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ABSTRACT 
 
 

As environmental implications for land application of poultry litter become stricter, 

technological advancements on litter spreaders will be required to improve field performance. 

The inherent physical variability, moisture content and bulk density, in poultry litter makes land 

application difficult with spinner-disc spreaders. The overall goal of this research was to identify 

and develop technology to provide moisture and/or density feedback to a spreader, rate controller 

for enhancing litter conveyance and distribution during field application. The research objectives 

were to evaluate the: 1) effect of bulk density (moisture content) on metering and placement of 

broiler litter when using a spinner-disc spreader, 2) ability of a capacitance type moisture sensor 

for real-time moisture measurement in broiler litter, and 3) feasibility of near-infrared (NIR) 

spectroscopy for predicting moisture content in broiler litter. Results indicated that high 

discharge rate errors (>±15%) and statistical differences in distribution patterns (p<0.05) at a few 

transverse positions were determined when incorrect density values were used within a rate 

controller. Density treatments affected mass flow by the conveyor which further impacted the 

application rates and distribution patterns. These results suggested the use of the correct density 

value within a spreader rate controller to maintain application accuracy. The inclusion of real-

time moisture or density information as a feedback to the rate controller to account for 

moisture/density variations was thereby proposed. Results for evaluation of capacitance type 

moisture sensor indicated that the sensor generated a linear response within the 16%-31% 

moisture range at the nominal (loose) bulk density of broiler litter. The sensor output was 
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impacted by litter density and the operating moisture range further decreased as wet bulk density 

increased. Validation of the regression models relating sensor output to litter moisture content 

showed a strong linear relationship (R2 = 0.90-0.94) and low standard errors (<1.2%). The results 

suggested that a properly calibrated sensor has good potential for real-time moisture 

measurements in broiler litter but density impact on sensor performance must be considered. 

Evaluation of NIR spectroscopy indicated that absorption bands within the 1400-1440 nm and 

1900-1950 nm wavelength regions were strongly correlated (R2 = 0.97-0.99) to litter moisture 

content. Spectral data analysis indicated that the absorbance values at 1400 nm plus 1900 nm or 

at 1930 nm can be independently used for real-time moisture determination in broiler litter. 

Overall, the NIR technique was recommended for real-time moisture measurement in broiler 

litter because of its rapid, non-destructive, non-intrusive and density-independent measurements. 

In the future, development and inclusion of a real-time moisture measurement technology, such 

as NIR, on a litter spreader will help improve litter conveyance and distribution during 

application.    
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CHAPTER ONE  

INTRODUCTION 

1.1 PREFACE 

21st century agriculture faces challenges of producing the food, fiber and energy to feed a 

growing world population along with adopting more efficient and sustainable production 

methods which conserve natural resources and maintain healthy ecosystems. Projections by the 

Food and Agricultural Organization (FAO, 2010) indicate that feeding a world population of 9.1 

billion in 2050 would require raising overall food production by 70% between 2010 and 2050. 

Ninety percent of the growth in crop production globally is expected to come from higher yields 

and increased cropping intensity, with the remainder coming from land expansion (FAO, 2010). 

New agriculture technologies and improved farming practices are needed to improve crop 

productivity and product stewardship to meet these demands. The world’s options for increasing 

crop production are limited both by the supply of land and water. Therefore, the role of fertilizer 

in achieving intensified production and increased crop yield is undeniable. Accurate placement 

of fertilizer not only improves nutrient use efficiency by crops, but also lowers production costs 

while ensuring sound environmental stewardship. 

Achieving a balanced nutrient management approach along with maintaining 

environment quality remains a challenge when trying to develop best management practices for 

effectively using fertilizer. Management of P and N can be difficult at times due to equipment 

limitations. Further, for increasing crop production to support a growing population and rapid 
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economic growth, improving fertilizer use efficiency becomes an important task to ensure food 

security, social stability and environmental quality. This goal can only be reached with enhanced 

nutrient management practices and improved application technology for fertilization. Successful 

fertilization strategies include using available organic nutrient resources wherever possible, 

maintaining balanced fertilization to support increased crop yields, develop advanced technology 

to improve fertilizer use efficiency such as slow release fertilizers, site-specific nutrient 

management, etc., and developing optimal 4R Nutrient Stewardship practices (Right source, 

Right rate, Right time, Right place) and best management practices for irrigation, cultivation and 

other agricultural practices. The use of poultry litter as an organic nutrient resource for 

fertilization to meet soil-crop nutrient requirements has been increased considerably over the past 

years. The primary reason has been the escalating prices of inorganic fertilizers. Fertilizer prices 

have increased by more than 50% over the last 10 years (ERS-USDA, 2011). 

The use of poultry litter as a valuable source of nutrients and organic matter for 

agricultural soil-crop systems has been proved to increase crop yields and soil quality. Poultry 

production in Alabama produces approximately 2 million tons of poultry litter annually (Mitchell 

and Tyson, 2007). Poultry production regions have been accompanied by environmental issues 

related to land application over the years. Dense poultry production, especially in northern half 

of Alabama, has resulted in over-application of litter. Environmental issues due to repetitive 

application on the same land have focused research studies and efforts towards more efficient 

management and application of litter. Current environmental concerns focus on offsite transport 

of P and N from crop-pasture land. Future technology and input application equipment must 

accurately meter and distribute litter in order to meet local or site-specific crop and soil 

requirements to reduce over-application issues. 
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Best management practices (BMPs) along with precision agriculture (PA) technologies 

such as variable-rate technology (VRT) have the potential to enhance environmental and nutrient 

stewardship. For incorporating PA technologies, rate controllers and guidance systems are 

increasingly used for improved application control on spinner-disc litter spreaders. However, the 

large natural physical variability in poultry litter makes it difficult to achieve accurate metering 

and distribution uniformity even through the adoption of these technologies. The high variability 

in commonly available litter, particularly in moisture content and bulk density, can produce high, 

undesirable application errors during spreading. Bulk density for poultry litter is related to its 

moisture content like other biomaterials (Malone et al., 1992; Glancey and Hoffman, 1996). 

Accurate measurement of one or both of these parameters can help in maintaining target rates 

during field application. This research makes a step towards the concept of real-time moisture 

measurement on litter spreaders by testing the hypothesis that moisture or density variations 

within a litter load can affect metering and thereby the application rate and distribution during 

application. Besides land application, the development of real-time moisture sensing technology 

would also help in better litter management related to its handling, transportation and storage. 

Knowledge and the ability to measure real-time moisture, especially during conveyance, will 

help improve the design, selection and operation of litter management systems.  

1.2 JUSTIFICATION 

Limited research has been conducted to thoroughly investigate the application of poultry 

litter (metering and distribution) using spinner-disc spreaders. Most research studies have used 

synthetic fertilizers, such as urea, potash, etc., with limited studies focused on spreading organic 

fertilizers. The reasons behind the lack of research on applying organic fertilizers has been their 

perceived low economic value to crop production, low density making transportation expensive, 
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and many times perception as a waste product versus fertilizer source. With the current poultry 

production in Alabama and the environmental concerns related to over-application of litter, 

measures have been initiated to improve the distribution of poultry litter during application with 

more states implementing regulations for adoption of BMP’s and basing litter application on P 

recommendations instead of N. The phosphorus index (P index) tool has been increasingly 

utilized to assess the risk of P movement and make better P application decisions. Nutrient 

stewardship programs such as The 4R’s to Nutrient Stewardship in conjunction with recent 

precision agriculture (PA) technologies have the potential to reduce over-application issues and 

provide accurate delivery of inputs plus sound practices to meet local crop or soil requirements.  

Spinner-disc spreaders are the most common equipment used to apply litter to crop and 

pasture lands. The main goal when applying litter with spinner spreaders is to maintain accurate 

metering and uniform distribution. Material physical properties and spreader parameters are 

important factors that influence performance during field application. The important physical 

properties that can affect litter handling and spreading are particle size, bulk density, moisture 

content, angle of repose, and static friction. Among these properties, moisture content is 

considered important since it affects other physical properties as well. In the case of poultry 

litter, the large variability in its physical characteristics like particle size, moisture content, bulk 

density etc. makes it difficult to maintain acceptable spread uniformity in the field. Further, 

maintaining target application rates can be challenging due to this inherent variability. 

Considerable research has been reported on the influence of litter moisture content on its 

physical properties. Malone et al. (1992) reported an increase in wet bulk density of litter from 

432 to 545 kg/m3 with an increase in moisture content from 27% to 32%, respectively. Glancey 

and Hoffman (1996) concluded that moisture content significantly increased the static coefficient 
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of friction and wet bulk density, and indicated the importance of measurement and knowledge of 

the right moisture content for design and working of material handling systems for poultry litter. 

Similarly, Thirion et al. (1998) reported that the bulk density of different manures obtained from 

a variety of origins (animals, housing, etc.) was dependent on dry matter content of the manures 

with bulk density as the main factor affecting the discharge rate of spreader. The compressibility 

of poultry litter is also affected by moisture content (Bernhart et al., 2008). Based on feeding and 

type of management systems for production houses, moisture content in commonly available 

poultry litter can vary between 15% and 40% (Lague et al., 2005). This large variability can 

cause a significant density variation within a batch of litter ultimately impacting the amount 

applied and distribution uniformity during field application. High moisture content also poses 

problems of caking and material buildup on spinner-discs while spreading. Material build-up 

impacts material flow on the spinner-discs, thereby affecting litter distribution. Therefore, 

researchers have emphasized the need for measurement and knowledge of the right moisture 

content for litter application along with technology development to continuously sense and 

monitor the flow rates on spreaders to match target application rates with spatial soil-crop 

requirements. 

Knowledge of the correct litter moisture and density is also important when considering 

application because density is one of the required setup parameters in a rate controller.                        

A rate controller on a spreader helps to improve control and management of litter application in 

the field. The rate controller maintains the target application rate based on initial user input and 

feedback parameters (Figure 1.1). Input spreading parameters (target application rate, gate area, 

swath width, and litter density) are manually entered in the controller setup menus by the 

operator before application. These parameters remain constant throughout the spreading period 
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for a single rate application. If variable-rate capabilities exist with the rate controller, the 

application rate will change during field operation according to the prescription (Rx) map loaded 

into the rate controller. A DGPS receiver or radar provides ground speed as a feedback 

parameter. The controller calculates the desired conveyor speed based on these parameters and 

maintains this speed to deliver the target application rate. During field operation, the controller 

also receives continuous feedback from the conveyor roller shaft sensor (encoder) and makes 

conveyor speed adjustments accordingly. 

 
Figure 1.1. Diagram indicating user input and feedback parameters (i.e. ground and 

conveyor speed) for a typical rate controller used on litter spreaders. 

Considering the variation in litter density due to varying moisture content, a rate 

controller will apply off-target rates frequently since only a single density value is established 

within the setup menu. Therefore, any density variations in the litter are not accounted for during 

application. Further, concerns can exist when performing variable-rate application (VRA) of 

litter since multiple rates are applied within the same field.  

This research is based on the idea that an inline moisture or density measurement 

technology can be used to provide secondary feedback to a spreader rate controller for updating 

real-time density values. The secondary feedback can be used for managing the target application 
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rates better as litter moisture or density varies. Such a feedback technology could also assist in 

making spreading decisions if litter has to be applied within a specific moisture range. Different 

types of inline moisture measurement techniques such as capacitive, NIR and microwave 

techniques have been evaluated and used by researchers in the past for measuring small to large 

moisture variations in biomaterials. But no attempt has been made to measure litter moisture on a 

real-time basis during field application. 

1.3 OBJECTIVES 

The overall goal of this research is to improve litter application with spinner-disc 

spreaders. This improvement can be achieved with the idea that using real-time moisture and/or 

density information in a rate controller can help reduce off-rate application errors by maintaining 

target rates for broiler litter since moisture/density variations can exist within the same load of 

litter. The objectives of this research were to: 

1. Evaluate the influence of broiler litter bulk density on metering and distribution when 

applied using a spinner-disc spreader. 

2. Determine the potential of a capacitance type moisture sensor for measuring real-time 

moisture content of broiler litter. 

3. Determine if absorption spectral values at individual wavelengths within the near-

infrared (NIR) spectra can be used for real-time moisture measurement of broiler litter. 

1.4 ORGANIZATION OF THESIS 

This thesis is presented in manuscript format. Chapter 1 provides introductory statements 

justifying the focus of this research including the overall research objectives. Chapter 2 presents 

a review of literature outlining prior research and background on the physical properties of 

broiler litter, environmental issues related to its land application, spinner-disc spreaders and 
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various inline techniques for moisture measurement in different biomaterials including poultry 

litter. Chapter 3 covers the evaluation of bulk density effect on the metering and distribution of 

broiler litter with spinner-disc spreaders. Chapter 4 presents the evaluation of a capacitance-type 

moisture sensor for moisture measurement of broiler litter while chapter 5 reports the evaluation 

of NIR spectroscopy for real-time litter moisture measurement. Chapter 6 summarizes and 

discusses the results for this research. Finally, Chapter 7 presents the overall conclusions and 

suggestions for future work.  
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CHAPTER TWO 

 REVIEW OF LITERATURE 

Over the past several decades, there has been considerable research conducted to help 

gain a better understanding of the variables affecting the spreading of organic and inorganic 

fertilizers. Most of that research has been focused on understanding material and machine 

variables that could improve the application of organic fertilizers. Several publications were 

reviewed to gain knowledge on the characteristics of organic fertilizers especially poultry litter. 

These articles included physical properties, calibration standards, environmental issues related to 

poultry litter along with its distribution patterns and uniformity during field application.  

However, limited information is available on real-time determination of litter properties, 

especially moisture content and bulk density, and the effect of these properties on litter 

application. Publications related to various moisture measurement methods, those mostly used 

for biomaterials (e.g. corn, hay and forage), were reviewed to determine the potential application 

with poultry litter.  

2.1 POULTRY LITTER 

Alabama’s poultry industry produces nearly 2 million tons of litter annually (Mitchell and 

Tyson, 2007). This production is mostly concentrated in the northern half of the state with 

houses located densely in small areas. Therefore, most of the produced litter is applied near these 

facilities because of high transportation costs, leading to over-application within the same fields. 

The over-application has resulted in higher levels of phosphorus in surface water posing 



10 

 

environmental concerns. These environmental implications due to excessive land application 

have led to various studies and research efforts to manage and apply litter more efficiently. The 

litter, a combination of manure and bedding material such as pine shavings or peanut hulls, is 

utilized as fertilizer by applying it to crop and pasture lands. It is a good source of nutrients and 

phosphorus content along with dry matter. Poultry litter is extremely variable in terms of its 

physical characteristics which makes it difficult to land apply. 

2.1.1 PHYSICAL PROPERTIES 

The physical properties of material being utilized are important factors affecting the 

process of handling and spreading in agriculture. Poultry litter is a bulk solid. Bulk solids are 

composed of many particles of varying sizes (and possibly slightly varying shape), chemical 

composition, and densities, that are randomly grouped together in order to form a bulk 

(Woodcock and Mason, 1987). Therefore, the characterization of bulk solid behavior involves 

characterizing the individual particles that comprise the bulk material. Individual particle 

properties of interest include particulate size, shape, particle density and surface area, while the 

bulk properties needed to characterize poultry litter include bulk density, flow properties, 

compressibility, and moisture content. Knowledge of these properties is needed to optimize the 

conditions required to process, handle and transport litter. Accurate determination of these 

properties is a real challenge due to large physical variability found in poultry litter. Various 

researchers have investigated and characterized the physical properties for different litter 

handling operations. 

2.1.1.1 PARTICLE SIZE 

Size is considered as the most important characteristic of particulate materials because it 

characterizes other physical properties and behavior. Ndegwa et al. (1991) investigated the 
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fractionation of poultry litter for enhanced utilization. A vibrating screen was used to fractionate 

the litter and the material was separated into three fractions: (1) particles greater than a standard 

No.6 mesh screen (3.3–mm opening); (2) particles smaller than a standard No.20 (0.83–mm 

opening); and (3) particle sizes between the above two. They reported that the fine fraction 

accounted for 26% to 41% of the litter sample; the middle fraction 47% to 41%; and the coarse 

fraction 27% to 18%, depending on the number of flocks raised on the litter. Koon et al. (1992) 

studied the particle size distribution and chemical composition of broiler litter. A standard set of 

sieves No.4 through No.100 and a vibrating shaker were used for separating litter samples. They 

concluded that there was little variation in the particle size of pine shavings in poultry litter over 

a four grow-out period and majority of the litter was retained on the larger sieves [No.50 (0.297 

mm) or larger]. Nutrient concentration for each of the macronutrients (N, P & K) increased as the 

particle size decreased. On the other hand, Wilhoit et al. (1993) found that carbon concentrations 

increased with increasing particle size of litter and N content was relatively uniformly distributed 

within different size fractions.  

Landry et al. (2003) quantified the particle size for different types of manure including 

poultry litter ranging from 10% to 50% on wet mass basis. They reported that the average 

geometric mean length for poultry manure at 34.5%, 41.5% and 47.3% TS levels was found to be 

18.9, 14.2, 10.9 mm, respectively. Bernhart et al. (2009) analyzed the particle size distribution 

for poultry litter using a standard set of sieves (1.700 to 0.212 mm) and a vibratory shaker. Most 

of the particles (24.14% and 20.19%) were retained on the bottom pan and sieve with an aperture 

of 0.850 mm, respectively. The mean diameter of poultry litter was determined to be 0.841 mm 

and particle sizes below 0.400 mm (40% of the litter) were considered fine and compressible. 
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2.1.1.2 MOISTURE CONTENT AND BULK DENSITY 

For organic solid materials like poultry litter, there could be a considerable change in 

moisture content and bulk density in the process of handling and storage depending on its 

exposure to rainfall and other climatic conditions. Moisture content and bulk density are also 

important physical properties which significantly influences other properties of poultry litter 

such as flowability and compressibility. The change in these properties due to characteristic 

variability in litter may have a profound effect on litter application in the field.  

Poultry litter can have high moisture variability when cleaned out from a house varying 

from dry to wet depending upon location in the house. Malone et al. (1992) investigated the 

quality and quantity of poultry manure in Delmarva broiler houses under different management 

programs. Their data indicated that the wet bulk density of clean out manure, on average, 

increased from 432 kg/m3 to 545 kg/m3 as the number of flocks grown in the house increased 

from a low of 1 to 6 flocks to a high of 13 to 18 flocks, respectively. Manure moisture content in 

total cleanout manure, on average, increased from 27% to 32% wet basis as the number of flocks 

increased from a low to high number of flocks. Up to the sixth flock, crust out wet bulk density 

and moisture was, on average, 513 kg/m3 and 37% wet basis, respectively. Koon et al. (1992) 

closely monitored the moisture content in poultry litter pine shavings during four growouts. They 

determined a low of 17.4% after the first week to a high of 22.5% after the seventh week. They 

also reported that litter exposed to higher moisture content during the growout might exhibit a 

different particle and nutrient distribution pattern. 

The importance of litter moisture content and number of flocks raised on the litter, when 

trying to attain uniform application considering mass and nutrient content, was determined by 

Jenkins (1989). Glancey and Hoffman (1996) conducted a study on physical properties of poultry 
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litter. The investigated properties for five different types of poultry litter and three types of 

compost were bulk density, angle of repose, maximum lump size and static coefficient of 

friction. Tests were conducted on fresh poultry clean-out and crusted material, crusted and clean-

out poultry litter stored for 5 weeks and 14 weeks, and fresh composted material under three 

conditions: poultry manure composted with dead chickens, municipal solid waste (MSW) 

composted with dewatered sludge, and MSW composted with poultry litter. Results showed that 

outside storage and exposure to rainfall for all types of manures significantly increased the 

moisture content, static coefficient of friction and wet bulk density with the majority of the 

increase being within the first 5 weeks of outside storage. They also evaluated the dependence of 

wet bulk density on moisture content across all the solid wastes. Their results implied that 

measurement or knowledge of moisture content was more important than the type or source of 

waste material for design and analysis of waste material handling systems. Wilhoit et al. (1993) 

also emphasized that litter moisture content and number of flocks raised on litter can play a 

significant role when trying to attain uniform application. 

Thirion et al. (1998) investigated the physical characteristics of 25 different types of 

animal manure including poultry litter and their impact on performance of the spreader. The 

measured parameters were bulk density, cohesion, shear stress resistance, dry matter content, 

straw content and friction coefficient.  They also analyzed the relationship between these 

properties and spreader performance to confirm the usefulness of these measurements. The three 

main relationships verified were: density and discharge rate, shear stress resistance and drive 

torque, and heterogeneity and spreading precision. Results showed that bulk density of the 

manures obtained from a large variety of origins (animals, housing, etc.) varied within the same 

batch and it mainly depended on dry matter content of the litter. Both high (900 kg/m3 to 1000 
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kg/m3) and low (300 kg/m3) densities were mainly observed for chicken manure. The dry matter 

content for most of the manures ranged from 16% to 53%. Results illustrated that bulk density 

was the main factor that affected the discharge rate of the spreader. 

The physical and rheological properties for different types of manure, ranging from 

moisture content of 10% to 50% (wet basis), was studied by Landry et al. (2003). The selected 

properties included total solids concentration, bulk density, particle size distribution, friction 

characteristics and shearing behavior. These properties were measured for dairy cattle, sheep, 

poultry and pig manure. Total solids (TS) concentration provides another means of reporting dry 

matter content or moisture content of a material. The original total solids concentrations of the 

dairy cattle, sheep and pig manure samples were around 15%, 30% and 25%, respectively. For 

poultry manure, two different levels of TS were observed (12% and 18%) depending on the 

amount of water obtained from leaking drinkers. The measured bulk densities for poultry manure 

were 607.5, 884.7, 1028.2 and 1091.8 kg/m3 at 50%, 40%, 30% and 20% TS levels, respectively. 

These researchers suggested that the range of values presented for different manures can be 

properly used in the design and analysis of manure handling and land application systems. 

Lague et al. (2005) reviewed some of the physical, chemical and biological 

characteristics of livestock manure as they relate to land application operations. They reported 

that the dry matter content of the manure can vary over a wide range depending upon the feeding 

and manure management systems that are used on a particular livestock operation and this 

variability has a direct impact on the operation of the handling and land application systems. The 

dry matter content (w.b.) for poultry litter can range from 12.0% to 25.6% for freshly excreted 

manure (layer) and 60.8% to 89.1% at the end of the production cycle for broiler litter. For land 

application operation, the main objective is to supply the soil-crop system with a controlled 
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application rate of manure. The continuous monitoring of manure flow rate on semi-solid and 

solid manure application equipment is difficult because of the heterogeneous nature of the 

product and of the often non-uniform loading conditions of the spreaders. The researchers 

recommended the need for technology development to continuously sense and monitor manure 

nutrient content and flow rate on land application equipment in order to match the nutrient 

application rates with spatial soil-crop requirements. 

The effect of moisture content on selected physical properties of poultry litter was also 

investigated by Bernhart et al. (2009). The investigated properties were: particle and bulk 

density, tap density, Hausner ratio, and porosity. Results illustrated that increasing the moisture 

content resulted in a decrease in poured bulk density, particle density and porosity. The poured 

bulk density of poultry litter ranged from 0.551g/mL to 0.533g/mL within the moisture content 

range of 10.3% and 30.6% respectively. They also mentioned that the poured bulk density of 

poultry litter (0.50g/mL) was significantly higher than the values typically observed for 

agricultural materials (less than 0.20 g/mL). Their results implied that in process design 

applications, the amount of volume required to store poultry litter will increase as moisture 

content increases. 

Several other studies have shown the effect of moisture content on the physical properties 

of biological materials (Balasubramanina, 2001; Barbosa et al., 2005). Moisture content 

significantly influences the flowability of bulk solid materials (Woodcock and Mason, 1987). 

Flowability represents a measure of the cohesiveness and adhesiveness of bulk solids and is 

influenced by other bulk properties such as bulk density, porosity and compressibility. For 

poultry litter, knowledge of the equilibrium moisture behavior is needed to manage and prevent 
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its spoilage during storage, which may reduce the fuel value and quality of the litter (Jenkins, 

1989). 

Pelletizing is one of the effective ways that has been used to increase the value of 

agricultural and biological materials. There have been several efforts to densify poultry litter by 

pelletization (McMullen et al., 2005; Lichtenberg et al., 2002). McMullen et al. (2005) measured 

the physical characteristics of pellets from poultry litter within a moisture range of 6% and 22%. 

Results showed that bulk density and particle density of the pelleted litter decreased and 

increased, respectively with increase in moisture content. Durability of the pellets also reduced 

as moisture content increased. They reported that bulk density of the litter increased by four fold 

through pelleting. Lichtenberg et al. (2002) also reported that pelleting can be used to increase 

litter density by more than three fold. 

2.1.1.3 COMPRESSIBILITY 

Unintentional compression of bulk solids can be undesirable during storage, handling and 

transportation, because it often leads to issues related to flowability. The compression of bulk 

solids can be caused by vibrations during transportation and/or static weight of the material itself 

(sometimes called mechanical compression) (e.g. during storage). Colley et al. (2005) studied the 

compaction behavior of poultry litter and switchgrass. They reported that temperature, moisture 

content and die size significantly affected the density of switch-grass and poultry litter pellets. 

The density of the pellets decreased as moisture content increased. A comparison study indicated 

that poultry litter compacted to a higher density than switchgrass due to higher mineral content 

and initial bulk density. 

Bernhart et al. (2009) reported that the percent compressibility of poultry litter ranged 

from 2.5% to 18.0% with sample moisture contents of 10.2% and 30.9% respectively. Increasing 
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the moisture content of the poultry litter reduced its flowability (hence increased particle 

cohesion) from easy flowing (flow index of 6.369) at a moisture content of 10.3% (w.b.) to very 

cohesive/non-flowing (flow index of 1.871) at a moisture content of 30.9% (w.b.). The adhesion 

of poultry litter to the milled steel surface was reduced when the surface was modified. The 

carbon coated steel surface had the least adhesion in comparison to the aluminum surfaces and 

mirror finished steel surface. 

2.1.2 NUTRIENT MANAGEMENT AND ENVIRONMENTAL ISSUES 

Many researchers over the years have studied ways to more efficiently manage broiler 

litter as a fertilizer (Wood, 1992; Coloma et al., 2004; Mitchell et al., 2007). Coloma et al. (2004) 

and Wood (1992) both suggested combining litter with an inorganic N fertilizer before applying. 

Wood (1992) also stated that poultry litter has a high nutrient content compared to other manures 

and can produce equivalent yields as synthetic fertilizers but at lower costs. Mitchell et al. (2007) 

stated the need for a Comprehensive Nutrient Management Plan (CNMP) on every farm and the 

requirements needed to apply this plan when addressing nutrient management issues to protect 

water quality. There were five steps to this CNMP. The first step focused on estimating broiler 

litter amount, compost production, and storage facilities. The second step was to estimate the 

nutrient value of the litter and compost. Next, map and calculate land area for spreading using an 

aerial photo or topographic map. Next, determine the crop and nutrient needs for each field using 

the recent soil tests. The final step was to determine uses for excess litter and compost. 

Armstrong et al. (2006) examined irregular soil sampling on a field of long-term litter 

application to predict the areas of accumulation and loss of nutrients in a field. They determined 

that by using irregular soil sampling points and focusing on topography and landscape of a field, 

nutrient accumulation after long-term litter application can be determined. Wood (1992) 
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determined the severity of litter application to the landscape and found that long term litter 

application resulted in excessive nitrate leaching and degraded the environment. 

Nitrate leaching and P runoff are the two major environmental concerns when discussing 

poultry litter application. Excessive consumption of leached NO3 into groundwater can have 

harmful effects on humans as well as livestock (Wood, 1992 and Armstrong et al., 2006). 

Farmers often apply litter to meet the N requirement of their crop; however, in doing so they can 

over-apply P. This over-application leads to a buildup of P in the topsoil and, through runoff and 

erosion makes it to surface water as a pollutant. The Phosphorus Index (P index) is a commonly 

used tool utilized to assess the risk of P movement into surface waters and make better P 

application decisions (USDA-NRCS, 2001). Excess poultry manure nutrients (N and P) from 

high deposition rates have been implicated as nonpoint pollution sources to groundwater and 

surface water (Leibhardt et al., 1979; Weil et al., 1977). Therefore, more states are basing litter 

application on P recommendations instead of N to meet environmental regulations.  

The NRCS Code 590 (USDA-NRCS, 2002) was created to manage all aspects of nutrient 

application to the soil by setting regulations on timing, amount, source and placement of 

nutrients. The specific regulations that pertain to the application of poultry litter in Alabama are: 

application should be 15.24 m from surface waters of the state, 30.48 meters from the nearest 

occupied dwelling, church, school, hospital, park, or non- potable water wells, 61 meters from 

Outstanding National Resources Water, Outstanding Alabama Water, potable water wells, or 

public water supply. All precautions should be taken to eliminate or minimize nonpoint source 

pollution to the ground and surface waters. Each site, farm, or field shall be evaluated using the P 

index and the Leaching Index to assess the movement of applied nutrients in the soil to protect 

the quality of the water resources in the state. A soil test must be conducted using either the 



19 

 

Auburn University Soils Testing Laboratory or an acceptable laboratory to determine the 

allowable amount of nutrients that can be applied. Soil tests older than three years shall not be 

used for nutrient planning. It is recommended that soil amendments, such as lime, shall be 

applied to adjust soil pH to the specific range of the crop for optimum availability and utilization 

of nutrients. Regulations regarding nutrient application states that the application of nutrients 

needs to be based on current soil test reports and that the application shall not exceed 10% of the 

intended rates of the field. When applying organic by-products, such as poultry litter, the 

acceptable rate is generally based on the amount of P that can be applied to the soil due to the P 

index rating of the field. When the vulnerability rating (P index rating) is very low/low, litter can 

be applied to meet the N requirement even if it means the P rating exceeds 10% of the 

established application rate. Organic by-products cannot be applied in Alabama during the fall 

and winter seasons unless it is on actively growing crops. In north Alabama, no application can 

occur between November 15 and February 15 due to crop inactivity. 

Also, best management practices (BPM’s) for litter including means to improve field 

application are being promoted. Fertilizer companies and environmental agencies such as 

USDA-NRCS are promoting environmental stewardship programs (e.g. 4R’s to Nutrient 

Stewardship) to reduce environmental risks due to fertilization of litter. The 4R’s relates to four 

different aspects of application and provides a framework to assess whether the ‘Right Source’ is 

applied with the ‘Right Rate’ at the ‘Right Time’ and in the ‘Right Place’ to ensure accurate 

metering and placement of materials while reducing environmental risks. This approach helps to 

identify the opportunities to improve material efficiency. The 4R’s concept along with recent 

precision agriculture technologies such as variable-rate (VR) also provides the basis to improve 

litter spreading thereby reducing the risk of offsite nutrient transport. 
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2.2 SPINNER-DISC SPREADERS 

2.2.1 OVERVIEW AND COMPONENTS 

Spinner-disc spreaders are the most common equipment to land-apply fertilizers (Figure 

2.1). These pull-type spreaders are equipped with hydraulically controlled apron chain and dual 

rear spinner-discs with four uniformly spaced vanes on each disc (Figure 2.2). A rear gate 

opening on spreader hopper controls the volume of material on the conveyor by allowing a 

vertical adjustment of the gate (Figure 2.2). The conveyor chain delivers material from hopper 

onto the spinner-discs, where rotating motion of discs disperses the material in semi-circular 

pattern behind the spreader. Proximity sensor mounted under one or both of the spinner-discs 

provides continuous speed feedback and helps maintain disc speeds during application. The 

conveyor shaft speed is controlled by an encoder, coupled directly to the front or rear shaft of the 

apron chain, to deliver target rates. A rear divider is usually provided to adjust the drop location 

of material onto the spinner-discs (Figure 2.2). 

 
Figure 2.1. Typical spinner-disc spreader used for litter spreading. 
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Figure 2.2. Spreader components: spinner-discs, divider, conveyor chain and adjustable 

gate.  

A key goal when applying fertilizers with spinner-disc spreaders is to maintain spread 

uniformity and accuracy. The popularity of these spreaders for application of organic and 

inorganic fertilizers has initiated research efforts focusing on studying various machine 

parameters which can be adjusted to improve performance during application. These parameters 

fall basically into three categories (Ling, 1997): (1) the parameters that control the material 

metering such as the conveyor type, width, speed and gate opening; (2) parameters that control 

the delivery point of material onto the spinner-disc including shape, dimension and location of 

the flow chute; and (3) parameters that directly control the distribution of material such as disc 

configurations (number and type of vanes, disc diameter and angle), disc position and disc speed.  

Therefore, various research attempts have been made to better understand these machine 

parameters that can influence material spread uniformity. Most of these studies focused on 

manufactured fertilizers such as urea, potash, or blends, with only few focusing on organic 

fertilizers, such as poultry litter. 

Adjustable Gate 

Conveyor Chain 

Divider 

Vanes Spinner-discs
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2.2.2 CALIBRATION AND EVALUATION STANDARDS 

Calibration is important to determine the fertilizer application rate and uniformity at 

which a spreader should be operated and is a key component in maintaining target rates. It also 

helps in setting hardware and software when using the latest technologies such as VRT. Fulton et 

al. (2005b) found that pattern adjustments could be made to improve distribution patterns for all 

applicators and that generating overlap patterns during calibration can usually correct off-target 

application while quickly quantifying application uniformity. Proper calibration can also reduce 

environmental risk associated with applying poultry litter (Mitchell and Tyson, 2001). Marsh et 

al. (2003) stated that it is important to apply manure at the desired rate to meet the nutrient 

requirements of a specific crop.  

The American Society of Agricultural and Biological Engineers (ASABE) Standard, 

S341.3 (2004) outlines the procedure for measuring distribution uniformity and calibrating 

granular broadcast spreaders. It provides a uniform method to test, analyze and report 

performance data for spinner spreaders along with guidelines for test setup, collection devices, 

determination of application rates and effective swath width. The International Organization for 

Standardization (ISO) also describes standard testing procedures for calibrating fertilizer 

distributors (ISO 5690-1:1985 and ISO 5690-2:1984). These standards specify the test methods 

for distribution of solid fertilizers which includes primary tests for calibration, and test for 

determination of physical properties of fertilizers along with optional calibration tests. The 

Alabama Cooperative Extension System (ACES) published an article identifying a procedure for 

calibrating poultry litter spreaders (Mitchell and Tyson, 2001). They reported that several factors 

affect and should be monitored during calibration including: ground speed, power take off (PTO) 

speed, discharge opening, and swath width.  
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Mitchell and Tyson (2001) evaluated three methods of calibration. The first method 

required applying the known weight of litter uniformly over a field of known size. The second 

method utilized a tarp to cover a known portion of ground and then making three equally spaced 

passes over the tarp. The collected material was weighed, divided by the tarp area and converted 

to an application rate. The last method included setting rows of pans in the field and making 

three passes over them. Then the material collected in the pans was weighed with data plotted to 

evaluate material distribution and uniformity. The Virginia Cooperative Extension proposes 

using the tarp approach to determine uniformity and swath width rather than the pan method 

Marsh et al. (2003). They suggested using the same spreader settings after calibration to ensure 

the correct amount of applied litter. 

Parish (1986) compared the spreader pattern evaluation methods using one spreader and 

two materials. They concluded that there can be significant differences in the apparent rate, 

optimum swath width, amount of skewing, and CV of the overlapped pattern resulting from the 

choice of collection methods. Traditional baffled pans produced a CV 8% to 22%, floor 

collection 21% to 41% and long narrow pans 27% to 57 %. Major differences were due to 

material bouncing out of the various collection devices. Additional work was needed to 

authoritatively state that one method is right and others wrong.  

Pattern tests were conducted on three commercial fertilizer spreaders using two different 

products for comparing delivery rates by Parish (2000). The ASABE S341.3 standard (2004) was 

followed for all the test setups. Application rates were determined through pattern testing and 

calibration of the delivery system by collecting the material in a bucket without the distribution 

system. Results indicated that half of the comparisons between the rates determined by pattern 

based data versus rates calculated during conveying calibration were statistically different. 
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Application rates based on the pattern data were higher in most cases. The study confirmed that 

significant spreader delivery rate errors can be generated from pattern tests when conducted on a 

smooth surface. The author suggested that rate calibration should be conducted after an effective 

swath width was determined through pattern testing. 

2.2.3 DISTRIBUTION PATTERNS AND UNIFORMITY 

Spinner spreaders rely on overlap from adjacent passes to achieve uniform distribution. 

The mean overall application rate and application uniformity depends on the overlap pattern of 

the material being applied.  The amount of overlap depends on how far the spinner discs throw 

material and on the swath width, which is the distance from the centerline of travel of one pass of 

the spreader to the centerline of travel of the adjacent pass. Spinner-disc spreaders have a 

disadvantage of producing an uneven (poor) distribution of material (Figure 2.3a showing a 

typical simulated overlap pattern). Theoretically the ideal distribution pattern for a spinner-

spreader is flat top pattern as shown in Figure 2.3(b). The distribution pattern of fertilizer 

products are dependent upon the type of spreader and hardware settings being utilized. Over the 

past several decades, various research attempts have been made to gain a better understanding of 

variables that affect the spread and uniformity of granular fertilizers using different types of 

applicators including spinner-disc spreaders. Most of these studies used inorganic fertilizers but 

knowledge can be gained from these investigations. Also, significant research has been 

conducted to determine the influence of machine parameters and material properties on pattern 

uniformity. 
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                             (a)                                                                   (b) 

Figure 2.3. Figure illustrating a typical W shape (a) and perfect flat top (b) simulated 
overlap pattern for a spinner-disc spreader. 

Knowledge of material properties is important when trying to evaluate the uniformity of 

distribution patterns. Hollmann (1962) examined the effects of particle size on spread patterns. A 

series of fertilizers with different particle sizes were tested. The experiments showed that the 

projected distance (spread width) increased by about 150% as the particle size increased from 0.3 

to 3.0 mm. No significant difference was determined in spread patterns for particle sizes larger 

than 1.0 mm. Hoffmeister et al. (1964) also studied the effect of particle size of fertilizer 

materials on distribution patterns. The most common variables that affect spread uniformity are 

particle size, density and shape of the particles (Williams, 1976). A simulation study by Pitt et al. 

(1982) reported that the variation in particle size had only a slight effect on lateral distribution of 

particles by a spinning-disc spreader, although mean particle size had a major influence on the 

shape of the spread pattern. Hofstee and Huisman (1990) did a thorough review of the effect of 

particle size on spread patterns and concluded that particle size and distribution affected fertilizer 

distribution, but the influence on the spread pattern was difficult to establish. Additionally, they 

recommended that small particles caused a higher coefficient of variation (CV), thereby 
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impacting uniformity and a smaller spread width. Hofstee (1995) studied the effect of physical 

properties of fertilizer on uniformity and concluded that the coefficient of friction was the most 

important physical property impacting particle motion on the vane surface. Several other 

researchers have reported that fertilizer granule size was the most important factor influencing 

distribution and uniformity (Bradley and Farnish, 2005; Bridle et al., 2004). Miserque et al. 

(2008) concluded that particle size and density are the major particle parameters affecting the 

spread pattern, with shape as a minimal influencing factor. 

Beside material properties, machine parameters are also important factors affecting 

spreader performance. Glover and Baird (1973) evaluated distribution patterns for several 

spinning disc spreaders. It was observed in their tests that moving the flow divider or chute 

forward improved the spread patterns for both fertilizer and wet lime. The tests also indicated 

that the material flow chute (divider) must be adjusted for different application rates to eliminate 

extra peaks in the pattern.  

Olieslagers et al. (1996) developed a simulation model for calculating fertilizer 

distribution patterns from a spinning disc spreader. Spreader patterns for single- and twin-disc 

spreaders were calculated by using this model. They reported that position and shape of the 

orifice along with changes in mass flow affects the pattern whereas change in the disc angular 

velocity strongly influences spread width. They suggested that the negative influence of 

changing only one parameter for maintaining desired mass flow should be avoided by 

adapting/changing other controllable parameters. Further validation was needed to examine the 

effectiveness of the model for different spreader settings and particle characteristics.  

The effect of impeller angle on pattern uniformity was determined by Parish (2003) using 

a walk-behind spreader. Even at small angles (5 degree - corresponds to a handle height change 
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of 3.8 to 6.4 cm), the changes in the pattern were significant. Author suggested the need for 

bubble leveler or electronic out-of-level warning system using mercury switches. The effect of 

vane height on distribution uniformity in rotary fertilizer spreaders with different flow rates for 

triple superphosphate (TSP) and calcium ammonium nitrate (CAN) was investigated by Yildirim 

and Kara (2003). They used vane heights of 25, 35, 45, 55 and 65 mm along with orifice 

diameters of 30, 35, 40 and 45 mm. The vane length and impeller diameter used were 120 mm 

and 500 mm, respectively. The most uniform distribution was obtained for a vane height of 35 

mm and orifice diameter of 35 mm for both fertilizers. For TSP, mean CV’s ranged from 7% to 

20% while a range of 6% to 17 % was measured for CAN of different combinations for vane 

height and orifice diameter.  

Yildirim (2006) showed the impact of disc cone angle and revolution speed on fertilizer 

distribution uniformity. He conducted the tests on single-disc rotary fertilizer spreaders with 

different flow rates using triple superphosphate. The cone angles of the discs used in the 

experiment were 0, 10 and 20 degree with disc speeds of 405, 540 and 810 rpm. The best 

distribution Uniformity was achieved at a combination of disc cone angle equal to 0 degree, disc 

speed of 820 rpm and orifice diameter of 30 mm. Distribution uniformity became worse as the 

cone angle of disc increased and became better as the disc speed increased with all orifice 

diameters (30, 40 and 50 mm). 

Yildirim (2007 and 2008) also studied the effect of vane number and different vane 

shapes on the distribution uniformity in single–disc rotary fertilizer spreaders with different flow 

rates using TSP and CAN. The number of vanes tested was 2, 4, 6, 8, 10 and 12 and vane shapes 

characterized as straight, composite, forward–curved–5, forward–curved–10, back–curved–5 and 

back–curved–10. The orifices of 30, 40 and 50 mm diameters were used at the bottom of the 
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hopper to obtain the different fertilizer flow rates. The data (2007) showed that the best 

distribution for both fertilizers was obtained with the combination of two vanes and an orifice 

diameter of 30 mm. The values of CV obtained from all the combinations between the vane 

number and orifice diameter varied between 11% and 34% for TSP, and 10% and 35% for CAN. 

As the vane number increased from 2 to 12, the CV’s increased for all flow rates.  The study on 

different vane shapes showed that the shape of vane had a significant effect on fertilizer 

distribution uniformity. The best fertilizer distribution uniformity was obtained from the forward 

curved–5 vane shape, not the straight vane shape, for both TSP and CAN. 

Many new technologies (feedback control, optical sensors, etc.) and effect of wind speed 

and direction along with other climatic parameters have been also tested to examine spread 

uniformity of fertilizers. Application uniformity with fertilizer applied under cross wind 

applications was found to be worse than applied into a head wind (Smith et al., 2004). Smith et 

al. (2004) studied the effect of wind speed, wind direction, fertilizer material and swath spacing 

on the uniformity of granular fertilizer applications with a spinner truck.  Results showed that up 

down and racetrack application patterns were equally effective with respect to the uniformity of 

the applied granular materials.  Ammonium nitrate exhibited CV’s of less than 15% with low 

wind speeds, cross winds and a swath width less than 10 m.  Only 12% of the CV’s were less 

than 15%. Average pan recoveries for potash, 13-13-13 and ammonium nitrate were found to be 

95.5%, 78.9% and 54.4 %, respectively. They also recommended that pan recovery data should 

be used to calibrate a spreader.  

A sensor was developed to determine the real-time prediction of the spread pattern by 

Grift and Hofstee (2002). Results showed that the sensor produced an excellent indication of 

fertilizer dispersion behind the spreader but further validation was needed using the ASABE 
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S341.3 (2004) testing standards. Kweon and Grift (2006) simulated the spread patterns by feed 

gate adaption method (use of optical sensor and control algorithm) and acceptable patterns were 

produced at any application rate but authors stated the need for field testing for validating the 

simulations. 

Fulton et al. (2005) investigated distribution patterns at varying rates for different 

granular applicators using two spinner spreaders (A and B) and two pneumatic spreaders (C and 

D). Results showed a triangular pattern for spinner spreader B with consistent patterns for the 

pneumatic applicators. Applicator’s B and C generated CV’s greater than 20%. Applicator A 

performed well at lower rates (CV=19%) but not at higher rates whereas applicator D generated 

CV’s between 25% and 34%.  Results concluded that spinner-disc spreaders over applied while 

pneumatic applicators under applied at the pattern margins suggesting an adjustment to the 

effective swath width. Overlap plots indicated pattern variability even when CV’s were 

acceptable for B and C. Pattern shifts were observed for applicator A. They suggested the need 

for proper calibration to maintain acceptable performance but also a VRT equipment testing 

standard. 

2.2.4 UNEVEN FERTILIZER DISTRIBUTION 

Fertilizers are applied to fields to attain desired soil fertility levels. Uneven distribution of 

fertilizers creates variable fertility levels within a field possibly impacting crop yields. Jensen 

and Pesek (1962a, 1962b) developed a theoretical model that quantified yield loss expected from 

non-uniform distribution across the swath width of bulk spreaders. Their model predicted that the 

greatest loss of corn production would be from fields with very low fertility level. Field data 

analysis indicated that the magnitude of loss was 0.78, 0.27 and 0.04 Mg/ha of corn on soils of 

very low, low and medium, respectively. 
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Welch et al. (1964) studied nutrient responses to estimate the effects of non-uniform, 

blended fertilizer applications on corn and bermudagrass. In an example of non-uniformity 

involving coastal bermudagrass, they reported that 40% of the area received twice the desired 

fertilizer rate, 40% received the half as much, and only 20% received the correct amount. They 

found that total yields under non-uniform conditions decreased by only 3% as compared to yield 

under uniform application. Dumenil and Benson (1973) analyzed the effects of non-fertilizer 

application on corn yields. They pointed out that corn yield losses due to non-uniform fertilizer 

distribution can vary from none to considerable and are mainly influenced by (1) fertilizer 

distribution patterns over the width and along the path of the swath, (2) yield response to the 

nutrients applied, and (3) nutrient rates applied. They estimated yield reductions for corn from 

several shapes of non-uniform fertilizer application patterns and found that the magnitude of loss 

across the swath vary primarily due to degree of non-uniformity and nature of the response 

curve. They estimated that yield loss would increase four fold for every double deviation from 

the desired rate.  

Lutz et al. (1975) studied the effect of uneven spreading of lime on soil pH and yield of 

rotation crops. The study investigated five different spread patterns, including those obtained 

with bulk spreaders used in normal farming operations. Results indicated that lime spread 

patterns did not significantly affect the yields of corn, barley and soybeans grown on a silt loam, 

in Blacksburg, VA., whereas yields of soybeans and corn grown on a Norfolk sandy loam, at 

Capron, VA., were affected by the lime spread patterns. The reduction in yields was due to zinc 

deficiency in the plants because of non-uniform application of lime. They also reported that soil 

pH increased with increase in rate of lime applied. Sogaard and Kierkegaard (1994) evaluated 

yield reduction resulting from uneven fertilizer distribution in grain crops. They concluded that a 
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spatial distribution coefficient of variation less than 20% was necessary to minimize loss of net 

profit.  The authors suggested that future research should focus more on the development of 

centrifugal spreaders by improving the abilities of the fertilizer spreaders under realistic field 

conditions. It should be noted that these studies were conducted with spinner spreaders that were 

applying at smaller swath widths (12.2 to 18.3 m) in comparison to today’s spreaders with 

common recommended widths between 18.3 and 30.5 m. 

Spreading issues can occur with both lime and fertilizer materials within farm fields for 

all kinds of spreaders including spinner-disc spreaders. The Maryland Cooperative Extension 

(Stewart and Bandel, 2002) listed some important steps to reduce non-uniform distribution of 

lime and fertilizer in the fields. The most important step was evaluation of distribution patterns 

produced by the spreader under normal operating conditions. Field testing, using the actual 

fertilizer to be applied and right application rate along with other spreader settings (gears and 

ground speed), was recommended for evaluating spreader distribution patterns. It was also 

suggested that operators must understand the factors that affect the distribution patterns and other 

equipment adjustments in order to achieve the best possible results related to fertilizer and lime 

application.  

Yule and Lawrence (2007) developed a methodology for measuring and evaluating the 

true agronomic and economic consequences of uneven fertilizer spreading from a broadcast 

fertilizer. The method requires the following parameters to be used in the application model: the 

creation of “as-applied” fertilizer surfaces within GIS software, the extraction of application 

statistics, calculation of respective crop responses to the fertilizer input, and calculation of the 

economic value of applying the fertilizer used.  Economic analysis results showed that current 

spreading methods would result in significant economic losses (NZ$66.18 per ha) for dairy 
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system. Farm data indicated that a typical dairy farm in New Zealand would loose between $52 

and $72 /ha/yr) due to inaccurate fertilizer application. The authors suggested the need for 

improvement in the fertilizer application process and use of new technologies to reduce the 

economic losses due to inaccurate and uneven fertilizer application. 

2.2.5 LITTER SPREADERS 

Limited amount of research is conducted for investigating distribution of litter using 

spinner-disc spreaders. Wilhoit et al. (1993) evaluated the distribution pattern of poultry litter 

using a centrifugal-type broadcasting spreader along with studying the effect of particle size on 

nutrient distribution across the swath. A pull-type spreader with a ground-driven, 41-cm wide 

bed chain, and two 61-cm diameter, six-blade spinners was used in this study. The poultry litter 

used in this test was mixed pine shaving and peanut hull litter that had been used for growing six 

flocks of birds. The moisture content of the litter averaged 29% dry basis. Results illustrated that 

smaller particles tended to land directly behind the spreader with larger particles being 

distributed further out. Nutrient analysis showed that both C and N concentrations were uniform 

across the swath with little variations between particle size and nutrient content. The best 

uniformity was obtained with a simulated travel spacing of 8.5 m. The swath width 

recommended by manufacturers was not found to be the optimum with the authors suggesting 

smaller swath widths applying poultry litter.  

A drop applicator was developed and evaluated for applying poultry litter in a uniform 

swath at controlled rates (Wilhoit et al., 1994). The applicator consisted of floor chain 

arrangement to meter out poultry litter from the bottom of the hopper over a 1.7–m width. The 

results showed that litter application rate was not affected by the depth in the hopper.  

Calibration was primarily volume-based and, therefore, dependent on chain speed, for both 
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individual chain flights and mesh chain floor arrangements.   The tests indicated that the litter 

was applied with fairly good uniformity across the swath but the application rate fluctuated 

cyclically in the direction of travel when the floor chain with individual chain flights was used. 

The mesh chain eliminated the cyclic fluctuations providing good uniformity in the direction of 

travel. 

The physical properties of poultry litter are more variable than inorganic fertilizers; 

therefore tend to have more effect on distribution. Thirion et al. (1998) investigated the influence 

of physical characteristics of different animal manures including poultry litter, on spreader 

performance. They used 2 types of litter with the same spreader and adjustments to evaluate the 

effect of manure heterogeneity on working of spreader deposition. The two types of litter used 

were: a more heterogeneous load (49% variability) and a less heterogeneous (9% variability). 

They reported that less heterogeneous manure produced a good quality of spread (CV=8%) 

whereas more heterogeneous manure produced a low quality of spread (CV=29%). They 

suggested that it was very important to verify the heterogeneity of manure when planning to 

assess spreader performance. 

A study was conducted by Pezzi and Rondelli (2002) on a prototype spreader for 

evaluation of the distribution of four poultry manures differing in composting degree and 

moisture content. The chemical and physical properties such as wet bulk density, moisture 

content and static frictional characteristics of the manures were measured. The prototype was set 

up for orchard and arable crops. The spinner disc speed and point of delivery of the organic 

fertilizers onto the spinners were adjusted to broadcast manure as well for distribution in bands. 

In the former, an increase in spinner disc speed improved the throwing width and effective swath 

width. They found that the best results for the point of delivery of organic material were 
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achieved by moving the point of delivery away from the center of the spinners. Also for band 

distribution, the best results were observed when the point of delivery coincided with the center 

of the spinners with a low spinner disc speed. The physical properties of the fertilizers influenced 

the distribution pattern with poorest results being the distribution of manure with large particles 

at high moisture content. 

Campbell et al. (2008) evaluated the improvement of poultry litter with spinner spreaders. 

A litter spreader with electronically adjustable hydraulic flow control valve (closed loop system 

CLS) and a traditional manual valve (open loop system, OLS) was used with three application 

rates (2240, 4480, and 6720 kg/ha).  Results indicated that CLS generated low CV’s than OLS 

but manual valve provided more symmetrical and consistent patterns. CLS system maintained 

more constant spinner speeds resulting in more uniform overlap patterns generating lower CV’s. 

Campbell et al. (2010) also conducted a study to evaluate whether macronutrient (N, P2O5 and 

K2O) distribution patterns contrast with the traditional mass distribution. He used three 

application rates (2242, 4483 and 6725 kg/ha) for applying broiler litter. A two dimensional 

collection pan matrix with four rows was used to assess pattern uniformity. Results indicated that 

even with the existence of particle size variability across the spread patterns, the distribution of 

mass reflected the nutrient distribution. The CLS provided more uniform nutrient patterns, with 

CV’s ranging from 22% to 34% compared to the 26% to 39% generated by the OLS. This 

research concluded that the distribution of mass can be used to assess nutrient distribution of 

poultry litter by spinner spreaders and the CLS for spinner-disc speed control outperformed the 

traditional OLS. 
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2.3 RATE CONTROLLERS AND VARIABLE-RATE TECHNOLOGY 

Rate controllers are starting to be used more frequently on spreaders for better control 

and management of product in the field. They provide several benefits including easier 

calibration of equipment and improved application efficiency. Figure 2.3 shows one of the rate 

controllers (Topcon Precision Ag X20) commonly used on spinner spreaders. These controllers 

have various setup menu options which are used to enter product properties and spreader 

parameters prior to any calibration or application. The setup menus usually requires manual 

entering of parameters such as gate height, swath width, and product density along with feedback 

from tractor GPS for ground speed to maintain the target application rate. The controllers are 

loaded with spreader control software program which provides both variable rate application and 

spinner-disc speed control capabilities. The speed control for conveyor chain and spinner-discs is 

maintained by using electronically adjustable hydraulic valves. The spreader control software 

also receives continuous speed feedback from spinner-disc and conveyor chain sensors during 

spreader operation to maintain the desired speeds.  

 
Figure 2.3. Example of a display-rate controller (Topcon Precision Ag X20) commonly used 

for spinner-disc spreaders. 
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Rate controller when used with a GPS, guidance system and field boundary map can be 

utilized for performing variable-rate (VR) application of product. Variable-rate technology 

(VRT) provides a tool to reduce the over-application of nutrients by spatially applying the proper 

amount to meet local fertility needs. Various studies have been conducted to determine the affect 

of VRT on fertilizer application. Most of these studies have used granular fertilizers with limited 

literature available about using VRT for applying poultry litter. Developing a prescription map is 

the most important component of VRT application (Sawyer, 1994 and Ferguson et al., 1996). 

Fleming and Westfall (2000) suggested that ground-testing (soil testing) along with past 

experience must be used to develop accurate VRT maps based on management zones. Fulton et 

al. (2001) suggested modifications to the ASABE Standard 341.2 (ASABE standards, 2009) to 

include a 2-D array of collection pans to asses variable-rate application (VRA) of granular 

products. It is assumed that if VRT can improve the application of inorganic fertilizers then it 

can be utilized to improve litter application.  

The effect of using VRT of an input following a treatment map as well as using yield 

monitoring to measure the crop’s response was studied by Lark and Wheeler (2003). They 

reported that this technology could help farmers get the maximum economic yields out of their 

fields. Chan et al. (2002) pointed out that the accuracy of VRA depends on the accuracy of the 

GPS data utilized for mapping the fields.  

Knowing the response time of a variable-rate system is a key during field application to 

minimize application errors. Molin et al. (2002) tested a spreader with VRT for granular fertilizer 

with three swath widths (18, 21, and 24 m) and three rates (50,150, and 250 kg/ha). They used 

70-m longitudinal line of collectors on both sides of the machine with total length divided into 3 

parts. Results illustrated that the response time for rate changes for a decreasing step was more 
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than an increasing step. Variation of the application rate on steps of 50 and 100 kg/ha did not 

cause any variation on the response time. The effective swath width of 24 m was not affected by 

application rate change provided the best uniformity with CV’s under 15%. Flow rates obtained 

during the tests showed to be consistently lower than those programmed.  

The dynamics of an applicator can have important performance effects. Schueller (1994) 

discussed the concepts of spatially variable fertilizer and pesticide application with GPS and 

DGPS. He showed that Command feed forward control can significantly improve the 

performance in application of fertilizers but the various error sources can degrade the 

performance of spatially-variable applicators. However, further research was needed on 

understanding the effects of the various error sources. Fulton et al. (2003) concluded that 

prescription maps do not always reflect actual application and can sometimes generate 

misleading results due to application errors. Therefore, variable-rate application (VRA) could be 

a viable option for managing nutrient inputs, but there can be various application errors 

associated with both prescription maps and VRT equipment. Fulton et al. (2005) also 

demonstrated potential application errors with VRT and suggested the need for proper calibration 

for acceptable performance.  

Lawrence and Yule (2005) evaluated spreader performance for variable-rate fertilizer 

application using different spreading testing protocols. A spreader truck with dual spinners 

operating at 750 rpm and application rates of 80, 100, and 150 kg/ha was tested. The coefficient 

of variation (CV) was used for compare the different testing methods with a CV of 15% being 

considered acceptable uniformity. They concluded that overlap spread pattern was a major 

limiting factor of accurately applying fertilizer in the correct application zone. The spreader on 
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average over-applied the attempted rate in all three application zones. They also showed, out of 

different methods using tray testing system, using fewer trays also provided similar results.  

Fulton et al. (2001) assessed the performance of a variable rate spinner disc fertilizer 

applicator and outlined development of an as-applied model to represent material distribution. A 

Sigmoidal function described increasing application rate changes while a linear function 

characterized decreasing rate changes. Uniform and VR applications were mathematically 

modeled. The test showed that the modeled rate change did a good job of projecting the actual 

distribution. Comparison between the distribution patterns showed that there could be a need to 

adjust the spreader hardware to maintain a uniform pattern during VRA. The need for adjusting 

the fins and concurrent movement of the rear divider during rate changes might improve pattern 

uniformity as suggested by authors.    

2.4 MOISTURE MEASUREMENT TECHNIQUES 

Moisture content in bio-materials is an important decision variable during harvesting, 

storage, transportation and other processing operations. Several studies have shown the effect of 

litter moisture content on other physical properties such as bulk density, and of these properties 

on spreader performance. Moisture content in commonly available litter can vary between 15% 

to 40% wet basis depending on the type of management practice (Lague et al, 2005). This 

variation can affect spreader performance impacting litter application. Therefore, accurate 

determination of litter moisture before and while spreading can be used to reduce application 

errors and more precisely control the rate on-the-go. Standard and reference methods for 

determining moisture content involve tedious laboratory procedures and long oven-drying 

periods. Therefore, rapid methods for moisture measurement is essential for predicting the real-

time moisture content and providing rapid information for site-specific decision making related 
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to litter application. Limited research using any real-time moisture sensing devices has been 

conducted on litter moisture measurement. The challenge is to find a suitable sensor that will be 

able to provide reasonable MC estimates on a real-time basis during conveyance of litter. 

2.4.1 CONTACT TECHNIQUES 

Contact method of moisture sensing involves a sensor in contact with the material during 

measurement. This approach is also known as intrusive type of moisture measurement. This 

technique usually involves sensing a resistance or/and capacitance change for the sample 

between the electrodes, thus sensing the dielectric properties of the material. The dielectric 

properties of biomaterials have been mainly used for moisture measurement because of their 

useful for rapid moisture content sensing. The low cost and simple working principle of contact 

sensors supports their continuous use for moisture measurement in different biomaterials such as 

corn, hay etc.  

2.4.1.1 RESISTIVE AND CAPACITIVE 

Moisture meters based on electric resistance or capacitance type are the most common 

instruments for determining moisture content in biomaterials. Within a limit, these sensors are 

able to provide precise information about moisture content in agricultural materials. Kandala et 

al. (1987) used a small parallel-plate capacitive sensor for measuring kernel moisture content in 

corn. The capacitance was measured at a frequency of 1 MHz with and without the kernel in 

place. They reported that kernel moisture content was predicted within ±1% moisture over a 12% 

to 20% moisture range with 80% reliability at most moisture levels. A predictive model was 

developed by Chung and Verma (1991) for continuous measurement of rice moisture content 

during drying using resistance-type sensors. The effects of grain pressure, sensor orientation, 

moisture content and temperature on the moisture sensor output were investigated. They found 
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that simple resistive type sensors could provide a good estimate of MC within ±1%. Grain 

temperature was a more useful factor than local air temperature in the predictive model.  

Various moisture measurement sensors were reviewed by Marcotte et al. (1999) for 

measuring moisture during hay and forage harvest. They suggested that capacitive type sensors 

would be most suitable to estimate moisture in pneumatic conveying while impedance or 

conductivity type sensors might be more appropriate in balers.  Osman et al. (2001 and 2003) 

classified moisture measurement systems as direct or indirect methods. They also developed and 

evaluated a parallel-plate capacitor type moisture sensor for measuring hay moisture content and 

concluded that this type of sensor could not directly estimate moisture content (%) but a good 

correlation was observed between the sensor’s output and the amount of moisture in hay.  

Mendes et al. (2008) evaluated and calibrated a soil moisture sensor for measuring 

moisture content in different types of poultry manures. Four EC-5 capacitance-type sensors were 

used for measuring MC of meat-bird (broiler and turkey) litters and laying-hen manure. The 

sensors were immersed into plastic vessels containing poultry litter/manure and a CR10 

measurement and control module was used for programming and data retrieving. Tests were 

conducted under environmentally controlled laboratory conditions. Data showed that MC varied 

from 27.1% to 55% for the broiler litter, 22.8% to 56.1% for the turkey litter, and 11.0% to 

75.0% for layer manure. Bulk density varied from 318 to 468 kg/m3 for the meat-bird litters. The 

sensitivity of the sensor to the source temperature was also evaluated and it was found that the 

impact of litter temperature on MC measurement by the sensor was rather small. Results of the 

study indicated that when properly calibrated, the soil moisture measurement sensor can be used 

to quantify moisture content of poultry litter on a real-time basis.  
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Moisture content in compacted hay during drying was monitored by Savoie et al. (2011) 

using two moisture probes based on electrical resistance. A thermocouple was also inserted in 

individual layers of hay of 135-mm thickness. The probe MC measurements were compared with 

those obtained through oven drying. The probe measurements illustrated that the MC of hay 

decreased over time, and also faster drying for layers closer to the heated air flow. The probe MC 

needed to be corrected with a linear regression model to improve its prediction. Results indicated 

that dynamic and continuous measurement of MC during forage drying was feasible with a 

relatively low-cost resistive type sensor but further validation within different operating 

environments was needed.  

2.4.2 NON-CONTACT TECHNIQUES 

In some cases, the type of operating environment and material does not permit the direct 

sensor contact with material being sensed. A different, non-contact approach for moisture 

measurement using extrusive devices is used in these types of situations. These devices measures 

specific material properties (mostly optical) from a certain distance depending on type of sensing 

principle and the amount of accuracy desired in the measurement. The measured properties are 

used for determining the actual moisture content in the material. Infrared (IR), near infrared 

(NIR), microwave and neutron techniques are some commonly used non-contact moisture 

measurement techniques. In the past, researchers have successfully used these techniques for 

rapid moisture sensing in biomaterials such as cotton, hay, forage etc. and have also provided 

valuable information for incorporating these techniques on agricultural equipment for better 

material handling and process control.   
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2.4.2.1 INFRARED AND NEAR-INFRARED 

The use of surface reflectance measurements utilizing certain wavelengths has increased 

significantly in the past decade, particularly in biological materials. One such technique is 

infrared spectroscopy, which utilizes infrared region of the electromagnetic region to measure 

material reflectance and absorbance properties. Moisture information for the material can be 

easily extracted from the spectra by examining material reflectance properties at certain 

wavelengths. Infrared sensors have been successfully used by researchers for moisture 

measurements in biomaterials and reported to work quite well. Anthony and Griffin (1984, 1986) 

evaluated an infrared-type sensor for measuring the moisture content of ginned lint and its 

possible use in control systems for gin. They used a non-contact, infrared-type of moisture meter, 

with emitter and receptor located on the same side of the target, in this study. The sensor was 

installed at the feed control of the microgin and the feed control hopper provided cotton at a 

depth of about 1 m above the sensor. The moisture meter measured the moisture content of lint 

cotton during continuous gin processing. The response of the instrument to change in lint 

moisture was analyzed by fitting a regression line. The device measured the lint moisture to the 

nearest 0.5 percentage point with coefficient of determination of 0.96. Results indicated that the 

meter accurately predicted lint moisture in the seed cotton and has potential for incorporation 

into a moisture control system for gins.  

Near-Infrared (NIR) spectroscopy for moisture measurement gained interest because of 

its convenient and relatively large volume sampling. NIR characterizes the material based on its 

absorption in the 4000 – 12,500 cm-1 wavelength region, utilizing much broader features than IR 

spectra. NIR spectroscopy is well suited for measurement of moisture, since water O-H group 

overtone and combination bands are pronounced in this region in the spectrum. This technique is 
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readily adaptable and the low intensities of NIR absorptions permit the direct measurement of 

water over wide ranges in samples. NIR spectroscopy has been also used for analysis of poultry 

or animal manures by few researchers (Reeves, 2001; Reeves et al, 2002 and Sorensen et al, 

2007). Reeves (2001) evaluated near-infrared reflectance spectroscopy (NIRS) for determining 

the composition of poultry manures and its feasibility and limitations for analyzing poultry 

manures. A commercial testing laboratory provided manure samples and conventionally 

determined analyte values for total N, NH4+-N, organic N, minerals and moisture in the samples. 

The moisture content of the manures used for study ranged from a minimum of 12% to a 

maximum of 65.1%. Samples were blended using a food blender before any analysis. Spectra’s 

from 400 – 2498 nm were obtained using NIR Systems model 6500 monochromator with data 

collected every 2 nm interval at a bandwidth of 10 nm. Results indicated that scanning more 

number of samples by using more replicates would likely to improve calibrations. For a 

comparison of full spectra results (400 – 2498 nm) to those achieved using NIR region (1100– 

2498 nm), it was found that the NIR data was able to predict the moisture and NH4+-N alone 

versus using the full spectra. Overall results for NIRS on poultry manures showed that accurate 

calibrations for ammonium, organic and total N and moisture content can be developed using 

NIR spectra with coefficient of determination (R2) of 0.725, 0.894, 0.886 and 0.843, 

respectively.  Determination of minerals in manures was not viable using any of the spectral 

regions. Reeves et al. (2002) verified that ammonia could be determined with reasonable 

accuracy by NIRS using 1100 to 2498 nm spectral range with final calibration R2 of 0.90.  

Ye et al. (2005) conducted NIRS to analyze nutrients in different manures (111 solid 

poultry layer, 95 solid poultry broiler litter, 39 swine solid hoop and 85 swine slurry). The total 

solids (TS) in manures ranged between 26.49% and 88.49%. The R2 values for TS, total nitrogen 
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and NH3-N were between 0.80 and 0.97 for all manures. Authors concluded that NIRS can be 

effectively used for determining nutrient composition and certain minerals in manures. Soronsen 

et al. (2007) also investigated the feasibility of using NIRS for rapid determination of the 

composition of cattle and pig slurries. Samples with total solids content from <1 to 15% were 

collected during a 3-yr period and used for calibration and validation. Spectral data in the range 

1200 – 2400 nm were used for calibration based on partial least squares regression. Final results 

indicated that dry matter (DM), N, NH4-N and P can be determined with R2 values of 0.97, 0.94, 

0.92 and 0.87, respectively. They concluded that NIRS methodology is suitable for rapid analysis 

of DM, C, N, NH4-N, and P in both cattle and pig manures. 

2.4.2.2 MICROWAVE 

Currently, moisture measurement using microwave frequencies are of interest in grain 

and seeds only. Early work on sensing moisture content in grain by microwave measurements 

was initiated by Kraszewski and Kullinski (1976), who examined the attenuation and phase shift 

of waves traversing a grain layer. The ratio of attenuation and phase shift was investigated as a 

density-independent function for microwave sensing of moisture content (Jacobsen et al., 1980; 

Kent and Meyer, 1982; Kress-Rogers and Kent, 1987). Further studies with microwave 

measurements confirmed the usefulness of this ratio for sensing moisture content independent of 

bulk density fluctuations in grains and indicated a possibility of a single calibration for several 

materials (Kraszewski, 1988; Nelson and Kraszewski, 1990).  

Mclendon et al. (1993) conducted density independent measurement of moisture content 

in static and flowing grain using microwave frequencies. During static testing, microwave 

measurements were taken on wheat confined in a sample holder located between two antennas 

whereas continuous moisture measurements were taken of a stream of flowing grain discharged 
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from a storage bin for dynamic testing. Data indicated that moisture measurements were 

predicted within ±0.7% for the static samples and within ±1.2% for wheat in a dynamic, solid-

flow condition. Density-independent moisture measurements can be made on wheat within a 

specific density range (0.72 to 0.81 g/cm3).  

A low-cost microwave sensor was built and tested Trabelsi et al. (2007) for 

nondestructive, rapid sensing of moisture content in granular and particulate materials. The 

sensor was based on the principle of free-space transmission for moisture determination from 

measurement of the dielectric properties of the material. Results for wheat and soybeans showed 

that moisture content can be determined in either material from a single moisture calibration 

equation with a standard error of 0.5%. They proposed that this sensor can provide widespread 

integration of microwave sensing technology in dealing with granular and particulate materials, 

including food and agriculture, mining and construction. Nelson and Trabelsi (2010) showed that 

grain and seed permittivity’s can be measured at microwave frequencies for rapid sensing of 

moisture content. They also supported the idea of a universal calibration, which would provide a 

significant advantage and should encourage the development of microwave moisture sensors for 

on-line applications for grain and other biomaterials in agriculture industry. 

2.5 SUMMARY 

The environmental concerns due to litter over-application have led to its more efficient 

management. This efficiency can be achieved by improving technology on a litter spreader for 

increasing spread accuracy and uniformity. Studies have shown the effect of litter properties and 

spreader parameters on spreader performance and thereby distribution in the field. However, the 

high variability in litter physical properties, especially moisture content and bulk density, makes 

it more difficult to maintain acceptable application in the field. The solution to this problem 
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requires determination and accounting for the litter moisture or/and density variations in a 

spreader rate controller. Researchers have evaluated both contact and non-contact type moisture 

measurement techniques for moisture determination in various biomaterials including poultry 

litter. Based on past research, capacitive and near infrared spectroscopy (NIRS) methods 

appeared to be feasible options for inline moisture measurement in poultry litter. Further research 

was needed to evaluate the feasibility of these methods for real-time moisture measurement in 

litter on a spinner-disc spreader. 

  



47 

 

 
 
 
 

 
CHAPTER THREE 

INFLUENCE OF BROILER LITTER BULK DENSITY ON FIELD APPLICATION 

WITH A SPINNER-DISC SPREADER 

3.1 ABSTRACT 

Poultry litter is commonly land applied as an organic fertilizer on crop and pasture land. 

However, the high variability in physical characteristics of litter, especially moisture content and 

bulk density makes it difficult to maintain accurate metering and uniform distribution during 

application with spinner-disc spreaders. A study was conducted to understand the effect of litter 

bulk density on conveyor metering and spread distribution for a spinner-disc, litter spreader. Two 

loads of broiler litter (A and B) at two different moisture contents (32% and 28%, respectively) 

and wet bulk densities (416.5 and 480.6 kg/m3, respectively) were used in this study. Different 

spreader and rate controller settings (two gate heights: 17.8 and 34.9 cm, four application rates: 

1743, 3424, 3486 and 6848 kg/ha, two correct (actual) density values: 416.5 and 480.6 kg/m3, 

and three incorrect (virtual) density values: 352.4, 416.5 and 544.6 kg/m3) were established as 

treatments. Results indicated that incorrect density treatments generated high discharge rate 

errors (>±15%) during conveyance tests. Field application rates were also outside the considered 

10% acceptable limits for both litter types (A & B). The central peak of the single-pass patterns 

at different density treatments varied with actual application rate (mass flow). Standardized 

patterns at different density treatments for the same litter type were found to be statistically 

different (p<0.05) at a few transverse positions across the swath. These results indicated the 
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importance of determining and using the correct density value within a spreader, rate controller 

for accurate application with spinner-disc spreaders. 

3.2 INTRODUCTION 

The escalating prices of inorganic fertilizers have made litter an attractable and 

alternative fertilizer source. In many southeastern states, litter has been used as a fertilizer by 

applying it to crop and pasture lands to meet soil or plant nutrient requirements due to its high 

nutritive value and availability in some regions. Poultry production in Alabama generates 

approximately 2 million tons of poultry litter annually (Mitchell and Tyson, 2007). In the past, 

litter has been applied near production facilities. Continued application in these areas over the 

years has resulted in increased environmental concerns due to off-site transport of nutrients; 

specifically nitrogen (N) and phosphorus (P). These environmental issues associated with litter 

application have initiated the need to enhance environmental and nutrient stewardship at the farm 

level. Most of the current research focuses on best management practices (BPMs) for litter 

including means to improve field application. The 4R’s of nutrient management (Right rate, 

Right time, Right place and Right source) are being promoted by the fertilizer industry and 

agencies such as USDA-NRCS to ensure accurate metering and placement of materials while 

reducing environmental risks. The 4R’s concept along with recent precision agriculture 

technologies such as variable-rate (VR) also provides the basis to improve litter spreading 

thereby reducing the risk of offsite nutrient transport. However, poultry litter is extremely 

variable in terms of its physical characteristics such as particle size, bulk density, compressibility 

(Bernhart et al., 2009) and moisture content (Ndegwa et al., 1991; Malone et al., 1992). This 

inherent variability makes it difficult to uniformly and accurately apply litter using spinner-disc 

spreaders (Thirion et al., 1998; Lague et al., 2005). 



49 

 

Research has been conducted to investigate various physical properties of poultry litter. 

Biomaterials such as poultry litter are hygroscopic in nature and will therefore exchange 

moisture with their surroundings. Several studies have reported the effect of moisture content on 

physical properties of biological materials. Malone et al. (1992) reported that the wet bulk 

density and moisture content of clean-out manure, on average, increased from 432 kg/m3 to 545 

kg/m3 and 27% to 32%, respectively as the number of flocks increased from a low of 1 to 6 to a 

high of 13 to 18 flocks, respectively. The dependence of moisture content on number of flocks 

raised on the litter was also emphasized by Jenkins (1989) and Wilhoit et al. (1993). Koon et al. 

(1992) determined low moisture content of 17.4% after the first week of growout to a high of 

22.5% after the seventh flock for poultry litter with pine shavings.  

Glancey and Hoffman (1996) reported that moisture content significantly increased the 

static coefficient of friction and wet bulk density of poultry litter. Thirion et al. (1998) 

investigated the physical properties of 25 different types of animal manures including poultry 

litter. They found that dry matter content for most of the manures ranged from 16% to 53% with 

bulk densities measured from a large variety of origins (animals, housing, etc.) varying 

significantly within the same batch and primarily depended on dry matter content. The variation 

in litter density as moisture content changes was also reported by Landry et al. (2004) and Lague 

et al. (2005). The heterogeneous nature of poultry litter and non-uniform loading conditions of 

spreaders makes it difficult to continuously monitor the rate of manure flow onto application 

equipment. Therefore, these researchers recommended the need for technology development to 

continuously sense and monitor manure nutrient content and flow rate for land application 

equipment (e.g. litter spreaders).  Bernhart et al. (2009) indicated that increasing poultry litter 

moisture content resulted in a decrease in poured bulk density, particle density and porosity. The 
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percent compressibility of poultry litter was reported to increase from 2.5% to 18.0% as sample 

moisture contents increased from 10.2% to 30.9%, respectively.  

Knowledge of litter properties is also important when trying to evaluate the uniformity of 

spread. Wilhoit et al. (1993) reported that smaller particles tended to land directly behind a litter 

spreader with larger particles being distributed further out. The influence of litter heterogeneity 

on spreader performance was investigated by Thirion et al. (1998). A good quality of spread (CV 

= 8%) was obtained with a homogeneous material (9% variability) whereas a heterogeneous 

material (49% variability) produced low quality spreads (CV = 29%).  Therefore, it is important 

to verify the heterogeneity of manure when planning to assess spreader performance. Pezzi and 

Rondelli (2002) evaluated a prototype spreader for applying four poultry manures differing in 

composting degree and moisture content. Improved distribution was found at high spinner speeds 

with a drop point away from the center of the spinner-discs. The physical properties of the 

manures influenced the distribution pattern with the worst distribution occurring with large 

particles at high moisture contents.  

A key goal when applying organic and inorganic fertilizers with spinner-disc spreaders is 

to maintain spread uniformity along with accuracy for the target rate. Past research (Thirion et 

al., 1998; Landry et al., 2003; Lague et al., 2005) suggested that physical properties of applied 

materials in conjunction with machine parameters can have a significant effect on material 

distribution when applying with spinner-disc spreaders. Among these properties, moisture 

content and bulk density have a considerable amount of effect on application rates. There exists a 

considerable amount of research on understanding the machine parameters that can influence 

spread uniformity of spinner-disc spreaders including those equipped with recent technologies 

such as variable-rate technology (VRT) (Fulton et al., 2001; Molin et al., 2002; Lawrence and 
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Yule, 2005). However, limited information is available on the effect of litter physical properties, 

especially moisture content and bulk density, on accuracy and uniformity of spread. Knowing the 

moisture and bulk density of litter is important for application with a spinner-disc spreader since 

density is one of the required setup parameters for a rate controller including those with variable-

rate capabilities. However, moisture content for commonly available poultry litter can vary 

between 15% and 40% (w.b.) depending upon the feeding and manure management systems 

(Lague et al., 2005). This large range in moisture content can cause a significant density 

variation within a batch ultimately impacting the amount of litter applied and possibly uniformity 

during field application. 

The overall goal of this research is to develop technology to enhance litter application 

(i.e. metering and distribution) when using spinner-disc spreaders. We want to further the idea 

that real-time density updates within a spreader rate controller could help in better management 

of litter application.  

3.3 SUB-OBJECTIVES 

The specific objectives of this study were to (1) evaluate the effect of litter bulk density 

on conveyor discharge rate (mass flow) for a spinner-disc spreader, and (2) determine the impact 

of bulk density on distribution obtained from a litter spreader.  

3.4 MATERIALS AND METHODS 

3.4.1 EQUIPMENT AND EXPERIMENTAL DESIGN 

A standard litter spreader manufactured by Chandler Equipment Company (Gainesville, 

GA) was used for this investigation. This pull-type spreader was equipped with hydraulically 

controlled apron chain and dual rear spinner-discs. Each disc had four uniformly spaced vanes. 

Hydraulic flow control for the conveyor chain and spinner-discs was maintained using 
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proportional valves (Brand Hydraulics, Omaha, NE) with pulse-width modulation (PWM) 

regulation. A John Deere 6420 tractor was used to pull the spreader during testing. The tractor 

was equipped with a John Deere GreenStarTM AutoTracTM system using real-time kinematic 

(RTK) correction. A Topcon Precision Ag (Livermore, CA) X20 console loaded with Topcon’s 

Spreader Control software and the corresponding electronic control unit (ECU) was used for 

apron chain and spinner-disc speed control. The X20 spreader setup menus required parameters 

such as gate height, swath width, and product density along with feedback from tractor GPS for 

ground speed to maintain the target application rate. A Proximity sensor (Automation Direct, 

Cumming, GA) mounted under one of the spinner-discs and a Dickey-John Encoder (Dickey-

John Corp., Auburn, IL) coupled directly to the front shaft of the apron chain were used to 

monitor and control spinner disc speed and conveyor shaft speed, respectively.  

Two types of broiler litter (termed as litter A and litter B) acquired from different 

production houses were selected. Bulk samples for both litters were collected randomly from the 

piles in sealed plastic bags and labeled accordingly. Mean moisture content and wet bulk density 

was determined for each type of litter before testing. A small load from bulk litter A was 

weighed and secured separately in a plastic container.  From this load, six 3-kg samples were 

weighed and sealed in six small air tight containers for moisture treatment to determine moisture-

density relationship for this litter. Moisture content of these samples was altered to achieve the 

target moisture contents (0%, 18%, 24%, 30%, 36% and 42% wet basis) by either drying or 

adding required amount of water. The moisture content and wet bulk density for each sample 

was measured, after samples were stored in sealed containers for 48 hour period to ensure 

uniform moisture absorption. Moisture content for the samples was determined using an OHAUS 



53 

 

Moisture Analyzer (MB45, OHAUS Corp., Pine Brook, NJ). Wet bulk Density of the samples 

was measured using an in-situ density measurement device. 

Based on the mean moisture content and wet bulk density for each type of litter, different 

spreader and controller settings (treatments) were established to perform the testing. Table 3.1 

provide the values of bulk density, gate height and target rate used for the rate controller settings. 

These values were entered in the Spreader Control Software setup menus prior to each test. 

Table 3.1. Summary of broiler litter characteristics, density treatments, spreader gate 
height and the corresponding target application rate programmed into the Topcon X20 
rate controller. 

Type 

Moisture 
Content 

Wet Bulk Density 
(kg/m3) 

Gate 
Height 

Target 
Rate 

(%) Correct Incorrect (cm) (kg/ha) 

A 32 416.5 352.4 
17.8 

1743 
3486 

34.9 
3424 
6848 

B 28 480.6 
17.8 

1743 
416.5 3486 
544.6 

34.9 
3424 

  6848 
 

For each type of litter, different density treatments (values) were used in the X20 

controller to measure the impact on discharge rate. For litter A, two density treatments (one 

correct density value: 416.5 kg/m3; one incorrect density value: 352.4 kg/m3) were used in the 

X20 rate controller whereas for litter B, three density treatments (one correct density value: 480 

kg/m3; two incorrect density values: 416.5 and 544.6 kg/m3) were utilized (Table 3.1). The only 

difference between tests for each litter type was the inputting the density values (correct and 

incorrect) in X20 controller, not the actual density of the litter. Four application rates were 

calculated based on the gate height of 17.8 and 34.9 cm (two rates at each gate height) and set in 
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the X20 controller as the target rates (Table 3.1). Treatments for bulk density and application rate 

were randomized within all the tests whereas gate height was blocked within each density 

treatment. Three replications were conducted for a total of 108 tests. All equipment was 

calibrated based on manufacturer’s published literature (Chandler Equipment Company, 

Gainesville, Ga.) before conducting any tests. Litter A was used for calibrating the spreader and 

same calibration settings were used for litter A and B throughout the testing. 

3.4.2 CONVEYANCE TESTS 

Conveyance tests were conducted at the Biosystems Engineering facility at the E.V. 

Smith Research Center, Shorter, AL. For these tests, the rear divider was removed and a 

cardboard slide was used to allow litter to be easily conveyed into a collection container (227-kg 

capacity) for weighing (Figure 3.1). Prior to each test, the X20 controller settings were manually 

entered within the setup menus to match the appropriate treatment. Once the desired settings 

were typed into the X20, a test was run by turning on the controller master switch. Accumulated 

material collected in a collection container was weighed and documented along with the total 

conveyed mass read from the Spreader Control Software. The front roller speed (rpm) was 

measured with a standard tachometer. The distance travelled by the conveyor chain and total test 

time were also recorded. 
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Figure 3.1. Spreader setup used during conveyance testing illustrating fabricated chute for 

funneling litter into the plastic, collecting container. 

3.4.3 UNIFORMITY TESTS 

Field tests were performed according to ASABE Standard S341.4 (ASABE Standard, 

2009). A single row of 19 pans, uniformly spaced at 0.9-m, with pans on either side of the center 

pan removed to allow the tractor and spreader to pass unobstructed, was used for calibration and 

during the pan tests (Figure 3.2). Experiments were conducted in a level field with tarps used to 

capture litter not collected by the pans. The spreader hopper was filled to at least 40% to 50% 

capacity (ASABE Standard, 2009) during all tests. Collection pan dimensions measured 50.8-cm 

long × 40.6-cm wide × 10.2-cm tall with a 5.1-cm tall, 10.2-cm grid used to prevent material loss 

(ASABE Standard, 2009). The spreader was calibrated at a target application rate of 4480 kg/ha 

at a gate height of 17.8 cm, a spinner speed of 650 rpm, a ground speed of 8 km/h, and 9.1-m 

swath width.  
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Figure 3.2. Tractor, litter spreader, and collection pan matrix used during pan testing. 

An AB line was established for the RTK autoguidance system in order to maintain the 

tractor and spreader centered on the pans throughout testing. Prior to each test, the appropriate 

spreader settings were entered into the Spreader Control Software for each test. Conveyor and 

spinner-discs were turned on from the controller master switch before the spreader transversed 

the pans. After each test, material collected in each pan was placed in a container and weighed 

using an OHAUS digital scale (OHAUS Scale Corp., Union, NJ). All data was saved in a MS 

Excel file for data analysis. 

3.4.4 DATA ANALYSIS 

The conveyance test analysis consisted of taking the accumulated mass of litter collected 

in the container and converting it to a “discharge” rate (kg/rev) using the test time and conveyor 

speed (Equation 3.1). Mean actual discharge rate (kg/rev) and standard deviation (kg/rev) were 

calculated for the three replications at each setting used. Mean percent error (%) for each test 

setting was determined by comparing the mean actual discharge rate to the mean theoretical 

(target) discharge rate provided by the Spreader Control Software. Actual and theoretical 
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discharge rates were compared and plotted to evaluate the impact of bulk density on conveyor 

discharge for both litter samples. 
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Field data analysis consisted of converting the amount of litter collected in each pan to an 

“actual” application rate (kg/ha) applied at that transverse location. Mean single-pass and 

simulated overlap (progressive method; ASABE Standard, 2009) distribution patterns were 

generated. For distribution patterns, the 0.0 m transverse position on the plots represented the 

spreader centerline while negative and positive transverse positions represented the left and right 

side, respectively from the centerline. The single-pass and overlap patterns were plotted to 

visualize any differences between treatments. From the overlap pattern data, the mean, actual 

application rate by treatment and coefficient of variation (CV) was calculated to evaluate spread 

accuracy and uniformity, respectively. Actual and theoretical application rates were compared 

and plotted to assess the impact of density on spreader performance.  

A standardized distribution pattern at each density treatment was generated by dividing 

the application rate at each transverse location of the single-pass pattern by the calculated 

simulated, mean overlap rate. This standardization approach provides a method for unit-less 

representation of pattern data. The area under the standardized patterns (curves) is equal to one 

and therefore allows the direct comparison of distribution patterns at different transverse 

locations irrespective of the rate. An analysis of variance (ANOVA) was conducted on the 

standardized pattern data using SAS (Statistical Analysis Software, SAS Inst., NC) to determine 

possible statistical differences between patterns at the 352.4 and 416.5 kg/m3 density treatments 

for litter A and, between patterns at 480.6 and 544.6 kg/m3 density treatments for litter B. An 
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ANOVA analysis was also performed on the standardized data to check for statistical differences 

between the patterns for litter A and B. 

3.5 RESULTS AND DISCUSSION 

The mean moisture content (MC) and wet bulk density (BD) for the two types of broiler 

litter is presented in Table 3.2. Statistical testing showed that the mean moisture contents and 

bulk densities for litter A and B were significantly different (p<0.05). Litter A had a higher MC 

than litter B but lower BD. This result indicated that the physical characteristics between these 

two sources of litter were different. Also, litter A had more characteristic variability than B as 

indicated by the standard deviation values for moisture and bulk density in Table 3.2. This 

variability was also an observable difference during testing. 

Table 3.2. Mean moisture content and wet bulk density for the two types of litter used in 
testing. 

  
Moisture Content 

(%) 
  

Wet Bulk Density 
(kg/m3) 

Type Mean Std. Dev. Mean Std. Dev.
A 32.1 1.0 416.5 13.1 
B 28.4 0.7   480.6 8.8 

 

Figure 3.3 shows the moisture-density curve for litter A. A strong linear relationship 

between the moisture content and bulk density (w.b.) was observed with a R2 value of 0.99. The 

bulk density increased with increase in the moisture content of the litter as reported in the past 

studies (Malone et al., 1992; Glancey and Hoffman, 1996; Thirion et al., 1998). The mean dry 

bulk density (i.e. 0% MC) for the litter was determined as 304.9 kg/m3. This data showed that 

litter density was dependent on its moisture content and varied with litter moisture. It is believed 

that a similar linear curve between moisture and bulk density exists for all types of broiler litter 

obtained from different sources and can be generated. The moisture-density curve could be used 
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to provide rapid moisture and density information for real-time application control on a litter 

spreader. 

 
Figure 3.3. Plot illustrating moisture-density relationship for broiler litter A (vertical bars 

represent the standard deviation at each moisture content). 

3.5.1 CONVEYOR DISCHARGE RATE ANALYSIS 

Tables 3.3 and 3.4 summarize the conveyor discharge rate results.  Actual discharge rates 

obtained using the actual density values were near the theoretical rates calculated by the X20 

controller with rate errors less than ±5% (-4.8% – 1.8%).  The virtual or incorrect density 

treatments produced higher rate errors (>±15%) which were expected. For litter A, using the 

incorrect density value of 352.4 kg/m3 versus an actual litter density of 416.5 kg/m3, resulted in 

higher actual discharge rates (>17.0%) than the theoretical target rates. For litter B, higher 

(>15.6%) and lower discharge rate errors (>-15.3%) were recorded for incorrect density values 

of 416.5 kg/m3 and 544.6 kg/m3, respectively compared to smaller errors (<±5%) for an actual 

density of 480.6 kg/m3. It was noticed that using a lower incorrect density value (416.5 kg/m3) 

than the actual density value (480.6 kg/m3) generated higher or positive rate errors whereas using 

a higher incorrect density (544.6 kg/m3) produced lower or negative errors. Higher standard 
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deviation values occurred for the actual discharge rates for litter A which was contributed to the 

larger characteristic variation in litter A. 

Table 3.3. Summary of conveyance tests for broiler litter A; actual density (w.b.) = 416.5 
kg/m3. 

Controller Settings 

Treatment 
ID 

Bulk 
Density 

Gate 
Height 

Target 
Rate 

Mean Discharge 
Rate (kg/rev) 

Percentage 
Error 

Standard 
Deviation

(kg/m3) (cm) (kg/ha) Theoretical Actual (%) (kg/rev) 
E 416.5 17.8 1743 24.9 25.4 1.8 1.6 
F 416.5 17.8 3486 24.9 24.5 -1.8 3.1 
G 416.5 34.9 3424 49.4 48.5 -1.8 4.4 
H 416.5 34.9 6848 49.4 47.6 -3.6 2.8 
E1 352.4 17.8 1743 21.3 26.3 23.4 4.5 
F1 352.4 17.8 3486 21.3 24.9 17.0 1.2 
G1 352.4 34.9 3424 41.7 49.9 19.6 4.6 
H1 352.4 34.9 6848 41.7 48.1 15.2 1.4 

Table 3.4. Summary of conveyance tests for broiler litter B; actual density (w.b.) = 480.6 
kg/m3.  

Controller Settings 

Treatment 
ID 

Bulk 
Density 

Gate 
Height 

Target 
Rate 

Mean Discharge 
Rate (kg/rev) 

Percentage 
Error 

Standard 
Deviation

(kg/m3) (cm) (kg/ha) Theoretical Actual (%) (kg/rev) 
P 480.6 17.8 1743 29.0 27.7 -4.7 0.7 
Q 480.6 17.8 3486 29.0 28.1 -3.1 0.6 
R 480.6 34.9 3424 57.2 54.4 -4.8 1.5 
S 480.6 34.9 6848 57.2 54.9 -4.0 1.7 
P1 416.5 17.8 1743 24.9 29.1 16.4 1.4 
Q1 416.5 17.8 3486 24.9 29.5 18.2 1.0 
R1 416.5 34.9 3424 49.4 57.6 16.5 2.0 
S1 416.5 34.9 6848 49.4 57.2 15.6 2.5 
P2 544.6 17.8 1743 32.7 27.7 -15.3 1.1 
Q2 544.6 17.8 3486 32.7 26.8 -18.1 0.8 
R2 544.6 34.9 3424 64.4 54.9 -14.8 2.6 
S2 544.6 34.9 6848 64.4 53.5 -16.9 1.5 

 

Figure 3.3 presents the comparison of actual versus theoretical discharge rates. The 10% 

error line represents an acceptable error margin. It was observed that using the correct density 

value produced discharge rates along the desired 1:1 or well less than 10% for both litter types. 
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However, the incorrect density treatments generated discharge rates outside the 10% range 

thereby indicating the importance of using the correct density value within a rate controller to 

maintain conveyance accuracy. 

  
                           (a)                                                                         (b) 

Figure 3.3. Actual versus theoretical discharge rates during conveyance tests for broiler 
litter (a) A: actual density = 416.5 kg/m3 and (b) B: actual density = 480.6 kg/m3. 

3.5.2 FIELD APPLICATION RATE ANALYSIS 

Tables 3.5 and 3.6 present the application rate summary data for the pan tests. Higher and 

lower application rates than the target rates occurred in the field using an incorrect density value 

for litter A and B, respectively. For both types of litter, using the correct density value within the 

Spreader Control Software yielded smaller application errors (<±10%) compared to large errors 

(-21.4% to 16.2%) for an incorrect density value. The computed CV’s for both types of litter 

ranged from 23.4% to 30.3%, except for litter A, test D which resulted in a CV of 18.9%. 

Typically, one would expect lower CV’s for a more uniform material (litter B) than for a less 

uniform (litter A). 

 

20

30

40

50

60

70

20 30 40 50 60 70

A
ct

u
al

 D
is

ch
ar

ge
 R

at
e 

(k
g/

re
v)

Theoretical Discharge Rate (kg/rev)

Litter A

416.5 kg/m^3

352.4 kg/m^3

1:1 Line

10% Error

20

30

40

50

60

70

20 30 40 50 60 70

A
ct

u
al

 D
is

ch
ar

ge
 R

at
e 

(k
g/

re
v)

Theoretical Discharge Rate (kg/rev)

Litter B

416.5 kg/m^3

480.6 kg/m^3

544.6 kg/m^3

1:1 Line

10% Error



62 

 

Table 3.5. Summary of pan tests for broiler litter A; actual density (w.b.) = 416.5 kg/m3. 
Controller Settings 

Treatment 
ID 

Bulk 
Density 

Gate 
Height 

Target 
Rate 

Mean 
Application Rate 

Percentage 
Error CVa 

(kg/m3) (cm) (kg/ha) (kg/ha) (% ) (%) 
E 416.5 17.8 1743 1626 -6.7 28.9 
F 416.5 17.8 3486 3172 -9.0 26.5 
G 416.5 34.9 3424 3171 -7.4 24.8 
H 416.5 34.9 6848 6319 -7.7 18.9 
E1 352.4 17.8 1743 2031 16.5 28.9 
F1 352.4 17.8 3486 4387 25.8 30.3 
G1 352.4 34.9 3424 4097 19.6 23.4 
H1 352.4 34.9 6848 7955 16.2 27.2 

a) CV represents the Coefficient of Variation or uniformity of spread 

Table 3.6. Summary of pan tests for broiler litter B; actual density (w.b.) = 480.6 kg/m3. 
Controller Settings 

Treatment 
ID 

Bulk 
Density 

Gate 
Height 

Target 
Rate 

Mean 
Application Rate 

Percentage 
Error CVa 

(kg/m3) (cm) (kg/ha) (kg/ha) (%) (%) 
P 480.6 17.8 1743 1628 -6.6 27.0 
Q 480.6 17.8 3486 3190 -8.5 26.8 
R 480.6 34.9 3424 3171 -7.4 27.4 
S 480.6 34.9 6848 6243 -8.8 30.3 
P2 544.6 17.8 1743 1400 -19.7 26.3 
Q2 544.6 17.8 3486 2838 -18.6 29.1 
R2 544.6 34.9 3424 2693 -21.4 27.7 
S2 544.6 34.9 6848 5637 -17.7 24.8 

a) CV represents the Coefficient of Variation or uniformity of spread 

Figure 3.4 provides a comparison of actual versus theoretical application rates for both 

litter A and B. These data illustrated that the actual application rates when using an incorrect 

density value tended to be higher and lower for litter A and B, respectively than the theoretical 

rates. Data points outside the 10% error range indicated operation beyond the allowable limit. 

These results were in agreement with the conveyance testing results highlighting the need to use 

the correct density value within a spreader rate controller to accurately meter litter. 
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                                    (a)                                                                           (b) 

Figure 3.4. Actual versus theoretical application rates during pan tests for broiler litter A; 
actual density = 416.5 kg/m3 (a) and litter B; actual density = 480.6 kg/m3 (b). 

3.5.3 SINGLE-PASS PATTERN ANALYSES  

The overall mean, single-pass patterns at different density and rate treatments for both 

types of litter are illustrated in Figure 3.5. A “W” shape pattern existed for both types of litter but 

was the best achievable pattern for this spreader and litter combination.  This “W” pattern was 

consistent at all density and application rate treatments. In comparison between the patterns at 

different rate treatments, it was observed that the pattern peak varied with application rate. The 

general trend was that the central peak increased as the rate increased. For example, the patterns 

at the 6848 kg/ha treatment had higher peaks than the patterns at the 1743 kg/ha.   

Similar trends were observed for comparison between the patterns at the different density 

treatments for both litter types. The intensity of the “W” shape, especially at the center, varied 

between the density treatments due to different actual application rates or mass flow associated 

with these treatments. Within each litter type, the pattern central peak was higher at the lower 
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density treatment than the peak at the higher density treatment for each rate treatment. For 

example, the pattern at the 352.4 kg/m3 density treatment for litter A had a higher peak at the 

center than the pattern at the 416.5 kg/m3 density treatment for 1743 kg/ha (Figure 5a). This 

change in magnitude occurred due to higher actual application rate or mass flow at the lower 

density treatment than mass flow at the high density treatment. 

  
                                         (a)                                                                        (b) 

  
                                         (c)                                                                        (d) 

Figure 3.5. Comparison of overall mean single-pass distribution patterns at different 
density treatments by application rate and litter type. 
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3.5.4 STANDARDIZED PATTERN ANALYSIS 

Figure 3.6 illustrates the standardized distribution patterns at different density treatments 

for litter A and B. Within both litter types, differences between the patterns were mainly 

observed between the -3.7 and 3.7 m transverse locations, on either side of the spreader 

centerline. For example, the patterns at the 352.4 and 416.5 kg/m3 density treatments for litter A 

were different at 0, 1.8 and 2.7 m locations on either side of the centerline for 3424 kg/ha. The 

ANOVA results for these patterns also showed significant differences at -1.8 m (p=0.0023) and 

1.8 m (p=0.0159) locations at same rate treatment. Similarly, for litter B at 3424 kg/ha, the 

patterns at the 480.6 and 544.6 kg/m3 density treatments differed at the 1.8 and 2.7 m transverse 

locations on either side of centerline. The ANOVA results also indicated statistical differences 

between these patterns at -3.7 m (p=0.0029) and -1.8 m (0.0480) locations. Similar trends were 

observed in other rate treatments as well, for both litter types. 

  
                                    (a)                                                                 (b) 
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                                    (c)                                                                   (d) 

Figure 3.6. Comparison of standardized, mean single-pass distribution patterns at different 
density treatments by application rate and litter type. 

Comparison based on litter type also indicated a few differences between litter A and B 

patterns at the 1.8 and 3.7 m locations on either side of the centerline for all rate treatments. The 

ANOVA analysis on standardized data for comparison between litter A and B patterns indicated 

significant differences at a few transverse locations such as -3.7 m (p=0.0085) and -1.8 m 

(p=0.0008) for 3424 kg/ha, and -3.7 m (p=0.0055) and -4.6 m (p=0.0063) for 6848 kg/ha 

treatment. Though the ANOVA results on the pattern data did not indicate significant differences 

at all the observed locations (p>0.05) in Figure 3.6 but practical differences existed between 

patterns. Theoretically, correct density values within the rate controller for individual rate 

treatments should generate the same single-pass and standardized patterns. The observed 

differences in the patterns within each rate treatment showed the influence of density treatments, 

used in the Spreader Control Software, on the distribution patterns. These differences can be 

attributed to differences in mass flow. As mass flow increases, so does the magnitude of the 

resulting pattern. 
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Results for this study indicated that wet bulk density was linearly related to its moisture 

content for litter A and could be used to determine density from litter moisture information with 

proper moisture-density curve. The incorrect density value applied in the Spreader Control 

Software affected the resulting litter application rate and distribution pattern by varying the 

actual conveyor discharge (mass flow). These findings supported the idea of using a correct 

density value within a spreader rate controller. However, the moisture variability found in litter 

tends to produce density variation within a load, making it difficult to use one accurate density 

value in the rate controller for litter application. Hence, the traditional approach of using a 

constant density value within a rate controller can produce high application errors (>±10%) if 

density variation exists within the litter. The proposed solution would be inclusion of real-time 

moisture content or density data as a secondary feedback to a spreader rate controller during 

litter application. This feedback data can be used to update real-time density values, with the 

help of a proper moisture-density calibration curve uploaded in the Spreader Control Software. 

The secondary feedback approach would help better control and manage the desired target 

application rates while keeping off-rate errors to less than 10%. In the future, real-time density 

updates within a spreader rate controller could conceivably be used for making on-the-go 

spreader hardware adjustments (e.g. spinner speed) in order to maintain acceptable uniformity of 

spread of litter.  

3.6 SUMMARY 

The conveyor discharge rates and distribution patterns for a typical spinner-disc spreader 

were characterized to determine bulk density effect on field application of broiler litter. Initial 

results concluded that wet bulk density of litter A was dependent on its moisture content and 

increased with an increase in moisture content. Rate analysis results showed that litter density 
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affected conveyor discharge rates based on both conveyance and pan tests. Higher rate errors 

(>±15%) were generated during both tests when incorrect density values were applied in the 

Spreader Control Software compared to low errors (<±10%) when using the correct litter density 

value.  

Distribution pattern analysis indicated that the peak of the “W” shaped single-pass 

patterns at different density treatments increased with increase in the actual application rate or 

conveyor mass flow. Comparison among standardized patterns reflected differences in the 

patterns at correct and incorrect density treatments between the -3.7 and 3.7 m transverse 

locations for both litter types (A and B). Differences between the patterns were attributed to 

change in the conveyor mass flow which was caused by the incorrect density treatments used 

within the rate controller.  

Overall, high rate errors and differences in distribution patterns highlighted the 

importance of using correct density values within a spreader rate controller for accurate litter 

metering and distribution. Inclusion of an appropriate inline moisture or/and density sensing 

technology for accurate determination and incorporation of real-time density values within a rate 

controller can help in maintaining an acceptable application accuracy (within 10%) when 

applying litter with a spinner-disc spreader. 
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CHAPTER FOUR 

EVALUATION OF CAPACITANCE TYPE MOISTURE SENSOR FOR MEASURING 

BROILER LITTER MOISTURE CONTENT 

4.1 ABSTRACT 

A simple, low cost capacitance type grain moisture sensor was tested for measuring 

broiler litter moisture content. The sensor response (based on differential voltage) was recorded 

over a range of 16%-43% moisture content (w.b.) (10 samples at 3% interval) for broiler litter. 

Three different densities (A: loose bulk, B: medium and C: highly dense) were used as 

treatments at each moisture level. Initial data analysis indicated that litter density affected the 

sensor output voltage. The sensor generated a linear output within the 16%-31%, 16%-28% and 

16%-21% moisture range at density treatments A, B and C, respectively. Linear regression 

models (Model 1, 2 and 3 at density treatment A, B and C, respectively) relating sensor output 

voltage to moisture content generated high R2 values within 0.96-0.99 at each density treatment. 

The calibration errors (SEC and RMSEC) for all the models were less than 1%.  Validation 

results also provided high linear relationship (R2 = 0.90-0.94) between predicted and actual 

moisture values. Both model 1 and 2 generated low prediction errors (<1.2%) whereas model 3 

produced high prediction errors (>1.8%). Model 2 produced the best results by predicting 

moisture values with a good R2 value of 0.92 and low SEP and RMSEP values of 1.0483% and 

1.0128%, respectively. The overall results suggested that besides few limitations, properly 

calibrated sensor has a good potential for real-time moisture measurements of broiler litter.
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4.2 INTRODUCTION 

Due to environmental regulations, there is an increasing need for rapid methods of 

analyzing physical and chemical properties of animal manures to more efficiently utilize them as 

fertilizer and avoid unnecessary environmental contamination. Presently, analyses of poultry 

manures requires the use of several methods for determining the constituents of interest i.e. 

nutrient content, moisture content, minerals etc. Moisture content is important because it affects 

other litter properties such as bulk density and compressibility. Litter physical properties, 

especially moisture content and density, are important parameters for accurate and uniform land 

application of the litter. Wide moisture range (15% - 40%) found in poultry litter due to different 

feeding and management systems (Lague et al., 2005) is believed to contribute towards 

inacceptable distribution obtained with spinner-disc spreaders. Accurate moisture determination 

of poultry litter is thereby crucial for improving application. This will require real-time moisture 

analysis of the litter before or during application.  

Currently, moisture content in biomaterials such as poultry litter is determined through 

standard oven methods that involve tedious laboratory procedures and long oven-drying periods 

(24-72 hours). In contrast, rapid methods of moisture measurement offer the possibility of quick 

analysis of samples with little or no sample preparation while simultaneously determining other 

material properties. Rapid methods are more suitable for real-time moisture analysis since the 

ultimate target would be inline moisture measurement of poultry litter on spinner spreaders 

during application.  

Moisture measurement methods are usually classified as contact or non-contact based on 

material contact with the sensing device. Capacitance and resistance type moisture meters are 

common contact type moisture measurement devices for biomaterials. These low cost and easy-
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to-use sensors can provide moisture information in agricultural materials with reasonable amount 

of accuracy (within 0.5%-1%). These sensors have been used by researchers for moisture 

measurement in forage, cotton etc. and have not been investigated for moisture measurement in 

poultry litter. Marcotte et al. (1999) reviewed various moisture measurement sensors during 

forage and hay harvest and suggested that capacitive sensors would be most suitable to estimate 

moisture during conveying. Osman et al. (2001 and 2003) developed a parallel-plate capacitor 

sensor for measuring moisture in hay and reported good correlation between the sensor’s output 

and hay moisture. Results from a study by Savoie et al. (2011) indicated that dynamic and 

continuous measurement of moisture during forage drying was feasible with a relatively low-cost 

resistive type sensor but further validation was needed. The only study on the potential of a 

capacitance sensor for measuring moisture content in poultry litter was carried out by Mendes et 

al. (2008). They used four EC-5 capacitance-type sensors for measuring moisture content in 

meat-bird (broiler and turkey) litters and laying-hen manure. Moisture content for the broiler, 

turkey litter and layer manure varied from 27.1% to 55%, 22.8% to 56.1% and 11.0% to 75.0%, 

respectively. The authors found that the soil moisture measurement sensor can be effectively 

used to measure poultry litter moisture content on a real-time basis with proper calibration. No 

other studies have reported the use of capacitance sensors for moisture measurement in poultry 

litter. The satisfactory performance of these sensors with biomaterials along with their relatively 

low cost makes capacitance sensors a promising option for poultry litter. However, further 

evaluation still needs to be conducted for their use in poultry litter moisture measurement and the 

feasibility of using these sensors to control the application of litter. 

The idea behind this study was that a capacitance sensor could be applied to a litter 

spreader for inline and real-time moisture determination. This feature could be used to provide 
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litter moisture information as feedback to a rate controller. For litter application, a rate controller 

requires litter density as an important setup parameter to manage the conveyor mass flow based 

on the density value. Litter density can be determined from moisture information if a relationship 

between moisture content and litter density can be established. Past research showed that density 

variation can exist within litter due to moisture variability and can affect spreader performance 

by producing high rate errors. Therefore, the assumption for this study was that real-time 

moisture information from a capacitance sensor could be used for updating density values within 

the rate controller for accurate litter conveyance. The moisture/density secondary feedback 

would help in improving litter application by accounting for any density variations.  

4.3 SUB-OBJECTIVES 

The objectives of this study were to: (1) evaluate the suitability of a capacitance type 

moisture sensor for real-time moisture measurement of broiler litter and, (2) development of  a 

calibration model for predicting moisture content in broiler litter using a capacitance based 

sensor. 

4.4 METHODOLOGY 

4.4.1 SAMPLE PREPARATION 

A small load of litter was acquired in a plastic container (50 kg) from bulk litter. Ten 

samples were randomly collected from the container and placed in sealed bags to determine the 

mean moisture content and bulk density for this litter. Further, 3-kg samples were weighed out of 

this litter and sealed in ten small air tight containers. The initial moisture content of these 

samples was altered to achieve the required moisture contents by either drying or adding required 

amount of water. The target moisture content for the ten samples were 16%, 19%, 22%, 25%, 

28%, 31%, 34%, 37%, 40% and 43% (w.b.). Samples were thoroughly mixed and set for 48 
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hours to ensure uniform moisture absorption within each sample. The mean moisture content and 

bulk density for each sample was then measured after this 48 hour period.  

Moisture content of the samples was measured by using standard oven method (ASAE 

Standards, 2003). Five 5-g samples from each litter sample were placed in the oven (at 105oC). 

The dry mass of the samples was measured after 48 hours. Moisture content of each sample was 

determined from dry mass using Equation 4.1. The mean moisture content for each sample was 

computed from the replication data and used as the actual moisture content. 

 

ሺ%ሻ	ݐ݊݁ݐ݊݋ܥ	݁ݎݑݐݏ݅݋ܯ ൌ 	
݃݊݅ݕݎ݀	݁ݎ݋݂ܾ݁	݈݁݌݉ܽݏ	݂݋	ݏݏܽ݉	݈ܽ݅ݐ݅݊ܫ െ ݃݊݅ݕݎ݀	ݎ݁ݐ݂ܽ	݈݁݌݉ܽݏ	݂݋	ݏݏܽ݉

݃݊݅ݕݎ݀	݁ݎ݋݂ܾ݁	݈݁݌݉ܽݏ	݂݋	ݏݏܽ݉	݈ܽ݅ݐ݅݊ܫ
	ൈ 100									Eqn.ሺ4.1ሻ 

 

The validation data set consisted of 15 litter samples acquired from different production 

houses in North Alabama. These samples contained different levels of moisture content as well 

as physical variability. The mean moisture content for each sample was determined by the 

standard oven method (ASAE Standards, 2003) and used as the reference moisture content during 

validation. 

4.4.2 TEST SETUP AND DATA COLLECTION 

A stainless steel capacitance sensor (David Manufacturing Corporation, DMC 

Assumption, IL), shown in Figure 4.1(a), typically used for measuring grain moisture was used 

in this study. The sensor consisted of a center fin with an outside U-shape plate, both acting as 

electrodes, and measured the change in dielectric properties of air plus sample placed between 

these two electrodes. A differential voltage signal, corresponding to the change in dielectric 

properties between the plates, was measured as the sensor output.  An AD592 temperature 

transducer installed within the sensor provided a temperature signal and was used to determine 
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the sample temperature during testing. This sensor was mounted in a rectangular iron housing, 

which measured 25.4-cm × 9.5-cm × 9.5-cm in dimensions (Figure 4.1b). The housing was used 

so that a known sample volume can be placed in it for each test and that litter remained in 

complete contact with the center fin of sensor. Two hard styrofoam caps were used to close both 

ends of the rectangular housing during testing. Each cap was marked with 2 solid lines spaced at 

1.5 cm from one end for establishing density treatments during a test by moving the cap inside 

the housing a known distance and thereby knowing the exact volume.  

                
                                      (a)                                                                     (b) 

Figure 4.1. (a) DMC capacitance sensor and (b) housing with installed sensor used for data 
collection. 

A LabView program (Version 10.0.1, 2010) was developed and used with a USB-6009 

controller (National Instruments, Austin, TX) to acquire and log voltage signals (moisture and 

temperature voltage) generated by the DMC capacitance sensor. Temperature (˚F) for each 

sample was calculated within LabView using the temperature signal and was displayed along 

with differential voltage output.  A 0-20 V, 0.5 A output DC power supply (Model E3630A, 

Agilent Technologies, Santa Clara, CA) was used to provide the required operating voltage (12-

20 V) to the sensor. The test setup with various components is presented in Figure 4.2. 

Outside Plate 

Center Fin 

Temp. Sensor 
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Data collection consisted of filling the housing with a litter sample in loose bulk form to a 

known volume (22.2-cm × 9.5-cm × 9.5-cm) with the end caps placed on either end of the 

housing. The mass of litter that filled the known volume was measured and used to calculate the 

loose bulk density for each sample (termed Density Treatment A). Once started, the LabView 

program logged the sensor output for 1 minute duration at a frequency of 1 voltage point per 

second and displayed the mean values for differential voltage and temperature at the end of each 

test. After the first measurement, the end caps were moved up to the first marked line, 1.5-cm 

into the housing from both sides, to attain a different dense litter density (termed Density 

Treatment B) by decreasing the holding volume (19.2-cm × 9.5-cm × 9.5-cm). The sensor output 

at this new density treatment was recorded again for 1 minute duration. The third and final 

measurement consisted of moving the end caps further into the housing up to second mark (1.5 

cm from previous line, total 3 cm inside the housing) to reduce the holding volume to 16.2-cm × 

9.5-cm × 9.5-cm for obtaining highly dense density value (termed Density Treatment C). The 

differential voltage along with temperature output was recorded at this litter density for each 

sample and saved for data analysis. A total of 30 tests were performed with 3 replications for 

each test. 

 
Figure 4.2. Test setup used for capacitance data collection for the broiler litter. 
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4.4.3 DATA ANALYSIS 

Data analysis consisted of developing simple linear regression models for estimating 

moisture content in litter. Data was analyzed using Microsoft Excel (Microsoft Corporation, 

Redmond, WA) and SAS (Statistical Analysis Software Institute Inc., NC). Simple linear 

regression models were developed at each litter density treatment (Density A, B and C) using the 

measured differential voltage as a predictive variable and moisture content as the response 

variable. Statistical measures such as standard error of calibration (SEC) (Eqn. 4.2), root mean 

square error of calibration (RMSEC), and coefficient of determination (R2) were calculated to 

evaluate these models. 
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where n is the number of observations, p is the number of variables in the regression equation 

with which the calibration is performed and ei represents the difference between the observed and 

reference values for the ith observation.  

The performance of calibration models was evaluated by fitting to validation data set for 

predicting the moisture content in litter samples, and calculating the standard error of prediction 

(SEP) obtained by comparing the reference values determined by the standard oven method with 

those predicted by the models (Eqn. 4.3), root mean square error of prediction (RMSEP) and 

coefficient of determination (R2) values: 
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where n is the number of observations, ei represents the difference between the predicted 

moisture content and that determined by the reference method for the ith observation, and ē is the 

mean of ei for all samples. 

4.5 RESULTS AND DISCUSSION 

Table 4.1 presents the summary statistics for the litter samples representing the 

calibration group. The determined mean moisture content for the samples was within ±0.4% 

difference from the nominal target moisture contents. The mean moisture contents were 

statistically different from each other (p<0.0001). The standard deviation values were between 

0.1% and 0.3% indicating low moisture variation within reps. 

Table 4.1. Mean moisture content and standard deviation (Std. Dev.) for the calibration 
litter samples. 

Sample 
No. 

Target Moisture 
Content 

Actual Moisture Content 
(%) 

Diff. from 
Target 

(%) Mean Std. Dev. (% MC) 
1 16.0 16.2 0.3  0.2 
2 19.0 19.3 0.2  0.3 
3 22.0 22.1 0.2  0.1 
4 25.0 25.2 0.2  0.2 
5 28.0 28.3 0.2  0.3 
6 31.0 31.4 0.1  0.4 
7 34.0 34.3 0.3  0.3 
8 37.0 37.0 0.2  0.0 
9 40.0 40.4 0.2  0.4 
10 43.0 42.9 0.1 -0.1 

 

Figure 4.3 illustrates the voltage response curves at different density treatments for the 

capacitance sensor.  The sensor generated output voltages ranging from 2 to 8.35 V 

corresponding to a moisture content range of 16% to 43% for the litter samples. The observed 

trend was that the sensor output voltage increased with increase in litter moisture content and 

bulk density. It was also observed that the sensor response was close to linear at all three density 
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treatments before a specified voltage was reached (termed as cut-off voltage). In this case, a cut-

off voltage of 7.35V was determined. The reason behind establishing a 7.35 V as the cut-off 

value was that the response of sensor, beyond this cut-off voltage, was non-linear with no 

significant distinction between the output voltage values at different moisture levels. This value 

was also selected based on recommendation from the sensor manufacturer (DMC). The output 

voltage tended to reach a saturation zone (8.00 – 8.35V) after the cut-off point. This voltage 

range (8.00 – 8.35V) was also an operating reference voltage for the sensor and therefore limited 

the operability of this sensor beyond this point.  

 
Figure 4.3. Voltage response curves for the capacitor sensor at different density treatments 

(cut-off represents voltage value beyond which the sensor response was non-linear). 

In comparison among density treatments, the sensor output voltage was different at the 

same moisture levels for all three density treatments. Density treatment A produced a near linear 

response with data points distributed uniformly across the response line. Density treatments B 

and C did not generate as near a linear response. For density treatment A, the sensor generated 

linear response within the moisture range of 16% to 31% before the cut-off voltage was reached. 

The sensor did not respond well in the 34%-43% range while generating a non-linear output with 
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little distinction between the output voltages within this moisture range. The sensor output for 

density treatment B was linear within the 16% to 28% moisture range and afterwards became 

non-linear for remaining moisture range. For density treatment C, the sensor produced a linear 

response only between 16% and 21% before reaching the cut-off voltage. The increase in litter 

density (density C) generated higher output voltages at the same moisture levels compared to 

density treatment A, the loose bulk density of litter. The sensor attained a cut-off voltage sooner 

due to the high output voltages and therefore worked only within the lower moisture range 

compared to the wider moisture range for density treatment A. Results indicated that litter 

density affected the sensor output and limited the operating moisture range for the sensor. These 

results suggest that the sensor can be effective within a certain moisture range (between 61% and 

31% MC) depending on litter density.  

4.5.1 CALIBRATION MODELS 

The sensor output voltages, before the cut-off point, were plotted against the 

corresponding moisture contents for each density treatment (Figure 4.4). The calibration model 

for each density was developed by fitting a regression line to the calibration voltage data. For 

each model, voltage values before the cut-off voltage (7.35 V), was used for developing the 

model.  Table 4.2 provides the results for the regression parameters and fitness measures. For 

density treatment A, a total of 18 voltage observations for 16%-31% moisture levels were used in 

the regression model, whereas for density treatments B and C, only 15 voltage observations 

between 16%-28% and 9 observations between 16%-22%, respectively were used in the 

regression model.  

The linear regression for Model 1 and 2 followed similar trends (Figure 4.4) with 

comparable slopes and y-intercepts, whereas the regression for Model 3 followed a totally 
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different trend with a high y-intercept (12.27) and small slope (1.35) compared to other two 

models. This result can be attributed to the varying voltage response of the sensor due to high 

density (density C) involved in this treatment compared to the sensor response at the other two 

density treatments (A and B). 

Model 1 had the highest coefficient of determination (R2) value of 0.99 showing a strong 

relationship between the sensor output and moisture content. Models 2 and 3 also showed 

comparable R2 values of 0.96 and 0.98, respectively. The SEC and RMSEC values for all three 

models were less than 1% indicating low calibration errors. Model 1 had the lowest SEC and 

RMSEC values. Since all three models generated good linear trends, and low SEC and RMSEC 

values, they were all used for moisture content predictions for the validation group of data. 

 
Figure 4.4. Regression lines for the capacitor sensor output at different density treatments. 

Table 4.2. Regression parameters and fitness measures for the models developed for the 
calibration group.  

Regression Parameters

Model 
Density 

Treatment 
No. of 

observations 
Intercept 

(β0) 
Slope 
(β1) R2 

SEC 
(% MC) 

RMSEC 
(% MC) 

1 A 18 10.75 2.79 0.99 0.2417 0.2349 
2 B 15 9.81 2.35 0.96 0.9001 0.8695 
3 C 9 12.27 1.35 0.98 0.3853 0.3632 
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4.5.2 VALIDATION 

Table 4.3 presents the mean moisture content and standard deviation values for the litter 

samples of the validation group. The mean moisture content ranged from 17.4% to 28.8%. 

Standard deviation (SD) values were higher in a few of the validation samples (>0.5%) 

compared to low SD values (≤0.3%) observed in the calibration samples (Table 4.1), indicating 

more moisture variability within the samples. 

Table 4.3. Mean moisture content and standard deviation for validation group litter 
samples.  
Sample 

No. 
Moisture Content (%) 
Mean Std. Dev. 

1 17.4 0.3 
2 19.1 0.6 
3 20.0 0.3 
4 21.0 0.6 
5 21.1 0.3 
6 22.8 0.5 
7 23.4 0.4 
8 24.1 0.4 
9 24.5 0.9 
10 24.8 0.7 
11 27.2 0.8 
12 27.3 0.7 
13 27.4 0.6 
14 28.6 0.5 
15 28.8 0.5 

 

Table 4.4 shows the fitness measures for the validation litter samples. The validation set 

also provided good R2 values (0.90-0.94) for all three models indicating good relationship 

between the predicted and actual moisture contents of the litter samples. Model 1 (density 

treatment A) produced the highest R2 value of 0.94 with SEP and RMSEC values of 1.1936% 

and 1.1531%, respectively. Model 2 and 3 also generated comparable R2 values of 0.92 and 0.90, 

respectively. The SEP and RMSEP values for model 2 (1.0483% and 1.0128%, respectively) 
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were slightly lower than the values for model 1. This can be attributed to the difference between 

the density treatments used during data collection for Model 1 and 2. The voltage output of the 

sensor is directly related to change in dielectric constant of sample plus air between the 

electrodes. Generally, it is very hard to control the measurement space (material plus voids) 

between the electrodes. Theoretically, there should be no air spaces or voids along with the 

material between the electrodes for accurate measurement but during practical applications, it is 

very difficult to achieve the voids free (material only) measurement space. Higher number of air 

spaces or voids with the sample during measurement will result in high errors in the sensor 

output and thereby less accurate readings.  Hence, the air spaces or voids inside the housing due 

to loose bulk litter (density treatment A) influenced the voltage output and produced higher error 

during prediction. Increasing the density (density treatment B) by compacting litter eliminated 

some of these spaces and produced slightly more accurate voltage readings. Model 3 generated 

the highest errors with SEP and RMSEP values of 1.7858% and 3.1605%, respectively. This 

model was calibrated within 16%-21% MC range and was good for predicting moisture content 

within this range only. Moisture prediction outside the range resulted in high errors in the 

moisture readings. 

Table 4.4. Fitness measures of the validation group obtained from the models. 

Model 
Density 

Treatment 
No. of observations 

predicted R2 
SEP 

(% MC) 
RMSEP 
(% MC) 

1 A 15 0.94 1.1936 1.1531 
2 B 15 0.92 1.0483 1.0128 
3 C 15 0.90 1.7858 3.1605 

 

Figure 4.5 presents the comparison of the predicted and actual (reference) moisture 

values of the litter samples. The predicted moisture content values correlated well with their 

corresponding actual values with R2 greater than 0.90 for all the equations. Linear regression 
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lines between the predicted and actual moisture content values along with the 1:1 (45o) fit line 

are also presented in Figure 4.5. Theoretically, the slope and intercept of a regression line 

between predicted and actual values should be equal to 1 and 0, respectively for an ideal fit. The 

regression lines for Model 1 (Figure 4.5a) and Model 3 (Figure 4.5c) lacked accuracy. The lines 

were distinct from the expected 45o angle with slope and intercept significantly (p<0.0001) 

different from one and zero. For Model 1, the predicted moisture values were both positively and 

negatively skewed over the full moisture range, while the predicted values for Model 3 were all 

negatively skewed. The regression line for Model 2 resulted in a close fit to the 45o line, with 

slope and intercept not statistically different from one (p-value=0.2436) and zero (p-

value=0.8146), respectively (Figure 4.5b). The line aligned quite well with the 1:1 line with 

slope and intercept values of 1.0024 and -0.4354, respectively. In comparison, Model 2 provided 

the best prediction results with high R2, low SEP and RMSEP values indicating strong 

correlation between the predicted and actual moisture contents. 

Results for this study indicated that this capacitance sensor in conjunction with a proper 

calibration equation can be used for real-time moisture measurement of broiler litter with certain 

limitations. Litter density impacted the working of the sensor and reduced the operating moisture 

range (16%-31%) within which the sensor operated satisfactorily. Also, the presence of air 

spaces along with litter between the sensor electrodes affected the sensor output and resulted in 

errors during moisture predictions. The idea of using this capacitance sensor on a litter spreader 

is feasible, but requires more research with improved sensor housing or installation equipment 

design to ensure full contact with litter and to account for the operational errors due to spreader 

vibrations during application. Also, proper sensor calibration along with accounting for litter 

density would be required to obtain acceptable moisture readings (within ±2%).  
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                                    (a)                                                                           (b) 
 

 
(c) 

Figure 4.5. Comparison of predicted and reference moisture content values for the 
validation group litter samples. 

4.6 SUMMARY 

A capacitance sensor, typically used for measuring grain moisture, was evaluated for 

estimating real-time moisture content of broiler litter. The voltage response of the sensor was 

affected by litter density and increased with increase in density at the same moisture contents. 
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Also, an increase in litter density decreased the operating moisture range of the sensor. 

Calibration models (Model 1, 2 and 3) were developed at three different density treatments (A, B 

and C) using sensor output voltage to predict moisture content in the validation samples. All 

three models produced high R2 values of 0.99, 0.96 and 0.98 during calibration. The SEC and 

RMSEC values were all three models were less than 1% indicating low calibration errors 

associated with these models. 

Validation results also produced equally good R2 values of 0.94, 0.92 and 0.90 for Model 

1, 2 and 3, respectively. Model 2 generated the lowest SEP and RMSEP values of 1.0483 and 

1.0128% with predicted moisture values strongly related to the actual values. Model 1 also 

produced low SEP (1.1936%) and RMSEP (1.1531%) values comparable to model 2, whereas 

model 3 generated the high SEP (1.7858%) and RMSEP (3.1605%) values. Model 2 provided 

the best results by predicting moisture values close to the actual moisture contents and producing 

a high R2 (0.94) and low error values. 

The capacitance sensor worked quite well for predicting litter moisture within each 

density treatment. With certain limitations, the sensor has a potential for real-time moisture 

measurement of broiler litter on a litter spreader. Proper sensor calibration along with improved 

housing design would be required for reliable sensor output during application. Also, density 

effect on sensor output needs to be considered and accounted for to generate accurate moisture 

estimates.  
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CHAPTER FIVE 

NEAR-INFRARED SPECTROSCOPY FOR REAL-TIME MOISTURE CONTENT 

MEASUREMENT IN BROILER LITTER 

5.1 ABSTRACT 

Accurate and continuous measurement of moisture content would represent a significant 

improvement in broiler litter application using spinner-disc spreaders. A study was conducted to 

evaluate various near-infrared (NIR) wavelengths for predicting moisture content in broiler litter. 

Spectral absorption data between 1200-2200 nm was collected for 10 broiler litter samples with 

moisture content ranging between 16%-43%. Initial partial least squares analysis on spectral data 

indicated that strong absorption bands highly correlated to litter moisture occurred within 1400-

1440 nm and 1900-1950 nm. Prediction models developed using absorbance values at 11 

selected wavelengths between these bands (10 nm interval) for estimating litter moisture content 

showed high correlation (R2 = 0.97-0.99) during calibration. Validation results provided high 

correlation as well (R2 = 0.87-0.95) with standard error of performance (SEP) ranging between 

0.8166% and 1.3609%. The regression models with absorbance values at 1400-1900 nm (2 

predictors) and at 1930 nm (1 predictor) generated equally good R2 values (0.94 and 0.93, 

respectively) and low SEP values (0.84799% and 1.0245%, respectively) compared to all other 

models. These results suggested that the absorbance values at 1400-1900 nm and at 1930 nm 

were strong predictors of litter moisture and can be used independently for developing 

calibration equations to estimate litter moisture content.  
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5.2 INTRODUCTION 

Optimal use of poultry litter as a fertilizer requires accurate knowledge of its physical and 

chemical properties for proper land application. Environmental issues in the past due to over-

application of litter have focused research efforts on how to manage and apply litter more 

efficiently. Efficiency of application is measured by the accuracy and uniformity of spread in the 

field. For litter, maintaining uniformity of application is challenging due to high inherent 

variability in its physical properties. Moisture content and bulk density are two of the important 

properties that influence the performance of spreader used for applying litter. Litter density is an 

important setup parameter within a spreader rate controller that is used to manage conveyor mass 

flow. High moisture variability can produce density variation within litter and thereby could 

affect field application by generating off-rate errors. Therefore, real-time moisture content or 

density estimation during application could help maintain accurate metering and distribution by 

updating density values within the rate controller. 

Rapid methods of moisture content measurement are used in agricultural materials due to 

their several advantages over conventional oven dry methods because they are quick, 

nondestructive, and can provide information about several material properties simultaneously. 

One such method is near infrared spectroscopy, which utilizes the infrared region (1000-2500 

nm) of the electromagnetic spectrum to measure material reflectance and absorption properties. 

Near infrared spectroscopy is routinely used in processing and industrial facilities for quick 

analysis of forage, grains, and food products. This technique has been also applied for analysis of 

poultry manures, especially for determination of dry matter (moisture content) and nutrient 

contents. NIR spectroscopy has shown to be especially effective in measuring moisture due to 

strong absorbance of water in the infrared spectrum (Windham, 1988). The water O-H group and 
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combination bands are stronger in NIR region of the spectrum compared to other regions of 

electromagnetic spectrum.  

Reeves (2001 and 2002) evaluated NIR spectroscopy for determining poultry manure 

composition including its feasibility and limitations. They concluded that accurate calibrations 

for ammonium, organic and total N, and moisture content can be developed using a NIR spectra 

with coefficient of determination (R2) values of 0.725, 0.894, 0.886 and 0.843, respectively. Ye 

et al. (2005) also reported that NIR spectroscopy can be effectively used for determining nutrient 

composition and quantity of certain minerals in manures. In a similar study, the feasibility of 

using NIR spectroscopy for rapid determination of composition of pig and manure slurries was 

investigated by Soronsen et al. (2007). Results indicated that NIR spectroscopy was suitable for 

rapid analysis of dry matter, N, and P in both cattle and pig manures. These researchers also 

reported that NIR spectroscopy can be effectively used for real-time moisture analysis in poultry 

litter. All these studies were focused on developing routine laboratory NIR calibrations for rapid 

determination of moisture, organic nutrients and minerals in animal and poultry manures. Most 

of the researchers have used Partial Least Squares Regression (PLSR) techniques on full NIR 

spectra to develop regression equations for estimating moisture content in litter. So far, no 

attempt has been made to develop simple regression equations using fewer wavelengths within 

the NIR region to determine litter moisture content.  

The idea of real-time moisture measurement on a litter spreader would require use of a 

simple NIR sensor utilizing less number of wavelengths (possibly 2 or 3) instead of using full 

spectra (1000 nm – 2500 nm). Such a sensor would also be cost effective compared to expensive 

NIR spectrometers, which utilize full NIR region for analysis. Past research has shown that 

strong NIR absorption bands near 1400-1440 nm and 1900-1950 nm have been often applied for 
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quantitative analysis of moisture content in food materials (Buning-Pfaue, 2003). Sundaram et al. 

(2010) reported that absorption bands at 1434 and 1920 nm were strongly related to moisture 

content in peanuts. These results suggest that strong absorption bands at certain wavelengths 

could be used for moisture measurement in poultry litter as well. Therefore, this study evaluates 

NIR spectroscopy for litter moisture measurement by determining wavelengths strongly related 

to moisture content. The research reported here investigates NIR technology as a means to meet 

the challenge of predicting litter moisture in real time with simple linear models using fewer 

wavelengths. The feasibility of this technology was evaluated through calibration development 

and verification of the regression models.  

5.3 SUB-OBJECTIVES 

The objectives of this study were to: (1) to collect NIR spectra measurements for poultry litter at 

different moisture contents and establish absorption bands or wavelengths strongly related to 

litter moisture, (2) to develop multiple linear regression models to predict the moisture content of 

broiler litter using NIR measurements at selected wavelengths, and (3) to validate the developed 

calibration models with litter samples and thereby evaluate their predictability performance. 

5.4 METHODOLOGY 

A load of bulk broiler litter (50 kg) was acquired and sealed in a plastic container. Ten 

random samples were collected and placed in sealed bags to determine mean moisture content 

and bulk density for the litter. Further another ten, 3-kg samples from the bulk litter were 

measured out and placed in small, air tight containers. The moisture content of these ten samples 

was altered by either drying or adding water to achieve the target moisture contents of 16%, 

19%, 22%, 25%, 28%, 31%, 34%, 37%, 40% and 43% (w.b.) and set for 48 hours. These litter 

samples at 10 different moisture levels formed the calibration set for collecting NIR 
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measurements in this study. The validation set consisted of 15 litter samples acquired from 

different production houses in north Alabama. These samples contained different levels of 

moisture content as well as physical variability (particle size and shape). The moisture content 

for each sample was determined by using standard oven method (ASAE Standards, 2003) and 

used as the reference moisture content during validation. Table 5.1 summarizes the moisture 

content data for the calibration and validation litter samples. 

Table 5.1. Mean moisture content and standard deviation for the calibration and validation 
litter samples. 

 

 

5.4.1 DATA COLLECTION 

NIR spectral measurements were made using a FT-NIR Spectrometer (Model: Spectrum 

100N) (Perkin Elmer, Waltham, MA) (Figure 4.2). Spectral data were collected using software 

SpectrumTM Ver. 6.31.0132 (Perkin Elmer, Waltham, MA) in .SPC format over the wavelength 

range between 1200 and 2200 nm. Each sample consisted of 25g – 30g of litter placed on a glass 

Sample 
No. 

Calibration  Validation 
Actual Moisture 

Content (%) 
Actual Moisture 

Content (%) 
Mean Std. Dev. Mean Std. Dev. 

1 16.2 0.3 17.4 0.3 
2 19.3 0.2 19.1 0.6 
3 22.1 0.2 20.0 0.3 
4 25.2 0.2 21.0 0.6 
5 28.3 0.2 21.1 0.3 
6 31.4 0.1 22.8 0.5 
7 34.3 0.3 23.4 0.4 
8 37.0 0.2 24.1 0.4 
9 40.4 0.2 24.5 0.9 
10 42.9 0.1 24.8 0.7 
11 27.2 0.8 
12 27.3 0.7 
13 27.4 0.6 
14 28.6 0.5 
15 28.8 0.5 
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petridish over the NIR light source and covered with a cap. NIR radiation was directed through 

the sample and reflected light was collected for obtaining spectral data. The petridish containing 

the sample was continuously rotated, using spinner option within the spectrometer, during 

spectral measurements. This allowed spectral measurements at multiple points during the 

rotation for each sample. Three replications of each sample were performed for a total of 30 

tests. The spectral data in was exported to MS Excel for data analysis. 

 
Figure 5.1. FT-NIR spectrometer used for collecting spectral data of broiler litter. 

5.4.2 DATA ANALYSIS 

NIR spectral data was analyzed using multivariate data analysis software (Unscrambler 

Version 10.2, CAMO Software Incorporation, Woodbridge, NJ) and SAS (Statistical Analysis 

Software Institute Inc., NC). Absorption values of the spectra at wavelengths between 1200 nm 

and 2200 nm at 0.5 nm intervals were taken as independent variables and the MC of the sample 

as the dependent variable for the analysis. Partial Least Squares (PLS), Principal Component 

Analysis (PCA) and SAS analysis was performed on the absorption data to determine the 

wavelengths that were strongly related to moisture content. The ‘PROC REG’ procedure along 
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with ‘SELECTION’ statement in SAS software was used to select the best combination of two, 

three and four wavelengths for developing regression models. Calibration models were 

developed using the selected wavelengths in order to estimate litter moisture content. The best 

calibration models were identified based on the standard error of calibration (SEC), root mean 

square error of calibration (RMSEC) and coefficient of determination (R2) values obtained from 

the data analysis results. 

The selected models were used to predict litter MC for the validation set. The goodness-

of-fit of the validation data set was evaluated based on the standard error of prediction (SEP) 

obtained by comparing the reference values determined by the standard oven method with those 

predicted by the models while computing the root mean square error of prediction (RMSEP), 

bias and coefficient of determination (R2) values. Also, predicted values were plotted against the 

actual reference moisture values for comparison.  

5.5 RESULTS AND DISCUSSION 

Figure 5.2 presents the averaged NIR absorption spectra of the broiler litter at ten 

different moisture contents. The average spectra at different moisture levels had similar shape, 

but different magnitude. The observed trend was that the magnitude of the overall average 

spectra increased with increase in moisture content. Peaks in the spectra occurred within the 

same wavelength bands (1400-1440 nm and 1900-1950 nm) for different moisture contents and 

represented high absorption of near-infrared energy within these regions. These strong 

absorption bands near 1400-1440 nm and 1900-1950 nm regions are related to the O-H stretch 

overtone bond and O-H bond of water, respectively (Sundaram et al., 2010).   
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Figure 5.2. Averaged NIR absorption spectra of the broiler litter at different moisture 

contents. 

5.5.1 PLS ANALYSIS 

Figure 5.3 illustrates the regression coefficients of the partial least squares regression 

model. The absorbance values at the wavelengths over the range of 1200 nm to 2200 nm were 

used to develop this model. The regression coefficients for the model were obtained from both 

positive and negative absorption peaks (Figure 5.3). These data indicate that the peaks ranging 

between 1400-1440 nm and 1900-1950 nm contributed significantly to the regression 

coefficients of the equation. Similar results were observed in the Principal Component Analysis 

performed on the spectral data (Appendix J: Section J.4). This result can be attributed to the fact 

that these wavelengths are the strong absorption bands of water molecules. Changes in 

absorption bands near 1400 nm and 1900 nm regions are caused by the presence of water and 

have been often applied for analyzing moisture content in agricultural materials such as peanuts 

(Sundaram et al. 2010).  Since the absorption bands at 1400-1440 nm and 1900-1950 nm regions 

for broiler litter also produced strong relationships with moisture content, the absorbance values 
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in these regions were used for estimating the moisture content of litter. Further, the absorbance 

values within these wavelengths at 10 nm intervals were selected and used for developing 

multiple linear regression models. The selected wavelengths along with the nomenclature used 

for the absorbance value at each wavelength for developing the regression models are presented 

in Table 5.2. 

 
Figure 5.3. Regression coefficients of the PLS model for estimating litter moisture. 

Table 5.2. Selected wavelengths and nomenclature used for absorbance values at these 
wavelengths.   

Nomenclature 
(Absorbance 

Value) 
M1 M2 M3 M4 M5 N1 N2 N3 N4 N5 N6 

Wavelength (nm) 1400 1410 1420 1430 1440 1900 1910 1920 1930 1940 1950
 

 
5.5.2 LINEAR REGRESSION MODELS 

The absorbance values at different combinations (one, two, three and four within each 

band, 1400-1440 nm and 1900-1950 nm) of selected wavelengths were used as the predicting 

variables and moisture content as the response for developing regression models. The 

combinations were chosen to determine a few strong predictors within these regions that can be 
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independently used for moisture estimation in litter. Further, five best models for each 

combination were selected based on highest R2 values, and lowest SEC and RMSEC values. The 

regression model with all eleven predictors was also selected to compare performance to other 

models relative to this model.  

Table 5.3 presents the fitness measures of the calibration models obtained using 

absorbance values at selected wavelengths for calibration litter samples. High coefficient of 

determination (R2) values of 0.99 was observed for the Models 1 through 16 demonstrating 

strong correlation between the absorbance and actual moisture content values for the litter 

samples. Regression models 17 through 21 (one predictor) also generated a strong linear 

relationship (R2 = 0.97), but these relationships were lower compared to other models. While the 

lowest SEC and RMSEC values were obtained for Model 1 (11 predictors), the largest error 

values were produced by Model 21 (1 predictor). The SEC and RMSEC error increased from 

0.3836% and 0.3771% to 1.4456% and 1.4212%, respectively with decrease in number of 

predictors from 11 to 1. Models 2 through 6 (4 predictors) and Models 7 through 11 (3 

predictors) generated similar low calibration errors (SEC and RMSEC) ranging from 0.4551% to 

0.4950%. The calibration errors produced by Model 17-21 (1 predictor) were all greater than 

1.35% indicating less calibration accuracy of these models.  

Predictors N4 and N5 corresponding to absorbance values at 1930 and 1940 nm, 

respectively contributed significantly to all the regression models signifying a strong relationship 

to litter moisture content. Though the calibration accuracy of the models reduced slightly with 

decrease in number of predictors, the models were still comparable. Therefore, all these models 

were considered as good calibration models for predicting moisture content in the validation 

litter samples. 
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Table 5.3. Fitness measures of the regression models for calibration litter samples. 

Model 
No. of 

Predictors Predictors R2 
SEC 

(% MC)
RMSEC 
(% MC) 

1 11 
M1 M2 M3 M4 M5 

N1 N2 N3 N4 N5 N6 
0.99 0.3836 0.3771 

2 4 M1 N1 N4 N5 0.99 0.4551 0.4474 
3 4 M1 N2 N4 N5 0.99 0.4586 0.4509 
4 4 M3 N2 N4 N5 0.99 0.4588 0.4511 
5 4 M4 N2 N4 N5 0.99 0.4600 0.4523 
6 4 M2 N1 N4 N5 0.99 0.4604 0.4526 
 7 3 M2 N4 N5 0.99 0.4942 0.4859 
8 3 M3 N4 N5 0.99 0.4943 0.4860 
9 3 M4 N4 N5 0.99 0.4945 0.4862 
10 3 M1 N4 N5 0.99 0.4945 0.4863 
11 3 M5 N4 N5 0.99 0.4950 0.4867 
12 2 M1 N2 0.99 0.9671 0.9509 
13 2 M1 N1 0.99 0.9744 0.9581 
14 2 M5 N2 0.99 0.9948 0.9781 
15 2 M2 N2 0.99 1.0045 0.9877 
16 2 M1 N3 0.99 1.0048 0.9879 
17 1 N4 0.97 1.3813 1.3580 
18 1 N3 0.97 1.3863 1.3630 
19 1 N5 0.97 1.4094 1.3857 
20 1 N2 0.97 1.4219 1.3980 
21 1 N6 0.97 1.4456 1.4212 
 

5.5.3 VALIDATION 

Table 5.4 presents the fitness measures of the regression models obtained using the 

absorbance values at selected wavelengths for the validation litter samples. The models showed a 

good relationship between predicted and actual moisture values (R2 = 0.87- 0.95). The SEP 

values for all the models were greater than 1% MC, except for Model 1 with SEP values less 

than 1% MC. While the RMSEP values for the Models 2-6 were less than 1.55%, the RMSEP 

values for the Models 7 through 21 were within 1.7% to 2.3% indicating high errors in the 

predicted moisture values for the litter samples. These errors occurred due to high bias in the 

predicted values for all these models. This bias was produced because of the difference in 
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physical variability (particle size and shape) between the calibration and validation litter 

samples. As expected, Model 1 provided the best results with highest R2 value of 0.95, and 

lowest SEP and RMSEP values of 0.8166% and 0.9957%, respectively. Next to that were the 

Models 2-6 with 4 predictors, which produced high R2 values (0.90-0.91), and SEP and RMSEP 

values within 1.04% to 1.55%. Models 7-21 also performed well by producing results 

comparable to other models.  

Table 5.4. Fitness measures of the models for validation litter samples.  

Model 
No. of 

Predictors Predictors R2 
SEP 

(% MC) 
RMSEP 
(% MC) 

1 11 
M1 M2 M3 M4 M5 

N1 N2 N3 N4 N5 N6 
0.95 0.8166 0.9957 

2 4 M1 N1 N4 N5 0.91 1.0594 1.4802 
3 4 M1 N2 N4 N5 0.92 1.0407 1.5984 
4 4 M3 N2 N4 N5 0.91 1.0977 1.4514 
5 4 M4 N2 N4 N5 0.91 1.3119 1.4499 
6 4 M2 N1 N4 N5 0.90 1.1237 1.5499 
7 3 M2 N4 N5 0.87 1.3547 2.9335 
8 3 M3 N4 N5 0.87 1.3524 2.9457 
9 3 M4 N4 N5 0.87 1.3505 2.9594 
10 3 M1 N4 N5 0.87 1.3496 2.9684 
11 3 M5 N4 N5 0.87 1.3516 2.9263 
12 2 M1 N2 0.94 0.8934 1.8418 
13 2 M1 N1 0.94 0.8479 1.2961 
14 2 M5 N2 0.94 0.9767 1.2701 
15 2 M2 N2 0.94 0.9247 1.7594 
16 2 M1 N3 0.94 0.9621 2.1741 
17 1 N4 0.93 1.0245 2.4816 
18 1 N3 0.93 1.0341 2.4301 
19 1 N5 0.93 1.0310 2.4792 
20 1 N2 0.93 1.0807 2.3240 
21 1 N6 0.93 1.0516 2.4387 

 
The best model within each combination group of predictors was selected based on 

lowest SEP and RMSEP values, and highest R2 value (Table 5.5).  Model with 2 predictors M1 

and N1 (absorbance values at 1400 nm and 1900 nm, respectively) had the lowest SEP value of 
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0.8479% and a high RMSEP value of 1.2961%. While the model with N4 predictor (absorbance 

values at 1930 nm) generated the R2 value of 0.93, the model with M2, N4 and N5 predictors 

(absorbance values at 1920, 1930 and 1940 nm, respectively) produced the lowest R2 value of 

0.87. Since three of four selected models had predictor N4 in the regression equation, this 

indicated that the absorbance value at 1930 nm (N4) had the strongest relationship with the litter 

moisture content. Also, the lowest SEC value for the model with M1 and N1 suggested that the 

absorbance values at 1400 (M1) and 1900 nm (N1) were strong predictors of moisture content in 

litter and predicted moisture content in the validation samples with reasonable accuracy (<1.5%). 

Table 5.5. Fitness measures for the best regression model within each combination. 
No. of 

Predictors Predictors R2 
SEP 

(% MC) 
RMSEP 
(% MC)  

4 M1 N2 N4 N5 0.92 1.0407 1.5984 
3 M1 N4 N5 0.87 1.3400 2.7300 
2 M1 N1 0.94 0.8479 1.2961 
1 N4 0.93 1.0245 2.4816 

 
 

Table 5.6 presents the values of regression coefficients for the best selected model within 

each combination group. The negative sign of regression coefficient represents the inverse 

relationship of the predictor with litter moisture. It was observed that the absorbance values for 

1400 and 1940 nm wavelengths (predictors M1 and N5, respectively) has a negative contribution 

in the regression equations for predicting litter moisture, whereas the absorbance values at 1900, 

1910, 1930 and 1940 nm has a positive contribution in the equation.  

Table 5.6. Regression coefficients for the selected regression models. 
No. of 

Predictors Predictors 
Intercept Coefficients 

β0 β1 β2 β3 β4 
4 M1 N2 N4 N5  5.3 -46.7 261.4 1439.5 -1641.3 
3 M1 N4 N5 -5.1   -5.8   2092.1 -2066.9 
2 M1 N1  -15.7   -109.9  116.6 
1 N4   -22.5    45.7       
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Graphical comparisons between the predicted moisture values using selected models and 

actual reference moisture values are provided in Figure 5.4. Regression lines between the 

predicted and actual moisture content values showed a good fit with 1:1 (45o) line with R2 

greater than 0.87 for all the models. For an ideal fit, the slope and intercept of a regression line 

between predicted and actual values should be equal to 1 and 0, respectively. The slope of the 

regression lines for all the models was not significantly different from one (p-value>0.05), 

except for model with N4 predictor. For all the models, the predicted values were positively 

skewed (above the 1:1 line), which relates to high bias values produced by these models. This 

bias can be removed by adding a constant factor to the final regression model which would 

further improve the prediction accuracy by reducing the RMSEP value. The intercept values of 

all the regression lines were significantly different (p-value<0.0001) from zero. The intercept 

value increased from 2.2814 to 6.522 with decrease in number of predictors from 4 to 1, 

respectively.   

In comparison, all 4 calibration models with 1 to 4 predictors performed well based on 

validation results. The data suggested that the absorbance values at 1930 nm or at 1400-1900 nm 

combined, can be independently used for estimating litter moisture with suitable calibration 

models. A simple, low cost NIR instrument utilizing these specific wavelengths can be 

developed for predicting litter moisture. This instrument will offer rapid and real-time moisture 

measurements of broiler litter. Further, single calibration equation can be developed for this NIR 

instrument and could be used for estimating moisture in different types of broiler litter. 
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Figure 5.4. Comparison of predicted and actual moisture values for validation litter 

samples. 

5.6 SUMMARY 

The NIR spectral measurements between 1200-2200 nm for broiler litter samples at ten 

different moisture contents was collected and analyzed to determine the wavelength regions 

highly correlated to moisture content. Initial results showed that the spectra magnitude increased 

with increase in moisture content of litter samples. High absorption peaks occurred near 1400-

1440 nm and 1900-1950 nm in the spectra. The large regression coefficients in the 1400-1440 
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nm and 1900-1950 nm regions for the PLS regression model indicated the strong relationship of 

absorbance bands in these regions with moisture content in the litter. 

Twenty one calibration models using absorbance values as predictors at different 

wavelength combinations (one, two, three, four and eleven wavelengths) within 1400-1440 nm 

and 1900-1950 nm regions were selected. All the models produced high R2 values of 0.97-0.99 

indicating strong relationship between the absorbance and moisture values. The SEC and 

RMSEC values increased from lowest of 0.3836% and 0.3771% MC, respectively for model 

with all 11 predictors to highest of 1.4456% and 1.4212% MC, respectively for model with 1 

predictor. 

Validation of the models also produced good R2 values from 0.87 to 0.95 for all the 

models. The SEP and RMSEP values for most of the models were greater than 1%, except for 

model with 11 predictors with SEP and RMSEP values less than 1%. The best model within each 

combination group was selected based on high R2 and low error values. The model using 

absorbance values at 1930 nm and at 1400 -1900 nm as the predictors produced the highest R2 

value of 0.93 and 0.94, respectively and lowest SEP values of 1.0245% and 0.8479% MC, 

respectively.   

Overall, the results indicated that the absorbance values at 1930 nm or at 1400 nm plus 

1900 nm can be used independently for predicting litter moisture by developing a suitable 

calibration model. The idea of measuring real-time litter moisture on a litter spreader would 

require a development of a simple, low cost NIR sensor utilizing these specific wavelengths to 

measure absorbance values corresponding to moisture content in litter. In future, moisture 

information could be used within spreader rate controller for better metering and distribution 

control. 
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CHAPTER SIX 

SUMMARY AND DISCUSSION 

The perspective about poultry litter over the past decades has considerably changed as 

viewing it as a waste product to utilizing it as a reliable nutrient source to meet soil or crop 

fertility requirements. During this same time, the equipment and technology for land application 

of litter has also undergone considerable improvement. The environmental issues related to litter 

application in the past have led researchers and environment agencies to develop better 

management practices (BMP’s) along with using advanced technology for efficient use of litter. 

Introduction of rate controllers and guidance systems and on application equipment has 

improved control and management of application rates during field operation. As environmental 

regulations regarding litter use become stricter, knowledge and the ability to achieve uniform 

distribution needs to be more continuously maintained to reduce possible over-application risks. 

In this pursuit of improving spread distribution and increasing efficiency, technology will play a 

major role to meet current and future requirements placed on managing litter. When trying to 

evaluate application and distribution of litter, knowledge of physical and chemical properties is 

important. The physical properties of litter are highly variable as outlined in this thesis. This high 

variability in the physical flow properties of litter has a direct impact upon the performance of 

flow control and the discharge system for land application equipment. The ability to measure 

properties such as moisture content and bulk density on-the-go may provide the feedback to 

accurately meter and uniformly distribute litter.  
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6.1 LITTER MOISTURE CONTENT AND BULK DENSITY                                           

  Moisture content and bulk density are two important parameters that influence litter 

application. The performance of conveyance and distribution system of a typical spinner-disc 

spreader is influenced by the high variability in the litter properties. The discharge rate of the 

spreader is directly related to bulk density of the litter, as the basis of the delivery system is 

based on the volume of material being spread. During application, density is used as a setup 

parameter in a rate controller and used to calculate the conveyor mass flow for maintaining the 

target rate. The results reported in this thesis indicated that litter density can affect spreader 

performance by generating off-rate errors higher than ±15%. The incorrect density values within 

the spreader rate controller affected the conveyor mass flow, thereby impacting application rate. 

The change in conveyor mass flow was also reflected in the distribution patterns for the litter. 

Knowledge of the correct density value for litter means better control and metering of mass flow. 

The importance of using the correct density value within rate controller was suggested to 

maintain accurate metering and uniform distribution during application. 

Determination of right moisture content for litter is also very critical along with right 

density value for accurate field application. Moisture content determines the amount of dry mass 

present in the litter. Further, N-P-K rates are directly related to actual dry mass applied in the 

field during application. Dry mass can vary between litter sources and batches depending upon 

the variability in moisture content, particle size and shape. Table 6.1 shows an example 

illustrating difference between the dry mass rates for two broiler litter sources (A and B) with 

different moisture content and density values. Same spreader settings including a density value 

of 416.5 kg/m3 was used in the rate controller for both litter types (Litter A and B). This value 

was the actual density for litter A and an incorrect density value for litter B. Therefore, the actual 
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density value for litter B was not accounted in the rate controller. Based on the actual moisture 

content (32% and 28% for litter A and B, respectively) of each litter, actual dry mass rates were 

calculated from the total mass of litter conveyed per revolution (discharge rate). It was noticed 

that the percentage difference between the dry mass rates for litter A and B was greater than 

20%. Theoretically, all other spreader and controller settings being constant, dry mass rates for 

both litter types should be same in order to meet the target application rate. These rates differed 

because of the difference in moisture content and density values between the litter sources. The 

percentage difference between the dry mass rates for litter A and B decreased to less than 6% 

when actual density value of litter B (480.6 kg/m3) was accounted for in the rate controller. This 

suggested that density variations among the litter sources and within the batch should be 

accounted for within the rate controller to maintain dry mass rates in the field. Further, 

determination and knowledge of the right moisture content is important to determine the actual 

dry matter content of the litter and thereby dry mass rates. 

Table 6.1. Example illustrating difference in dry mass (0% MC) rates for litter A and B at 
the same spreader settings. 
Dry Mass Rate (kg/ha)    Dry Mass Rate (kg/ha)   

(416.5 kg/m3) Percent 
Diff. (%)a 

(416.5 kg/m3) (480.6 kg/m3) Percent 
Diff. (%)a Litter A Litter B Litter A Litter B 

1191 1452 21.9 1191 1200 0.7 
2291 2923 27.6 2291 2424 5.8 
2281 2875 26.0 2281 2363 3.6 
4483 5710 27.4  4483 4737 5.7 

a.) Percentage diff. (%) is calculated as ((dry mass rate of litter B – dry mass rate of litter A)/dry mass rate of litter A)*100 

As outlined in this thesis, large physical variability can exist in poultry litter depending 

on the type of management, feeding systems and storage conditions. Due to this inherent 

variability, moisture and density variations can exist within a load making it difficult to use one 

accurate density value within the rate controller. The density variations can be due to moisture 
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variability within the litter since density is moisture dependent. The results presented in this 

thesis indicated a linear relationship (R2 = 0.99) between moisture content and bulk density of 

broiler litter (Figure 6.1). Dependence of bulk density on moisture content for litter has also been 

reported in the past studies (Malone et al., 1992; Glancey and Hoffman, 1996; Thirion et al., 

1998). Therefore, it is believed that the density values within a load can be determined indirectly 

from moisture information. Real-time moisture information can be used to update density values 

within the rate controller with the help of a proper moisture-density calibration curve. Also, the 

real-time moisture values can be used to calculate the actual dry litter mass being applied in the 

field. Further, if N-P-K content of a litter source is known, N-P-K rates can be better managed 

using real-time dry mass during application. Therefore, the idea of real-time moisture 

measurement in broiler litter was proposed as an approach towards developing technology for 

improving litter distribution. 

 
Figure 6.1. Moisture and bulk density relationship for broiler litter A (bars represent the 

standard deviation at each moisture content). 

Information on litter moisture is also important due to other problems related to litter 

application using a spinner-disc spreader. The high moisture content in litter often leads to 
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buildup on spreader components. Litter buildup on spinner-discs and vanes (Figure 6.2) can 

affect litter distribution by influencing the flow of material on the discs and along the vanes. The 

dimensions and shape of spinner-discs and vanes are designed in order to achieve near uniform 

distribution during application. Buildup on discs and vanes can change material flow thereby 

impacting distribution. Litter buildup can also cause problems of corrosion on spinner-discs and 

other spreader parts if not cleaned properly after application.  

    
Figure 6.2. Illustration of litter buildup on spinner-discs and vanes. 

Compressibility is another physical property dependent on the moisture content of litter. 

Litter compressibility creates another challenge from a metering perspective for application. 

High moisture content represents more mass of litter in the spreader hopper. The compressibility 

due to litter weight in the hopper can change the actual density (working density) of litter on the 

conveyor, which would be different from the bulk density value used in the rate controller. This 

difference can result in more litter mass per revolution conveyed out of the hopper. More litter 

mass per revolution will be reflected in higher metering and distribution errors. This problem 

again indicates the importance of knowing correct moisture content and density for the litter 

being spread. 
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With more research focused on litter moisture content in the future, a moisture range (like 

20%-30%) can be determined and specified for efficient litter application using spinner-disc 

spreaders. This moisture range can be stated and regulated along with the best management 

practices for improving litter application. Further, the incorporation of real-time moisture 

measurement technology would help in meeting these moisture range recommendations along 

with providing density feedback to spreader rate controller for better application control on 

spinner spreaders. 

6.2 FEASIBLE TECHNOLOGY FOR MOISTURE MEASUREMENT 

The impact of physical variability on litter application can be reduced by inclusion of 

real-time moisture sensing technology on a litter spreader to make better spreading decisions as 

well as managing rates to account for density variability. Since litter density is dependent on 

moisture content, the idea of using density values indirectly from real-time moisture information 

within a rate controller was proposed in this thesis. The feasibility of a capacitance type moisture 

sensor for measuring real-time moisture content in broiler litter was evaluated. Data indicated 

that the output voltage of the capacitance sensor increased with increase in litter moisture content 

and bulk density (Figure 7.2). The sensor response was close to linear at different density 

treatments before a cut-off voltage was reached (7.35 V). The operating range of the sensor 

decreased with increase in bulk density of litter, with 16%-31% MC being the largest possible 

measurement range at the loose bulk density. The 16%-31% MC is a common measuring range 

of this type of technology. It was also noted that air space or voids inside the housing affected 

the voltage output, since sensor output was related to dielectric constant of the sample plus air 

between the electrodes. 



108 

 

Based on the results, this sensor can be a good option for moisture measurement in 

broiler litter for static and routine laboratory procedures. However, the practical application of 

this sensor on a litter spreader is restricted by few limitations: 

1. Sensor can only measure moisture content in broiler litter within 16% to 31% range. 

The measurement beyond 31% requires additional investigation to increase sensor 

operating range or use of some other device. 

2. Litter density impacts the sensor output voltage and limits the operating moisture 

measurement range. Higher the bulk density, lower the operating moisture range of 

the sensor. 

3. Sensor can be only used for contact-type moisture measurements. Maintaining 

continuous material-sensor contact for rapid moisture measurements would require 

constant litter flow through the sensor electrodes (plates), which would be hard to 

achieve considering large particle size variability found in broiler litter.  

4. Presence of void spaces due to high particle size variability between the sensor 

electrodes (or housing) will affect sensor output and thereby provide inaccurate 

moisture measurements.  

5. Litter flow problems can also occur due to large chunks getting stuck between the 

sensor electrodes possibly making sensor inoperative. 

6. Material sticking to sensor electrodes due to high litter moisture can affect sensor 

performance and provide inaccurate moisture estimates. 

7. Sensor should be clean all the time during operation. The dust generation due to dry 

litter can affect sensor performance by settling on electrodes. 
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8. Sensor performance can be affected by the disturbances due to spreader vibrations 

and other operational factors during litter application.   

This sensor needs further development and evaluation for litter moisture measurement on 

a spreader, with major considerations of accounting for litter density and increasing the operating 

range to at least 40% MC. Since sensor output was responsive to density variations, future work 

can also be directed towards developing equations or indices for independently measuring both 

moisture and density with this sensor. 

This thesis also presents evaluation of a NIR technique for moisture measurement in 

broiler litter. The main objective was to determine strong absorption wavelengths related to litter 

moisture within the NIR spectra. Results indicated that strong absorption bands near 1400-1400 

nm and 1900-1950 nm related to litter moisture existed within the spectra. The calibration and 

validation models relating the absorbance values at 1400 plus 1900 nm and at 1930 nm to litter 

moisture content indicated high correlations (R2 = 0.93) and low standard error of performance 

(SEP) values (0.8479% and 1.0245%, respectively). Moisture measurement using this sensor has 

merit over the capacitance-type sensor: 

1. The sensor was able to measure the full moisture range (16%-43%) in broiler litter 

whereas the capacitance-type sensor was limited to between 16% and 31%. 

2. The moisture readings determined using the NIR technique was density-independent. 

Litter density did not impact sensor performance unlike the capacitance sensor. 

The potential of a NIR sensor for moisture measurement in broiler litter appears more 

promising than capacitance sensor. Between these two sensors, NIR sensor would be 

recommended because of its ability to provide rapid, nondestructive and density-independent 
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moisture estimates. The application of this sensor on a litter spreader would require development 

of a simple, low cost sensor utilizing one or two strong absorption wavelengths for acquiring 

moisture information. The non-contact nature of this sensor also offers more flexible use 

compared to a contact type capacitor sensor. The non-contact operation would eliminate 

problems due to material sticking to sensor parts as well as other flow problems due to high 

particle size variability in litter. The NIR sensor can have few limitations as well for its use on a 

litter spreader. The sensor performance can be affected by the dust generation if litter is too dry 

during spreading. Also, the moisture measurement area of NIR sensor is less compared to 

capacitance type sensor since it utilizes single light beam to measure surface moisture content. 

However, NIR sensor still has more merits over capacitance sensor with its non-contact nature 

and rapid density-independent measurements without any major limitation. Overall, a NIR 

sensor has a good potential for litter moisture measurement on a litter spreader.   

For the future, additional research needs to be conducted to evaluate other wavelength 

regions in electromagnetic spectrum (visible, IR, etc.) for density measurement in broiler litter. 

Strong absorption wavelengths related to litter density, if determined, could be used for 

predicting litter density. The possibility of predicting bulk density and moisture content with one 

sensor would be an added advantage for litter application. Development of such a sensor capable 

of providing both moisture and density information to a spreader rate controller would be an 

appropriate technology for improving litter application. However, this type of sensor must be 

cheap (preferably < $1000) in order to justify its use on a litter spreader. Also, the sensor should 

be able to provide density-independent moisture readings along with density values. 
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6.3 FEEDBACK TO A RATE CONTROLLER 

With the development and use of an inline moisture and/or density sensor on a litter 

spreader, real-time moisture and density information can be provided to the rate controller as a 

secondary feedback (Figure 7.3). The moisture feedback information can be used to make better 

spreading decisions, whereas density feedback would help to update real-time density values 

within rate controller for better control and management of target application rates and 

distribution. The conveyor speed can be adjusted accordingly to account for density variations 

during application. In future, the density feedback can be also be used for making on-the-go rear 

gate adjustments to keep the volume of material constant. It can also be used for making other 

spreader hardware adjustments (such as spinner-disc speed and rear divider position) to improve 

litter distribution. The technology for cleaning of spinner-discs can also be developed in future to 

eliminate litter buildup problem due to high moisture during spreading. Real-time moisture 

information within a rate controller could be used with this technology for keeping the spinner-

discs clean during application. 

 
Figure 7.1. Diagram indicating user input and feedback parameters for a typical rate 

controller used on litter spreaders. 
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The research presented in this thesis is a step towards automation of control on litter 

spreaders. Improvement in technology on a litter spreader can offer real-time analysis of poultry 

litter for its more efficient use while minimizing environmental risks. As a step towards 

advancing technology, this research suggested the development of real-time moisture and/or 

density sensor on a litter spreader for improving litter application. In future, technology can be 

further improved to analyze real-time N-P-K content of the poultry litter along with moisture 

content and bulk density. Inclusion of real-time nutrient analysis of litter on a spreader will 

ensure increased nutrient application accuracy and distribution uniformity. Presently, due to 

operational errors associated with application equipment and other factors, the acceptable 

accuracy range for litter application is defined as within ±10% of the target rate. The 

technological advancement on a litter spreader in the future might help reduce this range to ±5% 

or less thereby improving application accuracy and uniformity of distribution.  
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CHAPTER SEVEN 

CONCLUSIONS 

7.1 CONCLUSIONS 

Objective 1 focused on evaluating the influence of litter bulk density on metering and 

distribution of broiler litter when using a spinner-disc spreader. Results indicated that conveyor 

discharge rate (mass flow) errors were higher (>±15%) for incorrect density values used within 

the rate controller compared to lower rate errors (<±10%) for correct density values. Differences 

between dry mass rates (0% MC) for litter A and B were greater than ±20% when the actual 

density value for litter B was not accounted for in the spreader rate controller. The central peak 

of the “W” shaped single-pass patterns varied between the different density treatments due to 

change in actual conveyor mass flow onto the spinner-discs. The pattern peak increased with 

increase in actual conveyor flow. Comparison among standardized patterns exhibited differences 

between the patterns at correct and incorrect density treatments at a few transverse locations (-

3.7 m to 3.7 m from spreader centerline) across the spread width. The change in conveyor mass 

flow due to incorrect density treatments generated some differences in the distribution patterns. 

Therefore, the use of correct density values within the spreader rate controller will be required in 

the future for accurate litter metering and distribution. 

The second research objective investigated the feasibility of a capacitance type moisture 

sensor for measuring moisture content in broiler litter. Results concluded that litter density 

affected the sensor output voltage. The voltage response of the sensor was linear within the 16%-
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31% moisture range depending on the density treatment used. The prediction models relating 

sensor output to litter moisture content provided high linear correlations (R2 = 0.96-0.98) and 

low errors (<1%) suggesting high calibration accuracy linked to the models. Results for model 

validation also generated equally good correlations (R2 = 0.90-0.94) and small prediction errors 

(<1.2%) indicating a strong relationship between the predicted and actual (reference) moisture 

values determined by the standard oven method. Overall, the capacitance sensor appears 

promising for real-time moisture sensing of broiler litter within the 16% to 31% range, but the 

effect of density on sensor performance must be accounted for in order to obtain accurate 

moisture estimates.  

The final objective of this research focused on determining which absorption 

wavelengths within the NIR spectra would accurately estimate moisture content in broiler litter. 

Results indicated that strong absorption bands near 1400-1440 nm and 1900-1950 nm were 

highly related to litter moisture content. The calibration models developed using absorbance 

values within these regions to estimate litter moisture content provided high correlations (R2 = 

0.97-0.99). Validation results revealed that the models with absorbance values at 1930 nm and at 

1400 nm plus 1900 nm produced the highest linear relationships (R2 = 0.93 and 0.94, 

respectively) and lowest SEP values (1.0245% and 0.8479%, respectively). The results supported 

the idea of development of a simple NIR sensor utilizing one or two wavelengths for real-time 

moisture measurement of broiler litter. 

In conclusion, metering and distribution of broiler litter using a typical spinner-disc 

spreader was impacted by density values used within a spreader rate controller. High rate errors 

and differences in distribution patterns due to incorrect density values highlighted the importance 

of using the correct density values within a rate controller. Real-time moisture and density 



115 

 

information as a secondary feedback to a spreader rate controller was proposed to maintain 

acceptable litter application, especially for accurate metering. Both capacitance and NIR sensor 

techniques worked well for measuring real-time moisture content in broiler litter. While the NIR 

sensor operated within the full selected moisture range (16%-43%), the operating range for the 

capacitance sensor was limited to between 16% and 31%. A NIR sensor would be recommended 

for use on a litter spreader because of its wide moisture measurement range (16%-43%) along 

with ability to provide density-independent moisture readings. The idea of using this sensor on a 

litter spreader for inline moisture information is a viable option with proper sensor calibration 

and installation.  

7.2 OPPORTUNITIES FOR FUTURE RESEARCH 

Based on the results, additional research needs to be conducted to investigate the 

potential use of capacitance and NIR sensor on an actual litter spreader. Though capacitance type 

sensor has some limitations, additional testing can still be conducted to evaluate the sensor’s 

operability on a litter spreader. Improved housing and installation equipment design would be 

needed to mount the sensor on the spreader. Housing should be designed to ensure proper sensor-

material contact during litter flow to obtain accurate sensor output.  Field testing is also required 

to evaluate the sensor performance during litter conveyance on a spreader and the effect of 

spreader vibrations on sensor output.  

A simple NIR sensor utilizing 1930 nm or 1400 plus 1900 nm wavelengths can be 

fabricated for collecting absorption spectral information and thereby moisture estimation of 

broiler litter. Appendix C outlines a conceptual design for development of a simple, single or 

dual wavelength NIR sensor. The development of a single calibration equation would be needed 

to analyze the sensors ability to predict moisture in various sources of broiler litter. Field testing 
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for evaluating sensor performance during litter conveyance and effect of other operating 

conditions on a litter spreader needs to be conducted. The potential of combining NIR with some 

other technology for measuring litter moisture content and density simultaneously needs to be 

evaluated and included in the calibration equation. A sensor capable of measuring litter moisture 

and density simultaneously is needed on a litter spreader to provide accurate and rapid density 

updates within rate controller.  

Real-time density updates using the appropriate inline moisture and/or density sensing 

technology can be included within Spreader Control Software to make on-the-go mass flow 

adjustments to account for density variation within a load or pile. The density updates could also 

be used to make spinner-disc speed adjustments for maintaining acceptable distribution patterns 

during application. The spreader performance using real-time density values during litter 

application can be tested for metering and distribution errors. 
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APPENDICES 

APPENDIX A 

DESIGN CONSTRAINTS FOR A MOISTURE SENSOR 

A.1 MOISTURE SENSOR CONSTRAINTS FOR USE ON A LITTER SPREADER 

1. Economic: Cheap (within $500-$1000). 

2. Accuracy: Provide accurate measurements within ±1-2% moisture content (See 

Appendix B). 

3. Measurement Range: Operate within 15% - 40% MC. 

4. Type of measurement: Preferred non-intrusive or non-contact type sensor due to 

physical variability of litter. 

5. Response: Provide rapid and real-time moisture measurements. 

6. Sampling frequency: Preferably 10-15 moisture readings per minute. 

7. Durability: Withstand the mechanical vibrations and other operating conditions during 

field application. 

8. Compatibility: Compatible output for use with the rate controller software. 

9. Usability: Easy to use, calibrate and setup. 

10. Installation: Easy to install and uninstall on a litter spreader. 
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APPENDIX B 

MOISTURE MEASUREMENT ACCURACY 

B.1 MOISTURE MEASUREMENT ACCURACY NEEDED FOR ACCEPTABLE APPLICATION RATE 

Table B.1 presents the mean moisture content and wet bulk density for clean out poultry 

litter reported by Malone et al. (1992).  The data indicated that the moisture content and wet bulk 

density of clean out manure, on average, increased from 27% and 432 kg/m3, respectively to 

32% and 545 kg/m3, respectively as the number of flocks grown in the house increased from a 

low of 1 to 6 flocks to a high of 13 to 18 flocks, respectively. 

Table B.1. Mean moisture content and wet bulk density for clean out poultry litter (Malone 
et al. 1992).  

No. of 
Flocks 

Mean Moisture 
Content 

Mean Wet 
Bulk Density 

(%) (kg/m3) 
1–6 27 432 

13 –18 32 545 
 

Table B.2 presents the theoretical application rates for poultry litter based on mean bulk 

density values (at two different moisture contents), assuming other spreader/controller settings as 

constant. The observed difference between the application rates at two different moisture 

contents (or bulk densities) is 26%, which is outside the ±10% acceptable limit for litter 

application. Considering linear relationship between moisture content and application rate, a 

±5% increase in moisture content will result in ±26% increase in application rate. Similarly, 

increasing the moisture content by ±2.5% will exhibit ±13% increase in application rate. 

Therefore, the required accuracy of the sensor on a litter spreader should be within ±1-2% MC in 

order to maintain the application within ±10%. 
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Table B.2. Theoretical application rate for poultry litter based on mean moisture content 
and bulk density values. 

Mean Moisture 
Content 

Mean Wet 
Bulk Density 

Theoretical 
Application Rate 

Percent increase in rate 
from 27% to 32% MC 

(%) (kg/m3) (kg/ha) (%) 
27 432 3495 

26 
32 545 4406 

 
The data presented here represents only one poultry litter source, reported by Malone et 

al. (1992). This data is used as an example to illustrate how large moisture and density variation 

can occur within the same litter source and how it can impact application rates in the field when 

applied using spinner-disc spreader. Generally, similar variation in moisture and density exists 

for other litter sources as well. Therefore, determination of moisture content within an accuracy 

range of ±1-2% MC becomes crucial on a litter spreader for maintaining acceptable application 

accuracy (±10%). 
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APPENDIX C 

NEAR-INFRARED SENSOR SPECIFICATIONS 

C.1 DESIGN SPECIFICATIONS FOR A SINGLE OR DUAL WAVELENGTH NIR SENSOR 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure C.1. Schematic diagram showing major components of a NIR sensor. 
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Table C.1. List of major components and their corresponding function for a NIR sensor. 

Component Function/Description 

IR Light Source 
Emits the near-infrared radiation at specific wavelength. Light from the 
light source enters the collimating lens. 

Collimating Lens 
Covert divergent beam of light into parallel path and focuses it on the 
sample to be analyzed.  

Focusing Lens  
Receives reflected light from the sample and focuses the reflected light 
onto the filter.  

Filter Wheel 
Restricts optical radiation to pre-determined wavelength regions. 
Various types of filters are available to restrict the radiation to certain 
wavelength regions. 

Induction Motor 
Rotates the filter wheel at the desired speed depending on the incident 
angle of the reflected light and type of spinning filter used.  

Light Detector 
Collects the specific radiation received from the filter wheel and 
converts the optical signal to a digital signal. 

Pre-Amplifier 
Removes the noise and amplifies the digital signal before sending it to 
connector. 

Connectors 
Contain multiple ports to transfer amplified digital signal to the 
connecting device (computer, tablet etc.) 
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Table C.2. Recommended components and their specification for fabrication of a 
single/dual wavelength NIR sensor. 

Component Specification 

IR Light Source 
LED (light emitting diode) containing Gallium Arsenide (GaAs). 
Suitable for emitting one or two specific wavelength bands. Low power 
requirement and long life expectancy.  

Collimating Lens 
Achromatic front surface mirror/lens (Aluminum coated). Relatively 
low cost compared to gold surfaced lens. 

Focusing Lens  
Spherical concave precision lens with flat rear surface and gold coating. 
High reflectance in the Near-Infrared region. 

Filter Wheel 
AOTF (Acoustic Optical Tuneable Filter) directed into a TeO2 crystal. 
Operating wavelength range (1000-2000 nm). Adjustable intensity and 
gives narrow beam. 

Induction Motor 
3phase DC motor.  Operating power requirements and rpm range 
dependent on filter wheel size and desired wavelength bands. 

Light Detector 
InSb/InAs (Indium Antimonide/Indium Aresenide). Wavelength range 
700 – 2000 nm. Very high responsivity. High quality detector. 

Pre-Amplifier 
NIR Photodetector-Preamplifier (Opto Diode Corporation). High 
sensivity, large active area and low noise.  

Connector 
30-36 Pin standard connector. Digital input/output channels. Easy 
connectivity with portable data devices (laptop, tablet etc.) 
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APPENDIX D 

TRACTOR AND SPREADER SPECIFICATIONS 

D.1 JOHN DEERE MODEL 6420 TRACTOR 

 
Figure D.1. John Deere 6420 agricultural tractor. 

Tractor Power:  
PTO rated, kW:  70.3 
  
Engine:  
Manufacturer: John Deere 
Fuel: Diesel 
Aspiration: Turbocharger 
Cylinders:  Turbocharger with intercooler 
Displacement, L: 4 
Rated Engine speed, RPM: 2300 
Cooling: liquid 
Oil Capacity, L: 15.9 
Hydraulic flow rate, LPM: 96 
  
Type of Transmission Infinitely Variable Transmission 
Mechanical: MFWD Yes 
Guidance System: Greenstar AutoTrac system using RTK 
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D.2 CHANDLER EQUIPMENT COMPANY LITTER AND SHAVINGS SPREADER 

 
Figure D.2. Chandler Equipment Co. litter spreader. 

 
Figure D.3. Litter spreader rear gate, conveyor chain, flow divider and spinners. 

Manufacturer: Chandler Equipment Company, Gainesville, GA 

Bed Length, cm: 360 

Oil Capacity, L: 113.6 

Tire Size: 12.5L × 15 

Chain width, cm: 85.1 

Spinner diameter, cm: 76.2 

Max. gate height, cm: 34.9 

Vane Height, cm: 7.6 

Vane Length, cm: 27.9 

Divider width, cm: 83.8 

Divider Length, cm: 42.5 

Divider Height, cm 11.4 
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D.2.1 HYDRAULIC SPINNER MOTORS 

  
Figure D.4. Parker/Commercial Intertech hydraulic spinner motor. 

Manufacturer: Parker 
Series#: Commercial Intertech M-30 
Part#: 400-C-201 
Displacement, CI/REV: 7.8 
Max pressure, PSI: 2000-3000 
   

D.2.2 HYDRAULIC TANDEM CONVEYOR MOTORS 

 

Figure D.5. Parker/Ross hydraulic conveyor motors. 

Manufacturer: Parker 
Series#: Ross MB120102AAAA 
Part#: 400-R-106 
Displacement, CI/REV: 6.1 
Max Pressure, PSI: 2250-3000 
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D.2.3 HYDRAULIC PTO TANDEM PUMP 

 

Figure D.6. Prince hydraulic PTO tandem pump. 

Manufacturer: Prince 

Model#: 400-C-209 

Displacement, CI/REV: 9.9 

Flow rate, LPM: 81@ 500 PSI;79.5@1000, 1500 and 2000 PSI 

Input Power, HP: 8.4@500 PSI; 16.1@1000 PSI; 23.8@1500 PSI; 32.1@2000 PSI 

Max pressure, PSI: 2250 

Speed rating, RPM: 1000 
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D.2.4 ELECTRONICALLY ADJUSTABLE FLOW CONTROL VALVES 

 

 

     

Figure D.7. Brand proportional hydraulic valves used for conveyor and spinner control. 

Manufacturer:   Brand Hydraulics 

Max pressure, PSI:   3000 

Pulse frequency, Hz:   90 to 115 

Spinner valve:   PWM 

Part#:   400-1-313 

Flow rate, LPM:   0 to 75.7 

Conveyor Valve:   PWM 

Part#:   400-3-313 

Flow rate, LPM:   0 to 56.8 

 

  



139 

 

APPENDIX E 

TOPCON PRECISION AG CONSOLE AND SENSORS 

E.1 TOPCON PRECISION AG X20 CONSOLE 

 

Figure E.1. Snapshot X20 console showing the main screen of the Spreader Control 
Software. 

Console:  

Processor: 1 GHZ 

Memory: 512 MB 

Operating System: Windows XP PRO SP2 

Display Size: 213 mm (8.4 in.) 

Solid State drive: 2 GB 

Audio: 1.5 W stereo 

Mounting bracket: RAM mount 

USB ports: 4 × USB 2.0 

Serial RS232 ports: 4 

PS2 ports: 2 

VGA ports: 1 

10/100 Basic T Ethernet port: 1 

Spreader Control Software:  

Version: 1.48 

Capabilities: Variable-rate Application (VRA) 
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E.2 ELECTRONIC CONTROL UNIT 

 
Figure E.2. Electronic Control Unit (ECU) used with a litter spreader. 

Manufacturer: Topcon Precision Ag 
Operating Voltage, VDC: 12 to 24 

  
  
  
E.3 INDUCTIVE PROXIMITY SENSORS 

      
Figure E.3. Proximity sensor to monitor spinner-disc speed. 

Manufacturer: Automation Direct 
Model#: AE1-AN-4A 
Type: Unshielded 
Sensing range, mm: 0 to 4 
Logic: NPN 
Operating Voltage 10 to 30 VDC 
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E.4 DICKEY JOHN ENCODER 

 
Figure E.4. Encoder to monitor conveyor speed. 

Manufacturer: Dickey-John Corporation 
Model#: 46436-1170A 
Type: Application rate sensor 
Output: 360 pulses per revolution 
RPM range: 0 to 2500 
Operating Voltage 12V 
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APPENDIX F 

CONVEYOR DISCHARGE RATE DATA 

F.1 CONVEYOR DISCHARGE RATE DATA FOR INDIVIDUAL DENSITY TREATMENTS 

Table F.1. Discharge rate summary for 416.5 kg/m3 density treatment (litter A). 
    Controller Settings       

Treatment 
ID Rep 

Density 
(kg/m3) 

Gate Height 
(cm) 

Target Rate 
(kg/ha) 

Mean Discharge Rate 
(kg/rev) Error 

(%) Theoretical Actual 

P 
1 416.5 17.8 1743 25.1 25.4 1.2 
2 416.5 17.8 1743 25.1 23.6 -6.0 
3 416.5 17.8 1743 25.1 26.8 6.8 

Q 
1 416.5 17.8 3486 25.1 24.7 -1.6 
2 416.5 17.8 3486 25.1 21.0 -16.3 
3 416.5 17.8 3486 25.1 27.1 8.0 

R 
1 416.5 34.9 3424 49.4 53.4 8.1 
2 416.5 34.9 3424 49.4 45.8 -7.3 
3 416.5 34.9 3424 49.4 45.9 -7.1 

S 
1 416.5 34.9 6848 49.4 44.8 -9.3 
2 416.5 34.9 6848 49.4 47.3 -4.3 
3 416.5 34.9 6848 49.4 50.4 2.0 

 
 

Table F.2. Discharge rate summary for 352.4 kg/m3 density treatment (litter A). 
  Controller Settings       

Treatment 
ID Rep 

Density 
(kg/m3) 

Gate Height 
(cm) 

Target Rate 
(kg/ha) 

Mean Discharge Rate 
(kg/rev) Error 

(%) Theoretical Actual 

P1 
1 352.4 17.8 1743 21.3 24.2 13.6 
2 352.4 17.8 1743 21.3 31.6 48.4 
3 352.4 17.8 1743 21.3 23.4 9.9 

Q1 
1 352.4 17.8 3486 21.3 23.7 11.3 
2 352.4 17.8 3486 21.3 24.8 16.4 
3 352.4 17.8 3486 21.3 26.0 22.1 

R1 
1 352.4 34.9 3424 41.8 54.8 31.1 
2 352.4 34.9 3424 41.8 48.5 16.0 
3 352.4 34.9 3424 41.8 46.0 10.0 

S1 
1 352.4 34.9 6848 41.8 48.4 15.8 
2 352.4 34.9 6848 41.8 45.7 9.3 
3 352.4 34.9 6848 41.8 47.6 13.9 
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Table F.3. Discharge rate summary for 480.6 kg/m3 density treatment (litter B). 
    Controller Settings       

Treatment 
ID Rep 

Density 
(kg/m3) 

Gate Height 
(cm) 

Target Rate 
(kg/ha) 

Mean Discharge Rate 
(kg/rev) Error 

(%) Theoretical Actual 

E 
1 480.6 17.8 1743 29.0 27.0 -6.9 
2 480.6 17.8 1743 29.0 28.7 -1.0 
3 480.6 17.8 1743 29.0 27.6 -4.8 

F 
1 480.6 17.8 3486 29.0 28.1 -3.1 
2 480.6 17.8 3486 29.0 28.5 -1.7 
3 480.6 17.8 3486 29.0 27.3 -5.9 

G 
1 480.6 34.9 3424 57.0 53.2 -6.7 
2 480.6 34.9 3424 57.0 54.3 -4.7 
3 480.6 34.9 3424 57.0 56.2 -1.4 

H 
1 480.6 34.9 6848 57.0 55.5 -2.6 
2 480.6 34.9 6848 57.0 52.8 -7.4 
3 480.6 34.9 6848 57.0 56.1 -1.6 

 
 

Table F.4. Discharge rate summary for 416.5 kg/m3 density treatment (litter B). 
    Controller Settings       

Treatment 
ID Rep 

Density 
(kg/m3) 

Gate Height 
(cm) 

Target Rate 
(kg/ha) 

Mean Discharge Rate 
(kg/rev) Error 

(%) Theoretical Actual 

E1 
1 416.5 17.8 1743 25.1 28.9 15.1 
2 416.5 17.8 1743 25.1 27.8 10.8 
3 416.5 17.8 1743 25.1 30.6 21.9 

F1 
1 416.5 17.8 3486 25.1 28.3 12.7 
2 416.5 17.8 3486 25.1 30.4 21.1 
3 416.5 17.8 3486 25.1 29.1 15.9 

G1 
1 416.5 34.9 3424 49.4 58.6 18.6 
2 416.5 34.9 3424 49.4 55.3 11.9 
3 416.5 34.9 3424 49.4 58.8 19.0 

H1 
1 416.5 34.9 6848 49.4 54.6 10.5 
2 416.5 34.9 6848 49.4 57.2 15.8 
3 416.5 34.9 6848 49.4 59.6 20.6 
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Table F.5. Discharge rate summary for 544.6 kg/m3 density treatment (litter B). 
    Controller Settings       

Treatment 
ID Rep 

Density 
(kg/m3) 

Gate Height 
(cm) 

Target Rate 
(kg/ha) 

Mean Discharge Rate 
(kg/rev) Error 

(%) Theoretical Actual 

E2 
1 544.6 17.8 1743 32.9 27.8 -15.5 
2 544.6 17.8 1743 32.9 26.6 -19.1 
3 544.6 17.8 1743 32.9 28.8 -12.5 

F2 
1 544.6 17.8 3486 32.9 27.1 -17.6 
2 544.6 17.8 3486 32.9 27.7 -15.8 
3 544.6 17.8 3486 32.9 26.0 -21.0 

G2 
1 544.6 34.9 3424 64.6 56.4 -12.7 
2 544.6 34.9 3424 64.6 51.7 -20.0 
3 544.6 34.9 3424 64.6 56.1 -13.2 

H2 
1 544.6 34.9 6848 64.6 54.6 -15.5 
2 544.6 34.9 6848 64.6 51.9 -19.7 
3 544.6 34.9 6848 64.6 54.2 -16.1 
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APPENDIX G 

MASS DISTRIBUTION DATA 

G.1 MASS OVERLAP DISTRIBUTION DATA FOR INDIVIDUAL DENSITY TREATMENTS 

Table G.1. Simulated mass overlap data for 416.5 kg/m3 density treatment (litter A). 
    Controller Settings       

Treatment 
ID Rep 

Density 
(kg/m3) 

Gate Height 
(cm) 

Target Rate 
(kg/ha) 

Mean Rate 
(kg/ha) 

Std. Dev. 
(kg/ha) 

CV 
(%) 

P 
1 416.5 17.8 1743 1694 482 28.4
2 416.5 17.8 1743 1419 321 22.6
3 416.5 17.8 1743 1766 632 35.8

Q 
1 416.5 17.8 3486 2884 772 26.8
2 416.5 17.8 3486 3444 1269 24.6
3 416.5 17.8 3486 3187 900 28.2

R 
1 416.5 34.9 3424 3195 736 23.0
2 416.5 34.9 3424 2993 690 26.3
3 416.5 34.9 3424 3323 837 25.2

S 
1 416.5 34.9 6848 6565 930 18.6
2 416.5 34.9 6848 6085 1122 18.4
3 416.5 34.9 6848 6308 3634 19.6

 
 

Table G.2. Simulated mass overlap data for 352.4 kg/m3 density treatment (litter A). 
    Controller Settings       

Treatment 
ID Rep 

Density 
(kg/m3) 

Gate Height 
(cm) 

Target Rate 
(kg/ha) 

Mean Rate 
(kg/ha) 

Std. Dev. 
(kg/ha) 

CV 
(%) 

P1 
1 352.4 17.8 1743 1935 413 21.4 
2 352.4 17.8 1743 2311 822 35.6 
3 352.4 17.8 1743 1845 882 29.6 

Q1 
1 352.4 17.8 3486 3836 755 19.7 
2 352.4 17.8 3486 4807 1416 29.5 
3 352.4 17.8 3486 4518 1890 41.8 

R1 
1 352.4 34.9 3424 4490 1310 29.2 
2 352.4 34.9 3424 3944 894 22.7 
3 352.4 34.9 3424 3858 709 18.4 

S1 
1 352.4 34.9 6848 7150 2314 32.4 
2 352.4 34.9 6848 8070 1442 17.9 
3 352.4 34.9 6848 8646 2708 31.3 
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Table G.3. Simulated mass overlap data for 480.5 kg/m3 density treatment (litter B). 
    Controller Settings       

Treatment 
ID Rep 

Density 
(kg/m3) 

Gate Height 
(cm) 

Target Rate 
(kg/ha) 

Mean Rate 
(kg/ha) 

Std. Dev. 
(kg/ha) 

CV 
(%) 

E 
1 480.6 17.8 1743 1597 417 29.3
2 480.6 17.8 1743 1697 390 25.7
3 480.6 17.8 1743 1590 367 25.9

F 
1 480.6 17.8 3486 3059 725 26.5
2 480.6 17.8 3486 3162 678 24.0
3 480.6 17.8 3486 3349 896 30.0

G 
1 480.6 34.9 3424 3023 789 29.2
2 480.6 34.9 3424 3146 657 27.2
3 480.6 34.9 3424 3345 768 25.7

H 
1 480.6 34.9 6848 6045 1538 28.5
2 480.6 34.9 6848 6516 1876 32.2
3 480.6 34.9 6848 6169 1660 30.1

 

 

Table G.4. Simulated mass overlap data for 544.6 kg/m3 density treatment (litter B). 
    Controller Settings       

Treatment 
ID Rep 

Density 
(kg/m3) 

Gate Height 
(cm) 

Target Rate 
(kg/ha) 

Mean Rate 
(kg/ha) 

Std. Dev. 
(kg/ha) 

CV 
(%) 

E2 
1 544.6 17.8 1743 1337 327 27.4
2 544.6 17.8 1743 1497 334 25.0
3 544.6 17.8 1743 1365 324 26.6

F2 
1 544.6 17.8 3486 3005 788 29.4
2 544.6 17.8 3486 2660 652 27.5
3 544.6 17.8 3486 2848 776 30.5

G2 
1 544.6 34.9 3424 2584 726 31.4
2 544.6 34.9 3424 2806 690 27.5
3 544.6 34.9 3424 2689 579 24.1

H2 
1 544.6 34.9 6848 5616 1303 26.0
2 544.6 34.9 6848 5816 1219 23.5
3 544.6 34.9 6848 5478 1225 25.0
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Figure G.1. Mass overlap patterns at different density treatments by litter type (A and B) 
and application rate. 
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Table G.5. P-values for comparison between standardized distribution patterns at 352.4 
kg/m3 and 416.5 kg/m3 density treatments (litter A). 

Rate Transverse Location (m) 
(kg/ha) -4.6 -3.7 -2.7 -1.8 0.0 1.8 2.7 3.7 4.6 

1743 0.6961 0.1069 0.4154 0.1905 0.6152 0.7804 0.2568 0.4872 0.2967 
3424 0.4898 0.5831 0.9744 0.8228 0.3259 0.2682 0.8527 0.5444 0.0737 
3486 0.1199 0.7515 0.1764 0.0023a 0.3235 0.0159a 0.2464 0.1013 0.0654 
6848 0.2738 0.8249 0.9257 0.3117 0.3901 0.7876 0.8337 0.2758 0.5594 

a) Patterns are significantly different at these locations (α=0.05). 

 

Table G.6. P-values for comparison between standardized distribution patterns at 480.6 
kg/m3 and 544.6 kg/m3 density treatments (litter B). 

Rate Transverse Location (m) 
(kg/ha) -4.6 -3.7 -2.7 -1.8 0.0 1.8 2.7 3.7 4.6 
1743 0.0660 0.1377 0.9057 0.8196 0.4203 0.9828 0.3492 0.4505 0.2159 
3424 0.4275 0.0326a 0.6650 0.7238 0.2718 0.4691 0.8036 0.7787 0.5360 
3486 0.8963 0.0029a 0.2409 0.0480a 0.2534 0.3760 0.1040 0.5485 0.6638 
6848 0.3007 0.1192 0.8001 0.1375 0.0120a 0.5682 0.2871 0.0047a 0.0571 

a) Patterns are significantly different at these locations (α=0.05). 

 

Table G.7. P-values for comparison between Litter A and B standardized distribution 
patterns. 

Rate Transverse Location (m) 
(kg/ha) -4.6 -3.7 -2.7 -1.8 0.0 1.8 2.7 3.7 4.6 
1743 0.3340 0.1182 0.2598 0.1467 0.6457 0.5452 0.2557 0.6908 0.3623 
3424 0.0553 0.1529 0.0716 0.7725 0.1660 0.2575 0.0663 0.3365 0.1048 
3486 0.0987 0.0085a 0.2479 0.0008a 0.4087 0.0652 0.0984 0.0874 0.0997 
6848 0.4156 0.7980 0.4413 0.3876 0.2169 0.9212 0.5182 0.0055a 0.0063a 

a) Patterns are significantly different at these locations (α=0.05). 
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APPENDIX H 

LABVIEW PROGRAM 

H.1 LABVIEW PROGRAM USED FOR ACQUIRING CAPACITANCE SENSOR OUTPUT 

 
Figure H.1. Front panel view of LabView program used for acquiring capacitance sensor 

output. 
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Figure H.2. Block diagram of LabView program for acquiring capacitance sensor output. 
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APPENDIX I 

DIFFERENTIAL VOLTAGE DATA 

I.1 CALIBRATION GROUP: SENSOR OUTPUT DATA FOR INDIVIDUAL REPLICATIONS 

Table I.1. Replication 1 sensor output data for density treatment A. 
Moisture 
Content 

(%) 

Bulk 
Density 
(kg/m3) 

Signal 
Voltage 

(V) 

Reference 
Voltage 

(V) 

Differential 
Voltage   

(V) 
Temperature 

(oC) 
16.2 412.5 6.51 8.40 1.89 24.4 
19.3 444.9 5.30 8.38 3.08 24.3 
22.1 430.9 4.08 8.36 4.28 24.1 
25.2 434.2 3.31 8.37 5.06 24.1 
28.3 432.8 2.19 8.35 6.16 24.1 
31.4 422.5 0.93 8.32 7.35 23.9 
34.3 425.4 0.57 8.33 7.76 24.2 
37.0 411.8 0.41 8.33 7.92 24.1 
40.4 403.6 0.28 8.32 8.04 24.0 
42.9 391.3 0.15 8.32 8.17 23.9 

 
 

Table I.2. Replication 2 sensor output data for density treatment A. 
Moisture 
Content 

(%) 

Bulk 
Density 
(kg/m3) 

Signal 
Voltage 

(V) 

Reference 
Voltage 

(V) 

Differential 
Voltage   

(V) 
Temperature 

(oC) 
16.2 414.8 6.56 8.41 1.85 24.3 
19.3 427.6 5.25 8.41 3.16 23.9 
22.1 424.3 4.36 8.38 4.02 24.3 
25.2 429.5 3.13 8.36 5.24 23.9 
28.3 429.4 2.31 8.34 6.03 23.9 
31.4 415.0 1.00 8.34 7.34 24.0 
34.3 415.7 0.55 8.34 7.79 24.3 
37.0 395.6 0.48 8.34 7.95 23.9 
40.4 399.5 0.29 8.33 8.03 24.3 
42.9 386.4 0.17 8.33 8.51 23.9 
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Table I.3. Replication 3 sensor output data for density treatment A. 
Moisture 
Content 

(%) 

Bulk 
Density 
(kg/m3) 

Signal 
Voltage 

(V) 

Reference 
Voltage 

(V) 

Differential 
Voltage   

(V) 
Temperature 

(oC) 
16.2 422.3 6.54 8.42 1.88 24.4 
19.3 425.8 5.39 8.41 3.01 24.3 
22.1 427.6 4.32 8.38 4.07 24.5 
25.2 430.9 3.46 8.37 4.91 24.4 
28.3 444.5 1.93 8.34 6.41 24.3 
31.4 421.8 1.05 8.34 7.29 24.1 
34.3 419.1 0.55 8.34 7.78 24.2 
37.0 420.5 0.44 8.33 7.89 24.2 
40.4 394.7 0.30 8.33 8.03 24.1 
42.9 396.0 0.16 8.33 8.16 24.3 

 
 

Table I.4. Replication 1 sensor output data for density treatment B. 
Moisture 
Content 

(%) 

Bulk 
Density 
(kg/m3) 

Signal 
Voltage 

(V) 

Reference 
Voltage 

(V) 

Differential 
Voltage   

(V) 
Temperature 

(oC) 
16.2 478.8 6.03 8.40 2.37 24.2 
19.3 516.5 3.82 8.36 4.54 24.1 
22.1 500.3 2.71 8.34 5.63 23.9 
25.2 504.1 1.71 8.35 6.64 24.4 
28.3 498.5 1.04 8.33 7.29 24.2 
31.4 488.4 0.29 8.32 8.03 24.4 
34.3 493.8 0.24 8.33 8.09 24.3 
37.0 478.1 0.22 8.33 8.11 24.3 
40.4 468.6 0.17 8.32 8.15 24.3 
42.9 454.3 0.11 8.32 8.21 24.2 
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Table I.5. Replication 2 sensor output data for density treatment B. 
Moisture 
Content 

(%) 

Bulk 
Density 
(kg/m3) 

Signal 
Voltage 

(V) 

Reference 
Voltage 

(V) 

Differential 
Voltage   

(V) 
Temperature 

(oC) 
16.2 481.6 6.11 8.41 2.29 24.1 
19.3 496.4 3.74 8.38 4.64 24.3 
22.1 492.6 2.51 8.35 5.84 24.2 
25.2 500.3 2.14 8.35 6.21 24.2 
28.3 502.5 0.98 8.33 7.36 24.3 
31.4 481.8 0.46 8.34 7.88 24.1 
34.3 482.6 0.30 8.33 8.04 24.1 
37.0 459.3 0.27 8.33 8.06 24.2 
40.4 463.8 0.19 8.33 8.14 24.4 
42.9 448.6 0.12 8.33 8.21 23.9 

 

Table I.6. Replication 3 sensor output data for density treatment B. 
Moisture 
Content 

(%) 

Bulk 
Density 
(kg/m3) 

Signal 
Voltage 

(V) 

Reference 
Voltage 

(V) 

Differential 
Voltage   

(V) 
Temperature 

(oC) 
16.2 490.2 5.99 8.41 2.42 24.1 
19.3 494.3 3.95 8.38 4.43 24.2 
22.1 496.4 2.62 8.35 5.73 24.3 
25.2 498.6 1.69 8.35 6.66 24.3 
28.3 516.0 1.00 8.33 7.33 24.1 
31.4 489.7 0.40 8.33 7.94 24.0 
34.3 486.5 0.30 8.34 8.03 24.3 
37.0 488.1 0.21 8.33 8.12 24.3 
40.4 458.2 0.18 8.33 8.15 23.9 
42.9 459.8 0.11 8.33 8.22 24.3 
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Table I.7. Replication 1 sensor output data for density treatment C. 
Moisture 
Content 

(%) 

Bulk 
Density 
(kg/m3) 

Signal 
Voltage 

(V) 

Reference 
Voltage 

(V) 

Differential 
Voltage   

(V) 
Temperature 

(oC) 
16.2 566.8 5.64 8.39 2.75 24.1 
19.3 611.4 2.79 8.35 5.56 24.1 
22.1 592.1 1.31 8.32 7.01 24.3 
25.2 596.6 0.80 8.34 7.54 24.0 
28.3 590.1 0.38 8.32 7.95 24.3 
31.4 578.6 0.15 8.32 8.17 23.9 
34.3 584.5 0.11 8.33 8.22 24.1 
37.0 565.9 0.10 8.33 8.23 24.2 
40.4 554.6 0.09 8.32 8.24 24.3 
42.9 537.7 0.07 8.32 8.26 24.5 

 
 

Table I.8. Replication 2 sensor output data for density treatment C. 
Moisture 
Content 

(%) 

Bulk 
Density 
(kg/m3) 

Signal 
Voltage 

(V) 

Reference 
Voltage 

(V) 

Differential 
Voltage   

(V) 
Temperature 

(oC) 
16.2 570.1 5.61 8.40 2.79 24.0 
19.3 587.6 2.72 8.36 5.64 24.2 
22.1 583.0 1.28 8.34 7.05 24.3 
25.2 590.2 0.67 8.34 7.67 24.3 
28.3 594.8 0.38 8.33 7.95 24.1 
31.4 570.3 0.17 8.33 8.17 24.0 
34.3 571.3 0.14 8.33 8.22 24.1 
37.0 543.7 0.11 8.33 8.22 23.9 
40.4 549.0 0.09 8.33 8.24 23.9 
42.9 531.0 0.07 8.33 8.25 24.3 
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Table I.9. Replication 3 sensor output data for density treatment C. 
Moisture 
Content 

(%) 

Bulk 
Density 
(kg/m3) 

Signal 
Voltage 

(V) 

Reference 
Voltage 

(V) 

Differential 
Voltage   

(V) 
Temperature 

(oC) 
16.2 580.3 5.61 8.40 2.79 24.5 
19.3 585.1 2.63 8.36 5.73 24.3 
22.1 587.6 1.36 8.34 6.98 24.5 
25.2 592.2 0.77 8.34 7.56 24.2 
28.3 610.8 0.34 8.33 7.99 24.3 
31.4 579.7 0.15 8.33 8.18 24.0 
34.3 575.9 0.11 8.33 8.22 24.1 
37.0 577.8 0.10 8.33 8.23 24.3 
40.4 542.3 0.09 8.33 8.24 24.1 
42.9 544.2 0.07 8.33 8.26 24.4 

 
 
I.2 VALIDATION GROUP: SENSOR OUTPUT DATA FOR INDIVIDUAL REPLICATIONS 

Table I.10. Sensor output data for density treatment A. 
Moisture 
Content 

(%) 

Bulk 
Density 
(kg/m3) 

Signal 
Voltage 

(V) 

Reference 
Voltage 

(V) 

Differential 
Voltage   

(V) 
Temperature 

(oC) 
17.4 413.4 6.47 8.37 1.90 23.5 
19.1 405.5 5.71 8.36 2.65 23.8 
20.0 421.9 5.70 8.36 2.66 23.1 
21.0 392.4 5.48 8.35 2.87 23.1 
21.1 368.7 5.61 8.36 2.74 23.5 
22.8 412.3 4.65 8.34 3.69 23.5 
23.4 468.8 3.21 8.32 5.11 23.6 
24.1 400.5 3.91 8.33 4.42 23.4 
24.5 379.6 3.25 8.32 5.07 23.5 
24.8 427.2 4.04 8.33 4.31 23.5 
27.2 391.3 2.01 8.30 6.29 23.4 
27.3 472.8 1.63 8.30 6.67 23.4 
27.4 453.5 1.69 8.30 6.61 23.3 
28.6 434.1 1.56 8.30 6.74 23.5 
28.8 404.8 1.84 8.29 6.46 24.2 
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Table I.11. Sensor output data for density treatment B. 
Moisture 
Content 

(%) 

Bulk 
Density 
(kg/m3) 

Signal 
Voltage 

(V) 

Reference 
Voltage 

(V) 

Differential 
Voltage   

(V) 
Temperature 

(oC) 
17.4 479.9 5.70 8.36 2.66 23.5 
19.1 470.7 4.30 8.34 4.04 23.8 
20.0 489.8 4.40 8.33 3.93 23.7 
21.0 455.6 3.66 8.32 4.66 24.3 
21.1 428.0 3.95 8.33 4.38 23.6 
22.8 478.7 3.07 8.32 5.25 23.5 
23.4 544.3 1.66 8.30 6.64 23.6 
24.1 464.9 2.42 8.31 5.89 23.6 
24.5 440.6 1.53 8.30 6.76 23.5 
24.8 496.0 2.60 8.31 5.71 23.5 
27.2 454.3 1.25 8.29 7.05 23.5 
27.3 548.9 0.97 8.29 7.32 23.5 
27.4 526.5 0.99 8.29 7.30 23.5 
28.6 504.0 0.95 8.29 7.34 23.6 
28.8 469.9 0.91 8.28 7.37 23.4 

 

Table I.12. Sensor output data for density treatment C. 
Moisture 
Content 

(%) 

Bulk 
Density 
(kg/m3) 

Signal 
Voltage 

(V) 

Reference 
Voltage 

(V) 

Differential 
Voltage   

(V) 
Temperature 

(oC) 
17.4 568.1 5.14 8.35 3.21 23.7 
19.1 557.2 3.64 8.33 4.68 23.8 
20.0 579.7 3.56 8.32 4.76 23.4 
21.0 539.3 2.81 8.31 5.50 23.4 
21.1 506.7 2.70 8.31 5.61 23.7 
22.8 566.6 1.74 8.30 6.56 23.7 
23.4 644.2 0.95 8.29 7.34 23.8 
24.1 550.3 1.24 8.30 7.05 23.7 
24.5 521.6 0.71 8.29 7.58 23.6 
24.8 587.1 1.45 8.44 6.99 23.5 
27.2 537.8 0.41 8.29 7.88 23.7 
27.3 649.7 0.22 8.29 8.07 23.5 
27.4 623.2 0.32 8.29 7.97 23.5 
28.6 596.5 0.30 8.29 7.99 23.7 
28.8 556.3 0.43 8.28 7.85 23.6 
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Table I.13. Predicted moisture content of the validation litter samples using the regression 
models. 
Actual Moisture 

Content (%) 
Predicted Moisture Content (%) 
Model 1 Model 2 Model 3 

17.4 16.1 16.0 16.6 
19.1 18.1 19.3 18.6 
20.0 18.2 19.0 18.7 
21.0 18.8 20.8 19.7 
21.1 18.4 20.1 19.8 
22.8 21.1 22.1 21.1 
23.4 25.0 25.4 22.2 
24.1 23.1 23.6 21.8 
24.5 24.9 25.7 22.5 
24.8 22.8 23.2 21.7 
27.2 28.3 26.4 22.9 
27.3 29.3 27.9 23.2 
27.4 29.2 27.6 23.0 
28.6 29.6 27.3 23.1 
28.8 28.8 27.3 22.9 

 

Table I.14. Capacitor sensor repeatability data (Rep 1, 2 & 3 represents the three tests 
conducted using the same broiler litter sample). 

Rep Moisture Content 
(%) 

Differential Voltage   
(V) 

1 28.4 6.19 
2 28.1 6.12 
3 28.4 6.08 

Mean 28.3 6.13 
Std. Dev. 0.12 0.06 
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APPENDIX J 

NIR SPECTRAL DATA 

J.1 NIR SPECTRAL DATA FOR CALIBRATION GROUP 

Table J.1. Replication 1 NIR absorbance values at selected wavelengths for the calibration 
group. 
Moisture 
Content 

(%) 

Absorbance Values at different wavelengths (nm) 

1400 1410 1420 1430 1440 1900 1910 1920 1930 1940 1950 
16.2 0.51 0.54 0.56 0.58 0.59 0.76 0.82 0.86 0.88 0.88 0.87 
19.3 0.56 0.59 0.62 0.64 0.64 0.83 0.89 0.93 0.95 0.95 0.94 
22.1 0.56 0.60 0.63 0.65 0.66 0.87 0.93 0.97 0.99 0.99 0.98 
25.2 0.58 0.62 0.65 0.67 0.68 0.90 0.97 1.01 1.03 1.03 1.01 
28.3 0.61 0.65 0.69 0.71 0.72 0.94 1.01 1.05 1.07 1.07 1.06 
31.4 0.67 0.72 0.75 0.78 0.79 1.02 1.09 1.12 1.14 1.14 1.12 
34.3 0.70 0.76 0.80 0.82 0.83 1.09 1.17 1.21 1.22 1.22 1.21 
37.0 0.73 0.80 0.84 0.86 0.88 1.15 1.23 1.27 1.28 1.28 1.27 
40.4 0.80 0.87 0.91 0.94 0.95 1.23 1.31 1.35 1.36 1.36 1.35 
42.9 0.89 0.97 1.02 1.04 1.06 1.35 1.43 1.46 1.48 1.47 1.46 

 
 
 

Table J.2. Replication 2 NIR absorbance values at selected wavelengths for the calibration 
group. 
Moisture 
Content 

(%) 

Absorbance Values at different wavelengths (nm) 

1400 1410 1420 1430 1440 1900 1910 1920 1930 1940 1950 
16.2 0.51 0.54 0.57 0.58 0.59 0.77 0.83 0.87 0.89 0.89 0.88 
19.3 0.56 0.59 0.62 0.64 0.64 0.83 0.89 0.93 0.94 0.94 0.93 
22.1 0.56 0.60 0.63 0.64 0.65 0.86 0.93 0.97 0.98 0.98 0.97 
25.2 0.58 0.62 0.66 0.67 0.68 0.90 0.97 1.01 1.02 1.02 1.01 
28.3 0.60 0.65 0.68 0.70 0.71 0.93 1.00 1.04 1.06 1.06 1.05 
31.4 0.68 0.74 0.77 0.79 0.81 1.04 1.11 1.15 1.16 1.16 1.15 
34.3 0.71 0.76 0.80 0.82 0.83 1.08 1.14 1.18 1.19 1.19 1.18 
37.0 0.74 0.80 0.85 0.87 0.88 1.16 1.23 1.27 1.29 1.29 1.27 
40.4 0.80 0.87 0.92 0.94 0.95 1.24 1.32 1.35 1.37 1.37 1.35 
42.9 0.89 0.96 1.01 1.04 1.05 1.34 1.42 1.46 1.47 1.47 1.45 
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Table J.3. Replication 3 NIR absorbance values at selected wavelengths for the calibration 
group. 
Moisture 
Content 

(%) 

Absorbance Values at different wavelengths (nm) 

1400 1410 1420 1430 1440 1900 1910 1920 1930 1940 1950 
16.2 0.52 0.55 0.57 0.58 0.59 0.76 0.82 0.85 0.87 0.87 0.86 
19.3 0.56 0.60 0.62 0.64 0.65 0.84 0.90 0.94 0.95 0.95 0.94 
22.1 0.56 0.60 0.63 0.65 0.66 0.86 0.93 0.97 0.99 0.99 0.98 
25.2 0.57 0.62 0.65 0.67 0.68 0.89 0.96 1.00 1.02 1.02 1.00 
28.3 0.61 0.66 0.69 0.71 0.72 0.94 1.02 1.06 1.07 1.07 1.06 
31.4 0.68 0.73 0.77 0.79 0.80 1.04 1.11 1.15 1.16 1.16 1.15 
34.3 0.70 0.76 0.80 0.82 0.84 1.10 1.17 1.21 1.23 1.23 1.21 
37.0 0.73 0.80 0.84 0.86 0.88 1.15 1.23 1.27 1.28 1.28 1.27 
40.4 0.81 0.88 0.93 0.95 0.97 1.25 1.33 1.37 1.38 1.38 1.36 
42.9 0.90 0.97 1.02 1.05 1.07 1.36 1.43 1.47 1.48 1.48 1.47 

 
 

J.2 NIR SPECTRAL DATA FOR VALIDATION GROUP 

Table J.4. NIR absorbance values at selected wavelengths for the validation group. 
Moisture 
Content 

(%) 

Absorbance Values at different wavelengths (nm) 

1400 1410 1420 1430 1440 1900 1910 1920 1930 1940 1950 
19.1 0.59 0.63 0.66 0.67 0.69 0.87 0.94 0.97 0.99 0.99 0.98 
20.0 0.57 0.61 0.64 0.66 0.67 0.86 0.93 0.97 0.99 0.99 0.98 
21.0 0.58 0.62 0.66 0.68 0.69 0.88 0.95 0.99 1.01 1.01 1.00 
21.1 0.60 0.64 0.67 0.69 0.70 0.89 0.95 0.99 1.01 1.01 1.00 
22.8 0.59 0.63 0.67 0.69 0.70 0.89 0.97 1.01 1.03 1.03 1.02 
23.4 0.63 0.68 0.72 0.74 0.75 0.95 1.03 1.07 1.09 1.09 1.08 
24.1 0.62 0.66 0.70 0.72 0.73 0.93 1.01 1.05 1.07 1.07 1.05 
24.5 0.61 0.65 0.69 0.71 0.72 0.93 1.00 1.05 1.06 1.06 1.05 
24.8 0.61 0.66 0.69 0.71 0.72 0.93 1.00 1.05 1.06 1.06 1.05 
27.2 0.65 0.70 0.74 0.77 0.78 0.99 1.07 1.11 1.13 1.13 1.11 
27.3 0.69 0.74 0.78 0.80 0.81 1.03 1.10 1.14 1.16 1.16 1.14 
27.4 0.65 0.70 0.73 0.76 0.77 0.98 1.06 1.10 1.11 1.11 1.10 
28.6 0.64 0.69 0.72 0.75 0.76 0.98 1.06 1.11 1.13 1.13 1.11 
28.8 0.65 0.70 0.74 0.77 0.78 1.01 1.09 1.13 1.15 1.15 1.13 
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J.3 NIR SPECTRA: SENSOR REPEATABILITY AND ROTATION VS. POINT MEASUREMENTS 

 
Figure J.1. Plot illustrating repeatability of the NIR spectrometer for broiler litter (Rep 1, 2 

& 3 indicates the three tests performed using the same broiler litter sample).  

 
Figure J.2. Comparison of NIR absorption spectra for broiler liter collected using point 

and rotation measurement features. 
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J.4 PRINCIPAL COMPONENT ANALYSIS (PCA) FOR NIR SPECTRAL DATA 

 

 
Figure J.3. Regression coefficients obtained from the PCA analysis of spectral data of 

broiler litter (circles represent important variables highly related to litter moisture content 
within the spectra).  
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APPENDIX K 

SAS OUTPUT 

K.1 SAS OUTPUT DATA: VARIABLE SELECTION FOR CALIBRATION MODELS 

Table K.1. SAS Output for PROC REC (Best 4 variables selection procedure). 
Number 
in Model 

Adjusted 
R-Square R-Square 

Root 
MSE SSE 

Variables in 
Model 

4 0.997 0.997 0.490 6.006 M1 N1 N4 N5 
4 0.997 0.997 0.494 6.099 M1 N2 N4 N5 
4 0.997 0.997 0.494 6.104 M3 N2 N4 N5 
4 0.997 0.997 0.495 6.137 M4 N2 N4 N5 
4 0.997 0.997 0.496 6.146 M2 N1 N4 N5 
4 0.997 0.997 0.496 6.152 M2 N2 N4 N5 
4 0.997 0.997 0.496 6.158 M3 N1 N4 N5 
4 0.997 0.997 0.498 6.199 M5 N2 N4 N5 
4 0.997 0.997 0.498 6.207 M4 N1 N4 N5 
4 0.997 0.997 0.500 6.239 N1 N4 N5 N6 
4 0.997 0.997 0.500 6.257 M5 N1 N4 N5 
4 0.997 0.997 0.500 6.260 N2 N4 N5 N6 
4 0.997 0.997 0.515 6.638 N3 N4 N5 N6 
4 0.997 0.997 0.517 6.689 M1 M2 N4 N5 
4 0.997 0.997 0.517 6.690 M4 N3 N4 N5 

 

Table K.2. SAS Output for PROC REC (Best 3 variables selection procedure). 
Number 
in Model 

Adjusted 
R-Square 

R-
Square 

Root 
MSE SSE 

Variables in 
Model 

3 0.997 0.997 0.511 6.800 N2 N4 N5 
3 0.997 0.997 0.513 6.848 N1 N4 N5 
3 0.997 0.997 0.514 6.867 N3 N4 N5 
3 0.996 0.997 0.522 7.084 M2 N4 N5 
3 0.996 0.997 0.522 7.085 M3 N4 N5 
3 0.996 0.997 0.522 7.091 M4 N4 N5 
3 0.996 0.997 0.522 7.092 M5 N4 N5 
3 0.996 0.997 0.523 7.105 M1 N4 N5 
3 0.996 0.997 0.525 7.169 N2 N4 N6 
3 0.996 0.997 0.526 7.191 N4 N5 N6 
3 0.996 0.997 0.531 7.322 N1 N4 N6 
3 0.996 0.996 0.558 8.108 M1 N2 N6 
3 0.996 0.996 0.559 8.133 N1 N2 N6 
3 0.996 0.996 0.564 8.273 N3 N4 N6 
3 0.996 0.996 0.565 8.293 M3 N2 N6 
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Table K.3. SAS Output for PROC REC (Best 2 variables selection procedure). 
Number 
in Model 

Adjusted 
R-Square R-Square 

Root 
MSE SSE 

Variables in 
Model 

2 0.997 0.997 0.516 7.198 N4 N5 
2 0.995 0.995 0.622 10.454 N3 N6 
2 0.994 0.994 0.687 12.748 N4 N6 
2 0.992 0.992 0.787 16.709 M1 M2 
2 0.990 0.990 0.886 21.212 M1 M3 
2 0.990 0.990 0.896 21.686 N5 N6 
2 0.989 0.989 0.938 23.746 M1 M4 
2 0.987 0.988 0.986 26.271 M1 M5 
2 0.987 0.988 1.002 27.127 M1 N2 
2 0.987 0.988 1.010 27.538 M1 N1 
2 0.986 0.987 1.017 27.903 N1 N2 
2 0.986 0.987 1.031 28.699 M5 N2 
2 0.986 0.987 1.041 29.267 M2 N2 
2 0.986 0.987 1.041 29.280 M1 N3 
2 0.986 0.987 1.043 29.373 M4 N2 

 

Table K.4. SAS Output for PROC REC (Best 1 variable selection procedure). 
Number 
in Model 

Adjusted 
R-Square R-Square 

Root 
MSE SSE 

Variables 
in Model 

1 0.974 0.975 1.406 55.332 N4 
1 0.974 0.975 1.411 55.738 N3 
1 0.973 0.974 1.434 57.611 N5 
1 0.973 0.974 1.447 58.631 N2 
1 0.972 0.973 1.471 60.602 N6 
1 0.968 0.969 1.572 69.164 N1 
1 0.951 0.953 1.936 104.991 M5 
1 0.951 0.952 1.942 105.602 M4 
1 0.949 0.950 1.978 109.509 M3 
1 0.944 0.946 2.064 119.326 M2 
1 0.933 0.936 2.252 141.988 M1 
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K.2 ANOVA RESULTS: COMPARISON BETWEEN ACTUAL AND PREDICTED MOISTURE VALUES 

Table K.5. ANOVA summary statistics for comparison of actual and predicted moisture 
values obtained from regression model for capacitance sensor (Model 1). 

Source DF 
Sum of 
Squares 

Mean 
Square 

F 
Value Pr > F 

Model 1 305.805 305.805 205.43 <.0001 

Error 13 19.351 1.488   

Corrected Total 14 325.157    

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept 1 -7.60511 2.18925 -3.47 0.0041 

slope 1 1.30287 0.09090 14.33 <.0001 

 

Table K.6. ANOVA summary statistics for comparison of actual and predicted moisture 
values obtained from regression model for capacitance sensor (Model 2). 

Source DF 
Sum of 
Squares 

Mean 
Square 

F 
Value Pr > F 

Model 1 181.40216 181.40216 151.99 <.0001 

Error 13 15.51518 1.19348   

Corrected Total 14 196.91733    

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept 1 -0.46913 1.96026 -0.24 0.8146 

slope 1 1.00346 0.08139 12.33 0.2436 

 

Table K.7. ANOVA summary statistics for comparison of actual and predicted moisture 
values obtained from regression model for capacitance sensor (Model 3). 

Source DF 
Sum of 
Squares 

Mean 
Square 

F 
Value Pr > F 

Model 1 52.56929 52.56929 118.89 <.0001 

Error 13 5.74804 0.44216   

Corrected Total 14 58.31733    

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept 1 8.31219 1.19315 6.97 <.0001 

slope 1 0.54019 0.04954 10.90 <.0001 
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Table K.8. ANOVA summary statistics for comparison of actual and predicted moisture 
values obtained from regression model for NIR technique (Predictors: 1400 1930 1940 
1950). 

Source DF 
Sum of 
Squares 

Mean 
Square 

F 
Value Pr > F 

Model 1 165.35058 165.35058 143.32 <.0001 

Error 13 14.99875 1.15375   

Corrected Total 14 180.34933    

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept 1 2.24015 1.92736 1.16 <.0001 

slope 1 0.95804 0.08003 11.97 0.2660 

 

Table K.9. ANOVA summary statistics for comparison of actual and predicted moisture 
values obtained from regression model for NIR technique (Predictors: 1400 1930 1940). 

Source DF 
Sum of 
Squares 

Mean 
Square 

F 
Value Pr > F 

Model 1 167.79938 167.79938 86.53 <.0001 

Error 13 25.20995 1.93923   

Corrected Total 14 193.00933    

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept 1 3.50503 2.49874 1.40 <.0001 
slope 1 0.96510 0.10375 9.30 0.1841 

 

Table K.10. ANOVA summary statistics for comparison of actual and predicted moisture 
values obtained from regression model for NIR technique (Predictors: 1400 1900). 

Source DF 
Sum of 
Squares 

Mean 
Square 

F 
Value 

Pr > F 

Model 1 180.206 180.206 240.29 <.0001 
Error 13 9.749 0.749   
Corrected Total 14 189.956    

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept 1 1.00314 1.55390 0.65 0.0198 
slope 1 1.00015 0.06452 15.50 0.5487 
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Table K.11. ANOVA summary statistics for comparison of actual and predicted moisture 
values obtained from regression model for NIR technique (Predictors: 1930). 

Source DF 
Sum of 
Squares 

Mean 
Square 

F 
Value 

Pr > F 

Model 1 121.62913 121.62913 171.86 <.0001 
Error 13 9.20020 0.70771   
Corrected Total 14 130.82933    

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept 1 6.52352 1.50950 4.32 0.0008 
slope 1 0.82167 0.06268 13.11 <.0001 

 

 


