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Abstract

Here we give a definition of infinite connected sum of tame knots and define a C-wild

knot to be an infinite connected sum of tame knots whose wild points form a Cantor set.

We further give a classification of C-wild knots in terms of Wilder knots, which are infinite

connected sums of tame knots with one wild point.
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Chapter 1

Introduction

In [5], Fox and Harrold gave a complete classification of the Wilder arcs, which were

first considered by R.L. Wilder. A Wilder knot is a wild knot with exactly one wild point

and can be thought as obtained by identifying the end points of a Wilder arc. Here we

consider Wilder knots as an infinite connected sum of tame knots, and show that if doing

infinite connected sum in a different way, we can get a wild knot whose wild points form a

Cantor set. We call such wild knots C-wild knots and give a classification of these knots in

terms of Wilder knots.

In chapter 2, we presented the preliminaries. Starting from section 2.6, all knots are

assumed to be oriented and in oriented S3. In chapter 3, we generalized the concept of

connected sum of knots, and infinite connected sum of knots is defined. In chapter 4,

we defined Wilder connected sum of knots, a specific way of doing infinite connected sum,

considered Wilder Knots as the Wilder connected sum of tame knots, and gave a classification

of Wilder knots. In chapter 5, we defined a C-wild knot to be an infinite connected sum

of tame knots whose wild points form a Cantor set. Earlier than this, we defined Cantor

connected sum of knots, another way of doing infinite connected sum. We showed that every

C-wild knot can be obtained by doing Cantor connected sum of tame knots, and gave a

classification of C-wild knots based on this.
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Chapter 2

Preliminaries

Definition 2.0.1. Rn = {x = (x1, ..., xn)} = the Euclidean space of real n-tuples with the

usual norm |x| = (
∑

xi
2)1/2 and metric d(x, y) = |x− y|.

Bn = the unit n-ball of Rn defined by |x| ≤ 1.

Sn = ∂Bn+1, the unit n-sphere |x| = 1.

I = [0, 1] the unit interval of R1.

2.1 Orientation

Definition 2.1.1. A closed (compact, without boundary)connected n-manifold M is ori-

entable if its nth singular homology group with Z coefficients Hn(M) = Z. If the connected

compact manifold M has nonempty boundary, it is orientable if Hn(M,∂M) = Z. A choice

of one of the two possible generators of Hn(M) resp. Hn(M,∂M) is called an orientation,

and an orientable manifold together with such a choice is said to be an oriented manifold.

Lemma 2.1.2. By restriction any submanifold N (n-dimensional with boundary) of an ori-

ented n-manifold M is oriented. Furthermore, the boundary ∂N of an oriented n-manifold N

is oriented by choosing the (n-1)-cycle which is the boundary of the preferred relative n-cycle.

Definition 2.1.3. Let M , N be oriented n-manifolds. A homeomorphism f : Mn → Nn is

said to preserve or reverse orientation, according as the induced homomorphism on the

n-th homology carries the preferred generator for M to the preferred generator for N , or to

its negative.

Lemma 2.1.4. Let M , N be oriented n-manifolds with boundary. Then any homeomor-

phism from M to N that is an extension of an orientation-preserving (orientation-reversing)
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homeomorphism from a component of the boundary of M to a component of the boundary of

N is orientation-preserving (orientation-reversing).

Lemma 2.1.5. Hn(S
n) = Z; Hn(B

n, ∂Bn) = Z, for n ≥ 1.

2.2 Triangulation

Definition 2.2.1. A (Euclidean) complex is a collection K of simplexes in Rn, such that

(1). K contains all faces of all elements of K. (2)If σ, τ ∈ K, and σ
∩

τ ̸= ∅, then σ
∩
τ

is a face both of σ and of τ . (3)Every σ in K lies in an open set U which intersects only a

finite number of elements of K.

Definition 2.2.2. Let K be a complex. A subset X of |K| is a polyhedron if there is a

subdivision K ′ of K and X = |S| for some subcomplex S of K ′.

Definition 2.2.3. A set X is triangulable if there is a complex K such that X and |K|

are homeomorphic. K is called a triangulation of X.

Definition 2.2.4. For n ≤ 3, a piecewise linear manifold or PL manifold is an n-

manifold M with a fixed triangulation. Let K be a fixed triangulation of M , then PL M is

|K|.

The following theorems are due to E.E.Moise, see [9] for proofs.

Theorem 2.2.5. Every triangulated 3-manifold is a combinatorial 3-manifold.

Theorem 2.2.6 (The triangulation theorem for 3-manifolds). Every 3-manifold can be tri-

angulated.

Theorem 2.2.7 (The Hauptvermutung for 3-manifolds). Let K1 and K2 be triangulations

of a 3-manifold M . Then there is a subdivision K ′
i of Ki for i = 1, 2 and a simplicial

homeomorphism ϕ : |K ′
1| → |K ′

2|.
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2.3 Knot

Definition 2.3.1. A subset K of S3 is a knot if K is homeomorphic with S1; a subset A

of S3 is an arc if it is homeomorphic with the unit interval [0, 1].

Definition 2.3.2. Two oriented knots K and K ′ of oriented S3 are equivalent if there is

an orientation-preserving homeomorphism of S3 onto itself that takes K onto K ′ preserving

the orientation.

Remark 2.3.3. Depending on the context, by a knot we may also mean an equivalence class

of knots.

Definition 2.3.4. A unknot,or trivial knot is a knot equivalent to S1.

Definition 2.3.5. A polygonal knot (arc) in PL S3 is a knot (arc) that is a polyhedron.

2.4 Tameness

Definition 2.4.1. Let K be a complex. A subset X of |K| is tame if there is a homeomor-

phism h : |K| → |K| such that h(X) is a polyhedron.

Definition 2.4.2. Let K be a complex. A subset X of |K| is locally tame at a point p of

X if there is a neighborhood N of p and a homeomorphism hp of Cl(N) onto a polyhedron

such that hp(Cl(N)
∩
X) is a subpolyhedron.

Definition 2.4.3. A set X is tame in a topological 3-manifold M if M has a triangulation

K relative to which X is tame, it then follows that X is tame relative to every triangulation

of M by theorem 2.2.7. Otherwise, it is wild.

Definition 2.4.4. Similarly, a subset X of a 3-manifold M is locally tame at a point

p of X if M has a triangulation K relative to which X is locally tame at p. If X is locally

tame at each point of X, then it is locally tame.

Definition 2.4.5. A point p of X is called a wild point of X if X is not locally tame at p.
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Theorem 2.4.6. In a 3-manifold, every locally tame set is tame.

Proof. By theorem 2.2.6, every 3-manifold is triangulable. By [1], every locally tame set is

tame in a PL 3-manifold. Then use theorem 2.2.7.

2.5 Some theorems

Theorem 2.5.1 (Generalized Jordan curve theorem). If S is homeomorphic to Sn−1 in Sn,

then Sn − S has two components, and S is the boundary of each.

Proof. See [6].

Theorem 2.5.2 (PL Shoenflies theorem). If S is a PL 2-sphere embedded in PL S3, then

the closure of the complementary components of S are PL 3-cells.

Proof. See [2] or [9].

Theorem 2.5.3 (PL annulus theorem). If B1 and B2 are PL n-cells in PL Sn, with B1 ⊂

Int(B2), then Cl(B2 −B1) is PL homeomorphic to ∂B1 × I.

Proof. See [7].

Lemma 2.5.4. If C, D are homeomorphic to Bn, then any homeomorphism h : ∂C → ∂D

extends to a homeomorphism h : C → D.

Proof. We can assume that C = D = Bn. Then in vector notation, if x ∈ ∂Bn, define

h(tx) = th(x), 0 ≤ t ≤ 1.

Definition 2.5.5. Suppose B0, B1, ..., Bn are tame 3-cells in S3 and for 0 < i ≤ n, the balls

Bi ⊂ Int(B0) are disjoint. Then we call Cl(B0−
n∪

i=1

Bi) an n-annulus with boundary
∪
Si,

where Si = ∂Bi.

Lemma 2.5.6. Let A, A′ be n-annuli in S3, with boundaries
∪

Si,
∪
S ′
i, and h : S0 → S ′

0 be

a homeomorphism. Then h can be extended to a homeomorphism h : A → A′ with h(Si) = S ′
i.
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Proof. By theorem 2.5.3, this is true for 1-annuli. Suppose it holds for (n-1)-annuli. Let

Bi, B
′
i be as in the previous definition. By theorem 2.5.3, there are homeomorphisms f :

Cl(B0 − B1) → S2 × I and f ′ : Cl(B′
0 − B′

1) → S2 × I such that f(S0) = S2 × {1} and

f ′(S ′
0) = S2 × {1}. Let g = f ′ ◦ h ◦ f−1. Then g is a homeomorphism of S2 × {1} onto

itself, and g can be extend to a homeomorphism g : S2 × I → S2 × I. Let o be the origin of

R3; C be an infinite cone with vertex o, whose intersection with S2 × I is a 3-cell C disjoint

from S2, ..., Sn, and g(C) is disjoint from S ′
2, ..., S

′
n. Let D be the 3-cell Cl(S2 × I − C), D′

be g(D), and g1 be g restricted to ∂D. Then by the induction hypothesis, g1 extends to a

homeomorphism g1 : Cl(D −
n∪

i=2

f(Bi)) → Cl(D′ −
n∪

i=2

f ′(B′
i)), mapping f(Si) to f ′(S ′

i) for

1 < i ≤ n. Define g̃ : f(A) → f ′(A′) by letting g̃ be g on C, be g1 on Cl(D−
n∪

i=2

f(Bi)). Let

h be f ′−1 ◦ g̃ ◦ f .

2.6 Connected Sum of Knots

Remark 2.6.1. From here on, all knots are assumed to be oriented and in ori-

ented S3.

Definition 2.6.2. Suppose K is a knot and C is a topological ball in S3. We say (C,C
∩
K)

is an S ball pair if C is tame and (C,C
∩

K) is topologically equivalent to the canonical

ball pair (B3, B1).

Definition 2.6.3 (connected sum of knots). Suppose Ki is a tame knot in S3, (Ci, Ci

∩
Ki)

is an S ball pair, Di is Cl(S3 − Ci), and Ai = Di

∩
Ki for i = 1, 2. By theorem 2.5.2,

Di are 3-cells. Let f : D2 → C1 be an orientation-preserving homeomorphism such that

f(∂A2) = ∂A1 and the simple closed curve A1

∪
f(A2) is oriented. The connected sum of

the knots K1 and K2, written K1♯K2, is the simple closed curve A1

∪
f(A2) in S3.

Remark 2.6.4. Such an f exists, for there is an orientation-preserving homeomorphism

∂D2 → ∂C1 mapping ∂A2 onto ∂A1, and it can be extended to get an f by lemma 2.5.4,
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and 2.1.4. And it is easy to see that f can be extended to an orientation-preserving ambient

homeomorphism, so the knot type of K2 is preserved.

Proposition 2.6.5. K1♯K2 is an oriented knot in oriented S3.

Proposition 2.6.6. Connected sum is well-defined for equivalence classes of tame oriented

knots in oriented S3.

Proof. Here the notation will be as in definition 2.6.3. Let K ′
1 be a knot equivalent to K1.

Define C ′
1, D

′
1, A

′
1 and f ′ accordingly. We want to show that K1♯K2 is equivalent to K ′

1♯K2.

Clearly, f ′ ◦ f−1 : (C1, f(A2)) → (C ′
1, f

′(A2)) is an orientation-preserving homeomorphism

of pairs. Let g : (D1, A1) → (D′
1, A

′
1) be an orientation-preserving homeomorphism equal

to f ′ ◦ f−1 on ∂D1 = ∂C1. Then h equal to f ′ ◦ f−1 on C1, g on D1 is an desired ambient

homeomorphism.

Corollary 2.6.7. Let Ki be equivalence classes of tame knots, then

1. K1♯K2 = K2♯K1

2. (K1♯K2)♯K3 = K1♯(K2♯K3).

3. K1♯K2 = K1, where K2 is the unknot.

2.7 Knot Factorization

Definition 2.7.1. A prime knot is a non-trivial tame knot which is not the connected sum

of two non-trivial tame knots. Knots that are not prime are said to be composite.

Theorem 2.7.2. There exist infinitely many inequivalent prime knots.

Proof. See [3].

Definition 2.7.3 (decomposing sphere system for a tame knot). Let Sj, 1 ≤ j ≤ m, be

disjoint tame 2-spheres embedded in S3, bounding 2m balls Bi, 1 ≤ i ≤ 2m. If Bi contains

only the s balls Bl(1), ..., Bl(s) as proper subsets, Ri = (Bi−
s∪

q=1

Int(Bl(q)) is called the domain

7



Ri. The spheres Sj are said to be decomposing with respect to a tame knot K in S3 if the

following conditions are fulfilled:

1. Each sphere Sj meets K transversely in two points.

2. The knot Ki, which is the union of the arc Ai = K
∩

Ri, oriented as K, and arcs on the

boundary of Ri, is prime. Ki is called a prime factor of K determined by Bi.

We call S = {Sj|1 ≤ j ≤ m} a decomposing sphere system with respect to K; if K

is prime we put S = ∅.

Remark 2.7.4. Ki does not depend on the choice of the arcs on ∂Ri.

Definition 2.7.5. Two decomposing sphere systems S = {(Sj, K)} and S ′ = {(Sl
′, K)} are

called equivalent if they define the same (unordered) factors Ki.

Theorem 2.7.6. Any non-trivial tame knot K can be decomposed into a finite number of

prime knots K = K1♯K2♯...♯Kn. Furthermore, the decomposition is unique up to order. That

is, if K = K1♯K2♯...♯Kn = K ′
1♯K

′
2♯...♯K

′
m are two decompositions, then n = m and Ki = K ′

l(i)

for some permutation l of {1, 2, ..., n}.

Proof. W.l.o.g, we can assume that K is a polygonal knot in PL S3. The first part of the the-

orem is an easy consequence of the additivity of the genus of PL knots.The uniqueness of de-

composition is proved by showing that any two decomposing sphere systems S = {(Sj, K)},

S ′ = {(Sl
′, K)} are equivalent. For a detailed proof, please refer to [3].
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Chapter 3

Generalizing Some Concepts

3.1 Infinite Connected Sum of Knots

Definition 3.1.1. Let K be a knot in S3. Suppose B0, B1, ..., Bn are tame balls whose

boundary meets K transversely in two points. For 0 < i ≤ n, the balls Bi ⊂ Int(B0) are

disjoint. Let K̃ be the knot which is the union of the arcs K
∩
Cl(B0 −

n∪
i=1

Bi), oriented as

K, and arcs on the boundary of Cl(B0 −
n∪

i=1

Bi), oriented in the way that K̃ is oriented.

Then K̃ is called the knot determined by Cl(B0 −
n∪

i=1

Bi) and K.

Recall that Cl(B0 −
n∪

i=1

Bi) is an n-annulus as defined in definition 2.5.5. We define a

0-annulus to be a tame ball in S3. The word annulus may refer to a k-annulus for any

k ≥ 0.

The notations are consistent from 3.1.2 to 3.1.6.

Definition 3.1.2. Let K be a knot in S3. Then K is the connected sum of tame knots if

(1) there is a finite or countable sequence S = {Sj} of disjoint tame 2-spheres embedded in

S3, with each Sj meets K transversely in two points.

(2) if {Bi} is a countable sequence of tame 3-cells such that {∂Bi} is a subsequence of {Sj}

and Bi+1 ⊂ Int(Bi), then
∩

Bi is a point.

(3) let B be a ball bounded by some element of S, then there are at most a finite number of

balls whose boundaries are elements in S, say, C1, ..., Cn, that are outermost in B, in the

sense that Ci ⊂ Int(B) and there does not exist a ball D ⊂ Int(B) bounded by some Sk ∈ S

such that Ci ⊂ Int(D).

(4) the notation here is as in (3). Cl(B −
n∪

i=1

Ci) determines a non-trivial tame knot, which
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is called a factor of K.

If {Sj} is a countable sequence, we say K is the infinite connected sum of tame

knots. S = {Sj} is called a decomposing sphere system for K. If in (3) the tame knot

is also prime, then we call S = {Sj} a prime decomposing sphere system for K. We

may also call a prime decomposing sphere system a decomposing sphere system.

Remark 3.1.3. Note that (2) implies that if B is a ball bounded by some element of S, and

C ⊂ Int(B) is another ball bounded by some element of S, then there is a ball D ⊂ Int(B)

whose boundary is an element of S such that C ⊂ Int(D) and D is outermost in B. Thus

this excludes the case where there are infinitely many balls whose boundaries are elements in

S contained in Int(B), but no one is outermost in B.

Remark 3.1.4. In the next two chapters, we will give examples of constructing infinite

connected sum of knots with tame knots.

Proposition 3.1.5. If {Sj} is a countable, then S3 −
∪
Sj is the union of a countable

collection of disjoint open annuli {Ai} and a closed set W of totally disconnected points,

such that the boundaries of Cl(Ai) are elements of S and W is the set of wild points of K.

Moreover, each closed annulus Cl(Ai) determines a non-trivial tame knot.

Proof. By conditions (1),(2),(3)(see remark 3.1.3), S3−
∪
Sj contains the union of a countable

collection of disjoint open annuli {Ai} such that the boundaries of Cl(Ai) are elements of

S. Let W = S3 −
∪

Sj −
∪
Ai. By (4), each closed annulus determines a non-trivial tame

knot. By (3) and (2), there is a countable sequence {Bn} of tame 3-cells such that {∂Bn} is

a subsequence of {Sj}, Bn+1 ⊂ Int(Bn), and
∩
Bn is a point p. Then p is not in any Sj, for

the spheres are disjoint, nor in any Ai. So W ̸= ∅.

If p ∈ W , then there is a countable sequence {Bn} of tame 3-cells such that {∂Bn} is a

subsequence of {Sj}, p ∈ Bn+1 ⊂ Int(Bn), and by (2),
∩
Bn = p. So

∩
(Bn

∩
K) = p, and

hence p ∈ K. And p is a wild point of K, for there are infinitely many knots converging to

10



p. Conversely, if p is a wild point of K, then p is not in any Sj or Ai by (2),(3),(4). Hence

p ∈ W . So W is the set of wild points of K.

W is closed in K, for the set of points at which K is locally tame is open. Since any

two distinct points in W are separated by two disjoint balls, W is totally disconnected.

The following lemma can be obtained from the proof of proposition 3.1.5.

Lemma 3.1.6. If {Bn} is a countable sequence of tame 3-cells such that {∂Bn} is a subse-

quence of {Sj}, Bn+1 ⊂ Int(Bn), then
∩
Bn is a wild point of K. If p is a wild point of K,

then there is a countable sequence {Bn} of tame 3-cells such that {∂Bn} is a subsequence of

{Sj}, Bn+1 ⊂ Int(Bn), and
∩
Bn = p.

3.2 Some Lemmas

Lemma 3.2.1. Let K be a tame knot in S3, α ⊂ K be an arc, and K̂ be a factor of K.

Then there is a tame 3-cell C such that K
∩
C = α and the knot determined by C is K̂.

Proof. Since K̂ is a factor of K, there is a tame 3-cell D such that the knot determined

by D and K is K̂. Let D
∩
K = β. Since K is tame, there is an orientation-preserving

homeomorphism h : (S3, K) → (S3, K) such that h(β) = α. Let C = h(D).

Lemma 3.2.2. Let the notation be defined as in 3.1.1, and assume that K̃ is a non-trivial

tame knot. Let K̂ be a factor of K̃. Let B be Cl(S3 − B0) or an element in {B1, ..., Bn}.

Then there is a a tame 3-cell C such that B ⊂ Int(C), ∂C
∩

∂Bi = ∅ for 0 ≤ i ≤ n, and

the knot determined by Cl(C −B) and K is K̂.

Proof. W.l.o.g, assume that B is Cl(S3 − B0). Let β be K̃
∩
∂B, and α be a subarc of K̃

such that α
∩
∂Bi = ∅ for 1 ≤ i ≤ n and β ⊂ Int(α). By lemma 3.2.1,there is a tame 3-cell

D such that K̃
∩

D = α and the knot determined by D and K̃ is K̂. W.o.l.g, we can assume

that ∂D and ∂Bi are polyhedra in PL S3 and ∂D is in general position with ∂Bi, 0 ≤ i ≤ n.

Then replace ∂D by a sphere S that is disjoint from each ∂Bi, obtained from ∂D by a finite
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number of pushes (ambient homeomorphisms with compact support) 1. Let C be the closure

of the component of S that contains B.

Remark 3.2.3. Let the notation be as in lemma 3.2. Let M be the union of elements in

a subset of {Cl(S3 − B0)} ∪ {B1, ..., Bn}. With an argument similar to that in proposition

3.2, we can show that there is a a tame 3-cell C such that M ⊂ Int(C), ∂C
∩
∂Bi = ∅ for

0 ≤ i ≤ n, and the knot determined by Cl(C −M) and K is K̂.

1See [2] for definitions and details.

12



Chapter 4

The Wilder Knots

4.1 Wilder Connected Sum

Definition 4.1.1 (Wilder connected sum of knots). Suppose K1 is a non-trivial tame knot

in S3, C1, C2, ... is a sequence of tame 3-cells such that Ci+1 ⊂ Int(Ci),
∩

Ci = p ∈ K1, and

(Ci, Ci

∩
K1) is an S ball pair for each i. Let {Ki} be a sequence of non-trivial tame knots in

S3, and (Cij, Cij

∩
Ki) be an S ball pair, with Ci1

∩
Ci2 = ∅ for i = 2, 3, ..., j = 1, 2. Define

Mi = Cl(S3 − Ci1

∪
Ci2), Ni = Cl(Ci−1 − Ci), for i ≥ 2, and M1 = N1 = Cl(S3 − C1). By

theorem 2.5.3, Mi, Ni are homeomorphic to S2×I for i ≥ 2. Let αij be the two arcs Mi

∩
Ki,

βij be the two arcs Ni

∩
K1, i ≥ 2, where αi1 is the arc exiting ∂Ci1 and entering ∂Ci2, βi1 is

the arc exiting ∂Ci−1 and entering ∂Ci. Define fi : Mi → Ni to be an orientation-preserving

homeomorphism such that fi(∂Ci1) = ∂Ci−1, and for fixed ij, fi maps the end points of αij to

the end points of βij, for i = 2, 3, ..., j = 1, 2. Let α1 = M1

∩
K1. The Wilder connected

sum of {Ki}, written K1♯K2♯..., is the simple closed curve α1 ∪
∪

fi(αij) ∪ {p} in S3.

Remark 4.1.2. To see the fi defined above exist, let S1, S2 be the two components of the

boundary of A = S2 × I and pij ∈ Si, qij ∈ Si, i = 1, 2, j = 1, 2 are eight points. W.l.o.g,

we can assume that pij should be mapped to qij. It is easy to see that there are orientation-

preserving (OP) and orientation-reversing (OR) homeomorphisms of S1 onto S1 taking p1j

to q1j. Such an OPH (ORH) can be extended to an OPH (ORH), say h, of A onto itself.

Then keep the points on S1 fixed and slide h(p2j) on S2 till it is mapped to q2j. Also, each

fi can be extended to an OP ambient homeomorphism, and so the knot type of each Ki is

preserved.

Proposition 4.1.3. K1♯K2♯... is an oriented knot in oriented S3.
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Proposition 4.1.4. Wilder connected sum is well-defined for equivalence classes of tame

oriented knots in oriented S3.

Proof. Suppose {K ′
i} is a sequence of tame knots such that K ′

i is equivalent to Ki for each

i. Define M ′
i , N

′
i , α

′
ij, β

′
ij, f

′
i , α

′
1 accordingly. Let h1 : (N1, α1) → (N ′

1, α
′
1) be an orientation-

preserving homeomorphism(OPH). Suppose we have got an OPH hn : (
n∪

i=1

Ni, α1∪
n∪

i=1

2∪
j=1

fi(αij)) →

(
n∪

i=1

N ′
i , α

′
1 ∪

n∪
i=1

2∪
j=1

f ′
i(α

′
ij)). Then f ′

n+1
−1hnfn+1 : ∂C(n+1)1 → ∂C ′

(n+1)1 is an OPH that maps

Kn+1 ∩ ∂C(n+1)1 to K ′
n+1 ∩ ∂C ′

(n+1)1, and it can be extended to an OPH g : Mn+1 → M ′
n+1,

which maps Kn+1 ∩ ∂C(n+1)2 to K ′
n+1 ∩ ∂C ′

(n+1)2 as shown in the previous remark. Then g

can be modified to get an OPH g̃ : (Mn+1,
2∪

j=1

α(n+1)j) → (M ′
n+1,

2∪
j=1

α′
(n+1)j). Define hn+1

by letting hn+1 = hn ∪ f ′
n+1g̃fn+1

−1. Finally, define h to be hn on
n∪

i=1

Ni for each n, and

h(p) = p′.

4.2 The Wilder Knots

Definition 4.2.1. A knot K in S3 is a Wilder knot if it is an infinite connected sum of

tame knots with one wild point.

Remark 4.2.2. Intuitively, we can think a Wilder knot as a simple closed curve with a

sequence of tame knots tied in it convergent to a point p in it, possibly from each side of p.

See figure 4.1.

Definition 4.2.3. A wild knot is mildly wild if it is the union of two tame arcs.

Proposition 4.2.4. A Wilder knot is a mildly wild knot.

Remark 4.2.5. There is a mildly wild knot with one wild point that is not a Wilder knot.

See [8].

Proposition 4.2.6. Let {Ki} be a sequence of prime knots in S3. The Wilder connected

sum K1♯K2♯... is a Wilder knot. Conversely, every Wilder knot is the Wilder connected sum

of a sequence of prime knots.
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Proof. The first part is clear. Let K be an infinite connected sum of tame knots with one

wild point p. Let S = {Sj} be a decomposing sphere system for K. By lemma 3.1.6, there

is exactly one countable sequence {Bn} of tame 3-cells such that {∂Bn} is a subsequence

of {Sj}, Bn+1 ⊂ Int(Bn), and
∩
Bn is a point, which should be p. By definition 3.1.2, the

knots determined by Cl(S3 − B1) and Cl(Bn − Bn+1) are tame. By theorem 2.7.6, every

tame knot can be factored into prime knots. Then the result follows from lemma 3.2.

Figure 4.1: Wilder knot

Definition 4.2.7. A prime knot type is an infinitely occurring prime if it appears infinite

times in (a decomposition of) a wild knot, otherwise, a finitely occurring prime. We say

two wild knots have the same list of prime knots if and only if they have the same

set of finitely and infinitely occurring primes, with each finitely occurring prime appearing

exactly the same number of times. We say two wild knots almost have the same list of

prime knots if and only if they differ by a finite number of finitely occurring primes.

When working on the following theorem, we referred to the paper [5] by Fox and Harrold.
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Theorem 4.2.8. Two Wilder knots K and K ′ are equivalent if and only if they have the

same list of prime knots.

Proof. Suppose K and K ′ are equivalent. By proposition 4.2.6, K can be factored into prime

knots. We show that K is uniquely factored into prime knots, and it would follow that K

and K ′ have exactly the same list of prime knots. Assume that K has n type-π knots in

a decomposition. Take a tame 2-sphere S that separates the wild point p of K from the n

type-π knots of K, and intersects K transversely in two points. Denote the closure of the

complementary component of S that does not contain p as D1, and the closure of the other

complementary component of S as D2. Let K1 be the knot determined by D1. Suppose in

a different decomposition, K has m type-π knots. Take a tame 2-sphere S ′ ⊂ Int(D2) that

separates the wild point p of K from the m type-π knots of K and intersects K transversely

in two points. Let D′
1 be the closure of the complementary component of S ′ that does not

contain p, and K ′
1 be the knot determined by D′

1. Then K1 is a factor of K ′
1, and hence

m can not be less than n, for otherwise K ′
1 would not be uniquely factored. By symmetry,

m = n. If K has infinitely many type-π knots in one decomposition, then for each n, K has

no less than n type-π knots in a different decomposition, so K has infinitely many type-π

knots in the other decomposition.

Conversely, suppose K and K ′ have the same list of prime knots. By proposition 4.2.6,

K = K1♯K2♯... and K ′ = K ′
1♯K

′
2♯..., where {Ki} and {K ′

i} are two sequences of prime

knots. Since Wilder knots are uniquely decomposed into prime knots, K = K1♯K2♯... and

K ′ = K ′
1♯K

′
2♯... have the same list of prime knots. If we can show that there is a decomposing

sphere system for K such that K = K ′
1♯K

′
2♯..., then K and K ′ are equivalent by proposition

4.1.4. Let p be the wild point of K. Fix an n, there is a tame 2-sphere S1 that meets K

transversely in two points and separates K ′
1, K

′
2, ..., K

′
n from p. Using lemma 3.2 repeatedly,

there are tame 3-cells C1, C2, ..., Cn with Ci+1 ⊂ Int(Ci), S1 ⊂ Int(Cn), and the knot

determined by S3−Int(C1) is K
′
1, the knot determined by Ci−Int(Ci+1) is K

′
i+1, 1 ≤ i < n.

Next we take a tame 2-sphere S2 that meets K transversely in two points and separates
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K ′
n+1, K

′
n+2, ..., K

′
2n from p. If S1 separates K

′
n+1, K

′
n+2, ..., K

′
2n from p, we take S2 = S1. By

lemma 3.2, there are tame 3-cells Cn+1, Cn+2, ..., C2n with Ci+1 ⊂ Int(Ci), S2 ⊂ Int(C2n),

and the knot determined by Ci − Int(Ci+1) is K
′
i+1 for n ≤ i < 2n. Continuing in this way,

we can find a sequence of tame 3-cells C1, C2, ... such that Ci+1 ⊂ Int(Ci), and
∩

Ci = p,

and the knot determined by S3 − Int(C1) is K
′
1, the knot determined by Ci − Int(Ci+1) is

K ′
i+1.
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Chapter 5

C-wild Knots

5.1 Cantor Connected Sum

Definition 5.1.1 (Cantor connected sum of knots). Suppose K01 = K0 is a non-trivial tame

knot in S3, Cij, i = 1, 2, ..., j = 1, 2, ..., 2i is a sequence of tame 3-cells such that C1j are

disjoint in S3 and C(i+1)(2j−1), C(i+1)2j are disjoint subsets of Int(Cij), (Cij, Cij

∩
K1) is an

S ball pair for each ij, and diamCij → 0 as i → ∞. Let {Kij} be a sequence of non-trivial

tame knots in S3, and (Cijk, Cijk

∩
Kij) be disjoint S ball pairs for fixed ij, i = 1, 2, ...,j =

1, 2, ..., 2i,k = 0, 1, 2. Define Mij = Cl(S3 −
2∪

k=0

Cijk), Nij = Cl(Cij −C(i+1)(2j−1)

∪
C(i+1)2j),

for i ≥ 1, and M0 = N0 = Cl(S3−C11

∪
C12). By lemma 2.5.6, Mij, Nij are homeomorphic

for i ≥ 1. Let αijk be the three arcs Mij

∩
Kij, βijk be the three arcs Nij

∩
K0, where αij0 is

the arc exiting ∂Cij0, αij2 is the arc entering ∂Cij0, βij0 is the arc exiting ∂Cij, βij2 is the arc

entering ∂Cij. Define fij : Mij → Nij to be an orientation-preserving homeomorphism such

that fij(∂Cij0) = ∂Cij, and for fixed ijk, fij maps the end points of αijk to the end points

of βijk, for i = 1, 2, ..., j = 1, 2, ..., 2i, k = 0, 1, 2. Let α0 = M0

∩
K0. Let Ci =

∪
j

Cij. The

Cantor connected sum of {Kij}, is the simple closed curve α0 ∪
∪

fij(αijk)∪
∩

Ci in S3.

Remark 5.1.2. With lemma 2.5.6 and an argument similar to that in remark 4.1.2, we can

show that fij defined above exist and can be extended to an OP ambient homeomorphism.

Proposition 5.1.3. The Cantor connected sum is an oriented knot in oriented S3.

Proposition 5.1.4. Cantor connected sum is well-defined for equivalence classes of tame

oriented knots in oriented S3.

Proof. Let Mi =
∪
j

Mij, Ni =
∪
j

Nij, fi =
∪
j

fij. Then use an argument analogous to the

proof of 4.1.4.
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Figure 5.1: Cantor connected sum

5.2 C-wild knots

Definition 5.2.1. A Cantor set is a compact metrizable space that is totally disconnected

and has no isolated points.

Definition 5.2.2. A C-wild knot is an infinite connected sum of tame knots whose wild

points form a Cantor set.

Proposition 5.2.3. Let K be a C-wild knot and W be the set of wild points of K. Then

K −W is a countable union of open tame arcs {Ai} such that Cl(Ai) is a tame arc whose

end points are wild points of K.
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Proposition 5.2.4. A C-wild knot is the Cantor connected sum of a sequence {Kij} of

prime knots, where i = 0, 1, ..., j = 1, 2, ..., 2i. Conversely, the Cantor connected sum of a

sequence of prime knots is a C-wild knot.

Proof. The second part is clear. The first part is clear by proposition 5.2.3, theorem 2.7.6

and lemma 3.2. There is a detailed proof in theorem 5.3.7.

Proposition 5.2.5. A C-wild knot can be and is uniquely decomposed into prime knots.

Proof. The existence part is by proposition 5.2.4. With an argument similar to that in the

proof of proposition 4.2.8, we can show that every C-wild knot is uniquely decomposed into

prime knots.

Definition 5.2.6. Let K be a C-wild knot. Let Cij, i = 1, 2, ..., j = 1, 2, ..., 2i be a sequence

of tame 3-cells such that C1j are disjoint in S3 and C(i+1)(2j−1), C(i+1)2j are disjoint subsets

of Int(Cij). We say C = {∂Cij} is a Cantor decomposing sphere system (Cdds) for

K if C is a decomposing sphere system for K.

Theorem 5.2.7. Two C-wild knots K and K ′ are equivalent if and only if there are prime

Cantor decomposing sphere systems {∂Cij} and {∂C ′
ij} for K resp. K ′ such that

1. K and K ′ have the same list of prime knots.

2. fix ij, the C-wild knots Jij and J ′
ij determined by Cij and C ′

ij respectively almost have the

same list of prime knots.

Proof. Suppose K and K ′ are equivalent. W.l.o.g, we can assume that K = K ′ as sets.

Let W be the set of wild points of K. Let {∂Cij} and {∂C ′
ij} be two Cdds for K such

that Cij

∩
W = C ′

ij

∩
W . By proposition 5.2.5, K is uniquely decomposed into prime knots.

And it is easy to see that for fix ij, the C-wild knots Jij and J ′
ij determined by Cij and C ′

ij

respectively almost have the same list of prime knots.

Conversely, suppose there are Cdds {∂Cij} and {∂C ′
ij} for K resp. K ′ satisfying con-

ditions 1,2, and K and K ′ are the Cantor connected sum of {Kij} resp. {K ′
ij}. We want
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to find a Cdds ∂Dij for K such that K is the Cantor connected sum of {K ′
ij}, then K

would be equivalent to K ′ by proposition 5.1.4. By 1, 2, for a large enough n, K ′
01 and

the prime knots appearing in J ′
1j but not in J1j, for j = 1, 2, would appear in the tame

knot determined by Cl(S3 −
2n∪
j=1

Cnj). By remark 3.2.3, we can find D1j such that the knot

determined by D1j is J ′
1j and the knot determined by Cl(S3 −

∪
D1j) is K ′

01, j = 1, 2.

Next we want to find D21 and D22 such that the knot determined by D2j is J ′
2j and the

knot determined by Cl(D11 − (D21 ∪ D22)) is K ′
11, j = 1, 2 . If all the prime knots ap-

pearing in Jn1 ∪ Jn2 ∪ ... ∪ Jn2n−2 also appear in J ′
21, and all the prime knots appearing in

Jn(2n−2+1) ∪ ... ∪ Jn2n−1 also appear in J ′
22 then we can find D21 and D22 using remark 3.2.3.

If not, Since J2j and J ′
2j, almost have the same list of prime knots, for m large enough, all

the prime knots appearing in Jm1 ∪ Jm2 ∪ ... ∪ Jm2m−2 also appear in J ′
21, and all the prime

knots appearing in Jm(2m−2+1) ∪ ... ∪ Jm2m−1 also appear in J ′
22. Then we can find D21 and

D22 by applying remark 3.2.3. Continuing this way, we can find a desired Cdds {∂Dij} for

K.

5.3 Wilder Knots in C-wild Knots

Definition 5.3.1. Let K be a C-wild knot and p be a wild point of K. Let S = {Sk} be a

decomposing sphere system for K. A Wilder knot is called a Wilder knot (relative to

S) in K with wild point p if it is the union of subarcs of K and arcs on a subsequence

of {Sk} and its wild point is p.

Proposition 5.3.2. The notations are defined as in definition 5.3.1. Then there is a Wilder

knot in K with wild point p.

Proof. By lemma 3.1.6, there is a countable sequence {Bn} of tame 3-cells such that {∂Bn}

is a subsequence of S = {Sk}, Bn+1 ⊂ Int(Bn), and
∩

Bn = p. We can assume that Bn+1 is

outermost in Bn. Let Mn+1 be the union of all the balls that are outermost in Bn, and whose

boundaries are elements of S. Let Kn be the tame knot determined by Cl(Bn−Mn+1). Then

the infinite connected sum of {Kn} is a desired Wilder knot.
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Remark 5.3.3. Note that there are infinitely many inequivalent Wilder knots in K with

wild point p.

Theorem 5.3.4. Two C-wild knots K and K ′ are equivalent if and only if there are prime

Cantor decomposing sphere systems {∂Cij} and {∂C ′
ij} for K resp. K ′ such that

1. K and K ′ have the same list of prime knots.

2. let Jij and J ′
ij be the C-wild knots determined by Cij and C ′

ij respectively. Fix ij and let ω

be a Wilder knot in Jij. Then there is a Wilder knot γ in J ′
ij such that all but finitely many

prime factors of ω are prime factors of γ.

Proof. Suppose K and K ′ are equivalent. W.l.o.g, we can assume that K = K ′ as sets. Let

W be the set of wild points of K. Let {∂Cij} and {∂C ′
ij} be two Cdds for K such that

Cij ∩W = C ′
ij ∩W . Let ω be a Wilder knot in Ji0j0 with wild point p. By lemma 3.1.6, there

is a countable sequence {Bn} of tame 3-cells such that {∂Bn} is a subsequence of {∂Cij},

Bn+1 is outermost in Bn, and
∩

Bn = p. Suppose ∂Bn ∩ ω ̸= ∅. Let ωn be the tame knot

determined by Cl(Bn −Bn+1) and ω. Assume that ω is the Wilder connected sum of {ωn}.

Further assume that Ci0j0 = C11 and Bn = Cn1 as sets. For each n ≥ 2, take mn large enough

so that ωn−1 is a factor of the tame knot determined by Cl(C(n−1)1 −Cn1 −
2mn−n+1∪

j=2mn−n+1

C ′
mnj)

and K. Let γ be the knot that is the union of subarcs of J ′
11 and arcs on the boundaries of

{C ′
mnj}.

Conversely, suppose there are prime Cdds {∂Cij} and {∂C ′
ij} for K resp. K ′ such that

conditions 1, 2 are satisfied. Suppose that there are infinitely many prime factors of Ji0j0 that

are not prime factors of J ′
i0j0

. Then we can find a Wilder knot ω in Ji0j0 such that infinitely

many prime factors of ω are not prime factors of J ′
i0j0

. But this contradicts condition 2. So

condition 2 of proposition 5.2.7 holds. So K and K ′ are equivalent.

Definition 5.3.5. A cyclic order on a set X is a relation, written [a, b, c], that satisfies

the following axioms:

Cyclicity: If [a, b, c] then [b, c, a]
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Asymmetry: If [a, b, c] then not [c, b, a]

Transitivity: If [a, b, c] and [a, c, d] then [a, b, d]

Totality: If a, b, and c are distinct, then either [a, b, c] or [c, b, a]

Definition 5.3.6. A function between two cyclically ordered sets f : X → Y is called

order-preserving if [a, b, c] implies [f(a), f(b), f(c)].

Theorem 5.3.7. Two C-wild knots K and K ′ with prime decomposing sphere systems S =

{Sk} resp. S ′ = {S ′
k} are equivalent if and only if

1. K and K ′ have the same list of prime knots.

2. let W , W ′ be the set of wild points of K resp. K ′. Then there is an order-preserving

bijection f : W → W ′ such that if p, q are the end points of a tame subarc of K, then f(p),

f(q) are the end points of a tame subarc of K ′.

3. suppose ω is a Wilder knot in K with wild point p. Then there is a Wilder knot γ with

wild point f(p) in K ′ such that all but finitely many prime factors of ω are prime factors of

γ.

Proof. Assume conditions 1, 2, 3. If x ∈ W , then x′ denote f(x) ∈ W ′. Let V be the set of

wild points of K that are end points of tame subarcs of K.

Step 1. find a prime Cdds for K.

Let pi, qi ∈ W be the end points of a tame subarc αi of K for i = 1, 2 such that [p1, p2, q2]

and [p1, q2, q1]. Let C11 be a tame 3-cell that intersects K transversely in two points on

Int(α1) resp. Int(α2) such that p1, p2 ∈ Int(C11), and C12 be a tame 3-cell that intersects K

transversely in two points on Int(α1) resp. Int(α2) such that q1, q2 ∈ Int(C12). Moreover,

C11 and C12 are disjoint, and the knot determined by Cl(S3− (C11∪C12)) is prime, which is

possible by lemma 3.2. Let α3 ⊂ Int(C11) be a tame subarc of K with end points p3, q3 ∈ V

such that [p1, p3, q3] and [p1, q3, p2]. Let C21 ⊂ Int(C11) be a tame 3-cell that intersects

K transversely in two points on Int(α1) resp. Int(α3) such that p1, p3 ∈ Int(C21), and

C22 ⊂ Int(C11) be a tame 3-cell that intersects K transversely in two points on Int(α3)
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resp. Int(α2) such that q3, p2 ∈ Int(C22). Moreover, C21 and C22 are disjoint, and the knot

determined by Cl(C11 − (C21 ∪ C22)) is prime. Continuing in this way, we can find a prime

Cdds {∂Cij} for K.

Step 2. find a corresponding prime Cdds for K ′.

By condition (2), p′i, q
′
i ∈ W ′ are the end points of a tame subarc α′

i of K
′ for i = 1, 2 such

that [p′1, p
′
2, q

′
2] and [p′1, q

′
2, q

′
1]. Let C

′
11 be a tame 3-cell that intersects K ′ transversely in two

points on Int(α′
1) resp. Int(α′

2) such that p′1, p
′
2 ∈ Int(C ′

11)... Continuing in this way, we

can find a prime Cdds {∂C ′
ij} for K ′.

Step 3. show that prime Cdds C = {∂Cij} for K, C ′ = {∂C ′
ij} for K ′ satisfy conditions 1, 2

of proposition 5.3.4.

Condition 1 of 5.3.4 is true by proposition 5.2.5, and condition 1 of this theorem. Now

we prove condition 2 of 5.3.4. Let Jij and J ′
ij be the C-wild knots determined by Cij and

C ′
ij respectively. Let ω be a Wilder knot in Ji0j0 with wild point p. By lemma 3.1.6,

there is a countable sequence {Cm} of tame 3-cells such that {∂Cm} is a subsequence of

{∂Cij}, Cm+1 ⊂ Int(Cm), and
∩

Cm = p. We can assume that Cm+1 is outermost in Cm,

∂Cm

∩
ω ̸= ∅, and ∂C1 is also an element of S. Let ωm be the tame knot determined by

Cl(Cm − Cm+1) and ω. Then we can find Bm1, ..., Bmnm whose boundaries are elements of

S such that ωm is a factor of the tame knot determined by Cl(Cm − Cm+1 −
nm∪
t=1

Bmt) and

K. Let ω be the knot that is the union of subarcs of K and arcs on the boundaries of C1

and {Bmt}, where 1 ≤ t ≤ nm, m ≥ 1. Then ω is a Wilder knot relative to S in K with

wild point p such that all but a finite number of prime factors of ω are prime factors of ω.

By condition 3, there is a Wilder knot γ relative to S ′ with wild point p′ in K ′ such that

all but finitely many prime factors of ω are prime factors of γ. Then we can find a Wilder

knot γ relative to C ′ with wild point p′ in K ′ such that all but finitely many prime factors

of γ are prime factors of γ. By step 2, p′ is in C ′
i0j0

. So we can assume that γ is in J ′
i0j0

. So

conditions 1, 2 of 5.3.4 are satisfied and hence K and K ′ are equivalent.
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Conversely, assume that K and K ′ with prime dds S = {Sk} resp. S ′ = {S ′
k} are

equivalent. Condition 1 is by proposition 5.2.5. Condition 2 follows immediately. Condition

3 can be done similarly as in Step 3.

25



Bibliography

[1] R. H. Bing, Locally tame sets are tame, Ann. of Math. vol. 59 (1954) pp. 145-158.

[2] R. H. Bing, The geometric topology of 3-manifolds, American Math. Sociaty, Colloqui-
um Publ. Vol. 40, 1983.

[3] G. Burde, H. Zieschang, Knots, De Gruyter Studies in Mathematics, 5, De Gruyter,
1985.

[4] R. H. Fox, E. Artin Some wild cells and spheres in three-dimensional space[J]. The
Annals of Mathematics, 1948, 49(4): 979-990.

[5] R. H. Fox, 0. G. Harrold, The Wilder arcs, Topology of 3-manifolds and related topics,
Proc. Univ. of Georgia Inst., Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 184-187

[6] A. Hatcher, Algebraic topology, Cambridge Univ. Press, 2002.

[7] J.F. Hudson, E.C. Zeeman, On combinatorial isotopy, Publ. I.H.E.S. 19 (1964), pp.
69-74.

[8] S. J. Lomonaco, Uncountably many mildly wild non-Wilder arcs[J]. Proceedings of the
American Mathematical Society, 1968, 19(4): 895-898.

[9] E.E. Moise, Geometric topology in dimensions 2 and 3, Springer-Verlag(New York),1977.

[10] D. Rolfsen, Knots and links, volume 7 of Mathematics Lecture Series[J]. Publish or
Perish Inc., Houston, TX, 1990.

26


