C-wild knots

by

Yunlin He

A thesis submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the requirements for the Degree of
Master of Science
Auburn, Alabama
May 5, 2013

Keywords: Infinite connected sum of knots, Wilder knots, C-wild knots

Copyright 2013 by Yunlin He

Approved by
Krystyna Kuperberg, Chair, Professor of Mathematics
Wlodzimierz Kuperberg, Professor of Mathematics
Jerzy Szulga, Professor of Mathematics

Abstract

Here we give a definition of infinite connected sum of tame knots and define a C-wild knot to be an infinite connected sum of tame knots whose wild points form a Cantor set. We further give a classification of C-wild knots in terms of Wilder knots, which are infinite connected sums of tame knots with one wild point.

Acknowledgments

I want to thank Dr. K. Kuperberg, Dr. W. Kuperberg, and Dr. J. Szulga for their help and support.

Table of Contents

Abstract ii
Acknowledgments iii
List of Figures v
1 Introduction 1
2 Preliminaries 2
2.1 Orientation 2
2.2 Triangulation 3
2.3 Knot 4
2.4 Tameness 4
2.5 Some theorems 5
2.6 Connected Sum of Knots 6
2.7 Knot Factorization 7
3 Generalizing Some Concepts 9
3.1 Infinite Connected Sum of Knots 9
3.2 Some Lemmas 11
4 The Wilder Knots 13
4.1 Wilder Connected Sum 13
4.2 The Wilder Knots 14
5 C-wild Knots 18
5.1 Cantor Connected Sum 18
5.2 C-wild knots 19
5.3 Wilder Knots in C-wild Knots 21
Bibliography 26

List of Figures

4.1 Wilder knot 15
5.1 Cantor connected sum 19

Chapter 1

Introduction

In [5], Fox and Harrold gave a complete classification of the Wilder arcs, which were first considered by R.L. Wilder. A Wilder knot is a wild knot with exactly one wild point and can be thought as obtained by identifying the end points of a Wilder arc. Here we consider Wilder knots as an infinite connected sum of tame knots, and show that if doing infinite connected sum in a different way, we can get a wild knot whose wild points form a Cantor set. We call such wild knots C-wild knots and give a classification of these knots in terms of Wilder knots.

In chapter 2, we presented the preliminaries. Starting from section 2.6, all knots are assumed to be oriented and in oriented S^{3}. In chapter 3, we generalized the concept of connected sum of knots, and infinite connected sum of knots is defined. In chapter 4, we defined Wilder connected sum of knots, a specific way of doing infinite connected sum, considered Wilder Knots as the Wilder connected sum of tame knots, and gave a classification of Wilder knots. In chapter 5, we defined a C-wild knot to be an infinite connected sum of tame knots whose wild points form a Cantor set. Earlier than this, we defined Cantor connected sum of knots, another way of doing infinite connected sum. We showed that every C-wild knot can be obtained by doing Cantor connected sum of tame knots, and gave a classification of C-wild knots based on this.

Chapter 2

Preliminaries

Definition 2.0.1. $\mathbb{R}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right)\right\}=$ the Euclidean space of real n-tuples with the usual norm $|x|=\left(\sum x_{i}{ }^{2}\right)^{1 / 2}$ and metric $d(x, y)=|x-y|$.
$B^{n}=$ the unit \boldsymbol{n}-ball of \mathbb{R}^{n} defined by $|x| \leq 1$.
$S^{n}=\partial B^{n+1}$, the unit \boldsymbol{n}-sphere $|x|=1$.
$I=[0,1]$ the unit interval of \mathbb{R}^{1}.

2.1 Orientation

Definition 2.1.1. A closed (compact, without boundary)connected n-manifold M is orientable if its nth singular homology group with \mathbb{Z} coefficients $H_{n}(M)=\mathbb{Z}$. If the connected compact manifold M has nonempty boundary, it is orientable if $H_{n}(M, \partial M)=\mathbb{Z}$. A choice of one of the two possible generators of $H_{n}(M)$ resp. $H_{n}(M, \partial M)$ is called an orientation, and an orientable manifold together with such a choice is said to be an oriented manifold.

Lemma 2.1.2. By restriction any submanifold N (n-dimensional with boundary) of an oriented n-manifold M is oriented. Furthermore, the boundary ∂N of an oriented n-manifold N is oriented by choosing the (n-1)-cycle which is the boundary of the preferred relative n-cycle.

Definition 2.1.3. Let M, N be oriented n-manifolds. A homeomorphism $f: M^{n} \rightarrow N^{n}$ is said to preserve or reverse orientation, according as the induced homomorphism on the n-th homology carries the preferred generator for M to the preferred generator for N, or to its negative.

Lemma 2.1.4. Let M, N be oriented n-manifolds with boundary. Then any homeomorphism from M to N that is an extension of an orientation-preserving (orientation-reversing)
homeomorphism from a component of the boundary of M to a component of the boundary of N is orientation-preserving (orientation-reversing).

Lemma 2.1.5. $H_{n}\left(S^{n}\right)=\mathbb{Z} ; H_{n}\left(B^{n}, \partial B^{n}\right)=\mathbb{Z}$, for $n \geq 1$.

2.2 Triangulation

Definition 2.2.1. A (Euclidean) complex is a collection K of simplexes in \mathbb{R}^{n}, such that (1). K contains all faces of all elements of K. (2)If $\sigma, \tau \in K$, and $\sigma \bigcap \tau \neq \emptyset$, then $\sigma \bigcap \tau$ is a face both of σ and of τ. (3)Every σ in K lies in an open set U which intersects only a finite number of elements of K.

Definition 2.2.2. Let K be a complex. A subset X of $|K|$ is a polyhedron if there is a subdivision K^{\prime} of K and $X=|S|$ for some subcomplex S of K^{\prime}.

Definition 2.2.3. A set X is triangulable if there is a complex K such that X and $|K|$ are homeomorphic. K is called a triangulation of X.

Definition 2.2.4. For $n \leq 3$, a piecewise linear manifold or $\boldsymbol{P L}$ manifold is an n manifold M with a fixed triangulation. Let K be a fixed triangulation of M, then PL M is $|K|$.

The following theorems are due to E.E.Moise, see [9] for proofs.

Theorem 2.2.5. Every triangulated 3-manifold is a combinatorial 3-manifold.

Theorem 2.2.6 (The triangulation theorem for 3-manifolds). Every 3-manifold can be triangulated.

Theorem 2.2.7 (The Hauptvermutung for 3-manifolds). Let K_{1} and K_{2} be triangulations of a 3-manifold M. Then there is a subdivision K_{i}^{\prime} of K_{i} for $i=1,2$ and a simplicial homeomorphism $\phi:\left|K_{1}^{\prime}\right| \rightarrow\left|K_{2}^{\prime}\right|$.

2.3 Knot

Definition 2.3.1. A subset K of S^{3} is a knot if K is homeomorphic with S^{1}; a subset A of S^{3} is an arc if it is homeomorphic with the unit interval $[0,1]$.

Definition 2.3.2. Two oriented knots K and K^{\prime} of oriented S^{3} are equivalent if there is an orientation-preserving homeomorphism of S^{3} onto itself that takes K onto K^{\prime} preserving the orientation.

Remark 2.3.3. Depending on the context, by a knot we may also mean an equivalence class of knots.

Definition 2.3.4. A unknot,or trivial knot is a knot equivalent to S^{1}.

Definition 2.3.5. A polygonal knot (arc) in $P L S^{3}$ is a knot (arc) that is a polyhedron.

2.4 Tameness

Definition 2.4.1. Let K be a complex. A subset X of $|K|$ is tame if there is a homeomorphism $h:|K| \rightarrow|K|$ such that $h(X)$ is a polyhedron.

Definition 2.4.2. Let K be a complex. A subset X of $|K|$ is locally tame at a point p of X if there is a neighborhood N of p and a homeomorphism h_{p} of $C l(N)$ onto a polyhedron such that $h_{p}(C l(N) \bigcap X)$ is a subpolyhedron.

Definition 2.4.3. A set X is tame in a topological 3-manifold M if M has a triangulation K relative to which X is tame, it then follows that X is tame relative to every triangulation of M by theorem 2.2.7. Otherwise, it is wild.

Definition 2.4.4. Similarly, a subset X of a 3-manifold M is locally tame at a point p of X if M has a triangulation K relative to which X is locally tame at p. If X is locally tame at each point of X, then it is locally tame.

Definition 2.4.5. A point p of X is called a wild point of X if X is not locally tame at p.

Theorem 2.4.6. In a 3-manifold, every locally tame set is tame.

Proof. By theorem 2.2.6, every 3-manifold is triangulable. By [1], every locally tame set is tame in a PL 3-manifold. Then use theorem 2.2.7.

2.5 Some theorems

Theorem 2.5.1 (Generalized Jordan curve theorem). If S is homeomorphic to S^{n-1} in S^{n}, then $S^{n}-S$ has two components, and S is the boundary of each.

Proof. See [6].

Theorem 2.5.2 (PL Shoenflies theorem). If S is a $P L$ 2-sphere embedded in $P L S^{3}$, then the closure of the complementary components of S are PL 3-cells.

Proof. See [2] or [9].

Theorem 2.5.3 (PL annulus theorem). If B_{1} and B_{2} are $P L$ n-cells in $P L S^{n}$, with $B_{1} \subset$ $\operatorname{Int}\left(B_{2}\right)$, then $C l\left(B_{2}-B_{1}\right)$ is PL homeomorphic to $\partial B_{1} \times I$.

Proof. See [7].

Lemma 2.5.4. If C, D are homeomorphic to B^{n}, then any homeomorphism $h: \partial C \rightarrow \partial D$ extends to a homeomorphism $\bar{h}: C \rightarrow D$.

Proof. We can assume that $C=D=B^{n}$. Then in vector notation, if $x \in \partial B^{n}$, define $\bar{h}(t x)=t h(x), 0 \leq t \leq 1$.

Definition 2.5.5. Suppose $B_{0}, B_{1}, \ldots, B_{n}$ are tame 3-cells in S^{3} and for $0<i \leq n$, the balls $B_{i} \subset \operatorname{Int}\left(B_{0}\right)$ are disjoint. Then we call $C l\left(B_{0}-\bigcup_{i=1}^{n} B_{i}\right)$ an \boldsymbol{n}-annulus with boundary $\bigcup S_{i}$, where $S_{i}=\partial B_{i}$.

Lemma 2.5.6. Let A, A^{\prime} be n-annuli in S^{3}, with boundaries $\bigcup S_{i}, \bigcup S_{i}^{\prime}$, and $h: S_{0} \rightarrow S_{0}^{\prime}$ be a homeomorphism. Then h can be extended to a homeomorphism $\bar{h}: A \rightarrow A^{\prime}$ with $h\left(S_{i}\right)=S_{i}^{\prime}$.

Proof. By theorem 2.5.3, this is true for 1-annuli. Suppose it holds for ($\mathrm{n}-1$)-annuli. Let B_{i}, B_{i}^{\prime} be as in the previous definition. By theorem 2.5.3, there are homeomorphisms f : $C l\left(B_{0}-B_{1}\right) \rightarrow S^{2} \times I$ and $f^{\prime}: C l\left(B_{0}^{\prime}-B_{1}^{\prime}\right) \rightarrow S^{2} \times I$ such that $f\left(S_{0}\right)=S^{2} \times\{1\}$ and $f^{\prime}\left(S_{0}^{\prime}\right)=S^{2} \times\{1\}$. Let $g=f^{\prime} \circ h \circ f^{-1}$. Then g is a homeomorphism of $S^{2} \times\{1\}$ onto itself, and g can be extend to a homeomorphism $\bar{g}: S^{2} \times I \rightarrow S^{2} \times I$. Let o be the origin of $\mathbb{R}^{3} ; C$ be an infinite cone with vertex o, whose intersection with $S^{2} \times I$ is a 3 -cell C disjoint from S_{2}, \ldots, S_{n}, and $\bar{g}(C)$ is disjoint from $S_{2}^{\prime}, \ldots, S_{n}^{\prime}$. Let D be the 3 -cell $C l\left(S^{2} \times I-C\right), D^{\prime}$ be $\bar{g}(D)$, and g_{1} be \bar{g} restricted to ∂D. Then by the induction hypothesis, g_{1} extends to a homeomorphism $\overline{g_{1}}: C l\left(D-\bigcup_{i=2}^{n} f\left(B_{i}\right)\right) \rightarrow C l\left(D^{\prime}-\bigcup_{i=2}^{n} f^{\prime}\left(B_{i}^{\prime}\right)\right)$, mapping $f\left(S_{i}\right)$ to $f^{\prime}\left(S_{i}^{\prime}\right)$ for $1<i \leq n$. Define $\widetilde{g}: f(A) \rightarrow f^{\prime}\left(A^{\prime}\right)$ by letting \widetilde{g} be \bar{g} on C, be $\overline{g_{1}}$ on $C l\left(D-\bigcup_{i=2}^{n} f\left(B_{i}\right)\right)$. Let \bar{h} be $f^{\prime-1} \circ \widetilde{g} \circ f$.

2.6 Connected Sum of Knots

Remark 2.6.1. From here on, all knots are assumed to be oriented and in ori-

 ented S^{3}.Definition 2.6.2. Suppose K is a knot and C is a topological ball in S^{3}. We say $(C, C \bigcap K)$ is an \boldsymbol{S} ball pair if C is tame and $(C, C \bigcap K)$ is topologically equivalent to the canonical ball pair $\left(B^{3}, B^{1}\right)$.

Definition 2.6.3 (connected sum of knots). Suppose K_{i} is a tame knot in $S^{3},\left(C_{i}, C_{i} \bigcap K_{i}\right)$ is an S ball pair, D_{i} is $C l\left(S^{3}-C_{i}\right)$, and $A_{i}=D_{i} \bigcap K_{i}$ for $i=1,2$. By theorem 2.5.2, D_{i} are 3-cells. Let $f: D_{2} \rightarrow C_{1}$ be an orientation-preserving homeomorphism such that $f\left(\partial A_{2}\right)=\partial A_{1}$ and the simple closed curve $A_{1} \bigcup f\left(A_{2}\right)$ is oriented. The connected sum of the knots K_{1} and K_{2}, written $K_{1} \sharp K_{2}$, is the simple closed curve $A_{1} \bigcup f\left(A_{2}\right)$ in S^{3}.

Remark 2.6.4. Such an f exists, for there is an orientation-preserving homeomorphism $\partial D_{2} \rightarrow \partial C_{1}$ mapping ∂A_{2} onto ∂A_{1}, and it can be extended to get an f by lemma 2.5.4,
and 2.1.4. And it is easy to see that f can be extended to an orientation-preserving ambient homeomorphism, so the knot type of K_{2} is preserved.

Proposition 2.6.5. $K_{1} \sharp K_{2}$ is an oriented knot in oriented S^{3}.

Proposition 2.6.6. Connected sum is well-defined for equivalence classes of tame oriented knots in oriented S^{3}.

Proof. Here the notation will be as in definition 2.6.3. Let K_{1}^{\prime} be a knot equivalent to K_{1}. Define $C_{1}^{\prime}, D_{1}^{\prime}, A_{1}^{\prime}$ and f^{\prime} accordingly. We want to show that $K_{1} \sharp K_{2}$ is equivalent to $K_{1}^{\prime} \sharp K_{2}$. Clearly, $f^{\prime} \circ f^{-1}:\left(C_{1}, f\left(A_{2}\right)\right) \rightarrow\left(C_{1}^{\prime}, f^{\prime}\left(A_{2}\right)\right)$ is an orientation-preserving homeomorphism of pairs. Let $g:\left(D_{1}, A_{1}\right) \rightarrow\left(D_{1}^{\prime}, A_{1}^{\prime}\right)$ be an orientation-preserving homeomorphism equal to $f^{\prime} \circ f^{-1}$ on $\partial D_{1}=\partial C_{1}$. Then h equal to $f^{\prime} \circ f^{-1}$ on C_{1}, g on D_{1} is an desired ambient homeomorphism.

Corollary 2.6.7. Let K_{i} be equivalence classes of tame knots, then

1. $K_{1} \sharp K_{2}=K_{2} \sharp K_{1}$
2. $\left(K_{1} \sharp K_{2}\right) \sharp K_{3}=K_{1} \sharp\left(K_{2} \sharp K_{3}\right)$.
3. $K_{1} \sharp K_{2}=K_{1}$, where K_{2} is the unknot.

2.7 Knot Factorization

Definition 2.7.1. A prime knot is a non-trivial tame knot which is not the connected sum of two non-trivial tame knots. Knots that are not prime are said to be composite.

Theorem 2.7.2. There exist infinitely many inequivalent prime knots.

Proof. See [3].

Definition 2.7.3 (decomposing sphere system for a tame knot). Let $S_{j}, 1 \leq j \leq m$, be disjoint tame 2-spheres embedded in S^{3}, bounding $2 m$ balls $B_{i}, 1 \leq i \leq 2 m$. If B_{i} contains only the s balls $B_{l(1)}, \ldots, B_{l(s)}$ as proper subsets, $R_{i}=\left(B_{i}-\bigcup_{q=1}^{s} \operatorname{Int}\left(B_{l(q)}\right)\right.$ is called the domain
R_{i}. The spheres S_{j} are said to be decomposing with respect to a tame knot K in S^{3} if the following conditions are fulfilled:

1. Each sphere S_{j} meets K transversely in two points.
2. The knot K_{i}, which is the union of the arc $A_{i}=K \bigcap R_{i}$, oriented as K, and arcs on the boundary of R_{i}, is prime. K_{i} is called a prime factor of K determined by B_{i}.

We call $\mathcal{S}=\left\{S_{j} \mid 1 \leq j \leq m\right\}$ a decomposing sphere system with respect to K; if K is prime we put $\mathcal{S}=\emptyset$.

Remark 2.7.4. K_{i} does not depend on the choice of the arcs on ∂R_{i}.
Definition 2.7.5. Two decomposing sphere systems $\mathcal{S}=\left\{\left(S_{j}, K\right)\right\}$ and $\mathcal{S}^{\prime}=\left\{\left(S_{l}^{\prime}, K\right)\right\}$ are called equivalent if they define the same (unordered) factors K_{i}.

Theorem 2.7.6. Any non-trivial tame knot K can be decomposed into a finite number of prime knots $K=K_{1} \sharp K_{2} \sharp \ldots \sharp K_{n}$. Furthermore, the decomposition is unique up to order. That is, if $K=K_{1} \sharp K_{2} \sharp \ldots \sharp K_{n}=K_{1}^{\prime} \sharp K_{2}^{\prime} \sharp \ldots \sharp K_{m}^{\prime}$ are two decompositions, then $n=m$ and $K_{i}=K_{l(i)}^{\prime}$ for some permutation l of $\{1,2, \ldots, n\}$.

Proof. W.l.o.g, we can assume that K is a polygonal knot in PL S^{3}. The first part of the theorem is an easy consequence of the additivity of the genus of PL knots. The uniqueness of decomposition is proved by showing that any two decomposing sphere systems $\mathcal{S}=\left\{\left(S_{j}, K\right)\right\}$, $\mathcal{S}^{\prime}=\left\{\left(S_{l}^{\prime}, K\right)\right\}$ are equivalent. For a detailed proof, please refer to [3].

Chapter 3

Generalizing Some Concepts

3.1 Infinite Connected Sum of Knots

Definition 3.1.1. Let K be a knot in S^{3}. Suppose $B_{0}, B_{1}, \ldots, B_{n}$ are tame balls whose boundary meets K transversely in two points. For $0<i \leq n$, the balls $B_{i} \subset \operatorname{Int}\left(B_{0}\right)$ are disjoint. Let \widetilde{K} be the knot which is the union of the arcs $K \bigcap C l\left(B_{0}-\bigcup_{i=1}^{n} B_{i}\right)$, oriented as K, and arcs on the boundary of $C l\left(B_{0}-\bigcup_{i=1}^{n} B_{i}\right)$, oriented in the way that \widetilde{K} is oriented. Then \widetilde{K} is called the knot determined by $C l\left(B_{0}-\bigcup_{i=1}^{n} B_{i}\right)$ and K.

Recall that $C l\left(B_{0}-\bigcup_{i=1}^{n} B_{i}\right)$ is an n-annulus as defined in definition 2.5.5. We define a O-annulus to be a tame ball in S^{3}. The word annulus may refer to a k-annulus for any $k \geq 0$.

The notations are consistent from 3.1.2 to 3.1.6.

Definition 3.1.2. Let K be a knot in S^{3}. Then K is the connected sum of tame knots if (1) there is a finite or countable sequence $\mathcal{S}=\left\{S_{j}\right\}$ of disjoint tame 2-spheres embedded in S^{3}, with each S_{j} meets K transversely in two points.
(2) if $\left\{B_{i}\right\}$ is a countable sequence of tame 3-cells such that $\left\{\partial B_{i}\right\}$ is a subsequence of $\left\{S_{j}\right\}$ and $B_{i+1} \subset \operatorname{Int}\left(B_{i}\right)$, then $\bigcap B_{i}$ is a point.
(3) let B be a ball bounded by some element of \mathcal{S}, then there are at most a finite number of balls whose boundaries are elements in \mathcal{S}, say, C_{1}, \ldots, C_{n}, that are outermost in B, in the sense that $C_{i} \subset \operatorname{Int}(B)$ and there does not exist a ball $D \subset \operatorname{Int}(B)$ bounded by some $S_{k} \in \mathcal{S}$ such that $C_{i} \subset \operatorname{Int}(D)$.
(4) the notation here is as in (3). $C l\left(B-\bigcup_{i=1}^{n} C_{i}\right)$ determines a non-trivial tame knot, which
is called a factor of K.

If $\left\{S_{j}\right\}$ is a countable sequence, we say K is the infinite connected sum of tame knots. $\mathcal{S}=\left\{S_{j}\right\}$ is called a decomposing sphere system for K. If in (3) the tame knot is also prime, then we call $\mathcal{S}=\left\{S_{j}\right\}$ a prime decomposing sphere system for K. We may also call a prime decomposing sphere system a decomposing sphere system.

Remark 3.1.3. Note that (2) implies that if B is a ball bounded by some element of \mathcal{S}, and $C \subset \operatorname{Int}(B)$ is another ball bounded by some element of \mathcal{S}, then there is a ball $D \subset \operatorname{Int}(B)$ whose boundary is an element of \mathcal{S} such that $C \subset \operatorname{Int}(D)$ and D is outermost in B. Thus this excludes the case where there are infinitely many balls whose boundaries are elements in \mathcal{S} contained in $\operatorname{Int}(B)$, but no one is outermost in B.

Remark 3.1.4. In the next two chapters, we will give examples of constructing infinite connected sum of knots with tame knots.

Proposition 3.1.5. If $\left\{S_{j}\right\}$ is a countable, then $S^{3}-\bigcup S_{j}$ is the union of a countable collection of disjoint open annuli $\left\{A_{i}\right\}$ and a closed set W of totally disconnected points, such that the boundaries of $C l\left(A_{i}\right)$ are elements of \mathcal{S} and W is the set of wild points of K. Moreover, each closed annulus $C l\left(A_{i}\right)$ determines a non-trivial tame knot.

Proof. By conditions (1),(2),(3)(see remark 3.1.3), $S^{3}-\bigcup S_{j}$ contains the union of a countable collection of disjoint open annuli $\left\{A_{i}\right\}$ such that the boundaries of $C l\left(A_{i}\right)$ are elements of \mathcal{S}. Let $W=S^{3}-\bigcup S_{j}-\bigcup A_{i}$. By (4), each closed annulus determines a non-trivial tame knot. By (3) and (2), there is a countable sequence $\left\{B_{n}\right\}$ of tame 3 -cells such that $\left\{\partial B_{n}\right\}$ is a subsequence of $\left\{S_{j}\right\}, B_{n+1} \subset \operatorname{Int}\left(B_{n}\right)$, and $\bigcap B_{n}$ is a point p. Then p is not in any S_{j}, for the spheres are disjoint, nor in any A_{i}. So $W \neq \emptyset$.

If $p \in W$, then there is a countable sequence $\left\{B_{n}\right\}$ of tame 3-cells such that $\left\{\partial B_{n}\right\}$ is a subsequence of $\left\{S_{j}\right\}, p \in B_{n+1} \subset \operatorname{Int}\left(B_{n}\right)$, and by $(2), \bigcap B_{n}=p$. So $\bigcap\left(B_{n} \bigcap K\right)=p$, and hence $p \in K$. And p is a wild point of K, for there are infinitely many knots converging to
p. Conversely, if p is a wild point of K, then p is not in any S_{j} or A_{i} by (2),(3),(4). Hence $p \in W$. So W is the set of wild points of K.
W is closed in K, for the set of points at which K is locally tame is open. Since any two distinct points in W are separated by two disjoint balls, W is totally disconnected.

The following lemma can be obtained from the proof of proposition 3.1.5.

Lemma 3.1.6. If $\left\{B_{n}\right\}$ is a countable sequence of tame 3-cells such that $\left\{\partial B_{n}\right\}$ is a subsequence of $\left\{S_{j}\right\}, B_{n+1} \subset \operatorname{Int}\left(B_{n}\right)$, then $\bigcap B_{n}$ is a wild point of K. If p is a wild point of K, then there is a countable sequence $\left\{B_{n}\right\}$ of tame 3-cells such that $\left\{\partial B_{n}\right\}$ is a subsequence of $\left\{S_{j}\right\}, B_{n+1} \subset \operatorname{Int}\left(B_{n}\right)$, and $\bigcap B_{n}=p$.

3.2 Some Lemmas

Lemma 3.2.1. Let K be a tame knot in $S^{3}, \alpha \subset K$ be an arc, and \widehat{K} be a factor of K. Then there is a tame 3-cell C such that $K \bigcap C=\alpha$ and the knot determined by C is \widehat{K}.

Proof. Since \widehat{K} is a factor of K, there is a tame 3-cell D such that the knot determined by D and K is \widehat{K}. Let $D \bigcap K=\beta$. Since K is tame, there is an orientation-preserving homeomorphism $h:\left(S^{3}, K\right) \rightarrow\left(S^{3}, K\right)$ such that $h(\beta)=\alpha$. Let $C=h(D)$.

Lemma 3.2.2. Let the notation be defined as in 3.1.1, and assume that \widetilde{K} is a non-trivial tame knot. Let \widehat{K} be a factor of \widetilde{K}. Let B be $C l\left(S^{3}-B_{0}\right)$ or an element in $\left\{B_{1}, \ldots, B_{n}\right\}$. Then there is a a tame 3-cell C such that $B \subset \operatorname{Int}(C), \partial C \bigcap \partial B_{i}=\emptyset$ for $0 \leq i \leq n$, and the knot determined by $C l(C-B)$ and K is \widehat{K}.

Proof. W.l.o.g, assume that B is $C l\left(S^{3}-B_{0}\right)$. Let β be $\widetilde{K} \bigcap \partial B$, and α be a subarc of \widetilde{K} such that $\alpha \bigcap \partial B_{i}=\emptyset$ for $1 \leq i \leq n$ and $\beta \subset \operatorname{Int}(\alpha)$. By lemma 3.2.1,there is a tame 3-cell D such that $\widetilde{K} \bigcap D=\alpha$ and the knot determined by D and \widetilde{K} is \widehat{K}. W.o.l.g, we can assume that ∂D and ∂B_{i} are polyhedra in PL S^{3} and ∂D is in general position with $\partial B_{i}, 0 \leq i \leq n$. Then replace ∂D by a sphere S that is disjoint from each ∂B_{i}, obtained from ∂D by a finite
number of pushes (ambient homeomorphisms with compact support) ${ }^{1}$. Let C be the closure of the component of S that contains B.

Remark 3.2.3. Let the notation be as in lemma 3.2. Let M be the union of elements in a subset of $\left\{C l\left(S^{3}-B_{0}\right)\right\} \cup\left\{B_{1}, \ldots, B_{n}\right\}$. With an argument similar to that in proposition 3.2, we can show that there is a a tame 3-cell C such that $M \subset \operatorname{Int}(C), \partial C \bigcap \partial B_{i}=\emptyset$ for $0 \leq i \leq n$, and the knot determined by $C l(C-M)$ and K is \widehat{K}.

[^0]
Chapter 4

The Wilder Knots

4.1 Wilder Connected Sum

Definition 4.1.1 (Wilder connected sum of knots). Suppose K_{1} is a non-trivial tame knot in $S^{3}, C_{1}, C_{2}, \ldots$ is a sequence of tame 3-cells such that $C_{i+1} \subset \operatorname{Int}\left(C_{i}\right), \bigcap C_{i}=p \in K_{1}$, and $\left(C_{i}, C_{i} \bigcap K_{1}\right)$ is an S ball pair for each i. Let $\left\{K_{i}\right\}$ be a sequence of non-trivial tame knots in S^{3}, and $\left(C_{i j}, C_{i j} \cap K_{i}\right)$ be an S ball pair, with $C_{i 1} \bigcap C_{i 2}=\emptyset$ for $i=2,3, \ldots, j=1,2$. Define $M_{i}=C l\left(S^{3}-C_{i 1} \bigcup C_{i 2}\right), N_{i}=C l\left(C_{i-1}-C_{i}\right)$, for $i \geq 2$, and $M_{1}=N_{1}=C l\left(S^{3}-C_{1}\right) . B y$ theorem 2.5.3, M_{i}, N_{i} are homeomorphic to $S^{2} \times I$ for $i \geq 2$. Let $\alpha_{i j}$ be the two arcs $M_{i} \bigcap K_{i}$, $\beta_{i j}$ be the two arcs $N_{i} \bigcap K_{1}, i \geq 2$, where $\alpha_{i 1}$ is the arc exiting $\partial C_{i 1}$ and entering $\partial C_{i 2}, \beta_{i 1}$ is the arc exiting ∂C_{i-1} and entering ∂C_{i}. Define $f_{i}: M_{i} \rightarrow N_{i}$ to be an orientation-preserving homeomorphism such that $f_{i}\left(\partial C_{i 1}\right)=\partial C_{i-1}$, and for fixed $i j, f_{i}$ maps the end points of $\alpha_{i j}$ to the end points of $\beta_{i j}$, for $i=2,3, \ldots, j=1,2$. Let $\alpha_{1}=M_{1} \bigcap K_{1}$. The Wilder connected sum of $\left\{K_{i}\right\}$, written $K_{1} \sharp K_{2} \sharp \ldots$, is the simple closed curve $\alpha_{1} \cup \bigcup f_{i}\left(\alpha_{i j}\right) \cup\{p\}$ in S^{3}.

Remark 4.1.2. To see the f_{i} defined above exist, let S_{1}, S_{2} be the two components of the boundary of $A=S^{2} \times I$ and $p_{i j} \in S_{i}, q_{i j} \in S_{i}, i=1,2, j=1,2$ are eight points. W.l.o.g, we can assume that $p_{i j}$ should be mapped to $q_{i j}$. It is easy to see that there are orientationpreserving (OP) and orientation-reversing (OR) homeomorphisms of S_{1} onto S_{1} taking $p_{1 j}$ to $q_{1 j}$. Such an OPH (ORH) can be extended to an OPH (ORH), say h, of A onto itself. Then keep the points on S_{1} fixed and slide $h\left(p_{2 j}\right)$ on S_{2} till it is mapped to $q_{2 j}$. Also, each f_{i} can be extended to an OP ambient homeomorphism, and so the knot type of each K_{i} is preserved.

Proposition 4.1.3. $K_{1} \sharp K_{2} \sharp \ldots$ is an oriented knot in oriented S^{3}.

Proposition 4.1.4. Wilder connected sum is well-defined for equivalence classes of tame oriented knots in oriented S^{3}.

Proof. Suppose $\left\{K_{i}^{\prime}\right\}$ is a sequence of tame knots such that K_{i}^{\prime} is equivalent to K_{i} for each i. Define $M_{i}^{\prime}, N_{i}^{\prime}, \alpha_{i j}^{\prime}, \beta_{i j}^{\prime}, f_{i}^{\prime}, \alpha_{1}^{\prime}$ accordingly. Let $h_{1}:\left(N_{1}, \alpha_{1}\right) \rightarrow\left(N_{1}^{\prime}, \alpha_{1}^{\prime}\right)$ be an orientationpreserving homeomorphism(OPH). Suppose we have got an OPH $h_{n}:\left(\bigcup_{i=1}^{n} N_{i}, \alpha_{1} \cup \bigcup_{i=1}^{n} \bigcup_{j=1}^{2} f_{i}\left(\alpha_{i j}\right)\right) \rightarrow$ $\left(\bigcup_{i=1}^{n} N_{i}^{\prime}, \alpha_{1}^{\prime} \cup \bigcup_{i=1}^{n} \bigcup_{j=1}^{2} f_{i}^{\prime}\left(\alpha_{i j}^{\prime}\right)\right)$. Then $f_{n+1}^{\prime}{ }^{-1} h_{n} f_{n+1}: \partial C_{(n+1) 1} \rightarrow \partial C_{(n+1) 1}^{\prime}$ is an OPH that maps $K_{n+1} \cap \partial C_{(n+1) 1}$ to $K_{n+1}^{\prime} \cap \partial C_{(n+1) 1}^{\prime}$, and it can be extended to an OPH $g: M_{n+1} \rightarrow M_{n+1}^{\prime}$, which maps $K_{n+1} \cap \partial C_{(n+1) 2}$ to $K_{n+1}^{\prime} \cap \partial C_{(n+1) 2}^{\prime}$ as shown in the previous remark. Then g can be modified to get an OPH $\widetilde{g}:\left(M_{n+1}, \bigcup_{j=1}^{2} \alpha_{(n+1) j}\right) \rightarrow\left(M_{n+1}^{\prime}, \bigcup_{j=1}^{2} \alpha_{(n+1) j}^{\prime}\right)$. Define h_{n+1} by letting $h_{n+1}=h_{n} \cup f_{n+1}^{\prime} \widetilde{g} f_{n+1}^{-1}$. Finally, define h to be h_{n} on $\bigcup_{i=1}^{n} N_{i}$ for each n, and $h(p)=p^{\prime}$.

4.2 The Wilder Knots

Definition 4.2.1. A knot K in S^{3} is a Wilder knot if it is an infinite connected sum of tame knots with one wild point.

Remark 4.2.2. Intuitively, we can think a Wilder knot as a simple closed curve with a sequence of tame knots tied in it convergent to a point p in it, possibly from each side of p. See figure 4.1.

Definition 4.2.3. A wild knot is mildly wild if it is the union of two tame arcs.
Proposition 4.2.4. A Wilder knot is a mildly wild knot.
Remark 4.2.5. There is a mildly wild knot with one wild point that is not a Wilder knot. See [8].

Proposition 4.2.6. Let $\left\{K_{i}\right\}$ be a sequence of prime knots in S^{3}. The Wilder connected sum $K_{1} \sharp K_{2} \sharp \ldots$ is a Wilder knot. Conversely, every Wilder knot is the Wilder connected sum of a sequence of prime knots.

Proof. The first part is clear. Let K be an infinite connected sum of tame knots with one wild point p. Let $\mathcal{S}=\left\{S_{j}\right\}$ be a decomposing sphere system for K. By lemma 3.1.6, there is exactly one countable sequence $\left\{B_{n}\right\}$ of tame 3 -cells such that $\left\{\partial B_{n}\right\}$ is a subsequence of $\left\{S_{j}\right\}, B_{n+1} \subset \operatorname{Int}\left(B_{n}\right)$, and $\bigcap B_{n}$ is a point, which should be p. By definition 3.1.2, the knots determined by $C l\left(S^{3}-B_{1}\right)$ and $C l\left(B_{n}-B_{n+1}\right)$ are tame. By theorem 2.7.6, every tame knot can be factored into prime knots. Then the result follows from lemma 3.2.

Figure 4.1: Wilder knot

Definition 4.2.7. A prime knot type is an infinitely occurring prime if it appears infinite times in (a decomposition of) a wild knot, otherwise, a finitely occurring prime. We say two wild knots have the same list of prime knots if and only if they have the same set of finitely and infinitely occurring primes, with each finitely occurring prime appearing exactly the same number of times. We say two wild knots almost have the same list of prime knots if and only if they differ by a finite number of finitely occurring primes.

When working on the following theorem, we referred to the paper [5] by Fox and Harrold.

Theorem 4.2.8. Two Wilder knots K and K^{\prime} are equivalent if and only if they have the same list of prime knots.

Proof. Suppose K and K^{\prime} are equivalent. By proposition 4.2.6, K can be factored into prime knots. We show that K is uniquely factored into prime knots, and it would follow that K and K^{\prime} have exactly the same list of prime knots. Assume that K has n type- π knots in a decomposition. Take a tame 2 -sphere S that separates the wild point p of K from the n type- π knots of K, and intersects K transversely in two points. Denote the closure of the complementary component of S that does not contain p as D_{1}, and the closure of the other complementary component of S as D_{2}. Let K_{1} be the knot determined by D_{1}. Suppose in a different decomposition, K has m type- π knots. Take a tame 2 -sphere $S^{\prime} \subset \operatorname{Int}\left(D_{2}\right)$ that separates the wild point p of K from the m type- π knots of K and intersects K transversely in two points. Let D_{1}^{\prime} be the closure of the complementary component of S^{\prime} that does not contain p, and K_{1}^{\prime} be the knot determined by D_{1}^{\prime}. Then K_{1} is a factor of K_{1}^{\prime}, and hence m can not be less than n, for otherwise K_{1}^{\prime} would not be uniquely factored. By symmetry, $m=n$. If K has infinitely many type- π knots in one decomposition, then for each n, K has no less than n type- π knots in a different decomposition, so K has infinitely many type- π knots in the other decomposition.

Conversely, suppose K and K^{\prime} have the same list of prime knots. By proposition 4.2.6, $K=K_{1} \sharp K_{2} \sharp \ldots$ and $K^{\prime}=K_{1}^{\prime} \sharp K_{2}^{\prime} \sharp \ldots$, where $\left\{K_{i}\right\}$ and $\left\{K_{i}^{\prime}\right\}$ are two sequences of prime knots. Since Wilder knots are uniquely decomposed into prime knots, $K=K_{1} \sharp K_{2} \sharp \ldots$ and $K^{\prime}=K_{1}^{\prime} \sharp K_{2}^{\prime} \sharp \ldots$ have the same list of prime knots. If we can show that there is a decomposing sphere system for K such that $K=K_{1}^{\prime} \sharp K_{2}^{\prime} \sharp \ldots$, then K and K^{\prime} are equivalent by proposition 4.1.4. Let p be the wild point of K. Fix an n, there is a tame 2 -sphere S_{1} that meets K transversely in two points and separates $K_{1}^{\prime}, K_{2}^{\prime}, \ldots, K_{n}^{\prime}$ from p. Using lemma 3.2 repeatedly, there are tame 3 -cells $C_{1}, C_{2}, \ldots, C_{n}$ with $C_{i+1} \subset \operatorname{Int}\left(C_{i}\right), S_{1} \subset \operatorname{Int}\left(C_{n}\right)$, and the knot determined by $S^{3}-\operatorname{Int}\left(C_{1}\right)$ is K_{1}^{\prime}, the knot determined by $C_{i}-\operatorname{Int}\left(C_{i+1}\right)$ is $K_{i+1}^{\prime}, 1 \leq i<n$. Next we take a tame 2 -sphere S_{2} that meets K transversely in two points and separates
$K_{n+1}^{\prime}, K_{n+2}^{\prime}, \ldots, K_{2 n}^{\prime}$ from p. If S_{1} separates $K_{n+1}^{\prime}, K_{n+2}^{\prime}, \ldots, K_{2 n}^{\prime}$ from p, we take $S_{2}=S_{1}$. By lemma 3.2, there are tame 3-cells $C_{n+1}, C_{n+2}, \ldots, C_{2 n}$ with $C_{i+1} \subset \operatorname{Int}\left(C_{i}\right), S_{2} \subset \operatorname{Int}\left(C_{2 n}\right)$, and the knot determined by $C_{i}-\operatorname{Int}\left(C_{i+1}\right)$ is K_{i+1}^{\prime} for $n \leq i<2 n$. Continuing in this way, we can find a sequence of tame 3-cells C_{1}, C_{2}, \ldots such that $C_{i+1} \subset \operatorname{Int}\left(C_{i}\right)$, and $\cap C_{i}=p$, and the knot determined by $S^{3}-\operatorname{Int}\left(C_{1}\right)$ is K_{1}^{\prime}, the knot determined by $C_{i}-\operatorname{Int}\left(C_{i+1}\right)$ is K_{i+1}^{\prime}.

Chapter 5

C-wild Knots

5.1 Cantor Connected Sum

Definition 5.1.1 (Cantor connected sum of knots). Suppose $K_{01}=K_{0}$ is a non-trivial tame knot in $S^{3}, C_{i j}, i=1,2, \ldots, j=1,2, \ldots, 2^{i}$ is a sequence of tame 3 -cells such that $C_{1 j}$ are disjoint in S^{3} and $C_{(i+1)(2 j-1)}, C_{(i+1) 2 j}$ are disjoint subsets of $\operatorname{Int}\left(C_{i j}\right),\left(C_{i j}, C_{i j} \bigcap K_{1}\right)$ is an S ball pair for each $i j$, and diamC $C_{i j} \rightarrow 0$ as $i \rightarrow \infty$. Let $\left\{K_{i j}\right\}$ be a sequence of non-trivial tame knots in S^{3}, and $\left(C_{i j k}, C_{i j k} \bigcap K_{i j}\right)$ be disjoint S ball pairs for fixed $i j, i=1,2, \ldots, j=$ $1,2, \ldots, 2^{i}, k=0,1,2$. Define $M_{i j}=C l\left(S^{3}-\bigcup_{k=0}^{2} C_{i j k}\right), N_{i j}=C l\left(C_{i j}-C_{(i+1)(2 j-1)} \cup C_{(i+1) 2 j}\right)$, for $i \geq 1$, and $M_{0}=N_{0}=C l\left(S^{3}-C_{11} \bigcup C_{12}\right)$. By lemma 2.5.6, $M_{i j}, N_{i j}$ are homeomorphic for $i \geq 1$. Let $\alpha_{i j k}$ be the three arcs $M_{i j} \bigcap K_{i j}$, $\beta_{i j k}$ be the three arcs $N_{i j} \bigcap K_{0}$, where $\alpha_{i j 0}$ is the arc exiting $\partial C_{i j 0}, \alpha_{i j 2}$ is the arc entering $\partial C_{i j 0}, \beta_{i j 0}$ is the arc exiting $\partial C_{i j}, \beta_{i j 2}$ is the arc entering $\partial C_{i j}$. Define $f_{i j}: M_{i j} \rightarrow N_{i j}$ to be an orientation-preserving homeomorphism such that $f_{i j}\left(\partial C_{i j 0}\right)=\partial C_{i j}$, and for fixed $i j k$, $f_{i j}$ maps the end points of $\alpha_{i j k}$ to the end points of $\beta_{i j k}$, for $i=1,2, \ldots, j=1,2, \ldots, 2^{i}, k=0,1,2$. Let $\alpha_{0}=M_{0} \cap K_{0}$. Let $C_{i}=\bigcup_{j} C_{i j}$. The Cantor connected sum of $\left\{K_{i j}\right\}$, is the simple closed curve $\alpha_{0} \cup \bigcup f_{i j}\left(\alpha_{i j k}\right) \cup \bigcap C_{i}$ in S^{3}.

Remark 5.1.2. With lemma 2.5.6 and an argument similar to that in remark 4.1.2, we can show that $f_{i j}$ defined above exist and can be extended to an OP ambient homeomorphism.

Proposition 5.1.3. The Cantor connected sum is an oriented knot in oriented S^{3}.
Proposition 5.1.4. Cantor connected sum is well-defined for equivalence classes of tame oriented knots in oriented S^{3}.

Proof. Let $M_{i}=\bigcup_{j} M_{i j}, N_{i}=\bigcup_{j} N_{i j}, f_{i}=\bigcup_{j} f_{i j}$. Then use an argument analogous to the proof of 4.1.4.

Figure 5.1: Cantor connected sum

5.2 C-wild knots

Definition 5.2.1. A Cantor set is a compact metrizable space that is totally disconnected and has no isolated points.

Definition 5.2.2. A \boldsymbol{C}-wild knot is an infinite connected sum of tame knots whose wild points form a Cantor set.

Proposition 5.2.3. Let K be a C-wild knot and W be the set of wild points of K. Then $K-W$ is a countable union of open tame arcs $\left\{A_{i}\right\}$ such that $C l\left(A_{i}\right)$ is a tame arc whose end points are wild points of K.

Proposition 5.2.4. A C-wild knot is the Cantor connected sum of a sequence $\left\{K_{i j}\right\}$ of prime knots, where $i=0,1, \ldots, j=1,2, \ldots, 2^{i}$. Conversely, the Cantor connected sum of a sequence of prime knots is a C-wild knot.

Proof. The second part is clear. The first part is clear by proposition 5.2.3, theorem 2.7.6 and lemma 3.2. There is a detailed proof in theorem 5.3.7.

Proposition 5.2.5. A C-wild knot can be and is uniquely decomposed into prime knots.

Proof. The existence part is by proposition 5.2.4. With an argument similar to that in the proof of proposition 4.2.8, we can show that every C-wild knot is uniquely decomposed into prime knots.

Definition 5.2.6. Let K be a C-wild knot. Let $C_{i j}, i=1,2, \ldots, j=1,2, \ldots, 2^{i}$ be a sequence of tame 3-cells such that $C_{1 j}$ are disjoint in S^{3} and $C_{(i+1)(2 j-1)}, C_{(i+1) 2 j}$ are disjoint subsets of $\operatorname{Int}\left(C_{i j}\right)$.We say $\mathcal{C}=\left\{\partial C_{i j}\right\}$ is a Cantor decomposing sphere system (Cdds) for K if \mathcal{C} is a decomposing sphere system for K.

Theorem 5.2.7. Two C-wild knots K and K^{\prime} are equivalent if and only if there are prime Cantor decomposing sphere systems $\left\{\partial C_{i j}\right\}$ and $\left\{\partial C_{i j}^{\prime}\right\}$ for K resp. K^{\prime} such that

1. K and K^{\prime} have the same list of prime knots.
2. fix $i j$, the C-wild knots $J_{i j}$ and $J_{i j}^{\prime}$ determined by $C_{i j}$ and $C_{i j}^{\prime}$ respectively almost have the same list of prime knots.

Proof. Suppose K and K^{\prime} are equivalent. W.l.o.g, we can assume that $K=K^{\prime}$ as sets. Let W be the set of wild points of K. Let $\left\{\partial C_{i j}\right\}$ and $\left\{\partial C_{i j}^{\prime}\right\}$ be two Cdds for K such that $C_{i j} \bigcap W=C_{i j}^{\prime} \bigcap W$. By proposition 5.2.5, K is uniquely decomposed into prime knots. And it is easy to see that for fix $i j$, the C-wild knots $J_{i j}$ and $J_{i j}^{\prime}$ determined by $C_{i j}$ and $C_{i j}^{\prime}$ respectively almost have the same list of prime knots.

Conversely, suppose there are Cdds $\left\{\partial C_{i j}\right\}$ and $\left\{\partial C_{i j}^{\prime}\right\}$ for K resp. K^{\prime} satisfying conditions 1,2 , and K and K^{\prime} are the Cantor connected sum of $\left\{K_{i j}\right\}$ resp. $\left\{K_{i j}^{\prime}\right\}$. We want
to find a Cdds $\partial D_{i j}$ for K such that K is the Cantor connected sum of $\left\{K_{i j}^{\prime}\right\}$, then K would be equivalent to K^{\prime} by proposition 5.1.4. By 1,2 , for a large enough n, K_{01}^{\prime} and the prime knots appearing in $J_{1 j}^{\prime}$ but not in $J_{1 j}$, for $j=1,2$, would appear in the tame knot determined by $C l\left(S^{3}-\bigcup_{j=1}^{2^{n}} C_{n j}\right)$. By remark 3.2.3, we can find $D_{1 j}$ such that the knot determined by $D_{1 j}$ is $J_{1 j}^{\prime}$ and the knot determined by $C l\left(S^{3}-\bigcup D_{1 j}\right)$ is $K_{01}^{\prime}, j=1,2$. Next we want to find D_{21} and D_{22} such that the knot determined by $D_{2 j}$ is $J_{2 j}^{\prime}$ and the knot determined by $C l\left(D_{11}-\left(D_{21} \cup D_{22}\right)\right)$ is $K_{11}^{\prime}, j=1,2$. If all the prime knots appearing in $J_{n 1} \cup J_{n 2} \cup \ldots \cup J_{n 2^{n-2}}$ also appear in J_{21}^{\prime}, and all the prime knots appearing in $J_{n\left(2^{n-2}+1\right)} \cup \ldots \cup J_{n 2^{n-1}}$ also appear in J_{22}^{\prime} then we can find D_{21} and D_{22} using remark 3.2.3. If not, Since $J_{2 j}$ and $J_{2 j}^{\prime}$, almost have the same list of prime knots, for m large enough, all the prime knots appearing in $J_{m 1} \cup J_{m 2} \cup \ldots \cup J_{m 2^{m-2}}$ also appear in J_{21}^{\prime}, and all the prime knots appearing in $J_{m\left(2^{m-2}+1\right)} \cup \ldots \cup J_{m 2^{m-1}}$ also appear in J_{22}^{\prime}. Then we can find D_{21} and D_{22} by applying remark 3.2.3. Continuing this way, we can find a desired Cdds $\left\{\partial D_{i j}\right\}$ for K.

5.3 Wilder Knots in C-wild Knots

Definition 5.3.1. Let K be a C-wild knot and p be a wild point of K. Let $\mathcal{S}=\left\{S_{k}\right\}$ be a decomposing sphere system for K. A Wilder knot is called a Wilder knot (relative to \mathcal{S}) in K with wild point p if it is the union of subarcs of K and arcs on a subsequence of $\left\{S_{k}\right\}$ and its wild point is p.

Proposition 5.3.2. The notations are defined as in definition 5.3.1. Then there is a Wilder knot in K with wild point p.

Proof. By lemma 3.1.6, there is a countable sequence $\left\{B_{n}\right\}$ of tame 3-cells such that $\left\{\partial B_{n}\right\}$ is a subsequence of $\mathcal{S}=\left\{S_{k}\right\}, B_{n+1} \subset \operatorname{Int}\left(B_{n}\right)$, and $\bigcap B_{n}=p$. We can assume that B_{n+1} is outermost in B_{n}. Let M_{n+1} be the union of all the balls that are outermost in B_{n}, and whose boundaries are elements of \mathcal{S}. Let K_{n} be the tame knot determined by $C l\left(B_{n}-M_{n+1}\right)$. Then the infinite connected sum of $\left\{K_{n}\right\}$ is a desired Wilder knot.

Remark 5.3.3. Note that there are infinitely many inequivalent Wilder knots in K with wild point p.

Theorem 5.3.4. Two C-wild knots K and K^{\prime} are equivalent if and only if there are prime Cantor decomposing sphere systems $\left\{\partial C_{i j}\right\}$ and $\left\{\partial C_{i j}^{\prime}\right\}$ for K resp. K^{\prime} such that 1. K and K^{\prime} have the same list of prime knots.
2. let $J_{i j}$ and $J_{i j}^{\prime}$ be the C-wild knots determined by $C_{i j}$ and $C_{i j}^{\prime}$ respectively. Fix ij and let ω be a Wilder knot in $J_{i j}$. Then there is a Wilder knot γ in $J_{i j}^{\prime}$ such that all but finitely many prime factors of ω are prime factors of γ.

Proof. Suppose K and K^{\prime} are equivalent. W.l.o.g, we can assume that $K=K^{\prime}$ as sets. Let W be the set of wild points of K. Let $\left\{\partial C_{i j}\right\}$ and $\left\{\partial C_{i j}^{\prime}\right\}$ be two Cdds for K such that $C_{i j} \cap W=C_{i j}^{\prime} \cap W$. Let ω be a Wilder knot in $J_{i_{0} j_{0}}$ with wild point p. By lemma 3.1.6, there is a countable sequence $\left\{B_{n}\right\}$ of tame 3 -cells such that $\left\{\partial B_{n}\right\}$ is a subsequence of $\left\{\partial C_{i j}\right\}$, B_{n+1} is outermost in B_{n}, and $\bigcap B_{n}=p$. Suppose $\partial B_{n} \cap \omega \neq \emptyset$. Let ω_{n} be the tame knot determined by $C l\left(B_{n}-B_{n+1}\right)$ and ω. Assume that ω is the Wilder connected sum of $\left\{\omega_{n}\right\}$. Further assume that $C_{i_{0} j_{0}}=C_{11}$ and $B_{n}=C_{n 1}$ as sets. For each $n \geq 2$, take m_{n} large enough so that ω_{n-1} is a factor of the tame knot determined by $C l\left(C_{(n-1) 1}-C_{n 1}-\bigcup_{j=2^{m_{n}-n}+1}^{2^{m_{n}-n+1}} C_{m_{n} j}^{\prime}\right)$ and K. Let γ be the knot that is the union of subarcs of J_{11}^{\prime} and arcs on the boundaries of $\left\{C_{m_{n j}}^{\prime}\right\}$.

Conversely, suppose there are prime Cdds $\left\{\partial C_{i j}\right\}$ and $\left\{\partial C_{i j}^{\prime}\right\}$ for K resp. K^{\prime} such that conditions 1,2 are satisfied. Suppose that there are infinitely many prime factors of $J_{i_{0} j_{0}}$ that are not prime factors of $J_{i_{0} j_{0}}^{\prime}$. Then we can find a Wilder knot ω in $J_{i_{0} j_{0}}$ such that infinitely many prime factors of ω are not prime factors of $J_{i_{0} j_{0}}^{\prime}$. But this contradicts condition 2. So condition 2 of proposition 5.2.7 holds. So K and K^{\prime} are equivalent.

Definition 5.3.5. A cyclic order on \boldsymbol{a} set \boldsymbol{X} is a relation, written $[a, b, c]$, that satisfies the following axioms:

Cyclicity: If $[a, b, c]$ then $[b, c, a]$

Asymmetry: If $[a, b, c]$ then $\operatorname{not}[c, b, a]$
Transitivity: If $[a, b, c]$ and $[a, c, d]$ then $[a, b, d]$
Totality: If a, b, and c are distinct, then either $[a, b, c]$ or $[c, b, a]$

Definition 5.3.6. A function between two cyclically ordered sets $f: X \rightarrow Y$ is called order-preserving if $[a, b, c]$ implies $[f(a), f(b), f(c)]$.

Theorem 5.3.7. Two C-wild knots K and K^{\prime} with prime decomposing sphere systems $\mathcal{S}=$ $\left\{S_{k}\right\}$ resp. $\mathcal{S}^{\prime}=\left\{S_{k}^{\prime}\right\}$ are equivalent if and only if

1. K and K^{\prime} have the same list of prime knots.
2. let W, W^{\prime} be the set of wild points of K resp. K^{\prime}. Then there is an order-preserving bijection $f: W \rightarrow W^{\prime}$ such that if p, q are the end points of a tame subarc of K, then $f(p)$, $f(q)$ are the end points of a tame subarc of K^{\prime}.
3. suppose ω is a Wilder knot in K with wild point p. Then there is a Wilder knot γ with wild point $f(p)$ in K^{\prime} such that all but finitely many prime factors of ω are prime factors of γ.

Proof. Assume conditions 1, 2, 3. If $x \in W$, then x^{\prime} denote $f(x) \in W^{\prime}$. Let V be the set of wild points of K that are end points of tame subarcs of K.

Step 1. find a prime Cdds for K.
Let $p_{i}, q_{i} \in W$ be the end points of a tame subarc α_{i} of K for $i=1,2$ such that $\left[p_{1}, p_{2}, q_{2}\right]$ and $\left[p_{1}, q_{2}, q_{1}\right]$. Let C_{11} be a tame 3 -cell that intersects K transversely in two points on $\operatorname{Int}\left(\alpha_{1}\right)$ resp. $\operatorname{Int}\left(\alpha_{2}\right)$ such that $p_{1}, p_{2} \in \operatorname{Int}\left(C_{11}\right)$, and C_{12} be a tame 3-cell that intersects K transversely in two points on $\operatorname{Int}\left(\alpha_{1}\right)$ resp. $\operatorname{Int}\left(\alpha_{2}\right)$ such that $q_{1}, q_{2} \in \operatorname{Int}\left(C_{12}\right)$. Moreover, C_{11} and C_{12} are disjoint, and the knot determined by $C l\left(S^{3}-\left(C_{11} \cup C_{12}\right)\right)$ is prime, which is possible by lemma 3.2. Let $\alpha_{3} \subset \operatorname{Int}\left(C_{11}\right)$ be a tame subarc of K with end points $p_{3}, q_{3} \in V$ such that $\left[p_{1}, p_{3}, q_{3}\right]$ and $\left[p_{1}, q_{3}, p_{2}\right]$. Let $C_{21} \subset \operatorname{Int}\left(C_{11}\right)$ be a tame 3 -cell that intersects K transversely in two points on $\operatorname{Int}\left(\alpha_{1}\right)$ resp. $\operatorname{Int}\left(\alpha_{3}\right)$ such that $p_{1}, p_{3} \in \operatorname{Int}\left(C_{21}\right)$, and $C_{22} \subset \operatorname{Int}\left(C_{11}\right)$ be a tame 3-cell that intersects K transversely in two points on $\operatorname{Int}\left(\alpha_{3}\right)$
resp. Int $\left(\alpha_{2}\right)$ such that $q_{3}, p_{2} \in \operatorname{Int}\left(C_{22}\right)$. Moreover, C_{21} and C_{22} are disjoint, and the knot determined by $C l\left(C_{11}-\left(C_{21} \cup C_{22}\right)\right)$ is prime. Continuing in this way, we can find a prime Cdds $\left\{\partial C_{i j}\right\}$ for K.

Step 2. find a corresponding prime Cdds for K^{\prime}.
By condition (2), $p_{i}^{\prime}, q_{i}^{\prime} \in W^{\prime}$ are the end points of a tame subarc α_{i}^{\prime} of K^{\prime} for $i=1,2$ such that $\left[p_{1}^{\prime}, p_{2}^{\prime}, q_{2}^{\prime}\right]$ and $\left[p_{1}^{\prime}, q_{2}^{\prime}, q_{1}^{\prime}\right]$. Let C_{11}^{\prime} be a tame 3 -cell that intersects K^{\prime} transversely in two points on $\operatorname{Int}\left(\alpha_{1}^{\prime}\right)$ resp. $\operatorname{Int}\left(\alpha_{2}^{\prime}\right)$ such that $p_{1}^{\prime}, p_{2}^{\prime} \in \operatorname{Int}\left(C_{11}^{\prime}\right) \ldots$ Continuing in this way, we can find a prime Cdds $\left\{\partial C_{i j}^{\prime}\right\}$ for K^{\prime}.
Step 3. show that prime Cdds $\mathcal{C}=\left\{\partial C_{i j}\right\}$ for $K, \mathcal{C}^{\prime}=\left\{\partial C_{i j}^{\prime}\right\}$ for K^{\prime} satisfy conditions 1,2 of proposition 5.3.4.

Condition 1 of 5.3.4 is true by proposition 5.2.5, and condition 1 of this theorem. Now we prove condition 2 of 5.3.4. Let $J_{i j}$ and $J_{i j}^{\prime}$ be the C-wild knots determined by $C_{i j}$ and $C_{i j}^{\prime}$ respectively. Let ω be a Wilder knot in $J_{i_{0} j_{0}}$ with wild point p. By lemma 3.1.6, there is a countable sequence $\left\{C_{m}\right\}$ of tame 3-cells such that $\left\{\partial C_{m}\right\}$ is a subsequence of $\left\{\partial C_{i j}\right\}, C_{m+1} \subset \operatorname{Int}\left(C_{m}\right)$, and $\bigcap C_{m}=p$. We can assume that C_{m+1} is outermost in C_{m}, $\partial C_{m} \bigcap \omega \neq \emptyset$, and ∂C_{1} is also an element of \mathcal{S}. Let ω_{m} be the tame knot determined by $C l\left(C_{m}-C_{m+1}\right)$ and ω. Then we can find $B_{m 1}, \ldots, B_{m n_{m}}$ whose boundaries are elements of \mathcal{S} such that ω_{m} is a factor of the tame knot determined by $C l\left(C_{m}-C_{m+1}-\bigcup_{t=1}^{n_{m}} B_{m t}\right)$ and K. Let $\bar{\omega}$ be the knot that is the union of subarcs of K and arcs on the boundaries of C_{1} and $\left\{B_{m t}\right\}$, where $1 \leq t \leq n_{m}, m \geq 1$. Then $\bar{\omega}$ is a Wilder knot relative to \mathcal{S} in K with wild point p such that all but a finite number of prime factors of ω are prime factors of $\bar{\omega}$. By condition 3, there is a Wilder knot $\bar{\gamma}$ relative to \mathcal{S}^{\prime} with wild point p^{\prime} in K^{\prime} such that all but finitely many prime factors of $\bar{\omega}$ are prime factors of $\bar{\gamma}$. Then we can find a Wilder knot γ relative to \mathcal{C}^{\prime} with wild point p^{\prime} in K^{\prime} such that all but finitely many prime factors of $\bar{\gamma}$ are prime factors of γ. By step $2, p^{\prime}$ is in $C_{i_{0} j_{0}}^{\prime}$. So we can assume that γ is in $J_{i_{0} j_{0}}^{\prime}$. So conditions 1, 2 of 5.3.4 are satisfied and hence K and K^{\prime} are equivalent.

Conversely, assume that K and K^{\prime} with prime dds $\mathcal{S}=\left\{S_{k}\right\}$ resp. $\mathcal{S}^{\prime}=\left\{S_{k}^{\prime}\right\}$ are equivalent. Condition 1 is by proposition 5.2.5. Condition 2 follows immediately. Condition 3 can be done similarly as in Step 3.

Bibliography

[1] R. H. Bing, Locally tame sets are tame, Ann. of Math. vol. 59 (1954) pp. 145-158.
[2] R. H. Bing, The geometric topology of 3-manifolds, American Math. Sociaty, Colloquium Publ. Vol. 40, 1983.
[3] G. Burde, H. Zieschang, Knots, De Gruyter Studies in Mathematics, 5, De Gruyter, 1985.
[4] R. H. Fox, E. Artin Some wild cells and spheres in three-dimensional space[J]. The Annals of Mathematics, 1948, 49(4): 979-990.
[5] R. H. Fox, 0. G. Harrold, The Wilder arcs, Topology of 3-manifolds and related topics, Proc. Univ. of Georgia Inst., Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 184-187
[6] A. Hatcher, Algebraic topology, Cambridge Univ. Press, 2002.
[7] J.F. Hudson, E.C. Zeeman, On combinatorial isotopy, Publ. I.H.E.S. 19 (1964), pp. 69-74.
[8] S. J. Lomonaco, Uncountably many mildly wild non-Wilder arcs[J]. Proceedings of the American Mathematical Society, 1968, 19(4): 895-898.
[9] E.E. Moise, Geometric topology in dimensions 2 and 3, Springer-Verlag(New York),1977.
[10] D. Rolfsen, Knots and links, volume 7 of Mathematics Lecture Series[J]. Publish or Perish Inc., Houston, TX, 1990.

[^0]: ${ }^{1}$ See [2] for definitions and details.

