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Abstract 
 

With the advent of the laser, its applications have been extended to many areas 

including material processing, such as welding, cutting and drilling; and medical 

procedures, such as eye surgery and cosmetic skin treatments; and other applications such 

as lithography, semiconductor manufacturing, optical data processing. Among the many 

kinds, laser diodes have been the most developed in recent years, due to its multiple 

features like low cost, compactness, electronic compatibility, broad range of wavelengths, 

and high Pulse Repetition Frequency values.  However, the beams from the laser diodes 

must be shaped before they can be widely used commercially. This is because the beams 

produced by the laser diodes are characterized as having elliptical beam spot shape along 

the transverse directions. Also, the intensity profile is Gaussian, not evenly distributed 

energy profile as commonly preferred in industry applications. 

In this work, a system that reshapes the beams of an array of laser diodes from 

elliptical shaped to rectangular shaped and from Gaussian energy distribution to uniform 

energy distribution. The output beam is also collimated. This system employs 4 sets of 

lenses, either aspheric, cylindrical or lenslets, which treat the light rays respectively in 

both perpendicular and parallel planes to achieve the goal. Besides, this lenslet 

technology used in this system can also be applied to multi laser diode sources to 

generate a single bunch of high-energy and collimated beam with rectangular beam spot 

shape. In this way, the disadvantage of the low-energy output of the laser diode will be 
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overcome. In addition, the resultant ray bunches are highly adjustable and can be applied 

to many more different areas of industrial world. In addition, a detailed derivation 

process designing the proposed system is shown in this thesis. A series of MATLAB 

codes are developed to calculate the system parameters according to the derived 

equations and to simulate the resultant system performance. ZEMAX is also employed to 

verify the simulation results. A comparison between the simulation results of MATLAB 

and that of ZEMAX is discussed. 
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CHAPTER 1 

INTRODUCTION & LASER DIODE BEAM 

 

1.1 Introduction 

Laser diode is a semiconductor-based coherent light emitting device used to 

generate analog signals or digital pulses for transmission through optical fibers.  Laser 

emission follows the same principle as other gas or solid-state lasers, except laser diodes 

are much smaller. The most common type of laser diode is formed from a p-n junction 

and powered by current injection. In fact, laser diode can be classified as a member of the 

family of semiconductor p-n junction diodes, and it is fabricated using semiconductor 

processes just like any other microelectronic chips. A semiconductor laser diode is shown 

schematically in Figure 1.1, where the gain medium in the middle is surrounded by the 

guiding layers. The refractive index of the guiding layers is somewhat greater than that of 

the surrounding regions (substrate and cladding) so that the light can be confined to a 

relatively narrow region by total internal reflection. The two ends of the diode in the 

cross direction (x-y plane) are cleaved to form perfectly smooth, parallel edges, forming a 

Fabry-Perot resonator, and thus an optical cavity is formed.  When the electrical current 

is injected through the positive electrode and collected at the base-plate on the bottom 

side of the junction (ground electrode), the original stable state of thermal equilibrium of 

the junction will be disturbed, and electrons can absorb energy either from heat caused by 
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the collision among the massively increased amount of electrons or from the photons 

caused by the spontaneous emission which is necessary to initiate the laser oscillation. As 

a result, there are more electrons in higher energy states than in lower energy states, thus 

population inversion is achieved in the gain medium within the optical cavity.  

When an electron is excited from a lower to a higher energy level, it will not stay 

that way forever; instead it will go back to the stable state and emit photons. These 

photons will travel along the waveguide and be reflected several times from each end 

face before they are emitted out. As the light wave passes through the cavity, it is 

amplified by the stimulated emission which generates another photon of the same 

frequency, travelling in the same direction, with the same polarization and phase as the 

first photon. This is how laser diode works and generates laser light.  

 

Figure 1.1: A semiconductor laser diode with the p-n junction structure. 
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1.2 The characteristics of the laser diode beam 

One important characteristics of the laser diode beam is the Gaussian irradiance 

distribution, as shown in Figure 1.2. One difference is that, for laser diodes, the beam has 

Gaussian distribution with different beam radius in two different transverse directions, as 

shown in Figure 1.2. The basic principles and characteristics of the laser beams will be 

discussed in detail in section 3.1. 

 
Figure 1.2 (a): Illustration of Gaussian irradiance distribution in x direction at 0z z  

 
Figure 1.2 (b): Illustration of Gaussian irradiance distribution in y direction at 0z z  
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The second characteristic of the laser diode beam is the elliptical beam spot shape 

as shown in Figure 1.4. The divergent angles along the perpendicular transverse direction 

and along the parallel transverse direction are not same for laser diodes; therefore the 

beam profile was an elliptical shape. This phenomenon is caused by the structure of the 

laser diode itself.  The working region of the laser diode is actually a thin and wide strip 

of p-n junction, limiting the active area in the perpendicular transverse direction and 

allowing a wider active area along the parallel transverse direction. 

 

Figure 1.3: Illustration of the elliptical beam spot shape generated by ZEMAX 

 

Figure 1.4: Illustration of different divergent angle in x-z and y-z planes [3] 

The third characteristic of the laser diode beam is the astigmatism. The cause of 

astigmatism is the non-uniform gain profile along the y-axis within the active region. As 

the gain is the strongest near the cavity’s central axis, the beam, while propagating along 

z, in the cavity experiences a “gain focusing” effect resulting a stronger amplification on 

axis than in the wings [1]. Astigmatism is important for the optical systems designed to 
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focus the laser beam to a small spot. On the contrary, for most applications where the 

beam is expanded to cm to m levels and collimated, astigmatism µm levels can be 

neglected [3]. 

 

1.3 The applications of the laser diode and the necessity of beam shaping 

Laser diodes are semiconductor lasers and come in many different structures and 

sizes with laser powers ranging from a few mW to hundreds of watts. The emitted 

wavelength depends mainly on the semiconductor material of the laser diode cavity. 

Earlier laser diodes operated in the infrared, but most recent ones cover the full visible 

spectrum range from blue to red and beyond. Compared to other lasers such as CO2 and 

Nd-YAG, semiconductor lasers have the advantages of low cost, compactness, electronic 

compatibility, broad range of wavelengths, and high Pulse Repetition Frequency (PRF) 

values. Therefore, they are used in many scientific and commercial applications.  

A few of the primary applications include material processing, such as welding, 

cutting, and drilling. In medical procedures, They are used in corneal surgery and 

cosmetic skin treatments. Other applications include laser/material interaction studies, 

lithography, semiconductor manufacturing, graphic arts, optical data processing, and 

military uses. In addition, laser diode is a perfect source for compact Light Detection and 

Ranging (LIDAR) systems [2]. 

However, many of these applications require a certain beam shape such as 

circular or rectangular, rather than the elliptical beam shape. They also require uniform 

intensity profile rather than Gaussian intensity profile; and collimated light beams rather 

than divergent light beams. For example, a very important objective in optical 
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lithography is to obtain uniform control of the intended critical dimension over the whole 

imaging field, so the irradiance uniformity are needed to maintain the same exposure 

latitude at the wafer, the same thing also happens in many other semiconductor 

manufacture processes [24].  Applications such as nonlinear optics, and optical data 

(image) processing may require beams with uniform phase as well as amplitude, because 

they need large depth of field so that the beams can propagate for a considerable distance 

and remain the same energy profile during the period; LIDAR systems prefer the beams 

to be collimated and have a circular beam profile. Otherwise at the far field the difference 

between the radii of the beam in the two directions causes highly elliptical beam shape 

after long-range propagation and thus reduces the efficiency and accuracy of the LIDAR 

detection [3]. 

In some application, a single laser diode may not have the required power level. 

To increase the beam power, beams from several laser sources o be combined to form a 

single beam. This is called the power scaling. In this case the uniformity of each beam 

and how they are combined is important to maximize the output power. 

Therefore, the diode laser beams must be reshaped before they are utilized 

commercially. In fact, beam characteristics of collimation, uniform energy profile and 

regular beam shape such as circular or rectangular are highly preferable in the beam 

shaping applications. Inspired by these requirements, this thesis concentrates on how to 

simultaneously achieve these characteristics and makes the semiconductor laser diode 

more applicable in the industrial world. 
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CHAPTER 2 

RESEARCH OBJECTIVES AND DISCUSSION OF CHAPTERS 
 

The laser diode example shown in the last chapter is the basic edge-emitting 

semiconductor laser, only one of three kinds of laser diodes. The other two includes 

double heterostructure laser diode and vertical cavity surface emitting laser diode 

(VCSEL), as shown in Figure 2.1. Though different from each other in the structure, 

these laser diodes work on the same principle, functioning as an optical oscillator by 

stimulating a chain reaction of photon emission inside a tiny chamber. Thus they produce 

the same beam characteristics and can share the same beam shaping methods. 

Throughout this thesis, edge-emitting laser diodes will be referred to as an example by 

the author to demonstrate how to design and analyze the beam shaping systems involved. 

Figure 2.1: Three different structures of laser diodes [4] 

As mentioned earlier, collimation, uniform intensity and pre-determined beam 

shape are the three main features in the regions of laser beam shaping applications. There 

are many papers presenting either to collimate the beam, to make it circular or 

rectangular, or to bring the irradiance profile to a uniform irradiance. For example, in a 
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dissertation [3], the author proposed several design methods using lens or mirrors to 

collimate and circularize the laser beams, this work also developed a two lens systems 

that can achieve the uniform phase as well as amplitude.  In the paper [5], the author 

introduced a beam profile named the multi-tilted Gaussian beam which has the advantage 

of nearly uniform distribution throughout its far-field propagation. In [6], the author 

demonstrated how to manipulate multi-Gaussian beams to a beam with a flat-topped 

shape. In paper [7], the author talked about using converging blades to collimate the 

beams. In a book [8], the authors summarized many types of beam shaping theory and 

techniques. However, there is little work engaging in to achieve all of the above features 

simultaneously. The difficulty stems from the complexity of the problem itself. 

Once the laser beams possess these features, they become highly adjustable, 

applicable and preferable in the industrial and commercial world. But during the process 

of the practical applications, people often find that high power densities must be provided 

on the targets and that only one laser diode source usually cannot meet the energy 

requirements. Therefore, using high-power laser diode arrays (LDAs) is necessary. Laser 

diode arrays are composed of multiple separate beams of laser-diode pitches. The beam 

quality of the high-power laser diode stack is poor because of its large beam size and 

great divergence. Generally, on the fast axis, the beam divergence is 40 degree; in the 

slow axis, which is parallel to the array direction, the beam divergence is 6 to 8 degree. 

At this point, the complexity of the problem is increased to a new level, involving beam 

shaping techniques of Multi-laser diode sources.  

Many sophisticated beam collimation techniques have been developed to improve 

output power, coupling efficiency, and simplicity. Generally, the beam divergence in the 
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fast axis can be collimated to several miliradians by using a microcylindrical lens for 

each high-power laser-diode, while the beam quality in the slow axis is very poor and 

requires special treatments. The slow-axis correction usually involves beam reshaping 

and rearrangement [9], such as using microstage mirrors [10], prism arrays [11] and 

refractive gratings [12] to divide, rotate and rearrange the beam along the slow axis. 

Another approach does not require beam rearrangement, and the light from each emitter 

is collimated separately by microlens arrays [13] or a phase mask [14]. Graded-index 

fiber lens array can also be used to collimate the beams of high-power laser array [15].  

Each of the above techniques has its own advantages and strong points.  

Inspired by these works, this thesis will propose a new optical system which 

employs four sets of lenslets, either aspheric or cylindrical, and treat the light rays 

respectively in both perpendicular and parallel planes. The goal of this system is to 

transform the irradiance distribution of such laser diodes form Gaussian to uniform in 

addition to collimation and expansion of the beams, and to combine the beams from 

different laser diode into a single laser beam with a rectangular beam shape. In this way, 

the disadvantage of the low-energy output of a single laser diode is overcome, and the 

resultant beam can be applied to many different areas of industrial world. The author 

presents the principles and tools used to design this system explicitly in order to create a 

guideline for the ones working with similar problems or further improving the proposed 

designs. The equations specific to this system are derived analytically based on ray optics 

principles and geometrical relationships. Electromagnetic principles used to derive the 

governing equations. Then MATLAB is used to solve these equations. MATLAB codes 

are written to calculate and determine the parameters of the optical components, while 



10 
 

considering the governing equations of beam propagation. Computer package program 

ZEMAX is utilized to optimize and simulate the optical designs. The author expects that 

this beam-shaping system can be used and easily modified to address the issues related to 

the laser beam shaping and the analysis methods developed in this thesis will be a 

valuable resource for the scientific community interested in beam shaper systems. 

Chapter 3 talks about the background and mathematical development for this 

research project, concerning about the characteristics of the laser beam, the lenslet 

technology, the mathematical preliminaries, and ZEMAX implementation. Chapter 4 

begins to design each lenslet and its surfaces and derive the equations to determine them. 

Chapter 5 gives the design examples. In this chapter, the author will use MATLAB to 

solve the derived equations and to simulate the results. Additionally, ZEMAX will also 

be used to simulate the designed system and a comparison of the results from MATLAB 

and ZEMAX is shown. The conclusions are discussed in Chapter 6.  
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CHAPTER 3 

BACKGROUND AND MATHEMATICAL DEVELOPMENT 

In this chapter, the background of lasers and some basic knowledge of the laser 

beam shaping are given. The complete mathematical expression of the laser beam 

propagation and the fundamental mode is derived, showing the characteristics and the 

parameters of a laser beam analytically. The knowledge about the lenslet technology and 

ZEMAX implementation is introduced also. Finally, some of the necessary mathematical 

principles and theories concerning the optical system design are listed and discussed. 

 

3.1 Basic Principles of laser beams and Their Propagation Characteristics 

A laser is a device that emits light through a process of optical amplification 

based on the stimulated emission of photons. Lasers mainly consist of three parts, namely, 

the gain medium, the pumping mechanism and the optical cavity.  The gain medium is 

the part where light of a specific wavelength that passes through it is amplified by 

stimulated emission. Normally controlled over its purity, size, concentration, and shape, 

the material of the gain medium can be of any state: gas (plasma), liquid (dye), solid 

(semiconductor or crystal). For the gain medium to amplify light, energy needs to be 

supplied. This process is called pumping. The optical cavity, also known as optical 

resonator, is usually made from a pair of mirrors on either end of the gain medium, 
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providing optical feedback so that light bounces back and forth between the mirrors, and 

the beam gains energy continuously.  

In order for the lasers to operate, it is necessary to create a population inversion. 

The gain medium absorbs pump energy which raises some electrons into higher-energy 

(excited) quantum states. When the number of particles in one excited state exceeds the 

number of particles in some lower-energy state, populating inversion is achieved. The 

amount of stimulated emission due to light that passes through is larger than the amount 

of absorption by the material itself [16]. At this point, the light generated by stimulated 

emission and the amplified beam are the same in terms of wavelength, phase and 

polarization. This is why laser light has good characteristics coherence, uniform 

polarization and great monochromaticity. The gain medium will amplify any photons 

passing through it, regardless of direction, but only the photons in a spatial mode 

supported by the resonator will pass more than once through the medium; this is why 

laser lights usually have better directionality than other light sources.  

When laser beams travel in free space or an isotropic media rather than 

waveguides, they form Gaussian beam and exhibit the minimum divergence for a given 

diameter due to diffraction. Some high power lasers may even be multimode, with the 

transverse modes often approximated using Hermit-Gaussian or Laguerre-Gaussian 

functions [17]. The simplest and lowest order mode is called the fundamental Gaussian 

beam which is the most stable and preferred beam type in many applications. 

 This research is interested in the type of semiconductor diode laser which has the 

profile of elliptical Gaussian beam. Therefore, in this section, only the basics of the 
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fundamental Gaussian beam analysis are presented [18]. A complete understanding of 

laser beam propagation requires a treatment based on Maxwell’s Equations. 

 

3.2. Mathematical theory of wave propagation   

Maxwell’s equations govern all electric, magnetic, electromagnetic and optical 

phenomena. In the field of optical electronics and optical communications, one often 

deals with the transmission and propagation of electromagnetic radiation in regions 

where both charge density and current density are zero.  

Maxwell equations in charge free and isotropic media: 
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To derive the wave equation, we first take the curl of equation (3.1) and eliminate 

H


by using equation (3.2). This leads to 
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The left hand side of the equation can be expanded and rewritten as 
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Using equation (3.3), the equation (3.6) becomes 
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This is the wave equation for the electric field vector E


 in homogeneous and 

isotropic media. A similar equation for the magnetic field vector H


can be easily shown, 

thus we only use electric field to demonstrate the process.  Equation (3.7) is the standard 

electromagnetic wave equations. It satisfys the well-known monochromatic plane wave 

solution 

 
( )i t krE aAe  

 
 (3.8)  

Where A is a constant and called the amplitude and a


is the unit vector 

representing the polarization state of the E-field. The parameter k


is the wave vector and 

  is the angular frequency, where  

 
k  


 (3.9) 

Substituting equation (3.9) in (3.8), we get another form of wave equation for 

harmonic field with a time dependence of exp( )i t : 

 
2 2 0E k E  
 

 (3.10) 

This equation can be applied to obtain a more complete wave description of the 

beams produced by lasers Because most optical beams propagating in free space are 

almost pure TEM (transverse electric and magnetic), we can assume the propagation 

direction is parallel to the z direction in the cylindrical coordinates, and thus the vector 

field components lie in the plane perpendicular to the direction of propagation z. In fact, 

we are looking for a solution of the form of equation (3.10) 

 0ˆ ( , ) jkzE aE r z e 


 (3.11) 
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The factor 0E  is the customary amplitude factor expressing the intensity of the 

wave (in the development below it is set equal to 1); the factor exp( )jkz expresses that 

the wave propagates more-or-less as a uniform plane wave; and the factor  measures 

how the beam deviates from a uniform plane wave [16]. 

We limit our derivation to the solution of the field with cylindrical symmetry, so 

that the Laplacian 2 can be written in cylindrical coordinates 

 

2 2 2
2

2 2 2 2

1

r r z
  

   
  

 (3.12) 

Substituting equations (3.11) and (3.12) into equation (3.10) leads to 

 

2 2

2 2
2 0j k

r z z

    
  

  
 (3.13)

 

We assume that the variation of the field amplitude is slow enough, so that 

 

2

2
k

z z

  


 
 (3.14) 

This approximation is known as the slowly varying amplitude (SVA) 

approximation and legitimate when the transverse dimension of the beam is much larger 

than the wavelength. This is true for most laser beams. Therefore, equation (3.13) can be 

reduced to a scalar differential equation: 

 

2

2
2 0j k

r z

  
 

 
 (3.15) 

It is convenient to introduce two complex functions ( )P z and ( )q z to solve the 

differential equation such that  is in the form of 

 

2exp[ ( ( ) )]
2 ( )

k
j p z r

q z
     (3.16) 
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Now, we need to find ( )P z and ( )q z so that equation (3.16) is a solution of 

equation (3.15). Use equation (3.12), we obtain 

 

2
2

2
[ ( ) 2 ] ( 2 ) ( )

2 ( ) 2 ( ) ( )

k k k
j r j r j

r r q z q z q z

    
       

 
 (3.17) 

 

2 2 1
2 2 ( ) ( ) '

p
j k j k j k r

z z q

   
  

 
 (3.18) 

Substituting equation (3.17) and (3.18) into equation (3.15), results in 

2
2 2 2

2

1
2 ( 2 ) ( ) 2 ( ) ( ) ' 0

2 ( ) ( )

k k p
j k j r j j k j k r

r z q z q z z q

       
            

  
 

The above equation can be simplified to 

 

2 2 2 2 1
( ) 2 ( ) ' 2 ' 0
k k

r j k r kp
q q q

    
 

(3.19) 

Where the “prime” in this equation indicates differentiation with respect to z . If equation 

(3.19) holds for all  r , the coefficient of the different powers of  r must be equal to zero. 

This leads to 

 

21 1
( ) ( ) ' 0
q q

   '
j

p
q


  (3.20) 

The problem now has been reduced to solve these two coupled deferential 

equations. In order to solve them, we introduce a function  ( )u z  by the relation 

 

1 1 du

q u dz
  (3.21) 

Thus, 

2
2

2 2

2 2
2

1 1 1
( ) ' ( )

1 1
( ) ( )

du d u

q u dz u dz

du

q u dz

 
 


 


 (3.22) 

By substituting equation (3.22) into the first equation of (3.20), we can easily obtain 
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2

2
0

d u

dz
  (3.23) 

The general solution for the above equation can be written as 

 u az b   (3.24) 

Where  a  and  b  are arbitrary constants. The beam parameter  ( )q z  can be written, 

according to equation (3.21), as 

 

1 a

q az b



 0

b
q z z q

a
     (3.25) 

Where 0q is a constant ( 0 (0) /q q b a  ), the other beam parameter ( )P z can be obtained 

from equation (3.20) and (3.25) as: 

 0

1
'p j

z q
 


 (3.26) 

So that, upon integration, one obtains: 

 0

ln(1 )
z

p j
q

    (3.27) 

Combining Equations (3.25) and (3.27) in Equation (3.16), we obtain the 

following cylindrically symmetric solution: 

 

2 20

0 0 0 0

exp[ (ln(1 ) )] exp( )
2( ) 2( )

qz k k
j r i r

q z q q z z q
      

  
 (3.28) 

One notes that the solution in Equation (3.28) is the solution to Helmholtz 

equation in equation (3.15). In equation (3.28), if we substitute 0z  , the amplitude 

distribution factor becomes: 

 
2

0

( 0) exp( )exp( ( 0))
2

dr
z jp z

z
        (3.29) 



18 
 

Then we express 0q  in terms of a new constant 0 , where or 

  2 0 0 0
0

2z z

k n




     or 
2
0

0
0

n
z




   (3.30) 

This is important because  0  appears to be a measure of the beam spot at  0z  . 

So rearranging parameters by using parameters that characterizes the beam, we 

have: 

 

2 2
0 0

0 02

w n kw
q j j iz




    (3.29) 

We now define two new parameters: 

 

2 2
20 0

2
( ) (1 ) 1 ( )

z w n
R z z z

z z




 
    

 
 (3.30) 

 

2
2

0 02 2
0 0

( ) 1 1 ( )
z z

w z w w
z w n




     (3.31) 

It turns out that ( )R z is the radius of curvature of the wavefront and ( )w z is the beam spot 

size at any z . By expressing the equation (3.28) in terms of these two new parameters in 

equations (3.29), (3.30), and (3.31), we obtain the solution to the wave equation as: 

 

2 2
10

2
0

{ exp[ ]} exp[ tan ( )] exp[ ]
( ) ( ) 2 ( )

w r z kr
j j

w z w z z R z
       (3.32) 

Thus,  

 

2
0

2
0

( , , )
{ exp[ ]}

( ) ( )

wE x y z r

E w z w z
   Amplitude factor 

 

1

0

exp{ [ tan ( )]}
z

j kz
z

    Longitudinal phase factor  

 

2

exp[ ]
2 ( )

kr
j

R z
   Radial phase factor (3.33) 
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This is the complete mathematical expression of the fundamental mode of the 

Gaussian laser beam. This expression shows the characteristics of a laser beam from the 

analytical point of view. Higher order modes are expressed as the superposition of 

fundamental Gaussian function, and Laguerre polynomial are used to express higher 

order modes for lasers with circular symmetry. On the other hand, the superposition of 

Gaussian function and Hermite polynomials is used to express lasers with rectangular 

symmetry.  

Figure 3.1 shows the characteristic parameters of a Gaussian beam of fundamental 

00TEM  mode. 

 

Figure 3.1: the characteristic parameters of a Gaussian beam 

0Z is the Rayleigh range and defined as the distance in propagation direction of a 

beam from waist to the place where the area of the cross section is doubled. b is the 

confocal parameter. The divergence of a Gaussian beam in the far-field region is given by 

the beam divergence half angle  

Near the beam waist, the beam is highly collimated ( ( ) 0R z  ); the wavefront are 

planar, normal to the direction of propagation, with no beam divergence at that point. 

However, that can only remain true well within the Rayleigh range. The beam of a single 
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transverse mode laser eventually diverges at an angle which varies inversely with the 

beam diameter. The divergence of a Gaussian beam in the far-field region is given by: 

 

0

0 0

( ) ww z

z z w




    (3.34) 

Therefore, the beam shaping becomes necessary; otherwise a common laser 

would spread out to a size of hundreds of kilometers. 

 

3.3 Beam shaping in the general sense 

 Beam shaping is a process of redistributing irradiance and phase of a beam of 

optical radiation through an optical system. Shape of a beam is defined by spatial 

irradiance distribution of the beam. Laser beam shaping is the simplest technique for 

matching the laser beam to part features. The phase of the shaped beam is a major factor 

in determining the propagation properties of the beam profile. For example, a collimated 

and reasonably large beam with a uniform phase front will maintain its shape over a 

considerable propagation distance; this is why the beam collimation is preferable and 

usually required. Figure 3.2 illustrates the general beam shaping problem. A beam is 

incident upon an optical system that may consist of one or more elements. The optical 

system must operate upon the beam to produce the desired output.  

 

Figure 3.2: General beam shaping system 
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Basically, the goal of the beam shaping is to design an optimal and practical 

optical system that can transform the incoming beam so that the outgoing beam will have 

the desired beam distribution on the Target plane. The optical system can be composed of 

different types of optical components such as mirrors [19], lenses, prisms [20], gratings 

[21], or gradient lens/fiber[15]; Furthermore, the surface shape of each optical component 

can also be different, such as biconic lens, binary optics, cylindrical lens, asphere and 

others. Therefore, the optical design can be very diverse and interesting. On the other 

hand, having these many options increases the complexity of the optical designing 

systems and adds difficulty to the problem. With the development of laser industry and 

applications, the laser beaming shaping has become more and more important and 

necessary and attracted more and more scientific attention into this field.  

The optical system is usually simpler if the design only requires a certain spatial 

irradiance distribution at the target plane and the “foot-print” of the beam shape is left 

unconstrained. Complications arise if both beam shape and irradiance profiles are 

specified. It is easy to manipulate the propagation of the light beams to achieve the desire 

irradiance distribution, because each individual light ray can be manipulated individually. 

But when the shape is concerned, the beam must be treated as a whole and thus many 

options would be limited. In fact, Laser beam shaping techniques are grouped into two 

basic types: field mappers and beam integrators. Field mappers work only for beams with 

a known field distribution, such as single-mode beams, and they are generally highly 

sensitive to alignment and beam dimensions. Integrators work for both coherent and 

multimode beams, where the input field distribution may not be known, and they are 

much less sensitive to alignment and beam size. Like many optical problems, there is no 
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single beam shaping method that addresses all situations. The nature of the input beam, 

the system geometry, and the quality of the desired output beam and others affect the 

choice of shaping technique. 

In the optical problem concerned in this research, the input beam consists of 

individual elliptically shaped beams from several laser diodes forming a laser array. The 

quality of the desired output includes forming a single beam that is collimated, and has 

uniform irradiance and rectangular beam shape. The task is to find and design an optical 

system that could achieve these demands. The difficulty of the design of this beam 

shaping system comes from the fact that the source is a multi-laser array sources. First, 

we have to face the complexity of the incoming beam which contains several elliptical 

Gaussian laser beams; second, we have to merge the beams into a single beam with 

rectangular beam shape and uniform phase and amplitude.  

The author will propose a four lens systems which can treat individual laser beam 

separately in perpendicular plane and parallel plane. With the help of the lenslet, this 

optical system can be easily applied to the multi laser diode sources. Figure 3.3 shows the 

model of this system generated by ZEMAX. Each surface is either aspherical or 

cylindrical. The following chapters will demonstrate in detail the operation of this system 

and its design parameters. 

 

Figure 3.3: The proposed four lenses optical system. 
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3.4 Lenslet technology 

A lenslet is literally a small lens, and is a part of a lenslet array. A lenslet array 

consists of a set of lenslets in the same plane. Each lenslet in an array normally has the 

same focal length, as shown in Figure 3.4. Ordinarily speaking, the lenslets are 

manufactured identically and arrayed on one substrate, as shown in Figure 3.5. In another 

words, lenslet arrays are substrates covered with set of micro lenses.  Lenslet technology 

actually is a type of manufacturing engineering that allows the manufactures to build 

lenslets of micro-size on a substrate. The size of the whole substrate (fused silica) in 

Figure 3.5 is only 1.5 mm. The lenslet arrays perform as diffusers or used for local 

focusing and sampling. There are mainly two types of lenslet arrays, diffractive and 

refractive. This research uses refractive lenslet to shape the beam. There are many 

specifications to evaluate a lenslet array such as surface roughness, array pitch, and; most 

importantly, fill factor. Higher fill factor means higher extent to which the substrate is 

covered by the lenslet and more control over the whole beam.  

 

Figure 3.4: The model of lenslet array simulated by MATLAB [22]  
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Figure 3.5: The actual product of a type of lenslet array [23] 

This thesis only gives some introduction to the lenslet technology, because we are more 

concerned about designing and utilizing the lenslet array rather than practically 

manufacturing. Figure 3.3 shows the proposed four-lens system. And Figure 3.6 shows 

the proposed optical system including four lenslet arrays each of which are specified by 

the corresponding lens shown in Figure 3.3. The aperture of each lenslet is made to be 

equal to the spacing of the laser diode array so that each diode laser could be treated 

identically and that the outgoing beam would become a single bundle of beam .   

 

Figure 3.6: The proposed optical system including four lenslet arrays in two-demention 
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3.5 The mathematical preliminaries for the laser beam shaping 

This section gives the mathematical background of the design process and 

explains the effectiveness of the geometrical optics approximation, the surface types used 

in optical system design, the idea of surface fitting, and the constant optical length 

condition which is commonly used in problems of geometrical optics.  

3.5.1 Geometrical Optics Approximation 

Geometrical optics, or ray optics, describes light propagation in terms of “rays” 

and is treated by the method of light rays. The “ray” in geometric optics is an abstraction 

and is a line or curve that is perpendicular to the light’s wavefront. Rays generally 

characterize the direction of the flow or propagation of radiant energy, except near the 

focus or an edge point where interference and diffraction takes place. Optical design of a 

beam shaper can be achieved by using either physical or geometrical ray optics [8]. It is 

customary to design an optical system with geometrical ray optics instead of physical 

optics when the wavelength is very small compared with the size of structures in which 

the light interacts. A dimensionless parameter,  , is used to determine if Geometrical 

optics approximation is valid in treating the beam shaping problem. For a given 

wavelength of the light and the image distance f from the aperture, the dimensionless 

parameter is written as [24] 

 

2 i ow w

f




  (3.35) 

Where iw and ow are the incoming beam radius and the beam radius at the target plane. 

This dimensionless parameter is very important to understand beam shaping technique. 

Generally, for simple output geometries such as circles and rectangles, if 4  , a beam 
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shaping system will not produce acceptable results; geometrical optics is not valid. For

4 32  , diffraction effects are significant and should be included in the development 

of the beam shaping system. For 32  , diffraction effects will not significantly degrade 

the overall shape of the output beam, and geometrical optics is valid. Therefore it is clear 

that we need  to be large in order for geometrical optics to hold. If  is large, it is 

relatively simple to work beam shaping problem using geometrical optics, but if it is 

small, the results are hard to control due to diffraction. As an example, a circular 

Gaussian beam in Figure 3.7 has been transformed analytically into a flat top shape as 

shown in Figure 3.8 for different  values. We see that for 2  the result does not look 

at all like a square pulse, while for 32  the result starting to look close to a square 

shape. 

 

Figure 3.7: The Gaussian input beam 
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Figure 3.8: The output beam with flat-top intensity profile for different   

 

3.5.2 Spherical and aspheric surfaces in beam shaping optical systems 

An optical system is composed of one or several optical components, and each 

optical component is defined and determined by different optical surfaces. If the surface 

is refractive and separates two mediums with different refractive indices on each side, 

then it changes the direction of the light propagating from one side to the other side. In 

fact, an optical surface has many other ways to manipulate the light propagating through 

it.  Therefore, the problem of beam shaping usually turns out to be choosing and 

designing the proper optical surfaces. There are mainly two types of commonly employed 

optical surfaces, such as spherical and aspherical.   

A spherical surface is defined by only one parameter, the radius or the curvature 

of the surface. Optical components with this type of surfaces are simple to design and 

easy to manufacture. This type of surface also has high controllability over the paraxial 
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light rays. Actually, the entire theory of applied optics is based on the assumption that 

light propagates in the paraxial region of the spherical surface, i.e. Paraxial 

Approximation. Paraxial Approximation works very well in the cases of small Field of 

View and sources with small divergence. However, spherical surface has the property 

that the rate of change of the surface slope is exactly the same everywhere on the surface, 

and thus the aberration is inevitable with the increased radial distance from the main axis 

of an optical system. Aspherical surface has the property that the slope of the surface is 

gradually reduced toward the outer periphery of the surface in order to flatten the shape 

in the region surrounding the outer rays, as shown in Figure 3.9 [25]. 

The important parameter of optical surface is the “surface sag”, which is 

illustrated in Figure 3.10. Surface sag is the distance between the vertex of the surface to 

the projected point of the corresponding surface point determined by the radial height r. 

Therefore, Surface sag z is actually a function of the radial height r 

                                                     ( )z z r                                                         (3.36) 

 

Figure 3.9: The comparison of a spherical (a) and aspherical (b) lens, (c) Surface sag 



29 
 

 

Figure 3.10: Illustration of the surface sag 

Different surfaces have different surface sag function, but the most commonly 

used optics surface equation can be written in the form 

                           

2
2

22 2
1

( )
1 1 (1 )

N
i

i
i

cr
z r A r

k c r 

 
  

                                      (3.37) 

Where z is the surface sag, r is the coordinate in one of the transverse directions, c is the 

curvature (the reciprocal of the radius of curvature), k is the conic constant, and 2iA are the 

coefficients of the polynomial deformation terms. Different combinations of k and 2iA

may have the same impact on the surface sag function. Theoretically, the coefficient 

number i can be as large as possible, but from a numerical point of view, it is desirable to 

use the least number of deformation terms in order to simplify the surface manufacturing. 

If there are no deformation terms and all the polynomial terms are equal to 0, we come to 

another type of aspherical surface called conic surface whose surface sag function is 

written as 

                                   

2

2 2
( )

1 1 (1 )

cr
z r

k c r


                                                  

(3.38) 
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For a hyperbola 1k   , for a parabola 1k  , for an ellipse 1 0k   , and for a circle

0k   

 

3.5.3 Constant optical path condition 

Optical path length (OPL) or optical distance is the product of the geometric 

length of the path the ray travels, and the index of refraction of the medium through 

which light propagates.  For a uniform index media, the OPL of a ray passing through an 

optical system is the sum of the geometrical path length of a specific ray times the index 

of refraction of the component of the system. OPL is an extremely useful measure of the 

performance of an imaging optical system. Light ray propagation is commonly described 

by wavefronts described as the surfaces of constant phase of the wave or optical path 

length from the source or reference surface.  In order for the output wavefront to have the 

same shape as the input plane wavefront, it is necessary for all rays passing through the 

optical system to have the same optical path length.  

Optical Path Length Condition (OPLC) is that the optical path length of every 

light ray between two wavefronts of this ray bundle will be equal to each other.  A simple 

convex-plano lens system collimating the rays of a point source is shown in Figure 3.11. 

The optical path length 0( )OPL of a ray passing along the optical axis from source to the 

reference plane is  

 0 0( )OPL n d nt   (3.39) 

For an arbitrary ray of height r, the optical path length is  

 
2 2

0( ) ( )rOPL n r z n d t z      (3.40) 

The constant optical path length condition is satisfied for this optical system by requiring 
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 0( ) ( )rOPL OPL  (3.41) 

 

Figure 3.11: Illustration of OPLC for a convex-plano lens 

 

3.5.4 Surface fitting 

In the process of optical system design, you often meet some fairly complicated 

problems, such as the situations that only aspheric surfaces can satisfy the demand. If the 

high-order deformation terms are needed, the situation will get even worse; because it is 

very difficult to derive the equations for the coefficients 2iA of the deformation terms in 

the surface equation (3.37) and direct calculation. The common way of solving this type 

of problems is to use equation (3.37) to fit the desired surface equation with the help of 

certain fitting method. First, we need to use ray tracing method to trace a number of rays 

so that these rays will spread in the same way as the required outgoing beams propagate. 

Second, using the energy conservation principle, constant optical path condition and 

trigonometric relationships, we employ the inverse method to calculate the surface sag z

at every radial height r determined by the corresponding light ray traced. Eventually, we 

will get a series of points, that: a curve is formed by connecting these points. This curve 
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should have the same shape as the actual surface shape we desire. Finally, we use fitting 

method to fit the curve with the surface equation and calculate the best combination of 

the k and 2iA that specify the surface. The more light rays we trace, the more points we 

obtain, the more similarity the curve formed by these points has with the actual surface 

shape, the less difference there would be between the shape of the surface fitted by the 

fitting method and that of the surface we desire. Theoretically, it is encouraging to trace 

as many rays as we can in order to pursue the best results. However, there exists a 

tradeoff between the number of rays traced and computing time needed. Usually, we 

trace just number of rays so that we do not waste an enormous amount of time on an 

insignificant improvement. 

Actually, the performance of the whole fitting process largely hinges on the 

selection of a right fitting method. There are several fitting methods available now days, 

such as fit using unconstrained optimization, fit using simplex search, fit using nonlinear 

least squares (Levenberg-Marquardt), fit using minimax optimization and fit using 

genetic algorithm. Fit using genetic algorithm is the best one if accuracy is the only 

requirement. However, in this research, we use fit using simplex search, because this 

fitting method usually can achieve relatively good performance with less computing time.  

Fit using simplex search is a fitting method that uses simplex method for function 

minimization [26] to find the minimum point of the merit function of the problem. Here, 

we hope that the surface equation can fit those sets of ( , )r z points perfectly. That means 

the merit function should represent the difference between the resultant surface from the 

surface equation and the actual surface we desire and that the merit function should be as 

small as possible. Therefore, we choose the merit function (MF) to have the form: 
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 (3.42) 

Where N is the number of rays traced. iz  is the surface sag calculated through surface 

equation (3.37), iz is the actual surface sag calculated through ray tracing. This MF is the 

mean square error of the difference between iz  and iz ; the smaller MF is, the better 

surface we can get. MF is a function of the surface parameters k and 2iA  

 2( , )iMF MF k A  (3.43) 

We need to search the best combination of k and 2iA to make the MF the smallest. As 

mentioned earlier, we are going to use simplex search to find the minimum of the MF. 

Simplex method is a method for function minimization. It is described for the 

minimization of a function of n variables, which depends on the comparison of function 

values at the (n+1) vertices of a general simplex, followed by the replacement of the 

vertex with the highest value by another point. The simplex adapts itself to the local 

landscape, and contracts on to the final minimum. This method is known to be effective 

and computationally compact. In MATLAB, this method is described as fminsearch. In 

appendix, the entire MATLAB codes are shown. 
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3.5.5 The relationship between aperture size and the beam size 

In lens designing problem, a must-do step is to decide the aperture size of the lens 

(in an optical system). If the aperture size is too small, the beam would be truncated, 

causing the truncation effects [27]. The two obvious disadvantage caused by the 

truncation effect is the loss of energy and the increased diffraction effect which could 

largely degrade the output beam quality. If the aperture size is too large, the whole size of 

the system has to be expanded with the result of potential fewer applications. It is also a 

waste of material at a certain level. Therefore, to choose a right aperture size is very 

important. In order to reduce aperture diffraction effects while minimizing the lens sizes, 

only the portions of the lenses where approximately 99.78% of the beam irradiance is 

refracted are assumed to be the surface diameter. To determine the lens aperture radius, 

the power transmission equation [17] is used: 

 

2 22 / ( )1 a w za

T

P
e

P
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(3.44) 

Where, a is the aperture radius, ( )w z is the beam spot radius at position z, TP is the total 

power of the input beam, and aP is the transmitted power through the aperture. For 99.78% 

power transmission, the following equation is required: 

 
1.75 fa w

 
(3.45) 

Where fw is the beam spot radius after circularization in this research. 
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CHAPTER 4  

METHODOLOGY 

This chapter demonstrates the step by step design procedures and derivations of 

the equations and surface parameters for each surface individually. Geometrical ray 

optics method is used in the design as introduced in Chapter 3. 

 

4.1 Overview of the system operation 

As stated in Chapter 3, a four-lens system shown in Figure 3.3 is proposed to 

collimate the beams from laser diodes, transform the irradiance distribution to a uniform 

radiance, and make the beam spot rectangular. This system is applied to the laser diode 

arrays to combine the beams into one single beam with the rectangular shape and uniform 

amplitude. In this chapter, system operation is explained and each surface’s functionality 

with respect to beam propagation is shown. Because each incoming beams have different 

divergence angle in the perpendicular and parallel direction, we have to treat the light 

rays in these two orthogonal planes respectively, and thus the surface shape must be 

designed differently in each planes. In optics, it is common and convenient to use a line 

segment to represent a surface and to demonstrate the function of that surface, as shown 

in Figure 4.1. The number 1-8 means that there are 8 surfaces in sequence and each 

number represents a surface. The angles and || denotes the two different divergence 

angles of the laser sources in perpendicular and parallel transverse direction. 
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Figure 4.1: A schematic diagram of four-lens system 

Only the up half of the lens system is shown in the above figure, because the system is 

symmetric about the optical axis in both directions. From this figure, we can see clearly 

how light rays are expected to propagate in each plane. In fact, this figure is a ray tracing 

of the marginal rays in two orthogonal directions; after surface 8, these two marginal rays 

propagate parallel to the optical axis and have the same radial height. To describe the ray 

propagation, we refer to the light rays in perpendicular and parallel planes as TLR 

(transverse light ray) and PLR (parallel light ray) respectively.  

First, the incoming beam from laser source meets surface 1 which collimates TLR 

and PLR simultaneously. The rays will have different radial height after being refracted 

by surface 1 due to the different divergent angle and || . The beam at this stage still has 

the elliptical shape while propagating within the lens. In order to circularize the beam 

spot, the beam width in parallel plane must be expanded so that it is the same as the one 

in perpendicular plane. Therefore, only the beam in the parallel transverse direction is 

allowed to diverge at the back surface of the first lens (surface 2) while the beam in the 

perpendicular transverse direction propagates with no refraction. The second lens is 
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positioned at a distance from the first where TLR and PLR have the same radial height 

and the beam shape becomes circular, as shown in Figure 4.2.  

 

Figure 4.2: A schematic diagram of the first three surfaces. 

            The surface 3 is designed to collimate the beam only in the parallel perpendicular 

beam allowing the beam to continue to propagate as a collimated circular beam in both 

transverse directions.  Thus, at this stage the beam has been expanded, circularized and 

collimated. The next step is to uniform the energy distribution and make the beam spot 

rectangular. Once this is achieved, combining several rays having the same features at 

this stage is easy and convenient.  

As mentioned earlier, the beam profile is modeled as two independent 2-D 

Gaussian beams propagating along the two orthogonal planes (the x-z and the y-z planes). 

Therefore, the beam shaper is designed separately in these two orthogonal planes to 

achieve a rectangular, collimated and uniform beam at the output plane. As shown in 

Figure 4.1 surface 4 and surface 5 transforms PLRs and surface 6 and 7 transforms TLRs. 

Because the beam spot are shaped to be identical in perpendicular and parallel planes 

after surface 3, surface 4&6 and surface 5&7 can be designed identically and achieve the 

same functions. Unlike surface 2, surface 4&6 not only expands the beam but also 

refracts the beam in a way that the density of the light rays are evenly incident on the 

surface 5&7, meaning that the designing process transforms the density of light rays of 
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the incoming beam into a uniformly distributed form. Finally, surface 5&7 collimates the 

beam. Surface 8 is flat in both transverse directions and does not participate in beam 

shaping since at this surface the beam already has the desired profile.  

According to the above descriptions about the functions of each surface, surface 1 

is rotationally symmetric about the optical axis of the system; surface 2-7 are cylindrical 

shape whose cylindrical axis is perpendicular to the optical axis of the system; surface 8 

is flat. The whole system can be divided into two parts: the first part, containing the first 

three surfaces, expands the beam to achieve collimation and circularization, and the 

second part, containing the remaining surfaces, further expands while achieving uniform 

irradiance and rectangular shape. The second part is to evenly spread the light rays in 

both planes, to ensure that the resultant light ray densities in perpendicular and parallel 

planes are the same thus to make the irradiance uniform. 

  

Figure 4.3: A simplified mode of two surfaces making the irradiance uniform 

 

 During the whole process, the step of beam circulation by the first part is very 

important, because the second part only works when the beam has the same energy 
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profiles in two orthogonal planes; we can prove this necessity of circularization from the 

simple mathematical point, as shown in Figure 4.3. Lower case x and y are used for the 

first surface and upper case X andY are used for the second surface. For our concern, both 

surfaces have the same aperture size, so 

 max maxx X  and max maxy Y  (4.1) 

The beam first meets Input surface and has an irradiance distribution function on 

this surface given by: 

 0in x yI I I I  (4.2) 

Then, refracted by this Input surface, the beam propagates toward Output surface and has 

an irradiance distribution function on this surface given by: 

 out X YI A A  (4.3) 

Where 0I is the arbitrary amplitude of the input beam, XA and YA are the constant values 

of irradiance in the perpendicular and parallel transverse directions. 0I is chosen to be 

unity (1) here. Because we want to achieve a uniform irradiance profile on the second 

surface, we have: 

 X YA A  (4.4) 

As stated in Section 3.3.6, the aperture is large enough to avoid beam truncation and 

conserve the energy. Therefore, the energy passing through the first surface is the same as 

that passing through the second surface, so 

 

maxmax max max

max max max max

yx X Y

in x y out X Y

x y X Y

E I dx I dy E A dX A dY
   

       (4.5) 

Where inE and outE are the input and output energies. Because the x  and y coordinates 

are independent of each other and the beam propagation is decoupled into two orthogonal 
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planes, the x and y coordinate variables can be calculated independently in equation (4.5).  

Rewrite equation (4.5) and using equation (4.4), we have: 

 

maxmax max max

max max max max

yx X Y

x X Y y

x X Y y

I dx A dX A dY I dy
   

       (4.6) 

Substitute equation (4.1) into equation (4.6), we conclude that: 

 x yI I  (4.7) 

Above equations assumes the initial beam has the same irradiance distribution in both 

orthogonal planes. In our case, the source diode produces elliptical Gaussian beam, 

therefore, we first circularize the beam to obtain circular Gaussian beam profile and thus 

the energy distribution is the same in both x-z and y-z planes.   

 

4.2 Lens design method 

The model of the proposed system and the functions of each surface have been 

described in the foregoing section. In this section, surface equation ( )z r of each surface is 

defined. In order to solve this problem, we first define parameters clearly. In Section 

4.2.1, the known input parameters are shown. According to these known parameters, the 

surface function for each surface is derived in the following three sections.  

  

4.2.1 Known parameters 

The first two known parameters, inherent of the laser source itself, are the 

divergent angles  and || in the two orthogonal planes. For applications using 

monochromatic laser beams, there are no chromatic aberrations present, and it is 

satisfactory to use the same material (index of refraction) for all four lenses, so we choose 
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all lenses to have the same refractive index n . Because the beam propagations inside the 

lenses are always designed to be parallel to the main axis, the thickness of each lens has 

no direct effect on the beam propagation and can be chosen in a way that the edges of the 

front and back surface of each lens do not intersect with each other within the chosen 

aperture size of each lens; The output beam diameter is required and is set to have the 

same value as the space between two laser diode sources in order to apply this system to 

the laser diode arrays using lenslet technology; Then according to the equation (3.45), the 

beam radius after the first part of the system is known.  

 
/ (2 1.75)fw d    (4.8) 

To sum up, as shown in Figure 4.4, the known parameters are: 

1. The refractive index of each lens: n ; 

2. The divergence angle of the laser diode sources:  and || ; 

3. The desired output beam spot diameter: d ; 

4. The beam spot radius after surface 4: fw ; 

5. The thickness of each lens: 1t , 2t , 3t and 4t ; 

6. The distances between each lens: 3d and 5d ; 
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Figure 4.4: The illustration of the known parameters 

 

4.2.2 The design of surface 1 

As a first step, the front surface of the first lens (surface 1) is designed. Figure 4.5 

shows a representation of the surface in the perpendicular transverse direction (x-z plane) 

and variables used to calculate lens parameters for the front surface of the first lens. 

Because surface 1 is a rotationally symmetric surface, the surface shape in parallel 

transverse direction is the same as that in perpendicular direction, and the cylindrical 

coordinate is used for derivation. Furthermore, throughout this research, r is used for the 

radial height of a light ray. As stated earlier, our goal is to derive the sag function ( )z r of 

each surface. As shown in Figure 4.5, ( )fz w represents the surface sag at the radial height 

of fw . Point A represents laser diode source, and it acts like the focal point of the surface 

1. Point B represents the point of intersection of a light ray and surface. Point C is the 

projection point of B on the main axis z. 1d is the distance between point A and the 
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surface vertex (vertex is the point where the optical axis crosses the surface). The 

distance between the surface vertex and point C is the surface sag ( )fz w .  

 

Figure 4.5: A schematic representation of surface 1 in the x-z plane 

The surface 1 is a rotationally symmetric surface, and only the x-z plane calculations are 

shown in this section. The y-z plane calculations are the same as x-z plane 

In triangular ABC, we use the trigonometric relation: 

 1

tan( )
( )
f

f

w

d z w
 


 (4.9) 

The rays are emanated from the point A and propagate parallel to the optical axis after 

surface 1, so a plane wavefront is formed by surface 1 and the light rays have the same 

phase at the reference plane as shown in Figure 4.5. Therefore, according to the constant 

optical path length condition (COPLC), as stated in chapter 3, we have: 
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2 2
1

1

( ) ( ( ))

( ) ( )

( ) ( )

AB f f

AC f

AB AC

OPL w d z w

OPL d n z w

OPL OPL

   

   


  (4.10) 

Solving simultaneously Equation (4.9) and equation (4.10) provides the numeric value of 

the distance 1d  

 

2 2

1

( )
tan( ) tan( )

1

f f
f

w w
w n

d
n

  

  



 (4.11) 

As long as 1d is known, we apply the COPLC to all rays passing through the surface 1, to 

ensure that all rays have the same phase at the reference plane and thus become 

collimated. Applying COPLC to any light ray with the radial height r, we obtain: 

 
2 2

1 1( ( )) ( )r d z r d n z r      (4.12) 

Solving equation (4.12), we have 

1

2 2 2 2
1

2

2 ( 1) 4 ( 1) 4( 1)
( )

2( 1)

d n d n n r
z r

n

     




1

2

2 2 2 2
1

2

(2 ( 1) 4 ( 1) 4( 1) )

r

d n d n n r


    
 

 

1

2

1

2 2
2 2

1
( 1)

1
(1 1 (1 ) )

( 1)

r
d n

n r
d n




  


 (4.13) 

We realize that the resultant surface sag ( )z r has the same form as equation (3.38) 

2

2 2
( )

1 1 (1 )

cr
z r

k c r


  
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Therefore, surface 1 is a common conic surface—a type of aspherical surface whose 

surface functions have no deformation terms. From these equations we define: 

 
1

1

1

( 1)
c

d n



 (4.14) 

 1 1( 1)R d n   (4.15) 

 
2

1k n   (4.16) 

Where 1c is the surface curvature of surface 1; 1R is the surface radius of surface 1; 1k is 

the conic constant of surface 1. The feature of surface 1 is to collimate the beam from 

single point source with no geometrical aberration. 

Next, the aperture diameter (physical diameter of the surface of the lenses in both 

transverse directions) and the lens thickness are determined using the energy transmission 

criteria of over 99% as stated earlier. For simplicity, the aperture sizes of all lenses are 

decided to be the same d which is required to be equal to the space between laser diode 

sources. The thickness of all lenses is reasonably determined in a way that the front 

surface of a lens does not intersect with the back surface of that lens. 

 

4.2.3 The design of surface 2 and surface 3 

Surface 1 is a rotationally symmetric surface, and the beam is collimated by this 

surface in both transverse directions, but not yet circularized. Therefore, surface 2 is 

designed to allow the beam to propagate without any refraction in the perpendicular 

direction while allowing it to diverge further in the parallel direction. That means, surface 

2 is a cylindrical lens and only have optical power in parallel transverse direction. 

Surface 3 is positioned at a distance when the beam profile becomes circular in both 
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transverse directions (see Figure 4.2). The second lens, the surface 3, is also a cylindrical. 

The incoming beam for surface 2 is collimated and the outgoing beam after surface 3 

should also be collimated, in order to achieve this requirement, the COPLC must be 

satisfied between reference plane 1 and reference plane 2 as shown in Figure 4.6, so the 

surface 2 and surface 3 have to be designed together. Because surface 2 and 3 are both 

designed to have optical power in the parallel transverse direction, only y-z plane is 

shown in Figure 4.6. The incoming beam for surface 2 has a radial height of 1fw , and the 

outgoing beam after surface 3 has a radial height of fw , which is equal to the radial height 

in x-z plane, so the final beam spot is circular. During the propagation, the light meets 

surface 2 at point B and surface 3 at point D. Point C and E are the projection point of 

point B on the main axis z and on the reference plane 2 respectively, so the distance 

between the vertex of surface 2 and point C is the surface sag at radial height of 1fw

denoted as 22 1( )fz w . Similarly, 31( )fz w is the surface sag of surface 3 at radial height of

fw . If we reversely extend the light rays refracted by surface 2, they will come to a point 

(point A in Figure 4.6) as if all rays are radiated from this point. In fact, this is how a 

secondary focal point of a concave lens is defined. For surface 3, point A acts like a point 

source, then it is refracted into a parallel beam in the right side of surface 3, so point A is 

the primary focal point of the surface 3. The distance between point A and the vertex of 

surface 2 is denoted as 2d  . And the distance between the vertex of surface 2 and that of 

surface 3 is denoted as 3d . 
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Figure 4.6: A schematic representation of surface 2 and surface 3 in the x-z plane 

  

Figure 4.7: The x-y rectangular coordinate system calculating the intersection point of 

light ray and surface  

As a first step, the incoming beam size 1fw must be determined, because its value 

directly affects the optical power and surface parameters of both surface 2 and surface 3. 
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In order to get the point where the light meets surface 2, a new coordinate is established 

as shown in Figure 4.7. 

Line 1 represents a random ray with the line equation  

 y ax b   (4.17) 

Where a  is the slop, and b  is the y- intercept distance. Line 2 represents the surface with 

the surface equation  

 

2

2 21 1 (1 )

cy
x

k c y


    

(4.18) 

Where c is the curvature of the surface and k is the conic constant of the surface. With the 

help of MATLAB, we can solve equation (4.17) and equation (4.18) simultaneously to 

generate the coordinate of the interception point ( , )I x y . The coordinate y has the form:                          

2 2 2 2 1/2 3 2 2

2

( 1)(1 2 )
( , , , )

( ) ( 1)( )

a bc bck a k b c k abc b c a a bc a bck
y a b c k

c ck a k c ck

        
 

   
 (4.19) 

A MATLAB function ( , , , )rlts a b c k has been developed to specially calculate the 

equation (4.19) and to obtain the radial height of the intersection points between the line 

and the conic surface (see appendix). We calculate the beam spot size 1fw after surface 1 

in x-z direction, as shown in Figure 4.7. In this case, 

 

||

1 ||

1

1

tan( )

tan( )

a

b d

c c

k k





  



 

 (4.20) 

Therefore, 

 1 || 1 || 1 1(tan( ), tan( ), , )fw y d c k    (4.21) 
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Figure 4.8: A schematic of a light ray emanated at divergent angle in parallel transverse 

direction 

The second step is to know the value of distance 2d  , just as we did in designing 

surface 1. Because basically point A serve the same function in Figure 4.5 as in Figure 

4.6—point A is treated as the focal point of both surface 2 and surface 3. The equations 

for the parameters of surface 2 and 3 will have the same form as equations 4.14 through 

4.16.     

From the advanced trigonometric relation in triangular ABC and BDE in Figure 

4.6: 

 

DE BC

BE AC


 
(4.22) 

Thus, 

 

1 1

'
3 22 1 31 2 22 1( ) ( ) ( )

f f f

f f f

w w w

d z w z w d z w




  
 (4.23) 
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For surface 2, between point A and reference plane formed by BC, using COPLC, we 

obatin: 

 

'
2 22 1

2 ' 2
1 2 22 1

( ) ( )

( ) ( ( ))

( ) ( )

AC f

AB f f

AC AB

OPL d n z w

OPL w d z w

OPL OPL

   
   
 

 (4.24) 

Similarly, for surface 3, between reference plane 1 and reference plane 2, using COPLC, 

we have: 

 
2 2

22 1 3 22 1 31 1 3 31( ) ( ( ) ( )) ( ) ( )f f f f f fn z w d z w z w w w d n z w          (4.25) 

In equations (4.23) to (4.25), there are 3 unknowns namely 2d  , 22 1( )fz w and 31( )fz w and 

there equations. Solving these three equations simultaneously, 2d  can be solved 

analytically. Again MATLAB codes are written to obtain the expression for 2d due to its 

Complexity as:                                     

(4.26) 

As expected, '
2d is very complicated and it is very difficult to solve by hand. 

However, if MATLAB is used to solve one or more equations and it results a real 

expression, it means that these equations are solvable and the answer does exist. 

Generally speaking, unlike the results obtained from the numerical method, a complete 
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MATLAB expression means that the answer can be accurately and precisely calculated. 

Therefore, we can use the resultant '
2d and equation (4.14) to (4.16) to determine the 

surface parameters for surface2: 

 

2 '
2

'
2 2

2
2

1

( 1)

( 1)

c
d n

R d n

k n

    
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

 (4.27) 

And for surface 3: 

 

3 '
2
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3 2

2
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1

( 3)( 1)

( 3)( 1)

c
d d n
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k n
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 (4.28) 

 

4.2.4 The design of surface 4&6 and surface 5&7 

In this section, the design of surface 4&6 and surface 5&7 is presented. After 

surface 3, the beam is collimated and reshaped from elliptical Gaussian beam to circular 

Gaussian beam. As stated earlier, surface 6 and surface 7 are designed to further shape 

the beam in perpendicular transverse direction so that the outgoing beam propagate as a 

collimated beam and have uniform irradiance profile with rectangular beam spot. Surface 

6 is to expand the beam; and at the same time transform the light rays of different radial 

height to evenly distributed rays incident on surface 7 so that the irradiance profile is 

uniformed. The incoming beam for surface 6 and the outgoing beam after surface 7 are 

all required to be collimated, so the COPLC must be satisfied to ensure the feature of 

plane wave of the beam before surface 6 and after surface 7. Therefore, these two 
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surfaces must also be designed together, just as we did in section 4.2.3.  Remember, 

surface 4 and 5 are identical with surface 6 and 7 except that surface 4 and 5 transform 

the beam parallel direction, so there is no difference in the design of these two groups of 

surfaces. Here, for the convenient sake, we are going to pick x-z plane for derivation. 

Before we actually start to solve the surface equations for these surfaces and modulate the 

irradiance distribution of the beam after surface 3, we first study the irradiance 

distribution and mathematical function of this incoming beam.  

For this purpose, we start from the irradiance of the laser diode itself. In industrial 

world, the diode model can be used to define one diode, a 1D array of diodes, or a 2D 

array of diodes; and each diode has an intensity distribution given by [29]: 

 

222(( ) ( ) )

0( , )
GyG yx x

x y

x yI I e


  

 

  (4.29) 

Where x is the XZ divergence angle in degrees, xG is the “supergaussian” factor for the x 

direction, with similar definitions for the y subscripted values. If xG is 1.0, then the 

expression gives a typical Gaussian distribution. If xG is greater than 1.0, then the 

distribution becomes more “square”. Therefore, both xG and yG must be greater than or 

equal to 1.0. Most laser diode manufacturers specify the far field divergence angles as the 

full width of the distribution between the half power points, fwhm . For a true Gaussian 

distribution as in our case ( 1xG  ), setting the left hand side of the equation (4.29) to 

0

1

2
I , setting y to zero, substituting for x the value of 

1

2 fwhm , then solving equation, we 

have: 
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1

2
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xI I e






  (4.30) 

Then this gives: 

  
,    (0.8493218)

2 ln(2)
fwhm

x x fwhmor


     (4.31) 

For example, a diode with a fwhm in the x direction of 10 degrees, the value for x would 

be 8.493218 degrees. A similar conversion applies in the y direction.  

Now, we can use equation (4.29) to get the irradiance distribution expression of 

laser diode in the perpendicular transverse direction (x-z plane), in this case: 

 

22( )

0( )
x

x
xI I e






  (4.32) 

The next step is to determine the irradiance distribution expression on surface 1, 

meaning that the intensity I must be expressed in terms of x or y coordinates. Figure 4.9 

shows a schematic representation of the light rays of different angle of divergence x

incident on surface 1 in the perpendicular plane. 

 Once again from a trigonometric relation in triangular ABC, we have: 

 1 1

tan( )
( )x

x

d z x
 

  
(4.33) 

Thus:  

 1 1

arctan( )
( )x

x

d z x
 


 (4.34) 

And,  
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  (4.35) 
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Where  

 x   (4.36) 

 

Figure 4.9:  A schematic representation of the light rays of different divergence angle x  

from the optical axis incident on surface 1 in the perpendicular plane 

Because the beam is already collimated by surface 1 in x-z plane and there is no 

additional beam shaping done, after surface 3, the beam has the same irradiance profile as 

described by the equation (4.35). In addition, the beam is circularized by the first part of 

the system, so the irradiance profile in y-z plane and x-z plane has the same expression. 

Therefore, the problem is reduced to a one dimensional, and we focus our attention only 

on one transverse direction.  
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Figure 4.10: the illustration of the general design in the x-z plane 

Figure 4.10 illustrate the general design in the x-z plane. ( , )x z is the coordinate point 

where light ray meets surface 6 and ( , )X Z is the coordinate point where light ray meets 

surface 7. maxx and maxX are the aperture size. As stated in the section 4.2.1, 

 
max max 1.75

2 f

d
x X w


    (4.37) 

The important task to achieve the uniform irradiance is to determine the locations 

of each light ray’s coordinates. In another word, we need to find a relationship between

( , )x z and ( , )X Z so that the light rays will evenly redistribute on the back surface. Besides, 

the characteristic of beam collimation is desired to be maintained. Unfortunately, the only 

known variable is the incoming ray height x , meaning that the first surface sag z , the 

outgoing ray height X and the second surface sag Z  have to be expressed in terms of x . 

As long as ( )X x , ( )z x and ( )Z x are solved, we can trace a reasonable amount of light rays 

with different ray height x  and obtain a series of desired ( , )x z and ( , )X Z coordinate 
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points. Then use fitting method described in section 3.4.5 to determine the resultant 

surfaces constituted by these traced points. 

First, we start with the energy distribution. The input irradiance distribution 

function in x-direction is given by equation (4.35). The desired output irradiance 

distribution function is given as: 

 ( ) XI X A  (4.38) 

XA is the constant value of the square-pulse function in the perpendicular transverse 

direction. Using the energy conservation principle given by equation (4.6), and 

substituting equation (4.35) and equation (4.38) into equation (4.6), we have: 
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Then Solving for XA , we have 
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Conservation of energy principle also provides a relationship for any two corresponding 

surface areas [28]. In Figure 4.10, this relationship can be described as 
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Solving equation (4.40) results the relationship between xand X , 
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In order for the reference plane 2 to have the same phasefront as the reference 

plane 1, it is necessary for all rays traced between these planes to have the same optical 

path length according to the COPLC. 

The optical path length of a ray passing along the optical axis is, as shown in Figure 4.10: 

 0 5 4( )OPL d nt   (4.43) 

The optical path length of an arbitrary ray crossing the x-coordinate at a point ( , )x z is 

given by: 

 
2 2

5 4( ) ( ) ( ) ( )xOPL nz X x Z z n d t Z         (4.44) 

The COPLC requires that 

 0( ) ( )xOPL OPL  (4.45) 

Solve equation (4.43)-(4.45) simultaneously, an equation for ( )Z z in terms of ( )X x is 

obtained and is given by: 
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 (4.46) 

Finally, the Snell’s law must be obeyed by any rays traced. Snell’s law is a 

formula used to describe the relationship between the angles of incidence and refraction, 

when referring to light passing through a boundary between two different isotropic media. 

Figure 4.11 shows the refraction phenomena of a light ray incident on point ( , )x z . 
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Figure 4.11: Illustration of refraction at point ( , )x z  

A line tangent to the surface and a line normal to the surface are drawn in the figure. An 

angle 1 is subtended by the normal line and the incident light ray; The angle 2 is 

subtended by the incident light ray and the refracted light ray; The angle 3 is subtended 

by the x axis and the tangent line. 

From the trigonometric relation, we have: 

 
2tan

X x

Z z
 




 (4.47) 

According to the Snell’s law, we have: 

 1 1 2sin sin( )n      (4.48) 

Using MATLAB, we solve the above two equations for 1 as: 

1( )x  -(log(-(X+deltaz*i-x-deltaz*n*((X^2-

2*X*x+deltaz^2+x^2)/deltaz^2)^(1/2)*i)/(X-deltaz*i –x +deltaz*n*((X^2-                          
2*X*x+deltaz^2+x^2)/deltaz^2)^(1/2)*i))*i)/2; (4.49) 

Furthermore, through careful observation, we can find that there is a relationship between 

the slope of the surface sag z and 1 : 

 3 1' tan tan '( )z z x     (4.50) 
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Then according to the definition of definite integral, 

 0 0

( ) '( ) (0) '( )
x x

z x z x dx z z x dx     (4.51) 

We solve for ( )Z x by substituting equation (4.51) into equation (4.46): 

 
( ) ( ) ( )

x
Z x Z z z x    (4.52) 

Until now the surface sag z  of the first surface, the X coordinate and the surface 

sag Z  of the second surface have all been expressed in terms of the incoming ray height

x . Therefore, we are able to trace a series of light rays with different ray heights x , and 

then use equation (4.51) to get the required surface sag z at each height. Using equation 

(4.42) we obtain the corresponding X coordinates at the second surface and using 

equation (4.52) we obtain the desired surface sag Z at each ray height X . Eventually, we 

calculate number of points 1 1 2 2 1 1( , ), ( , ),........, ( , ), ( , )i i i ix z x z x z x z  on the first surface, and 

the same number of points 1 1 2 2 1 1( , ), ( , ),........, ( , ), ( , )i i i iX Z X Z X Z X Z  on the second 

surface. Then, using surface fitting method, we find the corresponding fitted surface. 

Theoretically, if there was no error produced in the fitting process, the resultant surfaces 

would pass through every traced point and have the exactly same surface shape as the 

desired surface. 
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CHAPTER 5  

DESIGN EXAMPLES AND RESULTS 

This chapter provides design examples to the systems discussed in chapter 4. The 

parameters of example are calculated with MATLAB code developed. The MATLAB 

and ZEMAX results are presented and discussed separately. 

 

5.1 Design of the examples calculated using MATLAB  

First, we list the values of the given parameters of our design example, as shown 

in Table 1. 

Table 5.1 Parameters of Laser shaping system 

Parameter Value 

Wavelength 870 nm 

The perpendicular divergent angle 18 degrees 

The parallel divergent angle 5 degrees 

The laser diode spacing 0.5 mm 

The glass used BK7 

The refractive index at the wavelength 1.509493 

The thickness of each lenslet 0.4 cm 

Space between lenslets   1mm 
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Second, we use the equations derived in chapter 4 to obtain the parameters of each 

surface. Because the shape of each surface is dependent on the shape of the surface 

before, we start from the surface 1.  

1. Use equation (4.11) to obtain the primary focal length of the surface 1:  1d ; 

2. Use equation (4.14)-(4.16) to obtain the parameters for surface 1:  1c ,  1R  and  1k ; 

3. Use equation (4.26) to determine the secondary focal length of the surface 2:  '
2d ; 

4. Use equation (4.27) to determine the parameters for surface 2: 2c ,  2R  and  2k ; 

5. Use equation (4.28) to obtain the parameters for surface 3: 3c , 3R  and 3k ; 

6. Trace a number of rays with ray heights on surface 6 1 2 1( , ,........, , )i ix x x x  to 

design surface 4&6 and 5&7. In this research, 2001 light rays are traced. 

7. Use equation (4.43) to determine the corresponding ray heights on surface 7 

1 2 1( , ,........, , )i iX X X X ; 

8. Use equation (4.46) to determine the sag difference between surface 6 and surface 

7 1 2 1(( ) , ( ) ,........, ( ) , ( ) )i iZ z Z z Z z Z z    ; 

9. Use equation (4.50) to obtain the slope of surface 6 at each traced ray height 

1 2 1( ' , ' ,........, ' , ' )i iz z z z ; 

10. Use equation (4.51) to obtain the surface sag of surface 6 at each traced ray height 

1 2 1( , ,........, , )i iz z z z ; 

11. Use equation (4.52) to obtain the surface sag of surface 7 at each traced ray height 

1 2 1( , ,........, , )i iZ Z Z Z  ; 

12. Use equation (3.42) to build the merit function. 
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13. Use the surface fitting method to fit the coordinates of surface points 

1 1 2 2 1 1( , ), ( , ),........, ( , ), ( , )i i i ix z x z x z x z   for surface 6 and 

1 1 2 2 1 1( , ), ( , ),........, ( , ), ( , )i i i iX Z X Z X Z X Z   for surface 7 with the surface sag 

function (3.37) and determine the parameters 2 6( , , )ic k A  and 2 7( , , )ic k A  of surface 

6 and surface 7 respectively. In this research, we employ the fitting method using 

simplex minimization search.  

14. Surface 4 has the same surface parameters as surface 6, and surface 5 is same as 

surface 7.  

According to the above design steps, MATLAB codes are developed to solve 

each equation using the known parameters listed in Table 5.1. Table 5.2 and Table 5.3 

lists the parameters of each surface calculated using MATLAB code.  

 

Table 5.2: The parameters of surface 1-4 calculated by MATLAB 

 

 

   First lenslet  Second lenslet 

Parameter  Surface 1  Surface 2  Surface 3  Surface 4 

            3684.71  1473.88  3684.71  1473.88 

Thickness, t  0.4mm  0.4mm 

Vertex Radius  0.2014cm  0.1643cm  0.6738  0.159507cm  

Surface Type  Aspherical  Cylindrical Cylindrical Cylindrical

Conic Constant  ‐2.2786  ‐2.2786  ‐2.2786  ‐3.27578 

A2  ‐‐  ‐‐  ‐‐  ‐1.270823 

A4  ‐‐  ‐‐  ‐‐  0.400731 

A6  ‐‐  ‐‐  ‐‐  ‐1.245213e‐003  

A8  ‐‐   ‐‐   ‐‐   9.111077e‐006  
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Table 5.3: The parameters of surface 5-8 calculated by MATLAB 

 

As stated earlier, in order to use fitting method, we traced 2001 light rays. That 

means, for each surface, we have 2001 intersection points generated on each surface by 

the incidence light rays. These points are treated as the sampled points of the desired 

surface. Connecting these “sampled” points together one by one forms a surface curve. 

The more point we sample, the more accurately the resultant curve will match the desired 

surface shape. In our case, two thousand and one sample points are enough to represent 

the right shape of the surface and errors are negligible.  Figure 5.1 shows the curves of 

surface 6 and 7 generated by connecting the traced sample points.  In general, the largest 

errors are most likely to occur during the surface fitting process. For example, when one 

uses different fitting method, one may get different results. In fact, using proper fitting 

method does not necessarily give error free result. Due to the limitation of computational 

   Third lenslet Fourth lenslet 

Parameter  Surface 5  Surface 6  Surface 7  Surface 8 

            1.1284e05  4513.78  1.1284e05 

Thickness  0.4mm 0.4mm 

Vertex Radius  0.012072cm  0.159507cm   0.012072cm  Plane Surface 

Surface Type  Cylindrical  Cylindrical  Cylindrical    

Conic Constant  ‐1.0001  ‐3.27578  ‐1.0001    

A2  ‐40.7258  ‐1.270823  ‐40.7258    

A4  1.6202  0.400731  1.6202    

A6  0.2132  ‐1.245213e‐003   0.2132    

A8   1.4844e‐05  9.111077e‐006    1.4844e‐05     
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complexity and the random initial points, the errors are unavoidable, and the surface 

fitting step is very important. 

 

Figure 5.1: The curve of surface 6 and surface 7 formed by the traced rays 

           This research uses the simplex search fitting method. This method is known by its 

accuracy and computational speed, but its performance is largely dependent on the initial 

values chosen. Figure 5.2 shows the fitted curve (green) and the desired curve (red) of 

surface 6. From that figure, it is hard to tell the difference the two of them at first glance. 

Figure 5.3 is an expanded figure of Figure 5.2, showing a very small difference. This 

means that the error is very small. Figure 5.4 shows the fitting result for surface 7 and 

Figure 5.5 is the expanded plot of the insert in Figure 5.4. We can see that the 

performance is not as good as the surface 6 fitting. The merit function value for surface 6 

is 73 10 and for surface 7 is 42.9 10 respectively. Therefore, as we can expect, surface 

7 may produce a large percent of errors degrading the performance of the entire system.  
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Figure 5.2: The fitted and traced curve of surface 6 

 

Figure 5.3: Expanded plot of the insert in Figure 5.2, showing the difference between the 

fitted and traced curve of surface 6 
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Figure 5.4: The fitted and traced curve of surface 7 

 

 Figure 5.5: The difference between the fitted and traced curve surface 6  
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Figure 5.6: Ray tracing of the entire system using MATLAB simulation 
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5.2 Simulation of the system performance using MATLAB 

In order to demonstrate the basic system performance, we traced only 10 light 

rays, initiated at the source and propagated through the system. Figure 5.6 is 10 rays 

traced through the system. Figure 5.6 (a) is the rays in the perpendicular transverse 

direction, and Figure 5.6 (b) is the rays in the parallel transverse direction. Comparing 

Figure 5.6 with Figure 4.1, we easily see that the traced rays are propagating the way as 

we expect: surface 1 collimates the beams in both directions; surface 2 and 3 expand and 

circularize the beam; surface 4&5 and surface 6&7 further expand the beam and 

redistribute the irradiance. These two figures confirm that the proposed system collimates 

the laser rays from the laser diode and uniformly distributes them as they emerge out of 

the last surface of the system.  

In geometrical optics, irradiance distribution is represented by the ray density 

distribution. Therefore, we have to know the ray density in each region of the surface. In 

the simulation step, it is unlikely to get the actual and real energy distribution value at a 

given point. An alternative way is to sample the aperture of the optical surface and 

simulate the energy distribution of that region to find the irradiance distribution after that 

surface. In this research, we first traced 20001 light rays from the source. Then according 

to the equation (4.6) and (4.35), we derive an equation to calculate energy distribution in 

the region confined by two adjacent light rays: 
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Equation (5.1) is used to sample the irradiance distribution after surface 4&6. According 

to the energy conservation principle—the energy between any two light rays is the same. 

We use the ray tracing method to trace these 20001 rays and determine the ray 

distributions of these rays on each surface. Eventually, we are able to sample the 

irradiance distribution after each surface. As a second step, we divide each surface into 

200 segments and integrate the energy distribution over each segment. A series of 

MATLAB codes are developed to complete the procedure and simulated the irradiance 

distribution after each functional surface, in Figure 5.7. Figure 5.11 shows the irradiance 

results. 

To analyze the results, we first view the perpendicular transverse direction. Figure 

5.7 shows the irradiance distribution after surface 1 which is a Gaussian shape. Figure 5.8 

illustrates that the beam has been successfully transformed to a beam with a uniform 

irradiance distribution after surface 8. There is only a four percent fluctuation of the 

irradiance distribution, showing a reasonable uniformity. Figure 5.9 is the irradiance 

distribution after surface 1 for the parallel transverse direction. The beam has the 

Gaussian shape with a narrow beam spot. Figure 5.10 is the irradiance distribution after 

surface 3. Compared the Figure 5.7, the beam has the same distribution as in the 

perpendicular transverse case with the same beam spot size. This means that the surface 2 

and 3 have successfully circularized the incoming elliptical beam from the laser diode. 

The surface 4 and 5 are designed to transform the beam irradiance distribution to 

uniformly distributed one in the parallel transverse direction. The irradiance distribution 

after surface 5, as shown in Figure 5.11, almost has a square-pulse shape. However, the 

level of uniformity in Figure 5.11 is not as good as that in Figure 5.8 for the 
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perpendicular direction case. This may be due to the sampling rate that is not sufficient to 

achieve the goals.  

As a summery, Figure 5.7 and Figure 5.9 tell us that the laser diode beam is 

initially elliptical Gaussian beam with different beam spot size in two orthogonal 

directions; and then after being reshaped by the system, the beam becomes a rectangular 

shaped with the uniform irradiance distribution, as shown in Figure 5.8 and Figure 5.11. 

The MATLAB simulations produce the system parameters. The next step is to 

verify the results simulated by MATLAB using ZEMAX simulation, and demonstrate the 

effectiveness and feasibility of this system.  

 

Figure 5.7: The irradiance distribution after surface 1 in the perpendicular direction 
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Figure 5.8: The irradiance distribution after surface 7 in the perpendicular direction 

 

Figure 5.9: The irradiance distribution after surface 1 in the parallel direction 
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Figure 5.10: The irradiance distribution after surface 3 in the perpendicular direction 

 

Figure 5.11: The irradiance distribution after surface 5 in the parallel direction 
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5.3 Optimization and Simulation using ZEMAX 

ZEMAX is a widely-used optical design program which can model, analyze, and 

assist in design of optical systems. ZEMAX can perform standard sequential ray tracing 

through optical elements, non-sequential ray tracing for analysis of stray light, and 

physical optics beam propagation. It can model the propagation of rays through optical 

elements such as lenses, mirrors, and diffractive optical elements. It includes an extensive 

library of lenses from a variety of manufacturers. Additionally, ZEMAX has a powerful 

suite of optimization tools that can be used to optimize a lens design by automatically 

adjusting parameters to maximize performance and reduce aberrations.  

The simulation using ZEMAX is commonly referred in industry as one of the 

most truly representation of the real light ray propagation, as it has more precise data base 

and considers many practical factors such as temperature, dispersion, scattering, 

diffraction and so on. Therefore, it is very common and necessary for optical designers to 

first use the optical theories and techniques to obtain the initial values of the parameters 

of each designed system, and then use ZEMAX to optimize values of parameters to 

maximize the performance and reduce aberrations. In section 5.1, we determined the 

initial values of the parameters for each surfaces, using MATLAB codes developed 

according to the design methodology proposed in Chapter 4. We use ZEMAX to test and 

optimize these values. 

  

5.3.1 The optimization of each surface using ZEMAX 

The ZEMAX user interface is composed of different types of windows, each of 

which serves a different purpose. In this section, we mainly use three types of windows, 
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namely, the main window, the lens data editor, and the merit function edit. The main 

window is where we enter the background information of the design such as wavelength, 

entrance pupil, system units, and other initiate conditions. The lens data editor is the 

primary window where the majority of the lens data will be entered. This data includes 

the radius of curvature, thickness, and glass type for each surface in the system. The merit 

function editor is used to define, modify, and review the system merit function which is 

used for optimization.  

 

5.3.1.1 The optimization of surface 1 

The data of surface 1 calculated using MATLAB is entered in the lens data edit as 

shown in Figure 5.12. In this figure, object is located at 1 0.3953d mm ,the radius is 

1 0.2014r mm , and the conic constant  is  1 2.2786k   . As stated in section 4.2.2, surface 1 

collimates the beam in both perpendicular and parallel planes and has the radial 

symmetric about the optical axis. To optimize the actual performance of surface 1, a 

merit function as shown in Figure 5.13 is built. Operator REAY denotes the real ray in y-

coordinate in lens units at the surface “surf”. In this case, it says the ray at the 

standardized pupil height 1 (marginal ray) has a ray height of 0.142857mm ( fw ). The 

operator RAED denotes the real ray angle of the exit, which is the angle in degrees 

between the surface normal and the ray after refraction or reflection from the surface; The 

smaller this angle is, the more this ray is collimated, if the surface is selected to be 

perpendicular to the main axis. In this case, we use eleven RAED operators to separately 

obtain the exit angles at the eleven rays of different entrance pupil locations from 0 to 1 

with the spacing of 0.1. From the “Value” column, we can see that the average exit angle, 
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on the order of 510 degree, is relatively small; which in turn proves the effectiveness of 

the equations derived for surface 1 in section 4.2.2. However, it is still necessary to do the 

optimization in order to reduce the aberration and improve the performance, as much as 

possible.  
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This first parameter we need to optimize is 1d  which determines the beam spot size after 

surface 1 according to equation (4.11). According to the equation (4.8)

/ (2 1.75) 0.5 / (2 1.75) 0.1428571420fw d mm      . Give this value to the REAY 

operator, we set the weights of it to be 1 and set the thickness of the first surface in lens 

editor to be variable. This setting is to tell ZEMAX to optimize the parameter 1d to 

achieve the target value of fw . Then we use the optimization program in ZEMAX to 

optimize and obtain 1 0.395263d  mm, as shown in Figure 5.14. 

            The next step is to optimize the surface parameters to make the exit angles 

sampled as small as possible. So we set the radius and the conic constant to be variables; 

the target value of RAED operator to be 0; and the weights to be 1. Through optimization, 

we obtain 1 0.201384r mm and 1 2.278568k   , as shown in Figure 5.15. Furthermore, 

the value of RAED operator has been decreased to the order of 1410 . This is a great 

improvement of the level of parallelism. Because any small errors occurring at this step.is 

accumulative and results in large aberrations at the last surface. This improvement is very 

important to the performance of the whole system. The plot of the optimized surface 1 is 

shown in Figure 5.16. 
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Figure 5.14: The optimization setting and result of 1d  
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Figure 5.15: The optimization setting and results of surface 1 
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Figure 5.16: The layout of surface 1 

 

                 Figure 5.17: The layout of the first three surfaces in the parallel direction 

 

 



80 
 

 

 Figure 5.18: The lens datas and merit function for the first three surfaces 
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5.3.1.2 The optimization of surface 2 and 3 

Surface 2 and surface 3 are cylindrical in the parallel direction. Their function is 

to circularize and collimate the beam after surface 1. As stated in section 4.2.3, they 

should be designed together to satisfy the constant phase front of the beam. Furthermore, 

in order to minimize the accumulative errors, we should optimize the first three surfaces 

as a whole.  Figure 5.17 shows the layout of the first three surfaces in the parallel 

transverse direction. Figure 5.18 shows the lens editor where we entered the calculated 

values of parameters for surface 2 and surface 3, and the merit function editor where we 

entered the operators we need to optimize. The current value of operator REAY (the 

beam size fw  after surface 3) is 0.142888mm, and the current value of the operator 

RAED is on the order of 510 . We desire to optimize the surface parameters to make 

0.1428571420fw mm so that the beam is circularized, and to decrease the REAY values 

to collimate the beam. Therefore, we set the radius and conic constant of surface 2 and 3 

to be variables, and set the target value of REAY to be 0.142857 and RAED to be 0. 

Using the same optimization techniques, we obtain a new set of surface parameters 

2 0.164432r mm , 2 2.255340k   , 3 0.673925r mm , 3 2.272907k   , as shown in 

Figure 5.19. The REAY has been optimized to the target value; and the RAED is on the 

order of 1410 . Comparing the results in Figure 5.19 and in Figure 5.15, we conclude that 

the beam has been successfully collimated and circularized with the same REAY value. 

 

Figure 5.19: the layout of the first three surfaces optimized 
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Figure 5.20: The optimization settings and results of surface 2 and 3  
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5.3.1.3 The optimization of surface 6 and 7 

Surface 6 and surface 7 are to transform the irradiance distribution to uniform 

irradiance and to collimate the beam in the perpendicular transverse direction. In section 

4.2.4, we introduced the design method which is different from the design of the first 

three surfaces. In section 5.2, we demonstrated the MATLAB simulations proving the 

effectiveness of the proposed design. In this section, we use the values of the parameter 

calculated in section 5.1 for these surfaces as the initial values to further optimize surface 

6 and surface 7. First, we enter the initial values of surface 6 and 7 into the lens data 

editor as shown in Figure 5.22, and obtain the 2-D layout as shown in Figure 5.21. As 

seen, we find that the outgoing light is not parallel to each other as they diverge away 

from the main axis after surface 8. This phenomenon actually explains why there is an 

energy increase in the border region in Figure 5.11. 

 

Figure 5.21: The simulation of surface 6 and 7 using ZEMAX according to the initial 

values 
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Figure 5.22: The initial values of surface 6 and 7 calculated by MATLAB 



85 
 

The next step is to build the right and appropriate merit function to optimize the 

parameters of these two surfaces. The basic optimization idea is same as the design 

method discussed in section 4.2.4.  

1.  To ensure that the location, where the light rays meet surface 7, is determined by 

equation (4.42); so that the light rays would evenly distributed on surface 7.  

2. To ensure that the equation (4.45) is satisfied, so that the plane phase front of the 

outgoing beam is achieved. 

 The ray tracing method is once again used here, just as we did during the process of 

designing surface 6 and 7. We traced a series of light rays with ray height ix , and 

substituted the optimized surface parameters into equation (4.42) to obtain a new set of 

ray heights iX . Then a number of operators REAY are used to ensure the light rays traced 

at different pupil location ix to reach surface 7 at the corresponding ray heights iX . 

Furthermore, a number of operators READ are used to ensure the parallelism of the light 

rays at each traced location iX . The surfaces parameters of these two surfaces are all set 

to be variables for ZEMAX for optimization. Figure 5.23 and Figure 5.24 show the 

optimized results. In Figure 5.23, we see that the rays are parallel and almost evenly 

distributed after surface 8. This is a much better result than the one in Figure 5.21.  

 

Figure 5.23: The layout of optimized surface 6 and 7 
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Figure 5.24: The optimization settings and results of surface 6 and 7 
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5.3.2 The simulation of overall system by ZEMAX 

After optimizing each surfaces, we have obtained a new set of surface parameters 

as shown in Table 4 and 5.  These values are more precise and can be used by the lens 

manufactures. As Figure 5.16, Figure 5.20, and Figure 5.24 show, each surface works as 

designed. Until now, all the simulations are done in the 2-D domain. ZEMAX has two 

working models, the sequential and non-sequential. The foregoing optimization is done in 

the sequential-model. In sequential mode, all ray propagation occurs through surfaes 

which are located using a local coordinate system. To demonstrate the system in 3D and 

simulate the light propagtion of laser diode arrays, we have to use the non-sequential 

mode of ZEMAX. In non-sequential mode, optical commponents are modeled as true 

three-demensional objects, either as surfaces or solid volumes. Each object is placed 

globally at an independent x, y, z coordinate with an independently defined orientation. 

Rays can propagate through the optical components in any order where total internal 

reflection ray paths can be accounted for. While sequential mode is limited to the analysis 

of imaging system, non-sequential mode can be used to analyze stray light, scattering, 

and illumination in both imaging and non-imaging systems. Also, it is much more easy to 

simulate the energy distribution and obtain intuitional irradiance distribution image at any 

location in non-squential mode.  
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Table 5.4: The parameters of surface 1-4 optimized by ZEMAX 

 
Table 5.5: The parameters of surface 5-8 optimized by ZEMAX 

 

In this step, we enter the values in Table 5.4 and Table 5.5 into the non-sequantial mode 

and we obtain the 3-D illustration of the whole system, as shown in Figure 5.25. The 

source consists of 3 by 3 laser diode array. Each lenslet array is composed of 9 lenslet 

which is used to shape the corresponding laser diode. Figure 5.26 is the layout of the 

system in the perpendicular direction and Figure 5.27 is the layout in the parallel 

direction.  

   First lenslet Second lenslet 

Parameter    Surface 1  Surface 2  Surface 3  Surface 4 

Thickness  0.4mm 0.4mm 

Vertex Radius    0.201384mm   0.164432mm   0.673925mm   0.150166mm  

Surface Type    Aspherical  Cylindrical  Cylindrical  Cylindrical 

Conic Constant    2.278568   2.255340   2.272907   ‐2.886685 

A2    ‐‐  ‐‐  ‐‐  ‐1.471824 

A4    ‐‐  ‐‐  ‐‐  1.626371 

A6    ‐‐  ‐‐  ‐‐  ‐1.748400 

A8    ‐‐   ‐‐   ‐‐   19.62277  

     Third lenslet  Fourth lenslet 

Parameter    Surface 5  Surface 6  Surface 7  Surface 8 

Thickness    0.4mm  0.4mm 

Vertex Radius  ‐3.989588mm 0.150166mm ‐3.989588mm  Plane surface

Surface Type  Cylindrical(y) Cylindrical(x) Cylindrical(x)    

Conic Constant    244.298486  ‐2.886685  244.298486    

A2    0.767596  ‐1.471824  0.767596    

A4    ‐0.724004  1.626371  ‐0.724004    

A6    0.945536  ‐1.748400  0.945536    

A8     ‐16.930721  19.62277    ‐16.930721    
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Figure 5.25: The 3-D illustration of the proposed system composed of lenslet arrays 

 

Figure 5.26: The layout of the system in perpendicular transverse direction 

 

Figure 5.27: The layout of the system in parallel transverse direction 
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In Figure 5.26 and Figure 5.27, we can see that the beams are shaped respectively 

in each transverse direction; the sources have different divergent angle in each direction; 

but after being shaped by the system, the beams of each laser diode are expanded to 

fulfill the entire pupil diameter and collimated allowing to treat these beams as a single 

bundle of beam. These beams are propagating in the exact same way as we desired and 

simulated in the previous chapters. The exit angle of the outgoing beam after the whole 

system is on the order of 510 , which is relatively quite small. It is usually very difficult 

to achieve such a high level of parallelism. 

 Figure 5.28 shows the irradiance distribution before surface 1. Figure 5.29 shows 

the irradiance distribution after surface 3. Figure 5.30 and Figure 5.31 shows the 

irradiance distribution after surface 8. These four figures are the 2-D energy distribution 

and clearly show how the beam spots look like during the entire beam shaping process. 

The beam spot has been successfully shaped from the elliptical shape to the circular 

shape and finally to the rectangular shape. The irradiance distribution has been 

successfully shaped from Gaussian to uniform distribution.  
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Figure 5.28: The irradiance distribution before surface 1 

 

Figure 5.29: The irradiance distribution after surface 3 
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Figure 5.30: The irradiance distribution at the target plane in black and white 

 

Figure 5.31: The irradiance distribution at the target plane in false color 
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CHAPTER 6  

SUMMARY 

 

Collimated beams with uniform energy profile and regular beam shape such as 

circular or rectangular are highly preferable in applications. This work mainly 

concentrates on shaping the beams from laser diode arrays having total 9 diode lasers to 

become a single beam with these attracting characteristics. 

 Laser diode arrays contain many laser diode sources. It is difficult to reshape and 

combine beams from multi-sources with the conventional optical lenses. Conventional 

optical lens has only one main axis so that only the on-axis laser diode source can be 

collimated parallel to the main axis. In this work, we use the lenslet arrays which are 

composed of many lenslets. The advantage of the lenslet array is that each lenslet can 

shape the corresponding laser diode source as long as we make the aperture size of the 

lenslet match to the spacing of the laser diode arrays. With the help of the lenslet 

technology, we can simplify the multi-sources beam shaping problem to a single laser 

diode beam shaping problem. 

In section 3.3, a four sequential lens system is proposed. It has eight surfaces. The 

first surface is an aspherical surface which is radial symmetric about the main axis. The 

second to the seventh surfaces are cylindrical surfaces serving to reshape the beam in 

perpendicular and parallel transverse direction respectively. The last surface is a plane 

surface. The goal of this system is to collimate the beam and uniform the irradiance 
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distribution with the rectangular beam spot shape. The beams with these features can be 

easily added up and treated as a single beam.  

In Chapter 4, a complete derivation of design method for each surface is discussed. 

These derivations are very important to further understand the working mechanism of the 

proposed system. Surface 1 is to collimate the beam in both transverse directions. Surface 

2 and 3 are to expand and collimate the beam in parallel transverse direction so that the 

beam is circularized after surface 3. Surface 4&5 and 6&7 are to uniform the beam 

irradiance and collimate the beam respectively in both transverse directions, and results a 

rectangular beam spot shape. In section 5.1, a detailed procedure of the design is 

introduced, and an actual design example is proposed. According to the derived equations, 

a series of MATLAB codes are developed to calculate the parameters for each surface. 

This work uses both MATLAB and ZEMAX to simulate the calculated results. In section 

5.2, the 2-D simulations by MATLAB are shown. In section 5.3, the 3-D simulations by 

ZEMAX are shown. All the simulations prove the effectiveness of the proposed system 

and design methods. Rays propagate in the same way, as shown in the ray tracing figures. 

The beam spot of each source is reshaped from the elliptical to the rectangular, as shown 

in the Figures (5.28)-(5.31). The irradiance distribution of the beam transformed from the 

Gaussian to the uniform, as shown in the energy simulation figures. The final collimation 

of the beam was high accuracy that the exit angle of the rays is on the order of 510 . The 

simulations results show that the multiple beams are reshaped to form a single beam. The 

only error is in the edges as shown in Figure 5.31. The author believes that they are 

caused by the diffraction which is inherent with the lenslet arrays.  
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Appendix Developed MALAB Codes Calculating the Parameters and Simulating 

the Results 

 

function 
[d1,c1,R1,k1,c22,R22,k22,c31,R31,k31,lam1,lam2,lens4,lens5]=draftns(the
tapp,thetahh,dd,nn,tt,d3,d55,stepss) 
%thetapp is the e^(-2)divergence angle in the perpendicular plane; 
%thetah  is the e^(-2)divergence angle in the parallel plane; 
%dd is the spacing of the souce diodes (delta d) 
%nn is the refractive index of the lenses; 
%tt is the thickness of each lens; 
%d3 is the distance between lenslet 1 and lenslet 2; 
%d55 the distance between surface 4/6 and surface 5/7; 
%stepss is the number of rays traced for surface 4&5 design; 
format long 
global n ymax Ymax y0 d5 thetap c1 k1 d1 thetah 
%thetav is the e^(-2)divergence angle in the vertical plane (x-z) 
%thetap is the e^(-2)divergence angle in the parallel plane (y-z) 
%d3 is the spacing of the second and third lens 
%--------------------------------------------------------------------- 
%parameters calculation 
n=nn; 
d5=d55; 
thetap=thetapp; 
thetah=thetahh; 
thetap=thetap*pi/180; 
thetah=thetah*pi/180; 
wf=dd/(2*1.75); 
%wf is the beam radius output of the lens combination for beam 
circulization; 
d1=(sqrt(wf^2+(wf/tan(thetap))^2)-n*wf/tan(thetap))/(1-n); 
c1=1/(d1*(n-1)); 
R1=d1*(n-1); 
k1=-n^2; 
%c1, R1 and k1 are the curvature radius and conic constant of the first 
surface; 
wf1=rlts(tan(thetah),d1*tan(thetah),c1,k1); 
% wf1 is the radis height where the energy drops to e^(-2) in y-z plane 
after surface1; 
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d2p=(d3*n*wf1-d3*wf1+(wf1^2*((n^2*wf^2+n^2*wf1^2+d3^2*n^2+d3^2-
2*n^2*wf*wf1-2*d3^2*n-(2*d3*(n*((d3^2*n-d3^2+n*wf^2+wf^2+n*wf1^2+wf1^2-
2*n*wf*wf1-2*wf*wf1)/(n-1))^(1/2)+d3))/(n+1)+(2*d3*n*(n*((d3^2*n - d3^2 
+ n*wf^2 + wf^2 + n*wf1^2 + wf1^2 - 2*n*wf*wf1 - 2*wf*wf1)/(n - 
1))^(1/2) + d3))/(n + 1))/(n^2 -1))^(1/2))/(wf - wf1) + 
(wf1*(n*((d3^2*n - d3^2 + n*wf^2 +wf^2 + n*wf1^2 +wf1^2 - 2*n*wf*wf1 - 
2*wf*wf1)/(n - 1))^(1/2) + d3))/(n + 1) - (wf*wf1*((n^2*wf^2 + 
n^2*wf1^2 + d3^2*n^2 + d3^2 - 2*n^2*wf*wf1 - 2*d3^2*n-(2*d3*(n*((d3^2*n 
- d3^2 + n*wf^2 + wf^2 + n*wf1^2 + wf1^2 - 2*n*wf*wf1 - 2*wf*wf1)/(n - 
1))^(1/2) + d3))/(n + 1) + (2*d3*n*(n*((d3^2*n - d3^2 + n*wf^2 + wf^2 + 
n*wf1^2 + wf1^2 - 2*n*wf*wf1 - 2*wf*wf1)/(n -1))^(1/2) + d3))/(n 
+1))/(n^2 -1))^(1/2))/(wf - wf1))/(n*wf - wf - n*wf1 + wf1); 
%d2p is the effective focal length of the sencond surface; 
c22=1/(d2p*(n-1)); 
R22=d2p*(n-1); 
k22=-n^2; 
%c22,R22,k22 are the curvature radius and conic constant of the second 
surface; 
c31=1/((d2p+d3)*(n-1)); 
R31=(d2p+d3)*(n-1); 
k31=-n^2; 
%c31,R31,k31 are the curvature radius and conic constant of the third 
surface; 
y0=wf; 
ymax=dd/2;%working aperture of the lens4; 
Ymax=dd/2;%working aperture of the lens5; 
zzy=zeros((stepss+1),1);% the initial value of the z  
errb=zeros(1,(stepss+1));% the ingetration error; 
h=ymax/stepss; %the step segment of the integration 
for i=1:stepss 
  [T,Y]= quadgk(@rigid,0,i.*h,'RelTol',1e-13,'AbsTol',1e-14); 
  zzy(i+1)=T; 
  errb(i+1)=Y; 
end 
yy=h*(0:stepss); 
yy=yy';  
Ay=quadgk(@intensity,-ymax,ymax,'RelTol',1e-13,'AbsTol',1e-14); 
YY2=zeros(length(yy),1); 
for i=2:length(yy) 
    YY21=(2*Ymax/Ay)*quadgk(@intensity,0,yy(i),'RelTol',1e-
13,'AbsTol',1e-14); 
    YY2(i)=YY21; 
end 
one=ones(length(yy),1); 
deltazZ=(n*d5*(n-1)*one+sqrt(d5^2*(n-1)^2*one+(n^2-1)*(YY2-
yy).^2))./(n^2-1); 
ZZY2=zzy+deltazZ; 
ZZY2=ZZY2-d5*one; 
yy=[-yy(length(yy):-1:2,1);yy(1);yy(2:length(yy),1)]; 
zzy=[zzy(length(zzy):-1:2,1);zzy(1);zzy(2:length(zzy),1)]; 
YY2=[-YY2(length(YY2):-1:2,1);YY2(1);YY2(2:length(YY2),1)]; 
ZZY2=[ZZY2(length(ZZY2):-1:2,1);ZZY2(1);ZZY2(2:length(ZZY2),1)]; 
plot(zzy,yy);% the figure of the back surface of lens 4 
hold on; 
plot(ZZY2,YY2);% the figure of the front surface of lens 5 
hold off; 
lens4=[yy,zzy]; 
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lens5=[YY2,ZZY2]; 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Surface fitting 
Data=[yy,zzy]; 
t = Data(:,1); 
y = Data(:,2); 
one=ones(length(t),1); 
banana=@(lam) lamfunction(lam,Data) 
options = 
optimset('Display','iter','MaxIter',5000,'MaxFunEvals',100000,'TolFun',
1e-100,'TolX',1e-100); 
[lam,fval]=fminsearch(banana,[0.01,0.01,0.001,0.0001,0.00001,0.00000001
],options); 
lam1=lam; 
figure; 
plot(lamf(lam1,Data),t,'red',zzy,yy,'green'); 
Data=[YY2,ZZY2]; 
t = Data(:,1); 
y = Data(:,2); 
one=ones(length(t),1); 
banana=@(lam) lamfunction(lam,Data) 
options = 
optimset('Display','iter','MaxIter',10000,'MaxFunEvals',100000,'TolFun'
,1e-100,'TolX',1e-100); 
[lam,fval]=fminsearch(banana,[0.01,0.01,0.001,0.0001,0.00001,0.00000001
],options); 
lam2=lam; 
figure; 
plot(lamf(lam2,Data),t,'red',ZZY2,YY2,'green') 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%ray tracing in the perpendicular direction 
figure; 
ezplot('0',[0,d1+1.6+4]); 
axis([0,d1+1.6+4+0.1,-0.3,0.3]); 
hold on; 
fh1p=@(x,y)  (x-d1)-c1*y^2/(1+sqrt(1-(1+k1)*c1^2*y^2)) 
ezplot(fh1p,[d1,d1+z1(dd/2,c1,k1),-0.25,0.25]); 
line([d1+tt d1+tt],[-dd/2 dd/2]); 
line([d1+z1(dd/2,c1,k1) d1+tt],[dd/2 dd/2]); 
line([d1+z1(dd/2,c1,k1) d1+tt],[-dd/2 -dd/2]); 
line([d1+tt+d3 d1+tt+d3],[-dd/2 dd/2]); 
line([d1+2*tt+d3 d1+2*tt+d3],[-dd/2 dd/2]); 
line([d1+tt+d3 d1+2*tt+d3],[-dd/2 -dd/2]); 
line([d1+tt+d3 d1+2*tt+d3],[dd/2 dd/2]); 
line([d1+tt+d3 d1+tt+d3],[-dd/2 dd/2]); 
line([d1+2*tt+d3 d1+2*tt+d3],[-dd/2 dd/2]); 
line([d1+tt+d3 d1+2*tt+d3],[-dd/2 -dd/2]); 
line([d1+tt+d3 d1+2*tt+d3],[dd/2 dd/2]); 
line([d1+2*tt+2*d3 d1+2*tt+2*d3],[-dd/2 dd/2]); 
plot(zzy+(d1+3*tt+2*d3)*(zzy./zzy),yy); 
line([d1+2*tt+2*d3 d1+3*tt+2*d3+zzy(length(zzy))],[-dd/2 -dd/2]); 
line([d1+2*tt+2*d3 d1+3*tt+2*d3+zzy(length(zzy))],[dd/2 dd/2]); 
plot(ZZY2+(d1+3*tt+3*d3)*(ZZY2./ZZY2),yy); 
line([d1+4*tt+3*d3 d1+4*tt+3*d3],[-dd/2 dd/2]); 
line([d1+3*tt+3*d3+ZZY2(length(ZZY2)) d1+4*tt+3*d3],[dd/2 dd/2]); 
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line([d1+3*tt+3*d3+ZZY2(length(ZZY2)) d1+4*tt+3*d3],[-dd/2 -dd/2]); 
Tray6px=zeros(1,10); Tray6py=zeros(1,10); 
Tray7px=zeros(1,10); Tray7py=zeros(1,10); 
Tindex=[300 626 763 855 931 1071 1147 1239 1376 1702]; 
for i=1:10 
    Tray6px(i)=d1+3*tt+2*d3+zzy(Tindex(i)); 
    Tray6py(i)=yy(Tindex(i)); 
    Tray7px(i)=d1+3*tt+3*d3+zzy(Tindex(i)); 
    Tray7py(i)=YY2(Tindex(i)); 
end 
Tray1py=z1(Tray6py,c1,k1); 
for i=1:10 
    line([Tray7px(i) 6],[Tray7py(i) Tray7py(i)]) 
    line([Tray6px(i) Tray7px(i)],[Tray6py(i) Tray7py(i)]); 
    line([d1+Tray1py(i) Tray6px(i)],[Tray6py(i) Tray6py(i)]); 
    line([0 d1+Tray1py(i)],[0 Tray6py(i)]); 
end 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%ray tracing in the perpendicular direction 
figure; 
ezplot('0',[0,d1+1.6+4]); 
axis([0,d1+1.6+4+0.1,-0.3,0.3]); 
hold on; 
fh1p=@(x,y)  (x-d1)-c1*y^2/(1+sqrt(1-(1+k1)*c1^2*y^2)) 
ezplot(fh1p,[d1,d1+z1(dd/2,c1,k1),-0.25,0.25]); 
fh2h=@(x,y)  (x-d1-tt)-c22*y^2/(1+sqrt(1-(1+k22)*c22^2*y^2)) 
ezplot(fh2h,[d1+tt,d1+tt+z1(dd/2,c22,k22),-0.25,0.25]); 
line([d1+z1(dd/2,c1,k1) d1+tt+z1(dd/2,c22,k22)],[dd/2 dd/2]); 
line([d1+z1(dd/2,c1,k1) d1+tt+z1(dd/2,c22,k22)],[-dd/2 -dd/2]); 
fh3h=@(x,y)  (x-d1-tt-d3)-c31*y^2/(1+sqrt(1-(1+k31)*c31^2*y^2)) 
ezplot(fh3h,[d1+tt+d3,d1+tt+d3+z1(dd/2,c31,k31),-0.25,0.25]); 
plot(zzy+(d1+2*tt+d3)*(zzy./zzy),yy); 
line([d1+tt+d3+z1(dd/2,c31,k31) d1+2*tt+d3+zzy(length(zzy))],[dd/2 
dd/2]); 
line([d1+tt+d3+z1(dd/2,c31,k31) d1+2*tt+d3+zzy(length(zzy))],[-dd/2 -
dd/2]); 
plot(ZZY2+(d1+2*tt+2*d3)*(ZZY2./ZZY2),yy); 
line([d1+3*tt+2*d3 d1+3*tt+2*d3],[-dd/2 dd/2]); 
line([d1+2*tt+2*d3+ZZY2(length(ZZY2)) d1+3*tt+2*d3],[dd/2 dd/2]); 
line([d1+2*tt+2*d3+ZZY2(length(ZZY2)) d1+3*tt+2*d3],[-dd/2 -dd/2]); 
line([d1+3*tt+3*d3 d1+3*tt+3*d3],[-dd/2 dd/2]); 
line([d1+4*tt+3*d3 d1+4*tt+3*d3],[-dd/2 dd/2]); 
line([d1+3*tt+3*d3 d1+4*tt+3*d3],[dd/2 dd/2]); 
line([d1+3*tt+3*d3 d1+4*tt+3*d3],[-dd/2 -dd/2]); 
Tray4hx=zeros(1,10); Tray4hy=zeros(1,10); 
Tray5hx=zeros(1,10); Tray5hy=zeros(1,10); 
Tindex=[300 626 763 855 931 1071 1147 1239 1376 1702]; 
for i=1:10 
    Tray4hx(i)=d1+2*tt+d3+zzy(Tindex(i)); 
    Tray4hy(i)=yy(Tindex(i)); 
    Tray5hx(i)=d1+2*tt+2*d3+zzy(Tindex(i)); 
    Tray5hy(i)=YY2(Tindex(i)); 
end 
Tsag3h=z1(Tray4hy,c31,k31); 
Tray3hx=d1+tt+d3+Tsag3h; 
Tray2hy=zeros(1,10); 



101 
 

for i=1:10 
    Tk3h=Tray4hy(i)/(d2p+d3+Tsag3h(i)); 
    fh2h=@(y) c22.*y.^2.*Tk3h./(1+sqrt(1-
(1+k22).*c22.^2.*y.^2))+Tk3h.*d2p-y; 
    [x,fval]=fsolve(fh2h,[-0.25;0.25]); 
    Tray2hy(i)=x(1); 
end 
Tray2hx=d1+tt+z1(Tray2hy,c22,k22); 
Tray1hx=d1+z1(Tray2hy,c1,k1); 
for i=1:10 
    line([Tray5hx(i) 6],[Tray5hy(i) Tray5hy(i)]) 
    line([Tray4hx(i) Tray5hx(i)],[Tray4hy(i) Tray5hy(i)]); 
    line([Tray3hx(i) Tray4hx(i)],[Tray4hy(i) Tray4hy(i)]); 
    line([Tray2hx(i) Tray3hx(i)],[Tray2hy(i) Tray4hy(i)]); 
    line([Tray1hx(i) Tray2hx(i)],[Tray2hy(i) Tray2hy(i)]); 
    line([0 Tray1hx(i)],[0 Tray2hy(i)]); 
end 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%irradiance distribution after surface 1 in perpendicular direction; 
duanshu=201;                  %number of segments in the surface 
aperture; 
duanju=dd/duanshu;            %the size of each segments; 
duan=(-dd/2+duanju):duanju:(dd/2);  %the matrix of the segment 
coordinate; 
rayshu=20001;                 % the number of light traced for energy; 
rayju=dd/(rayshu-1);   %the spacing between the original traced light 
rays; 
ray1p=(-dd/2):(rayju):(dd/2); % the matrix of the coordinate of the 
original traced rays  
%surface 1 in perpendicular direction; 
Iray1p=ones(1,(rayshu-1));  % the intensity matrix; 
for i=1:(rayshu-1) 
    dIray1p=quadgk(@intensity,ray1p(i),ray1p(i+1),'RelTol',1e-
13,'AbsTol',1e-14); 
    Iray1p(i)=dIray1p; 
end 
Iray1p=Iray1p/(quadgk(@intensity,ray1p(1),ray1p(rayshu),'RelTol',1e-
13,'AbsTol',1e-14)); 
Iduan1p=zeros(1,duanshu); 
j=2; 
for i=1:duanshu 
        while (j<=rayshu)&&(ray1p(j))<=(duan(i)) 
        Iduan1p(i)=Iray1p(j-1)+Iduan1p(i); 
        j=j+1; 
        end 
end 
figure; 
plot(duan,Iduan1p,'o') 
%---------------------------------------------------------------------- 
%-------------------------------------------------------------------- 
%irradiance distribution after surface 8 in perpentdicular direction; 
ray8p=zeros(1,rayshu); 
Ay=quadgk(@intensity,-ymax,ymax,'RelTol',1e-13,'AbsTol',1e-14); 
for i=1:rayshu 
    dray8p=(2*Ymax/Ay)*quadgk(@intensity,0,ray1p(i),'RelTol',1e-
13,'AbsTol',1e-14); 
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    ray8p(i)=dray8p; 
end 
ray8p(10001)=0; 
Iduan8p=zeros(1,duanshu); 
j=2; 
for i=1:duanshu 
        while (j<=rayshu)&&(ray8p(j))<=(duan(i)) 
        Iduan8p(i)=Iray1p(j-1)+Iduan8p(i); 
        j=j+1; 
        end 
end 
figure; 
plot(duan,Iduan8p,'-o') 
axis([-0.25 0.25 0 5.15*10^(-3)]); 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%irradiance distribution after surface 1 in parallel direction; 
ray1h=(-dd/2):(rayju):(dd/2);% the matrix of the coordinate of the 
original 
%traced rays surface 1 in perpendicular direction; 
Iray1h=ones(1,(rayshu-1));  % the intensity matrix for surface 
1(parallel) 
for i=1:(rayshu-1) 
    dIray1h=quadgk(@intensityH,ray1h(i),ray1h(i+1),'RelTol',1e-
13,'AbsTol',1e-14); 
    Iray1h(i)=dIray1h; 
end 
Iray1h=Iray1h/(quadgk(@intensityH,ray1h(1),ray1h(rayshu),'RelTol',1e-
13,'AbsTol',1e-14)); 
Iduan1h=zeros(1,duanshu); 
j=2; 
for i=1:duanshu 
        while (j<=rayshu)&&(ray1h(j))<=(duan(i)) 
        Iduan1h(i)=Iray1h(j-1)+Iduan1h(i); 
        j=j+1; 
        end 
end 
figure; 
plot(duan,Iduan1h,'o') 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%irradiance distribution after surface 3; 
ray3h=(-dd/2):(rayju):(dd/2); 
sag3h=z1(ray3h,c31,k31); 
ray2h=zeros(1,rayshu); 
for i=1:rayshu 
    k3h=ray3h(i)/(d2p+d3+sag3h(i)); 
    fh=@(y) c22.*y.^2.*k3h./(1+sqrt(1-(1+k22).*c22.^2.*y.^2))+k3h.*d2p-
y; 
    [x,fval]=fsolve(fh,[-0.25;0.25]); 
    ray2h(i)=x(1); 
end 
Iray2h=ones(1,(rayshu-1)); 
for i=1:(rayshu-1) 
    dIray2h=quadgk(@intensityH,ray2h(i),ray2h(i+1),'RelTol',1e-
13,'AbsTol',1e-14); 
    Iray2h(i)=dIray2h; 
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end 
Iray2h=Iray2h/(quadgk(@intensityH,ray2h(1),ray2h(rayshu),'RelTol',1e-
13,'AbsTol',1e-14)); 
Iduan3h=zeros(1,duanshu); 
j=2; 
for i=1:duanshu 
        while (j<=rayshu)&&(ray3h(j))<=(duan(i)) 
        Iduan3h(i)=Iray2h(j-1)+Iduan3h(i); 
        j=j+1; 
        end 
end 
figure; 
plot(duan,Iduan3h,'o') 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%irradiance distribution after surface 5 
ray5h=zeros(1,rayshu); 
Ay=quadgk(@intensity,-ymax,ymax,'RelTol',1e-13,'AbsTol',1e-14); 
for i=1:rayshu 
    dray5h=(2*Ymax/Ay)*quadgk(@intensity,0,ray3h(i),'RelTol',1e-
13,'AbsTol',1e-14); 
    ray5h(i)=dray5h; 
end 
ray5h(10001)=0; 
Iduan5h=zeros(1,duanshu); 
j=2; 
for i=1:duanshu 
        while (j<=rayshu)&&(ray5h(j))<=(duan(i)) 
        Iduan5h(i)=Iray2h(j-1)+Iduan5h(i); 
        j=j+1; 
        end 
end 
figure; 
plot(duan,Iduan5h,'-o') 
axis([-0.25 0.25 0 5.6*10^(-3)]); 
%---------------------------------------------------------------------- 
  
end 
  
function sag=z1(r,c,k) 
% z1 is the sag functionof conic surface; 
one=r./r; 
sag=c*r.^2./(one+sqrt(one-(1+k)*c^2*r.^2)); 
end 
  
function w=rlts(a,b,c,k) 
% the y or x value of the intersection point between the line and the 
% aspheric surface 
w=(a + b*c + b*c*k - (a*(k*(1 - b^2*c^2*k - 2*a*b*c - b^2*c^2)^(1/2) + 
(1 - b^2*c^2*k - 2*a*b*c - b^2*c^2)^(1/2) + a^2 + a*b*c + 
a*b*c*k))/(a^2 + k + 1))/(c + c*k); 
end 
  
function dy=rigid(t) 
% rigid is the derivative of the sag function of the surface 4; 
% t is the matrix of the ray heights of the traced rays; 
global n ymax Ymax d5 
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n0=1; 
T=ones(t); 
Ay=quadgk(@intensity,-ymax,ymax,'RelTol',1e-13,'AbsTol',1e-14); 
for i=1:length(t) 
    T1=(2*Ymax/Ay)*quadgk(@intensity,0,t(i),'RelTol',1e-13,'AbsTol',1e-
14); 
    T(i)=T1; 
end 
deltaz=(n.*d5.*(n-n0)+n0.*sqrt(d5.^2.*(n-n0).^2+(n.^2-n0.^2).*(T-
t).^2))./(n.^2-n0.^2); 
%one=ones(length(T)); 
%slopeangle=-(log(-(T + deltaz*1i - t*one - deltaz.*n.*((T.^2 - 2.*T.*t 
+ deltaz.^2 + (t*one).^2)./deltaz.^2).^(1/2).*1i)./(T - deltaz*1i - 
t*one + deltaz.*n.*((T.^2 - 2.*T.*t + deltaz.^2 + 
(t*one).^2)./deltaz.^2).^(1/2).*1i)).*1i)./2; 
%dy=tan(slopeangle); 
dy=(-(T-t).*deltaz-n.*(T-t).*sqrt(deltaz.^2+(T-t).^2))./((1-
n.^2).*(deltaz).^2-n.^2.*(T-t).^2); 
  
end 
  
function f = lamfunction(x,Data) 
% lamfunction is the merit function for fitting process 
t = Data(:,1); y = Data(:,2);  
one=ones(length(t),1); 
yEst=x(1)*t.^(2)./(one+sqrt(one-(one+x(2)*one).*x(1)^2.*t.^(2))); 
for i=3:length(x) 
    yEst=yEst+x(i)*t.^(2*(i-2)); 
end 
f=y-yEst; 
f=f.^2; 
f=10^5*sqrt(sum(f)/length(f)); 
end 
  
function yEstimate = lamf(x,Data) % lamf is the even asphere sag 
function 
t = Data(:,1); y = Data(:,2);  
one=ones(length(t),1); 
yEstimate=x(1)*t.^(2)./(one+sqrt(one-(one+x(2)*one).*x(1)^2.*t.^(2))); 
for i=3:length(x) 
    yEstimate=yEstimate+x(i)*t.^(2*(i-2)); 
end 
end 
  
function I=intensity(x)% the intensity at ray height x in perpendicular 
direction; 
global c1 k1 d1 thetap 
z11=z1(x,c1,k1); 
one=z11./z11; 
thetax=atan(x./(d1*one+z11)); 
I=exp(-2*(thetax/thetap).^2); 
end 
  
function I=intensityH(x)% the intensity at ray height x in parallel 
direction; 
global c1 k1 d1 thetah 
z11=z1(x,c1,k1); 
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one=z11./z11; 
thetax=atan(x./(d1*one+z11)); 
I=exp(-2*(thetax/thetah).^2); 
end 


