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Abstract

Vector measure theory and Bochner integration have been well-studied over the past

century. This work is an introduction to both theories and explores various examples and

applications in each. The theories and theorems are pre-existing, whereas the examples and

discussions are mine. Our primary examples of vector measures are toy vector measures,

which serve as a class of elementary yet nontrivial structures that enables us to grasp the

spirit and essence of the advanced theory, both on the conceptual and technical level. We

also discuss random measures as special cases of vector measures.

The theory of Bochner integration is introduced as a framework for the Radon-Nikodým

Property, which comes from the failure of the Radon-Nikodým Theorem to hold when gen-

eralized to Banach spaces. The consequences of this failure as well as Rieffel’s extension of

the theorem are discussed in Chapter 2.

Finally, we conclude with a brief introduction to Hilbert quantum theory and quantum

probability and introduce possible vector extensions of quantum probability theory.
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Chapter 1

Vector Measures

1.1 History and Motivation

Measure theory was developed primarily during the late 19th and early 20th century.

By the 1930’s investigations into extending real variable theory to functions taking values

in Banach spaces had begun. Among the noteworthy results were Gel’fand’s use of vector

measure-theoretic techniques to prove that L1[0, 1] is not the pre-dual of any Banach space

(1938) and Pettis’s contribution to the Orlicz-Pettis Theorem (weakly countably additive

vector measures are norm countably additive)[2].

Naturally, representing linear operators as integrals of Banach-valued functions (i.e.

Bochner integrals), which, requires some form of a Radon-Nikodým Theorem, has been of

great interest. Hence, elements of vector measure theory, specifically elements concerning

what is know as the Radon-Nikodým Property, are remarkably prolific in theories regarding

classification of topological vector spaces, operators, and Banach spaces.

In 1933, Bochner introduced an integral of a Banach-valued function with respect to a

scalar measure in Integration von Funktionen deren Werte die Elemente eines Vectorraumes

sind, which is now called the Bochner integral. In 1936, J.A. Clarkson as well as N. Dun-

ford and A.P. Morse established that absolutely continuous functions on a Euclidean space

with values in a uniformly convex Banach space, or resp., a Banach space with a bound-

edly complete basis, are the integrals of their derivatives.[2] These were later recognized by

Dunford as Radon-Nikodým theorems for the Bochner integral and hence, the first of the

Radon-Nkiodým theorems for vector measures. [2] In 1943, Phillips extended the Dunford

and Pettis’ Radon-Nikodým Theorem.[11] In 1968 Rieffel published the strongest version of

the Radon-Nikodým Theorem for the Bochner integral.
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In the 1960’s several results emerged in connection to Martingales, which lead to various

purely geometrical characterizations of spaces with the Radon-Nikodým Property; one of

the best known results is from Chatterji (1968)[1] pertaining to the relationship between the

Radon-Nikodým Theorem and the martingale mean convergence theorem. In the 1970s, work

in differentiating vector measures lead to geometric results involving the Radon-Nikodým

Property in Banach spaces.[18] In 1983, R.D. Bourgin showed that the Radon-Nikodým

Property is equivalent to several convergence properties for Bochner-valued martingales.[18]

In the first chapter, we will give a brief introduction to vector measures as well as

an overview of several major results in vector measure theory. In the second chapter, we

will progress to Bochner integration and the Radon-Nikodým Property with some attention

paid to Pettis integration and the general Radon-Nikodým theorem for Bochner integrals.

In the final chapter, we will introduce an axiomatic approach to quantum mechanics using

so-called “Quantum Probability” and formulate a hypothesis on the existence of “quantum

vector probabilites”.

1.2 Vector Measures

Let F0 be a ring of subsets of a set Ω, F a σ-ring of subsets of Ω, Σ0 an algebra on Ω,

and Σ a σ-algebra on Ω,1 Also, let X be a vector space over the field K(= C or R).

Definition 1.1. A vector-valued function F : F0 → X is called additive if, given disjoint

A,B ∈ F0, then F (A ∪B) = F (A) + F (B).2

This is well-defined since X is a vector space. If we assume that X is a topological vector

space, then we can consider countable additivity as well.

Definition 1.2. Let X be a topological vector space F : F → X is countably additive if,

for all sequences (Ek) of pairwise disjoint members of F for which
∞⋃
k=1

Ek ∈ F ,

1These terms are defined in Appendix A.
2Since ∅ ∩ ∅ = ∅, this condition also implies that µ(∅) = µ(∅ ∪ ∅) = µ(∅) + µ(∅) = 2µ(∅), and hence

µ(∅) = 0.
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F

(
∞⋃
k=1

Ek

)
=
∞∑
k=1

F (Ek),

in the topology on X.

The first two immediate examples of vector measures are signed measures and complex

measures from basic measure theory.

Example 1.3. Consider the vector space R and measurable space (Ω,Σ). Then a vector

measure F : Σ→ R is called a signed measure on (Ω,Σ).

Example 1.4. Similarly, if the vector space is C, then a vector measure F : Σ→ C is called

a complex measure on (Ω,Σ).

The equation for countable additivity must hold in the topology of X in order for F to

be well-defined. This means that, not only must the series converge, but, since the set union
∞⋃
k=1

Ek is invariant under permutations of the Ek’s, the series must converge unconditionally.

To understand the strength of this requirement, consider a sequence (Ek) of pairwise disjoint

members of F for which
∞⋃
k=1

Ek ∈ F . If F is well-defined, then F

(
∞⋃
k=1

Ek

)
= x0 for some

x0 ∈ X. Since F is finitely additive, for all n, F

(
n⋃
k=1

Ek

)
=

n∑
k=1

F (Ek). For each n,

define xn ∈ X as xn :=
n∑
k=1

F (Ek). Then, if F is well-defined, xn → x0 in X. Hence,

F

(
∞⋃
k=1

Ek

)
= lim

n→∞

n∑
k=1

F (Ek) =
∞∑
k=1

F (Ek). Since the series converges conditionally, i.e.

with any permutation of the F (Ek)’s, the series will also converge to x0 in X with respect

to the topology on X.

Therefore, a general topological space (or even a metric space) is not enough. Moreover,

theorems about such spaces would be too few to be of interest of in depth study. Hence,

for any reasonable purposes, all of the image spaces are F-spaces, which ensure luxury of

addition, topological convergence, and a triangle inequality.
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Definition 1.5. An additive vector-valued function from a σ-ring F into a topological

vector space X is called a vector measure on (Ω,F), and a countably additive vector-

valued function from a σ-ring F into a topological vector space X is called a countably

additive vector measure on (Ω,F).

Example 1.6. Let p ∈ [0,∞), and define F : ([0, 1],B, λ)→ Lp([0, 1],B, λ) by F (E) := 1IE

for all E ∈ B. Then, F is finitely additive and also countably additive by the countable

additivity over domain of integration for the Lebesgue integrals 3.

Example 1.7. Consider the previous example but with p = ∞. F is still finitely addi-

tive; however, F is not countably additive: let {En}n∈N be a pairwise disjoint collection

of measurable sets with positive measure, and let E :=
⋃
nEn. Then, F (E) = 1IE, and∑

n F (En) =
∑

n 1IEn . But for all n ∈ N,

‖1IE −
n∑
k=1

1IEk‖∞ = ‖1IE − 1I⋃n
k=1 Ek

‖∞ = ‖1I⋃∞
k=n+1 Ek

‖∞ = 1.

Therefore, F (E) 6=
∑

n F (En).

Note that some texts use “vector-measure” to describe a countably additive vector-

valued set function. Other texts reserve the name “vector-measure” for countably additive

set functions that take values in a Banach space.4 This is due, in large part, to the fact that

Banach spaces admit a plethora of linear functionals and linear operators, which are crucial

tools in characterizing vector measures. We will also make frequent use of the dual of our

image space, X∗, which will be desirably rich if X is a Banach space (or at least locally

convex).

1.3 “Toy” Vector Measures

The term toy vector measures comes from Paul-Andre Meyer’s term toy Fock spaces in

his book Quantum Probability for Probabilists,[12] in which the term was used to encompass a

3and because, for all p ∈ [1,∞) and all E ∈ B, |1IE |p = 1IE .
4However, many of the theorems we will see in this chapter to not require that our vector measures be

countably additive.
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class of elementary yet nontrivial structures to grasp the spirit and essence of the advanced

theory, both on the conceptual and technical level. We have adopted this phrasing for a

similar purpose.

Let X be an F-space5 and (N, 2N, c) a measure space. Fix a sequence (xn)∞n=1 ∈ XN,

and define F : 2N → X by F (E) :=
∑
n∈E

xn for all E ⊆ N.

Before we discuss whether or not F is a vector measure, we must first determine whether

or not it is well-defined. (In fact, in doing so, we will have established both finite and

countable additivity.) If E ⊆ N is finite, then
∑
n∈E

xn ∈ X. Suppose, then, that E is not

finite. For the sake of simplicity, we will consider the case E = N.

As mentioned before, since N =
⋃
n{n}, the well-defined claim reduces to the claim that

the series
∑
n∈N

xn converges unconditionally. Since X is an F-space, Orlicz Theorem gives us

useful characterizations of unconditional convergence:

Theorem 1.8. In a complete metrizable topological vector space, the following are equiva-

lent:6

1. (xk) is summable, that is, for every ε > 0, there is a finite set K ⊆ N such that, for

every finite L ⊆ N that is disjoint with K,

∥∥∥∥∥∑
n∈L

xk

∥∥∥∥∥ < ε.

2.
∑
k∈N

xk converges unconditionally in X.

3.
∑
k∈N

skxk converges for every sequence (sk) ∈ {−1, 1}N.

π.
∑
k∈N

skxk converges for every sequence (sk) ∈ {0, 1}N.

4. If X is also a Banach space, then (xk) ∈ XN is summable iff
∑
k∈N

skxk converges for

any bounded sequence (sk) of scalars.

5i.e. a complete metrizable topological vector space with a translation-invariant F-norm ‖x‖ = d(x, 0).
6The origin of the particular formulations is hard to find as these claims have been well-integrated into

the subject of functional analysis.
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Furthermore, in even an F -space, absolute convergence with the triangle inequality

immediately imply summability. However, only in finite dimensional Banach spaces are

the two equivalent[5]. (The reverse implication comes from the fact that, in such spaces,

convergence is equivalent to coordinatewise convergence.) An easy counterexample in the

finite dimensional case is the series
∞∑
n=1

1

n
en where (en) is the standard basis of the vector

space of all sequences with finitely many non-zero terms. The proofs of the preceeding

theorems may be found in the appendices.

Therefore, F is a countably additive vector measure if and only if the corresponding

sequence (xn) is summable.

1.4 Variation and Semivariation

An important concept in vector measures is variation, which acts similarly to a norm

for our vector measures7

Definition 1.9. Let F : Σ→ X be a vector measure and X an F-space. The variation of

F is the extended nonnegative function |F | : Σ→ [0,∞] given for all E ∈ Σ by

|F |(E) = sup{
n∑
k=1

||F (Ek)||X :
n⋃
k=1

Ek ⊆ E and Ek ∈ Σ are pairwise disjoint 1 ≤ k ≤ n}.

If |F |(Ω) < ∞, then F is called a measure of bounded variation. If we require that

F be σ-finite on (Ω,Σ), |F | : Σ → [0,∞] on (Ω,Σ), will be contably additive, and hence a

non-negative R-valued measure.

Example 1.10. Supposing that X is a Banach space, consider bounded variation for our

toy vector measure, F : 2N → X, given by F (E) :=
∑
n∈E

xn for all E ⊆ N. (where (xn) is

summable). Let E ⊆ N and {Ek}mk=1 a pairwise disjoint collection subsets of N such that
m⋃
k=1

Ek ⊆ E. Then,

m∑
k=1

||F (Ek)|| =
m∑
k=1

∥∥∥∥∥∑
j∈Ek

xj

∥∥∥∥∥ ≤
m∑
k=1

∑
j∈Ek

‖xj‖ =
∑

j∈
⋃m
k=1 Ek

‖xj‖ ≤
∑
j∈E

‖xj‖.

7In fact, we can define a norm on vector measures on (Ω,Σ) by ‖F‖ := |F |(Ω).
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Hence, |F |(E) ≤
∑
j∈E

‖xj‖ for all E ∈ Σ; that is, F is guaranteed to have bounded variation

if (xj) is absolutely convergent.8

Conversely, if F is of bounded variation, then (xn) is absolutely convergent. To see this,

let (xn) be a summable sequence in X so that the F defined by (xn) is of bounded variation.

Then,

∞ > |F |(N) ≥ sup
m∈N

((
m∑
n=1

‖F ({n})‖

)
+ ‖F ({n ∈ N|n > m})‖

)

≥ sup
m∈N

(
m∑
n=1

‖xn‖

)
=
∞∑
n=1

‖xn‖.

Example 1.11 (Vector Measure without Bounded Variation). [2] Consider again the ex-

ample where F : ([0, 1],B, λ) → L∞([0, 1],B, λ) is given by F (E) := 1IE for all E ∈ B. Let

{En}n∈N be a pairwise disjoint collection of measurable sets with positive measure, and let

E :=
⋃
nEn. For each n ∈ N, let πn = {E1, ..., En−1,

⋃∞
k=nEk} be a partition of E into finite

disjoint measurable sets each of finite measure. Then for each n ∈ N,∑
A∈πn

‖F (A)‖ =
n−1∑
k=1

‖1IEk‖∞ + ‖1I⋃∞
k=n Ek

‖∞ = n.

Hence, |F |(E) =∞ and F is not of bounded variation.

There are numerous interesting vector measures without bounded variation, but we will

save those for the coming section on random measures.

Lemma 1.12. : |F | : Σ→ X is a monotone function on Σ.

Proof. Let E,A ∈ Σ and A ⊆ E. Then for any pairwise disjoint collection, {Ak}nk=1 ⊆ Σ

such that Ak ⊆ A for 1 ≤ k ≤ n, Ak ⊆ E for 1 ≤ k ≤ n. Then,{
n∑
k=1

||F (Ak)||X :
n⋃
k=1

Ak ⊆ A and Ak ∈ Σ are pairwise disjoint for 1 ≤ k ≤ n

}
⊆{

n∑
k=1

||F (Ak)||X :
n⋃
k=1

Ak ⊆ E and Ak ∈ Σ are pairwise disjoint for 1 ≤ k ≤ n

}
,

and hence |F |(E) ≥ |F |(A).

8In fact, ‖F‖ =
∑
n ‖x‖n.
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Lemma 1.13. |F | : Σ→ X is finitely additive.

Proof. It will suffice to show that for E,A ∈ Σ with E ∩A = ∅ that |F |(E ∪A) = |F |(E) +

|F |(A). Let {Bi}li=1 be a disjoint collection in Σ such that Bi ⊆ E ∪ A for 1 ≤ i ≤ l. Let

Ei := Bi ∩ E and Ai := Bi ∩ A for 1 ≤ i ≤ l. Then {Ei}li=1 ∪ {Ai}li=1 is a pairwise disjoint

collection in Σ for which Ei ⊆ E and Ai ⊆ A for 1 ≤ i ≤ l. Then,

l∑
i=1

||F (Bi)|| =
l∑

i=1

||F (Ei ∪ Ai)|| =
l∑

i=1

||F (Ei) + F (Ai)||

≤
l∑

i=1

||F (Ei)||+ ||F (Ai)|| =
l∑

i=1

||F (Ei)||+
l∑

i=1

||F (Ai)||

≤ |F |(E) + |F |(A).

Now, let {Ek}nk=1 be a disjoint collection in Σ such that Ek ⊆ E for 1 ≤ k ≤ n, and let

{Aj}mj=1 be a disjoint collection in Σ such that Aj ⊆ A for 1 ≤ j ≤ m. Let Bi = Ei for

1 ≤ i ≤ n and Bn+i = Ai for 1 ≤ i ≤ m. Then, since A ∩ E = ∅, {Bi}n+m
i=1 is a disjoint

collection in Σ such that Bi ⊆ E ∪ A for 1 ≤ i ≤ n+m. Then,

|F |(E ∪ A) ≥
n+m∑
i=1

||F (Bi)|| =
n∑
k=1

||F (Ek)||+
m∑
j=1

||F (Aj)||.

Taking the supermum over {Ek} and {Aj}, |F |(E ∪ A) ≥ |F |(E) + |F |(A).

Theorem 1.14. If F : Σ→ X is a a countably additive vector measure of bounded variation,

then |F | is countably additive.

In other words, |F | is a “true” or classic measure.

Proof. Let {Ek}k∈N be a countable collection of disjoint measurable sets. If either |F |(
⋃
k Ek) =

∞ or
∑

k |F |(Ek) = ∞, then the proof is immediate. Suppose, then, that F is of bounded

variation.

1. Countable subadditivity:

8



Let {Aj}nj=1 be a disjoint collection of measurable subsets of
⋃
k Ek. Then for each

k ∈ N, {Aj ∩ Ek}nj=1 is a disjoint collection of measurable subsets of Ek and so

|F |(Ek) ≥
n∑
j=1

||F (Aj ∩ Ek)||. Then,

∑
k

|F |(Ek) ≥
∑
k

n∑
j=1

||F (Aj ∩ Ek)||

=
n∑
j=1

∑
k

||F (Aj ∩ Ek)|| ≥
n∑
j=1

∥∥∥∥∥∑
k

F (Aj ∩ Ek)

∥∥∥∥∥
=

n∑
j=1

∥∥∥∥∥F
(⋃

k

(Aj ∩ Ek)

)∥∥∥∥∥ =
n∑
j=1

||F (Aj)||.

Hence,
∑
k

|F |(Ek) ≥ |F |

(⋃
k

Ek

)
.

2. Countable superadditivity:

For each n ∈ N,
n⋃
k=1

Ek ⊆
⋃
k

Ek. Then, by monotonicity and finite additivity of |F |,

for all n ∈ N,

|F |

(⋃
k

Ek

)
≥ |F |

(
n⋃
k=1

Ek

)
=

n∑
k=1

|F |(Ek).

Hence, |F |

(⋃
k

Ek

)
≥

∞∑
k=1

|F |(Ek).

Since, |F |(∅) = 0, we have that |F | is a scalar measure on K (and a non-negative scalar

measure in case K = R). If F is of bounded variation, then for any collection {Ek}k∈N ∈ Σ,

∞ > |F |(
⋃
k

Ek) = Σk|F |(Ek). However, if F is not of bounded variation, then we will have

divergent series
∑
k

|F |(Ek).

Another important concept for vector measures is weak-variation.

Definition 1.15. Let F : Σ → X be a vector measure and X a Banach space. The weak-

variation of F is the extended nonnegative function |F |∗ : Σ→ [0,∞] given by

9



|F |∗(E) = sup{|x∗F |(E) : x∗ ∈ X∗, ||x∗|| ≤ 1},

where |x∗F | is the variation of the K-valued measure x∗F 9, for all E ∈ Σ.

If |F |∗(Ω) <∞, then F is said to be of bounded weak-variation.

Note that for any x∗ ∈ X∗ with ||x∗|| ≤ 1, E ∈ Σ, and pairwise disjoint collection

{Ek}nk=1 ⊆ Σ such that
n⋃
k=1

Ek ⊆ E,

n∑
k=1

|x∗F (Ek)| ≤
n∑
k=1

||x∗|| ||F (Ek)|| ≤
n∑
k=1

||F (Ek)||.

Therefore, |F |∗(E) ≤ |F |(E) for all E ∈ Σ.

For an instance of strict inequality, consider the Brownian Motion X = {Xt : t ≥ 0}, and

F be given by F (A) =
∫
A
f dX, for a bounded measurable f : R+ → R. Then |F |(A) =∞

for all non-degenerate intervals A, but |F |∗(A) <∞.[15]

Proposition 1.16. [2] If F : Σ → X is a vector measure of bounded variation, then a

non-negative R-valued measure µ : Σ→ [0,∞] is the variation |F | of F iff

1. |x∗F |(E) ≤ µ(E) for all E ∈ Σ and all x∗ ∈ X∗ with ||x∗|| ≤ 1, and

2. If ν : Σ → [0,∞] is a measure satisfying |x∗F |(E) ≤ ν(E) for all E ∈ Σ and all

x∗ ∈ X∗ with ||x∗|| ≤ 1, then µ(E) ≤ ν(E) for all E ∈ Σ.

In other words, |F | is the least upper bound (if it exists) of {|x∗F | : x∗ ∈ X∗ and ||x∗|| ≤ 1}.

Proof. ⇒ First, we will show that the two properties hold for µ = |F |.

Let x∗ ∈ X∗ and ||x∗|| ≤ 1.

1. |x∗F |(E) ≤ |F |(E) comes from |F |∗(E) ≤ |F |(E) for all E ∈ Σ.

2. Let ν be a measure satisfying the assumptions of the implications in 2. Let {Ei}ni=1 be

a disjoint collection of measurable subsets of E. Then,

9|x∗F |(E) = sup{
∑n
k=1 |x∗F (Ek)| : {Ek}nk=1 ⊆ Σ,

⋃n
k=1Ek ⊆ E} is well-defined since x∗F is well-defined.

10



ν

(
n⋃
i=1

Ei

)
=

n∑
i=1

ν(Ei) ≥
n∑
i=1

|x∗F |(Ei)

for all x∗ ∈ X∗ with ||x∗|| ≤ 1. Since ||F (E)|| = sup{|x∗F |(E) : x∗ ∈ X∗, ||x∗|| ≤ 1}

for all E ∈ Σ, we have that
n∑
i=1

ν(Ei) ≥
n∑
i=1

||F (Ei)||. Therefore, ν(E) ≥ |F |(E).

⇐ Suppose µ is a measure on Σ that satisfies the two conditions.

Then, by the second condition (with ν = |x∗F | for some fixed x∗ ∈ X∗), we know

µ(E) ≥ |F |(E) for all E ∈ Σ, and by the fact that |F |∗(E) ≤ |F |(E) for all E ∈ Σ, we have

the reverse inequality.

Proposition 1.17. [2] Let F : Σ→ X be a vector measure, then for all E ∈ Σ,

1. |F |∗(E) = sup

{∣∣∣∣∣
n∑
k=1

akF (Ek)

∣∣∣∣∣ : ak ∈ K, |ak| ≤ 1for1 ≤ k ≤ n, and{Ek}nk=1 ⊆ Σis a finite partition ofE

}
.

2. sup
E⊇A∈Σ

‖F (A)‖ ≤ |F |∗(E) ≤ 4 sup
E⊇A∈Σ

‖F (A)‖.

Proof. 1. Let E ∈ Σ and {Ek}nk=1 a partition of T into pairwise disjoint sets in Σ and

ak ∈ B
K10 for 1 ≤ k ≤ n. Then,∥∥∥∥∥
n∑
k=1

akF (Ek)

∥∥∥∥∥ = sup
x∗∈BX∗

∣∣∣∣∣x∗
n∑
k=1

akF (Ek)

∣∣∣∣∣ ≤ sup
x∗∈BX∗

n∑
k=1

|x∗F (Ek)| ≤ |F |∗(E).

For the reverse inequality, let x∗ ∈ X∗ with ‖x∗‖ ≤ 1, E ∈ Σ, and {Ek}nk=1 a partition

of T into pairwise disjoint sets in Σ. Then,

n∑
k=1

|x∗F (Ek)| =
n∑
k=1

sgn(x∗F (Ek))x
∗F (Ek)

=

∣∣∣∣∣x∗
(

n∑
k=1

sgn(x∗F (Ek))F (Ek)

)∣∣∣∣∣
≤

∥∥∥∥∥
n∑
k=1

sgn(x∗F (Ek))F (Ek))

∥∥∥∥∥ .
2. For the first inequality, let E ∈ Σ. Then,

10B
X

denotes the closed unit ball in the normed vector space X.
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sup
E⊇A∈Σ

‖F (A)‖ = sup
x∗∈BX

∗
sup

E⊇A∈Σ
|x∗F (A)| ≤ ‖F (E)‖.

For the second inequality, we first assume X is a Banach space over R. Let E ∈ Σ,

{Ek}nk=1 a partition of T into pairwise disjoint sets in Σ, and x∗ ∈ B
X∗

. Define

N+ := {k : 1 ≤ k ≤ n, x∗F (Ek) ≥ 0} and N− := {k : 1 ≤ k ≤ n, x∗F (Ek) < 0}. Then,

n∑
k=1

|x∗F (Ek)| =
∑
k∈N+

x∗F (Ek)−
∑
k∈N−

x∗F (Ek)

≤

∣∣∣∣∣x∗
(∑
k∈N+

x∗F (Ek)

)∣∣∣∣∣+

∣∣∣∣∣x∗
(∑
k∈N−

F (Ek)

)∣∣∣∣∣
≤ 2 sup

E⊇A∈Σ
‖F (A)‖

If the scalar field is C, the following argument will work for x∗F split into real and

imaginary parts, yielding the 4 sup
E⊇A∈Σ

‖F (A)‖ in the proposition.

Note that the second claim implies that a vector measure is of bounded weak-variation iff

its range is bounded in X; hence, a vector measure of bounded weak-variation is called a

bounded vector measure.

1.5 Linear Operators, Integrals with respect to Vector Measures, and descrip-

tive theorems

As mentioned before, elements of vector measure theory can be very useful in describing

the Banach spaces into which vector measures map. The following is a slight digression to

illustrate such descriptions.

With weak-variation in hand, we are ready to construct a rudimentary integral of a

bounded measurable function with respect to a bounded vector measure. We follow Diestel

and Uhl’s construction from Chapter 1 of Vector Measures :

12



Let Σ be an σ-algebra on Ω and F : Σ→ X a bounded vector measure. Let B((Ω,Σ),K)

denote the space of all bounded Σ-measurable K-valued function on Ω (with supremum norm

‖ · ‖∞), and let B0((Ω,Σ),K) = B0 denote the subspace of all simple scalar functions on Ω.

Then, define TF : B0 → X by

TFf :=
n∑
k=1

akF (Ek)

for each f ∈ B0 (where f is given by f :=
n∑
k=1

ak1IEk for some n ∈ N with ak ∈ K and Ek ∈ Σ

for 1 ≤ k ≤ n and {Ek}nk=1 a partition of E). Then TF is a linear map and, for all f ∈ B0,

||TF (f)|| =

∥∥∥∥∥
n∑
k=1

akF (Ek)

∥∥∥∥∥ = ||f ||∞

∥∥∥∥∥
n∑
k=1

ak
||f ||∞

F (Ek)

∥∥∥∥∥ ≤ |F |∗(Ω)||f ||∞.

Then TF has a unique continuous linear extension to the space of all K-valued functions on

Ω that are uniform limits of simple functions Σ-measurable K-valued functions on Ω, B(Σ0).

Now, we are ready to define an integral with respect to our vector measure.

Definition 1.18. Let (Ω,Σ) be a measurable space and F : Σ → X be a bounded vector

measure, the for each f ∈ B(Σ), we define
∫
f dF by∫

f dF = TF (f).

This is only a crude introduction to integration with respect to vector measures, but,

as it is not in the scope of this paper, a crude introduction will have to do. This integral is,

in fact, linear, and, as indicated above, satisfies∥∥∥∥∫ f dF

∥∥∥∥ ≤ ||f ||∞|F |∗(Ω).

Our final remark on this integral is the following theorem:[2]

Theorem 1.19. Let (Ω,Σ) be a measurable space and X a Banach space, and let µ : Σ →

[0,∞] be a non-negative R-valued measure on (Ω,Σ). Then there is a one-to-one linear

correspondence φ between L(L∞(µ);X)) and the space of all bounded vector measures F :

Σ→ X that vanish on µ-null sets give by φ(TF (f)) =

∫
f dF for all f ∈ L∞(µ).

13



We will close this section with a few more definitions and important theorems, the

discussions of which we will omit.

Definition 1.20. Let Σ0 be an algebra on Ω, F : Σ0 → X a vector measure, and µ : F → R

a finite measure on F . Then F is called µ-continuous, F << µ if lim
µ(E)→0

F (E) = 0.

Definition 1.21. Let Σ0 be an algebra on Ω, and F : Σ0 → X a vector measure. F

is strongly additive whenever, given a pairwise disjoint sequence (Ek) in Σ0, the series
∞∑
k=1

F (Ek) converges in the norm.

If Σ is a σ-algebra, this is weaker than countable additivity; note that, without an

equation, convergence need not be unconditional.

Definition 1.22. A family {Fτ : Σ0 → X : τ ∈ T} of strongly additive vector measures

is uniformly strongly additive whenever, for any pairwise disjoint sequence (Ek) ⊆ Σ0,

lim
k→∞

∥∥∥∥∥
∞∑
m=k

Fτ (Em)

∥∥∥∥∥ = 0 uniformly for τ ∈ T .

Again, if {Fτ : Σ0 → X : τ ∈ T} is a family of countably additive vector measures, then

uniform strong additivity is just uniform countable additivity.

As previously mentioned, many of our theorems will hold for finitely additive vector

measures; however, several require the slighly stronger requirement of strong additivity, such

as the two following theorems.

Theorem 1.23 (Nikodým Boundedness Theorem). [2] Let (Ω,Σ) be a measurable space and

{Fτ : τ ∈ T} a family of X-valued vector measures defined on Σ. If sup
τ∈T
||Fτ (E)|| < ∞ for

each E ∈ Σ, then {Fτ : τ ∈ T} is uniformly bounded, i.e. sup
τ∈T
|Fτ |∗(Ω) <∞.

Theorem 1.24 (Vitali-Hahn-Saks-Nikodým Theorem). [2] Let Σ be a σ-field of subsets of

Ω and (Fn) a sequence of strongly additive X-valued measures on Σ. If limn Fn(E) exists in

X-norm for each E ∈ Σ, then the sequence (Fn) is uniformly strongly additive.
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Theorem 1.25 (Orlicz-Pettis). 11[2] Let
∑

n xn be a series in X such that every subseries

of
∑

n xn is weakly convergent. Then
∑

n xn is unconditionally convergent in norm. Con-

sequently, a weakly12 countably addtitive vector measure on a σ-algebra is (norm) countably

additive.

Finally, we close this section with one of the most powerful theorems for vector (and

scalar)-valued set functions.

Theorem 1.26. [3] Let Σ be a σ-algebra of subsets of a set Ω, and let µ be a complex or

signed measure on Σ. Suppose {Fn} is a sequence of µ-continuous vector or scalar valued

additive set functions on Σ such that limn Fn(E) exists for each E ∈ Σ. Then,

lim
|µ|(E)→0

Fn(E) = 0

uniformly for n = 1, 2, ....13

1.6 Vector Measures and Random Measures

One of the most natural examples14 of a vector measure is a random measure. In this

section we will introduce random measures and discuss where they fit in vector measure

theory. First, note that there are at least two senses of the term “random measure”. The

first is a wider sense, which we will just mention:

In a wide sense, a random measure is simply a vector measure whose range is L0(S,S, P ),

where (S,S, P ) is a probability space.15 Since members of L0(S,S, P ) are called random

variables, the vector measure is called a random measure. A primary example of a random

measure in the wide sense is “White Noise”:

11This is often presented with the Orlicz Theorem given with the Toy Vector Measures example.
12that is, the series converges weakly in X
13It certainly bears mentioning that this theorem is very much akin to a corollary of the Uniform Bounded-

ness Principle, and, in fact, the proofs of the Vitali-Hahn-Saks Theorem (whether they use the gliding-hump
method or Bare Category Theorem) greatly resemble those for the Uniform Boundedness Principle

14“Example” should be used loosely here, for, as we will see, a random measure may not be additive.
15Note that, although L0(S,S, P ) is not a Banach space, we can define a complete metric on L0(S,S, P ),

e.g. the metric given by d(X,Y ) = Emax{1, |X − Y |}, and hence we consider L0(S,S, P ) an F-space.

15



Example 1.27. Say we have a Brownian motion Xt on (Ω,F , P ), and let B[0, 1] = B

represent the σ-algebra of sets on [0, 1]. Then B is generated by the field, B0 of finite unions

of intervals of the form (a, b] ⊆ (0, 1].

Define X : {(a, b] : (a, b] ⊆ (0, 1]} → L2(Ω,F , P ) by X(a, b] = Xb − Xa, i.e. the

increments of Xt.

For A ∈ B0 where A is the finite union of pairwise disjoint intervals (ak, bk], we can

establish finite additivity of X: Let A =
⋃
k(ak, bk] where (ak, bk] ⊆ (0, 1] are pairwise

disjoint. Then,

XA =
∑
k

X(ak, bk].

Since Xt is Brownian motion, Xt has orthogonal increments,

‖XA‖2 =
∑
k

‖Xbk −Xak‖2.

Furthermore, since our image space is L2(Ω,F , P ),

‖Xb −Xa‖2 = E|Xb −Xa|2 = E|Xb|2 − E|Xa|2.

Then F (t) := E|Xt|2 is a bounded nondecreasing function on [0, 1], which then generates

a bounded Borel measure µ on B0. And so, we have for all A ∈ B0 where A is the finite

union of pairwise disjoint intervals (ak, bk]

‖XA‖2 =
∑
k

‖Xbk −Xak‖2 =
∑
k

µ(ak, bk] = µ(A).

Now, let A ∈ B, and choose a collection An ∈ B0 such that µ(A∆An) → 0. Then,

XAn is Cauchy in L2(Ω,F , P ) and hence converges. Define X : B → L2(Ω,F , P ) by

XA := limn→∞XAn where An ∈ B0 and µ(A∆An) → 0. It follows that if An ∈ B are

pairwise disjoint, then X(
⋃
n

An) =
∑
n

X(An) a.e., and hence X is a countably additive

vector measure. This vector measure (or wide-sense random measure) generated by Brownian

motion is called white noise. From real analysis, we know that if a function is of bounded

variation, then its derivative exists almost everywhere. Therefore, since Brownian motion is

(almost surely) nowhere differentiable, X is not of bounded variation.
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The other sense of “random measure” is much narrower. Consider a countably-additive

vector-valued function F from a measurable space (Ω,F) to an F-space, X ⊆ L0(S,S, P ),

where (S,S, P ) is a probability space. This F is then a vector measure and a random measure

in the wide sense, but the narrow sense requires more.

Definition 1.28. A random measure is a kernel from a probability space (S,S, P ) to a

measurable space (Ω,F), that is, a function ξ : S × F → R+ such that ξ(·, E) is a random

variable on (S,S, P )16 and ξ(s, ·) is a measure on F P -a.s..

A random measure is often denoted by ξs(E) for all s ∈ S and E ∈ F , and the subscript

is often dropped. By using ξ to refer specifically to the mapping from F into L0(S,S, P )

given by ξ(E) = ξ(·, E), we can refer to ξ as a vector measure (provided, of course, that it

is additive). Then we would say a random measure is a function ξ : (Ω,F) → L0(S,S, P )

such that ξ(E) ∈ L0(S,S, P ) for all E ∈ F and ξs is a scalar measure on F for each s ∈ S.

This notation also allows us to refer to ξ as the family of random variables {ξE : E ∈ F}.

Notice that a random measure in the narrow sense is not, by definition, additive. How-

ever, if, for any two disjoint measurable sets E0 and E1 in B, ξ(E0 ∪ E1, ω) = ξ(E0, ω) +

ξ(E1, ω) a.e. for any ω ∈ Ω, then ξ is a vector measure. If, for any collection (Ek)k∈N of

pairwise disjoint open sets in F , ξ(
⋃
k Ek, ω) =

∑
k ξ(Ek, ω) a.e. for any ω ∈ Ω, we say that

ξ is a countably additive vector measure. Because ξ is originally defined as taking values

in R+
, we can see that there is a direct correspondence in whether ξ(·, E) is (σ-)finite and

whether ξ(ω,E) is (σ-)finite.

For the sake of an example, we will progress towards a Poisson process via random

measures and point processes, a move which will be facilitated by the following theorem

from T.E. Harris [9]:17

Theorem 1.29 (Harris). Let S be a (complete) metric space, B the Borel σ-field of S, and

X = {XB : B ∈ B} a random process on B such that

16That is, an element of L0(S,S, P ).
17This is a version of the theorem from O. Kallenberg. The original statement of the theorem can be found

in Appendix F.
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1. XB ≥ 0 for all B ∈ B,

2. XB1∪B2 = XB1 +XB2 a.s. for all pairs B1 and B2 of disjoint sets in B, and

3. XBn P−→0 as Bn → ∅.

Then there exists a random measure ξ on S such that ξB = XB a.s. for all B ∈ B.

Definition 1.30. A random measure ξ on a measurable space has independent incre-

ments if for any disjoint sets E1, ..., En ∈ F , the random variables ξE1, ..., ξEn are indepen-

dent.

Definition 1.31. A point process ξ on a space S is a locally finite random measure from

(S,S, P ) to (Rd,Bd) that takes values in Z for all bounded B ∈ Bd.

A point process can be thought of as a count of a collection of random points.

Example 1.32. A classic example of a point process is a “counting process”. Take a random

sequence (Xn) with values in Rd and let ξE be a count of Xn’s in E, i.e. ξE =
∑
n

1IE(Xn).

With these two definitions in mind, we can see that a standard Poisson process is an

example of a random measure.

Definition 1.33. A Poisson process on a measurable space (Ω,F) with intensity measure

µ, is a point process ξ on Ω with independent “increments” (i.e. disjoint sets) such that ξE

has Poisson distribution with mean µ(E) for all E ∈ F such that µ(E) <∞.

If we have the luxury of having our point process on (R+,B, λ), our points will have a

linear ordering, allowing us to discuss increments.

Definition 1.34. A Poisson process with rate λ is a family of random variables Nt, t ≥ 0

such that

1. if 0 = t0 < t1 < ... < tn, then for each 1 ≤ k ≤ n, Ntk −Ntk−1
are independent, and
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2. Nt −Ns is Poisson with mean (λ(t− s)) for all t > s > 0.

As mentioned before, ξ may be considered as the family of random variables {ξE : E ∈

F}. Hence, this is a specific case where Ω = [0,∞) and F = B. (Specifically, N(tk) −

N(tk−1) = ξ(tk−1, tk]). Furthermore, here µ is given by µ(s, t] = λ(t− s).

As defined, a Poisson process must be a random measure. However, even without this

progression of definitions, it is not very suprising that a “counting” process would be a

random measure:

Let (S,S, µ) be a σ-finite separable measure space and (Ω,F , P ) a probability space.

Let Xn : Ω→ S be random elements (i.e. measurable functions), and let a full event (i.e. an

event with full measure) Ω0 be the common domain of the sequence Xn. Define the counting

measure as

(NS)(ω) =
∑
n

1IS(Xn(ω)), for a given S ∈ S and all ω ∈ Ω0.

Then, for all ω ∈ Ω0, it is the counting measure of the sequence (xn) = (Xn(ω)).

However, we also have defined a vector measure with values in L2(Ω,F , P ):

S 7→ N(S)(·) =
∑
n

1IS(Xn(·)) for all S ∈ S.

There do, however, exist vector measures of the form F : (Ω,F) → L0(S,S, P ) such

that F (E, ·) ∈ L0(S,S, P ) for all E ∈ F and F (·, ω) is not a scalar measure on F for each

ω ∈ Ω.

Example 1.35. Let (rn) be a sequence of Rademacher functions18 defined on ([0, 1],B, P )

and (an) ∈ `2(R)\`1(R). Define the Rademacher measure on (N, 2N, c) as the vector measure

with values in L2([0, 1],B, P ) by

F (K) =
∑
n∈K

anrn, for all K ∈ 2N.

18defined in Appendix B
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If c(K) =∞, then the series converges in the metric space L2. Hence, we immediately

have unconditional convergence required for F to be a vector measure.

Then, for each infinite K ⊆ N, there is a full event ΩK such that for all ω ∈ ΩK ,

∑
n∈K

anrn(ω) = lim
N→∞

N∑
n=1

1In∈Kanrn(ω).

Now, to have a scalar measure a.s. on 2N when some ω ∈ ΩN is fixed, we need, in

particular, that

F (N)(ω) =
∑
n∈N

F ({n})(ω) =
∑
n∈N

anrn(ω) <∞.

Since the collection ({n})n ∈ N is invariant under permutations,
∑
n∈N

anrn(ω) must be

unconditionally convergent. In R, this is equivalent to absolute convergence. However,∑
n∈N

|anrn(ω)| =
∑
n∈N

|an| where (an) /∈ `1.

Therefore, F is a vector measure, but not a random measure in the narrow sense.

An analogous argument shows that Brownian Motion is not a random measure in the

narrow sense. (As previously established, it is a countable vector measure.) The claim that

BM is a random measure amounts to the claim that almost all paths of a given BM have

bounded variation on [0, 1].

1.7 Conclusions

Now, we are equipped with a basic introduction to vector measures. In the next chapter,

we will explore expressing vector measures as integrals of Banach-valued functions (and vice

versa), which, in cases of a general domain space, requires some form of a Radon-Nikodým

Theorem.
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Chapter 2

Bochner Integration and the RNT

This section will develop a vector-valued integral of a vector-valued function with respect

to a scalar measure, called the Bochner integral. The Bochner integral will allow us to expand

the class of Lebesgue integrable functions to include vector-valued functions and to integrate

this new class of functions, which we will call Bochner integration. By defining this vector-

valued integral and extending the class of Lebesgue integrable functions, we will be able to

formulate a Radon Nikodým Theorem in the more general context of Banach spaces. Since

the theorem fails in some Banach spaces, the Radon Nikodým property emerges.

For this and subsequent sections, we will consider a probability space (Ω,Σ, µ) and

Banach space X with underlying field R. Again, all vector measures are understood to be

countably additive. There are analogous results for C, and many of these results extend to

other scalar fields and σ-finite spaces, but since the aim is to understand concepts applying to

functions between probability spaces and Banach spaces, we will not obscure these concepts

with other scalar fields.

2.1 Bochner Integral for µ-Simple Functions

Definition 2.1. A function f : Ω→ X is µ-simple if f(ω) =
n∑
i=1

1IEixi where E1, ..., En are

disjoint1 members of Σ, µ(Ei) <∞ for all i, and x1, ..., xn ∈ X. 2

We need not require that µ(Ei) <∞ for all i, but this requirement will allow our results

to extend to σ-finite measure spaces, since it will force the integrals of our simple functions

to be well-defined. Now, we will define the Bochner integral for µ-simple functions.

1They need not be disjoint yet, but WLOG, it’s convenient to make this assumption at the outset.
2Of course, it is implicit that f : (Ω−

⋃n
i=1Ei)→ {0} ⊆ X.
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Definition 2.2. Let f : Ω → X is µ-simple; then for any E ∈ Σ, its Bochner integral is

defined as ∫
E

f dµ =
n∑
i=1

µ(E ∩ Ei)xi

where f(ω) =
n∑
i=1

1IEixi with E1, ..., En disjoint members of Σ and x1, ..., xn ∈ X.

Proposition 2.3. The Bochner integral of a µ-simple function f is independent of the

representation of f .

Proof. Let f(ω) =
n∑
i=1

1IEixi =
m∑
j=1

1IAjyj on a measurable set E where E1, ..., En and

A1, ..., Am are collections of disjoint measurable sets,
n⋃
i=1

Ei =
m⋃
k=1

Aj = E, and

x1, ..., xn, y1, ..., ym ∈ X. Then consider the refinement of both partitions, {Fi,j} where

Fi,j = Ei ∩ Aj for all i, j. Then, f(ω) =
n∑
i=1

m∑
j=1

1IFi,jxi =
n∑
i=1

m∑
j=1

1IFi,jyj. Furthermore,

n∑
i=1

µ(E ∩ Ei)xi =
n∑
i=1

m∑
j=1

µ(E ∩ Fi,j)xi and
m∑
j=1

µ(E ∩ Aj)yj =
n∑
i=1

m∑
j=1

µ(E ∩ Fi,j)yj

Thus, it remains to show that
n∑
i=1

m∑
j=1

µ(E ∩ Fi,j)xi =
n∑
i=1

m∑
j=1

µ(E ∩ Fi,j)yj, which follows

from the observation that, for each pair i, j, given Fi,j 6= ∅, we have that xi = yj.

Before we continue, we will establish linearity, additivity, and contractivity for Bochner

integrals of µ-simple functions.

Proposition 2.4 (Linearity). Let f, g : Ω→ X be µ-simple functions and α ∈ R. Then, for

all E ∈ Σ,

1.

∫
E

αf dµ = α

∫
E

f dµ

2.

∫
E

f + g dµ =

∫
E

f dµ+

∫
E

g dµ
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Proof. Since the claim for E ⊆ Ω will be analogous, we will show the claim for E = Ω. Also,

say f =
n∑
i=1

1IBixi and g =
m∑
j=1

1IAjyj where x1, ..., xn, y1, ..., yn ∈ X and (Bi) and (Ai) are

finite collections of disjoint measurable sets.

1. By the properties of vector spaces,

∫
f dµ =

n∑
i=1

µ(Bi)αxi = α

n∑
i=1

µ(Bi)xi = α

∫
f dµ.

2. Let Ei,j = Bi ∩ Aj for all i, j. Then (Ei,j) is a refinement of both (Bi) and (Aj), and

we can define the simple function f + g as
n∑
i=1

m∑
j=1

1IEi,j(xi + yj). Then,

∫
f dµ+

∫
g dµ =

n∑
i=1

µ(Bi)xi +
m∑
j−1

µ(Aj)yj =
n∑
i=1

m∑
j=1

µ(Bi ∩ Aj)(xi + yj)

=
n∑
i=1

m∑
j=1

µ(Ei,j)(xi + yj) =

∫
f + g dµ

Corollary 2.5 (Additivity). If (Ei)
n
i=1 are disjoint measurable sets whose union is E ∈ Σ

and f : Ω→ X is a µ-simple function then
n∑
i=1

∫
Ei

f dµ =

∫
E

f dµ.

If we let fi = f · 1IEi , the proof follows from linearity.

Proposition 2.6 (Contractivity). Let f : Ω→ X be a µ-simple function. Then∥∥∥∥∫
E

f dµ

∥∥∥∥ ≤ ∫
E

‖f‖ dµ.

Proof. WLOG, we will show the claim for E = Ω. Let f =
n∑
i=1

1IEixi. Then,∥∥∥∥∫ f dµ

∥∥∥∥ =

∥∥∥∥∥
n∑
i=1

µ(Ei)xi

∥∥∥∥∥ ≤
n∑
i=1

µ(Ei)‖xi‖ =
n∑
i=1

∫
Ei

‖xi‖ dµ =

∫
‖f‖ dµ
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Example 2.7. For n ∈ N and 1 ≤ i ≤ n, let gi,n : [0, 1] → R be the constant function

gi,n(x) =
i

n
. Then, we can define the λ-simple functions fn : ([0, 1],B, λ)→ L∞[0, 1] by

fn(x) =

(
n∑
i=1

1I( i−1
n
, i
n ]gi,n(x)

)
. 3 Then for each n ∈ N,

∫
fn dλ =

(
n∑
i=1

λ

(
i− 1

n
,
i

n

]
gi,n(x)

)
=

n∑
i=1

1

n
gi,n(x).

Since gi,n(x) is the constant function gi,n(x) =
i

n
, for each i, n,

1

n
gi,n(x) is the constant

function g′i,n(x) =
i

n2
. Then

n∑
i=1

1

n
gi,n(x) =

n∑
i=1

g′i,n(x) = Gn(x) where Gn(x) is the constant

function Gn(x) =
n+ 1

2n
.

2.2 Bochner integral defined

Now, we will define the Bochner integral for more general functions, but first, we must

define what it means for a function to be (strongly) µ-measurable.

Definition 2.8. f : Ω→ X is strongly µ-measurable if there exists a sequence of µ-simple

functions (fn) where lim
n→∞

‖fn − f‖ = 0 µ-a.e..

Henceforth, we shall just call such a strongly µ-measurable function µ-measurable. (We

will leave the discussion of weakly measurable function to section 2.4.)

Next, we define Bochner integrability for a µ-measurable function.

Definition 2.9. Let f : Ω → X be strongly µ-measurable; f is Bochner integrable if

there exists a sequence of µ-simple functions (fn) that converge to f µ-a.e. and

lim
n→∞

∫
‖fn(ω)− f(ω)‖ dµ(ω) = 0.

Observe that, once we compose the norm of X with fn−f , we have a real-valued function,

and once we have a real-valued (Lebesgue integrable) function, the Bochner and Lebesgue

3Where fn(0) = 0 · 1I{0}.
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integrals are the same. Hence, Bochner integration can be thought of as generalizing the

class of Lebesgue integrable functions.

There is one exception to their coincidence, however. The Lebesgue integral (of a non-

integrable function) can be infinity, whereas a infinity would have to be formally defined (and

R extended to R) for a Bochner integral of a real-valued function to yield infinity. (In other

words, the Lebesgue integral can be defined for a function that is not Lebesgue integrable,

whereas the same makes no sense for the Bochner integral.)

Definition 2.10. Given that a function f : Ω → X is Bochner integrable, the Bochner

integral of f is defined for each E ∈ Σ as∫
E

f dµ = lim
n→∞

∫
E

fn dµ

where (fn) is a sequence of µ-simple functions such that lim
n→∞

∫
‖fn(ω)− f(ω)‖ dµ(ω) = 0.

Proposition 2.11. The Bochner integral is well-defined, i.e.

1. Consistency: The Bochner integral of f is independent of the sequence of simple func-

tions (fn) such that lim
n→∞

∫
‖fn(ω)− f(ω)‖ dµ(ω) = 0.

2. Uniqueness: If f : Ω → X is Bochner integrable and (fn) is a sequence of µ-simple

functions such that lim
n→∞

∫
‖fn(ω)− f(ω)‖ dµ(ω) = 0, then lim

n→∞

∫
E

fn dµ is unique.

Proof. 1. Consistency: Suppose there exist two sequences of simple functions (fn) and

(gn), each of which converge to f a.e. and

lim
n→∞

∫
‖fn(ω)− f(ω)‖ dµ(ω) = lim

n→∞

∫
‖gn(ω)− f(ω)‖ dµ(ω) = 0.

WLOG, we will show the claim for E = Ω. Let ε > 0. Then there is a N ≥

0 such that for all n ≥ N ,

∫
‖fn − f‖ dµ < ε/4,

∫
‖gn − f‖ dµ < ε/4, and∥∥∥∥∫ gn dµ− lim

n→∞

∫
gn dµ

∥∥∥∥ < ε/2. Then for all n ≥ N ,

∫
‖gn − fn‖ dµ ≤

∫
‖gn − f‖ dµ+

∫
‖f − fn‖ dµ < ε/2.
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Hence,

ε/2 >

∫
‖gn − fn‖ dµ ≥

∥∥∥∥∫ gn − fn dµ
∥∥∥∥ =

∥∥∥∥∫ gn dµ−
∫
fn dµ

∥∥∥∥.

Then for all n ≥ N ,∥∥∥∥∫ fn dµ− lim
n→∞

∫
gn dµ

∥∥∥∥ ≤ ∥∥∥∥∫ fn dµ−
∫
gn dµ

∥∥∥∥+

∥∥∥∥∫ gn dµ− lim
n→∞

∫
gn dµ

∥∥∥∥ < ε.

2. Uniqueness: WLOG, we will show the claim for E = Ω. Let (fn) a sequence of µ-simple

functions from Ω to X that converges to f : Ω → X µ-a.e. such that lim
n→∞

∫
‖fn −

f‖ dµ = 0. Suppose (gm) is also a sequence of µ-simple functions from Ω to X that

converges to f : Ω → X µ-a.e. such that lim
n→∞

∫
‖gm − f‖ dµ = 0. Let ε > 0. Then,

there exists an N0 ≥ 0 for which

∥∥∥∥∫ gm dµ−
∫
fn dµ

∥∥∥∥ =

∥∥∥∥∫ gm − fn dµ
∥∥∥∥ ≤ ∫ ‖gm − fn‖ dµ

≤
∫
‖gm − f‖ dµ+

∫
‖f − fn‖ dµ < ε

Similarly, there is an N1 ≥ 0 for which for all n,m ≥ N ,∥∥∥∥∫ gn dµ−
∫
gm dµ

∥∥∥∥ < ε and

∥∥∥∥∫ fn dµ−
∫
fm dµ

∥∥∥∥ < ε.

Hence, if we define the sequence (hk) in X such that h2i−1 =

∫
gi dµ and h2i =∫

fi dµ. Then there exists an N ≥ 0 (N = max{N0, N1}) such that for all n,m ≥ N ,

‖hn − hm‖ < ε. Hence (hk) is Cauchy and thus converges since X is complete as a

Banach space. Since

(∫
gm dµ

)
and

(∫
fn dµ

)
are Cauchy subsequences of (hk),

they converge to the same limit.

Next, we establish contractivity for Bochner integrable functions.

Proposition 2.12 (Contractivity). If f is Bochner integrable, then

∥∥∥∥∫ f dµ

∥∥∥∥ ≤ ∫ ‖f‖ dµ.
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Proof. Since f is Bochner integrable.∥∥∥∥∫ f dµ

∥∥∥∥ =

∥∥∥∥ lim
n→∞

∫
fn dµ

∥∥∥∥ = lim
n→∞

∥∥∥∥∫ fn dµ

∥∥∥∥ ≤ lim
n→∞

∫
‖fn‖ dµ

Let ε > 0. Then there exists an N > 0 such that for all n ≥ N ,

ε >

∣∣∣∣∫ ‖f − fn‖ dµ∣∣∣∣ ≥ ∣∣∣∣∫ ‖f‖ dµ− ∫ ‖fn‖ dµ∣∣∣∣.
Hence lim

n→∞

∫
‖fn‖ dµ =

∫
‖f‖ dµ, and, therefore,

∥∥∥∥∫ f dµ

∥∥∥∥ ≤ ∫ ‖f‖ dµ.

Furthermore, by a classic diagonalization argument, we can now go beyond simple func-

tions converging to f :

Corollary 2.13. Suppose f : Ω → X is µ-measurable and (fn) is a sequence of Bochner

integrable functions that converge to f µ-a.e. such that lim
n→∞

∫
‖fn − f‖ dµ = 0. Then∫

f dµ = lim
n→∞

∫
fn dµ.

2.3 Bochner’s Characterization

In this section, we will give an essential characterization of Bochner integrable functions.

The result is attributed to Bochner.

Theorem 2.14 (Bochner’s Characterization). Let f : Ω → X be a µ-measurable function,

then f is Bochner integrable if and only if ‖f‖ is Lebesgue integrable.

Proof. ⇒ Suppose f is Bochner integrable and (fn) is a sequence of µ-simple functions such

that lim
n→∞

∫
‖fn − f‖ dµ = 0. Then for any ε > 0, there exists an N > 0 such that for all

n,m ≥ N ,

‖fn − fm‖L1(X) =

∫
‖fn − fm‖ dµ ≤

∫
‖fn − f‖ dµ+

∫
‖f − fm‖ dµ < ε.

In other words, (fn) is Cauchy in L1(X), which is a metric space. Therefore, (fn) is bounded

in L1(X). Furthermore, since for any ε > 0 there exists an N > 0 such that for all n ≥ N ,

ε >

∣∣∣∣∫ ‖fn − f‖ dµ∣∣∣∣ ≥ ∣∣∣∣∫ ‖fn‖ dµ− ∫ ‖f‖ dµ∣∣∣∣, we know that lim
n→∞

‖fn‖L1(X) = ‖f‖L1(X).
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Therefore, since (fn) is bounded in L1(X) and converges to f in L1(X), ‖f‖L1 < ∞, i.e.

‖f‖ ∈ L1(X).

⇐ Suppose

∫
‖f‖ dµ <∞.

Let (gn) be a sequence of µ-simple functions that converge to f µ-a.e.. (Then, by the

triangle inequality, ‖gn‖ → ‖f‖ µ-a.e..) Define fn := 1I‖gn‖≤2‖f‖gn.4 Then (fn) is a sequence

of µ-simple functions that converge to f µ-a.e.. Furthermore, since ‖fn‖ ≤ 2‖f‖ for all n

and

∫
2‖f‖ dµ <∞, by the Dominated Convergence Theorem, lim

n→∞

∫
‖fn−f‖ dµ = 0.

A natural question is whether or not Bochner’s characterization will still hold if (Ω,Σ, µ)

is a σ-finite measure space. This is where our requirement that µ(Ei) <∞ (where the Ei are

the measurable sets used to define the µ-simple functions in Definition 2.1) comes in handy.

In fact, the same proof holds for σ-finite spaces. 5

With Bochner’s characterization, we will be able to use theorems already available to

Lebesgue integration to prove corresponding theorems for Bochner integration.

Proposition 2.15. Suppose f, g Bochner integrable and α ∈ R, then

1.

∫
αf dµ = α

∫
d dµ and

2.

∫
f + g dµ =

∫
f dµ+

∫
g dµ

Proof. Let (fn) and (gn) be sequences of µ-simple functions that converge µ-a.e. to f and g

respectively such that

∫
f dµ = lim

n→∞

∫
fn dµ and

∫
g dµ = lim

n→∞

∫
gn dµ.

1. By Bochner’s characterization, αf is Bochner integrable. Then, since (αfn) is a se-

quence of µ-simple functions that converges µ-a.e. to αf and lim
n→∞

∫
‖αfn−αf‖ dµ = 0,

we have that

4The choice of the fn comes from [13].
5Without the stipulation that µ(Ei) < ∞ for all i in the definition of µ-simple functions, a simple

counterexample would be a R-valued simple function f = 1I[0,∞) where

∫
f dµ =∞.

28



∫
αf dµ = lim

n→∞

∫
αfn dµ = α lim

n→∞

∫
fn dµ = α

∫
f dµ.

2. Since f and g are Bochner integrable,

∫
‖f + g‖ dµ ≤

∫
‖f‖ dµ +

∫
‖g‖ dµ < ∞,

and therefore, f + g is Bochner integrable by Bochner’s characterization. Also, since

fn → f and gn → g µ-a.e., fn + gn → f + g µ-a.e.

Similarly, lim
n→∞

∫
‖(fn + gn)− (f + g)‖ dµ = 0; thus

∫
f + g dµ = lim

n→∞

∫
fn + gn dµ.

Hence, it will suffice to show that

∫
f dµ+

∫
g dµ = lim

n→∞

∫
fn + gn dµ.

Let ε > 0. Then there exists an N ≥ 0 such that for all n ≥ N ,

∥∥∥∥∫ fn + gn dµ−
(∫

f dµ+

∫
g dµ

)∥∥∥∥ =

∥∥∥∥∫ fn dµ+

∫
gn dµ−

∫
f dµ−

∫
g dµ

∥∥∥∥
≤
∥∥∥∥∫ fn dµ−

∫
f dµ

∥∥∥∥+

∥∥∥∥∫ gn dµ−
∫
g dµ

∥∥∥∥ < ε.

Example 2.16. Consider the Banach space C[0, 1] (i.e. the space of all R-valued contin-

uous functions on the compact set [0, 1]) and the measure space (N, 2N, c) where c is the

counting measure, and we will construct not just one, but a sequence of simple functions

BN : (N, 2N, c)→ C[0, 1]. 6

6Yes, (N, 2N, c) is not only not a probability space, but is not even finite. However, since Bochner’s
characterization holds in σ-finite spaces, we will avail ourselves of this fact in order to provide a particularly
interesting example.
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First, let T be the tent map on [0, 1] with height 1.

0 1

1

Figure 2.1: T : [0, 1]→ R

Next, extend T periodically to R (with period 1), and call this new map b(x).

0 1

1

Figure 2.2: b : R→ R

Then, for all n ∈ N, define bn(x) =
b(2nx)

2n
[0,1]

b1(x)

1

1
b2(x)

1

1

Figure 2.3: b1 : [0, 1]→ R and b2 : [0, 1]→ R

Then bn ∈ C[0, 1] and ‖bn‖ = sup
x∈[0,1]

bn(x) =
1

2n
for all n.

Define a sequence of simple functions Fm : (N, 2N, c) → C[0, 1] by Fm =
m∑
n=1

bn1I{n}.

Then

∫
‖Fm‖ dc =

m∑
n=1

2−n < ∞. Let F : (N, 2N, c) → C[0, 1] be given by F =
∑
n

bn1I{n}.

Then Fm → F a.e., and ‖F‖ =
∑
n

‖bn‖1I{n} =
∑
n

1

2n
1I{n}. Hence,
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∫
N
‖F‖ dc =

∫
N

∑
n

1

2n
1I{n} dc =

∑
n

1

2n
c({n}) =

∑
n

1

2n
<∞

Therefore, F is Bochner integrable, and furthermore,∫
N
F dc = lim

k→∞

∫
N

k∑
n=1

bn1I{n} dc = lim
k→∞

k∑
n=1

bnc({n}) = lim
k→∞

k∑
n=1

bn =
∞∑
n=1

bn

In fact,

∫
N
F dc is a continuous nowhere differentiable function called a Bolzano function.

2.4 Pettis Integral

Before we continue, we will digress briefly to at least mention the more general Pettis

integral. First, we need to define weak µ-measurability.

Definition 2.17. A function a f : Ω → X is weakly (or scalarly) µ-measurable if x∗f

is µ-measurable for each x∗ ∈ X∗.

Proposition 2.18. A (strongly) µ-measurable function is weakly µ-measurable.

Proof. Suppose f is strongly µ-measurable, and (fn) is a sequence of µ-simple functions such

that lim
n→∞

‖fn − f‖ = 0, µ-a.e. Let x∗ ∈ X∗. Then for each fn,

x∗(fn) = x∗

(
kn∑
i=1

xin1IEin

)
=

kn∑
i=1

x∗(xin)1IEin

is µ-simple. Furthermore,

lim
n→∞

‖x∗(fn)− x∗(f)‖ = lim
n→∞

‖x∗(fn − f)‖ ≤ lim
n→∞

‖x∗‖∗‖fn − f‖ = 0

Bochner integral theory does not apply directly to functions that are weakly µ-measurable

or whose norm is not Lebesgue integrable. Herein lies one of the merits of the Pettis integral.

But first, a lemma.

Lemma 2.19 (Dunford). [2] Suppose f : Ω → X is a weakly µ-measurable function and

x∗f ∈ L1(µ) for each x∗ ∈ X∗. Then for each E ∈ Σ, there exsits ϕE ∈ X∗∗ such that, for

all x∗ ∈ X∗,
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ϕE(x∗) =

∫
E

x∗(f) dµ

Definition 2.20. [2] If f is a weakly µ-measurable X-valued function on Ω such that x∗f ∈

L1(µ) for all x∗ ∈ X∗, then f is called Dunford integrable. The Dunford integral of f

is the functional ϕ ∈ X∗∗ such that, for all x∗ ∈ X∗,

ϕ(x∗) =

∫
x∗(f) dµ.

Notice that x∗(f) takes values in the underlying scalar field. Hence, the integral,∫
x∗(f) dµ, is the Lebesgue integral, and so, for any E ∈ Σ, we can define∫

E

x∗(f) dµ :=

∫
x∗(f)|E dµ =

∫
x∗(f |E) dµ.

For each E ∈ Σ, we call the functional ϕE ∈ X∗∗ given by ϕE(x∗) =

∫
E

x∗(f) dµ for all

x∗ ∈ X∗ the Dunford integral of f over E.

If ϕE ∈ X7 for each E ∈ Σ, then f is called Pettis integrable, and ϕE is the Pettis

integral of f over E. If X is a reflexive, then Dunford integrability is Pettis integrability.

Now, consider a function f : Ω → X that is µ-measurable (and hence weakly µ-

measurable) and Bochner integrable. By Bochner’s characterization, that means

∫
‖f‖ dµ <

∞. Let x∗ ∈ X∗. Then, ∫
|x∗(f)| dµ ≤ ‖x∗‖

∫
‖f‖ dµ <∞.

Hence, Bochner integrability implies Dunford integrability.

Example 2.21. Let X be a Banach space, and (xn) ∈ XN be summable. Define f : N→ X

by f(n) = xn for each n ∈ N. Then, f is µ measurable (and hence µ-weakly measurable).

To see that f is Dunford integrable, let x∗ ∈ X∗. Then,

∫
|x∗(f)| dc =

∫ ∣∣∣∣∣x∗
(∑
n∈N

xn1I{n}

)∣∣∣∣∣ dc =

∫ ∣∣∣∣∣∑
n∈N

x∗(xn)1I{n}

∣∣∣∣∣ dc
≤
∫ ∑

n∈N

|x∗(xn)|1I{n} dc =
∑
n∈N

|x∗(xn)|.

7Of course, by φE ∈ X, we mean φE ∈ J(X) ⊆ X∗∗ where J : X → X∗∗ is the natural embedding where
for each x ∈ X and x∗ ∈ X∗,Jx(x∗) = x∗(x).
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Since x∗ is continuous, (x∗(xn)) is summable in R, which means it is also absolutely conver-

gent. Hence
∑
n∈N

|x∗(xn)| <∞, and f is Dunford integrable.

The Dunford integral for each E ⊆ N is the functional φE = X∗∗ given by

φE(x∗) =

∫
E

x∗

(∑
n∈N

xn1I{n}

)
dc =

∫ ∑
n∈N

x∗(xn)1I{n} dc =
∑
n∈E

x∗(xn)

for all x∗ ∈ X∗∗. In bracket notation, φE =
∑
n∈E

〈·, xn〉 = 〈·,
∑
n∈E

xn〉. In other words, f is

Pettis integrable.

As for Bochner integrability, by Bochner’s characterization, f ∈ L1(X, c) iff ‖f‖ ∈ L1(c)

iff

∫
‖f‖ dc =

∑
n∈N

‖xn‖ <∞. However, from Orlicz’s Theorem (in Chapter 1), we know that

summability and absolute convergence are the same iff X is a finite-dimensional Euclidean

space. 8 Hence, if X is finite-dimensional, then f is Dunford integrable iff f is Bochner

integrable, and if X is infinite-dimensional, then we have only that Bochner integrability of

f implies Dunford integrability of f .

However, even in this discrete space there are Dunford integrable functions that are not

Pettis integrable.

Example 2.22. Consider X = c0 and f : N → c0 given by f(n) = en where (en) is the

standard basis for c0. Let x∗ ∈ c∗0, x = (xn) ∈ `1 such that x∗ = 〈x, ·〉, and E ∈ 2N. Then,∫
E

|x∗(f)| dc =
∑
n∈E

|xn| <∞.

However, for any x∗ ∈ c∗0 with x = (xn) ∈ `1 such that x∗ = 〈x, ·〉 and E ∈ 2N,∫
E

x∗(f) dc =
∑
n∈E

xn = 〈x, (1)∞n=1〉.

But, (1)∞n=1 /∈ c0.

This example extends readily to one defined on a measurable space that is not discrete.

8The “only if” portion comes from [5].
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Example 2.23. Consider c0 with standard basis (en), and let our measure space be ([0, 1],B, λ)9

Define fn : [0, 1] → c0 by fn := nen1I(0, 1
n

] for all n ∈ N where (en) is the standard basis for

c0, and define f : [0, 1]→ c0 by f :=
∑
n∈N

fn. To see that f is Dunford integrable, let x∗ ∈ c∗0

and x = (xn) ∈ `1 such that x∗ = 〈x, ·〉. Then,

∫
|x∗(f)| dλ =

∫
|x∗
∑
n∈N

nen1I(0, 1
n

]| dλ ≤
∫ ∑

n∈N

n|x∗(en)|1I(0, 1
n

] dλ

=
∑
n∈N

n|xn|
1

n
=
∑
n∈N

|xn| <∞

However, ϕ /∈ c0. To see this, let x∗ ∈ c∗0 and x = (xn) ∈ `1 such that x∗ = 〈x, ·〉. Then,

∫
x∗(f) dλ =

∫
x∗
∑
n∈N

nen1I(0, 1
n

] dλ =

∫ ∑
n∈N

n(x∗(en))1I(0, 1
n

] dλ

=
∑
n∈N

n(xn)
1

n
=
∑
n∈N

xn

However,
∑
n∈N

xn = 〈x, (1)∞n=1〉 where (1)∞n=1 /∈ c0.

2.5 Extending R results

Several important results still hold even after we leave R for more general spaces, aside

from the ones already mentioned. In this section we will discuss a few that do extend and

why others do not. First, we will note that not all Banach spaces have a partial ordering.

Hence many theorems requiring or guaranteeing an inequality will no longer hold in all

Banach spaces, e.g. Monotonicity, Fatou’s Lemma, and the Monotone Convergence Theorem.

Theorems with non-negative assumptions also may not extend. However, we do have an

analogue to Lebesgue’s Dominated Convergence Theorem.

Theorem 2.24 (Dominated Convergence Theorem). [2] Let fn : Ω → X be a sequence of

Bochner integrable functions, g : Ω → R, g ∈ L1(µ), f : Ω → X is a µ-measurable function

9where λ is the Lebesgue measure
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such that (fn) converges to f in measure, and ‖fn‖ ≤ |g| µ-a.e. for all n. Then f is Bochner

integrable and lim
n→∞

∫
E

fn dµ =

∫
E

f dµ for all E ∈ Σ, and lim
n→∞

∫
Ω

‖f − fn‖ dµ = 0.

Notice that, according to proceeding prepositions, all that we need to show is that

lim
n→∞

∫
‖fn−f‖ dµ = 0. Also, note that a sequence of functions converges in (finite) measure

iff every subsequence contains an almost everywhere convergent sub-subsequence (all of which

converge to the same limit). Since we are working in a metric space, this subsequence clause

is just µ-a.e. convergence. Therefore, since we are working with functions from a finite

measure space to a metric space, we can just assume that (fn) → f µ-a.e.. (If we were

working in a σ-finite space, a slightly weaker version of the DCT would hold, i.e. where

(fn)→ f µ-a.e..) 10

Proof. Since (fn) converge to f µ-a.e., ‖fn‖ converges to ‖f‖ µ-a.e., and lim
n→∞

‖fn − f‖ = 0.

Furthermore, since ‖fn‖ ≤ g for all n, ‖f‖ ≤ g. Hence, ‖fn− f‖ ≤ ‖fn‖+ ‖f‖ ≤ |2g| µ-a.e..

Then, by the classic Dominated Convergence Theorem,

lim
n→∞

∫
‖fn − f‖ dµ =

∫
lim
n→∞

‖fn − f‖ dµ =

∫
0 dµ = 0.

We also get a generalized case of Egoroff’s Theorem:

Theorem 2.25. For a σ-finite measure space (S,S, ν), if E ∈ S, ν(E) < ∞, and (fn) a

sequence of measurable functions on E, each of which is finite a.e. in E, that converges a.e.

to a finite ν-measurable f , then for all ε > 0, there is an Aε ⊆ E such that ν(E − Aε) < ε

and (fn) converges to f uniformly on Aε.

The proof for this theorem is simply the standard proof for Egoroff’s Theorem with a

general norm in place of absolute value.

10Notice that Bochner’s characterization is not required for the Dominated Convergence Theorem. In fact,
given the relationship between Bochner and Lebesgue integration and the Dominated Convergence Theorem
for Lebesgue integration, the Dominated Convergence Theorem for Bochner integrals is more of a corollary
than a theorem.
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Theorem 2.26. [2] If f is Bochner integrable with respect to µ, then

1. lim
µ(E)→0

∫
E

f dµ = 0,

2. (Countable Additivity) If (En) is a sequence of pairwise disjoint members of Σ and

E =
∞⋃
n=1

En, then

∫
E

f dµ =
∞∑
n=1

∫
En

f dµ,

where the sum is absolutely convergent, and

3. If F (E) =

∫
E

f dµ, then F is of bounded variation and |F |(E) =

∫
E

‖f‖ dµ for all

E ∈ Σ.

Proof. 1. Since lim
µ(E)→0

∫
E

‖f‖ dµ = 0 for f ∈ L1(µ), and f is Bochner integrable iff

‖f‖ ∈ L1(µ),

0 = lim
µ(E)→0

∫
E

‖f‖ dµ ≥ lim
µ(E)→0

∥∥∥∥∫
E

f dµ

∥∥∥∥ =

∥∥∥∥ lim
µ(E)→0

∫
E

f dµ

∥∥∥∥.

2. Note first that
∞∑
n=1

∫
En

f dµ is dominated term by term by the nonnegative series

∞∑
n=1

∫
En

‖f‖ dµ and that, since
∞∑
n=1

∫
En

‖f‖ dµ ≤
∫

Ω

‖f‖ dµ <∞, the series converges.

Thus
∞∑
n=1

∫
En

f dµ is absolutely convergent.

Note also that (by the finiteness of Ω), lim
m→∞

µ

(
∞⋃

n=m+1

En

)
= 0, and thus by the first

property, lim
m→∞

∥∥∥∥∥
∫
⋃∞
n=m+1 En

f dµ

∥∥∥∥∥ = 0. Then,

∥∥∥∥∥
∫
E

f dµ−
m∑
n=1

∫
En

f dµ

∥∥∥∥∥ =

∥∥∥∥∥
∫
⋃∞
n=m+1 En

f dµ

∥∥∥∥∥ = 0.

Hence,

∫
E

f dµ = lim
m→∞

m∑
n=1

∫
En

f dµ.
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3. Let E ∈ Σ

≤: Let π be a partition of E. Then∑
A∈π

‖F (A)‖ =
∑
A∈π

∥∥∥∥∫
A

f dµ

∥∥∥∥ ≤∑
A∈π

∫
A

‖f‖ dµ =

∫
E

‖f‖ dµ.

Therefore, |F |(E) ≤
∫
E

‖f‖ dµ.

Furthermore, since f is Bochner integrable, |F |(E) ≤
∫
E

‖f‖ dµ <∞, so F is of

bounded variation.

≥: [2] Let ε > 0 and choose {fn} simple such that lim
n→∞

∫
‖f − fn‖ dµ = 0. Choose

m sufficiently large such that

∫
‖f − fm‖ dµ <

ε

2
and a partition π of E such

that
∑
A∈π

∥∥∥∥∫
A

fm dµ

∥∥∥∥ =

∫
E

‖fm‖ dµ.11 Choose a refinement π′ of π such that∣∣∣∣∣|F |(E)−
∑
B∈π′

∥∥∥∥∫
B

f dµ

∥∥∥∥
∣∣∣∣∣ < ε

2
.12 Then, we still have

∫
E

‖fm‖ dµ =
∑
B∈π′

∥∥∥∥∫
B

fm dµ

∥∥∥∥.

Furthermore,

∣∣∣∣∣∑
B∈π′

∥∥∥∥∫
B

f dµ

∥∥∥∥− ∥∥∥∥∫
B

fm dµ

∥∥∥∥
∣∣∣∣∣ ≤∑

B∈π′

∣∣∣∣∥∥∥∥∫
B

f dµ

∥∥∥∥− ∥∥∥∥∫
B

fm dµ

∥∥∥∥∣∣∣∣
≤
∑
B∈π′

∥∥∥∥∫
B

f dµ−
∫
B

fm dµ

∥∥∥∥
≤
∑
B∈π′

∫
B

‖f − fm‖ dµ

=

∫
E

‖f − fm‖ dµ <
ε

2
.

Therefore, ∣∣∣∣|F |(E)−
∫
E

‖fm‖ dµ
∣∣∣∣ =

∣∣∣∣∣|F |(E)−
∑
B∈π′

∥∥∥∥∫
B

fm dµ

∥∥∥∥
∣∣∣∣∣ < ε

11We can choose π such that A = Ai for

n∑
i=1

1IAixi = fm on E.

Then,
∑
A∈π

∥∥∥∥∫
A

fm dµ

∥∥∥∥ =
∑
A∈π
‖µ(A)xA‖ =

∑
A∈π

µ(A)‖xA‖ =
∑
A∈π

∫
A

‖fm‖ dµ =

∫
E

‖fm‖ dµ.

12We can do so by the the definition of |F |(E).
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Since this holds for all sufficiently largem, |F |(E) = lim
n→∞

∫
E

‖fn‖ dµ ≥
∫
E

‖f‖ dµ.13

Corollary 2.27. [2] If f and g are Bochner integrable and

∫
E

f dµ =

∫
E

g dµ for each

E ∈ Σ, then f = g a.e. with respect to µ.

Proof. Let F (E) =

∫
E

f − g dµ = 0. Then by (3), 0 = |F |(E) =

∫
E

‖f − g‖ dµ. Hence

‖f − g‖ = 0, which means, f = g a.e.−µ.

However, the Bochner integral does have results with no nontrivial Lebesgue analogue,

such as the following property:

Theorem 2.28. [2] Let T be a bounded linear operator 14 If f is Bochner integrable with

respect to µ, then so is Tf and for all E ∈ Σ

T

(∫
E

f dµ

)
=

∫
E

Tf dµ.

Proof. Since T is bounded,

∫
E

‖Tf‖ dµ ≤
∫
E

M‖f‖ dµ < ∞. Hence, Tf is Bochner

integrable. Also, the claim holds for f µ-simple by linearity.

Let (fn) be a sequence of µ-simple functions such that lim
n→∞

∫
E

fn dµ =

∫
E

f dµ. Then

by the continuity of T ,

T

(∫
E

f dµ

)
= T

(
lim
n→∞

∫
E

fn dµ

)
= lim

n→∞
T

(∫
E

fn dµ

)
= lim

n→∞

∫
E

Tfn dµ = lim
n→∞

∫
E

Tf dµ

Finally, before we move forward, we should note a new class of spaces at our disposal:

Definition 2.29. For 1 ≤ p <∞, define Lp(µ,X) to be the vector space of all (equivalence

classes) of µ-measurable functions f : Ω→ X for which,

∫
‖f‖p dµ <∞.

13by Fatou’s Lemma
14The theorem holds for closed linear operators as well, but we shall only require the result for bounded

linear operators. The more general theorem is attributed to Hille.
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Much like the Lp spaces defined with the Lebesgue integral, Lp(µ,X), with the norm

‖·‖Lp(µ,X) given by ‖f‖Lp(µ,X) =

(∫
‖f‖p dµ

)1/p

for all f ∈ Lp(µ,X), is also a Banach space.

In particular, L1(µ,X) is the space of all Bochner integrable functions from Ω to X.

Definition 2.30. Define L∞(µ,X) to be the vector space of all (equivalence classes) essen-

tially bounded µ-measurable functions f : Ω→ X

Again, L∞(µ,X), with the norm ‖ · ‖L∞(µ,X) given by

‖f‖L∞(µ,X) = inf{M ∈ R+ : ‖f‖ ≤M a.e..},

is also a Banach space.

2.6 The Radon Nikodým Property

In our extended class of Lebesgue integrable functions, several results (such as the

Dominated Convergence Theorem) that held for the class of real-valued Lebesgue integrable

functions hold trivially (after a little reformulation) for the extended class. However, we shall

see that the Radon Nikodým Theorem requires alteration before it holds in this larger class of

functions. Our focus in this section will be not in altering the theorem but in understanding

the significance of its failure to hold for measures taking values in certain Banach spaces.

First, let us put the classic Radon Nikodým Theorem in the context of Banach spaces

and Bochner integrals:

Theorem 2.31 (Radon-Nikodým Theorem). Assume (Ω,Σ, µ) is a finite measure space15

and X a Banach space. If F : Σ→ X is a µ-continuous vector measure of bounded variation,

then there exists a Bochner integrable g ∈ L1(µ,X) such that F (E) =

∫
E

g dµ for all E ∈ Σ.

We call g the Radon-Nikodým Derivative (RND) of F .

In the general context of Banach spaces and Bochner integrals, this theorem no longer

holds. The following is a classic incidence of the failure of the Radon-Nikodým Theorem

from Diestel and Uhl:
15That is, a finite, countably additive set function on Σ that takes values in [0,∞).
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Proposition 2.32. [2] There exists a countably additive co-valued vector measure of bounded

variation with no Radon-Nikodým Derivative.

Proof. Let λ be the Lebesgue measure on ([0, 1],B). For E ∈ B, write φn(E) =

∫
E

sin(2nπt) dt

and let F (E) = (φn(E))∞n=1.16 Then F : B → c0 by the Riemann-Lebesgue Lemma17, and

for all E ∈ B,

‖F (E)‖c0 ≤ sup
n

∫
E

| sin(2nπt)| dt ≤
∫
E

1 dt = λ(E).

Then, F is countably additive, λ-continuous, and of bounded variation.

1. To see that F is countably additive, let {Ek} be a countable disjoint collection of

elements of B, and let E :=
⋃
k Ek. Then,

‖F (E)‖c0 = ‖(φn(
⋃
k Ek))n‖c0 = ‖(

∑
k φn(Ek))n‖c0 ≤ 1.

Hence, |
∑

k φn(Ek)| ≤ 1 for all n ∈ N. If we let (en)∞n=1 be the standard basis of c0,

then we have

F (E) = (
∑
k

φn(Ek))n =
∑
n

(∑
k

φn(Ek)

)
en =

∑
k

∑
n

φn(Ek)en =
∑
k

F (Ek)

2. To see that F is λ-continuous, first note that, since F and λ are countably additive

and B is a σ-algebra, it will suffice to show that λ(E) = 0⇒ F (E) = 0 for all E ∈ B,

which follows immediately from the inequality.

3. To see that F is of bounded variation, let {Ek}nk=1 be a pairwise disjoint collection in

B. Then,
n∑
k=1

‖F (Ek)‖c0 ≤
n∑
k=1

λ(Ek) ≤ 1. Hence, |F |([0, 1]) ≤ 1 <∞.

Now, suppose that F does have a RND, i.e. a Bochner integrable function f : [0, 1] → c0

such that F (E) =

∫
E

f dλ for all E ∈ B. Then, f = (fn)∞n=1 where, for each n, fn is the

16Note that sin(2nπt) is merely the sine function with period 1
2n−1 .

17Specifically, lim
k→∞

∫ 1

0

sin(kt) dt = 0, since E ⊆ [0, 1] and 2nπ →∞, lim
n→∞

φn(E) = 0

40



nth coordinate functional on c0 for (en). Hence, each fn is bounded (continuous) and thus

measurable.

By Corollary 2.25, |F |(E) =

∫
E

‖f‖ dλ for all E ∈ B. Hence,

1 ≥
∫
E

‖f‖ dλ =

∫
E

sup
n
|fn| dλ for all E ∈ B. It follows that

m∑
n=1

fnen is Bochner

integrable for each m ∈ N.18 Therefore, by the general Dominated Convergence Theorem,

for all E ∈ B

F (E) =

∫
E

f dλ = lim
n→∞

∫
E

m∑
n=1

fnen dλ = lim
n→∞

m∑
n=1

(∫
E

fn dλ

)
en =

(∫
E

fn dλ

)∞
n=1

Therefore, by Corollary 2.26, fn(t) = sin(2nπt) for almost all t ∈ [0, 1].

Now, let En = {t ∈ [0, 1] : fn(t) ≥ 1√
2
}. Then λ(En) = 1

4
for all n,19 and for all

t ∈ lim sup
n

En, f(t) /∈ c0 since fn(t) ≥ 1√
2

for all n. Also,

λ(lim sup
n

(En)) = λ

(
∞⋂
k=1

∞⋃
n=k

En

)
≥ inf

k≥1

(
λ

(
∞⋃
n=k

En

))
≥ inf

k≥1
(sup
n≥k

λ(En)) ≥ 1

4

Therefore, λ{t ∈ [0, 1] : f(t) ∈ c0} ≤ 3
4
< 1, contradicting f : [0, 1]→ c0.

Because this theorem may or may not hold in a given Banach space, we can think the

success or failure of the theorem to hold in the space as a property of the space itself, that

is, we have the following property:

Definition 2.33. A Banach space X has the Radon Nikodým Property (RNP) with

respect to (Ω,Σ, µ) if for each µ-continuous vector measure, F : Σ→ X of bounded variation,

there exisits a Bochner integrable f : Ω→ X such that F (E) =

∫
E

f dµ for all E ∈ Σ.

Definition 2.34. A Banach space X has the Radon Nikodým Property if it has the

Radon Nikodým Property with respect to every finite measure space. 20

18Using Bochner’s Characterization,

∫ ∥∥∥∥∥
m∑
n=1

fnen

∥∥∥∥∥ dλ ≤
∫ m∑

n=1

|fn| dλ <∞

19Again, fn(t) is merely the sine function with period 1
2n−1 . Since sin(t) > 1√

2
for 1

4 of each period, it

follows that λ(En) = 1
4 .

20In fact, it is enough that X has the RNP with respect to ([0, 1],B, λ).
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Hence, from proposition 2.32, c0 does not have the Radon Nikodým Property.

2.6.1 Significant Theorems

As we have noted, the RNP gives significant insight into analytic properties and the

geometry of a Banach space. To illustrate this, we shall briefly enumerate several significant

results pertaining to the RNP. The following theorems and proofs can be found in Diestel

and Uhl’s Vector Measures, [2].

Theorem 2.35 (Dunford-Pettis). Separable dual spaces have the Radon-Nikodým Property.

Theorem 2.36 (Phillips). Reflexive Banach spaces have the Radon-Nikodým Property.

Theorem 2.37 (Uhl). If every separable closed linear subspace of X is isomorphic to a

subspace of a separable dual space, then X has the Radon-Nikodým Property.

Theorem 2.38 (Von Neumann). Hilbert spaces have the Radon-Nikodým Property.

Theorem 2.39. Let (Ω,Σ, µ) be a finite measure space and X a Banach space such that X

and X∗ have the RNP. A subset K of L1(µ,X) is relatively weakly compact if

1. K is bounded,

2. K is uniformly integrable, and

3. for each E ∈ Σ, {
∫
E
f dµ : f ∈ K} is relatively weakly compact.21

Theorem 2.40. For a Banach space X, the following are equivalent:

1. X∗ has the RNP.

2. X∗ has the Kreĭn-Mil’man property22.

3. Every separable subspace of X has a separable dual.

21In fact, without the RNP, we can guarantee a K that is not relatively weakly compact event if the three
criteria hold.

22That is, if each closed bounded convex subset of X is the norm closed convex hull of its extreme points
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4. Ever separable subspace of X∗ is a subspace of a separable dual space.

Theorem 2.41. If X is a weakly sequentially complete Banach space and X∗ has the RNP,

then X is reflexive.

Theorem 2.42 (Davis-Phelps). A Banach space has the RNP iff each of its equivalent norms

has a dentable23 closed unit ball.

Theorem 2.43 (Huff-Morris). For a Banach space X, the following are equivalent:

1. X has the RNP.

2. Every closed bounded subset of X contains an extreme point24 of its closed convex hull.

3. Every closed bounded subset of X contains an extreme point of its convex hull.

4. For each closed bounded subset A of X, there is a nonzero x∗ ∈ X∗ and x0 ∈ A such

that x∗(x0) = sup x∗(A).

5. For each closed bounded subset A of X the collection of x∗ ∈ X∗ that attain their

maxima on A is norm-dense in X∗.

Theorem 2.44. A Banach space lacks the RNP iff there is a bounded open convex set K in

X and a norm closed subset A of K such that co(A) = K.

2.7 Radon Nikodým Theorem for Bochner Integration

Thanks to the illuminary properties of the Radon Nikoým Property, the direct trans-

lation of the classic Radon Nikodým Theorem into the context of Banach spaces is of most

interest. However, there exist several versions of the theorem that hold in Banach spaces,

and we will not leave this chapter without a brief discussion. The first version is by Dunford

23A subspace D of a Banach space is dentable if for all ε > 0, there exists an x ∈ D such that x /∈
co(D\Bε(x)).

24An extreme point of a set is a point that is not an interior point of any line segment lying entirely within
the set– a vertex, if you will.
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and Pettis in 1940. In 1943, Phillips proved an extension of their result, then Metivier proved

that the converse of Phillips’s theorem holds. Finally, in 1968, Rieffel proved an even more

extensive version.[11]

We shall not prove all of these here. In fact, this section will closely follow the paper

“Radon-Nikodým Theorems for the Bochner and Pettis Integrals” by S. Moedomo and J.J.

Uhl, Jr.([11]). We will establish the necessary conditions for Rieffel’s statement of the theo-

rem (as it appears in Moedomo and Uhl’s paper) and Phillips Theorem. Let (Ω,Σ, µ) be a

probability space and X a Banach space25.

Theorem 2.45 (Dunford-Pettis). [11] Let T : L1(Ω,Σ, µ)→ X be a weakly compact operator

whose range is separable. Then there exists an essentially bounded µ-measurable g : Ω→ X

such that T (f) =

∫
Ω

fg dµ for all f ∈ L1(Ω,Σ, µ).

Theorem 2.46 (Phillips). [11] A vector measure F : Σ→ X is of the form F (E) =

∫
E

f dµ

for all E ∈ Σ for some Bochner integrable f : Ω→ X if

1. F is µ-continuous,

2. F is of bounded variation, and

3. for each ε > 0 there exists an Eε ∈ Σ with µ(Ω − Eε) < ε such that for some weakly

compact A ⊆ X, {F (E)/µ(E) : E ⊆ Eε, µ(E) > 0, E ∈ Σ} ⊆ A.

Theorem 2.47 (Rieffel). [11]26 A vector measure F : Σ→ X is of the form F (E) =

∫
E

f dµ

for all E ∈ Σ for some Bochner integrable f : Ω→ X iff

1. F is µ-continuous,

2. F is of bounded variation, and

25Uhl and Moedomo assume finite, whereas Rieffel assumes σ-finite, but we will stick with our probability
space from before.

26In his paper, ([16]), Rieffel’s statement of the theorem includes two equivalent statements of the third
condition.
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3. for each ε > 0 there exists an Eε ∈ Σ with µ(Ω− Eε) < ε such that for some compact

A ⊆ε X (with respect to the uniform operator topology on X),

{F (E)/µ(E) : E ⊆ Eε, µ(E) > 0, E ∈ Σ} ⊆ Aε.

Moedomo and Uhl’s proof of the necessary half of the claim is a simplified version of

Rieffel’s proof that has been tweaked to show the claim holds (save the second part) for

Pettis integrable functions f . However, we shall stick to Bochner integrable functions. First,

we will show the necessary implication for Rieffel’s Theorem. The first two are satisfied by

Theorem 2.2627. Hence, all that remains is to prove (3).

Proof. Let F : Σ → X be of the form F (E) =

∫
E

f dµ for all E ∈ Σ for some Bochner

integrable f : Ω→ X, and let (fn) be a sequence of µ-simple functions that converge a.e. to

f . Let ε > 0. Then, by Egoroff’s Theorem, there is an Eε ∈ Σ with µ(Ω−Eε) < ε such that

(fn) converges to f uniformly on Eε. Hence, since each fn is bounded, so is f on Eε. Then,

for all g ∈ L1(µ), define T, Tn : L1(µ)→ X by T (g) =

∫
Eε

gf dµ and Tn(g) =

∫
Eε

gfn dµ for

all n. Since f is bounded and fn are bounded for all n, ‖gf‖ ∈ L1(µ) and ‖gf‖ ∈ L1(µ) for

all n. Hence, T, Tn ∈ L(L1(µ),X) for all n.

Claim 1: lim
n→∞

Tn = T , i.e. ‖T − Tn‖ = sup
‖g‖1≤1

‖(T − Tn)g‖ → 0.

Let g ∈ L1(µ) with ‖g‖1 ≤ 1. Then,

‖(T − Tn)g‖ =

∥∥∥∥∫
Eε

(gf − gfn) dµ

∥∥∥∥ ≤ ∫
Eε

|g| ‖f − fn‖ dµ

≤
∫
Eε

|g| sup
ω∈Eε
‖f(ω)− fn(ω)‖ dµ

= sup
ω∈Eε
‖f(ω)− fn(ω)‖

∫
Eε

|g| dµ

≤ sup
ω∈Eε
‖f(ω)− fn(ω)‖.

27(1) by (1) and (2) by (3)
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Since (fn) converges to f uniformly on Eε, (Tn) converges to T on the uniform operator

topology.

Claim 2: For each n, Tn(L1(µ)) has finite dimension.

For each n, let fn =
kn∑
i=1

xi1IAi (where
kn⋃
i=1

Ai = Eε). Then,

Tn(L1(µ)) =

{∫
Eε

gfn dµ : g ∈ L1(µ)

}
=

{∫
Eε

g
kn∑
i=1

xi1IAi dµ : g ∈ L1(µ)

}

=

{
kn∑
i=1

(
xi

∫
Ai

g

)
dµ : g ∈ L1(µ)

}
=

{
kn∑
i=1

(∫
Ai

g dµ

)
xi : g ∈ L1(µ)

}

Then for all x ∈ Tn(L1(µ)), x =
kn∑
i=1

(∫
Ai

g dµ

)
xi. Therefore, {x1, ..., xkn} spans

Tn(L1(µ)), and hence dim(Tn(L1(µ))) ≤ kn.

Therefore, each Tn is a compact operator. Since the collection of all compact operators

from L1(µ) into X is closed in L(L1(µ),X), and since (Tn) converges to T in the uniform

operator topology, T is also a compact operator.

Now, consider the bounded set S = {1IE/µ(E) : E ∈ Σ, µ(E) > 0} in L1(µ). For each

measurable E ⊆ Eε, T (1IE) =

∫
Eε

1IEf dµ =

∫
E

f dµ = F (E). Therefore, the closure of

T (S) = {T (1IE/µ(E)) = 1
µ(E)

∫
E

f dµ =
F (E)

µ(E)
: E ∈ Σ, E ⊆ Eε}

is compact with respect to the uniform operator topology in X.

Now, we will use this result as well as the Dunford-Pettis Theorem to get Phillips

Theorem (i.e. the sufficiency). But first, a lemma:

Lemma 2.48. [11] A weakly compact operator T : L1(Ω,Σ, µ)→ X has a separable range.
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Proof. Let S = {1IE : E ∈ Σ}. Then the linear span of S is the collection of µ-simple

functions on Ω, which is dense in L1(Ω,Σ, µ). Therefore, by the linearity and continuity of

T , it will suffice to show that T (S) is separable.

Let {1IEn}∞n=1 ∈ SN and let Σ0 be the σ-algebra generated by {1IEn}28. Then Σ0 is

countably generated and so L1(Ω,Σ0, µ) = {g ∈ L1(Ω,Σ, µ) : g ∈ Σ0} is separable. Since

T is continuous, T : L1(Σ0) → X is a weakly compact operator whose range is separable.

By Dunford-Pettis, there is an essentially bounded, Σ0-measurable f : Ω → X for which

T (g) =

∫
Ω

gf dµ for all g ∈ L1(Ω,Σ, µ).

Now, let ε > 0, and ‖f‖∞ = M ∈ R+. Then, by the necessary direction of Rieffel’s

Theorem, there is a set Eε ∈ Σ0 such that µ(Ω − Eε) <
ε

M+1
and a (norm) compact set

Aε ⊆ X such that {
∫
E
f dµ

µ(E)
: E ∈ Σ0, E ⊆ Eε} ⊆ Aε. Let A′ε = {αx : 0 ≤ α ≤ µ(Ω) = 1 and

x ∈ Aε}. Since Aε is compact, so is A′ε. Now, note that

T (1IEn) =

∫
En

f dµ =

∫
En∩Eε

f dµ+

∫
En−Eε

f dµ.

Since En ∩ Eε ⊆ Eε, we have that

1

µ(En ∩ Eε)

∫
En∩Eε

f dµ ∈ Aε, and hence,

∫
En∩Eε

f dµ ∈ µ(En ∩ Eε)Aε ⊆ A′ε.

Moreover, ∥∥∥∥∫
En−Eε

f dµ

∥∥∥∥ ≤ ∫
En−Eε

‖f‖ dµ ≤Mµ(En − Eε) ≤Mµ(Ω− Eε) < ε.

Thus, T (1IEn) is within ε of a member of the compact set A′ε. Then {T (1IEn)} is totally

bounded and hence is (norm) relatively compact. Thus {T (1IEn)} has a sequence that con-

verges in X. Then, for any infinite subset B ⊆ T (S), there is a {1IEn} ⊆ T−1(B) such

that {T (1IEn)} has a convergent subsequence in X; hence B has a limit point in X. Then,

T (S) is relatively compact29. Since a compact subset of a metric space is separable, T (S) is

separable and hence so is T (S).

Now, we are ready to prove the main theorem.

28That is the smallest σ-algebra containing {1IEn}.
29Because the previous property is equivalent to relative (or conditional) compactness
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Theorem 2.49 (Phillips). [11] Let F : Σ→ X be a µ-continuous vector measure of bounded

variation such that for each ε > 0, there exists Eε ∈ Σ with µ(Ω− Eε) < ε such that

Bε = {F (E)/µ(E) : E ⊆ Eε, E ∈ Σ, µ(E) > 0}

is contained in a weakly compact subset of X. Then, there exists a µ-measurable Bochner

integrable function f : Ω→ X such that for E ∈ Σ,

F (E) =

∫
E

f dµ.30

Proof. For each n ∈ Z+, choose En ∈ Σ such that µ(Ω− En) < 1
n

and

Bn := {F (E)/µ(E) : E ⊆ En, E ∈ Σ, µ(E) > 0}

is contained in a weakly compact An ⊆ X. Let

S := {g : Ω→ R : g =
n∑
i=1

αi1IEi , αi ∈ R, {Ei} ⊆ Σ are pairwise disjoint} ⊆ L1(µ),

and define tn : S → X by31

tn

(
n∑
i=1

αi1IEi

)
=

n∑
i=1

αiF (Ei ∩ En) =
∑
i=1

αiµ(Ei ∩ En)
F (Ei ∩ En)

µ(Ei ∩ En)

The linearity of tn comes directly from the form of the elements of S.

Now, let S ′ be the intersection of S and the unit ball in L1(µ); hence S ′ is a dense subset

of the unit ball of L1(µ). Then for any f ∈ S ′, ‖f‖1 ≤ 1, and so∑
i=1

|αiµ(Ei ∩ En)| ≤
n∑
i=1

|αi|(Ei) = ‖f‖1 ≤ 1.

Therefore,

tn(f) ∈ co(Bn −Bn) ⊆ co(Bn −Bn) = co(Bn −Bn).

30In the paper, the authors also prove (without the requirement that F be of bounded variation) that F
can be given as the integral of a Pettis integrable function. However, for the sake of remaining conscise, we
will avoid the digression into Pettis integration.

31The last equality holds cleanly if we adopt the convention of 0/0 = 0.
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Since An is weakly compact, so is An−An; since Bn ⊆ An, we have that Bn −Bn ⊆ An−An.

Hence Bn −Bn is weakly compact in X. Then, by the Krein-Smulian theorem32, co(Bn −Bn)

is also weakly compact. Therefore, tn(S ′) is contained in a weakly compact set. Since S ′

is dense in the unit ball of L1(µ), there is an extension Tn of tn on all of L1(µ) that maps

the closed unit ball into a weakly compact set in X. Hence, Tn is weakly compact. By the

preceeding Lemma, Tn has a separable range, and hence by the Dunford-Pettis theorem,

there is a µ-measurable f : Ω → X with support En
33 such that Tn(g) =

∫
En

gfn dµ for all

g ∈ L1(µ).

If we do this for each n ∈ Z+, we can produce an increasing sequence of measurable

sets (En) such that µ(Ω−En)→ 0 and a sequence (fn) of µ-measurable Bochner integrable

functions such that

F (E ∩ En) = Tn(1IE∩En) =

∫
En

fn dµ.

Then fn1IEm = fm for n ≥ m since (En) is increasing. Define f : Ω→ X by f :=
∑
n∈N

fn1IEn .

Since (En) ↗ Ω, fn → f uniformly, and hence f is µ-measurable, and fn = f1IEn for all

n ∈ Z+.

Let E ∈ Σ. Since F << µ, and limn µ(Ω− En) = 0,

F (E) = limn F (E ∩ En) = limn

∫
E∩En

fn dµ = lim
n

∫
E∩En

f1IEn dµ = lim
n

∫
E∩En

f dµ

in the metric topology on X. Since F is of bounded variation,

∞ > |F |(Ω) ≥
∫
‖fn‖ dµ =

∫
En

‖f‖ dµ for all n ∈ Z+.

Since ‖fn‖ ↗ ‖f‖, by the Monotone Convergence Theorem,

∞ > |F |(Ω) ≥ limn

∫
En

‖f‖ dµ = lim
n

∫
‖fn‖ dµ =

∫
‖f‖ dµ.

Therefore, ‖f‖ is integrable, and hence f is Bochner integrable.

32The closed convex hull of a weakly compact subset of a Banach space is weakly compact
33That is, fn = fn1IEn

.
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Therefore, (fn) → f in measure, ‖fn‖ ≤ ‖f‖ for all n where f is Bochner integrable;

hence, by the Dominated Convergence Theorem, limn

∫
E

fn dµ =

∫
E

f dµ for all E ∈ Σ.

Therefore, we have that f is Bochner integrable and

F (E) = limn

∫
E∩En

f dµ = lim
n

∫
E

fn dµ =

∫
E

f dµ.
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Chapter 3

Quantum Measures

Our final chapter will explore an avenue of vector measure theory that branches from

what is called Quantum Probability. The operators discussed here are defined and briefly

discussed in section D.4 of the Appendix.

3.1 Hilbert Space Quantum Mechanics

Among the contending axiomatic bases for quantum mechanics, the traditional approach

uses the structure of the Hilbert space and its self-adjoint operators to describe states and

observables within a given physical system. This approach was developed in the early 1930’s

by P. Dirac and J. von Neumann with the ideas of M. Born[8].

In both classical and quantum mechanics, a state represents a theoretically complete

description of a given physical system, and observables correspond to measurable quantities

in the physical system.[8] In the traditional axiomatic basis for quantum mechanics, the

physical system is represented by a complex Hilbert space, and states and observables are

described by entities in the Hilbert space. Hence the traditional axiomatic structure is

called Hilbert quantum mechanics. Von Neumann gave the following axioms for Hilbert

space quantum mechanics [8]:

(A1) The states of a quantum system are [described by] unit vectors in a complex Hilbert

space H.

(A2) The observables are [described by] self-adjoint operators on H.
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(A3) The probability that an observable T has a value in a Borel set A ⊆ R when the system

is in the state ψ is 〈P T (A)ψ, ψ〉 where P T (·) is the resolution of identity (spectral

measure) for T .

(A4) If the state at time t = 0 is ψ, then the state at time t is ψt = e−itH/hψ, where H is

the energy observable and h is a constant (Planck’s constant).

In this chapter, we will focus on explicating A1 and A2. After which, we will introduce a

natural extension of those probabilities to vector measures on H, in the spirit of the classical

vector measure theory.

3.2 Basics of Quantum Probability

We begin the endeavor of defining a probability with respect to our physical system,

represented by H.

3.2.1 Events

To define a probability, we will first need to define events, which, in classic probability,

are elements of a σ-algebra on which the probability measure is defined. We begin with the

following axiom:[8]

The events of a quantum system can be represented by projections on a

complex Hilbert space.

For the sake of restricting this discussion to merely one chapter, we will restrict ourselves to

bounded orthogonal projections on H. Because of our restriction, we now have a one-to-one

correspondence between events and closed subspaces of H, i.e.

Proposition 3.1. For each closed subspace E of H, there exists a unique orthogonal pro-

jection PE = projE that maps H onto E and is defined such that for each x ∈ H, PE(x)

is the unique element in H such that (x − PE(x)) ∈ E⊥.Furthermore, if P is a continuous

projection, then R(P ) is closed and R(P )⊕R(P )⊥ = H.
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1

Hence, the events for our probability are identified with closed subspaces of H. Further-

more, a subset E0 of H may be viewed as an event through its closed span:

E0 → spanE0 ↔ PspanE0
.

Example 3.2. To say a single vector h = (hj) ∈ H is an event is to say that {αh : α ∈ C}

or the projection Ph : H→ H given by Ph = hh∗ = [hjhk].

We will denote the family of events (i.e. bounded orthogonal projections onto closed

subspaces of H) by E and the “unit” by 1↔ H↔ PH.

3.2.2 Intersections and Unions

If we are to define a probability on elements of E , we must first define unions and

intersections of “events” that are identified with bounded orthogonal projections.

The role of “intersection” will be played by product, i.e. composition. Here arise

some disanalogies between quantum and classic probabilities. First, the product is not

commutative in general, which leaves us with left and right “intersections”. Second, E is

not necessarly closed under intersection. 2

There are two important exceptions to these two dis-analogies. First, if E ⊆ F , then

PEPF = PE = PFPE. The second exception is of greater interest to us as it introduces the

notion of a disjoint union:

Proposition 3.3. If E and F are closed subspaces of H, then E and F are orthogonal iff

PEPF = {0} = PFPE.

Proof. First, an intermediate claim: PFE = {0} iff E ⊆ F⊥.

Recall that every h ∈ H can be written uniquely as h = x+ y where x ∈ F and y ∈ F⊥,

and PFh = x. Then, y ∈ F⊥ ⇐⇒ y = 0 + y where y ∈ F⊥ and 0 ∈ F is the unique

1As the proof of this proposition is standard and routine, we will omit it here.
2However, we need only the notion of disjoint events (which we will introduce momentarily) to talk about

a probability.
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representation of y in H = F ⊕ F⊥ ⇐⇒ PFy = 0. This proves our claim. Now,

PEPF = 0⇐⇒ PEPFx = 0 ∀x ∈ H⇐⇒ PE(F ) = {0} ⇐⇒ F ⊆ E⊥

⇐⇒ E and F are orthogonal ⇐⇒ E ⊆ F⊥ ⇐⇒ PF (E) = {0}

⇐⇒ PFPEx = 0 ∀x ∈ H⇐⇒ PFPEx = 0

Definition 3.4. We say two events PE and PF are disjoint if PEPF = {0} = PFPE.3

Intuitively, we say two events are disjoint if one’s occurance precludes the other’s oc-

curance and vice versa. Similarly, as observables correspond to physical phenomena that

either do or do not occur within a physical system [8], “disjoint” events (which are simple

observables) should be mutually exclusive physical phenomena.

The role of “union” will be played by sums of projections; however, just as with

intersection, E is not necessarily closed under “unions”:

Proposition 3.5. If PE : H → H and PF : H → H are orthogonal projections onto closed

subspaces E and F respectively, then TFAE:

1. PE + PF is an orthogonal projection.

2. E and F are orthogonal.

3. PEPF = 0 = PFPE.

Proof. Since we have already shown that (ii)⇐⇒ (iii), we may use those as interchangeable.

So, we will first assume (ii) and (iii).

To prove that PE + PF is an orthogonal projection, it will suffice to prove that it is

self-adjoint and idempotent. First, idempotent:

(PE + PF )2 = P 2
E + PEPF + PFPE + P 2

F = PE + 0 + 0 + PF = PE + PF .

3In terms of closed subspaces of H, E and F represent “disjoint” events if they are orthogonal.
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Next, self-adjoint: Let x, y ∈ H. Then,

〈(PE + PF )x, y〉 = 〈PEx+ PFx, y〉 = 〈PEx, y〉+ 〈PFx, y〉

= 〈x, PEy〉+ 〈x, PFy〉 = 〈x, PEy + PFy〉

= 〈x, (PE + PF )y〉.

Now, assume (i), and we will show (ii). Now, by the claim in the preceeding proposition, it

will suffice to show that PF (E) = {0}. Then,

PE + PF = (PE + PF )2 = P 2
E + PEPF + PFPE + P 2

F .

So, 0 = PEPF + PFPE, and hence PEPF = −PFPE. First, note that if x ∈ E ∩ F , then

x = PEx = PEPFx = −PFPEx = −Fx = −x.

Hence x = 0. Now, let x ∈ E. Then,

PEPFx = −PF (PEx) = −PF (x).

Since E and F are linear, −(−PFx) ∈ E ∩ F = {0}. Thus, PFx = {0}, and therefore, E

and F are orthogonal.

Hence, we have an analogy for “disjoint unions” (which extends readily to finite “disjoint

unions”). Intuitively, the union of two disjoint events is the event that occurs iff only one of

the two events occurs. In fact, provided that E and F are orthogonal, the range of PE +PF

is E ⊕ F .

Therefore, for PE, PF ∈ E , their “union”, PE ∨ PF is in E iff E and F are orthogonal,

and hence we have

Definition 3.6. For orthogonal E,F ∈ E , PE ∨ PF := PE⊕F .

Furthermore, we can easily define an arbitrary union for all PE, PF ∈ E as PE ∨ PF :=

PSpanE∪F = PE⊕F .
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As for countable disjoint unions, nontrivial countable collection of pairwise disjoint

orthogonal projections will not exist in a finite dimensional vector space. However, in the

case of an infinite dimensional complex Hilbert space, we have the following proposition:

Proposition 3.7. Let H be an infinite dimensional complex Hilbert space and {PEk} a col-

lection of mutually disjoint orthogonal projections. Then,
∑
k

PEk exists and is an orthogonal

projection.

Proof. Given the existence of P =
∑
k

PEk , to show that it is an orthogonal projection, we

must show that it is self-adjoint and indempotent. Note first that each partial sum
n∑
k=1

PEk

is an orthogonal projection. Then, the self-adjoint and indempotent properties come from

the fact that the square function is continuous and the inner product is jointly continuous.

Therefore, E is closed under countable “disjoint unions”. Henceforth, events will be

represented by both orthogonal projections and their ranges (primarily by their ranges unless

there is a risk of ambiguity); H will be denoted with 1. We will call these quantum events.

Under a partial ordering ≤ on E , where PE ≤ PF if E ⊆ F for all PE, PF ∈ E , then E

is a lattice. In fact, given any subset A of E , inf A = P⋂
E∈A E

and supA =
∨
E∈A

PE
4.

3.2.3 A Probability

Classically, a probability p is a countably additive mapping from a σ-algebra of subsets

of a set Ω into the interval [0, 1] such that p(Ω) = 1. Hence, an analogous function defined

on E should be a mapping p : E → [0, 1] such that for every sequence of mutually disjoint

events {Ej},

p

(∑
j

Ej

)
=
∑

j p(Ej) and p(1) = 1.

4Recall that, if the PE are not “disjoint”, then the union is actually the projection onto the closed linear
span of their union
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Instead of “probability,” this mapping defined on quantum events is often called a state

map because “[it] gives a theoretically complete description of the system. Since quantum

mechanics is a probabilistic theory, a complete description of a quantum system is given by

a probability measure on its set of events.”[8] In fact, probabilities are usually determined

by states.

Example 3.8. Let P be a positive semi-definite matrix (operator) with unit trace.5 In other

words, P is a density operator or, more specifically, a state. For each E ∈ E , define

p(E) := tr(PE).

Proposition 3.9. p : E → [0, 1] satisfies the following:

1. p(1) = 1

2. Given a countable collection {Ek} of pairwise disjoint events, p

(∑
k

Ek

)
=
∑

p(Ek).

Proof. Let p be defined as above.

1. First, p(1) = tr(P1) = tr(PI) = tr(P ) = 1.

2. Finite additivity comes from the linearity of the trace map, and countable additiv-

ity comes from the fact that the trace (or Schatten) class operators6 form an ideal,

I1(H) := {T ∈ I∞(H) :
∑
n

|sn(T )| < ∞}, that is, the class of all operators on H

with absolutely summable singular values (sn) 7. Therefore, for any collection {Ej} of

pairwise disjoint events, tr

(
P

∞∑
j=1

Ej

)
<∞.

In fact, in a separable Hilbert space of dimension at least 3, this is the only example of

a probability on E by Gleason’s theorem.

5Both properties are characterizable by eigenvalues: A positive semi-definate matrix has all nonnegative
eigenvalues, and the trace of a matrix is the same as the sum of its eigenvalues.

6operators with finite trace
7A singular value of T is the square root of an eigenvalue of T ∗T .
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Theorem 3.10 ([7], Gleason). Let µ be a measure on the closed subspaces of a separable

Hilbert space H of dimension at least three. There exists a positive semi-definite self-adjoint

operator P of the trace class such that for all closed subspaces E of H, µ(E) = tr(PPE)

where PE is the orthogonal projection of H onto E.

Restricting our positive semi-definite self-adjoint operators of the trace class to density

operators, we get a probability measure and a special case of Gleason’s Theorem:

Theorem 3.11 ([8], Gleason). If dim(H) ≥ 3 and p is a probability on E , then there exists

a unique density operator (state) P on H such that p(E) = tr(PE) for all E ∈ E .

3.2.4 Observables as Random Variables

To define integration with respect to our probability, we must first find an analog of a

random variable. The natural choice would be a bounded linear operator or matrix X. In

which case, we would define the integral as∫
X dp = tr(XP ).8

If X is Hermitian, then it is an analog to a real random variable, and the integral is

merely EX. In the complex case, we want guarantee at least diagonalizability. Hence, normal

matrices will be our extension of complex random variables. These are our observables,

and we will denote their class by O. Note that O = span(E )9.

Since an observable is not necessarily compact, we will distinguish the space of compact

observables (i.e. with eigenvalues converging to 0) and denote the subclass by O∞ := O ∩

I∞(H), where I∞(H) denotes the ideal of compact operators.

By the same token, we can also define moments EXk, the Fourier transform EeitX , other

transforms such as E(XY ), variance Var(X) = EX2 − (EX)2, covariance, etc..

8We can also denote the integral

∫
X dP since the probability is uniquely determined by the density

matrix P .
9The simplest finite-valued observable is a finite linear combination of bounded orthogonal projections.

Hence all finite-valued observables are in span(E ). Therefore, spanE ⊆ O. Furthermore, any observable X
can be written as the limit of a sequence of finite-valued observables, which is in span(E ).
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3.3 Quantum Measures

Now, we will begin extending our quantum “probability”. First, we will extend it

to a quantum “measure”. To that end, we will begin with a countably-additive function

µ : E → R (or C). This function can be extended to a linear mapping on span(O) in the

strong operator topology10. Hence, µ would be a continuous functional on I∞(H) by the

Hahn-Banach Theorem.

By the Schatten Theorem11, µ must then be of the form

µ(T ) = trQT , T ∈ I∞(H)

for some unique P ∈ I1(H).

3.4 Quantum Vector Measures

Now, we will find the natural extension of this notion to vector measures. To do so we

will replace the range space with a Banach space X:

F : E → X,

which, as before is extendable to F : I∞(H)→ X (by linearity and continuity).

By theorem 2.26, we have an immediate example of a vector measure on a measure

space (S,S, µ) is given by the Bochner integral of a Bochner integrable function f : S → X:

F (E) :=

∫
E

f(s)µ (ds), for all E ∈ S,

If f is simple, i.e. f :=
∑

k xk1IEk (where xk ∈ X and Ek ∈ S for 1 ≤ k ≤ n),

F (E) =
∑
k

xk µ(E ∩ Ek) for all E ∈ S.

We may, instead, simply use n arbitrary finite measures µk : S → R (or C):

F (E) =
∑
k

xk µk(E) for all E ∈ S.

10Under the assumption of continuity
11I1(H) is isometrically isomorphic to the dual of I∞(H).
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Now, to make F a “quantum vector measure”, we let our “measurable space” be (H,E )

and let the µk be “quantum measures”: µk : E → R (or C) where for each k, µk(E) =

tr(QkE) for all E ∈ E where Qk ∈ I1(H) is unique for each 1 ≤ k ≤ n. Hence, our simple

“quantum vector measure” is

F (E) =
∑
k

xk tr(QkE) =
∑
k

∫
E

xkEk d(tr(Qk·)), for all E ∈ E .12

Now, to look at a case that is not discrete, consider a Bochner integrable function f :

[0, 1]→ X, and the functions Q : [0, 1]→ I1 and TE : [0, 1]→ R given by TE(s) = tr(Q(s)E)

for a given E ∈ E . We would like to define a “quantum vector measure” as

M(E) =

∫ 1

0

f(s)TE(s) ds for E ∈ E .

However, we must first consider under what conditions fTE is Bochner integrable. It is

immediate that if |TE(s)| were Lebesgue integrable either ‖f(s)‖ or |TE(s)| were bounded,

then fTE would be Bochner integrable, for then

M(E) =

∫ 1

0

‖f(s)TE(s)‖ ds =

∫ 1

0

‖f(s)‖|TE(s)| ds

would be the product of two Lebesgue integrable functions, one of which is bounded.

3.5 Questions

The preceeding section is merely the beginning. Of course, there is the immediate ques-

tion of sufficient conditions for our quantum vector measure M being the Bochner integral

of fTE as above. Furthermore, under what conditions will Gleason’s theorem extend to the

quantum vector measure?

A next step would be in the direction of random quantum measures (in the wide sense

from Chapter 1), in which case we would choose Banach subspaces of L0(Ω,F , P ) or C(Ω)

(where Ω is a “nice” topological space) for our Banach space. Furthermore, our density

12Recall that we denote our events (which are projections) by their ranges, i.e. PE is identified with E.
Therefore, we write Ek instead of 1IEk

because, for our quantum measures, the projection itself plays the
role of an indicator function for the closed subspace Ek of H.
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maxtirx Q would be a random matrix (operator), and, just as with quantum vector measures,

we would want to know if there is a random version of Gleason’s theorem.
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Appendix A

Measure Theory

First, we will define different types of collections of subsets: Let Ω be a nonempty set.

Definition A.1. A ring is a collection of subsets of Ω that is closed under finite unions and

finite intersections.

Definition A.2. A δ-ring is a ring that is closed under countable intersection.

Definition A.3. A σ-ring is a ring that is closed under countable uions.

Definition A.4. An algebra is a collection of subsets of Ω that contains Ω and is closed

under finite unions and relative complements.

To begin, let Ω be a set and let Σ be a σ-algebra of subsets of Ω, that is, Σ contains Ω

and is closed under complements and countable unions1. Then we call (Ω,Σ) a measurable

space, and call a subset E ⊆ Ω measurable (with respect to Σ) if E ∈ Σ.

A.1 Measures

A measure µ on (Ω,Σ) is a set function from Σ into [0,∞) for which µ(∅) = 0 and

which is countably additive. A measure space (Ω,Σ, µ) is a measurable space together

with a measure µ defined on Σ. Note that a measure is inherently nonnegative. We call

measures that map to R “signed measures.” A signed measure on (Ω,Σ) is a set function

ν : Σ → [−∞,∞] which assumes at most one of −∞,∞, has ν(∅) = 0, and is countably

additive. By the Jordan Decomposition Theorem, any signed measure ν can be written as the

1An algebra is a collection of subsets of Ω that contians Ω and is closed under complements and finite
unions.
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difference between two mutually singular measures, ν+ and ν−. By mutually singular, we

mean there exist measurable sets A and B whose disjoint union is Ω and ν+(A) = ν−(B) = 0;

this is denoted ν+ ⊥ ν−. Due to the existence of signed measures, nonnegative measures

will sometimes be referred to as “true” measures, but we will usually refer to true measures

as measures.

Now, let ν be a σ-finite signed measure on the measure space (Ω,Σ, µ). Then there is

a Jordan Decomposition ν = ν+ − ν− on (Ω,Σ) where ν+, ν− are true measures on (Ω,Σ)

and ν+ ⊥ ν−.2 Then |ν| = ν+ + ν− is a “true” measure on (Ω,Σ) called the variation of ν.

We say that measure ν is absolutely continuous with respect to a measure µ, denoted

ν << µ, if for all E ∈ Σ, if µ(E) = 0, then ν(E) = 0. Then, ν << µ iff |ν| << µ iff ν+ << µ

and ν− << µ.

An extremely important measure, for our purposes, is the Lebesgue measure, which we

will denote with λ, on (Rn,L), where L denotes the σ-algebra of Lebesgue measurable sets.

A measure µ on (Ω,Σ) is considered finite if µ(Ω) < ∞; it is considered σ-finite if Ω

is the union of a countable collection of measurable sets, each of which has finite measure.

Many of our results will hold for σ-finite spaces. However, we will often assume that our

space is finite, or, better yet, a probability space, which we will define in Appendix B.

A.2 Integration and Noteworthy Theorems

A measurable function f on Ω is called integrable if

∫
|f | dµ < ∞. Note, however,

that the integral is still defined when

∫
|f | dµ ≮∞.

The following are a few of many useful theorems from measure theory: Let (Ω,Σ, µ) be

a measure space.

2That is, the two are mutually singular, which means there exists measurable sets A and B whose disjoint
union is Ω and ν+(A) = ν−(B) = 0.
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Theorem A.5 (Egoroff’s Theorem). Let (fn) be a sequence of measurable functions on Ω

that converge pointwise a.e.3 on Ω to a function f that is finite a.e. on Ω, then for all ε > 0,

there exists a measurable set Xε ⊆ Ω such that µ(Ω−Xε) < ε and (fn) converges uniformly

to f on Xε.

Theorem A.6 (Fatou’s Lemma). If (fn) is a sequence of nonnegative measurable functions

on Ω that converge pointwise a.e. to a function f on Ω, then∫
lim inf fn dµ ≤ lim inf

∫
fn dµ.

Theorem A.7 (Lebesgue Dominated Convergence Theorem). Let (fn) be a sequence of

measurable functions on Ω which converge pointwise a.e. to a measurable function f on Ω.

If there is a nonnegative integrable function g on Ω that dominated the sequence (fn), then

f is integrable, and

lim
n→∞

∫
fn dµ =

∫
f dµ.

There are several more, but they have their own places in this introductory chapter.

3 ”a.e.” or ”almost everywhere” means everywhere except on a set of measure zero.
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Appendix B

Probability Theory

B.1 Measure Theory and Probability Theory

A great deal of terms in probability theory have equivalent versions in measure theory.

So, we will begin this section pointing out these terms. First, a probability measure

space, or probability space, is a finite measure space (Ω,Σ, P ) where P (Ω) = 1.

The following excerpt from a table from Folland may prove useful, [6]:

Analysts’ Term Probabilists’ Term

σ-algebra σ-field

Measurable Set Event

Measurable function f into (R,B) Random variable (r.v.) X

Measurable function f into (Rd,Bd), d > 1 Random vector X

Integral of f Expectation of X∫
f dµ E(X)

Almost every(where) (a.e.) Almost sure(ly) (a.s.)

Characteristic function χ Indicator function 1I

In this paper, there is a slight mixture of terms from each field. In this chapter and

chapter 2, the language will be primarily in measure theoretic terms, with the primary

exception being the use of 1I in place of χ. This is to prevent confusion between the measure

theory characteristic function and the probability theory characteristic function, two very

differnt functions1.

1And because “indicator” seems to be a more appropriate name for the function.
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B.2 Other Basics

The following are some other useful definitions from Durett, [4]:

Definition B.1. Let X be a random variable, then the probability measure on R (with the

Borel σ-algebra) induced by X is called the distribution of X, and is given by

µ(A) = P (X ∈ A).2

Definition B.2. The distribution of a random variable is usually described by its distri-

bution function, F (x) = P (X ≤ x).

Definition B.3. Two random variables, X and Y are identically distributed (id),

X
d
= Y , if they induce the same distribution µ on R with the Borel σ-algebra.

Definition B.4. When the distribution function F (x) = P (X ≤ x) can be written as

F (x) =

∫ x

−∞
f(y) dy

for some integrable function f , then we say that P has density function f .

Finally, we should mention the Rademacher functions, which are useful examples in

Chapter 1.

Definition B.5. The Rademacher functions are the functions rn : [0, 1] → R given by

rn(x) = sgn(sin(2nπx) for all x ∈ [0, 1] for all n ∈ Z+.

However nice the definition is, the best understanding of the Rademacher functions

comes from just a glance:

r1

1

-1

1

r2

1

-1

1

r3

1

-1

1

2That is P (X−1(A)).
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Appendix C

Radon-Nikodým Theorem

One of the most influential theorems from Measure theory and Probability theory is the

Radon-Nikodým Theorem. As it is a primary focus for this paper, we will devote a slightly

larger section to it. We will discuss some of the applications of the RNT (as it is usually

abbreviated) in later sections, but first, the standard statement of the theorem.

Theorem C.1. Let (Ω,Σ, µ) be a σ-finite measure space and ν a σ-finite measure on (Ω,Σ)

that is absolutely continuous with respect to µ. Then there exists a function f : Ω→ [0,∞)

such that for all A ∈ Σ,

ν(A) =

∫
A

fdµ.

Furthermore, f is unique modulo variations on µ-null sets.

C.1 Radon Nikodým Derivative

The non-negative function f is called the Radon Nikodým Derivative, and is usually

denoted dν
dµ

(which should be understood as the class of functions that are equal to f µ-

a.e.). Hence, we say the RNT guarantees us a nonnegative function f such that dν = f dµ.

However, when we are working in a probability space, (Ω,Σ, P ), the RND is referred to as a

density function.

Proposition C.2. Let P be a probability measure (usually a distribution of a random variable

X) on (R,B). P is said to have density f iff P << λ and P has RND dP
dλ

= f where λ is

the Lesbegue measure on (R,B).
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Furthermore, f on Rk is called a probability density if f ≥ 0, f is measurable with

respect to λk, and

∫
f dλk = 1. And if a probability measure P on (Rk,B) is given by

P (A) =

∫
A

f dλk for all A ∈ B, then f ∈ dP
dλk

is the density of P .

C.2 Other Forms

As the RNT is a significant theorem in numerous fields, it takes on different forms in

different subjects. Some forms will be developed later in this work, but for the sake of

illustration, the following some forms that are more immediate from the classic statement of

the theorem.

Theorem C.3 (RNT for Signed Measures). Let µ be a σ-finite measure on (Ω,Σ) and ν

a σ-finite signed measure on (Ω,Σ) such that ν << µ. Then there exists a µ-integrable

function f : Ω → R such that ν(A) =

∫
A

fdµ for all A ∈ Σ. Furthermore, f is unique

modulo alterations on µ-null sets.

The function f is simply fν+ − fν− .

Theorem C.4. Let (Ω,Σ, µ) be a finite measure space and ν a complex valued measure on

Σ where ν << µ. Then there is a unique µ-integrable function f such that ν(A) =

∫
A

fdµ

for all A ∈ Σ.

C.3 Some Significant Applications

C.3.1 Derivatives

The RNT introduces a notion of derivative of a (possibly signed) σ-finite measure ν

with respect to a measure µ. Hence when (Ω,Σ, µ) = (Rn,B, λ), we can define the derivative

of a measure ν with respect to µ at the point x ∈ Rn as

F (x) = lim
r→0

ν(Br(x))

λ(Br(x))
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provided the limit exists. If ν << λ, then for some λ-integrale f , dν = f dλ. Then
ν(Br(x))

λ(Br(x))

is the average value of f on Br(x). If we assume ν finite, then we are guaranteed F = f a.e.

with respect to λ. When F = f a.e. with respect to λ, we get something like a generalization

of the Fundamtal Theorem of Calculus: the derivative of the indefinite integral of f (namely

ν) is f . [6]

C.3.2 Conditional Expectation

In the realm of Probability, the RND is not only the source of density functions, but

also a primary instance of conditional expectation.

Definition C.5. Given a probability space (Ω,Σ, P ), Σ0 ⊆ F a σ-field, and X ∈ Σ a

random variable with E|X| < ∞, the conditional expectation, E(X|Σ0) is the class of

random variables Y such that Y ∈ Σ0 and for all A ∈ Σ0,

∫
A

X dP =

∫
A

Y dP .

If we let X ≥ 0 be a r.v. on the probability space (Ω,Σ, P ), and define ν(A) =
∫
A
X dP

for all A ∈ Σ, then ν is a measure by the the countable additivity over domains of integration

(which comes from the Monotone Convergence Theorem and linearity of integration), and

ν << P by definition. Then ν(A) =

∫
A

dν

dP
dP . Taking A = Ω, we get dν

dP
≥ 0 integrable

and dν
dP

is a version of E(X|Σ).

If X is not nonnegative, then simply let ν(A) =

∫
A

X+ dP −
∫
A

X− dP for all A ∈ Σ

is a signed measure, for which we have defined a RND.
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Appendix D

Vector Spaces

Definition D.1. A vector space X is an abelian group with a field K 1 and an associated

scalar product m : K×X → X given by ·(α, x) = α · x for which the following hold for all

α, β ∈ K and u, v ∈ X:

1. (α + β) · u = α · u+ β · u

2. α · (u+ v) = α · u+ α · v

3. (αβ) · u = α · (β · u)

4. 1 · u = u where 1 is the multiplicative identity in K.

These spaces are also called linear spaces; however, we will adhere to the “vector”

terminology to save from confusion when we begin to define vector measures. We will

assume that the field corresponding to X is K unless otherwise stated.

Definition D.2. Let S be a nonempty subset of a vector space X. The span of S (span(S))

is the collection of all linear combinations of vectors in S.

Definition D.3. The closed span of S, span(S), is the smallest closed linear ubspace

containing the span of S.

Definition D.4. A subset A of a vector space X is convex if, given x, y ∈ A and 0 ≤ a ≤ 1,

ax+ (1− a)y ∈ A.

In other words, for any pair of points in the space, the “line” between them is also

contained in the space. A classic example of a convex set is Sn ⊆ Rn+1.

1For our purposes, K will be either R or C.
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Definition D.5. If A is a subset of a linear space X, then the convex hull of A, co(A), is

the intersection of all convex sets containing A:

co(A) = {
n∑
i=1

aixi|xi ∈ A, 0 ≤ ai ≤ 1,
n∑
i=1

ai = 1}.

Definition D.6. If A is a subset of a linear topological space X, then the closed convex

hull of A, co(A), is the intersection of all closed convex sets containing A.

D.1 Some Significant Spaces

The following are several significant types vector spaces. But before we introduce them,

we must first introduce the concept of Cauchy and completeness of a metric.

Definition D.7. A sequence (xn) in a metric space X is Cauchy if for any ε > 0, there

exists an N ∈ N such that for all n,m ≥ N , d(xn, yn) < ε.

Definition D.8. A metric is complete if every Cauchy Sequence converges with respect to

that metric.

Intuitively, it is best to understand a complete space as a space with no “holes” in it.

Definition D.9. An F -space is a metric topological vector space X over K such that,

1. The metric on X is translation invariant.

2. Scalar multiplication, · : K × X → X, is continuous with respect to the metric on

K×X and X.

3. Vector addition + : X ×X → X, is continuous with respect to the metric on X ×X

and X.

4. X is complete.

Save the completeness requirement, all normed vector spaces satisfy all of these criteria.

Now, for a normed vector space that is complete.
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Definition D.10. A Banach space is a normed vector space that is complete with respect

to the norm metric.

Note that a Banach Space is an F -space where ||αx|| = |α|||x|| for all x ∈ X and α ∈ K.

Definition D.11. A Hilbert space H is a vector space over C together with a function

〈·, ·〉 : H×H → C (known as an inner product for H) for which for all x, y, z ∈ H and α ∈ C

1. 〈x, x〉 = 0 iff x = 0

2. 〈x, x〉 ≥ 0

3. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

4. 〈αx, y〉 = α 〈x, y〉

5. 〈x, y〉 = 〈y, x〉

6. If (xn) ∈ H and lim
n,m→∞

〈xn − xm, xn − xm〉 = 0, then there is an x ∈ H with

lim
n→∞

〈xn − x, xn − x〉 = 0.

Given the inner product on a Hilbert Space, we can define a norm on the space as

||x|| = √< x, x >.

D.1.1 Example Spaces

Next, we will define several significant spaces which will be alluded to throughout this

text; all of these spaces are Banach spaces.

Let K be a scalar field (usually R or C).

1. Let 1 ≤ p <∞ and n ∈ Z+. Then lpn = {x = (a1, ..., an) : ai in K for 1 ≤ i ≤ n}.

The norm on lpn is ||x|| =

(
n∑
i=1

|ai|p
)1/p

.

Sometimes it is written as lpn(K) to make the associated scalar field explicit.
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2. Let 1 ≤ p <∞, then `p = {x = (ai) in K:
∞∑
i=1

|ai|p <∞}.

The the norm on `p is ||x|| =

(
∞∑
i=1

|ai|p
)1/p

.

3. Let n ∈ Z+. Then lpn = {x = (a1, ..., an) : ai in K for 1 ≤ i ≤ n} with norm

||x|| = sup
1≤i≤n

|ai|.

4. `∞ = {x = (ai) in K: (ai) is bounded }. The norm on `∞ is given by ||x|| = sup
i
|ai|.

5. c = {x = (ai) in K : ai → a for some a ∈ K}. The norm on c is given by ||x|| = sup
i
|ai|.

6. c0 = {x = (ai) in K : ai → 0}. The norm on c0 is given by ||x|| = sup
i
|ai|.

7. cs = {x = (ai) in K :
∑
ai <converges}. The norm on cs is given by ||x|| = sup

n

∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣.
8. If A is a nonempty set and X a normed vector space, then B(A,X) : {f ∈ XA :

sup
x∈A
||f(x)|| <∞} is a vector space with norm given by ||f ||∞ := sup

x∈A
||f(x)||.

9. If S is a compact topological space, then C(S) = {f : S → K : f is continuous}. The

norm on C(S) is given by ||f || = sup
s∈S
|f(s)|.

10. Lp spaces we will save for later.

To get an idea of basic open sets in lpn, consider the unit circle in l22(R) (i.e. the set

{x ∈ R2 : ||x|| = 1 where || · || is the Euclidean norm}).

(0,1)

(1,0)

Figure D.1: Unit Circle for l22(R)

And the unit circle for l12:
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(0,1)

(1,0)

Figure D.2: Unit Circle for l12(R)

And, finally, the unit circle for l∞2 :

(0,1)

(1,0)

Figure D.3: Unit Circle for l∞2 (R)

Notice that all of these unit circles are convex.

D.2 Lp Spaces

We will now take a moment to consider Lp spaces in particular.

D.2.1 Definitions

Let K = R or C and (Ω,Σ, µ) be a measure space.

Consider the space G of µ-measurable K-valued functions on (Ω,Σ, µ). We will (for

the sake of norms soon to be defined) consider the equivalence relation ' on G such that

for f, g ∈ G, f ' g if f = g a.e. on Ω. Then we partition G into a disjoint collection of

equivalence classes, G/ '. We will simply refer to the equivalence classes as functions and

will denote them by f as opposed to [f ].

Then define Lp(Ω,Σ, µ)={f ∈ G/ ' :
∫
|f |p dµ <∞}.
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Unless the particular measure space we are working over is relevant, we will just write Lp or

Lp(µ).

The norm on Lp is given by ||f ||p =

(∫
|f |pdµ

)1/p

.

The first two requirements for a norm are proven readily (especially since the equivalance

classes on G ensure that ||f − g||p = 0 iff f − g = 0) from the linearity of integration and the

absolute value norm on K. The triangle inequality is satisfied by the Minkowski Inequality,

which we will state later.

Next, we will introduce the L∞ space. But first, a definition.

Definition D.12. If f is a measurable function on Ω, we say f is essentially bounded

if there is a real M ∈ R+ such that |f(x)| ≤ M a.e.. In this case M is called an essential

upper bound for f .

Then, define L∞(Ω,Σ, µ)={f ∈ G/ ' : f is essentially bounded }.

Unless the particular measure space we are working over is relevant, we will just write L∞

or L∞(µ).

If f is a measurable function on Ω and 0 < p <∞, then ||f ||p =

(∫
|f |p dµ

)1/p

(where

||f ||p can be infinite).

The norm on L∞ is given by ||f ||∞ = inf{M ≥ 0 : |f(x)| ≤ M a.e. }. Again, the first

two requirements are met readily from the equivalence classes, absolute value norm, and

linearity of integration; the triangle inequality falls from the fact that ||f ||∞ is an essential

upper bound for f .

When Ω is countable and µ is the counting measure, then Lp = `p and L∞ = `∞ where

the ai ∈ K are f(xi) ∈ K.
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D.2.2 Lp for 0 ≤ p < 1

Lp and `p spaces are also defined for 0 < p < 1. These spaces are defined in the same

way as their 1 ≤ p < ∞ counterparts, i.e. Lp(Ω,Σ, µ) = {f ∈ G/ ' :
∫
|f |p dµ < ∞}.

However, these spaces are not Banach (though they can be F-spaces). Whereas the basis

for the Lp and `p spaces for 1 ≤ p ≤ ∞ consists of convex sets, the basis for Lp and `p for

0 < p < 1 consists of concave sets (i.e. non-convex sets).

The unit circle for lp2(R) for 0 < p < 1 looks like this:

(0,1)

(1,0)

Figure D.4: Unit Circle for lp2(R)

Finally, we reach L0(Ω,Σ, µ), the collection of K-valued, µ-measurable functions on Ω.

This vector-space is extremely rich, but not normed. However, if we add the assumption that

µ(Ω) <∞, we can define a metric d : L0×L0 → R on the space by d(f, g) =

∫
|f−g|∧1dµ.

This metric is translation invariat, but clearly does not have absolute homogeneity, and

hence is not determined by a norm.

D.3 Linear Operators

Definition D.13. Let X and Y be vector spaces over the same field K. An operator (or

mapping or transformation) is a function from a linear subspace of X into Y .

Definition D.14. Let X and Y be vector spaces over K. T : X → Y is a linear operator

if for all u, v ∈ X and α, β ∈ K, T (αu+ βv) = αT (u) + βT (v).
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Definition D.15. Let X and Y be vector spaces. For linear operators T, S : X → Y and

α, β ∈ K, define αT + βS : X → Y pointwise by (αT + βS)(u) = αT (u) + βS(u) for all

u ∈ X.

Definition D.16. Let X and Y be normed vector spaces over K. A linear operator T :

X → Y is bounded if there exists an M ∈ R+ such that ||Tu|| ≤M ||u|| for all u ∈ X.

Let L (X, Y ) denote the space of all bounded linear operators from X into Y .

Proposition D.17. Let X and Y be normed vector spaces. Then L (X, Y ) is a normed

linear space with norm || · ||L : L(X, Y )×L(X, Y )→ [0,∞) given by ||T ||L = inf{M ∈ R+ :

||Tu|| ≤M ||u||∀u ∈ X}.

Proof. Since L(X, Y ) is a linear subspace of Y X , it remains to show that || · ||L(X,Y ) is a

norm.

We will check the three criteria for a function to be a norm.

1. Clearly, || · ||L ≥ 0. If T ≡ 0, then inf{M ≥ 0 : 0 ≤ M ||u||∀u ∈ X} = 0. If

inf{M ≥ 0 : ||Tu|| ≤M ||u||∀u ∈ X} = 0, then since || · || is a norm, T ≡ 0.

2. Let α ∈ F. Then,

||αT ||L = inf{M ≥ 0 : ||αTu|| ≤ M ||u||∀u ∈ X} = inf{M ≥ 0 : |α|||Tu|| ≤

M ||u||∀u ∈ X} = inf{M ≥ 0 : ||Tu|| ≤ 1/|α|M ||u||∀u ∈ X} = inf{|α|M ≥ 0 :

||Tu|| ≤M ||u||∀u ∈ X} = |α|||T ||L.

3. Let T, S ∈ L (X, Y ).

Then for all M ≥ 0 such that for all u ∈ X, M ||u|| ≥ ||Tu|| + ||Su||, M ||u|| ≥

||Tu||+ ||Su|| ≥ ||Tu+ Su|| ≥ ||(T + S)u||. Hence, ||T ||L + ||S||L ≥ ||T + S||L.

Henceforth, if it is clear we are taking the norm of an element of L(X, Y ), we will drop

the L(X, Y ) from the norm. Next, we give equivalent definitions of the norm on L (X, Y ).
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Proposition D.18. ||T || = inf{M ∈ R+ : ||Tu|| ≤M ||u||,∀u ∈ X}

= sup{||Tu|| : u ∈ X, ||u|| ≤ 1}

= sup{||Tu|| : u ∈ X, ||u|| = 1}

= sup{ ||Tu||||u|| : u ∈ X, u 6= 0}

Proof. 1. sup{||Tu|| : u ∈ X, ||u|| ≤ 1} ≥ sup{||Tu|| : u ∈ X, ||u|| = 1}

This comes from the fact that {||Tu|| : u ∈ X, ||u|| = 1} ⊆ {||Tu|| : u ∈ X, ||u|| ≤ 1}.

2. sup{||Tu|| : u ∈ X, ||u|| = 1} ≥ inf{M ≥ 0 : ||Tu|| ≤< M ||u||,∀u ∈ X}.

Comes from {M ≥ 0 : ||Tu|| ≤< M ||u||, ∀u ∈ X} ⊇ {M ≥ 0 : ||Tu|| ≤< M,u ∈

X, ||u|| = 1} = {||Tu|| : u ∈ X, ||u|| = 1}.

3. sup{||Tu|| : u ∈ X, ||u|| = 1} ≤ sup{ ||Tu||||u|| : u ∈ X, u 6= 0}

Comes from { ||Tu||||u|| : u ∈ X, u 6= 0} ⊇ { ||Tu||||u|| : u ∈ X, ||u|| = 1} = {||Tu|| : u ∈

X, ||u|| = 1}.

4. inf{M ≥ 0 : ||Tu|| ≤< M ||u||,∀u ∈ X} ≥ sup{||Tu|| : u ∈ X, ||u|| = 1}

Let M ≥ 0 such that ||Tu|| ≤ M ||u|| for all u ∈ X. Let w ∈ X such that ||w|| = 1.

Then, ||Tw|| ≤M ||w|| = M . Thus, the claim holds.

5. sup{ ||Tu||||u|| : u ∈ X, u 6= 0} ≤ sup{||Tu|| : u ∈ X, ||u|| = 1}

Let x ∈ X with x 6= 0 and z = x
||x|| . Then ||z|| = 1 and ||Tx||

||x|| = ||Tz||. Thus, the claim

holds.

6. sup{||Tu|| : u ∈ X, ||u|| ≤ 1} ≤ sup{||Tu|| : u ∈ X, ||u|| = 1}

Let x ∈ X with ||x|| ≤ 1. Then by (5), ||Tx|| ≤ sup{||Tu|| : u ∈ X, ||u|| = 1} · ||x|| ≤

sup{||Tu|| : u ∈ X, ||u|| = 1}. Thus, the claim holds.

One of the more valuable characterizations of linear operators is given by the following

theorem.
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Theorem D.19. Let X and Y be normed linear spaces and T : X → Y be a linear operator.

Then, the following are equivalent:

1. T is bounded.

2. diam(T ({x ∈ X : ||x||X = 1})) <∞.

3. diam(T ({x ∈ X : ||x||X ≤ 1})) <∞.

4. There exists a nonempty A ⊆ X such that diamT (A) <∞.

5. T is continuous at 0.

6. T is Lipschitz continuous.

Proof. (1)⇒ (2)

Suppose T is a bounded linear operator. Then there is some c ∈ R+ such that ||Tx||Y ≤

c||x||X for all x ∈ X. Let SX = {x ∈ S : ||x||X = 1}. Note that for all x ∈ SX ,

||Tx||Y ≤ c||x||X = c. Hence T (SX) ⊆ Bc(0).

(2)⇒ (3)

Suppose T (SX) ⊆ B
Y

r (0) for some r ∈ R+. Let x ∈ B
X

, and assume x 6= 0 (since

T0 = 0). Then x
||x||x ∈ S

X , and so T ( x
||x||X

) ∈ BY

r (0). Then, ||Tx||y + || ||x||XT ( x
||x||X

)||Y =

‖x‖X‖T ( x
‖x‖X

)‖Y ≤ ‖T ( x
‖x‖X

)‖Y ≤ r. Hence T (B
X

) is bounded.

(3)⇒ (4) Immediate

(4)⇒ (5)

Suppose G is a nonempty subset of X and T (G) is bounded in Y . Then T (G) ⊆ B
Y

r (0)

for some r ∈ R+. Let x0 ∈ G and ρ ∈ R+ such that B̊X
ρ (x0) ⊆ G. Then T (B̊X

ρ (x0)) ⊆ B
Y

r (0).

So, for all x ∈ B̊X
ρ (x0), ||Tx||Y ≤ r. Now, let ε > 0, 0 < δ < ερ

2r
, and let x ∈ B̊Y

δ (0). Then

x0 + ρ
δ
x ∈ B̊X

ρ (x0). Hence ‖T (x0 + ρ
δ
x)‖Y ≤ r. But then,

‖Tx‖Y = ‖ δ
ρ
T (ρ

δ
x)‖Y = | δ

ρ
|‖T (ρ

δ
x+x0)−Tx0‖Y ≤ δ

ρ
‖T (ρ

δ
x+x0)‖Y +‖Tx0‖Y ≤ 2 δ

ρ
r < ε.

Since T0 = 0, T is continuous at 0.

(5)⇒ (6).
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Suppose T is continuous at 0, then choose δ > 0 such that T (B̊X
δ (0)) ⊆ B̊Y

1 (0). Let

x1, x2 ∈ X with x1 6= x2. Then x1−x2
‖x1−x2‖X

δ
2
∈ B̊X

δ (0). Hence, ‖T ( x1−x2
‖x1−x2‖X

δ
2
)‖Y ≤ 1. Then,

‖Tx1 − Tx2‖Y = ‖T (x1 − x2)‖Y = ‖2‖x1−x2‖X
δ

T ( x1−x2
‖x1−x2‖X

δ
2
)‖Y

= 2‖x1−x2‖X
δ

‖T ( x1−x2
‖x1−x2‖X

δ
2
)‖Y ≤ 2/δ‖x1 − x2‖Y .

(6)⇒ (1)

Lipschitz continuity with x2 = 0 gives boundedness.

A slightly larger class of linear operators is the class of closed linear operators.

Definition D.20. Let X and Y be vector spaces over K, and let T : D(T ) ⊆ X → Y be

a linear operator. Then T is called a closed operator if its graph {(x, Tx) : x ∈ D(T )} is

closed in X × Y .

Proposition D.21. Let T be a linear operator from its domain, D(T ) ⊆ X into Y . Then,

T is closed iff given (xn) in D(T ) such that xn converges to x ∈ X and Txn converges to

y ∈ Y , then x ∈ D(T ) and Tx = y.

Notice that a continuous linear operator defined on X is closed, but a closed linear

operator need not be continuous. (By the Closed Graph Theorem, if X and Y are Banach

spaces, then a linear operator T : X → Y is closed iff it is continuous.) Usually, we will

require that T be densely defined, i.e. that D(T ) is dense in X.

D.3.1 Dual Spaces

Definition D.22. Given a vector space X over K, a linear functional is a linear operator

T : X → K.

Definition D.23. The dual of a vector space X is the collection of all bounded linear

functionals on X. The dual of X is denoted X∗ and its elements are usually denoted x∗.

By the previous Proposition, since K is a field it is a vector space over itself; therefore

X∗ is a vector space with the operator norm. Furthemore, if K is a Banach Space, then so is
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X∗. As for examples of Linear Operators, Linear Functionals, and Dual Spaces; an excellent

example of each can be found in the construction of the duals of Lp spaces.

For an example, consider the duals of the Lp spaces, where 1 ≤ p <∞.

We begin by defining a linear functional Tf : Lp(Ω, µ) → K with respect to a function

f ∈ Lq(Ω, µ) (where q is the conjugate of p) by

Tf (g) =

∫
fg dµ for all g ∈ Lp(Ω, µ).

Hölder’s Inequality grants that Tf is a bounded linear functional (and is hence a member

of (Lp)∗) and that ||Tf || = ||f ||q. Hence, the linear operator T : Lq → (Lp)∗, give by f 7→ Tf

for all f ∈ Lq, is an isometry. The isomorphism is due to Riez, and so the following theorem

is often attributed to Riez:[17]

Theorem D.24 (The Riesz Representation Theorem for the Dual of Lp(Ω, µ)). Let (Ω,Σ, µ)

be a σ-finite measure space, 1 ≤ p < ∞, and q the conjugate of p. Then T is an isometric

isomorphism of Lq onto (Lp)∗ (where T and Tf are defined as above for all f ∈ Lq).

In other words, we consider (Lp)∗ = Lq for 1 ≤ p < ∞, and by the symmetry of the

conjugate relationship, we also have (Lq)∗ = Lp (for p 6= 1,∞). Hence, (Lp)∗∗ = Lp! We

would like for the same to hold true for p = 1 or p = ∞. But, so far, all we have is that

(L1)∗ = L∞.

So, is L∞ the pre-dual of L1?

It turns out that the dual of L∞ is isometric and isomorphic to the normed linear space of

bounded finitely additive signed measures on Σ that are absolutely continuous with respect

to µ. In fact, (a fact not easily verified) L1 does not have a pre-dual!

D.3.2 More on Operators

The following definitions are from Linear Operators by Dunford and Schwartz

Definition D.25. The uniform operator topology in L(X, Y ) is the metric topology of

L(X, Y ) induced by the operator norm.
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Definition D.26. The strong operator topology on L(X, Y ) is defined by the basis

B = {N(T ;A, ε) = {R ∈ L(X, Y ) : ‖(T −R)x‖ < ε, x ∈ A} : A ⊆ X finite and ε > 0}.

Definition D.27. The weak operator topology on L(X, Y ) is defined by the basis

B = {N(T ;A,B, ε) = {R ∈ L(X, Y ) : |y∗(T − R)x| < ε, y∗ ∈ B, x ∈ A} : A ⊆ X,B ⊆

Y ∗ finite and ε > 0}

As far as relationships between the three go, the weak operator topology is contained

in the strong operator topology, which is contained in the uniform operator topology.

Now that we have defined the dual of a Banach space, we can define the weak topology

on a Banach Space X.

Definition D.28. The weak topology of X is the inverse image topology generated by

X∗.2

With our topologies defined, we may now name two particular types of operators that

will be used in the course of this paper.

Definition D.29. Let T ∈ L(X, Y ) and S the closed unit sphere in X. T is a compact

linear operator if the strong closure of TS is compact in the norm topology of Y .

Equivalently, T ∈ L(X, Y ) is compact iff the image of any bounded set in X is relatively

compact in Y , i.e. its closure is compact in Y .

Definition D.30. Let T ∈ L(X, Y ) and S the closed unit sphere in X. T is a weakly

compact linear operator if the weak closure of TS is weakly compact, i.e. it is compact

in the weak topology of Y .

Equivalently, T ∈ L(X, Y ) is weakly compact iff the image of any bounded set in X

is weakly sequentially compact, i.e. every sequence (yn) in B contains a subsequence (y′n)

which converges weakly to a point y ∈ Y , i.e. for all y∗ ∈ Y ∗, limn y
∗y′n = y∗y.

2It is the smallest topology on X with respect to which all x∗ in X∗ are continuous.
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D.4 Operators in a Hilbert Space

Some of the definitions and propositions in this section can be generalized. However, we

present them in the form that will be relevant for this particular work. Let H be a Hilbert

space.

Definition D.31. A projection P : H → H is a linear operator onto a subset of H such

that P 2 = P

Proposition D.32. A projection P : H→ H maps H onto a closed linear subspace of H iff

P is bounded.

Definition D.33. Two elements x and y of H are orthogonal if 〈x, y〉 = 0

Definition D.34. Given a closed linear subspace E of H, the orthogonal complement of

E, E⊥ is the collection of all elements of H that are orthogonal to all members of E.

Definition D.35. Two subspaces E and F of H are orthogonal if E ⊆ F⊥ (and, conse-

quently, F ⊆ E⊥).

Proposition D.36. For each closed subspace E of H, there exists a unique projection PE =

projE that maps H onto E and is defined such that for each x ∈ H, PE(x) is the unique

element in H such that (x − PE(x)) ∈ E⊥. Furthermore, if P is a continuous projection,

then R(P ) is closed and R(P )⊕R(P )⊥ = H.

Definition D.37. An orthogonal projection is a projection such that N(P ) and R(P )

are orthogonal.

Definition D.38. Let T : H→ H be a linear operator. The adjoint T ∗ of T is the unique

operator on H such that 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H.

Definition D.39. A linear operator T : H→ H is self-adjoint if T = T ∗.
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Definition D.40. A bounded self-adjoint linear operator T : H→ H is called Hermitian.

A bounded linear operator that commutes with its adjoint (i.e. TT ∗ = T ∗T ) is called

normal.

A Hermitian operator is characterized by having real eigenvalues, whereas normal op-

erators may have complex eigenvalues. (In finite dimensional cases, where operators are

matrices, normal matrices are guaranteed to be diagonalizable.)

Proposition D.41. A bounded projection T is orthogonal iff it is self-adjoint3.

Proof. Let T : H→ H be a bounded projection.

⇒ Suppose T is orthogonal, and let x, y ∈ H. Then there exist u, v ∈ R(T ) ⊥ such that

x = u+ Tx and y = v + Ty. Then,

〈Tx, y〉 = 〈Tx, v〉+ 〈Tx, Ty〉 = 0 + 〈Tx, Ty〉 = 〈Tx, Ty〉

and

〈x, Ty〉 = 〈u, Ty〉+ 〈Tx, Ty〉 = 0 + 〈Tx, Ty〉 = 〈Tx, Ty〉

Hence, T = T ∗

⇐ Suppose T is self-adjoint. Then, N(T ) = N(T ∗) = R(T )⊥.

Definition D.42. A positive semi-definite matrix/operator is an operator T such that

for any nonzero x ∈ H, x∗Hx is real and nonnegative.

Definition D.43. The trace of an n × n matrix A = [aij] is given by tr(A) =
n∑
i=1

aii. A

matrix A has unit trace if tr(A) = 1. More generally, the trace of a bounded operator T

is given by tr(T ) :=
∑
k

〈Tek, ek〉 where {ek} is an orthonormal basis of a separable hilbert

space H.

3An operator T is self-adjoint if T = T ∗ where T ∗ is the adjoint of T , i.e. the unique operator T ∗ : H→ H
such that 〈Tx, y〉 = 〈x, T ∗y〉.
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If we consider B(H) (the collection of bounded operators on H) a ring, then some classes

of operators may be considered ideals. For example, the class of compact operators is an

ideal and is denoted I∞.

The ideal of trace class operators, I1 = {T ∈ I∞ : tr(T )is absolutely convergent},

a.k.a. Schatten operators, is the ideal of compact operators with finite trace.
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Appendix E

Summability

In Chapter 1, we gave several characterizations of unconditional convergence. In this

section, we will give the proofs of those theorems.

First, we will define summability in an F -space:

Definition E.1. A sequence (xk) ∈ XN is summable if for every ε > 0, there is a finite set

K ⊆ N such that, for every finite L ⊆ N that is disjoint with K,

∥∥∥∥∥∑
n∈L

xk

∥∥∥∥∥ < ε.

Theorem E.2 (Orlicz). In a complete metrizable topological vector space, the following are

equivalent:

1. (xk) is summable.

2.
∑
k∈N

xk converges unconditionally in X.

3.
∑
k∈N

skxk converges for every sequence (sk) ∈ {−1, 1}N.

π.
∑
k∈N

skxk converges for every sequence (sk) ∈ {0, 1}N.

Proof. Let (xk) be a sequence in a complete metrizable t.v.s. X.

1. ((3) ⇒ (π)) Suppose
∑
k∈N

skxk converges for every sequence (sk) ∈ {−1, 1}N, and let

(sk) ∈ {0, 1}N.

Let (s′k) ∈ {−1, 1}N such that for each k ∈ N, s′k :=

 −1 : sk = 0

1 : sk = −1
.

Then
∑
k∈N

xk and
∑
k∈N

s′kxk converge, and hence so does
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∑
k∈N

xk +
∑
k∈N

s′kxk =
∑
k∈N

2skxk = 2
∑
k∈N

skxk.

Therefore,
∑
k∈N

skxk converges.

2. ((π) ⇒ (3)) Suppose
∑
k∈N

skxk converges for every sequence (sk) ∈ {0, 1}N, and let

(sk) ∈ {−1, 1}N.

Let (s−k ) and (s+
k ) ∈ {0, 1}N such that for each k ∈ N,

s−k :=

 0 : sk = 1

1 : sk = −1
and s+

k :=

 1 : sk = 1

0 : sk = −1
.

Then
∑
k∈N

−s−k xk and
∑
k∈N

s+
k xk converge, and hence so does

∑
k∈N

−s−k xk +
∑
k∈N

s+
k xk =

∑
k∈N

skxk.

3. ((1) ⇒ (2)) Suppose (xk) is summable and σ : N → N is a permutation on N. Let

ε > 0 and K ⊆ N finite such that for any finite subset L of N that is disjoint with K,∥∥∥∥∥∑
k∈L

xk

∥∥∥∥∥ < ε. Let N ∈ N such that σ(k) /∈ K for all k ≥ N .

Then, for all m ≥ n ≥ N ,

∥∥∥∥∥
m∑
k=n

xσ(k)

∥∥∥∥∥ < ε.

4. ((2) ⇒ (π)) Suppose that there exists a sequence (sk) ∈ {0, 1}N such that
∑
k∈N

skxk

does not converge. Then there exists an ε > 0 such that for all N ∈ N, there exists

n,m ≥ N such that

∥∥∥∥∥∑
k=nm

skxk

∥∥∥∥∥ ≥ ε.

Let n1,m1 ≥ 1 such that

∥∥∥∥∥
m1∑
k=n1

skxk

∥∥∥∥∥ ≥ ε.

Let N2 = m1 + 1 and n2,m2 ≥ N2 such that

∥∥∥∥∥
m2∑
k=n2

skxk

∥∥∥∥∥ ≥ ε.

Then, for all j ≥ 2, defineNj := mj−1+1 and letmj, nj ≥ Nj such that

∥∥∥∥∥∥
mj∑
k=nj

skxk

∥∥∥∥∥∥ ≥ ε.
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Define Mj := {xk : nj ≤ k ≤ mj and sk = 1}. (Note that the Mj’s are disjoint.) Let

σ : N→ N be a permutation that maps each Mj onto a block of consecutive numbers.

Then
∑
k∈N

xσ(k) diverges, and hence (xk) is not unconditionally convergennt.

5. ((π)⇒ (1)) Suppose there exists an ε > 0 such that for all finite K ⊆ N there exists a

finite L ⊆ N disjoint with K such that

∥∥∥∥∥∑
k∈L

xk

∥∥∥∥∥ ≥ ε.

Let K0 = {1} and K ′0 ⊆ N disjoint with K0 such that

∥∥∥∥∥∥
∑
k∈K′0

xk

∥∥∥∥∥∥ ≥ ε.

Let K1 = K0 ∪K ′0 and K ′1 ⊆ N disjoint with K1 such that

∥∥∥∥∥∥
∑
k∈K′1

xk

∥∥∥∥∥∥ ≥ ε.

Let Kn := K ′n−1 ∪Kn and K ′n ⊆ N disjoint with Kn such that

∥∥∥∥∥∥
∑
k∈K′n

xk

∥∥∥∥∥∥ ≥ ε.

Let K :=
⋃
k∈N

Kn, and define (sk) ∈ {0, 1}N by sk :=

 0 : k /∈ K

1 : k ∈ K
.

Then,
∑
k∈N

skxk diverges.

Theorem E.3. Let X be a Banach space. Then (xk) ∈ XN is summable iff
∑
k∈N

skxk where

(sk) is any bounded sequence of scalars.

Proof. The (⇐) implication is immediate from the preceding theorem since any sequence

(sn) ∈ {0, 1}N is bounded. For the other direction, let (ak) ∈ `∞. Let ε > 0, K ⊆ N finite

such that for all finite L ⊆ N that are disjoint with K,

∥∥∥∥∥∑
k∈L

xk

∥∥∥∥∥ < ε, and N ∈ N such that

k < N for all k ∈ K. Let m ≥ n ≥ N . Then,∥∥∥∥∥
m∑
k=n

akxk

∥∥∥∥∥ = sup
x∗∈BX

∗

∣∣∣∣∣x∗
(

m∑
k=n

akxk

)∣∣∣∣∣ = sup
x∗∈BX

∗

∣∣∣∣∣
m∑
k=n

akx
∗(xk)

∣∣∣∣∣ ≤ ‖(ak)‖∞ sup
x∗∈BX

∗

m∑
k=n

|x∗(xk)|.

Let x∗ ∈ BX∗

. Since |x∗(x)| ≤ |Re(x∗(x))| + |Im(x∗(x))| for all x ∈ X, we may assume

WLOG that x∗ : X → R. Define E+ := {k ∈ N : n ≤ k ≤ m and x∗(xk) ≥ 0} and
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E− := {k ∈ N : n ≤ k ≤ m and x∗(xk) < 0}. Then,

m∑
k=n

|x∗(xk)| =

∣∣∣∣∣∑
k∈E+

x∗(xk)

∣∣∣∣∣+

∣∣∣∣∣∑
k∈E−

x∗(xk)

∣∣∣∣∣
=

∣∣∣∣∣x∗
(∑
k∈E+

xk

)∣∣∣∣∣+

∣∣∣∣∣
(
x∗(
∑
k∈E−

xk

)∣∣∣∣∣
≤

∥∥∥∥∥∑
k∈E+

xk

∥∥∥∥∥+

∥∥∥∥∥∑
k∈E−

xk

∥∥∥∥∥ < 2ε.
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Appendix F

Harris Theorem

In Section 2 of [9], Harris gives the theorem that was restated in the section on random

measures in Chapter 1:1

Let X be a separable metric space and (Vn) a sequence of proper open subsets of X

such that V1 ⊂ V −1 ⊂ V2 ⊂ V −2 ... ↑ X. Let M be the class of Borel measures ξ in X such

that ξ(Vn) < ∞, n = 1, 2, ..., and let CV be the class of functions f ∈ C(X) such that f

is supported b some Vn. We can make M into a Polish space with convergence ξn → ξ iff

ξn(f) → ξ(f) for all f ∈ CV . Let M be the Borel sets in M , and let A the class of Borel

sets A in X such that A ⊆ Vn for some n ∈ N.

Theorem F.1 (2.3). For each A1, ..., Ak ∈ A, k = 1, 2, ..., let Q(A1, .., Ak; ·) be a probability

measure in Rk. Suppose the Q determine a stochastic process {ξ(A), A ∈ A} with values

in [0,∞) such that ξ is a finitely additive random set function on A. Suppose further that

if An ↓ ∅, where An ∈ A, then Q(An; ·) converges weakly to the unit step at 0. Then

there is a unique probability measure P on M such that the joint distribution of each set

{ξ(A1), ...ξ(An)} under P is Q(A1, ..., Ak; ·).

1For a proof of the theorem, Harris directs us to the proof for finite random measures in his paper,
“Counting Measures, Monotone Random Set Functions” in the same journal, Vol 10, Issue 2, pp 102-119.
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Appendix G

Conclusions

The theory of vector measures and Bochner integration has a rich history in functional

analysis, probability theory, Banach space theory, and several other fields. Random mea-

sures, in particular, whether in the narrow or wide sense, appear in numerous forms in

probability theory. Our particular contribution to this chapter is the study of “toy” vector

measures and other examples.

Bochner integrals, by Bochner’s characterization, generalize the class of Lebesgue inte-

grable functions. As in the first chapter, the examples here (for Bochner and Pettis integrals)

are our particular contribution to the material. Among several theorems that are generalized

by Bochner integrals, we have the Radon Nikodým theorem, which fails to hold for all Ba-

nach spaces; this, in turn, yields the Radon Nikodým property. Although, with revision, we

can give a generalized version of the Radon Nikodým theorem, the Radon Nikodým property

and the numerous resulting theorems on Banach spaces is the upshot of our second chapter.

Quantum probability is a newer subject that uses the structure of a Hilbert space and

language of probability to describe states, events, and observables in quantum mechanics.

There are ready generalizations of these probabilities to quantum vector measures; however,

our preliminary characterizations are merely a peek through a keyhole. Future endeavors

are promising.
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