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Abstract 
 
 

 Due to recent Supreme Court rulings there has been an increased interest in the isolated 

wetlands of the United States. These types of wetlands while generally smaller in extent than 

traditional wetlands serve vital ecological roles such as water quality regulation and as a habitat 

of biological diversity. This thesis focuses specifically on mapping of geographically isolated 

wetlands, or those that are separated from traditional wetlands by a given spatial extent, using 

Geographic Object Based Image Analysis (GeOBIA). GeOBIA is a type of remote sensing 

analysis that identifies objects and features present within both raster and vector datasets via 

automated methodologies. This type of analysis offers the opportunity to greatly increase the 

efficiency of what has traditionally been a very labor intensive process of manual photo-

interpretation. This analysis resulted in the delineation of 26,424 areas within the study area as 

geographically isolated wetlands. These results were assessed for accuracy through both manual 

inspection of aerial imagery and field verification which yielded accuracies of 83.7% and 87.7% 

respectively. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Study background  

 The term wetland has different meanings given different contexts. Generally, a 

wetland is thought of as an area of land with soil that is saturated with water either 

permanently or seasonally (CFR Title 40, 2011). More specific characterizations are also 

applied to wetlands such as water salinity, vegetation types, soil composition, and 

proximity to large bodies of water. Until the 1970’s the extent of the nation’s wetlands 

was not known given that many scientists could not agree on a formal definition of the 

term (Peters, 1994). The National Wetlands Inventory (NWI) program was instituted by 

the United States Fish and Wildlife Service (FWS) in the mid 1970’s to attempt to map 

wetlands for the first time (USFWS, 2013). In Alabama, a brief inspection of existing 

NWI data reveals that several portions of the state’s analog maps have yet to be digitized, 

and also the majority of wetland mapping effort seems to have been placed on mapping 

coastal regions and large flowing bodies of water with less emphasis on isolated and 

ephemeral waters. Figure 1.1 is an example of NWI for a portion of Alabama showing 

substantial gaps in the dataset.  
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Figure 1.1 Example showing gaps in the current NWI digital database. 

 

Although studies have been conducted for mapping wetlands using Geographic 

Information Systems (GIS), the current extent of the nation’s isolated wetlands versus 

other wetlands remain largely unknown (Tiner, 2003a). Many problems exist when using 

a GIS model to map wetlands. The maps produced with GIS are dependent on secondary 

data sources that often do not line up. Also, these data sources tend to be static in time 

and may not be collected very often.  For instance, the most current and comprehensive 

imagery dataset with the level of detail needed to map isolated wetlands is produced by 

the USDA for the National Agricultural Imagery Program (NAIP). NAIP can have a 

problem with canopy closure during the growing season which makes identification of 
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wetlands difficult in those areas. In addition, some isolated wetlands are very small with 

shorelines that are ever changing from season to season. Since rainfall and other 

hydrologic factors change from year to year, the shape and size of these wetlands may 

vary throughout time.  

 Datasets collected with remote sensing methods have evolved greatly over the 

past several decades ranging from the launch of the Earth Resources Technology Satellite 

(later renamed Landsat) which had a spatial resolution of 80 meters to the widespread use 

of high resolution aerial photography which can have a spatial resolution of only a few 

inches. When performing analysis of digital imagery the smallest addressable image 

element is the pixel. This represents a single area in an image and high resolution 

imagery can contain many hundreds of thousands of pixels for a relatively small area. 

Pixel based analysis utilizes only a small portion of the information that we as humans 

use naturally in our visual cortex. There are new methods being developed in the Remote 

Sensing community that focus on grouping pixels together into image objects. Once this 

has been accomplished, the objects can then be analyzed in a way that more closely 

resembles the human visual experience, as well as increases efficiency (Lang, 2008). 

These methods are called Geographic Object Based Image Analysis (GeOBIA) and this 

thesis explores ways of utilizing GeOBIA to efficiently map wetlands. 

 

1.2 Statement of the problem: 

Isolated wetlands have started to garner increased interest in the past few years 

due to recent legislation (531 U.S. 159 (2001).  This increased interest has recently led to 

studies enabling society to begin to understand their importance to local and regional 
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ecological stability. In addition, the historic lack of uniformity in defining the term 

“isolated” has further compounded the issue (Tiner, 2003b). 

In Alabama, a wetland study in an area of over 25,000 acres found that between 

62-67 percent of the area’s wetlands were geographically isolated (Tiner, 2003a). These 

findings indicate that a significant portion of the state’s wetlands have the potential of 

being geographically isolated yet there has been no attempt at mapping the entire state. 

Establishing a baseline for the number of isolated wetlands would be helpful in creating a 

comprehensive wetland program plan that would in turn allow for mitigation of wetland 

loss. Historically, wetland mapping projects have been conducted using manual 

photointerpretation of aerial imagery by wetland experts (Peters, 1994). This process is 

both labor intensive and expensive which required national wetland mapping efforts like 

the NWI to require very large budgets to complete. Geographic Object Based Image 

Analysis (GeOBIA) automated methods are tested in this study as a potential alternative 

application for improving on the traditional methods of wetlands mapping with a focus 

on those that are considered geographically isolated. These methods coupled with the 

baseline information regarding isolated wetlands could then be repeated as more data 

became available allowing for the establishment of a comprehensive monitoring program.  

 

1.3 Thesis Outline  

Chapter1:  

Introduction: 

 Study background 
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Summary 

Research Question Conclusions 

Importance of Study and Future Work  

  

1.4 Study area: 

The study area consists of all lands of the state of Alabama that fall on or north of 

34 degrees of latitude. This area either partially or completely covers 17 different 

counties and approximately one-quarter of the area of the state. This area of Alabama 

contains the lower Appalachian Plateau to the east that is characterized as hills, 

mountains, valleys, and plateaus with the west consisting mostly of limestone valleys and 

uplands. This area was selected primarily due to the researcher’s familiarity with the area 

along with the expectation that open water areas of these wetlands would appear in sharp 

contrast to their surroundings. Also, time constraints for necessary fieldwork, completion 

of the M.S. degree, and defense of thesis required limiting the study area to only those 

lands north of the 34th parallel while the larger project does seek to map the isolated 

wetlands of the entire state of Alabama. 
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Figure 1.2 Map of the counties with area falling north of 34° 

 

1.5 Significance of the study: 

 The Alabama Wetland Protection Plan identified a need to compile existing 

wetland inventory maps and location information. One of the most common sources of 

existing wetland maps is the U.S. Fish and Wildlife Service’s National Wetlands 

Inventory (NWI) data (USFWS, 2013). Unfortunately, the dataset for Alabama is both 

incomplete and obsolete since it was produced with outdated imagery; some being over 

30 years old. Due to rapid development in several areas of Alabama this dataset provides 

a poor overall account of the status and extent of the state’s current wetlands. Since the 

major datasets used in this study are publicly available there exists the opportunity to 

create methodologies that can accurately map large areas using minimal manpower and 
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costing less than traditional mapping projects. Furthermore, research has shown that 

isolated wetlands have the potential for representing a significant portion of the state’s 

wetlands (Tiner, 2003a). 

 Given the recent rulings by the United States Supreme Court there lies the 

possibility that many of the wetlands identified as isolated in an ecological sense, such as 

is the focus of this study, may also be identified as isolated in a regulatory sense. The 

study provides resource managers with information on the extent and condition of these 

wetlands that will assist in decision-making processes. The study also provides further 

evidence of the benefits to using GeOBIA techniques for creating vector datasets using 

remotely sensed data. 

 

1.6 Aim and objectives: 

 The aim of this study is to gather historical data and develop methods to identify, 

classify, and assess isolated wetlands which can be applied to the state of Alabama as 

well as other states with similar physiography. The study posits that Geographic Object 

Based Image Analysis coupled with GIS mapping techniques can be used to evaluate the 

extent of these isolated wetlands more efficiently than traditional wetland mapping 

methods. These specific tasks included: 

 Compilation of existing wetland inventory maps and location information from 

available resources 

 Models developed to delineate and classify isolated wetlands 
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 Use of Geographic Object Based Image Analysis (GeOBIA) along with ancillary 

data to quantify extent of isolated wetlands 

 Reconnaissance of wetlands identified as isolated to verify location and accuracy 

 

1.7 Research questions: 

In this investigation the following research questions are posed: 

 How are isolated wetlands defined for mapping utilizing Geographic Information 

Systems? 

 Can we map isolated wetlands based on an expanded version of the Tiner 

methodology using Geographic Object Based Image Analysis with an accuracy 

that is acceptable to the user community?  

 What are the key distinctions of isolated wetlands and can these distinctions be 

used to help determine factors important in the development of rulesets? 

 What ancillary data provides the most useful help in developing models to aid in 

identifying and mapping isolated wetlands? 

 What is the spatial extent of isolated wetlands within the study area? 

 How much time is saved utilizing automated methods verses traditional 

photointerpretation methods? 

 

1.8 Methodology: 

In this study GeOBIA methods for identifying isolated wetlands in the northern 

part of the state of Alabama were developed. Several ancillary datasets were evaluated in 
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order to determine which would be most useful in identifying wetlands. These datasets 

contain information relating to soil composition, historical rainfall, and historical 

floodplain extent. Imagery datasets of the study area include single meter resolution, 4-

band imagery from the National Agriculture Imagery Program (NAIP). All data have 

been preprocessed before being analyzed using eCognition’s Object Based Image 

Analysis software. This software allows for images to be segmented into smaller image 

objects and then assigned various classifications based on both raster and thematic 

ancillary data. Due to the volume of data required for the study area, the datasets were 

broken up by location and analyzed using batch processing routines. Most significantly, 

the parallel processing capabilities of eCognition Server were utilized for the ability to 

tile the datasets into smaller projects and export them using a meaningful naming scheme. 

These individual project tiles are projected and then renamed using a separate batch 

function before being merged and dissolved according to their spatial location using GIS 

Python scripts. 

 The geodatabase that is created contains all the areas identified during the 

GeOBIA process as wetlands. The geodatabase is then analyzed for each area’s 

geographic isolation from traditional navigable waterways. To accomplish this, the 

National Hydrography Dataset (NHD) was used in conjunction with the Federal 

Emergency Management Agency’s (FEMA) Digital Flood Rate Insurance Map (DFIRM) 

which contains the Special Flood Plain Hazard Areas (SFHA) more commonly known as 

the 100 year floodplain. The spatial extents of these two datasets when combined 

represent the area of non-isolation. Any identified wetlands that fall within this area of 

non-isolation will not be included in the final isolated wetlands dataset. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

 A review of recent literature reveals much of the background information 

necessary for this thesis’ research and analysis. It begins with the regulatory and legal 

background concerning wetlands in the United States with an emphasis on recent changes 

to the federal government’s regulatory authority over isolated wetlands. This section also 

covers the new regulations implemented by the Environmental Protection Agency (EPA) 

in response to these changes in authority. The next section describes the ways in which 

wetlands have traditionally been mapped in the United States as well as describing the 

classification system that was implemented to organize the resulting dataset. The next 

section describes geographically isolated wetlands and the role they play in our 

environmental ecostabililty as well as some estimates of their spatial extent in Alabama. 

Next, a section describes the composition and function of hydric soils according to the 

Natural Resource Conservation Service (NRCS) and how they contribute to wetland 

delineation. 

Another section describes the major types of digital soil data available today, the 

differences between them, and why this thesis includes it. Following that there is a 

discussion of traditional remote sensing techniques for mapping wetlands in the United 
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States and some of the historical limitations of this technology. Finally, there is a section 

which introduces the concept of Geographic Object Based Image Analysis (GeOBIA) as 

a new technique in the Remote Sensing subdiscipline of Geography. 

 

2.2 Regulation: 

 In the United States areas defined as wetlands are regulated by the U.S. Army 

Corps of Engineers and the Environmental Protection Agency (EPA). Determining what 

defines a wetland and where the boundary between regulated and non-regulated land can 

be a hot button issue between federal agencies and private landowners. In the 2001 case 

of Solid Waste Agency of Northern Cook County (SWANCC) vs. U.S. Army Corps of 

Engineers,  the U.S. Supreme Court issued a ruling on the requirement of permits for the 

discharge of dredged or fill materials into "navigable waters.” SWANCC, a consortium of 

Chicago-area cities and villages, sought to develop a landfill for baled nonhazardous 

solid waste on a 533-acre parcel in Illinois. The parcel had been used for sand and gravel 

mining until about 1960. Since then, the excavation trenches from the mining had 

evolved into ponds ranging in size from a few feet across to several acres. SWANCC 

obtained the needed local and state permits, but the Corps denied a permit on the basis 

that the ponds were used by migratory birds. The Court held that the Corps of Engineers' 

use of the "migratory bird rule," adopted by the Corps and Environmental Protection 

Agency (EPA) to interpret the reach of their section 404 authority over discharges into 

"isolated waters" (including isolated wetlands), exceeded the authority granted by The 

Clean Water Act (531 U.S. 159 (2001). The “migratory bird rule” asserted that the Clean 

Water Act covers federal regulation of isolated waters "which are or would be used as 
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habitat by... migratory birds that cross state lines" (33 U.S.C. § 1251). In a majority 

opinion the Court stated:  

In order to rule for [the Corps], we would have to hold that the jurisdiction 
of the Corps extends to ponds that are not adjacent to open water. But we 
conclude that the text of the statute will not allow this. (33 U.S.C. § 1251) 

 

 Later, in the 2006 case of Rapanos v. United States, the court issued rulings that 

voided fines against a real estate developer who filled 22 acres of wetlands with sand in 

order to build shopping malls and condos. He argued that the land was not a wetland and 

that he was not breaking the law because the land was up to 20 miles away from any 

navigable waterway (547 U.S. 715 (2006). In its ruling, the Court remanded the case to 

the Sixth Circuit Court of Appeals for reconsideration, but only four of the justices 

agreed with the underlying reasoning for such a ruling. This is referred to as a “plurality 

opinion,” which lacks authority as a precedent. In this case the lower courts are left to 

decide whether to follow the plurality opinion, or consider the opinion of the fifth judge 

as controlling. In the Court’s plurality opinion the term "waters of the United States," 

"includes only those relatively permanent, standing or continuously flowing bodies of 

water 'forming geographic features' that are described in ordinary parlance as 'streams,  

oceans, rivers, and lakes'.” Justice Kennedy agreed that the case should be remanded, but 

ruled that the lower courts should apply a “significant nexus” test.  Wherein wetlands 

would be “waters of the United States” “if the wetlands, either alone or in combination 

with similarly situated lands in the region, significantly affect the chemical, physical, and 

biological integrity of their covered waters more readily understood as “navigable.” 

When, in contrast, wetlands affects on water quality are speculative or insubstantial, they 

fall outside the zone fairly encompassed by the statutory term “navigable waters”. The 
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next year the Eleventh Circuit Court of Appeals ruled that Justice Kennedy’s “significant 

nexus” test should be the sole method for determining federal jurisdiction (129 S.Ct. 627 

(2008). After the Supreme Court denied an attempt at an appeal via writ of certiorari the 

Eleventh Circuit’s ruling was effectively endorsed. 

 To summarize, wetlands can now be considered to fall into one of three categories 

relative to the Clean Water Act: 1) wetlands that fall under federal jurisdiction due to 

their adjacency to navigable waters or abut relatively permanent tributaries of those 

waters; 2) wetlands that might fall under federal jurisdiction, providing there is a finding 

of “significant nexus” between that wetland and a traditionally navigable waterway; and 

3) wetlands that are not jurisdictional because no “significant nexus” can be established. 

This means that all wetlands not “readily understood as “navigable” must be given site 

specific inspection of “significant nexus” in order to determine jurisdiction. 

 In 2007 (and updated in 2008) the EPA issued a guidance memorandum to all its 

regional offices addressing the recent rulings (EPA, 2008). The document describes first 

that the agencies will assert jurisdiction over the following waters: 

•   Traditional navigable waters 

•   Wetlands adjacent to traditional navigable waters 

•   Non-navigable tributaries of traditional navigable waters that are relatively 
permanent where the tributaries typically flow year-round or have continuous flow at 
least seasonally (e.g., typically three months) 

•   Wetlands that directly abut such tributaries 

 

It then goes on to describe that agencies will decide jurisdiction over the following 

waters based on a fact-specific analysis to determine whether they have a significant 

nexus with a traditional navigable water: 
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•   Non-navigable tributaries that are not relatively permanent 

•   Wetlands adjacent to non-navigable tributaries that are not relatively permanent 

•   Wetlands adjacent to but that do not directly abut a relatively permanent 
non-navigable tributary 

 

Specifically, the agencies will not assert jurisdiction over the following 

features: 

•   Swales or erosional features (e.g., gullies, small washes characterized by low 
volume, infrequent, or short duration flow) 

•   Ditches (including roadside ditches) draining only uplands that do not carry a 
relatively permanent flow of water 

 

The agencies will apply the significant nexus standard as follows: 

•   A significant nexus analysis will assess the flow characteristics and functions of the 
tributary itself and the functions performed by all wetlands adjacent to the tributary to 
determine if they significantly affect the chemical, physical and biological integrity of 
downstream traditional navigable waters 

•   Significant nexus includes consideration of hydrologic and ecologic factors 

 

In this memorandum various wetlands are defined based on their physical 

descriptions. Traditional navigable waters are defined as: 

•    Waters defined as navigable under section 9 or 10 of the Rivers and Harbors Act 

•    Waters determined by a federal court to be navigable-in-fact 

•    Waters currently being used for commercial navigation, which includes commercial 
water recreation such as chartered fishing 

 

Wetlands can be considered adjacent wetlands if they satisfy any one of the 

following: 
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•    An unbroken surface or shallow subsurface connection, which may be intermittent, to 
a jurisdictional water body 

•    A physical separation from jurisdictional water consisting only of man-made dikes or 
barriers, natural river berms, beach dunes, etc. 

•    Reasonable proximity supporting a science-based inference of ecological 
interconnection 

 

The term adjacent is defined as meaning “bordering, contiguous, or neighboring.” 

Wetlands separated from other waters of the United States by man-made dikes or barriers, 

natural river berms, beach dunes and the like are “adjacent wetland.” A non-navigable 

tributary is also explicitly defined as a non-navigable water body “whose waters flow into 

a traditional navigable water either directly or indirectly by means of other tributaries.” 

Also, non-navigable waterways usually flow year round with the exception of drought 

and the EPA will not apply a significant nexus test on those waters meeting this criteria. 

In applying Justice Kennedy’s significant nexus test the EPA states that: 

•    The agencies will assert jurisdiction over non-navigable, not relatively permanent 
tributaries and their adjacent wetlands where such tributaries and wetlands have a 
significant nexus to traditional navigable water. 
•    A significant nexus analysis will assess the flow characteristics and functions of the 
tributary itself and the functions performed by any wetlands adjacent to the tributary to 
determine if they significantly affect the chemical, physical and biological integrity of 
downstream traditional navigable waters. 
•    "Similarly situated" wetlands include all wetlands adjacent to the same tributary. 
Significant nexus includes consideration of hydrologic factors including the following: 

•    Volume, duration, and frequency of flow, including consideration of certain 
physical characteristics of the tributary 
•    Proximity to the traditional navigable water size of the watershed 
•    Average annual rainfall 
•    Average annual winter snow pack 

 

Significant nexus also includes consideration of ecologic factors 

including the following: 
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•    Potential of tributaries to carry pollutants and flood waters to 
traditional navigable waters 
•    Provision of aquatic habitat that supports a traditional navigable water 
potential of wetlands to trap and filter pollutants or store flood waters 
maintenance of water quality in traditional navigable waters 
 

2.3 Mapping of Wetlands 

 There have been many attempts at mapping U.S. wetlands over the past few 

decades. One of the first attempts occurred when the United States Fish & Wildlife 

Service (FWS) conducted an inventory in an attempt to map all wetland habitats 

considered to be important to waterfowl (Shaw and Fredine, 1956). This inventory was 

conducted first by each state’s fieldsmen identifying areas of the state most likely to 

contain a high percentage of wetlands important to waterfowl. Once these areas were 

identified, a field sampling of these locations was performed to determine the wetland 

type and extent. These figures were then extrapolated to include areas not sampled. These 

findings were known as Circular 39 and were published in a book titled “Wetlands of the 

United States.” While not extremely comprehensive these results did serve as a starting 

point for inventorying the nation’s wetlands. Wetlands were then, as they are now, 

undergoing changes from both natural and man-made influences which over time caused 

this already non-comprehensive dataset’s usefulness to diminish. In response to Circular 

39’s limitations the National Wetlands Inventory (NWI) project was created in 1974 with 

the expressed purpose to: (1) produce maps of the characteristics and extent of the 

Nation’s wetlands; (2) construct the national digital wetlands database; (3) disseminate 

NWI and other wetland products; (4) summarize the results of the inventory; (5) assess 

the status and trends of the Nation’s wetlands. 
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 The NWI’s wetland classification system (Figures 2.1 and 2.2) was titled 

“Classification of Wetlands and Deepwater Habitats of the United States” and was 

developed by wetland ecologists with assistance from local, state, and federal agencies 

(Cowardin et al., 1979). The author of this thesis enrolled in the Advanced Wetland 

Photo/Imagery Interpretation Workshop by the United States Geological Survey (USGS) 

in Lafayette, Louisiana in order to become familiar with the Cowardin Classification 

System. During this multi-day course numerous wetland delineations were conducted in 

the presence of instructors. These delineation maps were later verified by students and 

instructors using boats to access the remote areas. Each participant was then tested by 

instructors before receiving documentation verifying that they had passed the course. 

The Cowardin Classification System groups together ecologically similar 

wetlands using a hierarchical framework. The top level is the broadest with five major 

systems: marine, estuarine, riverine, lacustrine, and palustrine. Each system is divided 

into subsystems that reflect their hydrological conditions. These subsystems are further 

divided into subclasses that reflect an area’s physical structure.  Also included are 

modifiers which allow for further description of water chemistry, hydrology, and even 

special modifiers like whether a wetland is impounded or partially drained (Cowardin et 

al., 1979). 

 The NWI project sought to establish a method for delineating wetlands using 

available imagery and expert photointerpretation coupled with necessary field checking. 

At the time there were two commonly used sources of imagery in the United States. 

These were the LANDSAT Multi-Spectral Scanner and the aerial photography produced 

by federal agencies. It was decided that aerial photography would give interpreters the 
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best chance of properly delineating these areas (Wilen and Pywell, 1992). Early in the 

project, the 1:80,000 scale black and white photography acquired by the United States 

Geological Survey (USGS), gave the best overall coverage for large portions of the 

country. These were later replaced by the 1:58,000 scale color infrared images collected 

during the operation of the USGS National High Altitude Photography Program 

(NHAPP). This type of imagery was replaced in 1987 by the 1:40,000 scale color infrared 

imagery of the National Aerial Photography Program (NAPP). 
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Figure 2.1 Flowchart of the Cowardin Classification System 



 

22 
 

 
Figure 2.2 Flowchart of the Cowardin Classification System 
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 The primary product of the NWI program was the 1:24,000 scale maps showing all 

delineated wetlands and their corresponding Cowardin Classification System code. The one 

exception to this was the state of Alaska whose wetland maps were primarily 1: 63,360 scale 

(Peters, 1991). 

 The NWI mapping procedures consist of seven major steps. First, a review of aerial 

photography and collateral data to become familiar with the area was done. Sites for possible 

field checking were identified with a focus on problematic areas. Second, researchers conducted 

a field review of the study area. The length and detail of this review was dictated by the 

complexity and density of the wetlands that were present. While field checking is usually done 

by ground vehicle, helicopters were commonly used in the state of Alaska. Throughout the 

project it was discovered that private ownership often limited access to field sites. 

 Third, stereoscopic interpretation of the aerial photography was performed with wetland 

boundaries delineated on photo overlays by means of using at least 4X magnification (USFWS, 

1990a). Collateral information sources (e.g., soil surveys, USGS maps, navigation charts, local 

inventories, and previous wetland maps) were used where available. Occasionally, follow-up 

field work was necessary to resolve problems encountered during this phase. Fourth, quality 

control measures were assessed for the delineated wetland areas. A photo interpretation team 

leader ensured that delineations were as accurate as possible. Regional quality control brought 

local expertise into the review process. National quality control ensured that wetlands were 

classified similarly throughout the United States. 

 The fifth step in the process involved the preparation of local-scale draft wetland maps. 

NWI cartographic conventions were used to ensure consistency in wetland map codes and 
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linework (USFWS, 1990b). The sixth step was the field verification of draft wetland maps. These 

maps were provided to local, state, and/or federal agencies’ staffs for review based on their 

familiarity with wetland resources in the mapping area. 

 The seventh and final step in this process was the production of the final NWI wetland 

maps in analog format. These maps received final quality control for labeling and linework 

before being distributed to field offices across the country. This entire process took between 2 to 

3 years (Hefner and Storrs, 1995). For the majority of the United States the aerial photography 

used for the project was flown in the mid 1980’s (Peters, 1991). This means that two decades 

worth of change could have occurred since the original maps were produced leading some to 

speculate the dataset is outdated (Tiner, 2003a). New mapping efforts using modern GIS and 

remote sensing technology could possibly provide a way to produce wetland maps with similar 

accuracies as the photointerpretation maps of the 1980’s, but at a fraction of the cost.  

 The classification system that was used to produce the NWI was based solely on the 

physical appearance and structure of a wetland (Cowardin et al., 1979). While classifications 

exist for describing a wetland’s interconnectivity with other wetlands these were mostly limited 

to the marine, estuarine, and riverine systems in the final dataset. Palustrine and lacustrine 

systems, which are found inland from coastal areas, have special modifiers for their water regime 

but do not have classifications describing their geographic position relative to other wetlands and 

waterways. This is important because given the recent court rulings discussed earlier there is an 

increased interest in identifying a wetland’s relationship with other wetlands that the existing 

NWI dataset cannot satisfy.  
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2.4 Geographically Isolated Wetlands: 

With the SWANCC and Rapanos decisions, a sudden surge in interest emerged in 

identifying isolated wetlands due to the possibility of them falling outside of federal regulation. 

However, isolation can be viewed in different ways and based on different criteria. For instance, 

they can be viewed in a statutory sense which is controlled by recent legislation and court 

decisions. This position can shift greatly in a short period of time due to regulatory changes or a 

shift in court interpretation. However, isolated wetlands can also be viewed using purely 

scientific criteria which tend to vary little over time. 

 The term isolated can be most easily defined as a wetland or water body without a 

downstream surface outlet. These wetlands form in depressions and are isolated from traditional 

waters due to the higher elevation of the surrounding land (Leibowitz, 2003; Tiner, 2003a). 

However, more in depth definitions of this term require examining a wetland’s ecological and 

hydrological interactions more closely. The simplest example of an isolated wetland is one that is 

not hydrologically connected to other wetlands or waterbodies. Wetlands with no surface 

connection to other waters can still interact via groundwater connections (Winter and LaBaugh, 

2003). These interactions, however, depend upon the geological structure of the particular setting 

(Sutter and Kral, 1994). It should also be noted that intermittent surface water connections 

typically occur among isolated wetlands during flood stages. Leibowitz and Vining (2003) 

observed that 28 percent of the wetlands within an area of North Dakota experienced intermittent 

surface water connection during the high water stage. This has prompted some to define isolated 

wetlands as “depressions wetlands that under average surface-water levels are not connected to 

other aquatic habitats by surface waters” (Snodgrass et al., 1996). 
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 The National Research Council defined isolated wetlands as “a wetland not adjacent to 

another body of water” (NRC, 1995). Others defined them as “highly disjunct” (Godt et al., 

1995) or as “rare and highly dispersed habitats” (Pearson, 1994). Ralph Tiner’s use of the term 

“geographically isolated” limits the scope of these wetlands to those “that are completely 

surrounded by upland (e.g., hydrophytic plant communities surrounded by terrestrial plant 

communities or undrained hydric soils surrounded by nonhydric soils)” (Tiner, 2003a). In 

general, geographic isolation is the easiest to define since it describes the position of a wetland 

on the landscape and is the criteria most widely used for this reason (Tiner, 2003b). Since the 

definition used here is not a regulatory one, some of these types of wetlands may fall outside of 

the jurisdiction of the Clean Water Act (CWA) of 1972 and its subsequent amendments (Tiner, 

2003b; FWPCA, 1972).  

Geographically isolated wetlands serve similar roles to non-isolated wetlands in terms of 

function and benefit. There have been numerous studies examining the water quality (Dunson et 

al., 1997; Neely and Baker, 1989; Moore and Larson, 1979) and hydrologic function (Winter, 

1989; Zedler, 1987; Stichling and Blackwell, 1957) of isolated wetlands. By definition isolated 

wetlands are cutoff from the local surface water system; therefore the water that collects in them 

must return to the atmosphere by evapotranspiration or enter the ground-water system 

(Leibowitz, 2003). Some may contain underlying layers of impervious soils which prevent 

penetration into the ground-water system and in these areas evapotranspiration would be 

expected to dominate. Conversely, wetlands located on highly permeable soils can expect the 

majority of their water losses to come through ground-water loss (Bolen et al., 1989). 

 Water quality for these wetlands could differ greatly from that of traditional riverine 

systems. These isolated wetlands would focus water from a large watershed into several 
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depressions rather than funneling the runoff into a river or stream. This would mean that on 

average isolated wetlands would have smaller pollutant and nutrient loading when compared to 

riverine wetlands (Leibowitz, 2003). This is, however, a generalization and it should be noted 

that the geochemistry and water-quality function of each wetland can be highly variable due to 

climatic and geologic settings (Leibowitz, 2003). 

Isolated wetlands serve a number of other environmental functions such as: surface-water 

storage, flood water protection, nutrient transformation, water quality maintenance, aquatic 

productivity, shoreline stabilization, and wildlife habitat (Tiner, 2003a). Low lying areas are 

better served by the numerous upstream depressional wetlands that serve as storage for 

precipitation. This storage capacity prevents the runoff from being directly introduced into 

regional riverine systems that can cause local or regional flooding (Neely and Baker, 1989). One 

study found that the Devil’s Lake Basin of North Dakota’s pothole wetlands have the ability to 

store 72% of total runoff due to a 2-year frequency storm and 41% total runoff due to a 100-year 

storm (Ludden et al., 1983). This storage capacity can also facilitate these wetlands contribution 

to the stream flow maintenance and groundwater recharge of a system. Other benefits include 

creating habitat for waterfowl and native fish and serving as water sources for domestic 

livestock, and humans (Tiner, 2003a). 

 The slow nature of release of these wetland’s stored water into regional aquifers 

translates into a dependable input that many natural systems appear to rely on (Stone and Lindley 

Stone, 1994). In these cases the majority of input appears to occur during periods of high rainfall 

when the high water reaches more permeable adjacent soils. 

Historical loss of isolated wetlands is difficult to quantify due to a lack of specific 

information such as The National Wetlands Inventory (NWI) which does not list isolated 
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wetlands as a type (Cowardin et al., 1979, Tiner 2003a). Without baseline supporting data 

resource managers must rely on general wetland trends and the best professional judgment of 

experts to assess trends in wetland loss.  

For instance, a study of the Carolina Bays of South Carolina estimate that 97% of isolated 

wetlands have been disturbed (Bennett and Nelson, 1991). Another study focused on playa lakes 

of the southern Great Plains and found that the majority were experiencing sedimentation from 

agriculture (Haukos and Smith, 2003; Haukos and Smith, 1994). In southern California there are 

estimates that as much as 97% of vernal pool habitat has been lost (King, 1998).  

Another example of isolated wetland loss includes the Prairie Pothole Region states of 

Iowa, Minnesota, Montana, North Dakota, and South Dakota where half of these wetland types 

have been lost between the 1780s and 1980s (Dahl, 1990; Leibowitz, 2003). Most of this loss has 

come as the result of agricultural drainage (Tiner, 1984; Galatowitsch and van der Valk, 1994). 

Because these wetlands are generally smaller than more expansive traditional wetlands it may be 

thought that the ecological impact of their loss will be of less significance, but this is not the case 

since it can be shown that ecological importance is not proportional to a wetland’s size (Naugle 

et al., 2000; Semlitsch and Bodie, 1998; Robinson, 1995; Gibbs, 1993). 

For all of these reasons there is a great ecological need in establishing the extent of 

Alabama’s isolated wetlands. While local geography can have a great impact on the number of 

isolated wetlands there is reason to believe that they represent a large percentage of the number 

of Alabama’s wetlands. In a study of 72 sites throughout 44 states nearly 70% of the sites had 

over 50% of their wetlands designated as geographically isolated; nine of them had over 90% of 

their wetlands classified as geographically isolated (Tiner, 2003a). The lone area of study in 
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Alabama occurred near the city of Trinity in Morgan County. In this area the number of wetlands 

that were classified as isolated accounted for over 60% of all wetlands (Tiner, 2003a). 

 

2.5 Hydric Soils 

Many factors are used to determine wetland location and extent, but one of the leading 

factors is the presence of hydric soils (USACE, 1987). Since a soil’s characteristics are not given 

to seasonal variation like hydrophytic vegetation canopy structure using the presence hydric soils 

to identify wetlands can be very useful. The jointly recognized methodology and characteristic 

requirements of the Natural Resources Conservation Service (NRCS) and the Environmental 

Protection Agency (EPA) for identifying hydric soils are found in the United States Army Corps 

of Engineers Wetland Delineation Manual in accordance with section 404 of the Clean Water 

Act. 

Soil characteristics play a large role in both the function of a wetland as well as its 

classification. A hydric soil is defined as “a soil that formed under conditions of saturation, 

flooding or ponding long enough during the growing season to develop an anaerobic condition 

that supports the growth and regeneration of hydrophytic vegetation” (7 CFR 12.2). These 

anaerobic conditions cause hydric soils to experience accumulation or loss of many compounds 

which makes their identification easier and more scientific. 

Within the anaerobic environment of hydric soils, microbes reduce iron from the ferric 

(Fe3+) to the ferrous (Fe2+) form and manganese from the manganic (Mn4+) to the manganous 

(Mn2+) form (NRCS, 2010). Areas where this has occurred can experience iron depletions where 

the insoluble ferric iron, being reduced to soluble ferrous iron, enters the soil solution and is 
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translocated to other areas of the soil. This causes the soil to appear gray or reddish gray and is 

known as redox depletion. The areas where the ferrous iron is deposited may experience aerobic 

conditions later which cause the iron in the solution to oxidize in what are known as redox 

concentrations. This is the most common indicator of a hydric soil, but this phenomenon cannot 

occur in soils with parent materials low in iron or manganese (NRCS, 2010). 

Another indicator of hydric soils is those that may experience sulfur reduction where 

microbes convert sulfates like SO4
2- into H2S or hydrogen sulfide. When this occurs in an area 

whose soil is saturated for extended periods of time a pungent “rotten egg” odor can be detected 

(NRCS, 2010). Also, these soils experience organic matter buildup due to the reduced speed at 

which soil microbes consume carbon when exposed to anaerobic conditions compared to aerobic 

conditions (Megonigal et al., 1996). These soils tend to have a thick peat layer of organic rich 

material in surface layer horizons. 

Difficulties occur, however, in classifying hydric soils due to factors like: soils with 

black, gray or red parent material, soils with high pH, soils that are low in organic matter, 

recently developed hydric soils, and soils that are high in iron input (NRCS, 2010). The list of 

indicators in the soil survey handbook for the NRCS are mostly suited for delineating soils along 

the margins of hydric soils where anaerobic and aerobic conditions tend to alternate.  

Information regarding the location and spatial extent of hydric soils is gathered though 

soil surveys carried out by the NRCS. These surveys compile data about soil characteristics such 

as color and drainage regime as well as examinations of basic chemical composition.  Most of 

these data were collected by the National Cooperative Soil Survey by expert soil scientists who 

walked the land and observed the soil taking laboratory samples when needed (NRCS, 2013). 
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 This information created the two most widely used datasets today which are the State 

Soil Geographic (STATSGO) database and the Soil Survey Geographic (SSURGO) database. 

The primary difference between the two is that STATSGO is a less detailed dataset that is 

derived and generalized from more detailed datasets for the purpose of “regional, multistate, 

river basin, state and multicounty resource planning, management, and monitoring”. STATSGO 

data are not detailed enough to make interpretations at a county level. (USDA, 2007). SSURGO 

data are much more detailed and are intended to provide information at the landowner level. 

 

2.6 Remote Sensing Image Analysis for Wetlands Mapping 

Image analysis includes the extraction of meaningful information from an image. For 

decades the only way of obtaining detailed geoinformation for wetlands mapping relied upon 

aerial photography and manual visual inspection (Lang, 2008). Standard raster images are 

collected by optical sensors and produce a matrix of pixels for a user’s mind to interpret. For 

each of these pixels, a corresponding wavelength along the electromagnetic spectrum is recorded 

as a Digital Number (DN), also commonly referred to as a Brightness Value (BV). For 

wavelengths that fall within the human visual spectrum the pixel is a direct interpretation of what 

was captured by the sensor. For wavelengths that fall outside of the visible spectrum the pixel 

must be reprojected into a color that the interpreter can visually observe by the image processing 

software. Common forms of this are images captured in the near infrared spectrum and displayed 

as False Color Composites (FCC) for improved mapping of vegetation. 

Traditionally, remote sensing has utilized pixel based methods of classification which 

relied on pixel BVs from multiple bands of the electromagnetic spectrum to determine a pixels 

classification. This tends to produce reasonably acceptable results while using relatively coarse 
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imagery (e.g. Landsat), but has not been as successful when dealing with the rich information of 

high resolution data such as sub-meter aerial photography (Oruc, 2004). Also, with the rapid 

increase in availability of large, high resolution data it has become more necessary to establish 

automated methodologies to better deal with processing (Hay and Castilla, 2006).  

 

2.7 Geographic Object Based Image Analysis (GeOBIA) 

Image analysis automation began with pixel level interpretation in order to assign each 

pixel to a particular class. Two widely-used methods are known as supervised and unsupervised 

classification. Each is distinct in its classification process, but they share the same basic premise 

which was the analysis had to be performed at the pixel level. With the increasing spatial 

resolution of aerial imagery this caused classification problems from the increasingly small 

pixels being too complex for simple pixel classifiers to handle (Baatz and Schape, 2000). In 

GeOBIA, this limitation is overcome by grouping pixels together into increasingly larger image 

primitives until meaningful image objects are created using parameters assigned by the user 

(Stow et al., 2008; Myint et al., 2008). Specifically, the multiresolutional segmentation 

algorithm, which has become the most widely recognizable aspect of eCognition’s software, 

groups pixels together that appear to be a single meaningful object using the Fractal Net 

Evolution Approach (Baatz & Schape, 2000). The exact nature of the multiresolutional 

segmentation algorithm, however, is proprietary information of the Definiens Corporation and 

their parent company Trimble Navigation, but its success has brought eCognition and GeOBIA 

to the forefront in the remote sensing community. 

 This approach to image feature extraction incorporates analysis of heterogeneity similar 

to human visual perception according to the gestalt principles (Lang, 2008). Among other things, 



 

33 
 

these principles attempt to describe the way humans create conceptual boundaries around areas 

of perceived pattern also known as the “Orchard problem” wherein the patterns of evenly spaced 

trees are detected and the entire orchard is regarded as a single object (Lang, 2008). 

 The three key parameters utilized are compactness, shape, and scale. Shape and 

compactness are assigned a value between 0 and 1 which can then be applied at different scales 

(Myint et al., 2006). Assigning a higher number to the scale parameter will generate larger and 

more homogeneous objects while lower numbers assigned in the scale parameter will produce 

smaller and more detailed objects. These parameters can also be weighted to individual bands for 

increased accuracy and flexibility (Definiens, 2008). 

 Utilizing segmentation effectively shifts the basic unit of the classification process from 

pixels to objects. This allows for analysis beyond spectral reflectance to include linearity, 

texture, as well as contextual relationships to other image objects (Corcoran and Winstanley, 

2008). GeOBIA also opens up the possibility for creating methodologies that could replicate or 

exceed human interpretation of remotely sensed imagery in an automated fashion (Hay and 

Castilla, 2008). The result of which would mean more repeatable methods with reduced 

subjectivity and labor time costs. Classification within eCognition offers two distinct options in 

assigning segmented objects into classes: Membership Function and the Nearest Neighbor 

Classifier. Membership Function relies on user defined constraints consisting of intervals to 

which a particular class’ features must fall to determine classification. This type of classification 

relies on the user’s expert knowledge of the characteristics of each class (Myint et al., 2011). 

Nearest Neighbor Classifier uses sample areas or training sites to “teach” the classifier algorithm 

the characteristics of a particular class (Myint et al., 2011; Definiens, 2008). The user will 

continue to select appropriate training sites until an acceptable classification has been achieved. 
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The two options within the Nearest Neighbor Classifier also allow for either the program to 

automatically use mean values for all object features or the user can limit the scope of 

classification to specific object features (e.g., size, shape, texture) (Myint et al., 2011). 

Some drawbacks to GeOBIA include that the use of high resolution imagery in modern 

remote sensing has created very large datasets that require the use of many processors as well as 

efficient/complex tiling solutions. There are several object based platforms capable of 

performing these algorithms, however, in order to provide such flexibility and functionality the 

software tends to be complicated and currently has a steep learning curve that requires 

substantial time. Also, given that GeOBIA is a relatively new and quickly changing method of 

analysis there are discrepancies in terminology to describe image objects as either primitives or 

actual objects depending on their level of meaningfulness (Hay and Castilla, 2008; Corcoran and 

Winstanley, 2008). Even the name of this type of analysis has been a source of debate with some 

preferring the term GeOBIA (Geographic Object Based Image Analysis) compared to OBIA 

(Object Based Image Analysis) in order to create a distinction between spatial analysis in 

traditional remote sensing versus medical imaging technologies (Hay and Castilla, 2008).  

There have been few attempts at mapping isolated wetlands using GeOBIA currently, but 

those that have taken place have shown some promising results. One study conducted in the St. 

Johns River Water Management District of Alachua County, Florida attempted to map isolated 

wetlands at a minimum spatial extent of 0.5 acres using Landsat-7 imagery with a spatial 

resolution of 30 meters. Since satellite data are available for a given area several times a month 

the researchers were able to select the scene with the greatest amount of water present which 

allowed them to reach an accuracy of 88% (Frohn et al., 2009). This thesis seeks to identify 
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isolated wetlands at a spatial extent 80% smaller than that of the Frohn study using imagery 

thirty times higher in spatial resolution. 
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CHAPTER 3 

 

METHODOLOGY 

 

 

3.1 Introduction 

 

This thesis focuses on the mapping of geographically isolated wetlands in north Alabama 

using Geographic Object Based Image Analysis (GeOBIA). Recent changes in wetland 

regulation have brought increased interest in determining the spatial extent of geographically 

isolated wetlands due to their possible loss of federal protection. The first section of this chapter 

describes the various data that were acquired, compiled, and used for analysis. Also discussed 

are the various geospatial methods tested to delineate and classify these isolated wetlands using 

GeOBIA automated algorithms in conjunction with traditional GIS analysis. Finally, this chapter 

discusses how accuracy was determined using manual inspection in conjunction with field 

verification. 

 

3.2 Data: 

 

3.2.1 NAIP Imagery 

The National Agriculture Imagery Program (NAIP) is funded by the United States 

Department of Agriculture’s (USDA) Farm Service Agency (FSA) through the Aerial 

Photography Field Office (APFO). This program’s primary objective is to acquire digital aerial 
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photography during the agricultural growing season of the continental United States. Beginning 

in 2003 the imagery was collected on a 5 year cycle but this was changed to a 3 year cycle 

beginning in 2009 (USDA, 2011). NAIP imagery has a spatial resolution of one meter and a 

horizontal accuracy of six meters as determined by photo-identifiable ground control points 

which are used during image inspection. The spectral information includes the natural color 

bands of red, green, and blue and the dataset also includes an additional band at the near infrared 

(NIR) spectrum which is highly useful for extracting water bodies from imagery. The imagery is 

organized and distributed using the existing United States Geological Survey (USGS) 7.5 minute 

topographic quadrangles grid system. Each NAIP digital image corresponds to one quarter 

quadrangle or 3.75x3.75 minute with a 300 meter buffer on all sides. These tiles are projected in 

the Universal Transverse Mercator (UTM) coordinate system using the North American Datum 

(NAD) of 1983 (USDA, 2011; Campbell, 2002). These data are utilized for the GeOBIA process 

to segment the imagery into wetland polygons for the inventory.  

 

3.2.2 Soil Survey Geographic Dataset (SSURGO) 

Soil composition was determined using the Soil Survey Geographic (SSURGO) Dataset, 

specifically those soils defined as being fully hydric and therefore very likely to contain 

wetlands. The basic definition of a hydric soil is any soil that is sufficiently wet in the upper part 

to develop anaerobic conditions during the growing season (NRCS, 2012) SSURGO soil surveys 

are performed by the Natural Resource Conservation Service’s (NRCS) National Geospatial 

Management Center (NGMC) and is made available to the public through the United States 

Department of Agriculture’s (USDA) Geospatial Data Gateway (USDA, 2013). Soil surveys 

identify soil types based on many factors including parent material, climate, vegetative zones, 
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and local topography. Chemical and physical data are obtained from horizon samples analyzed in 

a laboratory to determine exact physical characteristics such as color, texture, and pH (USDA, 

2012). The hydric soils data layer is used to delineate wetlands in conjunction with those 

identified using the GeOBIA automated algorithms.  

 

3.2.3 FEMA DFIRM 

 Floodwater extent is assessed using floodplain data from the Federal Emergency 

Management Agency’s (FEMA) Digital Flood Rate Insurance Map (DFIRM). These data are 

created through hydraulic and hydrological floodplain insurance studies (FIS) that are mandated 

in the National Flood Disaster Protection Act of 1973. The DFIRM shows the spatial extent of 

Special Flood Hazard Areas (SFHA). SFHAs are areas that have a one percent chance of 

inundation by floodwaters on any given year and are sometimes known as one hundred year 

floodplains. These types of floodplains are the national standard for which floodplain data and 

insurance requirements of the National Flood Insurance Program (NFIP) are based. These 

floodplain data are used in determining geographic isolation by using a 40-meter buffer analysis 

of both the floodplain and the existing waterbody information within the National Hydrography 

Dataset (NHD). 

 

3.2.4 National Hydrography Dataset 

The current extents of known waterways are gathered from the National Hydrography 

Dataset (NHD) (USGS, 2013). The NHD is funded by the USGS and serves as the surface water 

component of that agency’s National Map of the United States. The NHD is a vector dataset that 
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delineates surface water features such as rivers, lakes, and ponds and also contains watershed 

boundary information from the Watershed Boundary Dataset (WBD). These data provide more 

insight into potential boundaries of current wetlands. 

 

3.3 Methods 

 

3.3.1 Segmentation and Classification 

Image segmentation is the process of “breaking up” an image into less complex image 

primitives. Once these primitives have become meaningful in the sense that they embody 

complete items in space they become image objects (Lang, 2008). It is this shift from individual 

pixels, which only offer spectral reflectance information, to more meaningful objects that allows 

for rule-oriented image analysis based on image object relationships and spatial attributes (Hay 

and Castilla, 2006). The parent/child relationship allows for the link between initially created 

image objects and their attributes with image object layers that are created from them. For 

instance, if a coarse segmentation were run followed by a finer segmentation on the objects 

created by the coarse segmentation the link between the attributes of both sets of objects would 

remain intact. Figure 3.1 provides an example of the NAIP imagery being segmented using the 

multi resolutional segmentation ruleset. 
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Figure3.1 This image shows the Multi-Resolutional Segmentation on a section of NAIP Imagery 

 

 As image primitives are merged with other primitives they produce hierarchies of 

“levels” that while now spatially joined still retain their statistical discontinuity which can be 

utilized for advanced analysis (Lang, 2008). This analysis will produce image objects that can be 

assigned to class values that correspond to real-world objects such as land cover classifications 

or vegetation types based on their relationships to other hierarchies as well as spatial attributes 

like shape, extent, and proximity to other objects. For the purposes of this thesis those attributes 

are an extension of the methodology used for isolated wetland identification (Tiner, 2003a). 

Figure 3.2 shows an example of the NAIP imagery being segmented further using the spectral 

difference segmentation ruleset. 
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           Figure 3.2 This image shows the Spectral Difference Segmentation’s ability to group large, similar objects 

together. 
 

Much of the difficulty in identifying isolated wetlands stems from the fact that these 

types of wetlands are typically small and ever changing in extent due to seasonal variation and 

hydrological input (Tiner, 2003a). This also means that in many instances there will be no visible 

sign of a wetland in a given aerial dataset, but that does not mean these wetlands are not present 

in other datasets. For that reason the segmentation and classification algorithms focus on the 

presence of surface water while existing datasets, such as the ones listed earlier, are merged into 

the newly created isolated wetland dataset. 

 The NAIP imagery, while already tiled into DOQQs, needed to be further tiled into 3000 

x 3000 (9000 pixel maximum) projects and executed using eCognition Server’s parallel 

processing environment in order to increase processor efficiency. The study area consists of 714 

DOQQs with each being broken into 8 smaller project tiles for a total of 5,712 individual project 

tiles. Each tile is then subjected to iterative segmentations including eCognition’s 

multiresolutional segmentation and spectral difference segmentation. Multiresolutional 
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segmentation has been used in a number of studies and has been found to accurately delineate 

meaningful image objects (Myint et al., 2011; Tian and Chen, 2007; Kressler et al., 2005; Wei et 

al., 2005; Darwish et al., 2003). Furthermore, for this study through trial and error it was shown 

that an efficient way of obtaining further segmentation (i.e. larger, more meaningful image 

primitives), was to utilize the spectral difference segmentation which groups larger objects with 

similar spectral and textural characteristics together. 

The first step in creating a segmentation is assigning scale, compactness, and shape 

which are specified by the user. Scale is generally considered the most important parameter since 

it directly determines the resulting image object scale (Myint et al., 2011). Currently, 

determining the most effective parameter settings within eCognition relies upon a trial and error 

approach on the part of the researcher. For this project the optimal size parameter was 

determined to be 10 with shape and compactness remaining at their defaults which resulted in an 

average image object size of 300 to 500 pixels at the multiresolutional level and 3000 to 8000 at 

the spectral difference level. Figure 3.3 shows the parameters for multiresolutional segmentation 

and how they are set within eCognition’s process tree. 
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Figure 3.3 The parameters for multiresolutional segmentation within eCognition. 

 

In addition to these parameters, eCognition also allows the user to assign weighted values 

to individual image bands. By default each band is given a value of 1 meaning that each band 

holds equal weight in the segmentation process. However, given that water has low reflectance in 

the NIR portion of the electromagnetic radiation spectrum, the corresponding Band 4 was given 

the value of 2 meaning it was assigned a double weight. Each of the iterations of segmentation 

resulted in the new class of image primitives being arranged in a parent/child hierarchy until 

meaningful water body image objects were created. 

 Classification is achieved using spatial and textural logic such as spectral reflectance in 

the NIR band, homogeneity, and asymmetry. These rulesets were developed using a trial-and-

error approach which has become common when using this type of analysis (Myint et al., 2011). 

Open water spectral signature was analyzed by averaging each image object’s value in Band 2 

(Green) and Band 4 (Near Infrared). The average of Band 2 minus the average of Band 4 was 

then divided by the average of Band 2 plus the average of Band 4. 
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[Avg. Band 2] – [Avg. Band 4]  /  [Avg. Band 2] + [Avg. Band 4] 

 Upon visual inspection these attributes were found to very clearly delineate open water 

bodies while eliminating vegetation. A homogeneity rule was employed to identify objects with 

lower variance in pixel values. This meant that objects were “smoother” and were therefore more 

likely to be open water than vegetation. Figure 3.4 below shows the eCognition dialog for 

creating the water candidate class. 

 
Figure 3.4 Shows the rule as setup for  water extraction. 

 

Next, a rule was used for restricting the geometry of objects that could be identified as 

water. This was achieved by using eCognition’s Asymmetry attribute assigned to accept only 

objects between .07 and 0.9. Visual inspection of several areas showed that this interval captured 

most water bodies while eliminating most areas of shadow. Finally, it was noticed that many 

small objects (<0.13 acres) remained which were beyond the accuracy abilities of this ruleset and 

were therefore removed by applying a spatial extent rule to remove all otherwise qualifying 

image objects that contained less than 500 pixels. In figure 3.5 below are examples of wetland 

delineation using eCognition. 
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Figure 3.5 Shows the classification of water (in blue) based on size, shape, and spectral information. 

 

The final class that met all the necessary criteria was auto-exported into subfolders with 

appropriate naming schemes as georeferenced shapefiles. Initial plans were to merge the many 

thousands of shapefiles using an ArcGIS supported Python script to simplify data handling, but it 

was later noticed that the auto-export functionality employed by eCognition installed several 

“dot” characters within the naming scheme. This resulted in errors during the merging process 

due to unique character restrictions within the Arcpy toolbox which had to be corrected by 

collecting the directory names for all the subfolders and parsing them in order to isolate the “dot” 

characters. Using the Microsoft Disk Operating System (MS-DOS) Command Line Interface the 

shapefiles and their associated files (.prj, .dbf, .xml, etc.) were copied and updated with 

underscores which are supported within the toolbox. The resulting files were then able to be 

merged using the toolbox’s arcpy.ListFeatureClasses command to create a listing of each 

shapefile and its associated file. This listing was then merged using the file management tool 

Merge_management with the listing name as a wild card identifier. Figure 3.6 below shows an 

example of the files being batch renamed in MS-DOS. 
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Figure 3.6 Shows an example of the MS-DOS Commands for renaming. 

 

These resulting water polygons were merged with existing hydric soils data as an ESRI 

File Geodatabase. They were then buffered relative to existing datasets of known waterways and 

existing 100 year floodplain data by 40 meters in order to determine geographic isolation in 

accordance with the Tiner methodology (Tiner 2003a). Figure 3.7 below shows an example of 

non-isolated wetlands (in green) falling within the waterway and floodplain buffer causing them 

to be removed leaving only the geographically isolated wetlands (in blue). These resulting areas 

were then analyzed using ArcToolbox’s Cluster and Outlier Tool to identify if any areas 

contained a statistically significant (p >0.05) number of large wetlands. 
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 Figure 3.7 Example showing the areas identified as isolated and 

 non-isolated using GeOBIA 
 

3.3.2 Field Work and Verification 

During the course of this study a retired NRCS State Resource Conservationist (Norton, 

2013) with 35 years of experience was interviewed concerning past wetland mapping projects 

including the National Wetlands Inventory (NWI). Wetland mapping efforts originally consisted 

of expert photo-interpreters manually delineating and classifying wetlands onto analog maps 

(Norton, 2013). This was a particularly tedious process that required each interpreter to devote 

approximately one week to each 7.5 minute USGS quadrangle. The preliminary maps were then 

field verified by federal, state, and local officials, sometimes several times in particularly 
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complex areas, until a final map was created. This process was both labor intensive and time-

consuming which caused the projects to require large amounts of public funds and many years to 

complete. This stands in stark contrast to this study in which significance of the project is 

derived from the ability to automate and batch process large wetland mapping projects. 

For this study the verification process was broken into remote verification and field 

verification. Remote verification was done by randomly selecting one percent of the overall 

wetlands delineated by GeOBIA across the entire study area and manually inspecting the 

imagery for obvious errors. This resulted in 191 areas being investigated and classified as either 

correct or incorrect.  Field verification methods, however, required physical inspection of 

delineated wetlands for accuracy assessment. 

Intermittent field trips to assess accuracy occurred from June 2012 through February 

2013. During these trips maps were produced of areas identified as isolated wetlands by the 

GeOBIA algorithms. Also, certain areas that were either familiar to the author or known to be 

public lands were preferred to limit landowner interaction. The more accessible sites were visited 

in order to maximize the overall number of verifications with 57 sites being visited overall across 

Jackson and Marshall County. Visual inspection was used to determine the validity of the site’s 

classification as a wetland. These site’s GPS locations were then collected with a Topcon WAAS 

corrected DGPS. Figure 3.7 below shows a general location map of the field verification sites 

that were visited from June 2012 through February 2013. Figure 3.1 below shows the GPS 

coordinates and database ID numbers for all of the field verification sites of the study. Each site 

was accuracy assessed based on field maps with the isolated wetland classification overlayed. 

Figures 3.8 and 3.9 below show examples of isolated wetland verification sites. 
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Figure 3.7 Shows the general location of the field verification sites throughout the study area. 
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Figure 3.8 Photo of a wooded verification site in Jackson County, AL 

 

 
Figure 3.9 Photo of an open verification site in Jackson County, AL 
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Database Identification #  Longitude Lattitude 

18845 -86.1810 34.9169 

18880 -86.0823 34.9231 

18869 -86.0690 34.9202 

18853 -86.0789 34.9181 

18840 -86.0740 34.9151 

18859 -86.0874 34.9188 

18814 -86.0830 34.9085 

18797 -86.0873 34.9060 

18688 -86.0844 34.8870 

18634 -86.0817 34.8745 

18528 -86.0972 34.8616 

18539 -86.1031 34.8640 

18608 -86.0986 34.8706 

18483 -86.1027 34.8580 

18482 -86.0985 34.8579 

18467 -86.1018 34.8553 

18419 -86.1081 34.8459 

18389 -86.1107 34.8417 

18395 -86.1149 34.8430 
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18369 -86.1122 34.8385 

18321 -86.1042 34.8289 

18311 -86.1048 34.8277 

18259 -86.1051 34.8204 

18274 -86.0963 34.8220 

18256 -86.0936 34.8201 

18230 -86.0879 34.8163 

18208 -86.0935 34.8140 

18173 -86.0935 34.8140 

18169 -86.0971 34.8097 

17893 -86.1277 34.7864 

17888 -86.1262 34.7866 

17873 -86.1257 34.7857 

17850 -86.1269 34.7838 

17895 -86.1230 34.7871 

17673 -86.1516 34.7728 

17682 -86.1474 34.7736 

17687 -86.1450 34.7742 

17681 -86.1443 34.7728 

18020 -86.0257 34.7951 
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18018 -86.0252 34.7950 

18006 -86.0301 34.7943 

18051 -86.0295 34.7969 

18008 -86.0500 34.7943 

17931 -86.0269 34.7888 

18177 -85.9764 34.8099 

18196 -85.9764 34.8120 

17913 -85.9655 34.7870 

17855 -85.9577 34.7834 

17795 -85.9606 34.7799 

17781 -85.9588 34.7790 

17720 -85.9591 34.7749 

16866 -86.0122 34.6631 

16822 -86.0178 34.6587 

16798 -86.0017 34.6572 

11377 -86.2608 34.5149 

11384 -86.2577 34.5152 

11354 -86.2586 34.5124 

        Table 3.1 Shows the GPS locations of field verification sites that were inspected. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

This thesis seeks to estimate the spatial extent of geographically isolated wetlands within 

the study area. To achieve this, existing wetland datasets were compiled from various sources to 

provide supplemental and historical information for assisting in the development of automated 

rulesets. Next, an automated process of tiling, segmenting, and classifying image objects by 

GeOBIA in eCognition Developer v.8 were coupled with traditional GIS analysis using ArcInfo 

10.1. These analyses include overlay procedures such as buffer and merge as well as descriptive 

statistical analysis. Afterwards, the results of this analysis were assessed for accuracy through 

remote and field verification. A comparison is made between the automated process developed 

here and traditional methods that have been done in the past.   

 

4.2 Identification Using GeOBIA 

An automated GeOBIA process was utilized to identify isolated wetlands in north 

Alabama. This was done by using an eCognition Developer v.8 Customized Import algorithm to 

create individual workspaces for 1°x1° sections of 1-meter resolution imagery from the National 
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Agricultural Imagery Program (NAIP). Within each workspace the algorithm assigned each 

Digital Orthographic Quarter Quad (DOQQ) to an individual project file. Each of those 

individual project files were then partitioned into 3000x3000 pixel tiles resulting in the creation 

of 5,712 project tiles across the entire study area. Each project tile then had a ruleset applied to it 

that is described in more detail in Chapter 3. The resulting classified areas were then merged into 

a single geodatabase and buffered against existing water body and stream data within the 

National Hydrography Dataset (NHD) as well as the Federal Emergency Management Agency’s 

(FEMA) Digital Flood Rate Map (DFIRM) to determine geographic isolation.  Figure 4.1 below 

shows the distribution of results across all of north Alabama with identified isolated wetlands 

shown in yellow. Large groupings of isolated wetlands can be seen in Lawrence and Morgan 

County to the south of the Tennessee River as well as in Jackson County to the west of the 

Tennessee River/Lake Guntersville. This large number of wetlands in Lawrence and Morgan 

County are just to the north of the Tennessee River Divide which prevents surface runoff from 

flowing to the south. Also the large groupings of isolated wetlands in Jackson County lie 

between Lake Guntersville and the southern Appalachian Mountain Range. 

Maps below show identified isolated wetlands in yellow for each of the 17 north 

Alabama counties. Included in the county figures are statistics for the number of isolated 

wetlands, the range in size of the wetlands, the total area, the average area, and the standard 

deviation of the areas. It should be noted that remotely sensed wetlands were bounded at a 

minimum size of .13 acres, however the hydric soils dataset contained smaller delineations 

therefore some minimums were below the bounded limit. 
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              Figure 4.1 An overview of identified geographically isolated wetlands 
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4.3 Statistical Summary 

 The results across the entire study area are shown below in Table 4.1 with the minimum, 

maximum, average, and total extent of wetlands identified as geographically isolated. Table 4.2 

shows these figures for each county as well as overall number and standard deviation of areas 

identified as geographically isolated wetlands.  

 

Min. Extent 0.0286 acres 

Max. Extent 463.02 acres 

Avg. Extent 1.859 acres 

SUM 49,139.5 acres 

Table 4.1 Shows largest, smallest, and average size as well as the sum of all areas identified as isolated 
wetlands. 

 

 

County Count: Minimum: Maximum: Sum: Mean: Standard 
Deviation: 

Blount 876.000 0.107 35.840 853.365 0.974 1.898 

Cherokee 355.000 0.124 37.618 346.281 0.975 2.404 

Colbert 755.000 0.124 70.071 1053.014 1.395 4.528 

Cullman 4402.000 0.000 37.714 5125.008 1.164 1.988 

DeKalb 2469.000 0.029 40.584 3421.825 1.386 2.199 

Etowah 594.000 0.124 54.383 558.029 0.939 2.523 

Franklin 1225.000 0.114 97.653 1937.470 1.582 4.597 

Jackson 1792.000 0.124 224.339 3679.940 2.054 7.139 

Lamar 30.000 0.131 5.238 17.444 0.581 1.036 
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Lauderdale 936.000 0.124 39.366 1550.282 1.656 3.451 

Lawrence 2824.000 0.069 463.026 12667.116 4.486 14.143 

Limestone 1000.000 0.111 72.135 2697.934 2.698 5.438 

Madison 2003.000 0.076 90.291 4752.240 2.373 5.312 

Marion 1022.000 0.116 17.622 919.528 0.900 1.256 

Marshall 2091.000 0.104 47.450 2418.779 1.157 2.081 

Morgan 3408.000 0.085 65.406 6857.920 2.012 4.379 

Winston 679.000 0.124 14.372 485.271 0.715 1.081 

       
Table 4.2 Statistical analysis for each north Alabama County’s identified isolated wetlands. 

 

4.4 Cluster Analysis 

An analysis was run on the final results in order to determine if there were any spatial 

patterns to the distribution of geographically isolated wetlands. Upon inspection it was noticed 

that there were portions of the study area that appeared to contain a higher number of large 

wetlands than others. A cluster analysis was performed across the entire study area to determine 

if these areas were larger by a statistically significant amount.  Figure 4.2 below shows the 

spatial distribution of areas with larger than average isolated wetland polygons as determined by 

the Cluster and Outlier Analysis Tool in ArcGIS. In Figure 4.2 these areas are marked as 

“cluster”. These areas mostly include Lawrence, Limestone, Morgan, Madison, and Jackson 

County. 
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Figure 4.2 Shows the cluster analysis for isolated wetlands based on acreage. 

 

 

4.5 Accuracy Assessment of Randomly Selected Polygons through Manual Inspection 

 Accuracy was assessed for geographically isolated wetlands delineated using GeOBIA by 

manually inspecting 191 randomly selected polygons within the dataset. Polygons were 

randomly selected using the National Park Service’s Alaskapak v.3.0 for ArcGIS 10.x random 

number selection tool (NPS, 2013). Accuracy was determined using visual inspection NAIP 

Imagery and each polygon was assigned either a status of correct or incorrect. Table 4.3 below 

shows the full results of this analysis. Because SSURGO soils data are delineated using methods 

that are not dependent on remote sensing and the NAIP imagery, all hydric soils polygons were 
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removed prior to random polygon generation. This reduced the number of polygons from 26,400 

to 19,198 of which 1% were inspected for accuracy or 191 total inspection polygons. Figure 4.3 

shows the locations of the 191 randomly selected polygons used for accuracy assessment.  

 
Figure 4.3 A location map for the visual inspection sites 

 
 
 
 

Accuracy_ID Database_ID Acres Status 

0 127 1.912341 CORRECT 

1 151 1.74085 CORRECT 

2 188 0.261684 CORRECT 

3 197 0.708201 CORRECT 

4 202 1.019059 CORRECT 

5 205 1.416649 CORRECT 
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6 205 1.416649 CORRECT 

7 354 0.406981 CORRECT 

8 442 0.334579 CORRECT 

9 496 0.532757 CORRECT 

10 555 0.601205 CORRECT 

11 619 0.309869 INCORRECT 

12 657 0.252294 CORRECT 

13 659 0.281946 CORRECT 

14 682 0.134425 CORRECT 

15 740 0.605406 CORRECT 

16 754 0.854487 CORRECT 

17 774 0.870549 CORRECT 

18 785 0.347923 CORRECT 

19 796 0.77146 INCORRECT 

20 826 0.258471 CORRECT 

21 861 0.628881 CORRECT 

22 907 0.145792 CORRECT 

23 922 0.350888 INCORRECT 

24 1032 0.18607 CORRECT 

25 1123 0.247104 CORRECT 

26 1176 0.704 CORRECT 

27 1254 0.135413 INCORRECT 

28 1302 0.1621 INCORRECT 

29 1609 0.373869 CORRECT 

30 1861 0.539676 CORRECT 
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31 1894 0.475182 CORRECT 

32 1922 0.153699 CORRECT 

33 1956 2.938813 CORRECT 

34 2123 0.232525 CORRECT 

35 2285 0.871784 CORRECT 

36 2381 1.124819 CORRECT 

37 2386 1.878735 CORRECT 

38 2468 1.598765 CORRECT 

39 2498 0.22956 CORRECT 

40 2623 0.495444 CORRECT 

41 2692 0.372139 CORRECT 

42 2699 0.439105 CORRECT 

43 2704 2.800434 CORRECT 

44 2804 0.730688 CORRECT 

45 3505 0.138378 CORRECT 

46 3566 0.162348 INCORRECT 

47 3681 0.261189 CORRECT 

48 3740 4.040898 CORRECT 

49 3748 0.219923 INCORRECT 

50 4041 0.24488 CORRECT 

51 4199 0.296278 CORRECT 

52 4312 0.222641 CORRECT 

53 4475 0.689668 CORRECT 

54 4607 0.164819 CORRECT 

55 4782 0.358796 CORRECT 
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56 4963 0.171985 CORRECT 

57 4993 5.00164 CORRECT 

58 5056 1.157684 CORRECT 

59 5153 1.752217 CORRECT 

60 5180 1.11963 CORRECT 

61 5282 0.154687 CORRECT 

62 5286 0.418101 CORRECT 

63 5446 1.568619 CORRECT 

64 5774 0.344464 CORRECT 

65 5795 0.639012 CORRECT 

66 5815 0.176927 CORRECT 

67 5829 0.170749 CORRECT 

68 5870 0.36695 CORRECT 

69 5897 0.146533 CORRECT 

70 6102 0.149251 CORRECT 

71 6185 0.149498 INCORRECT 

72 6186 1.976094 CORRECT 

73 6299 0.600711 CORRECT 

74 6376 1.0198 CORRECT 

75 6398 0.744031 CORRECT 

76 6611 0.828294 CORRECT 

77 6689 1.005221 CORRECT 

78 6705 1.831044 CORRECT 

79 6745 1.734179 CORRECT 

80 6758 0.830765 CORRECT 
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81 6796 0.143815 INCORRECT 

82 7036 0.650626 CORRECT 

83 7073 0.456896 CORRECT 

84 7125 0.652108 CORRECT 

85 7184 1.996851 CORRECT 

86 7305 0.129977 INCORRECT 

87 7410 0.174456 CORRECT 

88 7569 0.356077 CORRECT 

89 7681 26.522209 CORRECT 

90 7732 0.545606 CORRECT 

91 7826 0.137637 CORRECT 

92 7846 0.815444 CORRECT 

93 7892 0.673607 INCORRECT 

94 7898 0.642719 CORRECT 

95 7980 0.455908 CORRECT 

96 8105 0.124294 CORRECT 

97 8249 0.386224 CORRECT 

98 8337 0.310363 CORRECT 

99 8346 0.177174 CORRECT 

100 8449 0.633823 INCORRECT 

101 8488 1.226132 CORRECT 

102 8644 0.411429 CORRECT 

103 8707 0.291089 CORRECT 

104 9197 0.452942 INCORRECT 

105 9210 0.386224 CORRECT 
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106 9216 0.191506 CORRECT 

107 9599 0.344464 CORRECT 

108 9603 0.228819 CORRECT 

109 9628 0.169019 CORRECT 

110 9688 0.343475 CORRECT 

111 9881 0.30888 CORRECT 

112 10020 1.000279 CORRECT 

113 10035 0.425761 CORRECT 

114 10104 0.926641 CORRECT 

115 10131 0.550796 CORRECT 

116 10300 0.214981 CORRECT 

117 10343 0.311599 CORRECT 

118 10350 3.094983 INCORRECT 

119 10416 0.770719 CORRECT 

120 10490 0.178409 CORRECT 

121 10520 0.388942 CORRECT 

122 11366 0.136155 CORRECT 

123 11422 0.154687 INCORRECT 

124 11490 0.591815 CORRECT 

125 11623 0.131954 CORRECT 

126 11915 0.949375 CORRECT 

127 11942 0.659027 CORRECT 

128 11980 0.124294 INCORRECT 

129 12132 0.606641 CORRECT 

130 12535 0.63407 CORRECT 
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131 12622 0.144803 INCORRECT 

132 12829 0.714626 CORRECT 

133 12865 0.162842 INCORRECT 

134 12915 2.644758 CORRECT 

135 12936 0.224124 CORRECT 

136 12971 0.426996 CORRECT 

137 12987 0.153946 INCORRECT 

138 13062 0.488525 INCORRECT 

139 13401 0.9899 CORRECT 

140 13533 2.126333 INCORRECT 

141 13543 0.445282 CORRECT 

142 13717 1.223167 CORRECT 

143 14151 0.160618 CORRECT 

144 14331 1.214518 CORRECT 

145 14442 0.5078 CORRECT 

146 14454 0.306657 CORRECT 

147 14475 0.68102 CORRECT 

148 14509 0.68868 CORRECT 

149 14544 0.258718 CORRECT 

150 14679 0.236973 CORRECT 

151 14771 0.232278 CORRECT 

152 14785 0.556726 CORRECT 

153 14793 0.156664 INCORRECT 

154 14812 0.554749 CORRECT 

155 15018 0.420325 CORRECT 
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156 15061 0.182116 CORRECT 

157 15090 0.809514 INCORRECT 

158 15099 0.500881 CORRECT 

159 15587 0.293313 CORRECT 

160 15595 0.198425 INCORRECT 

161 15634 1.512773 CORRECT 

162 15691 0.149004 CORRECT 

163 15699 0.159877 CORRECT 

164 15784 0.166054 CORRECT 

165 15802 0.375104 CORRECT 

166 15994 0.307151 CORRECT 

167 16108 2.467832 CORRECT 

168 16186 0.247846 CORRECT 

169 16205 0.717838 CORRECT 

170 16213 0.356077 CORRECT 

171 16436 0.202378 CORRECT 

172 16446 0.330379 CORRECT 

173 16552 0.125282 INCORRECT 

174 16653 0.12973 CORRECT 

175 16657 0.212016 CORRECT 

176 16904 0.142332 INCORRECT 

177 17081 0.140108 CORRECT 

178 17140 0.161359 CORRECT 

179 17239 0.74502 CORRECT 

180 17347 0.131212 CORRECT 
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181 17716 0.95407 CORRECT 

182 17718 0.168772 INCORRECT 

183 17728 0.253035 INCORRECT 

184 17754 0.141838 INCORRECT 

185 17957 0.490255 INCORRECT 

186 18136 0.347182 CORRECT 

187 18412 0.158147 CORRECT 

188 18736 0.589591 CORRECT 

189 18914 0.134672 INCORRECT 

190 18997 1.546874 CORRECT 

191 19032 0.872031 CORRECT 
Table 4.3 The results of the accuracy assessment using manual inspection 

  

Accuracy assessment reveals that of the 191 polygons that were visually inspected, 160 

were correct or an overall accuracy of 83.77%. Incorrectly identified areas consisted mostly of 

rooftops, pavement, and shadows. It should be noted that the time required identifying any 

obviously incorrect areas the way it was performed here was significantly less than the time 

required to manually delineate correct areas from the imagery. This could perhaps be 

incorporated into a functional workflow for correcting remotely identified areas using GeOBIA 

in which the process while not yet fully automated would still require significantly less time than 

manual interpretation. Field verification was also used due to the fact that this study was 

incorporated with another, larger study being funded by the Environmental Protection Agency 

(EPA) which as part of their standards for quality control requires field verification for accuracy 

assessment. 
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4.6 Accuracy Assessment of GeOBIA Classification via Field Verification 

 Field verification for areas digitized as isolated wetlands was conducted to determine 

accuracy of classification. In total there were 57 verification sites located in Jackson and 

Marshall County. This particular area was chosen because of the researcher’s familiarity with the 

area and access to private and public lands. Field maps were prepared for areas containing 

identified isolated wetlands and were used during verification. Areas on the maps were assigned 

check marks when verified as correct or incorrect and entered into a spreadsheet afterwards as 

well as the areas latitude and longitude coordinates. Accuracy was determined by evaluating 

correctly classified sites with respect to the total number of classified polygons. Table 4.4 shows 

the database identification number, geographic coordinates, and verification status of all 57 sites. 

Figure 4.4 shows an example of identified isolated wetlands and Figure 4.5 shows an example of 

areas identified as geographically isolated. 

 

Database ID Longitude Latitude Status 

18845 -86.1810 34.9169 Correct 

18880 -86.0823 34.9231 Correct 

18869 -86.0690 34.9202 Correct 

18853 -86.0789 34.9181 Correct 

18840 -86.0740 34.9151 Correct 

18859 -86.0874 34.9188 Correct 

18814 -86.0830 34.9085 Correct 

18797 -86.0873 34.9060 Correct 
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18688 -86.0844 34.8870 Correct 

18634 -86.0817 34.8745 Correct 

18528 -86.0972 34.8616 Correct 

18539 -86.1031 34.8640 Correct 

18608 -86.0986 34.8706 Correct 

18483 -86.1027 34.8580 Correct 

18482 -86.0985 34.8579 Correct 

18467 -86.1018 34.8553 Correct 

18419 -86.1081 34.8459 Correct 

18389 -86.1107 34.8417 Correct 

18395 -86.1149 34.8430 Correct 

18369 -86.1122 34.8385 Correct 

18321 -86.1042 34.8289 Correct 

18311 -86.1048 34.8277 Correct 

18259 -86.1051 34.8204 Correct 

18274 -86.0963 34.8220 Correct 

18256 -86.0936 34.8201 Correct 

18230 -86.0879 34.8163 Correct 

18208 -86.0935 34.8140 Correct 

18173 -86.0935 34.8140 Correct 

18169 -86.0971 34.8097 Incorrect

17893 -86.1277 34.7864 Correct 

17888 -86.1262 34.7866 Correct 
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17873 -86.1257 34.7857 Correct 

17850 -86.1269 34.7838 Correct 

17895 -86.1230 34.7871 Incorrect

17673 -86.1516 34.7728 Correct 

17682 -86.1474 34.7736 Correct 

17687 -86.1450 34.7742 Incorrect

17681 -86.1443 34.7728 Correct 

18020 -86.0257 34.7951 Correct 

18018 -86.0252 34.7950 Correct 

18006 -86.0301 34.7943 Correct 

18051 -86.0295 34.7969 Correct 

18008 -86.0500 34.7943 Correct 

17931 -86.0269 34.7888 Correct 

18177 -85.9764 34.8099 Correct 

18196 -85.9764 34.8120 Correct 

17913 -85.9655 34.7870 Correct 

17855 -85.9577 34.7834 Correct 

17795 -85.9606 34.7799 Correct 

17781 -85.9588 34.7790 Correct 

17720 -85.9591 34.7749 Correct 

16866 -86.0122 34.6631 Incorrect

16822 -86.0178 34.6587 Incorrect

16798 -86.0017 34.6572 Incorrect
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11377 -86.2608 34.5149 Correct 

11384 -86.2577 34.5152 Incorrect

11354 -86.2586 34.5124 Correct 

Table 4.4 GPS coordinates of the field verification sites with verification status 
 

 
Figure 4.4 Areas classified as isolated wetlands by GeOBIA and hydric soil data 

 

These results show that of the 57 verification sites 50 were confirmed as wetlands which 

yield an overall accuracy of 87.7%. These errors are of commission rather than omission where 

those mapped as isolated wetlands were revealed to be incorrect. This study makes no attempt to 

discern accuracy with respect to errors of omission. The sites revealed as incorrect were mixed 

between incorrectly classified rooftops, asphalt, and shadows as well as incomplete wetland 

polygons.  
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Figure 4.5 Shows an example of a correct and incorrect verification site 

 

4.7 GeOBIA vs. Traditional NWI Methods 

 The most distinct difference between traditional wetland mapping and GeOBIA is the 

expandability and automation that GeOBIA can potentially provide. During the course of this 

project an area of approximately 12,000 square miles (750,000 acres) was evaluated which 

required an active processing time of 60 hours. By comparison it required a single photo-

interpreter a full 40 hour workweek to evaluate a single USGS 7.5 minute orthoquad for the 
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creation of the National Wetlands Inventory (NWI) (Norton, 2013). Extrapolating these figures 

for further comparison it could be said that in order to obtain the detail of this study, which 

admittedly lacks the Cowardin classification complexity of the NWI, GeOBIA outperformed 

traditional wetland analysis by a 99.26% reduction in analysis time required. While this figure 

does not include time required for pre-processing, post-processing, and ruleset development it 

still demonstrates the potential of large reductions in time required to complete wetland mapping 

projects. This type of reduction in time and manpower required would also significantly reduce 

the financial requirements of large wetland mapping projects from tens of millions of dollars 

(NWI) to possibly as low as only a few hundred thousand dollars for a study area of the same 

size.  

 
4.8 Results 

 The total number of areas identified as geographically isolated wetlands within the study 

area was 26,461 with an average extent of 1.859 acres. There was a total wetland area of 

49,139.5 acres identified as geographically isolated with the largest single area consisting of 463 

acres and the smallest consisting of .028 acres. Lawrence County had the largest average wetland 

size at 4.48 acres per wetland and Lamar County had the smallest average wetland size at .58 

acres per wetland. While there were over twenty six thousand areas identified in the study the 

entire area comprises less than 1% of the total overall area of the 17 north Alabama counties 

studied. Of the 26,461 areas identified as geographically isolated wetlands 19,191 were 

identified by GeOBIA and 7,270 were previously delineated areas of hydric soils or 73 percent to 

27 percent respectively.  
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 The cluster analysis shows that the areas that lie north of the Tennessee River Divide and 

west of the Appalachian Mountains contained a statistically significant (p >.05) number of large 

wetlands compared with the rest of the study area. These areas where mostly comprised of 

Lawrence and Morgan County either just south of the Tennessee River or just north of the 

Bankhead National Forest. Another area that appears to contain a statistically significant cluster 

of large wetlands was in Jackson County to the west of the Tennessee River/Guntersville Lake. 

These results suggest that the proximity of large water bodies to mountain ranges has an impact 

on the average size of geographically isolated wetlands.  
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

5.1 Summary 

 Prior to the SWANNC (‘01) and Rapanos (‘06) decisions, isolated wetlands fell under the 

same regulatory jurisdictions as all other, more traditional wetlands within the United States. 

After these decisions though, there has been an increased interest in isolated wetlands due to 

their possible loss of federal regulatory protection. According to previous studies, isolated 

wetlands serve a vital role in the formation and maintenance of unique and highly variable 

ecosystems as well as water quality control for larger waterbodies located downstream 

(Leibowitz, 2003; Naugle et al., 2000; King, 1998; Robinson, 1995; Gibbs, 1993; Bennett and 

Nelson, 1991; Ludden, 1983; Moore and Larson, 1979). One study has shown that isolated 

wetlands have the potential to represent over 50 percent of the number of an area’s wetlands and 

between 30 to 50 percent of an area’s total wetland extent. However, there still remain no 

national estimates for isolated wetlands (Tiner, 2003a). 

 One of the main objectives of this thesis is to estimate the total number and spatial extent 

of geographically isolated wetlands in north Alabama. To accomplish this over a large study 

area, mapping efforts required the construction of automated Geographic Object Based Image 

Analysis (GeOBIA) algorithms which utilize image segmentation and classification in 
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conjunction with traditional remote sensing techniques. The imagery used in this thesis was 

collected and prepared by the National Agricultural Imagery Program (NAIP) during the summer 

of 2011. This imagery acquisition program is funded by the United States Department of 

Agriculture’s (USDA) Farm Service Agency (FSA) through the Aerial Photography Field Office 

(APFO) and is made available to the general public at no additional cost. This particular imagery 

dataset contained four spectral bands (Blue, Green, Red, Near-Infrared) at a spatial resolution of 

1-meter (USDA, 2011). The NAIP imagery is received in a tiled file directory according to the 

United States Geological Survey (USGS) 7.5 minute topographic quadrangle grid system with 

each individual image corresponding to one quarter quadrangle or 3.75x3.75 minute with a 300 

meter buffer on all sides. Each tile is projected in the Universal Transverse Mercator (UTM) 

coordinate system using the North American Datum (NAD) of 1983. 

 The NAIP imagery was imported into eCognition v.8 using a customized algorithm 

designed to assign each image an individual project folder and naming scheme which resulted in 

714 files. The resulting files were then tiled further into arbitrary 3000x3000 pixel sub-tiles in 

order to increase computer processor efficiency upon batch processing which resulted in 5,712 

individual project tiles. These project tiles were then iteratively segmented, classified, and 

exported using a customized automated algorithm and eCognition Server’s batch processing 

functionality. The resulting dataset was merged with existing hydric soils data using the 

ArcToolbox to create the isolated wetlands layer. 

 The soils data used in this mapping study were from the Soil Survey Geographic Dataset 

(SSURGO) obtained from the Natural Resource Conservation Service’s (NRCS) National 

Geospatial Management Center (NGMC) and made available through the United States 

Department of Agriculture’s (USDA) Geospatial Data Gateway (USDA, 2013). Specifically, the 
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investigation used the all hydric soils data layer which delineates soils that are wet enough to 

develop anaerobic conditions during the growing season. 

 In order to determine geographic isolation these datasets were buffered against existing 

datasets delineating traditional waters and streams as well as commonly accepted floodplains. 

The National Hydrography Dataset (NHD) is funded and distributed by the United States 

Geological Survey (USGS) and contains vector data for surface water features such as rivers, 

streams, and lakes. These data were merged with the Federal Emergency Management Agency’s 

(FEMA) Digital Flood Rate Insurance Map (DFIRM) which delineates the Special Flood Hazard 

Areas (SFHA). The SFHAs are areas which have a one percent chance of inundation from 

floodwaters on any given year and are commonly known as the one hundred year floodplain. The 

two datasets together are buffered to a distance of 40 meters in accordance with the Tiner 

methodology and any identified wetlands that fall within or intersect this buffer are delineated as 

non-isolated wetlands and removed from the dataset. Remote accuracy assessment was 

conducted on one percent of the total number of areas identified as geographically isolated by 

GeOBIA. Of the 191 areas that were inspected, 160 were identified as correct or an overall 

accuracy of 83.77%.  Field verification of this mapping effort was conducted during the fall and 

spring of 2012-2013. Overall assessments of the 57 sites visited showed there to be an accuracy 

of 87 percent with errors of commission coming through mislabeled pavement, rooftops, and 

shadows. For practical purposes, these errors can be removed through a manual process that 

would be much more efficient than having to use the traditional digitizing methods.  
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5.2 Research Question Conclusions 

1. How are isolated wetlands defined for mapping utilizing Geographic Information 

Systems? 

 For this study isolated wetlands needed to be defined within quantifiable parameters for 

use within a Geographic Information System (GIS). This type of definition could then be used to 

extract information from within the database for classification and analysis. Geographic isolation 

was therefore chosen rather than definitions based on more complex parameters such as 

hydrological connectivity. This was done because while hydrological connectivity is important in 

explaining the creation and ecological function of wetlands it is not as easily observed as 

geographic isolation and is not workable with our current GIS software and computer hardware. 

 In this study the definition of geographic isolation was based on the methodology used by 

Tiner, namely the narrowest interpretation of wetlands used in that study where wetlands that 

were greater than 40 meters from a non-isolated waterbody were considered geographically 

isolated (Tiner, 2003a).  Merging the surface water features that were present within the NHD 

dataset with the Special Flood Hazard Areas within the DFIRM produced the best available data 

layer that would then be used as non-isolated waterbodies within the study area. This was 

accomplished with the overlay and analysis tools within ArcToolbox, specifically the Merge, 

Union, and Dissolve tools for overlay and the Buffer tool for analysis. The non-isolated 

waterbodies data was then used to remove the features that fell within or intersected them. The 

remaining wetlands would then be considered geographically isolated. 
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2. Can we effectively map potential locations of isolated wetlands using Geographic 

Object Based Image Analysis? 

 Wetlands have traditionally been mapped using expert visual interpreters that inspect 

individual aerial photographs and delineate and classify wetlands either by hand or through 

heads-up digitizing. According to the gestalt principles, the human mind accomplishes this by 

using the visual cortex as a holistic and self organizing center of the brain that extracts 

information and features from imagery by interpreting the image as a whole rather than breaking 

it into parts (Lang, 2008). The use of automated GeOBIA is an attempt at mimicking this process 

by clustering pixels, which individually reflect only spectral reflectance, into more meaningful 

image objects. Given enough time and research perhaps GeOBIA will approach the accuracy of 

the human visual cortex while vastly increasing productivity over human interpreters. This study 

was able to achieve an overall accuracy ranging from 83 to 88 percent over an area of 13,000 

square miles utilizing automated batch-processing algorithms. 

 

3. What are the key distinctions of isolated wetlands and can this be used to help 

determine factors important in the development of rulesets? 

 The distinctions of isolated wetlands used in these algorithms were developed via trial 

and error as is common in GeOBIA. For this study the rulesets for segmentation were primarily 

focused on the spectral reflectance within the 4-band NAIP imagery with the rulesets for 

classification focusing on a combination of spectral reflectance and the size, shape, and texture 

of the subsequently created image objects. Initial segmentation utilized the multiresolutional 

algorithm with emphasis placed on Band-4 (Near-Infrared) due to water’s particularly low 
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reflectance at this wavelength. A subsequent segmentation utilizing the spectral difference 

algorithm joined image primitives that shared similar textual characteristics and this step 

provided a substantial decrease in processing time required. Through trial and error it was shown 

that using both of these, consistently created the most meaningful objects that the classification 

rulesets could use. For classification, spectral reflectance was utilized by establishing a ratio of 

Band-2 (Green) to Band-4 (Near-Infrared) {[Avg. Band-2]-[Avg. Band-4]} / {[Avg. Band-

2]+[Avg. Band-4]}. Also, shape and extent of image objects proved useful for classification with 

constraints on object asymmetry being applied first and constraints on minimum image object 

size being used second.  

 

4. What data are most useful in developing models to aid in identifying and mapping 

isolated wetlands? 

 For this study the primary dataset was the 1-meter, 4-band NAIP imagery provided by the 

USDA. Within this dataset Band-4 (Near-Infrared) proved to be the most useful at identifying 

isolated wetlands due to water’s low reflectance at this wavelength. Also useful was Band-2 

(Green) because the ratio of this band to the near-infrared band was very useful at identifying 

wetland features. Other ancillary datasets were used beyond the primary imagery dataset for 

both, identification of wetlands as well as assisting in establishing geographic isolation. The 

hydric soils layer of the SSURGO soils dataset contains all the known hydric soils within the 

study area. This data proved useful because hydric soils are a very strong indicator of the 

presence of wetlands (NRCS, 2010).  
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 For determining geographic isolation the National Hydrography Dataset (NHD) was used 

because it held the extent of the known rivers, streams, and lakes within the study area. This 

dataset appears comprehensive upon inspection, however, the extents of theses waterbodies 

floodplains were not contained within this dataset. To contribute to an accurate description of 

geographic isolation the Special Flood Hazard Areas (SFHA), also known as the 100 year 

floodplain, within the Federal Emergency Management Agency’s (FEMA) Digital Flood Rate 

Insurance Map were used. This floodplain data were merged with the NHD data to create a 

comprehensive database that depicts the known extent of traditional waterways. This dataset was 

then buffered at a distance of 40 meters and all identified wetlands that fell within or intersected 

this area were removed from the isolated wetland dataset. 

 

5. Are there any spatial patterns of isolated wetlands within the study area? 

 Those areas identified as isolated wetlands were analyzed using the Cluster and Outlier 

Analysis Tool in the ArcToolbox. This tool was configured to identify areas within the study 

area that had an unusually high number of large wetlands (in acres). Results showed that 634 

isolated wetlands were within statistically significant clusters, in this case statistical significance 

was determined to be a p-value of .05 or higher, spread mostly across the 5 counties of 

Lawrence, Limestone, Madison, Morgan, and Jackson. Upon inspection it was noticed that these 

areas tended to follow the Tennessee River, the largest river in the study area. The likely 

explanation for this is due to the higher presence of open water and hydric soils that surround the 

river increased the likelihood that some of these areas would fall outside of the floodplain and its 

40 meter buffer. Most of these areas fall within the Moulton Valley where the Tennessee Valley 
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Divide is directly south and prevents surface water from flowing as freely creating more hydric 

soils. The areas within Jackson County may be attributed to being bounded to the north by the 

Appalachian Mountains that also causes a larger number of open waters and hydric soils. 

 

6. What is the spatial extent of isolated wetlands within the study area? 

 The total spatial extent of land within the study area that was identified as geographically 

isolated using GeOBIA and traditional GIS analysis is estimated to be 49,139.5 acres. The 

smallest isolated wetland that was identified was .028 acres and the largest was 463 acres. The 

average size of areas identified as geographically isolated wetlands was 1.859 acres. 

 

7. How much time is saved utilizing automated methods verses traditional 

photointerpretation methods? 

 According to those familiar with past wetland mapping projects relying solely on human 

photo interpretation an experienced interpreter would only be able to complete a single 7.5 

minute orthoquad per 40 hour work week (Norton, 2013). At that rate in order to examine the 

same area as this study would require 7,120 hours or almost three and a half years for a single 

interpreter. By comparison, using the automated algorithms and through the batch-processing 

available within eCognition Server the entire study area within this thesis required only 60 hours 

of active processing time or 99.26% less time than visual interpretation. 
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5.3 Importance of Study and Future Work 

 This study examined the feasibility of mapping isolated wetlands using automated remote 

sensing techniques. Traditionally, wetland mapping projects have used manual 

photointerpretation by wetlands experts who were only capable of examining a finite area in a 

given amount of time. These limitations meant that large wetland mapping projects required very 

large budgets and years to complete. This also meant that the routine updating of these manually-

created datasets was not economically feasible.  Mapping wetlands, and anything else for that 

matter, using automation such as GeOBIA offers the possibility of updating existing wetland 

datasets as new imagery becomes available and that the speed in which this can be accomplished 

is limited only by the ever expanding processer capabilities of the modern computer. For this 

project the amount of time required to complete delineation of isolated wetlands was reduced by 

approximately 99.2% over that of traditional photointerpretation. Though the overall accuracy 

was lower than that of traditional wetland maps it could still be possible to correct obvious errors 

using manual inspection while maintaining a marked improvement of efficiency. Also, given that 

many of the errors identified in the dataset were building rooftops if statewide availability of 

airborne LiDAR were to become available many of those errors could be easily avoided. Future 

studies should examine these potentials and develop appropriate workflows to accommodate 

these advances. 
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