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Abstract

Hadoop Distributed File System (HDFS) is the underlying storage for the whole Hadoop

stack, which includes MapReduce, HBase, Hive, Pig, etc. Because of its robustness and

portability, HDFS has been widely adopted, often without using the accompanying subsys-

tems. However, as a user-level distributed filesystem designed for portability and imple-

mented in Java, HDFS assumes the standard POSIX I/O interfaces to access disk, which

makes it difficult to take most of the platform-specific performance-enhancing features and

high performance I/O techniques that have already been very mature and popular in HPC

community, such as data staging, asynchronous I/O and collective I/O, because of their

incompatibility to POSIX. Although it is feasible to re-implement the disk access functions

inside HDFS to exploit the advanced features and techniques, such modification of HDFS can

be time-consuming and error-prone. In this paper, we propose a new framework HadioFS to

enhance HDFS with Adaptive I/O System (ADIOS), support many different I/O methods

and enable the upper application to select optimal I/O routines for a particular platform

without source code modification and re-compilation. Specifically, we first customize ADIOS

into a chunk-based storage system so that the semantics of its APIs can fit the requirement

of HDFS easily; then we utilize Java Native Interface (JNI) to bridge HDFS and the tai-

lored ADIOS together. We use different I/O patterns to compare HadioFS and the original

HDFS, and the experimental results show the feasibility and benefits of the design. We also

shed light on the performance of HadioFS using different I/O techniques. To the best of our

knowledge, this is the first attempt to leverage ADIOS to enrich the functionality of HDFS.
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Chapter 1

Introduction

With the advent of Big Data era, an overwhelming amount of data can be generated in

our daily life by a wide range of computing facilities, ranging from smart phones, wearable

computing devices, to high-end scientific computing clusters and giant data centers enabling

the world-wide media and social networking services. To extract meaningful knowledge and

economic value from the massive-scale data, MapReduce [24] has evolved as the backbone

processing framework since its introduction by Google around 2004. Inspired by the map and

reduce functions commonly used in functional programming language, the Google MapRe-

duce programming model inherits the parallelism nature and is equipped with a scalable and

reliable runtime system to parallelize the analysis job to process extremely large datasets,

which are kept in Google File System (GFS) [26], the distributed storage system inside

the framework. The simple yet expressive interfaces, efficient scalability and strong fault-

tolerance have attracted a growing number of organizations to build their services on top of

MapReduce framework.

The success of Google MapReduce in Big Data era motivates the development of Hadoop

MapReduce [2], the most popular open source implementation of MapReduce, and Hadoop

Distributed File System (HDFS) [2], the counterpart of GFS. Hadoop MapReduce includes

two categories of components: a JobTracker and many TaskTrackers. The JobTracker com-

mands TaskTrackers to process data through the two functions, i.e., map and reduce, which

are left to users to define according to particular analysis requirement. Before being launched

to run by Hadoop, each MapReduce job includes the definition of the two functions and cor-

responding configuration options, such as the number of tasks to execute the map and reduce

functions, job priority and user authentication. On each TaskTracker, there are a certain
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number of map slots and reduce slots as resource containers to run tasks derived from the

MapReduce job. Task to run map (reduce) function is called MapTask (ReduceTask) and

assigned to idle map (reduce) slot. For convenient parallelization and scalable data process-

ing, Hadoop MapReduce divides input data into many splits stored in HDFS; and MapTasks

process such splits in parallel. ReduceTasks output the results to HDFS as well. To date,

Hadoop has evolved into a huge ecosystem, inside which a lot of tools have been developed to

make Big Data analytics more convenient, efficient and insightful. Hadoop Distributed File

System (HDFS) is the underlying storage system for the whole Hadoop Ecosystem. Because

of its robustness and portability, HDFS has been widely adopted, even without using the

accompanying subsystems at times. For instance, HAQW [15], an efficient SQL-engine built

for analysis on large dataset, is quite different from the other data processing tools, such as

Hive [6] and Pig [14] that translate a user query into a DAG (Directed Acyclic Graph) of

MapReduce jobs. HAQW allows user to issue queries to a large amount of data stored in

HDFS directly, bypassing the whole MapReduce runtime.

The high rate of information growth and demand for fast analysis drive system engi-

neers to deploy Hadoop onto HPC clusters [21]. However, as a user-level distributed filesys-

tem designed for portability and implemented in Java, HDFS assumes the standard POSIX

I/O interfaces to access disk, which makes it difficult to take most of the platform-specific

performance-enhancing features and high performance I/O techniques that have already

been very mature and popular in HPC community, like data staging, asynchronous I/O and

collective I/O, most of which are incompatible to POSIX standard. Although it is feasible

to re-implement the disk access functions inside HDFS to exploit the advanced features and

techniques, the time-consuming and error-prone modification of HDFS is inevitable.

Large-scale scientific applications, such as global warming modeling and combustion

simulation programs, often generate extremely massive volume of data. The gap between

the I/O speed and computing power of the high-end clusters motivates many research efforts

on the improvement of storage techniques. However, these techniques are often based upon
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the underlying system supports; and hence not always compatible to each other. So the

application using one particular I/O technique has to be modified when ported to another

platform; and the cost might be very huge to change the long-term developed and optimized

scientific program. This issue is closely related to what we just stated about HDFS. To

address it, Adaptive I/O System (ADIOS) [30] has been designed. ADIOS, as a middle-

ware, supports many different I/O methods, data formats and parallel file systems. Most

importantly, it enables the upper application to select optimal I/O routines for a particular

platform without source code modification and re-compilation. The interfaces of ADIOS for

applications to use are as simple as POSIX ones, although not compatible; and new storage

systems or techniques can be hooked into it very easily. ADIOS has been widely adopted in

HPC community due to its simplicity, extensibility and efficiency.

Therefore, to enable HDFS to fully utilize the power of HPC clusters, we propose a

new framework HadioFS to enhance HDFS with ADIOS, so that the platform-specific

performance-enhancing features and various high performance I/O techniques can be lever-

aged by HDFS without the cost incurred by source code modification. Specifically, on the

one hand, we customize ADIOS into a chunk-based storage system and implement a set of

POSIX-compatible interfaces for it; on the other hand, we use JNI [7] to make HDFS able to

use the functions of the tailored ADIOS through this new set of POSIX APIs. To investigate

the feasibility and advantages of our design, we conduct a set of experiments to compare

HadioFS and the original HDFS. For current system prototype, the performance on data

writing can be improved by up to 10%. In addition, we also analyze the performance of

HadioFS configured with different I/O methods, such as POSIX-IO, MPI-IO and so on, to

evaluate if HDFS can benefit from the flexibility of ADIOS.

To the best of our knowledge, this is the first attempt to leverage ADIOS to enrich the

functionality of HDFS. Overall, we have made five contributions in this work:

• We have clarified the extensibility limitation of HDFS in terms of the utilization of

diverse I/O techniques.
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• We have investigated the feasibility to leverage ADIOS to enhance HDFS and quantified

the performance potential could be achieved.

• We have customized ADIOS into a chunk-based storage system and encapsulated it

into a POSIX-compatible I/O system.

• We have proposed a new framework HadioFS to enhance the extensibility and perfor-

mance of HDFS by using our tailored ADIOS.

• We have carried out a systematic evaluation on HadioFS in comparison to the original

HDFS, and the experimental results verified the feasibility of our method.

The remainder of the thesis is organized as follows. Chapter 2 provides the background

for this work. We then describe the motivation of this project in Chapter 3, followed by

Chapter 4 that details our way to customize ADIOS and integrate it with HDFS via JNI.

Chapter 5 elaborates the experimental results. Chapter 6 reviews the related work. Finally,

we conclude the thesis and discuss the future work in Chapter 7.
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Chapter 2

Background

In this chapter, we elaborate the background of this work. First of all, we present the

general framework of the Hadoop Ecosystem; then, we focus on HDFS, which is modified

and enhanced in this work. After the explanation for the runtime mechanism of HDFS on

data reading and writing, we introduce ADIOS in terms of its architecture and data file

structure. In the end, we discuss Java Native Interface (JNI), which is used in our system

to integrate HDFS and ADIOS together.

2.1 Hadoop

Hadoop framework is designed for data-intensive distributed applications. Essentially,

it implements the computational model MapReduce [24], in which each job is divided into

many parallel tasks assigned to a cluster of nodes. These tasks are categorized into two types:

MapTask and ReduceTask. These two are responsible for the execution of user-defined map

and reduce functions to process data in an embarrassingly parallel manner. Loss of data

and failure of computation due to system glitches are common in large scale distributed

computing scenarios. Therefore, to make Hadoop straight to program, the reliability issue

of both computation and data is handled within the framework transparently and hidden to

the application programmers.

To achieve the required core function and ease of programmability, several subsystems

are provided inside the whole Hadoop Ecosystem [2] as shown in Figure 2.1.

The subsystem, Hadoop MapReduce, implements the data processing framework, which

encapsulates the computational model MapReduce. One JobTracker and many TaskTrackers

are present at this layer. To be specific, the JobTracker accepts job from a client, divides job
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Figure 2.1: Hadoop Ecosystem

into tasks according to the input splits stored within HDFS, and assigns them to TaskTrack-

ers with the awareness of data-locality. In the meantime, TaskTrackers, one per each slave

node, take full control of the node-local computing resource via slot abstraction. Two kinds

of slots are defined: map slot and reduce slot. On each TaskTracker, the number of both

slots are configurable. And they can be regarded as static resource containers to execute cor-

responding tasks: MapTask or ReduceTask. YARN (MRv2) [10] is the second generation of

the Hadoop framework, which splits the resource management and job scheduling functions

into different components. In contrast, these functions are closely tangled inside JobTracker

in the first generation.

Under the processing framework is the storage subsystem: HDFS [2]. We discuss its

structure in detail here, with its runtime feature in the next section. HDFS consists of one

NameNode and several DataNodes. The NameNode is responsible to build and manage the

file system name space, which is used to map each file name to the locations of corresponding

file data. It is not a single but a set of locations because the file is broken into a list of equal-

sized blocks that are assigned to perhaps different DataNodes. And on DataNode, each block
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is kept as a single file, with a few replicas dispersed on other DataNodes to ensure high data

reliability.

Based upon the data storage and processing subsystems, many convenient tools have

been developed for analysts and programmers to exploit the processing power of Hadoop

much more easily. Hive [6] is a SQL-like engine. Analysts can use it to query the data stored

in Hadoop compatible file systems. A Hive job is translated into a DAG (Directed Acyclic

Graph) of MapReduce jobs, which are scheduled according to the dependency defined in the

DAG. HAWQ [15], attempting to replace Hive, is also a SQL engine. But it is designed to

access the underlying data directly, bypassing the MapReduce framework to achieve bet-

ter performance. Pig [14] is a counterpart of Hive and HAWQ. It is also used to extract

knowledge from large dataset stored in Hadoop, but modeled with procedural language not

declarative language like SQL. Oozie [13] is a workflow definition tool, which supports many

types of jobs, like MapReduce job, Pig job, Shell scripts or Java executables. Mahout is

developed for machine learning; R connector [17] for statistics; Flume and Sqoop [3, 18]

for data movement; and HBase [4] for semi-structured data storage. In addition, consid-

ering the complexity and wide use of coordination service within distributed applications,

ZooKeeper [19] is developed to expose a simple set of primitives for such service. To sum

up, Hadoop is more than MapReduce and becoming more and more popular in today’s big

data community; HDFS, one of its core components, has been actively studied recently.

2.2 Hadoop Distributed File System (HDFS)

HDFS plays a critical role in the Hadoop Ecosystem as shown in Figure 2.1. In this

section, we focus on its runtime features. When accessing data, the HDFS clients only

communicate with NameNode for necessary metadata. After that, most of the subsequent

operations are performed between clients and DataNodes directly.

To read a file, the client inquiries NameNode for the location of each block belonging to

the file. If permitted to access, it will acquire the information of a set of DataNodes, which
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Figure 2.2: Read from HDFS

keep the file blocks. Because of replication, each block might reside on several DataNodes,

and the client will select the nearest one, in terms of network hops, to get the block. During

the read process, no intervention from NameNode is needed, avoiding potential performance

bottleneck. In addition, HDFS supports random seek operation for reads.

To write a file, the client firstly asks NameNode to allocate space from the storage

cluster to keep the user file. It will receive a list of DataNodes for each file block. And a

replication pipeline is built with this set of DataNodes to store the block. The client then

splits the block into small packets; and transmits these packets to the first DataNode in the

pipeline; this DataNode stores each packet persistently and mirrors it to the downstream

DataNode. The ’store and mirror’ action is executed by all the DataNodes in the pipeline;

when the acknowledgement from the downstream DataNode is recevied, the DataNode will

notify the upstream DataNode the success of receiving packet, and finally the first DataNode

in the pipeline will notify the client. The next block will not be written until all the packets

from current block are received by all the DataNodes in the pipeline. Different from the read

operations, HDFS only supports sequential write operations.
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Figure 2.3: Write to HDFS

By default, each block has three replicas. Thus, to balance data reliability and access

throughput, HDFS writes the first replica on the local node if the client runs on DataNode;

the second one the local rack; and the last one to a remote rack.

2.3 Adaptive I/O System (ADIOS)

ADIOS [30] is a highly configurable and lightweight I/O middleware. It is not a runtime

system but a library. Applications need to embed the APIs exposed by this middleware to

access the data on disk. By taking use of ADIOS, application can switch among different

I/O methods and tune parameters that might impact I/O performance, without source

code modification and re-compilation. These features are particularly beneficial to scientific

applications, which often require a long time to develop, optimize and verify; and is hard

to port to different platforms. But with ADIOS, the scientific application can be regarded

as a block-box, when ported or tuned according to the specific characteristics of underlying

platforms and even high-level requirement. And on the other hand, to achieve wide adoption

in HPC community, ADIOS supports a lot of advanced I/O methods, such as synchronous

MPI-IO [11], collective MPI-IO and asynchronous I/O using DataTap system [20]; many
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high performance file systems, like GPFS [32] and Lustre [9]; as well as several different

data formats, such as NetCDF [12], HDF-5 [5] and its native BP format [30], which will

be detailed later. However, it should be noted that though ADIOS APIs are as simple as

POSIX ones, they are not POSIX compatible, which renders this work very challenging. The

details about how we handle the incompatibility will be stated in Chapter 4.
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Figure 2.4: The Architecture of ADIOS

As shown in Figure 2.4, ADIOS supports a lot of I/O methods, but only exposes a

small set of unified APIs, such as adios open(), adios write(), adios close(), etc. Application

programmer can utilize these unified APIs to compose the processing logic while decoupling

it from concrete I/O systems. In this way, the programmer is freed from many complicated

issues, such as how to program with a particular I/O system; which I/O routine fits a spe-

cific platform best; and how to achieve portability related to the I/O components. Inside

the ADIOS framework, the specific I/O method selected to access disk, e.g. MPI-IO, is

determined by modifying the associated XML file before the scientific application starts. In

addition to the adaptive selection of methods, parameters critical to performance, such as

the size of I/O buffer and its allocation time, can also be tuned via the XML file. Further-

more, considering scientific application might generate very large result set and do so across

multiple platforms, ADIOS allows programmer to partition result set into small groups and
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tune each group independently. Last but not least, to overlap computing and I/O better,

ADIOS also provides APIs and corresponding parameters inside XML file for programmer

to inform the underlying I/O system of the I/O patterns that the application carries, so that

the schedule component inside the ADIOS framework can do necessary coordination.

End!of!file!
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Process!
Group0!
Process!
Group1!

Process!
GroupN!

Variable1!

Afribute0!

Afribute1!
…!
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Figure 2.5: The Structure of BP file

As just stated, ADIOS supports several different data formats. But it also has its

native data format called Binary Packed (BP). There are two design goals behind BP file:

convertibility to other data formats, e.g. HDF-5 and NetCDF; and optimization to I/O

performance for both serial and parallel file systems. The former one is achieved by rich data

annotation; the later one by relaxing certain consistency requirements. The detailed format

of BP file is shown in Figure 2.5. At the end of the file is the metadata to locate progress

groups as well as variables and attributes inside each group. Each group is manipulated

by one process, and inherently, all these process groups can be accessed in parallel. The

synchronization point is file open and close, when the data offset information is exchanged

among processes to ensure consistency. With direct index to variables and attributes, the

upper applications can employ more diverse and random querying methods. Generally,

variable is a structure to store concrete data in BP file. Our design enables HDFS to store

data blocks into BP file as variables. Details will be discussed in Chapter 4.
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2.4 Java Native Interface (JNI)

JNI [7] allows Java programs that run in Java Virtual Machine (JVM) to leverage

functions encapsulated in components implemented in other programming languages, such

as C or C++; and applications in other languages to use Java objects. This cross-language

interaction is needed when platform-dependent features is required but Java cannot supply

them; or a library in another language exists and is worth reusing; or time-critical module is

required and needs implementing in a lower-level language, like assembly. ADIOS is realized

in C and provides the features we need to enhance HDFS, which is in Java. Thus, this work

falls into the second category.
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Figure 2.6: The Mechanism of JNI

With Figure 2.6, we explain how JNI enables Java program to utilize C functions. When

JNI is used in Java program, some methods are declared by native keyword and have no

concrete implementation. Compiling them leaves stubs in Java program but generates a

header file related to these native declared functions. A programmer needs to implement

the functions declared inside the header file and build a shared library for them. But now,

s/he is free to use any existing C libraries. When the Java program starts, it will load the

shared library; and if it calls a native declared method, the stub will use the JNI context, i.e.

JNIEnv as in Figure 2.6, to locate the corresponding implementation in the shared library;

execute it; and return values if required. Nowadays, JNI techniques are especially prevalent

in Android mobile application development.
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Chapter 3

Motivation

In this chapter, we start with a detailed description of the existing HDFS implemen-

tation, aiming to highlight its limitation on using various high performance I/O methods.

Then, to motivate this work, we discuss the flexibility of ADIOS, followed by the comparison

of disk access performance between HDFS and ADIOS.

3.1 POSIX-IO based HDFS
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Figure 3.1: The Architecture of HDFS and its Lack of Extensibility

In this section, we present the implementation details of the disk I/O methods in the

existing HDFS, and explain the challenges to extend this framework to leverage new I/O

techniques. Though a NameNode needs to access disk storage to load and store the file

system name space, i.e. FSImage, these disk operations are not frequent because the data
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(metadata from the perspective of the whole distributed file system) is retained in memory

during the execution of HDFS, except for periodically checkpointing. Thus, in this work, we

primarily focus on the disk operations that happen inside DataNode, where the file data is

stored and retrieved frequently.

As shown in Figure 3.1, several integral components within DataNode work together to

offer storage service to the clients. DataXceiverServer is the frontend, which keeps listening to

the incoming connection requests. When a request from DFSClient is received and accepted

by DataXceiverServer, an independent DataXceiver thread is spawned to serve the specific

client. Once connected with DataNode, the client will send out data request, read or write,

to DataXceiver, which offers particular service accordingly by leveraging BlockSender or

BlockReceiver. And the unit of each data request is a block, whose size can be configured

before starting HDFS. It is common to set the block size as 512MB or 1GB to balance

metadata overhead and storage throughput.

BlockReceiver is created to store a series of packets belonging to the incoming block,

which might be from client or upstream DataNode. If current DataNode is not the last one

in the pipeline, it has to mirror the packets to the downstream DataNode. Once receiving

a complete packet, BlockReceiver stores it onto disk by standard POSIX write operation.

BlockSender is used to read a block belonging to a desired file. It cuts a block into chunks,

retrieves each from disk and sends out in one packet. Similarly, it is POSIX read operation

that is utilized to get data from disk. While read or write is being conducted, checksum is

used to ensure the integrity of the block data. Strictly speaking, although POSIX-IO is de

facto and most platforms support it, it is relied on the concrete implementation of Java and

specific platform whether to use POSIX-IO or not. HDFS achieves portability because of

Java, but it does not gain extensibility, as we are going to state next.

Inside BlockReceiver and BlockSender, FileOutputStream and FileInputStream objects

are constructed and execute the disk access work, respectively. While, FileInputStream

and FileOutputStream use JNI to call the native platform-dependent disk access functions
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essentially. For different platforms, the native functions might be different. Therefore, this

maximizes the portability of Java program. However, many high performance I/O methods,

such as collective MPI-IO, data staging, and asynchronous I/O, are not the system default

configuration and even incompatible to the default interfaces. In order to take advantage of

them, subclasses extending FileInputStream and FileOutputStream should be implemented

to call these high performance I/O methods via JNI. But this needs to modify the source

code of applications each time a new I/O method is to be supported. A better solution is to

collect the common modules together into a middleware and expose unified APIs to upper

applications to decouple the diverse processing logic with concrete underlying I/O systems.

As stated earlier, ADIOS is one of the existing solutions. The factors motivating us to choose

ADIOS are detailed in next sections.

3.2 The Flexibility of ADIOS

As stated in Section 2.3, ADIOS is lightweight, extensible and highly configurable.

ADIOS is a thin layer between the processing logic and I/O systems, because it is just

a C library without gigantic runtime environment that most middleware tools have. And

its core only includes the XML parser, function pointer based extension framework, and

the buffer management components. To keep it lightweight, ADIOS itself does not have

any functional I/O components. All the disk access work is packed and forwarded to the

underlying I/O system that is determined by the external XML file.

It is straightforward to hook new I/O systems into ADIOS. Its open extension framework

is built upon a mapping table [30], in which the key is the I/O method name, such as

POSIX, MPI, MPI LUSTRE, NC4 and so on. At the same time, the value is a list of

functions corresponding to the unified ADIOS APIs. For instance, the list for MPI includes

adios mpi open(), adios mpi write(), adios mpi close(), etc. Whenever to add a new I/O

system, we need to implement the corresponding functions and add an entry into the mapping

table so as to find the new list of I/O methods by name. And ADIOS will assign to the set
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of exposed unified APIs, namely adios open(), adios write(), adios close(), etc., the selected

list of functions, when ADIOS context is initialized based on the external configuration file.

When the upper application calls the unified APIs, the selected I/O system will take over

the disk access work.

As mentioned in Section 2.3, ADIOS supports not only adaptive selection of I/O meth-

ods but also tuning of performance critical parameters; and partitions the whole result set

into small groups so as to configure each of them independently. And this high configurability

is accomplished by maintaining only one single XML file. The details on the configuration

file is stated in Chapter 4, where we customize it to make the semantics of ADIOS APIs fit

the requirements of HDFS’ disk access modules.

3.3 Comparison between ADIOS and HDFS

Here we discuss the advantages of ADIOS from the perspective of disk I/O performance.

We conduct a group of experiments on a cluster of 6 nodes, each of which has one SATA

hard-driver and 8GB memory. All these nodes are connected with 1 Gigabit Ethernet. As

to the deployment of HDFS, the NameNode runs on one dedicated node, with DataNodes

on another four nodes; and the remaining one acts as a client outside the storage cluster.

Besides, the number of replicas is set to 1; HDFS block size is set to 512MB. To compare

with HDFS that uses POSIX-IO, we configure ADIOS to leverage MPI-IO and MPI LUSTRE

methods to access disk, respectively. To enable MPI LUSTRE, we have also deployed Lustre

file system [9] in a similar way, i.e., one dedicated metadata server and four object storage

servers. Compared with MPI-IO and POSIX-IO, MPI LUSTRE is optimized particularly

for Lustre when storing data. We run each case five times in a row and compute the average

result to eliminate the system initialization time and occasional results.

To investigate the write performance, we firstly execute the writing process on the node

outside the storage cluster to remove the possibility that data is stored locally. As shown

in Figure 3.2 (a), ADIOS outperforms HDFS while the data size is changed. Although
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Figure 3.2: Comparison of different I/O methods

the improvement ratio decreases as the data size grows, ADIOS can still achieve up to

32.8% improvement when writing 512MB data. This is encouraging because our design goal

is to replace the disk I/O modules within DataNode with our customized ADIOS; while,

DataNode stores and retrieves data in block unit, which is commonly set around 512MB as

we stated in Section 3.1. The nearly constant absolute improvement brought by ADIOS is

resulted from its wise buffering mechanism, via which small data segments are accumulated

before being flushed to disk. We then migrate the writing process onto a storage node within

the cluster, and observe even larger improvement, with up to 49% when writing 1GB data

as shown in Figure 3.2 (b). Furthermore, writing large dataset inside the storage cluster

accelerates ADIOS but slows HDFS down. This is because, in addition to the more effective
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memory management, ADIOS can also take good use of the underlying parallel file system to

balance storage overhead. With specific optimization for Lustre file system, MPI LUSTRE

method achieves best writing performance in both scenarios.

Different from write operations, the read performance of ADIOS is not always better

that HDFS. As shown in Figure 3.2 (d), HDFS completes earlier than ADIOS when reading

2GB data from disk. However, as we explained above, it is around 512MB that our interest

resides. In that previous case, ADIOS is faster than HDFS by as much as 70%. The reason

why the read performance of ADIOS degrades so quickly when data size grows large is that it

tries to reserve sufficient memory before accessing disk for data; while, co-locating client with

Lustre storage daemons leads to severe contention on memory resource, which impacts the

performance very negatively. Therefore, we can also observe better performance of ADIOS

when it reads large dataset outside the cluster, as shown in Figure 3.2 (c).

Based on the aforementioned analysis and observation, we design and implement an

approach, as detailed in the next chapter, to make HDFS able to gain benefit from the

flexibility and better disk I/O performance of ADIOS.
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Chapter 4

Design and Implementation

In this chapter, we start with the description of our new framework, called HadioFS,

designed to enhance HDFS by off-loading its disk I/O to ADIOS. Then, we propose the

approach to customize ADIOS. Based on the customization, we wrap the original ADIOS

APIs into a set of POSIX compatible ones, upon which the modification within HDFS is

dependent. At the end of this chapter, we summarize the constituent components, which

HDFS needs to leverage the functions of ADIOS.

4.1 The Architecture of HadioFS

Figure 4.1 illustrates the general architecture of our design. We keep the HDFS APIs

intact, while enhancing HDFS to utilize the efficient and flexible ADIOS. Two extra layers

are introduced between HDFS and ADIOS to integrate them both together.
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Figure 4.1: The Architecture of HadioFS
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The layer inside HDFS includes the components encapsulating the BP file and its I/O

streams. In the existing implementation of HDFS, the file to store data block is abstracted

as plain byte stream. Recalled in Section 3.1, File, FileInputStream and FileOutputStream

are utilized to access these disk files. There is no such hierarchical structure within them

as in BP files, whose structure is presented in Section 2.3. If we construct an ordinary file

object upon BP file via new File(), the operations, like to get file size or to seek in file, will

behave abnormally. Additionally, BP file only supports the open modes ’w’ (write-only),

’r’ (read-only), and ’a’ (write-only without erasing existing content). Therefore, we design

and implement a dedicated file object, i.e. BPFile, according to the specific structure of BP

file. However, it is not sufficient using only an abstraction of the static file structure. It

will not work as expected to access the BP file via FileInputStream or FileOutputStream,

which is designed for byte stream based file, because the runtime states, like r/w pointers, are

supposed to be maintained in a way matching with the underlying file abstraction. Therefore,

we also realize the I/O streams corresponding to the BP file, i.e. BPFileInputStream and

BPFileOutputStream.

The layers that encapsulate ADIOS consist of the components to transform the ADIOS

native APIs into POSIX compatible ones, which enable the implementation of the Java side

relevant objects stated above. The gap of the interfaces’ semantics between ADIOS and

POSIX renders it challenging to accomplish this transformation. We use the write operation

as an example to elaborate this issue.

In POSIX standard, the write interface is specified as ’ssize t write (int fd, const void

*buf, size t count)’ [16], which means writing up to count bytes from the buffer pointed by

buf to the file referred to by the file descriptor fd. The amount of bytes to store cannot

be known before the interface is called. And an explicit writing pointer is maintained,

which is incremented automatically after each execution of this operation. However, the

write interface provided by ADIOS is ’int adios write (int64 t hdlr, char *var name, void

*var value)’ [30]. hdlr is a handler pointing to an internal data structure, which includes
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the context information, such as the file descriptor of the BP file, I/O buffers and a set of

offsets for variables and attributes. The content to write is in a contiguous memory space

pointed by var value. The var name passed to this function should correspond to the name

in the variable definition, which is listed in the XML file. Within the variable definition, the

size of var value is also configured beforehand. Because the variables are defined before the

application runs, their offsets in the file can be calculated even before writing is executed,

which enables ADIOS to store these variables via their names, without maintaining an

explicit writing pointer.

Read operation has similar difference, i.e., POSIX has an explicit reading pointer, while

ADIOS locates contents by variable names. In fact, simply speaking, our method to handle

the semantics gap is to tailor ADIOS to work like that it has an automatically maintained

explicit r/w pointers. The other issues, (1) that ADIOS needs to initialize and finalize the

context before and after disk access work; and (2) that it does not support read-write mode

when opening the BP file, are also handled by this layer. The approaches are elaborated in

the next section.

In addition to the two primary layers, there are several other JNI related modules that

bridge them together in order for HDFS to utilize the ADIOS functions. Their details will

be explained in Section 4.3.

4.2 The Customization of ADIOS

In this section, we present how to customize ADIOS and wrap it up to achieve the

POSIX compatible APIs. Accordingly, we partition this task into two subtasks. The first

one is to tailor the configuration file of ADIOS to restrict it into a storage system, which

accesses disk in chunk unit; the second one is to add the r/w pointer mechanism into the

tailored ADIOS via a wrapper component in order to expose the POSIX compatible APIs

for the upper layer.
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Figure 4.2 shows the details of an external XML file, which ADIOS uses to configure

itself when starting. Before elaborating the customization approach, we firstly explain the

meanings of the items within the XML file [30]. The adios-config is a global container. The

programming language used by the application is specified here. For instance, we set it

as C, in which the wrapper components are implemented. Within adios-config, there can

be multiple adios-groups, each of which can be configured independently. Every group is

named and contains a set of variables and attributes, as well as the I/O method it will use.

In our example, there is a group called hdfsblock, which contains many variables with type

information, such as the long integer variable chksize, and will be stored and retrieved by

MPI method. Some variable also has an extra attribute called dimensions to indicate that

this is an array, whose size is determined by the product of this attribute value and the

size of the element type. Besides, buffer, setting the memory space used to stage data, has

attributes, like size and allocation time. ADIOS supports some other configuration items as

well, but they are not necessary to this work.

<?xml version=”1.0”?>

<adios-config host-language=”C”>

<adios-group name=”hdfsblock” coordination-communicator=”comm”>

<var name=”ttlsize” type=”long” />

<var name=”chkcnt” type=”long” />

<var name=”lastchk” type=”long” />

<var name=”lastpos” type=”long” />

<var name=”chksize” type=”long” />

<var name=”chunk0” type=”byte” dimensions=”chksize” />

<var name=”chunk1” type=”byte” dimensions=”chksize” />

...

<var name=”chunk9” type=”byte” dimensions=”chksize” />

</adios-group>

<method group=”hdfsblock” method=”MPI”/>

<buffer size-MB=”64” allocate-time=”now”/>

</adios-config>

Figure 4.2: The Customization of ADIOS configuration file
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Now, we elaborate how to make a chunk-based storage system based upon ADIOS. First

of all, we define some chunks in the configuration file. As shown in Figure 4.2, ten chunks,

each of which is an array of chksize bytes, are defined. The total amount of chunks can be

changed, but the product of chksize and the number of chunks should not be smaller than

the size of one HDFS block. That is because, in our current design, one BP file stores one

HDFS block. For the other variables, ttlsize = chkcnt ∗ chksize; and the (lastchk, lastpos)

tuple is the last writing position when the BP file is closed. As we just stated, ttlsize should

be larger than HDFS block size. Configured in this way, ADIOS can only read or write

data belonging to one HDFS block in chunk unit, because the ADIOS APIs use predefined

variable name and size, i.e., chunk# and chksize, to access BP file.

Then, based upon this chunk-based storage system, we design the POSIX compatible

r/w operations. We start with the write operation. Its interface is declared as ’ssize t write

(int fd, const void *buf, size t count)’. We maintain an explicit writing pointer, which is

initialized as 0 when the BP file is opened with ’w’ mode. Then, the first chunk, i.e., chunk0,

is created and retained in memory. Data passed to the write operation above is copied into

chunk0; meanwhile, we increment the writing pointer by the number of bytes successfully

copied. Once the first chunk is fully filled, we invoke adios write to store it into BP file

via its name and create a second in-memory chunk, i.e., chunk1. Chunk index and writing

pointer is supposed to be maintained correspondingly so that data later can be retrieved

correctly by read operation given the offset parameter. This procedure is iterated until all

of the data belonging to one HDFS block is stored; then, the metadata is updated and

written to BP file. Current design does not support seek operation for writing. In fact,

random write is not necessary for our framework, because the HDFS block is written to disk

only in sequential manner. As to the read operation, a reading pointer is also maintained

explicitly. It is incremented after each execution of read; and can also be set randomly by

seek operation. The chunk is loaded and cached when the pointer is set into a chunk that

has not been in memory yet. Then, the data is copied from the cache space into the user’s
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buffer. When cache space is used up, loading new chunks will evict old chunks. Append

operation is supported as well. The stored metadata (lastchk, lastpos) is used to resume the

writing pointer before storing any new data.

During the process of all these operations, there is at least one chunk kept in memory.

As to the write operation, this chunk accumulates small data segments before flushed to disk;

for the read operation, this chunk is cached for subsequent data requests. Therefore, the

chksize parameter is very critical to the whole system performance. Its performance impact

will be discussed in detail in Section 5.2.

4.3 Implementation Details

We have implemented the aforementioned two layers and taken use of JNI [7] to bridge

them together, as shown in Figure 4.1. The enhanced HDFS can access data via ADIOS.

To leverage high performance I/O methods, like MPI-IO, asynchronous I/O or data staging,

we now can only change the method setting item within the external XML file, without

any source code modification or re-compilation. Additionally, the HDFS APIs are kept

intact; and applications can enable or disable the ADIOS enhancement by just changing the

configuration file of HDFS.

The details of JNI techniques are elaborated in Section 2.4. While, in practice, it is

important to avoid memory copies between the Java program and C library. As shown in

Figure 4.3, we use JNI direct buffer [8] to wrap the in-memory chunk allocated at C side into

a Java side ByteBuffer object, so that the C side pointer and Java side ByteBuffer object

refer to the same memory region. In other word, this is shared memory between C and Java.

Therefore, no cross-language data copies occur when the in-memory chunk is manipulated by

ADIOS functions, such as adios read and adios write. But the memory region allocated

at C side is outside the JVM heap. Much overhead will be incurred if the Java program

copies data into or out of this region. Therefore, putting (getting) small data segments into

(from) the direct ByteBuffer object synchronously is very time-consuming. By introducing
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the shadow buffer as shown in figure, we accumulate small data segments into large one and

execute the through-JVM copy asynchronously to eliminate this performance bottleneck

from the critical path of HDFS block reading and writing. Besides, all the chunks are also

stored and loaded in a dedicated thread asynchronously. When adios close function is

called, all the data still within the memory buffer has to be flushed onto disk; then metadata

is updated and stored in BP file as well. This often makes adios close function very slow.

To reduce the turnaround time of client, who starts to write the second block only after

receiving the acknowledgement that the first block is successfully stored into HDFS, we also

asynchronously close the BP file.
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Figure 4.3: The Implementation Details of HadioFS

BPFile object and its I/O streams, i.e., BPFileInputStream and BPFileOutputStream,

are implemented based upon the Java side JNI stubs. The places to hook these ADIOS

related objects into HDFS are inside BlockReceiver, BlockSender and FSDataset classes,

where originally FileOutputStream and FileInputStream objects are constructed and execute

the disk access work, respectively. In our implementation, we hybrid them together in such

a way that the ADIOS enhancement can be disabled or enabled by user without changing

any source code.
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Chapter 5

Evaluation

In this chapter, we evaluate the performance of HadioFS in comparison to the original

HDFS. We begin with parameter tuning. The disk I/O performance of HadioFS is sensitive

to the chunk size, which controls the size of memory buffer directly related to the disk access

operations. We firstly determine the optimal value for this parameter before launching the

subsequent evaluation experiments. Then, we compare the writing performance between

HadioFS and HDFS with two different patterns. The first one is ’single writer’, where one

process inside the storage cluster issues writing requests; the second one is ’multiple writers’,

where writers on all DataNodes store a specific amount of data to HDFS simultaneously. The

reading efficiency of current HadioFS system is restricted by the characteristics of ADIOS’

read operation [35]. Details about why HadioFS is slower than HDFS on reads are explained

to motivate the future work. After that, we investigate the flexibility of HadioFS via different

I/O methods supported by ADIOS.

5.1 Experimental Setup

Cluster setup: All the experiments are conducted on a cluster of 5 nodes, which are

connected with 1 Gigabit Ethernet. Each node is equipped with four 2.00 GHz hex-core

Intel Xeon E5405 CPUs, 8 GB memory, and 1 Western Digital SATA hard-drivers featuring

250GB storage space.

Hadoop setup: In all experiments, we use Hadoop version 1.1.2, from which HadioFS

is implemented. As to the deployment of HDFS, the NameNode runs exclusively on one

node; with DataNodes on another four nodes. The number of replicas and HDFS block size

will be changed for specific experiment.
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5.2 Tuning of Chunk Size

In this section, we conduct a set of experiments by just changing the size of chunk as

defined in Section 4.2, so that we can determine the optimal value for this performance-

critical parameter, called chksize, which controls the size of buffer directly related to the

disk access operations inside HadioFS.
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Figure 5.1: Writing Performance with different Chunk Sizes

To begin with, we analyze how this parameter affects the performance of data writ-

ing. For all of these experiments, we write 1GB data by launching a single process on one

DataNode. The number of replicas is set to one; and the HDFS block size to 1GB. Besides,

ADIOS uses MPI as the I/O method. This configuration aims to mitigate the interference

coming from operations, such as replication pipelining, in order that we can focus on the

performance analysis of chksize.

In Section 4.3, we discuss the performance bottleneck caused by file close operation,

i.e., adios close, which flushes the data left inside memory onto disk before closing the BP

file. Waiting for its completion, client will suffer from long turnaround time. Thus, we relax

the data consistency requirement and decouple the time-consuming close operation out of

the critical path of HDFS block writing via asynchronization. Shown in Figure 5.1 (a) is

the performance of HadioFS using asynchronous close operation. The optimal performance
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occurs when chksize is set to 32MB. And as it decreases, the execution time increases very

fast. Smaller chunk size means larger amount of chunks. And both values determine the

duration and frequency of adios write, which is used to store a fully filled in-memory chunk.

When this function is called, overhead is incurred to maintain relevant data structures and

copy data into the staging area inside ADIOS. (If this area becomes full, data within it

has to be flushed to the BP file.) Although it is decoupled out of the critical path of

HDFS block writing, storing chunk to BP file, if issued too frequently, can also lead to

dramatic performance degradation through interfering the normal data writing flow. And

high frequency is much more harmful to the whole performance than long duration of each

execution of chunk storing. Therefore, setting chunk larger than 32MB does not deteriorate

the writing performance too much.

The performance of HadioFS with synchronous close operation is shown in 5.1 (b).

Meanwhile, the cost of close operation is dissected out. The best value for chksize is also

32MB. But the performance trend is quite different from that of HadioFS with asynchronous

close operation. With smaller chunk, the execution time increases due to high frequency of

chunk storing via adios write as well. But as the chunk size grows larger, the performance

also degrades dramatically. This is due to the close operation, which costs more time to

flush a larger chunk. As shown in 5.1 (b), when the chunk size is increased from 32MB

to 1024MB, the execution time grows 20.38%; while, the cost of close grows 21.24%. And

within the whole execution time, the percentage of the close operation cost are 75.63% for

32MB and 76.46% for 1024MB, respectively.

Then, we investigate the influence of parameter chksize in terms of reading performance.

Similarly, for this set of experiments, we read 1GB data out of HDFS by launching a single

process on one DataNode. The number of replicas is one; the HDFS block size is 1GB; and

MPI is set as the I/O method for ADIOS. As shown in Figure 5.2, the lowest execution time

can be achieved when chksize is set to 256MB. At this point, the HDFS block reading flow

and the asynchronous chunk prefetching flow can overlap with each other best. Recalled, if
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Figure 5.2: Reading Performance with different Chunk Sizes

the chunk size is so small that chunk storing is issued too frequently, the writing performance

is degraded very dramatically. The reason is that the asynchronized adios write operations

interfere the normal HDFS block writing flow indirectly. However, as to reading, if the data

is not loaded in time, the normal reading flow is blocked directly. This is why the execution

time grows when the chunk size is set smaller or larger than 256MB, as show in Figure 5.2.

Specifically, if the chunk is too small, in-memory data is consumed so fast that the data

loading thread cannot catch up with the block reading thread; while, if the chunk is too

large, loading the first chunk stalls the whole reading flow for a long time.

In the rest of our experiments, we use 32MB as the value of parameter chksize on data

writing; and 256MB on data reading. And in our future work, this parameter will be set for

different operations adaptively.

5.3 Analysis with different I/O patterns

In this section, we investigate the performance of HadioFS in comparison with the

original HDFS by using different I/O patterns. For the subsequent experiments, the HDFS

block size is set to 512MB; and the I/O method for ADIOS to MPI.
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Figure 5.3: Performance of Single Writer

Firstly, we evaluate the writing performance of HadioFS. During the experimentation,

each pattern has specific number of writing processes, size of dataset and replication level.

We begin with the ’single writer’ pattern, i.e., one process on a DataNode issues writing

requests. When the replication number is one, most of the data is stored locally. As shown

in Figure 5.3, the performance of HadioFS and HDFS are very close and increase linearly to

the size of dataset. But HadioFS outperforms HDFS a little (4%) when the data size grows

up to 1.2GB. This is because the asynchronous close operation, designed for HadioFS, can

enable DataNode to acknowledge client the completion of writing even before the data is

stored onto disk.

Data blocks are pipelined and stored onto three different DataNodes for high reliability

when the replication number is configured as three. As shown in Figure 5.3, the improvement

of HadioFS is enlarged with the increment of replication level. It achieves 10% acceleration

when writing 1.2GB data. This is also attributed to the asynchronous close operation. With

it, downstream DataNode can acknowledge the upstream one prior to finishing flushing data

buffered in memory. While, every DataNode in the original HDFS replication pipeline has to
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wait for the completion of the last POSIX write function call before notifying its upstream.

In theory, the longer the replication pipeline is, the more speedup can be gained by HadioFS.
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Figure 5.4: Performance of Multiple Writers

Subsequently, we analyze the ’multiple writers’ pattern. Different from the ’single writer’

pattern configured with three replicas, which can also activate multiple DataNodes during

writing, this pattern launches four writing processes, one per DataNode, simultaneously and

does not introduce interdependence among DataNodes. In addition, the replication number

is set as one in this experiment. The minimum, maximum and average execution times for

each data size are all plotted in Figure 5.4. The average time is calculated among the four

parallel writers. As shown, the performance of HadioFS is just slightly better than that

of HDFS. The contention incurred by the metadata management at the single NameNode

offsets the improvement brought by the asynchronous close operation. And for both, this

contention also leads to dramatic variance of the execution time among these parallel writers

when the size of dataset increases.

Next, we evaluate the reading performance of HadioFS. The experiment configuration

is similar with what for the writing tests. The chunk size is set to 256MB based upon the

analysis in Section 5.2. We conduct the ’single reader’ test. As shown in Figure 5.5, the
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performance of HadioFS is much worse than HDFS. To find out why HadioFS is so slow on

reading, we dissect its execution time as in Table 5.2, as well as the dissection on writing

execution time.
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Figure 5.5: Performance of Single Reader

Table 5.1: Detailed Profiling for Writing

Server
Data Size Client Write Close Store

512MB 6.529s 0.651s 1.417s 8.601s
1024MB 10.090s 1.145s 2.278s 20.442s

Table 5.2: Detailed Profiling for Reading

Server
Data Size Client Read Close Load

512MB 7.202s 3.626s 0.426s 2.087s
1024MB 13.194s 7.596s 4.519s 4.519s

The total execution time instrumented by client is placed in the Client column. The

execution time of the operation that is executed on DataNode is recorded in the Server

column. Specifically, the asynchronously data storing and loading times are in the Store

and Load columns, respectively. As shown in Table 5.1, the time cost by write operation
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is very small, because the data just needs moving to the shadow buffer. Then, another

dedicated thread will put the data into the in-memory chunk and store the chunk to disk

asynchronously when it becomes full. However, as shown in Table 5.2, the time spent by read

operation, which gets data out of the shadow buffer, is longer than that of data prefetching.

This means the normal data reading flow is blocked by the asynchronously chunk loading flow

often if not always, even though 256MB chksize can provide the best chance for pipelining as

stated in Section 5.2. Getting data from the memory region outside JVM is one reason for

the slow data prefetching, but the root cause is the reading mechanism of ADIOS, that the

BP file needs to be closed to commit the completion of read operation before the variable

value can be used. This inherent restriction renders each chunk loading very time-consuming,

which finally leads to the inefficient HDFS block retrieval. We will address this restriction

in our future work in order to improve the reading performance.

5.4 Analysis with different I/O methods
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Figure 5.6: Writing Performance of different I/O Methods
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Application using ADIOS is capable to switch I/O methods without re-compilation.

And one goal of HadioFS is to provide HDFS this capability. Therefore, in this section, we

investigate the flexibility of HadioFS on the utilization of different I/O methods.

ADIOS can use POSIX-IO functions to access disk as well. However, different from the

original HDFS, which also uses this I/O method as default, HadioFS can achieve perfor-

mance benefit from the asynchronous store and close operations. Figure 5.6 shows that the

performance of POSIX-based HadioFS is better than that of HDFS; and very close to that

of the MPI-based HadioFS. NULL is a special method. With it, ADIOS drops the data to be

written immediately without touching the disk. The performance of NULL can be regarded

as the upper bound of performance.

ADIOS also supports some other I/O systems or techniques, such as Dataspaces, DIMES,

DataTap, MPI-AIO and so on [1]. But most of them are not available in the public version

of ADIOS. In the future work, we would like to evaluate if HadioFS can take most of them.
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Chapter 6

Related Work

In this chapter, we elaborate some notable research endeavors closely related to this

work either on the issues tackled or on the methods applied. Specifically, in Section 6.1, we

describe the research efforts conducted to improve the Hadoop stack, including HDFS and the

MapReduce processing engine; and Section 6.2 briefly summarizes the research works, which

improve ADIOS and leverage it to optimize the overall I/O performance of applications.

6.1 Hadoop Improvement

As the storage backend for the Hadoop stack, HDFS has been studied actively recently

to improve its performance, scalability and hence the upper data processing components, like

the MapReduce engine, Hive and etc. Islam et al. [27] proposed to improve the performance

of HDFS with Remote Direct Memory Access (RDMA) over InfiniBand via JNI interface.

Their solution was to enhance the suboptimal communication implementation based upon

Java-socket interface. And they suggested leveraging SSD to ensure that the storage modules

within HDFS can catch up with the InfiniBand-enabled transmission modules. While, our

work, utilizing the high performance I/O methods to accelerate the storage functions within

HDFS via ADIOS, is complementary to their work. Shafer et al. [33] evaluated the tradeoffs

between portability and performance inside the Hadoop distributed filesystem profoundly.

They claimed that HDFS, implemented in Java, could not exploit performance-enhancing

features of the native platform, such as bypassing the kernel page cache, direct I/O and

exploiting OS-specific calls to manipulate file lock at the inode level. However, HadioFS,

by offloading the disk I/O workload to ADIOS, which can be tuned or extended flexibly ac-

cording to the underlying platform, is capable to take advantage of these system-dependent
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features to boost performance. Another branch of research looks at modifying the archi-

tecture of HDFS to improve its scalability. As stated by Konstantin V. Shvachko in [34],

the single NameNode becomes a performance bottleneck for Hadoop cluster linear scaling.

And the way to tackle this issue is to distribute the name space service onto multiple nodes,

like what has been applied to Ceph [39], Lustre [9] and recently extended GFS [26]. There

are also researchers trying to integrate some of these more scalable file systems into Hadoop

stack directly [31].

There has been a great amount of work to optimize the MapReduce data processing

framework since the release of Hadoop [2], an open source implementation of the MapReduce

programming model [24]. Most of the endeavors are concerned to speedup the MapReduce

pipelining, or ensure the fairness and efficiency of the task scheduling. Recalled, Hadoop

MapReduce has three phases, i.e. map, shuffle and reduce. The first two phases can overlap

with each other very well. But the final phase is blocked by the previous one, because a

ReduceTask cannot start the reduce function until all its input data segments are fetched and

sorted locally. Condie et al. [22] proposed MapReduce-Online to overlap the last two phases.

The intermediate data generated by MapTasks are pushed aggressively to the ReduceTasks,

which begin processing even before the completion of all the MapTasks. Though all three

phases are overlapped, the early returned result is just estimation of the final one. Wang et

al. [36] proposed Hadoop-A to pipeline the shuffle and reduce phases by leveraging an RDMA-

enabled network-levitated merge algorithm. Though data shuffling cannot begin until all the

MapTasks complete, the JVM-Bypass techniques [38] designed by them can enable very fast

data movement over high performance networking, like InfiniBand or 10 Gigabit Ethernet.

We are inspired by the JVM-Bypass techniques when gluing ADIOS and HDFS together.

To better utilize the resources in Hadoop cluster, researchers have proposed many novel task

scheduling techniques. Delay scheduler [40] accelerates the execution of MapReduce jobs by

prioritizing the assignment of MapTasks with better data-locality, which means the input of

the task is stored on or close to the node where it runs. Wang et al. [37] observed that long
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running ReduceTask might occupy the reduce slot on TaskTracker but does nothing, hence

wasting the cluster resources. Thus, they have proposed Fast Completion Scheduling [37]

to mitigate this monopolizing behavior. And if some task is preempted too many times, it

will be prioritized to avoid starvation issue. Having clarified task interference and excessive

disk I/O issues within the existing Hadoop MapReduce framework, Li and Wang et al. [28]

designed CooMR to speedup the disk and network I/O operations related to the intermediate

data management. Specifically, they have implemented three main features in C libraries

and hooked them into the MapReduce layer via JNI. We borrow much experience from this

work when implementing the JNI-related modules.

6.2 ADIOS Application and Improvement

ADIOS has emerged as a popular I/O middleware in High Performance Computing

field recently because of its simplicity, extensibility and efficiency. Liu et al. [29], based

upon the analysis of the communication and I/O issues that keep scientific applications from

fully utilizing the storage capability, proposed to leverage ADIOS to parallelize the I/O

framework inside GEOS-5, a representative climate and earth modeling application. They

eliminated the network aggregation operation by letting each participating process write its

own data to a shared file in the parallel file system and took use of the asynchronous I/O

of ADIOS to improve the parallel data dumping. Because of the utilization of ADIOS, the

enhanced I/O modules of GEOS-5 can be optimized for specific platforms without source

code modification and recompilation. Cummings et al. [23] proposed to develop an End-

to-End framework for fusion simulation. ADIOS, as one of the cornerstones within this

framework, provides not only high I/O performance and configurability but also rich data

annotation for post-processing. Specifically, DART [25], implemented with RDMA to enable

efficient asynchronous I/O, was set as the I/O method for ADIOS. Extending ADIOS is

straightforward due to its open extension framework. But most efforts have concentrated on

the writing issues of ADIOS. Although efficient at data writing, ADIOS could not enhance
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the reading performance very well. But recently, many research efforts have been conducted

to improve its reading functions, which is particularly important to accelerate the data

post-processing stage. Tian et al. [35] proposed STAR scheme to enable high speed data

query to the large dataset generated by scientific application, which commonly consists of

vast amounts of small data elements along various spatial and temporal dimensions. STAR

scheme is applied to data elements on the fly. Before being stored, variables are re-orgnaized

according to their spatial and temporal relationship. STAR incurs negligible overhead on

writing performance by leveraging the staging features of ADIOS. The reorganized data can

support efficient and diverse queries, enabling fast post-processing. As our future work, we

would like to characterize the read operation of HDFS and optimize the reading mechanism

of ADIOS accordingly.
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Chapter 7

Conclusion and Future Work

Hadoop is a successful open source implementation of the MapReduce programming

model. As the computation capacity of modern commodity machines continues to grow, for

Hadoop to fully utilize this power, it is much-needed to accelerate the storage backend of the

massive data processing cluster − Hadoop Distributed File System (HDFS). Thus, we pro-

pose HadioFS to enhance HDFS with Adaptive I/O System (ADIOS), which supports many

high performance I/O techniques, such as data staging, asynchronous I/O and collective

I/O; and enables HDFS to select optimal I/O routines and parameter values for a particular

platform without source code modification and re-compilation. Accordingly, we customize

ADIOS into a chunk-based storage system, encapsulate it to expose POSIX-compatible APIs

and utilize JNI to integrate HDFS and the tailored ADIOS together. Overall, our method

is feasible and can improve the performance of HDFS via using the advanced I/O methods.

Current system is a prototype to verify our conceptual design to leverage ADIOS to

migrate Hadoop onto high performance cluster. Although the general framework is essen-

tially completed, to make it fully functional, a great deal of additional work remains to be

performed. Specifically, the reading performance should be accelerated; and parallel I/O

capacity within one process should be enabled. In addition, the other high performance I/O

methods, such as Dataspaces, DIMES, DataTap and MPI-AIO supported by current version

ADIOS, should be investigated within the new framework. After all, HadioFS is helpful to

drive the research work on the fusion of Big Data and scientific computing fields further.
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