogy, in which the torsion is assumed to 

be resisted solely by a flange shear force couple, which overestimates the normal stresses. The β-

modifier method modifies the flexural analogy to reduce the over-conservatism through the use of a 

reduction factor based upon the loading, connection, and geometry of the beam; graphical design 

aids using this method are presented by Lin (1977). The bi-moment method, introduced by Walker 

(1975), establishes torsion resistance due to bi-moments, which represent the flexural capacity of 

the flanges; the effects of both flexure and torsion are superimposed without consideration for 

interaction. Finally, Salmon and Johnson (1980) proposed a simplified analysis that approximated 

the flange moments as in the flexural analogy, but modifies the warping restraint appropriately for 

relatively long beams, in which the effect of warping restraint dissipation is considered. Bremault et 

al. (2008) provide more detail into alternative or modified elastic approaches in the literature 

review provided in their works. 
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2.3 Ultimate Strength Analysis 

2.3.1 Ultimate Strength of I-shaped Sections Subjected to Torsion 

There has been significant research that describes the response to torsion in the inelastic 

range of behavior; however, a widely accepted and empirically verified method for determining the 

torsional capacity of I-shapes has proven to be difficult. This is primarily due to the difficulty in 

describing the warping torsion behavior and large rotation behavior. Although expressions have 

been proposed for determining the warping displacements of cross-sections, no analytical solutions 

for the inelastic behavior of warping torsion have been presented to date, as reported by Pi and 

Trahair (1994b). Some current research is described below in an effort to present the various 

methods that are used to obtain the ultimate strength of I-sections subjected to torsion. The 

torsional ultimate strength is later used in the interaction equations for combined flexure and 

torsion. 
General torsion theory includes the sand heap analogy, as developed by Nadai in 1931, 

which describes the constant shear stress under full yielding, for solid sections, as being equivalent 

to the slope of a sand heap piled on the cross-section. The rooftop analogy was used by Nadai in 

1954 to describe the elastic-plastic torsion of various cross sections including open sections. 

Elastic-plastic solutions specific to I-sections were also presented by Christopherson (1940); this 

work is further discussed by Pi and Trahair (1993b, 1994a, 1994b) in their various literature 

reviews. 

The majority of past work describing torsion of thin-walled open sections has been under 

the assumption of small deformations; the following works consider small deformation 

assumptions to approximate the warping torsion of I-shaped cantilever beams. Boulton (1962) 

developed a lower bound theorem of this scenario. Dino and Merchant (1965) proposed the 

Merchant upper bound as the ultimate capacity for I-shaped cantilever beams. Augusti (1966) 

verified the Merchant upper bound limit and proposed a method that falls between the upper and 

lower bounds. 

Recently, there has been significant research using the FE method to predict the inelastic 

torsion capacities of beams; Pi and Trahair (1994b) summarized some of these recent studies, 

which are not reiterated here. The mitre model, which describes the shear strain distribution over 

the cross-section, has been used by Billinghurst et al. (1991) to develop an elastic-plastic solution 

for various cross sections. Chen and Trahair (1993) applied this method in their analytical work 
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specific to I-sections. Only the recent FE analysis results of Pi and Trahair (1994c) are furthered 

reviewed below. As mentioned, more information on relevant analytical methods prior to the works 

discussed here is provided by Pi and Trahair (1994b). 

There have been some experimental research results produced for I-shapes subjected to 

torsion in the inelastic range. However, this information is limited and somewhat dated. Boulton 

(1962) tested two specimens while allowing warping and observed capacities beyond those 

predicted by the small rotation theory used for comparison. The specimens attained large rotations, 

which increases resistance due to what is termed the helix effect (or Wagner effect), as described 

below. Dino and Gill (1964) also conducted tests to find capacities larger than anticipated, as 

reported by Pi and Trahair (1995b). Farwell and Galambos (1969) tested five specimens and 

reported capacities beyond theoretical plastic capacities based on small rotation theory used for 

comparison. It is important to note that the theoretical capacities were based upon small rotation 

assumptions, while I-shaped specimens fail at significantly large rotations. Simplifying assumptions 

in regard to deformation behavior may have significant consequence as shown through the work of 

Pi and Trahair (1995b). 

Pi and Trahair (1995b) compared results of alternate assumptions with regard to torsional 

behavior. In one analysis, they compared small twist analysis to that of large twist analysis. For the 

large twist analysis, the effects of Wagner stresses (helix effect) were considered. It is important to 

note that these assumptions were of little consequence in the elastic range, and did not significantly 

alter the elastic material behavior approximations, but had significant effects in the inelastic range. 

For open thin-walled members, the assumption of small rotation is arguably erroneous, due 

to the associated low torsional rigidities, which make them susceptible to larger rotations. In 

general, models that assume small rotations and neglect strain hardening have torsional capacities 

that reach a limiting torsion value corresponding to torsional plastic collapse mechanism 

formation; however, the incorporation of large rotation analysis shows significant increases in 

ultimate capacity at large rotations (Pi and Trahair 1994b), as shown in Figure 6. This resistance is 

further increased when strain hardening effects are considered, as illustrated in Figure 7. 

Furthermore, increased resistance due to the formation of what is termed Wagner stresses can 

significantly increase capacity and alter the failure mode, as discussed by Trahair (1995b). 
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Figure 6 Typical torsion/deformation relationship comparison (Pi and Trahair, 1994b). 

 

Figure 7 Typical strain/strain relationship used in inelastic modeling (Pi and Trahair, 1994b) 

 Wagner stresses (helix effect) result from additional longitudinal elongation of a member’s 

flange tip when subjected to torsion as illustrated in Figure 8. These deformations are only 

significant when relatively large rotations are encountered. The incorporation of Wagner stress 

alters the behavior of the pure torsion resistance, as described by Pi and Trahair (1994c), resulting 

in the failure of the cross section before  full plastification is reached. It has been shown by the 

experimental results of Farwell and Galambos (1969) that such a failure is due to the rupture of the 

flange tips under tensile stress.  
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Figure 8 Typical Distribution of Wagner Stresses (Pi and Trahair, 1994b) 

Selected research and torsional capacity derivations are discussed below to highlight the 

development of current understanding. 

Dinno and Merchant (1965) 

Dinno and Merchant (1965) proposed what is called the Merchant upper bound for the 

ultimate capacities of cantilever beams, which sums the pure and warping torsion capacities of the 

support cross-section  without considering any interaction, which coined the upper limit 

connotation; this is shown not to be a true upper bound by Pi and Trahair (1994c) (due to the small 

rotation assumptions used) who  incorporate this method into their torsion capacity approach, as 

described below. This method proposes that the cross sectional plastic capacity for a cantilever 

beam, pT , be determined by: 

 
fp

p up

M h
T T

L
= +  

(2.8) 

where upT  is the pure torsion plastic capacity, which is approximated using the sand heap analogy, 

as described in the works of Pi and Trahair below. The second term represents the warping torsion 

plastic capacity of the cross-section, which depends upon the length 𝐿𝐿 of the cantilever and the bi-

moment, fpM h , where h  is the distance between upper and lower flange centroids. fpM represents 

the flange plastic moment which is given by: 

 2

4
y f f

fp

b t
M

σ
=  

(2.9) 

Driver and Kennedy (1987) 
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Driver and Kennedy (1987) developed a method for determining the plastic torsion 

capacity that also sums the individual capacities of pure and warping torsion. These capacities are 

based upon tests conducted on cantilever beams subjected to combined torsion and bending. These 

tests showed  that the normal tensile stresses in the flange f can reach the ultimate tensile stress. It 

was also assumed that high compressive strains can be attained without local buckling.  

The authors proposed that the pure torsion resistance can be determined using the sand 

heap analogy as: 

 ( ) ( )3 2 2 31 4 6 3 2
6 3

u
shu f f f f f w wT t b t t d t t t σ = + − + − +   (2.10) 

which is similar to equation (2.16) below except that here the ultimate tensile stress, uσ , rather 

than the yield tensile stress, yσ , is used as the failure criterion. The warping torsion resistance is 

given by: 

 ( )2
f f w

wu u

Kb t d t
T

L
σ

 −
=  
  

 (2.11) 

where, again, the ultimate tensile stress is used as the failure criterion. The warping component of 

torsional resistance under various loading and end conditions can be considered through the use a 

warping factor K . The value of K  depends on the boundary and the loading conditions. For a beam 

pinned at both ends, when the torque is concentrated at the mid-span, 1K = . When the torque is 

uniformly distributed along the beam, 1/ 2K = . More details about the warping factor for different 

boundary and loading conditions can be found in (Driver and Kennedy, 1987).  
Pi and Trahair (1994a) 

Pi and Trahair (1994a) modified the capacities described by Dinno and Merchant (1965) to 

incorporate other types of structural members, and proposed the use of the upper bound for 

design. The analytical work of Pi and Trahair (1994a) made an effort to establish the conservatism 

of this method, which has advantages of computational ease and the fact that it relies on familiar 

concepts of plastic analysis to obtain the torsional capacity of I-shapes. This method is applicable to 

any idealized end and loading condition typically found in design. In particular, according to Pi and 

Trahair, the normalized plastic collapse load factor tpλ  equals  the sum of two plastic load factors, 

as follows: 
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 tp up wpλ λ λ= +  (2.12) 

where upλ  and wpλ  are the uniform torsion collapse load factor, and the warping torsion collapse 

load factor, respectively. These factors are proportional to the applied torsion load appliedT as: 

 

2
applied

up
up

T
T

λ =  (2.13) 

 applied
wp

wp

T
T

λ =  (2.14) 

where wpT  is the warping plastic torque. The torsional strength is considered adequate when 

 tp tλ φ≤  (2.15) 

where tφ  is a performance (resistance) factor for torsion, which is usually taken as 0.9. Each 

torsional factor is a function of the collapse mechanism required and the respective plastic cross 

section resistance. The plastic torsion capacity of an I-shaped cross-section is given by: 

 2 3
2 1

3 2 6
f w w

up y f f
f

t ht tT b t
b

τ
  

= − + +      
 (2.16) 

where  yτ is the shear yield stress taken as 3yσ  according to the von Mises yield criterion, and 

fb  and ft are the width and the thickness of the flanges, respectively, wt  is the web thickness,  and 

h  is the clear distance between flanges. Rotational hinges form when a collapse mechanism is 

reached.   

For a torsionally pinned beam with a concentrated torque at midspan, the critical torque 

associated with  torsion plastic collapse caused by warping is given by: 

 4 fp
wpc

M h
T

L
=  (2.17) 

where fpM  is given by equation (2.9). The collapse mechanism is determined using typical flexural 

plastic collapse methods where the flanges bend laterally. When the location of hinge formation is 

not obvious, the upper and lower bound analysis approaches of flexural plastic analysis must be 

incorporated, such as the case for distributed torsional loading.  
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 This method was verified through FE analysis results. The analysis compared small 

rotation, large rotation without Wagner stresses, and large rotation with Wagner stresses. The case 

without Wagner stresses assumed that an axial restraint prevented elongation of the member. The 

analyses results were compared with experimental results obtained from Farwell and Galambos 

(1969), which showed close agreement with the large rotation model that incorporated Wagner 

resistance. In addition, the effects of large rotation analysis were compared to small rotation 

analysis for the bimoments, pure torsion, and strain hardening effects.  

2.3.2 Ultimate Strength of I shapes Subjected to Flexure 

The methods for determining the ultimate capacity of compact I-shapes with regard to 

flexural action is well established and not covered in detail here. There are two primary methods 

that are used in typical flexural design: the first yield design and the plastic design. The first yield 

approach limits the load-carrying capacity to the level where the maximum Von Mises stress in the 

beam is the yield stress, which leads to a very conservative and uneconomical design.  

The plastic design may be performed for one hinge, or for as many hinges as possible until 

the structure becomes unstable (Osterrieder and Kretzschmar, 2006). It is most common to use a 

first hinge approach, where full plastification of a single cross-section represents the ultimate 

capacity of a member. This method is used to find the resistance of members in LRFD design 

techniqueswherethe design loads use elastic load analysis techniques. The majority of all work 

performed to date uses this approach to detemine the ultimate flexural capacity that is 

incorporated into interaction equations of combined loading design techniques. The ultimate 

flexural capacity ( pM ) is defined as 

 *p y
M Zσ=  (2.18) 

where the plastic section modulus  Z for an I-shape section is approximated by the following 

formula (Megson, T.H.G ,2005)  

 ( ) ( )2
2 4f f w fZ bt h t t h t = − + −  

 (2.19) 

When the member is not compact, its flexural resistance is controlled by lateral torsion 

buckling (LTB). This resistance value is taken as the ultimate flexural resistance. The susceptibility 

to LTB is related to unbraced length, loading configuration, and cross-sectional properties.  

2.3.3 Interaction between Flexure and Torsion 
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Dinno and Merchant (1965) 

Dinno and Merchant (1965) conducted tests on six I-shaped compact beams. The beams 

were subjected to combined torsion and moment, yet details of the loading methods were given. In 

this reference, a curve was proposed for considering the combined interaction between flexure, 

warping torsion, and pure torsion: 

 2 2

1
p p

M T
M T

   
+ =      

   
 (2.20) 

which extends the work by Hodge (1959) on closed cross-sections. This curve has been shown to be 

an upper limit on the member’s capacity by Augusti (1966). However, it has been revised to 

consider compact sections not susceptible to LTB effects (Pi and Trahair 1993a, 1994c). When the 

section is non-compact, LTB effects are present, and the curve has been shown to be unconservative 

when the modified slenderness increases above 1.0. The modified slenderness is defined in (2.21) 

by Pi and Trahair (1994c): 

 ( )px yzM Mλ =  (2.21) 

where pxM is the major axis full plastic flexure moment of the cross section, and yzM  is the 

classical elastic flexural torsional buckling moment of a simply supported beam in uniform bending 

given by Timoshenko and Gere( 1961):  

 2 2 2 2

2 2
y w

yz

n EI n EIM GJ
L L
π π 

= + 
 

 (2.22) 

where yI  is the second moment of inertia about the minor axis, wI  is the warping section constant, 

L  is the length of the beam, and n  is the number of equally spaced braces. For unbraced beams,  

1n = . For centrally braced beams, 2n = . 

Kollbrunner et al (1978). 

Kollbruner et al. (1978) tested a cantilever I-shaped steel beam with a compact section. The 

section was fixed at one end to prevent warping and was subjected to combined loading through an 

eccentrically applied load. The ultimate strength of the specimen was defined by limiting the 

maximum normal strain to five times the yielding strain. The failure criterion is not described. 

Through this work, a parabolic interaction equation was proposed for the interaction of the plastic 
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capacity of the flanges of a cross-section with respect to flexure and torsional bi-moments, 

represented by 

 2

2 1,wp

fp p

M M B
M B

 −
+ =  

 
 (2.23) 

where B  is the flange bimoment, pB  is the plastic flange bi-moment, wpM  is the plastic bending 

moment of the web, and fpM  is the plastic bending moment of the flanges. This method assumes 

normal stress actions are of primary concern, and does not consider shear interaction. Equation 

(2.23) is applicable to cantilever and fixed-fixed end conditions.  

Trahair and Pi (1994c) 

Trahair and Pi (1994c) incorporated their analytical work of combined flexure and torsion 

into a set of comprehensive design methodologies that account for the stability issues of LTB and 

local buckling for flexural action. The approach was to propose alternate interaction equations and 

analysis techniques to account for local stability classifications, where the local buckling criterion 

remained the same as that for pure flexure. 

The proposed interaction for Class 1 (compact) beams allows all resistances to be calculated 

using plastic analysis techniques separately, where the flexural capacity incorporates LTB strength 

reduction effects typical of flexural analysis. The combination should satisfy the following equation: 

 2 2 2
ip tpλ λ φ+ ≤  (2.24) 

where φ  is the performance factor, and is usually taken as 0.9. The ipλ  term in (2.24) represents 

the plastic collapse load factor for in-plane bending: 

 applied applied
ip

ipc x y

M M
M Z

λ
σ

= =  (2.25) 

where appliedM  is the applied bending moment. ipcM  is the critical bending moment, yσ  is the yield 

normal stress of the material, and xZ  is the plastic section modulus.  

The tpλ term in (2.24) is the plastic collapse load factor for torsion, based upon individual 

resistances of pure and warping torsion resistances as in (2.12).  
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The interaction equation proposed for Class 2 and 3 sections (noncompact and slender, 

respectively) is as follows: 

 
1

y y

M T
M Tφ φ

   
+ ≤      

   
 (2.26) 

The M and T  terms are applied loads from plastic load analysis. The yM  term is the design 

moment capacity considering LTB effects, and the yT  term is the torsional capacity.  For Class 2 

sections,  yT  is computed based on a first yield elastic analysis. For Class 3 sections, yT is computed 

based on a local buckling analysis for Class 3 sections. The particular local buckling procedures for 

torsion are not given, and little work has been done in this area; however, it is rare that a Class 3 

(slender) section will be selected for flexural action, making the lack of attention appropriate. 

The moment vs. torsion values at failure are compared to the proposed interaction equation 

of Dinno and Merchant (1965), discussed previously. Pi and Trahair (1994c) found that the Dinno 

and Merchant interaction does not account for LTB effects adequately, and provided an alternative 

expression applicable to combined bending and free torsion, which considers LTB effects for cases 

with slenderness ratios up to 1.41; the interaction depends upon bracing conditions and is given by 

 
1

4 2

zx

bx p

PL Pe
M T

γγ   
+ =       

 (2.27) 

where P is the concentrated force load, e is the eccentricity of with respect to the shear center of 

the section. The xγ  and zγ  terms depend upon the bracing configuration where 2.0xγ =  and 

1.0zγ =  for continuously braced beams, and 1.0xγ =  and 1.0zγ =  for centrally braced and 

unbraced beams. The bxM  term represents the flexural-torsional buckling strength of the member 

given by bx m s p pM M Mα α= ≤ , where the mα and sα  terms represent a moment modification 

factor and slenderness reduction factor, respectively. pT  is the maximum internal torque at plastic 

collapse. 

Driver and Kennedy (1987) 

Driver and Kennedy (1987) performed tests on four cantilever sections loaded in combined 

flexure and torsion. For each case, while the flexural action was kept approximately constant with a 
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vertical load in the same direction, the eccentricity of the applied load was increased from case 1 to 

4, thereby increasing torsion. The lengths and sections were selected with the intent of minimizing 

the lateral torsional buckling effects, while making the effects of both warping and pure torsional 

resistances significant.  

Based on the failure points and corresponding strains, an interaction diagram was 

proposed, as shown in Figure 9. The points on the interaction diagram are described as follows:  

Point E: Represents the plastic capacity of the cross-section under pure flexure; 

Point F: Torsional capacity, which equals the sum of sand heap torsion plus warping torsion 

(ultimate); 

Point G: Torsional capacity vs. plastic capacity of the web; 

Point H: Sand heap torsion vs. plastic capacity of the cross-section. 

 

 
Figure 9 Interaction diagram proposed by Driver and Kennedy (1987).  
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Due to local stability effects, the plastic capacity of the cross-section for flexure is obtained 

using the yielding criteria.  The torsional capacity is obtained using the ultimate torsional strength 

as failure criteria. The end conditions of the member are addressed in the computation of the 

warping resistance. When the flanges are carrying both bending normal stresses and warping 

normal stress, the interaction is described by a parabolic curve extending from its vertex at G to H. 

Driver and Kennedy (1987) also proposed an interaction diagram for class 3 beams, which 

can reach the yield moment 𝑀𝑀𝑦𝑦  before local buckling occurs. This interaction diagram is shown in 

Figure 10. The torsional capacity is also obtained using yielding as the failure criteria. The 

interaction between flexure and torsion is accounted for by simply joining points G and H using a 

straight line.  

 
Figure 10 Interaction diagram by Razzaq and Galambos (1979)  

The interaction diagrams by Driver and Kennedy (1987) can be used in a design methodology 

that incorporates lateral torsional buckling. However, this method has recently been considered 

unconservative by Estabrooks and Grondin (2008) and Bremault et al. (2008).  

2.4 Finite Element Analysis of Combined Flexure and Torsion 
Empirical flexure and torsion interaction information is traditionally obtained through costly 

and time-consuming full scale testing. Recently, finite element analysis has proved to be beneficial, 
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and can reduce the experimental results needed for understanding interactions. In the following 

sections, recent advances in FE modeling techniques in the areas of combined action are reviewed. 

Finite Element Models Presented in Bremault et. al. (2008) 

The following theoretical (not used to approximate empirical results) finite element models 

have been summarized and referenced by Bremault et al. (2008): 

Bathe and Wiener (1983) modeled fixed-end cantilever I-sections that included warping 

effects. Kanok-Nukulchai and Sivakumar (1988) modeled several cases of pure torsion and 

combined flexure and torsion using a degeneration process (developing finite elements from 3D 

equations) in which warping was allowed. Bild et al.(1992) developed a model similar to the 

formulations of Hancock and Trahair (1978) for simply supported beams with an eccentrically 

applied load at mid-span; the model can approximate effects of nonlinear material properties, 

buckling, initial imperfections, residual stresses, and nonlinear geometric effects in the transverse 

direction (but not in the rotational direction). 

Driver (2000) produced models of the test specimens used in his earlier empirical work 

(Driver and Kennedy 1987) using 3D brick elements with non-linear material and geometric 

properties. The fillets were also modeled to take into consideration their effect in increasing pure 

torsional resistance, as described by Driver and Kennedy (1987). The material model was isotropic 

elastic-strain hardening, and used the von Mises yield criterion to model stress interaction. An 

approximate residual stress was considered in two cases. The third case did not consider residual 

stress effects. The FEM results agreed well with testing data. It was also found that residual stress 

distribution had little effect on overall results. Furthermore, the cross-section was able to achieve 

stresses beyond those of yielding. 

Pi and Trahair(1993a,1994c) 

 

Pi and Trahair (1993a, 1994c) used FEM analysis to investigate the behavior of I-shaped 

beams under combined loadings, while considering the LTB slenderness pertaining to flexural 

effects. A non-linear (large rotation) inelastic (non-linear constitutive relationship) finite element 

analysis approach was used. This approach is considered to be more accurate than the traditional 

approach of linear (small rotation assumptions) inelastic models for combined action of flexure and 

torsion. The latter approach generally overestimates the resistance when the primary behavior is 
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flexural, and underestimates the resistance when the primary action is torsion (Pi and Trahair 

1994c).  

The effects of strain hardening, typical residual stress distribution, and initial imperfections 

were considered. Residual stress assumptions are as shown in . Initial imperfections included 

crookedness and initial rotations. For each of the three bracing configurations analyzed, three sets 

of analyses with different lateral torsional buckling slenderness values of 0.5, 1.0, and 1.41 were 

investigated. For each of the nine scenarios analyzed, the eccentricity of the applied load was varied 

from pure flexure to torsion-dominant cases for each configuration. It was found that the maximum 

bending moment and the maximum torque are related to the slenderness of the beam. It was also 

found that bracing can affect the interaction between flexure, torsion, and flexural torsional 

buckling.   

 

 

Figure 11 Cross-section and residual stress distribution, Pi and Trahair (1994c). 

 

Estabrooks and Grondin (2008) 
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idealized boundary conditions in an attempt to produce lower bound resistances; the idealized end 
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condition attempted to provide pinned action for both flexure and torsion. These idealized 

conditions also provided ideal means for validating empirical results using finite element models 

that employed the same boundary conditions 

The models were developed using ABAQUS software, where the SR4 shell element was 

used. A mesh refinement study was performed to reduce dependence upon mesh size and 

computational effort; the three meshes considered are shown in Figure 12. An intermediate mesh 

size, containing 960 elements was selected based upon its convergence (within 0.8%) to the finest 

mesh used. 

 
Figure 12 Mesh study in Estabrooks and Grondin (2008) 

 The model incorporated assumptions such as elastic-plastic strain hardening constitutive 

behavior, residual stress, and initial imperfections. In particular, the constitutive behavior was 

modeled to approximate the coupon tests of the steel used in the experimental work. The residual 

stress of the hot rolled I-shape was approximated with a certain temperature gradient and the 

resulting stress distribution. The initial imperfection was assumed to be a sin wave with amplitude 

of l/500, which closely resembled the measurements taken of the test specimens. Initial 

imperfections of the flanges being non-parallel, as measured in the test specimens, were also 

included in the model development. 

As compared to empirical findings, the FE model produced from errors ranging from 2 - 

26% compared to the empirical results. The FE model produced a “softer” mid-span moment ratio 

vs. mid-span deflection response, with a more gradual transition to the plateau region; the 

difference in slope ranged from 0.4 - 8%. Meanwhile, the FE model produced a “stiffer” mid-span 

torsion ratio vs. mid-span rotation response, with a more abrupt transition to the plateau region.  
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The sensitivity to material strength was also investigated. It was found that a 16.8% increase in 

yield strength produced a 9.9% increase in overall torsional capacity.  

The impact to the maximum moment (mid-span) ratios vs. mid-span deflection and 

maximum torsion (mid-span) ratios vs. mid-span rotation due to the sensitivity parameters was 

also investigated. The sensitivity study showed that the end condition assumptions were the most 

likely sources of the discrepancies observed between the empirical and FE model results. 

Bremault, Driver, and Grondin (2008) 

Bremault al. (2008) produced finite element models which were developed through 

validation of the empirical results of Driver and Kennedy (1987). Then, these modeling techniques 

were extended for use in parametric studies of combined loading cases. In total, 180 different cases 

were analyzed in ABAQUS with varying cross-sections, boundary conditions, beam slenderness 

loading conditions, and the moment-torsion ratio.  

As in the experimental test, the FE combined flexure and torsion load was produced by an 

eccentric concentrated force acting on a loading bracket. For example, the following figure shows 

the mesh and loading bracket of the finite element model for beam 3 in (Driver and Kennedy, 1987) 

 

Figure 13 FEM model for beam 3 in (Driver and Kennedy, 1987) 

Similar to( Estabrooks and Grondin, 2008), the S4R shell element was selected. Meshing 

size was reduced in areas where large strains were expected in order to observe local buckling and 

yielding, such as the area close to the fixed end of the cantilever beam in Figure 13.  

A mesh refinement study was performed with three different mesh configurations, utilizing 

1300, 5400, and 11700 nodes, respectively, in order to ensure the convergence of solutions. The 
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difference between the initial mesh size (1300 nodes) and the first alternative mesh size was fairly 

significant. However, further decrease of mesh size to the second alternative mesh size (11700 

nodes) caused negligible difference in results; therefore, the first alternative mesh, consisting of 

5400 nodes, was selected based upon the meshing trials to optimize solution efficiency. 

The material and geometric behavior was modeled as non-linear. In particular, the 

geometric non-linearity (large rotation) effects were modeled using the geometric nonlinearity 

option of ABAQUS, which enables the consideration of alternate load paths (instability due to 

bifurcation) caused by buckling, allowing the FE model to better predict the beam’s post-yielding 

and post-buckling behavior. 

The cases of combined flexure and torsion loading (E1, E2, and E3) in Bremault et al. (2008) 

showed a variation in behavior, with some specimens yielding due to warping hinges and others 

yielding due to flexural hinges. It is difficult to distinctly qualify the occurrence of each, as 

exceptions were encountered. In general, the lower eccentricities (E1) caused  flexural response to 

control while the large eccentricity (E3) caused  torsional response to control. These effects were 

highly dependent upon the boundary conditions used. Especially, for simply supported beams, the 

hinge formation determined the collapse mechanism, hence had a strong influence on the beams’ 

behavior. 

2.5 AISC Design Provisions 
In the (AISC, 2010), the design of I-shaped beams is categorized as Non-HSS members with 

other shapes. The interaction of the combined effects of the required strengths (torsion, bending 

moment, shear force, and/or axial force) must satisfy the requirement of AISC Specification Section 

H3, which states :the design torsional strength, T nFφ and the allowable torsional strength, /n TF Ω , 

for non-HSS members shall be the lowest value obtained according to the limit states of yielding 

under normal stress, shear yielding under shear stress, or buckling, determined as follows: 

 0.90 ( )T LRFDφ =    1.67 ( )T ASDΩ =  (2.28) 

 

For the limit state of yielding under normal stress:  

 n yF F=  (2.29) 

For the limit sate of shear yielding under shear stress: 
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 0.6n yF F=  (2.30) 

For the limit state of buckling:  

 
n crF F=  (2.31) 

where crF =buckling stress for the section as determined by analysis. 

The required stresses can be computed by elastic stress analysis using theories of structural 

mechanics.  According to the AISC design code, it is usually sufficient to consider normal stresses 

and shear stresses separately, because maximum values rarely occur in the same place in the cross 

section or at the same place in the span, AISC (2010). The reader may refer to AISC (2010) for more 

details regarding the I-shaped section. Summary 

In this chapter, previous theoretical results and design methods for beams subject to 

combined flexure and torsion awere reviewed. Although considerable empirical and analytical 

research have been conducted in this area, the empirical study is still incomplete, and the various 

design methods addressing the interaction between flexure and torsion in the plastic phase remain 

to be studied.  FEM is a powerful tool for performing more complete parametric studies regarding 

parameters affecting the behavior and ultimate strength of beam members, and good agreement 

between FEM results and empirical results have been achieved. The current AISC design provisions 

were also reviewed. 
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Chapter 3 Finite Element Model Development and Verification 

3.1. Overview 
As stated in the previous chapters, FEM is the main tool in this effort used to study the 

behavior as well as to determine the load capacity of the I-shaped beams subject to combined 

flexural and torsional loading. Hence, it is important to ensure that the modeling techniques can 

produce reasonably accurate results. The validity of a more comprehensive investigation can be 

justified only if a close agreement can be achieved between FEM model simulation results and other 

reliable results provided in previous research, which include theoretical predictions, experimental 

results, and FEM results.  

In this Chapter, an FE model created for the purpose of verification is described. The loading 

process can often be divided into two stages—the elastic stage and the inelastic stage, and the 

structure exhibited different behavior in each stage. Correspondingly, the main objective of for the 

verification were two-fold: the first was to verify the elastic response of the FE model using 

theoretical results for elastic response, which have been well-established. The second objective was 

to verify the inelastic response of the FE model using physical experiment results and FEM results 

presented in (Estabrooks and Grondin, 2008).  

This chapter is organized as follows: the elastic analysis theory is introduced, the modeling 

information is described, the elastic response of the beam is analyzed theoretically, and then 

verification the elastic response of the FE model is described. Next the theory for inelastic analysis 

is introduced, and the inelastic response analysis of a beam subject to different types of loads is 

described. The inelastic response is verified using experimental results and FEM results from 

previous research. Finally, this chapter is concluded with a brief summary.   

3.1. Elastic Response  
An I-shaped steel beam in the interstate 59 bridge is considered for the verification of 

elastic response. In the following section, the theory for the elastic response is first introduced, then 

the details of the model are described, and then simulated elastic response is verified using 

theoretical results.  

3.1.1. Theoretical Analysis of Elastic Response 
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For elastic analysis, the combined stress is calculated by adding the elastic stresses obtained 

for flexure and torsion using the principle of superposition. The theories regarding the flexural 

behavior and the torsional behavior, which includes both pure torsion and warping torsion 

behaviors, are introduced in this section.  In particular, the magnitude and the location of the 

maximum normal stress and maximum shear stress, which can be computed as described below are 

of interest: 

3.1.1.1 Flexural behavior 

Henceforth, a global coordinate x-y-z is used with the x  axis perpendicular to the web of the 

beam, the y  axis in the vertical direction, and the z axis perpendicular to the x-y plane. The flexural 

moment vector lies in the cross section of the beam, as shown in Figure 14. For the I-59 beam 

considered in this research, the flexural moment M is directed along the x  direction only, i.e., 

0yM = .  

 
Figure 14 Flexure moment in the cross section 

The normal stress due to flexure is given by 

 yx x
b

x y x

M xM y M y
I I I

σ = − =  (3.1) 

where 

bσ = the normal stress caused by the flexural effect, ksi . 

M = flexure moment about either the x or y axis, kip in− , and 

I = the area moment of inertia, xI or yI , 4in . 

 

𝑥𝑥 

𝑦𝑦 

𝑀𝑀𝑥𝑥  

𝑀𝑀𝑦𝑦  𝑀𝑀 
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For the loading condition considered, the maximum bσ occurs at mid-span, where the 

moments in each direction are maximum. This maximum moment value can be computed as:  

 2 2

max( )
8 4 8 4

y
x

P LqL qL PLM = + = +  (3.2) 

Where 

xS = elastic section modulus, 3in . x
x

IS
y

=  

q = uniform distributed load, lb/in. 

P = a concentrated load at midspan, lb, and 

yP = a concentrated load along Y axis, lb 

L  = the length of the steel beam or bridge, in. 

Therefore, we have 
2

max
/ 8 / 4( )b

x

qL PL
S

σ +
=  

The distribution of the bending stress, bσ  , across the I-shaped beam section is shown in 

Figure 15.  

 

Figure 15 𝝈𝝈𝒃𝒃 distribution. 

The shear stress due to flexure is given by the following expression 
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0 0

s s

x y
b

y x

V xtds V ytds

tI tI
τ

− −
= +∫ ∫  (3.3) 

where 

bτ = the shear stress caused by the flexural effect, ksi , 

V = shear force acting parallel to the x or y axis through the shear center S, lb. 

t   = the thickness of the web or the flange, in, and 

s  = curvilinear coordinate system along the middle surface of the cross sectional elements. 

The maximum xV  and yV  forces for the I-59 beam at the mid-span are given by 

( )
max 2y

PV =
 
and ( )max

0xV = Hence, the distribution of bτ  follows the distribution of 
0

s
ytds∫ ,  and 

is shown in Figure 16.   

 

Figure 16  𝝉𝝉𝒃𝒃 distribution 

In the above figure, the maximum shear stress value in the flange is given by 

 

max
2 4( )

f f

bf
f x

hb tP

t I
τ

⋅
=  (3.4) 

 

where 
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max( )bfτ = the maximum value of shear stress in the flanges, ksi , 

 ft = the thickness of the flange, in  , 

fb = the width of the flange, in , and 

h = the distance between the centroids of both flanges, in . 

wt = the thickness of the web, in .  

3.1.1.2 Pure torsion behavior 

The shear stress caused by pure torsion, or the St. Venant shear, is expressed as: 

 
sv Gtτ θ ′=  (3.5) 

where 

svτ = shear stress caused by St. Venant shear, ksi , 

G = shear modulus of rigidity of steel, 11200 ksi ,  

t = the thickness of investigated beam, and 

θ ′= rate of change of angle of rotation θ , i.e., the first derivative of θ with respect to z . When the 

beam is subject to a concentrated torque load located at z , the twist angle θ  is given by 

 

( )

( )

sinh
1 cosh sinh ,                 0 ,

tanh

sinh
1 sinh sinh cosh ,    .

tanh

l
Tl z a l za z llGJ l l a a

a
l

Tl a z l zaz l z llGJ l l a a a
a

α
αα α

θ
α

α α α

   
   

− + − × ≤ ≤   
   

    = 
  
   − + × − × ≤ ≤  
  
   

 (3.6) 

where a is the torsional resistance given by wECa
GJ

= , E  is Young’s modulus, wC  is the wraping 

constant of the cross-section (in.4),  and J  is the torsional constant of the cross section (in.4).  When 

the beam is subject to a uniformly distributed torque load,  
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 2 2 2

2 2 cosh tanh sinh 1
2 2

qt a l z z z l z
GJ a l l a a a

θ
  

= − + − × −  
  

 (3.7) 

where qt  is the distributed torque (kip-in./in.).  

The distribution of St. Venant shear stress corresponds to the distribution of θ ′given the 

fact that G and t  are constants.  The location of maximum θ ′varies according to different boundary 

condition and load cases in general. The maximum St. Venant shear stress max( )svτ occurs at the end 

of the beam because θ ′achieves its maximum value when 0z =  for simple supported boundary 

conditions The values are different on the flanges from those on the web since the thicknesses of 

those two plates differ. The maximum shear stress in the flanges due to pure torsion is given by 

 
max( ) (0)svf fGtτ θ ′=  (3.8) 

where 

max( )svfτ =the maximum shear stress in the flange, ksi. 

For webs: 

 
max( ) (0)svw wGtτ θ ′=  (3.9) 

where 

max( )svwτ = the maximum shear stress in the web due to pure torsion, ksi. 

Note that ( / 2) 0sv Lτ = because ( / 2) 0Lθ ′ = for the present loading condition 

3.1.1.3 Warping torsion behavior 

For a cross section subject to pure torsion, the normal stress due to the warping effect is 

given by: 

 
w nEσ ω θ′′=  (3.10) 

 where 

E = the modulus of elasticity of steel, ksi, 

 nω  = the normalized unit warping of the cross section, in.2   
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 ( )zθ ′′ = the second derivative of the angle of twist with respect to the distance along the length of 

the beam. 

For the present loading condition, the maximum warping normal stress max( )wσ occurs at 

the mid-span at the flange tips, and is given by the following expression 

 
max max( ) ( )

2w n
LEσ ω θ  ′′=  

 
 (3.11) 

The warping normal stress wσ  follows the distribution of nω as shown in Figure 17.  

 

Figure 17  𝝈𝝈𝒘𝒘 distribution 

The warping shear stress is given by 

 
w

w
ES

t
θ

τ
′′′−

=  (3.12) 

where
 

 ( )zθ ′′′  = the third derivative of the twist angle with respect to the beam length, 

 wS  is the warping static moment, 4in ,which is given by 

0

s

w nS tdsω= ∫  
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The maximum warping shear stress max( )wτ  occurs at the mid-span at the mid-width of the 

flange. wτ conforms to the distribution of wS , and is shown in the figure below. 

 

Figure 18 𝝉𝝉𝒘𝒘 distribution 

The maximum warping shear stress at the end of the beam is given by 

 
max

max

( ) (0)
( ) w

w
f

E S
t
θ

τ
′′′

=  (3.13) 

The maximum warping shear stress at the mid-span of the beam can be computed by 

 
max

max

( ) ( / 2)
( ) w

w
f

E S L
t
θ

τ
′′′

=  (3.14) 

 

The total normal stress is computed as a summation of all normal stresses computed 

previously as:  

 yxz
n

x y

M xM yP E
A I I

σ ω φ′′= + − +  (3.15) 

where 

A = the area of cross section, in.2. 

The normal stress at the mid-span ( / 2z L=  ) is given by 
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 x
bx w n

x

M y E
I

σ σ ω θ′′+ = +  (3.16) 

Similarly, the total shear stress is computed by the following expression 

 
0

s

y w

x

V ytds ES Gt
tI t

θτ θ
− ′′

′= − +∫  1 (3.17) 

3.1.1.4 Summary of elastic stresses due to flexure and torsion 

The stress in the cross-section subject to combined bending and torsion is computed by 

adding the stresses caused by flexure, pure torsion, and warping, based on the principle of 

superposition. Specifically, on the flanges at the mid-span, the flexural normal stress is given by 

 2 / 8 / 4
f

x

wl Pl
S

σ +
=  (3.18) 

 and the warping normal stress is 

 
max( )

2w n
LEσ ω θ  ′′=  

   
(3.19) 

Hence, the maximum normal stress is given by the superposition of bσ  and wσ : 

 2

max
/ 8 / 4( )

2w f n
x

L wl PlE
S

σ σ σ ω θ + ′′= + = + 
 

 (3.20) 

The maximum flexure-induced shear stress on the flanges at the mid-span is given by (3.4), 

and the maximum flexure-induced shear stress on the web at mid-span is 

 2

max

( )
2 4 8( )

y f f w

bw
w x

P hb t t h

t I
τ

× +
=  (3.21) 

The warping-related shear stress on the flanges at the mid-span is given by 

 
max

max

( )
2( )

w

w
f

LE S

t

θ
τ

 ′′′ 
 =  (3.22) 
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The shear stress on the web caused by the warping effect is negligible. Hence the maximum 

shear stress on the flanges is 

 
max

max max max

( )
22 4( ) ( ) ( )

y f f
w

f bf w
f x f

LP hb t E S

t I t

θ
τ τ τ

 ′′′ ×  = + = +  (3.23) 

and the maximum shear stress on the web is max( )wτ . 

3.1.2. Elastic Model Information 

The I-59 beam finite element model shares the same geometry information as a bridge on 

Interstate 59, which is an interstate highway connecting Birmingham, Alabama to Chattanooga, 

Tennessee and New Orleans, Louisiana. The total length of the beam is 658 in, and its cross section 

is that of an I-shape 36×150. The beam is simply supported at two ends, as shown in Figure 19.  

 

Figure 19 Simply supported I-59 bridge beam 

3.1.3. Loading Condition 

The applied load on the I-59 beam consists of two components; one is the distributed load 

caused by the self weight of the deck slab and the self weight of the temporary, and the other one is 

a concentrated force which corresponds to the maximum live load induced by an HS-20 truck.  By 

the principal of superposition for elastic analysis, the response of the beam to these two types of 

loads is considered separately, and the results are added together to obtain the overall response to 

the combination of these two types of loads. 

In the elastic analysis of the I-59 beam, two loading cases are considered with the torsion 

introduced into the model via different means as shown in Figure 20. In the first case, in order to 

avoid the load concentration on the upper flange of the beam, two pairs of concentrated forces are 

applied at the ends of a loading bracket at the mid-span to produce the combined flexure and 

torsion caused by the truck. In particular, P1=P2=-10 lbf, T1=T2= 0.679 lbf.  In the second case, the 

torsion is generated by a uniform pressure load of 0.02 psi on half of the upper surface of the top 

 
658 in 
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flange over the whole length of the beam.  These loads were calculated from dead and live bridge 

loads according to the AASHTO LRFD Bridge Design Specifications (AASHTO 2010). 

 
Figure 20 I-59 Loading cases 

3.1.4. Material Model 

For the elastic analysis of I-59 beam, only two properties of the steel material need to be 

specified: the young’s modulus is set as 29000 ksi, and the Poisson’s ratio is chosen as 0.3.  

3.1.5. I-59 Beam Model Mesh 

The I-59 bridge beam was modeled using a very fine mesh with 18000 S4R shell elements 

for the beam and the loading bracket together. The aspect ratio of the mesh is approximately 1. For 

each cross-section, there are 8 elements across the flanges and 24 elements in the web. The final 

mesh of the beam is shown in Figure 21. 

 

load case 1 load case 2 

𝑝𝑝 

mid-span 

𝑇𝑇1 

𝑃𝑃1 

𝑃𝑃2 

𝑇𝑇2 
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Figure 21 I-59 Beam finite element model 

3.1.6. Element Properties 

The S4R elements were used in the FEM study of Estabrooks and Grodin (2008) and 

Bremault, et al.  (2008). This shell element is a four-node, doubly curved shell element that 

accounts for finite membrane strains and allows for changes in element thickness. It has six degree 

of freedom at each node including three translation components and three rotation components.  

According to (Bremault et al. 2008), the S4R element is able to perform under a wide range 

of conditions without failure, and is in general accurate enough as long as an appropriate mesh is 

used. Furthermore, the accuracy of the S4R element is also verified by FEM simulation models in 

this research. It was found that the difference between the S4R and S4 element in terms of both 

elastic and inelastic response was negligible for the large mesh sizes in this study. Hence, 

throughout this thesis, the S4R element is used in all models to increase the efficiency of the 

computation.  

3.1.7. Boundary Conditions 

In this study,  simple support boundary conditions were considered for all beam models, as 

shown in Figure 22.  The four end points of the two intersection lines between the web and the 

flanges were pinned in the lateral direction (X direction). The center of the whole beam was 

restrained from any movement along the axis of the beam (Z direction). The centroid of the beam 

sections at the two ends were fixed to prevent any movement in the vertical direction (Y direction). 

No lateral bracing was applied. Similar boundary conditions have been used in other research on I-

shaped section beams such as (Estabrooks and Grondin, 2008).  
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Figure 22 Simple support boundary conditions 

3.1.8. FEM Analysis 

The I-59 beam FE models were analyzed with ABAQUS’s general static analysis using the 

Newton’s method, which is a numerical technique for solving equilibrium equations.  

3.1.9. Verification of Model Results 

The deformation plots of the I-59 beam for the two loading cases are shown Figure 23 and 

Figure 24, respectively. The theoretical results for these two loading cases are calculated using the 

method introduced in Section 3.1.1. For long beams such as the I-59 beam subject to a mid-span 

concentrated load or pressure load, the normal stress asociated with the flexural moment at the 

mid-span is critical, hence, a comparison was made for the critical section for normal stress only.  

Ideally, such a comparison should be made for the normal stress at the mid-span. However, 

because the loading bracket was introduced to avoide local stress concentration and web distortion, 

the critical section in the FE model deviates from the mid-span. Therefore, the comparison is made 

for a section with one inch offset from the midspan, and the theoretical results were computed for 

the same section for the comparison.  

 
Figure 23 I-59 model deformation concentrated load 
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 The normal stress at the critical section of the FEM results were compared with the 

theoretical values, as illustrated by Figure 25 and Figure 26. In these figures, the green, blue, and 

red lines represent the theoretical normal stress results on the top flange, web, and bottom flange 

respectively. The green, blue, and red circles correspond to the FEM normal stress results at the 

integration points of the element at the same location on the beam section. As shown in these 

figures, the FE results matched the theoretical predictions quite well.  

 
Figure 24 I-59 model deformation, pressure load 

 The details of the FEM and theoretical results comparison are listed in Table 1 to Table 6. In 

these tables, the stress values are extracted at the centroid of the elements. The relative error for 

elements on the upper flange is computed by dividing the difference between the FEM and 

theoretical results by the maximum stress on the flange as predicted by elastic analysis. One reason 

for computing the error in such a way is that the theoretically-predicted normal stress at the 

centroid of the section is zero, in which case the standard definition of the relative error does not 

work. The relative errors for elements on the other parts of the section are defined in a similar 

manner.   

For case 1, the maximum relative errors of the FEM results occurat the flange elements with 

largest stress (both positive and negative). For case 2, the maximum errors occur at the top 

elements on the web. Overall, the FEM results provided a good approximation to the theoretical 

solution.  
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Figure 25 I-59 beam normal stress comparison, concentrated force load. 

 

Figure 26 I-59 beam normal stress comparison, pressure load 
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Table 1. Top flange node FEM results, concentrated force loading 

Top flange element 

# 

Normal stress 
Relative error (%) 

Theoretical results(ksi) FEM results(ksi) 

Et1 -5.30 -4.93 7.06 

Et2 -4.68 -4.37 5.97 

Et3 -4.07 -3.79 5.15 

Et4 -3.45 -3.25 3.80 

Et5 -2.83 -2.79 0.76 

Et6 -2.21 -2.24 0.55 

Et7 -1.60 -1.71 2.23 

Et8 -0.98 -1.16 3.44 

 

Table 2. Bottom flange node FEM results, concentrated force loading 

Bottom flange 

element # 

Normal stress 
Relative error (%) 

Theoretical results(ksi) FEM results(ksi) 

Eb1 5.30 4.98 6.11 

Eb2 4.68 4.43 4.79 

Eb3 4.07 3.89 3.31 

Eb4 3.45 3.33 2.15 

Eb5 2.83 2.69 2.62 

Eb6 2.21 2.14 1.40 

Eb7 1.60 1.58 0.36 

Eb8 0.98 1.02 0.79 
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Table 3. Web node FEM results, concentrated force loading 

Web element # 
Normal stress 

Relative error (%) 
Theoretical results(ksi) FEM results(ksi) 

Ew1 -3.30 -3.25 1.30 

Ew2 -3.01 -3.15 4.21 

Ew3 -2.72 -2.91 5.76 

Ew4 -2.44 -2.57 4.05 

Ew5 -2.15 -2.26 3.37 

Ew6 -1.86 -1.90 1.18 

Ew7 -1.58 -1.61 0.88 

Ew8 -1.29 -1.29 0.06 

Ew9 -1.00 -0.99 0.27 

Ew10 -0.72 -0.70 0.64 

Ew11 -0.43 -0.41 0.59 

Ew12 -0.14 -0.12 0.71 

Ew13 0.14 0.16 0.56 

Ew14 0.43 0.45 0.67 

Ew15 0.72 0.74 0.68 

Ew16 1.00 1.04 0.97 

Ew17 1.29 1.33 1.19 

Ew18 1.58 1.63 1.68 

Ew19 1.86 1.91 1.41 

Ew20 2.15 2.19 1.14 

Ew21 2.44 2.46 0.68 

Ew22 2.72 2.74 0.62 

Ew23 3.01 3.03 0.54 

Ew24 3.30 3.23 1.93 
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Table 4. Top flange node FEM results, pressure loading 

Top flange element 
Normal stress 

Relative error (%) 
Theoretical results(ksi) FEM results(ksi) 

Et1 -19.45 -20.10 3.34 

Et2 -17.57 -17.96 2.01 

Et3 -15.70 -15.83 0.70 

Et4 -13.82 -13.71 0.59 

Et5 -11.95 -11.14 4.14 

Et6 -10.07 -9.28 4.06 

Et7 -8.20 -7.33 4.45 

Et8 -6.32 -5.28 5.33 

 

Table 5. Bottom flange node FEM results, pressure loading 

Bottom flange 

element # 

Normal stress 
Relative error 

Theoretical results(ksi) FEM results(ksi) 

Eb1 19.45 19.84 2.02 

Eb2 17.57 17.68 0.53 

Eb3 15.70 15.50 1.04 

Eb4 13.82 13.32 2.60 

Eb5 11.95 10.85 5.65 

Eb6 10.07 8.69 7.12 

Eb7 8.20 6.52 8.63 

Eb8 6.32 4.36 10.06 

 

  



 

47 
 

Table 6. Web node FEM results, pressure loading 

Web element # 
Normal stress 

Relative error 
Theoretical results (ksi) FEM results (ksi) 

Ew1 -12.94 -11.12 14.06 

Ew2 -11.81 -10.30 11.70 

Ew3 -10.69 -9.38 10.10 

Ew4 -9.56 -8.37 9.20 

Ew5 -8.44 -7.36 8.30 

Ew6 -7.31 -6.33 7.58 

Ew7 -6.19 -5.32 6.69 

Ew8 -5.06 -4.28 6.05 

Ew9 -3.94 -3.26 5.27 

Ew10 -2.81 -2.19 4.78 

Ew11 -1.69 -1.14 4.23 

Ew12 -0.56 -0.05 3.95 

Ew13 0.56 1.04 3.66 

Ew14 1.69 2.15 3.61 

Ew15 2.81 3.27 3.55 

Ew16 3.94 4.41 3.65 

Ew17 5.06 5.54 3.69 

Ew18 6.19 6.67 3.76 

Ew19 7.31 7.80 3.78 

Ew20 8.44 8.91 3.68 

Ew21 9.56 10.02 3.58 

Ew22 10.69 11.12 3.34 

 

3.2. Inelastic Response  
In this section, a beam in (Estabrooks and Grondin, 2008) is used to investigate the validity 

of the inelastic response of the FE model. The experimental data of the beam was recorded in the 

report. Similar to Section 3.2,the theoretical results for the inelastic analysis are first introduced, 
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then the details of the model are described, and finally the model simulation results are verifed 

using the experimental data in (Estabrooks and Grondin, 2008).  

3.2.1. Theoretical Analysis of Inelastic Response 

Next, theoretical results on the inelastic response of beam sections in the pure flexure and 

pure torsion cases are introduced, and are then used in the analysis of the inelastic response FEM 

results. 

3.2.1.1 Flexural plastic yielding 

It is assumed that for I-shape beams, which have a doubly symmetric section, the neutral 

axis is located at the geometric centroid even after developing inelastic behavior. Figure 27 shows 

the development of the plasticity process at the cross section from the yield limit state to the 

ultimate limit state. After the tips of the web reach the yield stress, which would be considered 

failure according to the yield limit state criterion, the stress on the web still develops along the 

length of the web beside the tips of the web. Eventually, the upper half of the web develops a 

uniform tensile stress equal to the yield stress, and the lower half of the web develops a uniform 

compressive stress equal to the yield stress. The plastic moment can be calculated directly using the 

resulting forces and lever-arm principle. Taking the web as an example, the flexural moment can be 

computed as 

 2

2[ ( / 2) ]( / 4)
4

w
p y w y y

t hM h t h Zσ σ σ= = =  (3.24) 

where 

Z = the plastic section modulus, a geometrical property for the given cross section, in4, 

h = the height of the web, in, and 

wt = the width of the web, in. 

The shape factor k , which is given by 

 p

y

M Zk
M S

= =  (3.25) 

which is another useful section property. It is expressed as the ratio of the plastic moment to the 

elastic moment, and is also the ratio of plastic section modulus to the elastic section modulus.  k  
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accounts for the strength of the section that remains after the first yield until the full plastification 

of the section.  In AISC, the value of flexural shape factor k varies from 1.0 to 2.0 for different cross 

sections. For rectangular cross sections, it is 1.5; for a solid circular cross section, it is 1.7; for I-

shaped cross sections, its range is typically from 1.12 to 1.16, with an average of 1.14. Once the 

plasticity spreads along the entire cross section, a plastic hinge is formed at that location.  

 
                                (a) Elastic         (b) Elastic-plastic          (c) Plastic                         

Figure 27 Plastification of I-shape cross section subject to flexure. 
The moment to curvature relation during the plastification process is shown in Figure 28. 

 
Figure 28 Moment-curvature relation for a  rectangular cross section (ESDEP, 2012) 

3.2.1.2 Pure plastic torsion 

For an I-shaped cross-section, the plastic uniform torsion upT is calculated as 
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 2 3
2

3 2 6
f w w

up y f f

t t h tT t bτ
  

= − + +  
  

 (3.26) 

ft = the thickness of the flange, in, 

wt = the thickness of the web, in, 

fb = the width of the flange, in, and 

h = the clear distance between flanges, in. 

The warping plastic torque is calculated as:  

 2 ( )fp f
wp

M h t
T

L
+

=  (3.27) 

where L = the span of the beam,  

fpM = the flange plastic moment of the beam equal to: 
2

4
y f f

fp

f b t
M =  

The combined plastic torque capacity of the section is:  

 
p up wpT T T= +  (3.28) 

More details about these equations can be found in Chapter 2. 

3.2.2. Inelastic FE Model Information 

Estabrooks and Grondin (2008) performed an experimental study with six test cases of 

simply supported I-shaped section beams for examining the influence of combined flexural and 

torsional loading. For this research effort, FE models were also built and simulation results were 

compared to the experimental results reported in (Estabrooks and Grondin, 2008). Only present 

here the basic information of the compact beam used in (Estabrooks and Grondin, 2008) is 

presented here, which was used in this research effor for FE modeling and result verification. This 

beam is referred to as the Alberta beam throughout this thesis because it is the same beam as in the 

short report (Estabrooks and Grondin, 2008) from University of Alberta. 

The section of the Alberta beam is W250×67 (SI), or equivalently, W10×45(U.S.). The beam 

was simply supported with a span of 4m(157.48 in) and free warping conditions at the ends. The 
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beam was braced laterally at the shear center of the mid-span of the beam to limit the lateral 

distortion of the beam while allowing the torsional rotation as well as the vertical deflection of the 

beam at the mid-span.  A combined flexural and torsional loading was applied to the beam at the 

mid-span. Three types of initial loading were considered  with initial flexural moment-to-torque 

ratios of 5:1, 10:1, and 20:1.  

 
Figure 29 Weight load and concentrated force load 

3.2.3. Loading Condition 

In the simulations of Alberta beams, we used a different loading method from the one used 

in the previous experiments. In (Estabrooks and Grondin, 2008), the desired flexural moment was 

generated by a vertical concentrated force passing through the shear center of the I-shaped cross 

section at the mid-span, and the torsion was generated by applying a concentrated torque at the 

same point. Such a concentrated force and torque loading with thickened central flanges and web 

regions is illustrated in Figure 30. Both the upper and lower flanges and the web were thickened 

near the mid-span, which simulated the presence of a loading bracket, and helped avoid local 

distortion according to (Estabrooks and Grondin, 2008). When the thickness of the mid-span web 

was not increased, the flexural moment capacity was reduced by about 17 to 23%, as reported by 

Estabrooks and Grondin (2008). For a fair comparison, in the Alberta beam models in this research, 

the web and flange within five elements from both sides of the mid-span were also thickened by 50 

mm(1.97 in) in the same way.  

 

𝑷𝑷 

4m (157.48in) 

𝑻𝑻 
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Figure 30 Loading method in Estabrooks and Grondin (2008) 

The loading method in this study was inspired by the loading method discussed in 

(Bremault et al. 2008). In this report, the desired combination of flexural and torsional loading was 

produced by a concentrated force at the mid-span with an eccentricity to the shear center. The 

force acted on a loading bracket, as illustrated by Figure 31. Three load locations E1 E2 E3 on the 

bracket with different eccentricities were selected such that the  moment-to-torque ratio can be 

changed by applying the same force to different load locations.   

 
Figure 31 Loading method in (Bremault et al. 2008) 

Because the flexural moment is usually generated by the gravity force, which does not 

change direction in the loading process, it is desirable to maintain the vertical direction of the force 

generating the flexural moment in the loading process of our FEM study. The loading method in 

(Bremault et al. 2008) could not provide a constant moment-to-torque ratio and maintain a vertical 

direction of the load force in the mean time. If a constant moment-to-torque ratio was to be 

maintained in the loading process, the force had to rotate with the bracket, and the force would 
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have a small vertical component and a large horizontal component when the deformation of the 

beam was large, which is not a realistic loading scenario. On the other hand, if the force remained 

vertical, the moment-to-torque ratio would change as the beam rotates.  

As a comparison, the loading method in (Estabrooks and Grondin,  2008) maintains a 

constant moment-to-torque ratio and the vertical direction of the load throughout the whole 

loading process. It was found in the parametric study of the present effort that the concentrated 

torque load may still induce local distortion of the web for some test cases if the thickness of the 

web elements around the mid-span was not chosen properly. However, such distortions could be 

avoided by introducing a loading bracket similar to those in (Bremault et al. 2008).   

In this research, the loading methods in (Estabrooks and Grondin,  2008)  and (Bremault et 

al. 2008) were modified to generate the desired moment-to-torque ratio while maintaining the 

vertical direction of the forces generating the flexural moment.  The details of this loading method 

are illustrated in Figure 32 to Figure 34. Specifically, a loading bracket was added to the mid-span 

as in (Bremault et al. 2008). The bracket extended to both sides of the web, but did not intersect the 

flanges in order to allow free development of buckling in the flanges. The flexural moment was 

generated by two vertical forces P1 and P2 on two end points, E1 and E2, of the bracket, as shown in 

Figure 32. P1 and P2 had the same magnitude. The torsional load was generated by T1 and T2 applied 

at E1 and E2 respectively. T1 and T2 were parallel to the intersection line of the bracket with the web. 

They had opposite directions and rotated with the bracket in the loading process.  

 

Figure 32 Flexure moment load forces 

E1 

E2 
x 

y 

z 

P1 

P2 
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Figure 33 Torsional moment load forces 

The moment-to-torque ratio was changed by choosing the magnitudes of P1 and T1, and 

applying  P1, P2, T1, T2 to the bracket at the same time, as shown in Figure 34. With such a loading 

method, P1 and P2 remained vertical in the loading process such that the direction and magnitude of 

the flexure moment was kept constant. Meanwhile,  T1 and T2 followed the rotation of nodes E1, E2 

such that the magnitude of the torque was constant. Hence, the moment-to-torque ratio was 

constant in the loading process.  

 

Figure 34 Combined flexure and torsional loading 

3.2.4. Material Model 

For the inelastic analysis of the Alberta beam, the steel plasticity data in (Estabrooks and 

Grondin, 2008) was used to allow a fair comparison with the experimental results in the same 

reference. The details of the plasticity data are given in Table 7. The Young’s modulus was chosen as 

29000 ksi, and the Poisson’s ratio was 0.3. The plasticity data in Table 7 was take from from 

(Estabrooks and Grondin, 2008). These data consider the strain-hardening effect, and which was 

employed in the Alberta beam model.  In the Alberta beam model, the Young’s modulus of the 

loading bracket was set as 1000 times that of steel such that the bracket could be considered a rigid 

body, and its deformation would not affect the FEM results during the loading process.  

E1 

E2 
x 

y 

z 

P1 

P2 

E1 

E2 
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z 

T1 T2 
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Table 7. Steel plasticity data 

True Stress (ksi) True Plastic Strain 

43.13 0 

43.87 0.0172 

52.18 0.0317 

62.26 0.0786 

65.02 0.0871 

71.05 0.1474 

 

3.2.5. Element Properties 

For the same reason they were chosen when modeling the I-59 beam, the S4R element was 

used in the Alberta beam model.  

3.2.6. Alberta Beam Model Mesh 

  In general, the finer the finite element mesh, the more accurate the results are. However, 

mesh refinement is also accompanied by longer computation time. Therefore it is convenient to find 

a balance between the computation time and the accuracy. In order to find the proper mesh size for 

the I-shaped steel beam inelastic response study, the Alberta beam was modeled using three 

different mesh sizes in this research, which are shown in Figure 35 to Figure 37. The coarse mesh 

contained 876 S4R elements in total for both the beam and the bracket with an aspect ratio below 

1.3. For each cross-section, the coarse mesh corresponded to 4 elements on the flanges, with four 

elements on the web. The medium mesh contained 4912 S4R elements with an aspect ratio of 

approximately 1. For each cross-section, 6 elements were located on each flange, and 10 elements 

were located on the web. The fine mesh contained 7624 elements with an aspect ratio 

approximately 1. At each cross-section, each flange contained 8 elements, and the web contained 10 

elements.  
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Figure 35 Alberta beam mesh-coarse 

 

Figure 36 Alberta beam mesh-medium 

 

Figure 37 Alberta beam mesh-fine 

All three meshes were used to compute the inelastic response of the beam subjected to 

case-1, case-2, and case-3 loading cases with 5:1, 10:1, and 20:1 moment-to-torque ratios, 

respectively. The results are shown in Figure 38 to Figure 40. It is clear that, for all three cases, the 

elastic and inelastic responses obtained using different meshes were very close. Hence, all three 

meshes were considered to be fine enough for the Alberta beam model. The simulation results 

obtained using the medium size mesh was used for FE model verification.  
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Figure 38 Alberta beam mesh refinement study case-1 

 

Figure 39 Alberta beam mesh refinement study case-2 

 

Figure 40 Alberta beam mesh refinement study case-3 
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3.2.7. Boundary Conditions 

The boundary conditions for the Alberta beams are illustrated in Figure 41. Similarly to 

(Estabrooks and Grondin, 2008) and (Bremault et al. 2008), an additional 8 elements were added 

beyond the end supports to prevent local distortion of the web at the end supports.  

 

Figure 41 Boundary conditions 

In (Estabrooks and Grondin, 2008), a spring element was introduced to model the lateral 

bracing used in the physical experiment. The spring restricted the displacement of the node along 

the 𝑥𝑥 direction, and followed the center node as it deflected vertically to provide partial lateral 

restraint. Such a treatment of lateral bracing was also adopted in the Alberta beam models in this 

chapter. The stiffness of the spring was taken from (Estabrooks and Grondin, 2008).  

3.2.8. FEM analysis 

The Alberta beam FE models were analyzed in ABAQUS using the Riks method. Both 

geometric and material nonlinearities were considered in the FEM analysis. The Riks method treats 

the load magnitude as an unknown and solves for loads and displacements at the same time. Hence, 

another variable should be used to monitor the progress of the solution. Abaqus/Standard uses the 

“arc length” along the static equilibrium path in load-displacement space as this additional quantity. 

Such an approach provides solutions regardless of whether the response is stable or unstable.  

Throughout this thesis, the Riks method was used to solve the inelastic responses of all FE models. 

3.2.9. Results Verification 

For the Alberta beam model, the values of P1, P2, T1, T2 were selected to produce the 

moment-to-torque ratios used in the physical experiments of (Estabrooks and Grondin, 2008). All 

three cases, with moment-to-torque ratios of 20:1, 10:1, and 5:1 were reproduced in this 

simulation.  

Similar to (Estabrooks and Grondin, 2008), the moment-displacement diagram and the 

torque-twist angle diagram were used to verify the FE results in this study. Both the moment and 
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torque were normalized with the value of pM and pT , which come from Table 4.3 in (Estabrooks 

and Grondin, 2008). Three cases were solved, and the inelastic response results from the present 

FE model were compared with the physical experimental results and FEM results documented in 

Figure 5-9 and Figure 5-11 in (Estabrooks and Grondin, 2008). The only difference between these 

three cases was the initial moment-to-torque ratio 𝑀𝑀0 𝑇𝑇0⁄ : for case-1, 𝑀𝑀0 𝑇𝑇0⁄ = 5; for case-2, 

𝑀𝑀0 𝑇𝑇0⁄ = 10; and for case-3, 𝑀𝑀0 𝑇𝑇0⁄ = 20.  

The results of the comparison are shown in Figure 42 to Figure 44. As shown by these 

figures, in general, the FEM model provided a good approximation of the behavior of the beam 

subjected to different moment-to-torque ratios, and the error of the flexural resistance predicted by 

our FEM model was within 10% of the experiment result in (Estabrooks and Grondin, 2008). Hence, 

the performance of the FEM for predicting the inelastic behavior of class 1 I-shaped beams was 

considered to be satisfactory. 

 
Figure 42 Alberta beam case-1 results verification, initial M/T=5:1 
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Figure 43 Alberta beam case-2 results verification, initial M/T=10:1 

 

Figure 44 Alberta beam case-3 results verification, initial M/T=20:1 

The comparison of the maximum flexural moment and torque indicated in the FE model and 

those given in the report are listed in Table 8. In general, the FE model developed in this research 

provided a good approximation to the ultimate strength of the beam for all three different cases 

with different moment-to-torque ratios. The largest error of the present FEM model occurred for 

the torsional resistance in case 3. However, because case 3 corresponded to an 𝑀𝑀 𝑇𝑇⁄  ratio of 20:1, 

the failure of the beam was controlled by the flexure resistance of the beam. Hence, for this case the 

error in the torsional resistance of the beam would be of much less concern when determining the 

ultimate strength.  
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Table 8. Error comparison with report results  

case # 

maximum 

normalized internal 

force 

Estabrooks and Grondin, 08 Current investigation 

Experiment FEM Error (%) FEM Error (%) 

1 
(𝑀𝑀 𝑀𝑀𝑝𝑝)⁄

max  
 0.4383 0.3862 11.89 0.4745 8.26 

(𝑇𝑇 𝑇𝑇𝑝𝑝)⁄
max

 0.9180 0.7746 15.62 0.2015 7.81 

2 
(𝑀𝑀 𝑀𝑀𝑝𝑝)⁄

max
 0.7023 0.5632 19.81 0.6990 0.47 

(𝑇𝑇 𝑇𝑇𝑝𝑝)max⁄  0.7459 0.6036 19.08 0.5936 20.42 

3 
(𝑀𝑀 𝑀𝑀𝑝𝑝)⁄

max
 0.9153 0.8456 7.61 0.9057 1.05 

(𝑇𝑇 𝑇𝑇𝑝𝑝)⁄
max

 0.5594 0.4896 12.48 0.3846 31.25 

3.3. Summary 
In this chapter, the FE models that were developed for both elastic and inelastic analysis of 

beams subject to different combinations of flexure and torsional loads were described. The 

simulation results obtained using the FE models were verified using both theoretical results, 

experimental results, and FEM results from previous research. It was shown that the elastic 

analysis results of the FE model were very close to those given by theoretical analysis, while the 

inelastic analysis results of the models matched the experimental results and FE simulation results 

of (Estabrooks and Grondin, 2008). The verified FE models were then used for the parametric study 

discussed in the next chapter.  

  



 

62 
 

Chapter 4 Parametric Study 

4.1. Overview 
In this chapter, the parametric study involving the inelastic behavior of I-shaped beam 

members subject to combined flexure and torsion is presented.  Instead of performing a 

comprehensive study, a focus was placed on several key parameters which have major influence on 

the ultimate capacity and serviceability of the beams. The current ultimate strength design methods 

for beams subject to combined torsion and flexure were also evaluated using the FE analysis 

results.   

4.2. Parameter Selection 
The beams considered in this study were compact, I-shaped, simply supported, and 

unbraced. No loading history was considered. The residual stress pattern and initial imperfections 

were also ignored in this analysis, and perfect elastic-plastic steel yielding at 50 ksi was assumed. 

The strain-hardening property of the steel was not considered, since the strain-hardening region is 

rarely entered for beams subject to these combined loads (Pi and Trahair, 1994a,1994b) and 

(Trahair and Pi ,1997).  

The following factors were considered in this parametric study.  

Beam slenderness 

The slenderness ratio is an important criterion for determining whether lateral torsional 

buckling will occur in a beam. The slenderness ratio of the beam is commonly defined as / yL r , 

where L  is the distance between points of lateral supports and yr  is the radius of gyration about 

the weak axis. Flexural members bent about their strong axis are classified according to the length 

of the beam as follows (AISC, 2010): 

1) If pL L< ,  the flexural member is considered to have adequate lateral support and is not 

subject to lateral-torsional buckling.  

2) If p rL L L< ≤ , the flexural member is considered to be laterally unsupported and subject to 

inelastic lateral-torsional buckling. 

3) If rL L> , the flexural member is considered to be laterally unsupported and subject to  lateral-

torsional buckling. 
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The limiting values of rL , pL  are specified in AISC (2010) as: 

20.7
1.95 1 1 6.76

0.7
y x

r ts
y x

F S dE JL r
F S d E J

 
= + +  
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 (4.1) 
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y

EL r
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=  (4.2) 

where d = distance between the flange centroids, in. 

Note that the development of inelastic lateral-torsional buckling in a type 2) beam is 

strongly affected by the residual stress in the beam, which is out of scope of this thesis. In this 

study, the emphasis was type 1) and type 3) beam members for which the effect of residual stress is 

negligible. Correspondingly, the lengths of the beams were selected according to the beam 

slenderness criterion such that either pL L< , or rL L> .  

The moment resistance capability is an important quantity which was used for analyzing 

simulation results as discussed later in this chapter. The computation of this quantity depends on 

the failure mechanism of the beam, hence is also related to the beam slenderness. For compact 

sections with pL L≤ , the moment resistance capability is calculated as n p x yM M Z σ= = ,  where 

yσ  is the specified minimum yield stress of the type of the steel being used. For the present study, 

yσ  was chosen to equal to 50 ksi. xZ  is the plastic section modulus about the x-axis, with units of 

in3. The xZ value is also used for computing the flexural strength in the first yield theory. 

When rL L> , the moment resistance capacity is calculated as: 

22
2 1 0.078ts

n b x p
x ts

r J LM C E S M
L S d r

π
  = + ≤  

   
 (4.3) 

where bC  is the lateral-torsional buckling modification factor. Usually it is conservatively set as 1.0. 

For the simply supported boundary conditions considered in this study, it was taken as 1.32. J  is 
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the torsional constant, in4. xS  is the torsional constant, in4. d is the distance between the flange 

centroid, in. 
4

y w
ts

x

I C
r

S
= , in-1 

Moment-to-torque ratio 

Three values of moment-torque ratios were investigated to reveal the interaction between 

the moment and torque loadings. When the load applied has a small M T  ratio, the beam is subject 

to low flexural moment but high torque. When the load has a medium M T  ratio, the beam is 

subject to medium moment and medium torque. Similarly, when the load has a large M T  ratio, 

the beam undergoes high moment and low torque.  

4.3. Selected Cases 
For the 30 cases considered in the parametric study, a naming convention was followed 

which describes both the length of the member and its section shape. The name of a beam starts 

with either the letter “L” or the letter “S”, followed by a number representing the shape of the 

section. “L” stands for long beams with large slenderness ratios, and “S” stands for short beams with 

small slenderness ratios.  

In order to enrich the diversity of the beam sections considered in our simulation, we also 

considered two additional variables for section selection, which are the ratio of warping-to-pure-

torsional resistance, and the torsional-to-flexural stiffness ratio. The ratio of warping-to-pure-

torsional resistance is a measure of the ratio of torque carried by warping and pure torsion in the 

elastic range, which can be expressed as: 

wp
w

GJ
ECλ =  (4.4) 

In this equation, G and E  depend on the material property, and are assumed to be 

constant. The other two variables vary with different cross sections. For an I-shaped cross section, 

( )3 31 2 ( )
3 f fJ bt d t w= + −  and 21 ( )

4w f yC d t I= − where ft  is the thickness of the flanges. 

The torsional-to-flexural stiffness ratio is given by 
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tf wC Iλ =  (4.5) 

where the flexural stiffness xEI is the slope of the moment-to-displacement curve when the beam 

is fully plastic. The torsional stiffness GJ  is the slope of the torque-to-rotation angle curve in the 

elastic region. The flexural stiffness depends on xI , and the torsional stiffness is related to J . Those 

two values are also associated with the material properties E  and G , which are assumed to be 

constants.  

The numbers 1-5 denote the five beam sections considered, the details of which are 

described in Table 9. For example, a long beam with section shape 12×53 would be referred as “L5” 

beam.  

Table 9. Section number assignment 

Section number 1 2 3 4 5 

Section size 10×45 10×33 21×93 16×57 12×53 

The warping-to-pure torsion stiffness ratio and the torsional-to-flexural stiffness ratio of 

the sections selected in this research are shown in Table 10. These cross sections were selected 

from 100 compact cross sections in AISC such that these two parameters could be studied 

independently, and could be classified into two groups. For the first group, sections were chosen to 

keep the  pbλ values as close as possible while having different   wpλ values. It was more difficult to 

choose members for the second group because the  wpλ values are more scattered in the steel 

manual. Hence only two sections were chosen for this group, as shown in Table 10. The first group 

(S1, S2, S3) have similar  pbλ values and different  wpλ values. The last two sections (S4, S5) have 

similar   wpλ values, and the   pbλ values are different. Pertinent additional properties of the selected 

I-shaped sections are shown in Table 10. 
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Table 10. Selected sections for the parametric study 

Section 

number wEC GJ  wC I  rts (in) D (in) J (in4) Cw (in6) 

1 67.60 2.20 2.27 10.1 1.51 1200 

2 34.10 2.15 2.2 9.37 0.58 791 

3 388.78 2.19 2.24 21.6 6.03 9940 

4 122.04 1.87 1.92 16.4 2.22 2660 

5 112.21 2.73 2.79 12.1 1.58 3160 

 

Table 11 lists the beam lengths selected for different sections to incorporate two different 

values of slenderness ratio. In this table, sL is the selected length of the short beam, and lL is the 

length of the long beam. The values of sL and lL were selected such that all short beams share the 

same slenderness ratio s yL r  value, and all long beams share the same l yL r value.  

Table 11. Selected beam lengths for the parametric study 

Section number pL (in) SL (in) s yL r  lL (in) l yL r  /p yL r  /r yL r  
1 85.2 72 36 336 167 42.2 160.6 

2 82.2 70 36 324 167 42.4 134.8 

3 78 66 36 307 167 42.4 138.9 

4 67.8 58 36 267 167 42.4 137.3 

5 105.1 90 36 414 167 42.4 136.5 

Table 12 lists some key characteristics of the beams used in the parametric study. In this 

table, 𝑀𝑀𝑝𝑝  is the plastic flexural moment, 𝑇𝑇𝑢𝑢𝑢𝑢  is the uniform torque, 𝑇𝑇𝑤𝑤𝑤𝑤  is the warping torque, 𝑇𝑇𝑝𝑝  is 

the plastic torque capacity of the section, 𝑀𝑀𝑦𝑦  is the flexural moment considering the first yield 

theory, 𝑇𝑇𝑦𝑦  is the torque capacity considering the first yield theory, and  𝑀𝑀𝑐𝑐𝑐𝑐  is the flexural moment 

considering LTB. 
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Table 12. Beam properties 

Beam 
𝑀𝑀𝑝𝑝  

(kip.in) 

𝑇𝑇𝑢𝑢𝑢𝑢  

(kip.in) 

𝑇𝑇𝑤𝑤𝑤𝑤  

(kip.in) 

𝑇𝑇𝑝𝑝  

(kip.in) 

𝑀𝑀𝑦𝑦  

(kip.in) 

𝑇𝑇𝑦𝑦  

(kip.in) 

𝑀𝑀𝑐𝑐𝑐𝑐  

(kip.in) 

S1 2745 102.35 130.61 465.93 2455 211.1 b 

L1 2166.57 102.35 27.99 260.68 a a 2166.6 

S2 1940 53.56 88.96 285.03 1750 136.6 b 

L2 1227.54 53.56 19.77 146.66 a a 1227.5 

S3 11050 299.27 516.23 1631.00 9600 748.0 b 

L3 6924.93 299.27 110.98 820.51 a a 6924.9 

S4 5250 141.89 229.24 742.27 4610 356.7 b 

L4 3271.78 141.89 53.23 390.25 a a 3271.8 

S5 3895 112.6233 184.08 593.41 3530 276.0 b 

L5 2524.04 112.6233 40.02 305.28 a a 2524.0 

a--- the limit state of yield does not apply to long beams, elastic LTB controls 

b---the limit state of LTB does not apply to short beams, the limit state controls 

Three loading conditions with different moment-to-torque ratios, includeing ‘high’, ‘mid’, 

and ‘low’, were considered. For the high cases, the applied moment-to-torque ratio 𝑀𝑀 𝑇𝑇⁄ = 16; for 

the mid cases, 𝑀𝑀 𝑇𝑇⁄ = 8, and for the low cases, 𝑀𝑀 𝑇𝑇⁄ = 4.  

As a brief summary, for each of the five cross sections, six cases were investigated using 

ABAQUS to cover the two different beam slenderness ratios (“long” and “short”) and the ‘high’, ‘mid’ 

and ‘low’ loading case. Hence a total of 30 cases are studied. For each case, the combined flexural 

and torsional load was applied via a bracket using the loading method described in Chapter 3.  The 

size of the bracket, the applied concentrated forces P1, T1, and the applied moment and torsion are 

listed in Table 13. M0 and T0 are the reference loads on the beam in ABAQUS.  The actual applied 

moment and torque in the loading process of FE analysis were obtained by multiplying reference 

loads M0 and T0 by the load proportion factor (LPF), which is a solution variable used by the RIKS 

method of ABAQUS.  

In Table 13, d (distance between load points E1 and E2 in Figure 34) is chosen arbitrarily for 

each beam. The concentrated force P1 was selected such that the generated flexure moment was 

close to the ultimate strength of the section subject to pure flexure load. T1 was calculated such that 
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the flexure moment to torque ratio generated by the forces P1, T1, P2, and T2 matched the specified 

loading case (high, mid, or low). 

 

Table 13. Loading parameters of short beams 

  P1(kips) T2(kips) d(in) M0(kip·in) T0(kip·in) 

 

S1 

high 444.44 66.67 15 16000 1000 

mid 222.22 66.67 15 8000 1000 

low 111.11 66.67 15 4000 1000 

 

S2 

high 457.14 100 10 16000 1000 

mid 228.57 100 10 8000 1000 

low 114.29 100 10 4000 1000 

 

S3 

high 484.85 100 10 16000 1000 

mid 242.42 100 10 8000 1000 

low 121.21 100 10 4000 1000 

 

S4 

high 551.72 100 10 16000 1000 

mid 275.86 100 10 8000 1000 

low 137.93 100 10 4000 1000 

 

S5 

high 355.56 55.56 18 16000 1000 

mid 177.78 55.56 18 8000 1000 

low 88.89 55.56 18 4000 1000 
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Table 14. Loading parameters of long beams 

  P1(kips) T2(kips) d(in) M(kip·in) T(kip·in) 

 

L1 

high 95.24 14.88 67.2 16000 1000 

mid 47.62 14.88 67.2 8000 1000 

low 23.81 14.88 67.2 4000 1000 

 

L2 

high 98.77 20 50 16000 1000 

mid 49.38 20 50 8000 1000 

low 24.69 20 50 4000 1000 

 

L3 

high 104.24 16.29 61.4 16000 1000 

mid 52.12 16.29 61.4 8000 1000 

low 26.06 16.29 61.4 4000 1000 

 

L4 

high 119.85 14.05 53.4 16000 1000 

mid 59.93 14.05 53.4 8000 1000 

low 29.96 14.05 53.4 4000 1000 

 

L5 

high 77.29 12.08 82.8 16000 1000 

mid 38.65 12.08 82.8 8000 1000 

low 19.32 12.08 82.8 4000 1000 

 

4.4. Finite Element Models 
The details of finite element models can be found in Chapter 3 since the models used for this 

parametric study were similar to those in Chapter 3. The difference is that no lateral bracing was 

applied to the beams for the parametric study, and the web was not thickened around the mid-span 

to allow the development of buckling in the web.  

A mesh refinement study was performed to select the appropriate mesh sizes for the 

models. This study covered three loading conditions and three different mesh sizes for the S1 beam. 

The ultimate strength of the beam was used as the criterion for evaluating the convergence of the 

mesh study. The result was then used to choose the mesh size for other beam FE models.  

Specifically, three FE models with different mesh sizes were built for S1 beam. In Mesh 1, 14 

elements were distributed on both the upper and the lower flanges at each cross section. In Mesh 2, 

10 elements were allocated across the flanges, and in Mesh 3, only 6 elements were located on each 

flange at every cross section. The element aspect ratios in all three meshes were very close to 1. 



 

70 
 

Both the high, mid, and low loading cases were computed using each of the three meshes, and the 

resulting ultimate strength ratio for each case is recorded in Table 15. As shown in the table, the 

results obtained using all three meshes agreed very well. Therefore, mesh 2 was used as a baseline 

for mesh generation in this chapter. Specifically, the meshes for all beams were generated such that 

10 elements were located across both the top and the bottom flanges in the lateral direction, while 

keeping the aspect ratio of the elements approximately 1.  

Table 15. Mesh study record, S1 beam 

S1 beam 

Load 

Mesh 1 Mesh 2 Mesh 3 

𝑀𝑀1 = 𝑀𝑀max 𝑀𝑀𝑝𝑝⁄  𝑀𝑀2 = 𝑀𝑀max 𝑀𝑀𝑝𝑝⁄  |𝑀𝑀2 − 𝑀𝑀1|/𝑀𝑀 𝑀𝑀3 = 𝑀𝑀max 𝑀𝑀𝑝𝑝⁄  |𝑀𝑀3 − 𝑀𝑀1|/𝑀𝑀1 

Low 0.3788 0.3812 0.63% 0.3833 1.19% 

Mid 0. 5938 0. 5960 0.39% 0. 6030 1.57% 

High 0.7736 0.7747 0.14% 0.7819 1.07% 

The total number of elements in each of the short beams was between 4500-8300, and the 

number of elements in the long beams was between 15800-28900.  Because of extensive amount of 

computations required for the large mesh sizes, all the cases are computed on the computer cluster 

at the High Performance Computation Center at Auburn University.  

4.5. Parametric Study Results 
In this section, the influence of different parameters on the behavior and ultimate strength 

of different beams, which are represented by the circles in Figure 47 to Figure 66, are 

characterized.  

Influence of beam slenderness 

According to the FE analysis results, the influence of the slenderness ratio on the behavior 

and failure mechanism of beams subject to combined flexure and torsion loading is critical. For 

short beams, the plasticized region first develops along the edges of the flanges at the mid-span due 

to the high normal stresses induced by the combination of moment and torsion. This region then 

spreads across the flanges at the mid-span as the load increases. A plastic hinge is formed at the 

mid-span when the beam reaches the ultimate strength. Thereafter, the strength of the beam 

decreases, and the plasticized region spreads in the beam. Figure 45 shows a typical Mises stress 

contour plot of a short beam when the ultimate strength is reached. It is obvious that a plastic hinge 

is formed at the mid-span of the beam.  
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Figure 45 Mises stress plot of S1 beam at maximum strength subject to mid load 

For long beams with large slenderness ratios, a plasticized region also develops at the mid-

span as the load increases. However, as compared to the short beams, for the long beams, this 

region spreads quickly in the flanges and the web along the longitudinal direction to the two ends, 

and grows over the whole length of the beam by the time the ultimate strength is reached.  Similar 

to the short beams, a plastic hinge also develops at the mid-span when the beam reaches the 

ultimate strength. After the ultimate strength is reached and a plastic hinge is formed, the vertical 

displacement of the mid-span section increases very quickly. Figure 46 shows a Mises stress 

contour plot of a long beam when the ultimate strength is reached.  

 

Figure 46 Mises stress plot of L1 beam at maximum strength subject to mid load 

Effects of moment-to-torque ratio 
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The effect of moment-to-torque ratio is investigated via the moment-displacement diagrams 

and torque-rotation angle diagrams of all 30 cases, which are shown in Figure 47 to Figure 66. In 

these plots, the moment value is normalized by the plastic flexure moment 𝑀𝑀𝑝𝑝  for short beams, and 

the lateral torsional buckling flexural moment capacity 𝑀𝑀𝑛𝑛  for long beams. The torque value is 

normalized using plastic torsion capacity 𝑇𝑇𝑝𝑝  for all beams. The displacement is the movement in the 

vertical direction of the shear center of the beam section at the mid-span. The rotation angle is the 

rotation of the mid-span section at the shear center around the global Z axis.  

The influence of moment-to-torque ratio M T  to the ultimate strength of the beam can be 

easily observed from Figure 47 to Figure 66. It is noted that in each moment-displacement diagram, 

the curves almost overlap in the elastic region (straight lines at the beginning of the curve) 

regardless of the M T ratios (high, mid, low). This suggests that in the elastic phase, the 

interference between flexure and torsion is not significant. Such an observation is also confirmed 

by the torque-rotation angle diagrams, for each of which the curves are also almost identical in the 

elastic region.  

For each beam section, as the flexural load increases, plastic regions develop in the beam. 

When the M T  ratio is smaller, i.e., when the loading contains a larger portion of torsional load, the 

slope of the displacement-moment curve starts decreasing at a smaller moment value. A similar but 

opposite phenomena is observed for the  torque-angle curves. Furthermore, as shown in these 

figures, for each beam section, the maximum moment decreases as M T  decreases, i.e., as there 

exists a larger portion of torsional load. Similarly, the maximum torque deceases as the flexural 

protion of the load increases. Hence, the torsion undermines the beam’s capability of resisting 

flexural moment, and the flexural moment also causes a loss of the beam’s torsional resistance.  

Note that such an observation on the interaction between flexural moment and torsional load holds 

for all beams.  
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Figure 47 Moment-displacement diagram, S1 beam 

 

 

Figure 48 Torque-rotation diagram, S1 beam 
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Figure 49 Moment-dispalcement diagram, S2 beam 

 

Figure 50 Torque-rotation angle diagram, S2 beam 



 

75 
 

 

Figure 51 Moment-displacement diagram, S3 beam 

 

Figure 52 Torque-rotation angle diagram, S3 beam 
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Figure 53 Moment-displacement diagram, S4 beam 

 

Figure 54 Torque- rotation angle diagram, S4 beam 
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Figure 55 Moment-displacement diagram, S5 beam 

 

Figure 56 Torque-rotation angle diagram, S5 beam 
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The displacement-moment diagrams and rotation angle-torque diagrams for five long 

beams under different loading conditions are shown in Figure 57 to Figure 66. When the long 

beams reach the ultimate strength, the displacement and the rotation angle are very large, which 

are impractical. Hence, the ultimate strength analysis is not enough for analyzing all the behavior of 

long beams.  

On the other hand, due to the large rotation angle of the long beams, the bending moment 

M cannot be considered approximately as aligned with the major axis of the cross-section. The 

actual moment along the major axis is actually smaller than M . This discrepancy is not considered 

in the moment-to-displacement plots for long beams. However, because the long beams are 

controlled by serviceability which happens when the rotation angle is small, such a discrepancy 

caused by large rotation angle will affect the conclusion of this thesis.  

 

Figure 57 Moment-displacement diagram- L1 beam 
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Figure 58 Torque-rotation angle diagram, L1 beam 

 

Figure 59 Moment-displacement diagram, L2 beam 
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Figure 60 Torque-rotation angle diagram, L2 beam 

 

Figure 61 Moment-displacement diagram, L3 beam 
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Figure 62 Torque-rotation angle diagram, L3 beam 

 

Figure 63 Moment-displacement diagram, L4 beam 
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Figure 64 Torque-rotation angle diagram, L4 beam 

 

Figure 65 Moment-displacement diagram, S5 beam 
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Figure 66 Torque-rotation angle diagram, L5 beam 

Effects of other variables 

The other two variables—ratio of warping-to-pure-torsional resistance, and torsional-to-

flexural stiffness—were used to enrich the diversity of selections considered in the parametric 

study, and the FEM simulation results were analyzed to characterize the influence of these two 

variables. The moment-displacement and torque-rotation angle curves of different short beams are 

presented in Figure 67 to Figure 72. Recall that the first three sections (1045, 1033, and 2193) 

share a similar torsional-to-flexural stiffness, and have different warping-to-pure-torsional 

resistance. However, the FEM results do not exhibit any significant difference in the behavior or 

ultimate strength of these different sections. The other two sections (1657, 1253) share similar 

ratios of warping-to-pure-torsional resistance, and the fifth section (1253) has a larger torsional-to-

flexural stiffness. As shown in Figure 67 to Figure 72, the 1253S beam behaves more rigidly for both 

flexure and torsion.   
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Figure 67 Moment-displacement diagram, short beams, high M/T load 

 

Figure 68 Moment-displacement diagram, short beams, mid M/T load 
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Figure 69 Moment-displacement diagram, short beams, low M/T load 

 

Figure 70 Torque-rotation angle diagram, short beams, high M/T load 
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Figure 71 Torque-rotation angle diagram, short beams, mid M/T load 

 

 

Figure 72 Torque-rotation angle diagram, short beams, low M/T load 

4.6. Serviceability Check 
Four serviceability criteria were examined for the FE simulation results, including two 

displacement criteria ( 360L , 120L , where L  is the length of the beam.) and two twist angle 

criteria (5 deg, 10 deg). The 360L  criterion was recommended by ASCE7-02 (2003). The less 
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restrictive 120L  criterion was introduced in this research for comparison. AISC (2010) requires 

checking the twist angle for serviceability, but does not provide any recommended value. Hence, 

the 5 deg, 10 deg are chosen based on the rule of thumb.  

 The serviceability check results for the short beams are shown in Table 16. In this table, the 

red color indicates the cases for which the corresponding serviceability criterion is violated when 

the beam reaches its ultimate strength (max load). For those regions marked by green color, the 

corresponding criterion is not violated when the beam achieves its ultimate strength. As shown in 

the table, the 360L  displacement serviceability criterion is violated by most of the short beams 

except for five out of the fifteen cases considered. Most of the short beams satisfy the 5 deg rotation 

angle serviceability criterion. Therefore, when designing beam members with a small slenderness 

ratio, checking the ultimate strength is as important as checking the serviceability.  

Table 16 Serviceability results for short beams 

 𝑀𝑀/𝑇𝑇 Max Load U2=L/360 U2=L/120 UR3=5deg UR3=10deg 

𝑀𝑀 𝑀𝑀𝑝𝑝⁄  𝑇𝑇 𝑇𝑇𝑝𝑝⁄  𝑀𝑀 𝑀𝑀𝑝𝑝⁄  𝑇𝑇 𝑇𝑇𝑝𝑝⁄  𝑀𝑀 𝑀𝑀𝑝𝑝⁄  𝑇𝑇 𝑇𝑇𝑝𝑝⁄  𝑀𝑀 𝑀𝑀𝑝𝑝⁄  𝑇𝑇 𝑇𝑇𝑝𝑝⁄  𝑀𝑀 𝑀𝑀𝑝𝑝⁄  𝑇𝑇 𝑇𝑇𝑝𝑝⁄  

 

S1 

high 0.772 0.284 0.706 0.260 0.712 0.262 0.771 0.284 0.701 0.258 

mid 0.592 0.436 0.576 0.425 0.508 0.374 0.590 0.434 0.562 0.414 

low 0.378 0.557 0.378 0.557 0.328 0.482 0.370 0.545 0.375 0.552 

 

S2 

high 0.764 0.325 0.709 0.302 0.568 0.242 0.743 0.316 0.577 0.246 

mid 0.582 0.495 0.575 0.489 0.415 0.353 0.581 0.494 0.473 0.402 

low 0.370 0.630 0.365 0.621 0.281 0.478 0.368 0.626 0.334 0.569 

 

S3 

high 0.770 0.326 0.632 0.268 0.770 0.326 0.695 0.294 0.528 0.224 

mid 0.584 0.495 0.584 0.495 0.440 0.372 0.545 0.462 0.448 0.379 

low 0.366 0.620 0.357 0.605 0.322 0.545 0.361 0.612 0.335 0.568 

 

S4 

high 0.793 0.350 0.666 0.294 0.789 0.349 0.793 0.350 0.710 0.314 

mid 0.578 0.511 0.575 0.509 0.410 0.363 0.542 0.479 0.434 0.384 

low 0.356 0.630 0.341 0.603 0.301 0.531 0.348 0.615 0.321 0.567 

 

S5 

high 0.662 0.272 0.595 0.244 0.584 0.240 0.660 0.271 0.571 0.234 

mid 0.507 0.416 0.496 0.407 0.413 0.339 0.505 0.415 0.471 0.386 

low 0.332 0.544 0.329 0.539 0.275 0.451 0.316 0.518 0.331 0.543 

 

The serviceability results of the long beams are shown in Table 17. Except for the L3 beam, 

all serviceability criteria are violated before the beam reaches the ultimate strength. For the L3 
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beam, the 120L  displacement serviceability criterion is not violated when the beam reaches its 

ultimate strength. Therefore, for beams with large slenderness ratios, serviceability is of more 

concern than ultimate strength.  

The sequences at which different serviceability criteria and the ultimate strength are 

reached are shown in Figure 47 to Figure 66. In these figures, the  𝐿𝐿 360⁄  and 𝐿𝐿 120⁄  dashed lines in 

the moment-displacement diagrams represent the displacement serviceability criteria. The vertical 

dashed lines in the torque-rotation angle diagrams represent the 5 deg and 10 deg serviceability 

criteria. In these plots, the circles represent the ultimate strength of the beam. From these plots, it is 

easy to examine when the serviceability criteria are violated in the loading process. For each 

particular curve in these figures, if the circle is on the left of a dashed line, then the ultimate 

strength is reached before the serviceability criterion corresponding to the dashed line is violated. 

Otherwise, if a dashed line is on the left of the circle, then the serviceability is violated before the 

beam reaches its ultimate strength.  

About 67% of the short beams considered in this research were controlled by the L/360 

criterion, 7% were controlled by the L/120 criterion, 33% were controlled by the 5 degree twist 

angle criterion, and none of the short beams was controlled by the 10deg criterion. Hence, for the 

short beams it is necessary check both the deflection serviceability and the twist angle 

serviceability of the design result.  

100% of the long beams considered in this research were controlled by the L/360, 5deg, 

and 10deg serviceability criterion, which suggests that serviceability is of major concern for the 

design of long beams. Furthermore, it is observed from Figure 57-66 that the loading curves 

intersect the 5deg serviceability dashed line at the beginning the loading process, much earlier than 

intersecting deflection serviceability lines or meeting the ultimate strength circles. This suggests 

that the long beams are mainly controlled by the twist angle serviceability.  
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Table 17 Serviceability Results of Long Beams 

 𝑀𝑀/𝑇𝑇 Max Load U2=L/360 U2=L/120 UR3=5deg UR3=10deg 

𝑀𝑀 𝑀𝑀𝑝𝑝⁄  𝑇𝑇 𝑇𝑇𝑝𝑝⁄  𝑀𝑀 𝑀𝑀𝑝𝑝⁄  𝑇𝑇 𝑇𝑇𝑝𝑝⁄  𝑀𝑀 𝑀𝑀𝑝𝑝⁄  𝑇𝑇 𝑇𝑇𝑝𝑝⁄  𝑀𝑀 𝑀𝑀𝑝𝑝⁄  𝑇𝑇 𝑇𝑇𝑝𝑝⁄  𝑀𝑀 𝑀𝑀𝑝𝑝⁄  𝑇𝑇 𝑇𝑇𝑝𝑝⁄  

 

L1 

high 0.562 0.292 0.297 0.154 0.541 0.281 0.153 0.080 0.292 0.151 

mid 0.458 0.476 0.260 0.270 0.404 0.420 0.078 0.081 0.154 0.160 

low 0.380 0.790 0.205 0.426 0.271 0.564 0.039 0.081 0.078 0.162 

 

L2 

high 0.602 0.315 0.370 0.194 0.578 0.302 0.134 0.070 0.260 0.136 

mid 0.506 0.529 0.304 0.318 0.423 0.442 0.068 0.071 0.135 0.141 

low 0.474 0.991 0.225 0.471 0.284 0.594 0.034 0.071 0.068 0.142 

 

L3 

high 0.527 0.278 0.514 0.271 0.506 0.267 0.297 0.157 0.490 0.258 

mid 0.403 0.425 0.375 0.395 0.399 0.421 0.157 0.166 0.299 0.315 

low 0.321 0.676 0.249 0.525 0.283 0.597 0.079 0.168 0.159 0.335 

 

L4 

high 0.501 0.263 0.475 0.249 0.482 0.252 0.239 0.125 0.421 0.221 

mid 0.382 0.400 0.350 0.367 0.372 0.390 0.125 0.131 0.242 0.254 

low 0.311 0.652 0.232 0.487 0.260 0.545 0.063 0.132 0.126 0.264 

 

L5 

high 0.557 0.288 0.335 0.173 0.547 0.283 0.127 0.066 0.246 0.127 

mid 0.422 0.436 0.279 0.288 0.401 0.414 0.064 0.066 0.127 0.132 

low 0.346 0.714 0.210 0.435 0.265 0.548 0.032 0.066 0.064 0.133 

4.7. Discussion of Plastic Design Criteria for Combined Loading 
In this section, based on the FEM simulation results of the parametric study, the strength 

limit state design approaches of Dinno and Merchant (1965) and Trahair and Pi (1994c) introduced 

in Chapter 2 are assessed in comparison with the AISC elastic design approach. 

4.7.1. Ultimate Strength 
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Figure 73 Design criterion comparison, ultimate strength, short beams 

In Figure 73, the blue ¼ circle corresponds to the circle interaction criteria proposed by 

Dinno and Merchant (1965), and the black line is the design criteria by Trahair and Pi (1994c).  The 

magenta line is the first yield criterion suggested by the current AISC design code which passes 

through two points �0,𝑀𝑀𝑦𝑦/𝑀𝑀𝑝𝑝� and  �𝑇𝑇𝑦𝑦/𝑇𝑇𝑝𝑝 , 0� , where 𝑀𝑀𝑦𝑦/𝑀𝑀𝑝𝑝  and  𝑇𝑇𝑦𝑦/𝑇𝑇𝑝𝑝  are the average values for 

all short beams, since these values are very close for all short beams considered in this parametric 

study. These two points correspond to the first yield strength for the pure flexure and pure torsion 

cases, respectively. The ultimate strength results for the short beams are also plotted separately for 

each beam in Figures 74 to 78.  



 

91 
 

 

Figure 74 Design criteria comparison, ultimate strength, S1 beam 

 

 

Figure 75 Design criteria comparison, ultimate strength, S2 beam 
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Figure 76 Design criteria comparison, ultimate strength, S3 beam 

 

Figure 77 Design criteria comparison, ultimate strength, S4 beam 
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Figure 78 Design criteria comparison, ultimate strength, S5 beam 

The ultimate strength FE simulation results for long beams are shown in Figures 79- 83. In 

these figures, the first yield criterion magenta line for long beams passes points (0,1) and �𝑇𝑇𝑦𝑦/𝑇𝑇𝑝𝑝 , 0� 

. Because the values are very different for long beams, the ultimate strength results for each long 

beam are shown separately as shown separately in Figures 79- 83. The circle criterion is not plotted 

in these figures because they are not suitable for long beams which typically fail by lateral torsion 

buckling.  
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Figure 79 Design criteria comparison, ultimate strength, L1 beam 

 

Figure 80 Design criteria comparison, ultimate strength, L2 beam 
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Figure 81 Design criteria comparison, ultimate strength, L3 beam 

 

Figure 82 Design criteria comparison, ultimate strength, L4 beam 
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Figure 83 Design criteria comparison, ultimate strength, L5 beam 

For short beams, as shown by Figures 74 to 78, all points, which correspond to the ultimate 

strength of different beam sections subject to loads with different moment-to-torque ratios, are 

located below the circular arc. Hence, as a design criterion, the circle criterion over-estimates the 

capacity of the beam subject to combined torsion and flexure, and is not safe for design purposes. 

The straight line criteria (black line) proposed by Trahair and Pi (1994c) provides a good match 

with the points. However, some points are slightly below this straight line, hence, this criterion also 

over estimates the strength of the beam in some cases.  All ultimate strength points fall above the 

magenta line. Hence, for design purposes, the AISC design provision is conservative enough, and 

leads to safe design results. However, considering the distance between the ultimate strength 

points and this line, the design result could be over conservative.   

For long beams, the ultimate strength points are again above the magenta lines. Most of 

these points fall between the magenta and the black lines. In some cases, such as the L2 beam 

results shown in Figure 80, the ultimate strength point for the low M/T ratio is much higher than 

the black line. These excessively large ultimate strength results are caused by severe deformation 

and distortion of the long beams. As will be shown in the next subsection, for the long beams, the 

serviceability would be more appropriate limit state rather than the ultimate strength.  
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4.7.2. Serviceability 

Four serviceability criteria--including L/360, L/120 for deflection serviceability, and 5 

degrees and 10 degrees for twist angle serviceability-- are used as the limit states. The results are 

used to assess the design criteria shown as straight lines in Figures 85- 87 for all short beams, and 

Figures 88-89 for a representative long beam. More serviceability plots are available in Appendix B.  

From Figures 85- 87, it is obvious that the black line still provides a good estimation when 

these serviceability criteria are used as the limit state. For the long beam, as shown in Figure 89, the 

twist angle serviceability criterion is violated at a very early stage of the loading process. 

Specifically, the twist serviceability controlled strength is very close to the origin and the first yield 

elastic design provision by AISC considerably overestimates the strength of the long beam. A similar 

conclusion holds for other long beams.  

 

Figure 84 Design criterion comparison, L/360 displacement serviceability, short beams 
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Figure 85 Design criterion comparison, L/120 serviceability, short beams 

 

 
Figure 86 Design criterion comparison, 5deg serviceability, short beams 
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Figure 87 Design criterion comparison, 10deg serviceability, short beams 

 

 

Figure 88 Design criteria comparison, L/360 serviceability, L1 beam 



 

100 
 

 

 

Figure 89 Design criteria comparison, 5 deg serviceability, L1 beam 

4.8. Summary 
In this chapter, a parametric study for the combined flexure and torsion of I-shaped beams 

using FE models verified in the previous chapter was presented. According to the FE analysis 

results, the moment-to-torque ratio affects the inelastic behavior and the ultimate strength of all I-

shaped beams considered in this study. The slenderness ratio also has a strong influence on the 

failure mechanism of the I-shaped beams.  It is noted that, for beams with a high slenderness ratio, 

the serviceability in terms of deflection and rotation are of major concern, since these quantities 

increase quickly to an unacceptable extent before the ultimate strength of the beams are reached.  
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Chapter 5 Summary, Conclusion, and Recommendations 

5.1. Summary 
In this thesis, a study of the behavior of I-shaped steel beams subject to a mixture of flexural 

and torsional load was studied via the FEM approach was described. For this purpose, FEM models 

were developed and verified using experimental results documented in previous research. A 

parametric study including a total of 30 ABAQUS simulation cases was performed to investigate the 

influence of key parameters on the capacity and behavior of selected I-shaped beam members. The 

simulation results were analyzed to reveal the influences of different parameters on the beams’ 

behavior, ultimate strength, and serviceability.  The FE simulation results were also compared with 

the major design methods currently available for combined flexure and torsion. Among all design 

methods, the criterion proposed by Trahair and Pi (1994c) provides the closest estimation of the 

ultimate strength of all short beams, although this criterion slightly over-estimates the ultimate 

strength for some beam members.  

5.2. Conclusions 
Both of the two parameters considered in the parametric study of this thesis, the flexure-to-

torque ratio and the beam slenderness ratio, showed strong influence on the behavior of the beam: 

• A low flexure-to-torque ratio can considerably reduce the maximum flexure capacity of the 

beam. Therefore, it is important to consider the interaction between flexure and torsion for 

plastic design.  

• The beam slenderness ratio affects both the failure mechanism (hence the ultimate 

strength) and the serviceability of the beams. 

It is found that the selection of limit state has strong influence on the assessment result of 

plastic design criteria.  

When the ultimate strength is used as the limit state, for short beams with small slenderness: 

• The circle criterion by Dinno and Merchant (1965) tends to overestimate the strength of the 

beam, leading to unconservative design results for both the short and long beams; 

• The design method described by Trahair and Pi (1994c) provides a good estimation of the 

ultimate strength of the short beams; 
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• The AISC design provision underestimates the ultimate strength of the beams, hence might 

produce over-conservative design result. 

For long beams with large slenderness, none of the three plastic design methods mentioned 

above accurately predicts the ultimate strength. However, this is not a major concern since the 

ultimate strength is not the controlling criterion for long beams. 

When the serviceability criteria are used as the limit state, the following can be concluded for 

short beams: 

• The circle criterion cannot ensure the satisfaction of  flexure and/or twist angle 

serviceability criteria; 

• The design result using the method by Trahair and Pi (1994c) may violate some 

serviceability criteria in some cases, hence, should always be checked for serviceability; 

• The AISC design provision produces design results satisfying all serviceability criteria. 

For long beams, none of the design methods can ensure serviceability. Therefore, these criteria 

are not suitable for designing long beams with large slenderness ratio.  

5.3. Recommendations 
It is suggested that future research explores the following directions: 

• A detailed parametric study for establishing an upper bound of the slenderness ratio within 

which  the interaction equation by Trahair and Pi (1994c) provides an acceptable 

estimation of the ultimate strength of the beam. 

• A study of the plastic behavior of I-shaped beam members subject to axial force in tension 

or compression, and the mixture of different loading types. 

• The investigation of the beams’ behavior subject to other types of loading such as 

distributed torsion and pressure on the flanges of the beam. 
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Appendix A. Nomenclature                                    
a  torsional resistance, in. 

A  area of the cross-section, in.2 

fb  the width of the flange, in. 

B  flange bimoment, kip-in.2 

pB  plastic flange bimoment, kip-in.2 

bC  
lateral-torsional buckling modification 

factor 

wC  cross-section wrapping constant, in.4 

d  distance between flange centroids, in. 

E  young’s modulus of steel, ksi 

crF  buckling stress, ksi 

G  shear modulus of elasticity, ksi 

h  the height of the web, in. 

wI  warping section constant, in.4 

xI  moment of inertial about the x axis, in.4 

yI  moment of inertial about the y axis, in.4 

J  torsional constant, in.4 

k  shape factor 

K  warping factor 

l   length of the steel beam, in 

L  distance between points of support 

M  flexure moment, kip-in. 

appliedM  applied flexure moment, kip-in. 

bxM  
flexure-torsional buckling strength, kip-

in. 

fpM  flange plastic moment, kip-in. 

ipcM  critical flexure moment, kip-in. 

nM  moment resistance capacity, kip-in. 

wpM  web plastic bending moment, kip-in. 

pM  flexure capacity, kip-in. 

yM  flexure moment about the y axis, kip-in. 

P  concentrated load, lb. 
q  distributed load, lb/in. 

yr  radius of gyration about weak axis, in. 

wS  warping static moment, in.4 

xS  elastic section modulus 

ft  flange thickness, in. 

svT  pure torsion, kip-in. 

upT  pure torsion plastic capacity, kip-in. 

wpT  warping torsion resistance, kip-in. 

pT  cross-sectional plastic capacity, kip-in. 

qt  distributed torque, kip 

shuT  pure torsion resistance, kip-in. 

wt  web thickness, in. 

V  shear force, lb. 

nW  normalized warping function, in.2 

Z  plastic section modulus, in.2 

mα  moment modification factor 

sα  slenderness reduction factor 

tφ  performance factor for torsion 

max( )bfτ
 

maximum shear stress in the flanges, ksi 
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svτ  St. Venant shear stress, ksi 

tpλ  normalized plastic collapse load factor 

upλ  uniform torsion collapse load factor 

wpλ  warping torsion collapse load factor 

θ ′  rate of change of angle of rotation 

( )zθ ′′
 

the second derivative of the twist angle 

( )zθ ′′′
 

the third derivative of the twist angle 

  

max( )svfτ maximum shear stress in the flange due to 

 pure torsion, ksi 

max( )svwτ
 

maximum shear stress in the web due to 

pure torsion, ksi 

max( )fτ  maximum shear stress in the flange, ksi 

max( )wτ  maximum shear stress in the web, ksi 

wσ  normal stress due to warping, ksi 

uσ  ultimate tensile stress, ksi 

yσ  minimum yield stress, ksi 

nω  
normalized unit warping 
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Appendix B. Plots of Design Criteria Comparison                                    

 

Figure 90 Design criteria comparison, L/360 serviceability, S1 beam 

 

Figure 91 Design criteria comparison, L/360 serviceability, S2 beam 
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Figure 92 Design criteria comparison, L/360 serviceability, S3 beam 

 

Figure 93 Design criteria comparison, L/360 serviceability, S4 beam 
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Figure 94 Design criteria comparison, L/360 serviceability, S5 beam 

 

 

Figure 95 Design criteria comparison, L/120 serviceability, S1 beam 
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Figure 96 Design criteria comparison, L/120 serviceability, S2 beam 

 

Figure 97 Design criteria comparison, L/120 serviceability, S3 beam 
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Figure 98 Design criteria comparison, L/120 serviceability, S4 beam 

 

Figure 99 Design criteria comparison, L/120 serviceability, S5 beam 
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Figure 100 Design criteria comparison, 5deg serviceability, S1 beam 

 

Figure 101 Design criteria comparison, 5deg serviceability, S2 beam 
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Figure 102 Design criteria comparison, 5deg serviceability, S3 beam 

 

Figure 103 Design criteria comparison, 5deg serviceability, S4 beam 



 

116 
 

 

Figure 104 Design criteria comparison, 5deg serviceability, S5 beam 

 

Figure 105 Design criteria comparison, 10deg serviceability, S1 beam 
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Figure 106 Design criteria comparison, 10deg serviceability, S2 beam 

 

Figure 107 Design criteria comparison, 10deg serviceability, S3 beam 
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Figure 108 Design criteria comparison, 10deg serviceability, S4 beam 

 

Figure 109 Design criteria comparison, 10deg serviceability, S5 beam 
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Figure 110 Design criteria comparison, L/360 serviceability, L2 beam 
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Figure 111 Design criteria comparison, L/360 serviceability, L3 beam 

 

Figure 112 Design criteria comparison, L/360 serviceability, L4 beam 
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Figure 113 Design criteria comparison, L/360 serviceability, L5 beam 

 

Figure 114 Design criteria comparison, L/120 serviceability, L1 beam 
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Figure 115 Design criteria comparison, L/120 serviceability, L2 beam 

 

Figure 116 Design criteria comparison, L/120 serviceability, L3 beam 
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Figure 117 Design criteria comparison, L/120 serviceability, L4 beam 

 

Figure 118 Design criteria comparison, L/120 serviceability, L5 beam 
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Figure 119 Design criteria comparison, 5 deg serviceability, L2 beam 
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Figure 120 Design criteria comparison, 5 deg serviceability, L3 beam 

 

Figure 121 Design criteria comparison, 5 deg serviceability, L4 beam 
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Figure 122 Design criteria comparison, 5 deg serviceability, L5 beam 

 

Figure 123 Design criteria comparison, 10 deg serviceability, L1 beam 
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Figure 124 Design criteria comparison, 10 deg serviceability, L2 beam 

 

Figure 125 Design criteria comparison, 10 deg serviceability, L3 beam 
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Figure 126 Design criteria comparison, 10 deg serviceability, L4 beam 

 

Figure 127 Design criteria comparison, 10 deg serviceability, L5 beam 
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