
JavaScript: The Used Parts

by

Sharath Chowdary Gude

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
Feb 22, 2014

Keywords: JavaScript, Empirical Study, Programming languages

Copyright 2014 by Sharath Chowdary Gude

Approved by

Dr. Munawar Hafiz, Computer Science and Software Engineering
Dr. Levent Yilmaz, Computer Science and Software Engineering

Dr. Jeff Overbey,Computer Science and Software Engineering

 May 2, 2014

Abstract

JavaScript is designed as a scripting language which gained mainstream adoption even

without creation of proper formal standard. The success of JavaScript could be attributed to

the explosion of the internet and simplicity of its usage. Even though web is still its strongest

domain, JavaScript is a language constantly evolving. The language is now used in OS free

Desktop application development, databases etc. The standards committee wants to revamp

the standard with addition of new features and provide solutions to controversial features

of language[1]. This needs a large scale empirical studies spanning all diverse paradigms of

JavaScript.

The interpreted nature of language needs a proper mechanism to perform both static

and dynamic analysis. These analyses should be analyzed and interpreted to understand

the general usage of language by the programming community and formulate the best ways

to evolve the language. The inherent misconceptions among the programming community

about the language are to be studied, usage patterns are to be analyzed to generate data on

usage of features and thus justifying an argument for need to refine the feature.

The thesis explores the features in the language deemed problematic by experts, the

way these features are used by the programming community and the need for refining these

features backed up with an empirical study. The corpus for our empirical study is larger than

any study on JavaScript until now with over million scripts and from variegated sources. The

current goal of standards committee is to divorce the language from the perception of being

a simple scripting language and get the language evolved to be a mainstream programming

language. Our work will help in formulating a new direction for the future standards, justifies

the need for proposed changes in next specification ECMAScript 6 and root out widespread

myths in programming community.

ii

Acknowledgments

I would like acknowledge all the people who have directly or indirectly helped me through

my research.

I am immensely indebted to Dr.Munawar Hafiz, who has been an ideal advisor in every

regard. He made me a part of his research team even though he didn’t knew a lot about

men and has been very supportive ever since. I thank him for introducing me to the joys

and frustrations of scientific research and for teaching me ways of self-discipline in scientific

research and academic writing.

I would like extend my deepest appreciation for my committee members:Dr.Levent Yil-

maz and Dr.Jeff Overbey. for inspiring me with their work. They have been very supportive

of my work and were patient with me.

I owe my position to my parents Padma and Venkateswarlu. Finally, I would like to

thank my friends in Auburn without whom life wouldnt have been easy.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . viii

1 Introduction . 1

1.1 History of JavaScript . 1

1.2 The Problem . 2

1.3 Thesis statement . 4

1.3.1 Corpus . 5

1.3.2 Methodology . 8

1.3.3 Results . 9

1.4 Organization of Thesis . 10

2 Strict Mode . 12

2.1 Motivation . 12

2.2 Approach . 13

2.3 Results . 14

2.4 Discussion . 14

2.4.1 Why is strict mode Unpopular? . 14

2.4.2 Proper Usage of Strict mode . 16

2.4.3 Concatenation bug . 16

2.5 Impact . 17

3 With statement . 19

3.1 Motivation . 19

iv

3.2 Approach . 20

3.3 Results . 20

3.4 Discussion . 21

3.5 Impact . 22

4 For..in . 23

4.1 Motivation . 23

4.2 Approach . 23

4.3 Results . 24

4.4 Discussion . 25

4.5 Impact . 26

5 Variable Scope . 27

5.1 Introduction . 27

5.1.1 Approach . 28

5.1.2 Results . 29

5.2 Discussion . 29

5.3 const keyword . 31

5.4 let . 32

5.5 Impact . 33

6 Function Inside Block . 34

6.1 Motivation . 34

6.2 Approach . 35

6.2.1 Results . 35

6.3 Discussion . 36

6.4 Impact . 37

7 Objects in JavaScript . 39

7.1 Motivation . 39

7.1.1 Approach . 39

v

7.1.2 Results . 39

7.2 Discussion . 40

7.3 Impact . 41

8 Related Work . 43

8.1 Introduction . 43

9 Conclusion and Future Work . 45

vi

List of Figures

1.1 Repository . 4

1.2 Research Corpus . 6

1.3 Instrumentation:Collection and Analysis of Scripts 9

2.1 Usage of Strict mode . 14

3.1 Usage of ’With’ . 21

4.1 Usage of ’for..in’ . 25

5.1 Variable usage in JavaScript . 29

5.2 Trends in Variable declaration . 30

5.3 const usage in JavaScript . 31

6.1 Inner Functions: Statistics . 36

6.2 Number of functions inside block . 37

7.1 Usage of Native Objects . 40

vii

List of Tables

viii

Chapter 1

Introduction

1.1 History of JavaScript

JavaScript was developed by Brendan Eich as a client-side scripting language in 1995

at Netscape. The intention of Netscape was to develop an interpreted language on par with

Java that would appeal to the web authors and non professional programmers[2]. JavaScript

gained success and was adopted by Microsoft for its browser, Internet Explorer, in 1996.

JavaScript is now a trademark owned by Oracle. The widespread adoption of the language

has necessitated the need for standardization. The standardized version is named as EC-

MAScript(ES). Microsoft’s implementation of ECMAScript is referred to as JScript. The

different dialects of ECMAScript implementation started out because of the trademark is-

sues.

The first edition of ECMAScript was published in 1997 as ECMA-262 specification. The

standards process continued with the release of ECMAScript 2 in 1998 and ECMAScript 3 in

1999. No major changes were proposed in ECMAScript 2. ECMAScript 3 provided support

for regular expressions, string handling, newer control statements, tighter error definition

etc. The ECMAScript 4 has been scrapped prior to release because of the differences in

ideology regarding the increasing complexity of the language and version ECMAScript 3.1

is released. ECMAScript 5 is released in 2011. It adds new features including strict mode

which disallows error prone features of the language, getters and setters, support for JSON

etc. The next version is being planned to be released this year and is called ‘ECMAScript 6

Harmony’[3].

JavaScript was initially used by web authors for client-side scripting. The introduction

of Ajax has diversified its usage. Now, it is used by major software giants. It is used to

1

develop Rich Internet Applications (RIA) whose functionality is similar to traditional desktop

applications. A wide variety of frameworks and libraries were written to support these efforts

. The reach of the language has been ever increasing since then. It has under gone a few

paradigm shifts in its usage which includes: server-side programming like Node.js, Rhino,

Helma, JavaScript on Rails, etc., OS independent desktop programming (GNOME), NoSQL

databases like Apache CouchDB, JavaScript interpreters are also used in Adobe photoshop,

Acrobat and Yahoo’s widget engine.

Enterprise applications are now written in Node.js framework which use event-driven

paradigm and is shown to have better response rate and number of requests handled[4]. The

commonJS[5] project was founded to create common standard library for JavaScript other

than browsers.

In order to do that, ECMAScript has proposed the following goals to reform the

language[6]:

To be a better language for writing complex applications, libraries (possibly including

the DOM) shared by those applications and code generators targeting the new edition. To

switch to a testable specification, ideally a definitional interpreter hosted mostly in ES5.

To improve interoperation, adopting de facto standards where possible, keep versioning as

simple and linear as possible. To support a statically verifiable, object-capability secure

subset.

1.2 The Problem

JavaScript is a language riddled in misconceptions and semantic confusions. It can be

traced back to the language creation. It was initially named LiveScript, but was renamed

as JavaScript owing to the tremendous success of Java. This has started a widespread

assumption among people from other programming communities that JavaScript is in some

way related to Java[2]. But, the language has little in common with Java. The language

supports both object-oriented and functional style programming. The language employs

2

prototype-based inheritance and objects are used in different context compared to other

major programming languages.

JavaScript has been the major component of all the web-pages. The success of JavaScript

in web development is undeniable. There are currently an approximate of 5 billion web-pages

[7]. JavaScript is the language with programming community that has developers with wide

variety of expertise.

As Donald Knuth[8] pointed out, designers of the languages and compilers rarely have

any idea how general programmers use the programming languages. Designers’ notions

about language usage by programmers is generally different from the ways programs are

being written. JavaScript programmers have a history of using hard-to-optimize features

given its simplicity and dynamic nature[1][9].

The domain of JavaScript now has expanded significantly with its usage prevalent in

server-side computing, independent Desktop OS applications, databases etc. This requires

addition of new features in the language to cater the widening horizons. Also, there are some

inconsistent designs inherent in the language. This necessitates evolution of the language

and standards committee is planning to revamp the language, weed out deep-rooted miscon-

ceptions and inherent bad design choices[10]. This requires empirical studies to understand

the usage of features by general programming community. But, conducting an empirical

study on a diverse language like JavaScript is difficult.

The problem discussed in the paper is There have been quite a few empirical studies

in the past both on dynamic features and security aspects. The scope of these studies is

limited. They have considered only top 100 sites and a suite of benchmarks. These studies

are ultimately not essential in the evolution of the language because:

1. The sources studied were not reflective of the significant paradigm shifts the language

has undergone. A corpus with sources inclusive of different domains in which JavaScript

is used has to be created.

3

Spidered
pages

Alexa
pages

Mozilla
Addons

JSLibraries
Node.js

Applications

Figure 1.1: Repository

2. The empirical data may be difficult to analyze and interpret. Usage of a specific fea-

ture in one domain may be significantly different from other both in functionality and

frequency. These discrepancies are to be observed and the implications of these incon-

sistencies are to be reported.

3. Several features of JavaScript require a simple lexical analysis to sophisticated dynamic

analysis, sometimes both in tandem.

1.3 Thesis statement

Programmers of JavaScript often use JavaScript in confusing and non-standard ways.

A widespread empirical study to understand the usage of JavaScript language features (and

the corresponding misuses) must account for the diverse ways JavaScript is used and a com-

bination of crude lexical analysis to sophisticated dynamic analysis.

Our empirical study is conducted on a massive corpus which is both diverse and compre-

hensive reflective of wide variety of paradigms JavaScript supports. The following subsections

discuss the rationale in selecting the elements of corpus, methodology employed for analysis

and gives a summary of few findings. The corpus has more than a million scripts from five

4

different sources. There have been a few empirical studies to understand JavaScripts dy-

namic behavior [11],[12] and its security issues [13][14][15]. These studies have only focused

on top 100 websites and suite of benchmark programs. Our corpus is made decidedly diverse

with scripts from variegated sources which helps us better understand usage of language by

people with different levels of expertise.

1. Top 100 websites(according to Alexa)

2. 70000 random web pages from wild

3. Top 50 mozilla-Addons which are very agile and adopt new features of language readily,

4. The top 3 widely used libraries namely jQuery, YUI and prototype.

5. Node.js programs

Our research analyses ranges from simple lexical analysis to complex dynamic and static

analysis of the features. The features are selected with level of need for reform and with

assistance from Douglas Crockford’s JavaScript:The GoodParts[1]. This empirical study can

be extended with ease in future.

1.3.1 Corpus

The existing studies of JavaScript focus on scripts collected from the top web-pages

identified by Alexa, well-known JavaScript libraries, and/or benchmark programs. Recent

work on existing JavaScript benchmarks suggest that the benchmarks are not representative

of real world JavaScript code[11][16]. Alexa pages are a popular source, but even they

represent a small and perhaps atypical sample of scripts. Additionally, some studies are on

a small corpus, typically on scripts collected from the top 100 Alexa pages.

We collect scripts from various sources so that they represent JavaScript written by

people with different levels of expertise and scripts that have gone through different levels of

validation process. We want to ensure that the corpus represent the following population:

5

Script
Source

Source URLs/
Programs

of
Scripts

of
Unique Scripts

%
Unique

Program Size
(KLOC)

Spidered Pages

Alexa Pages

Firefox Addons

JS Libraries

Node.js Appl.

66,145

100

50

3

50

3,621,184

421,317

1,074

3

2,653

4,046,231

1,041,325

124,828

991

3

2,548

1,169,695

28.76

29.63

92.27

100.00

96.04

68,737

10,522

164

7

1,107

80,537

Figure 1.2: Research Corpus

1. Scripts collected from the wild written by developers of various skill levels.

2. Scripts written for popular web-pages that are perhaps written more carefully by ex-

perienced developers.

3. Scripts that have gone through a validation process and contain newly introduced

JavaScript features.

4. Scripts written by experts and widely reused as libraries.

Scripts collected from the wild. Using a web crawler (i.e Win Web Crawler),

we initially collected 80,000 URLs. Duplicates among the URL list are removed and we

ended with 66,145 URLs. We wrote a perl script that creates an instance of instrumented

browser(Mozilla Firefox v21.0a) and loads an URL from list. The script destroys and re-

launches the instance of browser loading the subsequent URL in the list after every 10

seconds.

Many of the scripts were not unique; they reused some JavaScript libraries (e.g., jQuery)

or other scripts. We used the MD5 hash of a script to identify scripts that were syntactically

similar. After removing these duplicates, there were 1,041,325 unique scripts. We refer to

these scripts as Spidered Pages in the rest of the document. The scripts were collected in

November 2013.

6

Scripts written from popular pages. We browsed the top 100 Alexa websites as

they should contain scripts written by experienced developers. We used Win Web Crawler

to automatically crawl each of the top 100 sites and collect URLs; then we loaded the URLs

in the instrumented browser. Some banking websites, such as Bank of America, Chase, etc.,

require a back account to delve into the site. We excluded these sites and proceeded to the

next top sites. In total, we have extracted 124,828 unique scripts. We refer to this source as

Alexa Pages. The scripts were collected in November 2013.

Scripts that have been validated. We extracted scripts from the top 50 Firefox Add-

ons (25 most popular and 25 highest rated) during August 2012. These scripts enhance user

experience (e.g., Greasemonkey, Download Statusbar, etc.), enable safe and secure browsing

(e.g., Adblock Plus, NoScript, etc.), and provide power tools for developers (e.g., Firebug,

etc.) Since Mozilla uses volunteers to vet each new extension and revision before posting

it on their official list of approved Firefox Add-ons, these scripts had gone through some

validation process. Additionally, some of these scripts contain new ECMAScript features

(Mozilla Firefox actively adopts proposed new features). In total, we collected 1,074 scripts

from Add-ons, out of which there were 991 (92.27%) unique pages; we refer to this source as

Firefox Add-ons in the rest of the paper.

Scripts used as libraries. We surveyed 3 popular libraries: Prototype JavaScript

framework version 1.7, jQuery version 1.8.3 and YUI version 3.6.0. We used the minified

versions in our study as they are most commonly used libraries. We refer to this source as

JavaScript Libraries in the rest of the paper. Figure 1.3 describes a summary of the scripts

collected from various sources.

Scripts from Node.js Applications. We collected scripts from Top 50 applications

from npmjs.org. Node applications uses Google’s V8 engine as its interpreter. We instru-

mented the V8 interpreter to analyze the dynamic features of the language. Since, these

applications are written in object-oriented style, we studied OO features of the language

namely mixins and object creation.

7

In total, our survey is based on over million unique scripts. When we statically counted

a feature in our study, we used the unique scripts. How ever, in order to study the dynamic

properties of the scripts, we had to load them in an instrumented browser, therefore running

all the scripts to collect results.

Email based survey on JavaScript developers In order to understand the reasons

behind some of the choices made by developers, we launched an empirical study on JavaScript

developers. We concentrated on developers of Node.js applications and in this study. They

provided the perspective of the new brand of JavaScript developers.

We selected the participants from the developers of top 100 most starred Node.js appli-

cations as listed in www.npmjs. org. We also considered the top 100 most prolific developers

listed in the same site. From these sources, there were 137 developers. We sent them an

email with seven questions. Three questions asked about their design choices: whether they

used strict mode, whether they declare variables in block scope, and whether they create

custom objects in their applications. The remaining four were open-ended questions asked

about the reasons behind their choicesone each for the three questions, and one about their

use of mixins to extend objects. We sent the email with the questionnaire only once. We

received 45 responses (45/137 ≈ 32.86% response rate).

More details about the corpus are available on the project webpage:

http://www.munawarhafiz.com/research/jssurvey.

1.3.2 Methodology

The idea behind the empirical study is to identify the usage of particular features by the

programmer. Spidermonkey, the JavaScript engine in the Mozilla-Firefox browser has been

instrumented to print out the JavaScript from each website opened along with the generation

the log reports of the feature encountered and frequency of the usage of the feature. The

first 4 components are analyzed by using the instrumented Firefox browser. The features

are analyzed by 3 different methods:

8

Figure 1.3: Instrumentation:Collection and Analysis of Scripts

1. lexical count

2. parser instrumentation

3. interpreter instrumentation.

The entire process is automated by passing list of URLs to a perl script which se-

quentially opens each URL in the instrumented browser after a pre-defined time, thereby

periodically destroying and invoking the new instance of instrumented-browser. A different

methodology is used to analyze each member in corpus.

For top 100 websites, a spider is used to generate 80 URLs from each website and

concatenate into a single file which is passed to aforementioned perl script. The random

list of URLs from wild is obtained by spidering the web using a keyword and we’ve used

WinWebCrawler[17] for our research.

Node.js applications use an embedded JavaScript engine, Google’s V8 for interpretation

of JavaScript. We’ve instrumented the the JavaScript engine to trace the features and

generate the log report. We’ve ran 50 Node.js applications and generated trace files and log

reports. The 50 Node.js applications are selected based upon their popularity and permissive

licenses.

1.3.3 Results

We discovered several important usage facts that impact how JavaScript can evolve and

how its usage patterns can assist developers and tool builders.

9

• We found confusion and misconception about recently introduced features that impact

their adoption (strict mode, Section 2). This suggests that future extensions to the

language will need to be carefully and broadly introduced to JavaScript web developers

in order for such features to have any significant impact.

• We found continuing misuse of existing problematic features including block level dec-

larations (Section 5) and for...in iteration statements (Section 4). This validates the

inclusion of improved alternatives that have been proposed for the next ECMAScript

revision.

• We found that adoption of non-standardized and deprecated features make it difficult to

introduce new features (function in block, Section 6) and correct past mistakes (with,

Section 3).

• We found wide use of functional programming constructs but virtually no examples of

scripts defining new object abstraction (Section 7). This last result is surprising and

suggests the need for further studies to see whether this reflects a language deficiency

or is just a legacy of the simplistic way JavaScript was used on web pages during the

first decade of its existence.

• We found that overwhelming majority of Node.js developers do infact use mixins. They

employ variety of strategies to achieve that.

1.4 Organization of Thesis

This study focuses on collecting usage data of recently introduced features and features

that will be modified/deprecated in the next major ECMAScript revision. Specifically, we

analyze usage questions concerning ECMAScript 5 strict mode; usage of the with state-

ment; the use of block level variable declarations; the use of functions defined in blocks;

10

object property enumerations using the for...in statement; and the definition of new ob-

ject abstractions. Members of standards committee deemed these features to be among the

problematic and are needed to be addressed in the future revisions of the language.

Strict mode is a recently introduced language feature. The with statement is a legacy

statement deprecated in strict mode. Block level scoping, although not currently supported,

is being considered as a new feature in the next revision. Usage patterns of the for...in

statement that enumerates over object properties provides clues about how JavaScript pro-

grammers currently make use of objects and inheritance and are relevant to the design of new

enumeration mechanism in the next ECMAScript revision. Analysis of object abstraction

patterns provide information about how often JavaScript programmers define new classes of

objects. Sections 2 to 9 provide the details.

The thesis has been organized into different chapters with each feature discussed in a

specific chapter. In chapter 9, we discuss our conclusions and future work.

11

Chapter 2

Strict Mode

2.1 Motivation

Strict mode was introduced in ECMAScript5. The intent of introducing strict mode is

to gradually eliminate the error-prone and hard-to-optimize features in the future revisions

of the ECMAScript.

Strict mode allows the users to switch to a more restrictive version of JavaScript which

disallows usage of certain features (e.g with).

The major changes in strict mode[18] compared to the normal semantics are:

1. throw errors instead of the silent errors in previous versions of standard

2. disallow the usage of features that are bound to make script optimizations slower and

pose security issues. It includes disallowing new scope in eval, aliasing properties of

arguments objects created within it, prevents the exposure of global variables to outside

scripts.

3. prohibits use of the syntax and keywords which are saved for future versions of the

language.

Strict mode is designed to be backward compatible with browsers that do not support

it. Even in absence of strict mode support in the browsers, no side effects are observed. It

will be treated as a string literal that isn’t further used in the script.

Strict mode can be enforced on the script by using the directive use strict.

The directive can be used in two ways: 1) declaring use strict at script level as a

declarative prologue thus enforcing strict mode on the entire content of that file, or 2)

12

Listing 2.1: file-level declaration

” use s t r i c t ” ;
function t e s tSt r i c tMode (){

var newVar=2;
return newVar ;

}

Listing 2.2: function-level declaration

function t e s tSt r i c tMode (){
” use s t r i c t ” ;

var newVar=2;
return newVar ;

}

declaring use strict within the function body thus enforcing strict mode only on the function

and any nested functions. Script-level declaration may cause a concatenation bug when a

script written using strict mode is concatenated with third- party scripts that depend upon

legacy features or semantics that are unavailable in strict mode.

Our research focuses on the level of adoption of the feature and explores the inconsis-

tencies and problems faced by the programmers in the usage of the feature.

The code snippets in listing 2.1 and listing 2.2 show file level and function level decla-

rations respectively.

2.2 Approach

The scripts are lexically searched to detect the presence of the directive ‘use strict’ and

are separated. Regular Expressions are employed to categorize the usage of directive into

file level and function level declarations. We also surveyed developers to explore the reasons

why they use strict mode,if not, why they refrain from using it.

13

Script
Source

Unique
Scripts Using
use strict

% Unique
Scripts Using
use strict

Spidered Pages

Alexa Pages

Firefox Addons

JS Libraries

Node.js Appl.

9,265

965

85

0

237

0.89

0.77

6.50

0

9.30

239

93

73

0

166

27,384

2,941

12

0

135

use strict instances

File Level Fn Level

Figure 2.1: Usage of Strict mode

2.3 Results

The results are tabulated in figure 2.1.

The level of adoption of strict mode is low among all the elements of corpus. The

percentage of adoption is still lower than 1 percent among all components of corpus. It

can be also observed that the function level declaration is disproportionately higher than

file level declaration(i.e. declarative prologue) with them being 27384, 239 and 2941, 93 in

Spidered pages and Alexa pages respectively. JSLibraries have shown no use of strict mode.

This could be attributed to possibility of concatenation bug discussed in the subsection

below. Only 19 out of 100 Alexa sites used Strict mode. Of the 50 Add-ons in our corpus,

only 5 use strict mode. Most programmers declare use strict at function level following the

recommended practice. But the trend is opposite in Add-ons. Developers of Add-ons prefer

using use strict as a declarative prologue to the entire script.

2.4 Discussion

2.4.1 Why is strict mode Unpopular?

The lack of adoption of strict mode can be attributed to 3 major misconceptions among

developers:

14

1. Developers cannot use features such as strict mode unless it is supported by all the

widely used web browsers. Strict mode is not fully supported by all browsers (i.e Opera

mini). Also, We have to factor in lot of end users who haven’t yet updated to latest

versions of browsers. Microsoft Internet Explorer did not support strict mode until

IE10 (October 2012), even though strict mode has been a part of ECMAScript 5 since

December 2009.

2. There is a common notion that implementation of strict mode is different in different

browsers. Usage of Arguments.callee in strict mode raises TypeError in Opera, Firefox

and is valid in Chrome. Developers refrain from using it to make their code consistent

across browsers.

3. Another popular belief is that strict mode should only be used during development

for debugging, but not in production code. They believe that the third-party tools

(JSHint/JSLint) also provide similar benefits as strict mode. Thus, strict mode may

be used by developers but it is not shown in our corpus.

These misconceptions were observed in the e-mail based survey on developers of Node.js

applications and Mozilla Add-on developers. 17 out of 45 developers(≈ 37%) have used strict

mode in their code. The responses justifying the choice of refraining from using strict mode

are mostly misconceptions.

Compatibility issues because of lack of support is one major misconception. 10 develop-

ers (10/45 ≈ 22.22%) were concerned that strict mode will change the semantics of existing

code or will break it.

The lack of browser support will treat the directive more like a comment. One change

in semantics in strict mode is in the scoping of declarations contained within direct eval

calls. We searched the entire corpus and did not find any instance where eval is used in

strict mode. However, this may be because programmers removed eval from their code when

introducing strict mode which is recommended [19]. The other concern about mixing strict

15

and non-strict code is also a misconception. Strict mode is lexically scoped to a script or

function body; it has no global effect. Concatenation has problematic issues, but using

separate strict and non-strict scripts within the same program is just fine.

A surprisingly high number of developers, even two of those who admit using strict

mode, mentioned that strict mode is unnecessary (14, 14/45 ≈ 31.11%). 4 developers (4/45

≈ 8.89%) mentioned that the same benefits can be found from JSLint and JSHint. A few

others (4, 4/45 ≈ 8.89%) think that the mode is too restrictive, and do not support their

favorite features (Lack of octal mode is my only complaint).

2.4.2 Proper Usage of Strict mode

The results show us that programmers of both Spidered pages and Alexa top sites prefer

function level strict mode compared to file level declarations as recommended. File-level

declarations are fine as long as the scripts are not blindly concatenated thereby avoiding

concatenation bugs. Contrary to other parts of corpus, programmers of Firefox Add-ons

prefer file level strict mode declaration as the scripts are typically independent and possibility

of concatenation bugs is nullified.

JavaScript libraries do not use strict mode. Library writers may believe there are issues

with using strict mode but that is basically the same misunderstanding about the nature of

strict mode. It is only when library code is physically embedded (discussed next section)

that there is a possible problem.

2.4.3 Concatenation bug

Blind concatenation of scripts is shown to have caused concatenation bug. It’s a common

practice to concatenate the third-party scripts with the developers code and any file level

declaration of use strict in the third party script makes both scripts strict. It thus disallows

features in the developers code as it is intended to be non-strict code thus breaking it.

16

Listing 2.3: Concatenation Bug

<<JSON2 . j s code i n s e r t e d here>>
. . .
m u l t i p r i c e b l o c k : function (dea l) {
var s e l f = t h i s ; var pr iceHash = s e l f . g e t p r i c e s (dea l) ;
. . .
i f (! pr iceHash [o u r P r i c e] . isRange) {
ourPercentOf f = Math . round
((l i s tPr iceAmount − ourPriceAmount)∗ 100 / l i s tPr iceAmount) ;
. . . }
. . . } ;

We countered few concatenation bugs(less than 10) while running instrumented browser

to load the list of URLs. One of the major website, Amazon has also suffered from a concate-

nation bug. The ’lightning deals’ page during a major holiday caused the bug. JSON2.js, the

third party script which uses file level strict mode declaration is blindly concatenated to the

Amazon’s script enforcing strict mode on Amazon’s code which are meant to be non-strict.

The variable ourPercentOff is not explicitly declared. The Amazon’s script written in non

strict mode makes it a global variable. The strict mode enforced on it throws an error as

the variable is not explicitly declared.

2.5 Impact

Language designers should be concerned about strict mode and similar confusions about

newly-introduced features. A possible reason for this misconception is that JavaScript devel-

opers do not receive information from a single source. Unlike single vendor languages, there

is not a coordinated launch when a new version of JavaScript becomes available. Instead, it

rolls out at different times in different browsers sometimes in a piecemeal fashion.

17

Some developers complained about strict mode not supporting their favorite features.

Such concerns should be addressed during language evolution. For example, ES6 introduces

a new syntax of octal literals: 0o777.

18

Chapter 3

With statement

3.1 Motivation

With keyword is the widely debated to be harmful feature in the language, deemed

’awful’ by crockford [20]. It was introduced to provide short hand notation to refer object

properties to improve the readability. The usage of feature makes compiler optimization

harder and reduces the performance of script with constant scope resolution at runtime

and is known to cause missed recursion. The missed recursion causes global namespace

pollution. ECMAScript standards committee is in favor of abandoning the feature given

the disadvantages it offers and complete replaceability of the feature with simple idioms.

A simple reference to variable can be created as shown in table to provide the shorthand

notation that with does. Several such idioms can be used to replace with.

Despite the suggestions from the experts, the usage of feature is still prevalent. Our

research focuses on the level of prevalence of the feature, the proportion of property modifiers

within the with that potentially cause global namespace pollution.

Listing 3.1: sample code

var x = document . body . s c r o l l L e f t ;
document . wr i t e (’ t ext1 ’) ;
document . wr i t e (’ t ext2 ’) ;
document . wr i t e (’ t ext3 ’) ;

19

Listing 3.2: with usage to improve readability

with document {
var x = body . s c r o l l L e f t ;
wr i t e (’ t ext1 ’) ;
wr i t e (’ t ext2 ’) ;
wr i t e (’ t ext3 ’) ;
}

Listing 3.3: With Replaceability

var d = document ;
var x = d . body . s c r o l l L e f t ;
d . wr i t e (’ t ext1 ’) ;
d . wr i t e (’ t ext2 ’) ;
d . wr i t e (’ t ext3 ’) ;

3.2 Approach

We counted the number of with statements in unique scripts by searching lexically. In

order to detect the dynamic behavior of with statement, we instrumented the interpreter

component (jsinterp.cpp) of Firefox: 14 lines of code were added. Scripts from Firefox Add-

ons pages and JavaScript libraries were analyzed manually. This is because a client that

exercises a library (or an Add-on) may not execute all parts of the code.

3.3 Results

With is a dynamic feature where scope of properties used are resolved at runtime.

Our research analyzes the number of with keywords within the corpus, the percentage of

properties resolved in the with scope and percentage of those that have escaped to global

space.

Results shows limited but significant presence of with usage given the controversy it

generated over years. Less than 1% scripts use the with statement. Most of the properties

are resolved within the the scope created by with. Another interesting observation is vast

majority of scripts containing with are from two sites Amazon and Ebay. Together, they

20

Script
Source

Unique
Scripts Using

with

% Unique
Scripts Using

with

Spidered Pages

Alexa Pages

Firefox Addons

JS Libraries

6,237

718

87

0

0.60

0.58

8.77

0

8,645

1,193

87

0

1,589

719

0

0

of with
instances

properties
resolved in

global

% properties
resolved in

global

11.71

10.82

0

0

Figure 3.1: Usage of ’With’

contribute upto 60% of scripts to Alexa. Percentage of scripts using with in spidered pages

and alexa pages is 0.69 and 0.58 respectively. The total number of properties used within

the with are 13419, 6332 in Spidered and Alexa pages. Of these, 11834 and 5613 properties

are resolved within the scope of with among the Spidered and Alexa pages. The rest of

properties are resolved in the global scope(11.71% in spidered pages, 10.82% in Alexa pages.)

The JavaScript libraries employed in our research have no instances of with. Among the

50 Mozilla Firefox Add-ons in our corpus, 11 have used with. Lack of DOM and scripts being

stand-alone cannot pollute global name space in Add-ons. Two Add-ons have accounted for

most usage of with-s:NamFox, an automated marker for NeoSeeker has 34 and Feedly, a

Google reader Add-on has 25.

3.4 Discussion

Most of the with statements are resolved within the object. The global objects on

which with is used are predominantly objects for DOM access and window objects. For

example, we found 627 properties resolved in the global CSSProperties object, and 403 in

window object in spidered pages.

Prior to the introduction of ’let’ keyword, with statement is used to mimic block scope

in JavaScript, but at the expense of performance.

21

3.5 Impact

ECMAScript 5 strict mode disallows with since it introduces dynamic scope. It is

unlikely that with statement will ever be eliminated, because that would break existing web

pages. However, the committee hopes that use of strict mode will minimize the usage of

with in newly created content.

Our results also show that only a few instances of with are resolved in global space. The

remainder can be replaced with simple idioms According to park at al.[14], rewritability of

every pattern of with is possible except for generator pattern because of the function which

generates dynamic code within the statement. This usage pattern account for less than 1%

usage in the real world. This provides an ample opportunity to develop refactoring tools to

replace with improving performance and maintainability when the code is used with third

party strict scripts.

22

Chapter 4

For..in

4.1 Motivation

for..in construct is the cross-browser technique used to iterate through the properties

of a generic object. This construct not only iterates through the non-shadowed, user defined

properties of the current object but also the properties inherited from the prototype chain.

The hasOwnProperty prevents the enumeration over the properties inherited from the

prototype chain. Addition of any property to object prototype(i.e Object.prototype) with in

the loop results in a potential error because of the iteration of inherited property. Another

commonly found misconception associated with for..in is its use for array Enumeration.

This has been ill-advised as the order of iteration of elements is not guaranteed with the

for..in loop and the inherited properties are also iterated when used with for..in construct.

Also, these practices eliminates the possibility to extend the pre-defined objects like Array,

Object etc.

Our research aims to generate the statistics on the level of usage of hasOwnProperty

in tandem with for..in and usage of array enumeration using for..in. A survey on developers

is done to shine light on their reason to not use hasOwnProperty with for..in

4.2 Approach

We instrumented the parser component of Mozilla Firefox to identify the for...in state-

ments and corresponding hasOwnProperty uses. For every for...in statement, we traced

23

Listing 4.1: problem with for..in usage for Array Enumeration

Array . prototype . foo = ” foo ” ;
var array = [’ 1 ’ , ’ 2 ’ , ’ 3 ’] ;

for (var i in array) {
a l e r t (array [i]) ;

}
// a l e r t s 1 ,2 ,3 , foo

Listing 4.2: Use of hasOwnProperty with for..in

Object . prototype . foo = ” foo ” ;
var person={fname : ” John ” , lname : ” Doe” , age : 2 5 } ;
for (var x in person)
{
i f (person . hasOwnProperty (x))
a l e r t (x) ;
}
// a l e r t s John , Doe ,25
// a l e r t s John , Doe , 2 5 , foo without hasOwnProperty ()

whether it is used with hasOwnProperty. Finding whether a for...in is used for array

enumeration is similar except it is handled by a separate portion of the code inside the parser

component. Regular expressions are used to generate the statistics of Firefox Add-ons.

4.3 Results

The results table below shows the for..in alongside hasOwnProperty. for..in con-

struct in Alexa pages are better filtered with hasOwnProperty. Of the 126928, 11344

for..ins encountered in Spidered and Alexa pages, 19645, 4138 of them are filtered with

hasOwnProperty construct. The usage of hasOwnproperty is doubled in Alexa pages

compared to Spidered pages with the usage percentage being 36.4 and 15.8 in Alexa and

Spidered pages respectively. Surprisingly, the JSLibraries and Mozilla Add-ons are at the

exact opposite end of spectrum. hasOwnProperty is rarely used to filter for..in in Firefox

Add-ons(only 6.6%)

24

Figure 4.1: Usage of ’for..in’

Table 4.1 also aggregates the instances of for...in that are used to enumerate through

arrays. Developers of JavaScript libraries do not use for...in this way. Of the 126928, 11344

for..ins encountered in Spidered and Alexa pages, only 2332(3.21%), 243(3.93%) are used

for Array enumeration.

4.4 Discussion

The results inform us that most of the for..in-s are not filtered with hasOwnProperty.

People do not follow expert’s suggestion in this regard. It could be attributed to the fact

that most of the objects are stand-alone with only one parent(i.e Object.prototype). This

may have prompted the developers to discount the usage of hasOwnProperty. But, it

does prohibit the developers extend the pre-defined objects.

The another conclusion that can be drawn from results is that developers typically

do not favor inheritance. Most objects being stand alone solidifies it. JSLibraries show

greater usage of hasOwnProperty in correspondence with for...in An interesting observa-

tion shows that jQuery, a library coded in functional oriented paradigm has no instance of

hasOwnProperty in tandem with for..in. While, YUI, object-oriented library has each of

its for..in filtered with hasOwnProperty.

A common JavaScript pattern is to define all methods as properties of prototype object

and all data defined as own properties of instance object that inherit from such prototypes.

25

A typical use of for...in only wants to see data properties. But prior to ECMAScript 5,

lack of any efficient way to define method properties as non-enumerable prompted experts

recommend hasOwnProperty. ECMAScript 5 introduces the defineProperty function that

can explicitly set nature of property as either enumerable or non-enumerable The usage of

defineProperty is seldom observed in the corpus with 43 instances in all of wild pages. This

is probably because of the relatively recent availability of ECMAScript 5 level JavaScript

implementations.

It has been ill advised to use for..in for array enumeration as not only the elements but

properties of Array are iterated. A simple for loop as in other programming language is a

better alternative. Another observation regarding for..in is that multiple instances of the

variable used for iteration not being declared explicitly is identified. The variable becomes

global creating global namespace pollution.

4.5 Impact

The high percentage of for...in loops that do not contain hasOwnProperty checks

may indicate that it is uncommon for JavaScript programs to define their object abstractions

with shared prototype methods. Instead they may be primarily using the built-in objects

abstractions whose methods are not enumerated by for...in. Another observation is that

definition of new object-based abstractions are seldom found in the corpus.

A for...of statement has been proposed for inclusion in the next revision of the EC-

MAScript standard. for..of iterates over property values unlike for..in which iterates over

property names. Another level of abstract iterator construct is used to iterate over the array

elements in the indexed order and will not produce any non-array properties(own or inher-

ited). The stats confirming the use of for...in to iterate over arrays suggests ignorance on

the part of programmers. It also suggests that there will be a need to educate developers

to use for...of instead of for...in and that there is probably a need for tools to support

refactoring of for...in statements into for...of statements.

26

Chapter 5

Variable Scope

5.1 Introduction

Variable scope is one of the confusing semantics in JavaScript especially for developers

from mainstream languages like Java, C++. The language only has a global scope and a

functional scope. It ignores the concept of block scope. Any function defined in the scope

creates a nested scope. The scope resolution of the variable starts with inner most scope

and works its way outward to global scope. The with statement can be used to create block

scoping but it creates a myriad of problems as mentioned in chapter 3.

The code snippet shows the different kind of variable declarations and usage we’ve

worked upon our corpus. There are five usage patterns within function bodies.

1. A variable is declared in function scope and used exclusively in function scope, i.e., not

used inside any blocks (functionScopeOnly).

2. A variable is declared in function scope but used exclusively in block scope (blockScope-

Only).

3. A variable is declared in function scope and used in both scopes (bothScopes).

4. A variable is declared in block scope and used exclusively in block scope (blockRe-

stricted).

5. A variable is declared in block scope but used outside the block scope (escaped-

BlockScope).

27

Listing 5.1: Scoping in JavaScript

var GlobalScope ;
function VariableScope () {
var blockScopeOnly = . . . ;
var funct ionScopeOnly = . . . ;
var bothScopes = . . . ;
i f (funct ionScopeOnly < 20) {
conso l e . log (bothScopes) ;
var b lockRes t r i c t ed , escapedBlockScope ;
b l o ckR e s t r i c t ed = blockScopeOnly ;
}
escapedBlockScope = . . . ;
}

6. A variable declared in global scope(GlobalScope)

Crockford[1] suggests that variables are to be hoisted to the functional scope to prevent

the confusion of lack of block scope in JavaScript. we tried to answer the following research

questions: Do programmers actually practice the variable hoisting? if they didn’t, do they

respect the block scope and use the variables declared inside the block within the block? The

answers do support the introduction of proposed construct in upcoming revision of standard,

ECMAScript 6.

5.1.1 Approach

We instrumented the parser component of Mozilla Firefox to identify the scope of vari-

ables. We automatically loaded the scripts from spidered pages, JSLibraries and Alexa pages

in the instrumented browser. The instrumentation keeps track of all variables declarations

and updates their scopes every time a new use of a variable is encountered; this is done per

function. For scripts in Firefox Add-ons, we manually counted all variables and their scopes.

We also asked developers about whether they declare variables inside blocks or hoist variable

declarations at function level; we asked them to justify their choices.

28

Spidered Pages

Alexa Pages

Firefox Addons

JS Libraries

0.25

1.03

8.69

0.38

0.04

0.43

3.66

0.22

71.64

69.88

60.12

85.88

25.68

26.93

27.53

13.15

2.39

1.73

0

0.37

24,228,649

864,622

11,918

4,574

Script
Source

% Function
Scope Only

% Block
Scope Only

% Both
Scopes

Total
No of

Variables
% Escaped

Block Scope
% Block

Scope Only

Declared at Function Level Declared within Block

Figure 5.1: Variable usage in JavaScript

5.1.2 Results

The table below show us the statistics of the listed usage patterns. All of the components

in corpus have shown a common trend of declaring variables in functional scope and using

them in both scopes accounting for nearly 68%. 2.34, 1.74 % of variables declared with in

the block among Alexa and spidered pages have been used outside the block which shows us

that a limited albeit substantial amount of programmers do not respect the block scope.

5.2 Discussion

The results of the five usages are shown in the figure. It shows that programmers prefer

declaring variables in the function scope even if used in block scope. But, there are still

significant portion of the variables declared inside block scope. A considerable portion of

the block scope declared variables escaped block scope in both Alexa and spidered pages.

This coupled with JavaScript’s use of anonymous functions and event handlers worsen the

understanding of scope. Developers of both Mozilla Firefox Add-ons and JavaScript libraries

did try use the variable declared in the block within the block mimicking block scope from

other mainstream languages.

The results show that programmers do not necessarily follow Crockfords advice and

hoist block-scoped variable declarations to the top of functions. Although there are more

than 10,000 instances of variables whose declarations have been hoisted to function scope in

29

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

Fn Level Used

in Fn Scope

Fn Level Used

in Block Scope

Fn Level Used

in Both Scopes

Block Level

Block Only

Block Level

Escapes Block

Type of Scope of JavaScript Variables

Spidered Pages
Alexa Pages
Firefox Add−ons
JS Libraries

Figure 5.2: Trends in Variable declaration

spidered pages, the proportion is very low (0.04 %) and in fact one order lower than variables

declared within block. Another interesting issue is that there are more variables that escape

block scope compared to variables that are hoisted.

Survey As mentioned earlier we’ve conducted a survey on 46 developers. We’ve posed

them the questions regarding their usage of scope in JavaScript and usage of newly introduced

let. 34 developers have responded to this particular list of questionnaire. 23 developers(67.4

%) have stated that they embraced the functional scope of JavaScript and didn’t try to

mimic block scope. The usage of linters which block declaration of variables inside blocks,

minimization of hoisting-related surprises are the prominent reasons developers embrace this

style. 11 developers have stated they tried to imitate the block scope because of the improved

readability and maintainability it provides. A couple of responses from our respondents

summarizes their justification in usage of such style: prefer to have the definitions as close

to the uses as possible, to prevent action-at-a-distance and refactoring mistakes, Principle of

Least Privilege[21] and give variables only the smallest amount of scope needed

30

Listing 5.2: Const behavior in Chrome and Firefox

const beatcop = ’On Patro l ? ’ ;
a l e r t (beatcop) ; // On Patro l ?

beatcop = 41 ; // F a i l s s i l e n t l y
a l e r t (beatcop) ; // On Patro l ?

var beatcop = ’ Sequel ? ’ ; // TypeError : r e d e c l a r a t i o n o f const beatcop

Figure 5.3: const usage in JavaScript

5.3 const keyword

JavaScript doesn’t have a keyword as of yet to define constant variables. A recent

keyword const has been introduced in ECMAScript 5 to define a constant, global or local to

the function. A constant variable cannot be redefined or reinitialized with its scope. const

variables cannot share the name with other functions or variables within its scope. Const

variables follow same scoping rules as the variables. The semantics of the const keyword

are supposed to be changed in next iteration of standard. It has been proposed to create

block level scoping like let in further iterations of the language. Const keyword is currently

supported by recent versions of browsers IE, Firefox, Chrome, Opera but reassignment is

thrown as TypeError only in Firefox and Chrome.

Results:

31

Listing 5.3: let behaviour in Chrome and Firefox

var x = 10 ;
i f (x>5){
l e t x=5;
a l e r t (x) ; / / a l e r t s 5
}
a l e r t (x) ; / / a l e r t s 10

The usage of const in the corpus is detailed in figure below. We’ve identified 43 and

77 instances of const in both Alexa and Spidered Pages. But, most of them are from the

internal firefox scripts. Firefox has adopted features in the standard yet to be implemented.

Programmers currently use various conventions and tactics to define constants. Some of them

include block letter variable names and returning value from function. The introduction of

the feature will make it less cumbersome.

5.4 let

let keyword is used to mimic the concept of block scope prevalent in all other pro-

gramming languages. Thus, it limits the scope of variable to block, statement or expression.

It is part of ECMAScript’s newly proposed set of features to assimilate the language with

other main stream languages. Earlier with was used to provide block scope. The keyword

let provides block scoping without the disadvantages of the former. Redeclaration of a let

variable within a block or a function would throw TypeError. One major advantage is that

we can finally bind variables locally into the scope instead of the functional scope or global

scope(with var). let keyword is implemented in recent versions of major browsers but hasn’t

been implemented in server side frameworks like Node.js, Rhino.

Results:

32

Mozilla supports the let construct to declare block-scoped variables. 11 out of 50 Firefox

Add-ons from our corpus use let. There are 1,800 variable declarations with let. In the table,

they are listed as block-restricted variables.

The survey also targeted the awareness and usage of let in developer community. 6(17.4%)

of the developers said that they have started using let for Mozilla Add-ons and Node.js

applications(other than browsers). Several developers have shown excitement about the

introduction of the feature.

5.5 Impact

JavaScript standards committee wants the language to be the considered as a serious

programming language rather than a simple scripting language. The introduction of block

scope could reduce the confusion for programmers from other languages.

Developers of Firefox have already included the support for let construct(introduced in

ECMAScript 6) in their browser. Several Add-ons did use the let keyword to enforce stricter

block scope. We have identified more than 1800 instances of variable declarations with let.

Because hoisting a variable is sometimes desired and sometimes has to avoided, JavaScript

IDE designers can think of adding refactorings to support this activity. Hoisting a variable

from block scope to function scope is an obvious refactoring. Another refactoring can rede-

clare a variable (previously declared with var) inside a block scope using let, when it can

determine that the variable is used in block scope only. Yet another refactoring can push a

variable from function scope to block scope and promote the use of let.

33

Chapter 6

Function Inside Block

6.1 Motivation

JavaScript treats functions as first class objects; they can be created and modified

dynamically and passed as data to other functions and objects. JavaScript allows functions

to be defined inside other functions unlike other programming languages.

Nesting functions can cause adverse effect on performance if done incorrectly. The

creation of inner functions is always deferred i.e. created at run time. The nested function

is created each time outer function is called. Thus, reference to inner function has to be

created and destroyed repeatedly.

According to ECMAScript standard, blocks are allowed to have statements only[22].

But, various implementations(e.g Firefox, Chrome) does support function declaration within

the block against the recommendation of the standard. There are major differences in the

behavior of these implementations.

In few implementations, the function declaration with in the block is hoisted making it

available outside the block irrespective of conditional statement. Few other implementations

treat it as a conditional statement available upon the successful evaluation of the condi-

tion. Thus, code cannot be reliably ported across the various implementations/browsers.

ECMAScript standard committee is planning to provide alternate means for declaring func-

tions in a statement context[23]. .

The figure 6.1 shows that the behavior of functions declared in the block is varied in

various implementations and hence deemed a poor programming practice. We tried to answer

following research questions: Do programmers actually define functions in the block against

the recommendations? How widespread is the practice? Are the functions defined in the

34

Listing 6.1: Function in Block:Different implementations

var abc = ’ ’ ;
i f (1 === 0){

function a (){
abc = 7 ;

}
} else i f (’ f oo ’ === ’ foo ’){

function a (){
abc = 19 ;

}
} else i f (’ f oo ’ === ’ bar ’){

function a (){
abc = ’ foo ’ ;

}
}
a () ;
document . wr i t e (abc) ;
// Mozi l la ’ s eng ine outputs 19 .
//chrome ’ s eng ine ouputs foo

block called from outside the block? The planned implementation will break the existing

code if they have inner functions that escape block scope.

6.2 Approach

We instrumented the parser component of Mozilla Firefox to count the inner functions.

We automatically loaded the scripts from Spidered pages and Alexa pages in the instru-

mented browser. When the parser encounters a function declaration, it identifies whether

the function is declared inside a block; it also identifies the type of block the function is in.

6.2.1 Results

The results are tabulated below. Most of the functions are declared outside the block.

Low but a significant proportion of functions are declared in the block in both Alexa and

35

Figure 6.1: Inner Functions: Statistics

Spidered pages. Surprisingly, we’ve found greater proportion of function declared inside

block for Alexa pages. Most of the functions declared inside block are within the blocks if

and try/catch. 37 and 236 instances of functions in Alexa and Spidered pages declared inside

the block have escaped.

6.3 Discussion

Defining a function within functions is heavily embraced in JavaScript. This could be

attributed to the heavy functional oriented programming[1]. Both, anonymous functions and

named functions are widely used as inner functions. The results does show that declaration

of function inside the block is low albeit significant(43538). ECMAScript wants to address

the issue as such declaration was never allowed in the standard. The revisions proposed will

cause significant impact on the existing web content and may even break a little.

Similar trends of function usage was observed in Alexa pages as well. Apparently, most

of the functions are declared inside an if statement block, and try and catch statement blocks

(we did not distinguish the blocks because the parser handles them together).

For example, in spidered pages, among the total 68,851 functions inside blocks, most

(40612, 93 percent) are declared within an if blocks, while a only a few (456, 1.06 percent)

inside a for block.

36

Let
With
Do
While
For
Try−Catch
If

Let
With
Do
While
For
Try−Catch
If

Spider

Alexa

0 10000 20000 30000 40000 50000 60000

Number of Functions Inside Block

Let
With
Do
While
For
Try−Catch
If

Let
With
Do
While
For
Try−Catch
If

Spider

Alexa

1 100 10000

Number of Functions Inside Block (Log Scale)

Figure 6.2: Number of functions inside block

6.4 Impact

Inner functions are used widely and performance of script suffers with incorrect usage of

it. It would be worthwhile focus for optimization and should be covered more in instructional

materials. It also suggests that there may be opportunities for developing tools to provide

refactorings that are specific to defining and using inner functions.

The most important issue is the frequency of occurrence of inner function declarations

that escape block scope. If such occurrences are rare then interpreting existing block-level

function declarations as block-scoped should not have a significant impact.

The type of control structure that contains an inner function declarations also have an

impact. We identified instances of functions declared in let. The ECMAScript is planning

37

to disallow the function declaration within let. Because, functions are not currently block

scoped (function bindings are hoisted to the function level) the same function object (clo-

sure)is used no matter how many times a block is entered (during a particular out function

invocation). However, block scoped declaration would create a new closure each time the

block is entered. This is not a significant difference for blocks that are only entered once,

such as clauses of an if statement. However, if the block is part of a looping construct block

scoping will mean that each iteration of the look will use a different closure that captures

different outer bindings.

38

Chapter 7

Objects in JavaScript

7.1 Motivation

JavaScript objects do not have the concept of private properties, although encapsulation

can be indirectly achieved by declaring a variable in the function scope of a constructor

and then accessing it by another function. Recent work[24] suggests adding an Encapsulate

Property refactoring to JavaScript to introduce this sort of encapsulation. But the usefulness

of the refactoring should be determined by whether developers need a refactoring to create

private properties or whether developers use private properties at all in their code. Our work

could also answer the general usage of OO concepts in JavaScript.

7.1.1 Approach

We’ve instrumented the interpreter part of the Firefox to check for the constructor

functions. Whenever a constructor function is identified, it is flagged to verify the exis-

tence of variable declaration either by using ’var’ or ’this’. These keywords represent the

private and public properties respectively. The instrumented browser is used to run the

JSLibraries, Alexa and Spidered pages. Mozilla Add-ons are manually checked for existence

of constructor functions. We’ve also collected a report on usage of predefined objects by

using regular expressions. We also surveyed the Node.js developers whether they used new

object abstractions.

7.1.2 Results

The semantics of native objects are fully implemented in the ECMAScript standard and

few examples include Date, Math, Array, Object etc. The semantics of host objects are not

39

Figure 7.1: Usage of Native Objects

defined in the specification but are supplied by host to support the execution environment

of ECMAScript and few of them include window, document, history, setTimeOut etc We’ve

documented the usage of native objects and tabulated in the figure 7.1. The usage patterns

are identical in both Alexa and Spidered pages. Date, Array, RegExp and Function are the

widely used native objects in all the components of corpus.

7.2 Discussion

The results show that constructor functions are rarely used in JavaScript which can

be used to mimic object oriented programming similar to other main stream programming

language. The trend shows programmers like functional oriented style or prototypical inher-

itance in JavaScript. We tried to look into the way objects are created in the JavaScript by

40

using regular expressions by using ’new’ keyword. It shows that programmers do use a lot of

predefined objects like Date, RegExp etc. The usage of these objects follow a similar trend

in JSLibraries, Alexa and Spidered pages.

We searched for instances of Object.create and found only 384 occurrences in spidered

pages, and 52 occurrences in Alexa pages. None of the Firefox Add-ons pages and JavaScript

libraries use Object.create. Private properties are rare. Private properties are rarely used

not only by web developers, but also by more experienced developers of Firefox Add-ons

pages and JavaScript libraries. This suggests that a refactoring to introduce encapsulated

properties may not be widely adopted.

Objects can also be created by using Object.create which was introduced in EC-

MAScript 5. We searched for instances of Object.create and found only 564 occurrences

in spidered pages, and 68 occurrences in Alexa pages. None of the Firefox Add-ons pages

and JavaScript libraries use Object.create.

Private properties are rare. Private properties are rarely used not only by web

developers, but also by more experienced developers of Firefox Add-ons pages and JavaScript

libraries. This suggests that a refactoring to introduce encapsulated properties may not be

widely adopted.

7.3 Impact

The results in this section along with the for...in results in Chapter 5 suggest that the

actual definition of new object abstraction is rare in scripts. This coupled with the fact

that Node.js developers(14 out of 34 44%) have often used new object abstractions mirrors

the diversifying paradigms in which JavaScript is used. The heavy usage of new object

abstractions in server-side programming justifies the effort being made to incorporate class

definition syntax into in ECMAScript 6[25].

There are several possible reasons for these results. One is that programs that define ob-

ject abstractions are simply not represented in the corpus. The traditional use of JavaScript

41

on the web was to do simple manipulations of the browser-provided DOM. Most such pro-

grams have little need to define their own object abstractions. The web-based JavaScript

programs that are most likely to need to define new object abstractions are AJAX style

applications that use JavaScript to manipulate complex view models or client-side Web ap-

plications that need an internal domain object model. The emergence of such programs are

a relatively new phenomena and are still very rare. Given the age and size of the web, a

70,000 site sample is very small and it may be too small to include a significant number of

complex applications of the type that need to define object abstractions.

Another possibility is that the approach taken in this study is not identifying the most

common ways that new object abstractions are commonly defined in JavaScript. Further

analysis of the corpus needs to be performed that looks for other likely object abstraction

patterns.

42

Chapter 8

Related Work

8.1 Introduction

There have been several recent empirical studies on the dynamic properties of JavaScript.

Ratanaworabhan and colleagues[11] first explored the dynamic properties of JavaScript, but

their focus was to establish that the existing JavaScript benchmarks are unable to represent

JavaScript code that is written. Richards and colleagues[12] had similar focus. They studied

execution traces collected from 100 top Alexa pages and three industry benchmark suites

to characterize the dynamic behavior of scripts and compare the dynamism with assump-

tions made by the benchmarks. Martinsen and colleagues[26] also found that interactive web

applications (Facebook, Twitter, and MySpace) host scripts that have different execution

behavior than those in benchmarks.

Our study focuses on how the language features are used and abused by programmers.

Recently, Microsofts Brian Terlson studied top 10,000 Alexa pages to understand how people

use strict mode, const, etc. The scope of our study and the corresponding research questions

are different from his study. Even though our corpus is larger and more diversified, we chose

not to repeat research questions already asked, e.g., how people use eval[13].

Researchers have been working on improving the way people write JavaScript code by

exploring how to analyze JavaScript, and how to transform scripts to make them se- cure

as well as elegant; many of these efforts are backed up by empirical studies to understand

the JavaScript fea- tures in question. Richards and colleagues extended their previous work

on understanding dynamism in JavaScript by studying the use of eval[13] and its secu-

rity implications on a larger corpus (loading random pages from top 10,000 Alexa pages).

This supported Meawad and colleagues[19] work on semi-automatically removing eval from

43

scripts. Park and colleagues[14] studied top 98 Alexa pages and 9 JavaScript libraries to find

whether with statements in the scripts can be replaced with JavaScript idioms. Mirghashemi

et al.[27] explored a program transformation approach to rename anonymous function study-

ing 10 JavaScript libraries. Yue and colleagues[15] studied scripts from the top 500 Alexa

pages in 15 categories (removing overlaps, 6,805 pages in total) to understand how insecure

practices such as eval and innerHTML are used. They suggest that safe alternatives exist for

both insecure JavaScript generation and insecure JavaScript dynamic inclusion. Nikiforakis

et al.[28] studied top 10,000 Alexa pages to understand and identify the best practices of

including JavaScript.

44

Chapter 9

Conclusion and Future Work

John Resig[29], author of jQuery has suggested that JavaScript will be treated as asig-

nificant programming language- divorced from the concept of web development, which is the

goal of the ECMAScript standard commitee.

In this thesis, we addressed the need to revamp the language and justified the necessity

for the proposed 6 new features in the language. we evaluated the usage of each feature,

analyzed the reasons for misconceptions in the usage of language also with the survey weve

done. We believe that given the new direction the language is heading, it does need to

modify its image from a just a scripting language to a mainstream language.

The next iterations of the languages are being shaped to address solutions for all the

potential problems at the moment. It is called the Harmony project and while ECMAScript

6 is grearing for a spec release in early 2014 and consensus has been achieved on the im-

plementation of few features and ther is a great deal of discussion on the implementation

of certain features. Our work could be extended to throw light on other such features and

genrate statistics on way the features are used in general programming community.

The other concern most of the programmers expressed is the lack of adoption of various

newly introduced features across all the browsers. Mozilla firefox has very higher rate of

implementation of these features in their browser. Internet Explorer showed little to no

support for many of the recent features. Only few features like const, map, set have been

widely implemented in all of the browsers. It would be just a matter of time while the rest

of them are adopted.

Our research could be extended to some of the controversial aspects which are still

pending approval for the further revisions of the language. The work could highlight the

45

discrepancies in the usage of the features and could be useful in arguing the need for the

introduction of those features.

46

Bibliography

[1] Douglas Crockford. Javascript: The good parts. 2008.

[2] CompanyPR. Netscape and sun announce javascript, December 1995. URL

https://web.archive.org/web/20070916144913/http://wp.netscape.com/

newsref/pr/newsrelease67.html.

[3] Nicholas C. Zakas. Professional JavaScript for Web Developers. John Wiley and Sons,

2011. ISBN 9781118233092.

[4] Robert Husted and J. J. Kushlich. Server-side javascript: Developing integrated web

applications, 1999.

[5] CommonJS. Javascipt:not just for browsers anymore!, November 2012. URL http:

//www.commonjs.org/specs/.

[6] ECMAScript Standards Commitee. harmony:modules, December 2013. URL http:

//wiki.ecmascript.org/doku.php?id=harmony:modules.

[7] M. de Kunder. The size of the world wide web (the internet), June 2013. URL http:

//worldwidewebsize.com.

[8] Donald. Knuth. An empirical study of fortran programs. Software—Practice and Ex-

perience, pages 105–133, 1971.

[9] D. Crockford. Javascript: The world’s most misunderstood programming language,

June 2001. URL http://javascript.crockford.com/javascript.html.

[10] C. Severance. Javascript: Designing a language in 10 days. Computer, 45(2):7–8, 2012.

ISSN 0018-9162. doi: 10.1109/MC.2012.57.

47

https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
http://www.commonjs.org/specs/
http://www.commonjs.org/specs/
http://wiki.ecmascript.org/doku.php?id=harmony:modules
http://wiki.ecmascript.org/doku.php?id=harmony:modules
http://worldwidewebsize.com
http://worldwidewebsize.com
http://javascript.crockford.com/javascript.html

[11] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn. Jsmeter: Com-

paring the behavior of javascript benchmarks with real web applications. In Pro-

ceedings of the 2010 USENIX Conference on Web Application Development, We-

bApps’10, pages 3–3, Berkeley, CA, USA, 2010. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=1863166.1863169.

[12] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the

dynamic behavior of javascript programs. SIGPLAN Not., 45(6):1–12, June 2010.

ISSN 0362-1340. doi: 10.1145/1809028.1806598. URL http://doi.acm.org/10.1145/

1809028.1806598.

[13] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that men

do: A large-scale study of the use of eval in javascript applications. In Proceedings

of the 25th European Conference on Object-oriented Programming, ECOOP’11, pages

52–78, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-22654-0. URL http:

//dl.acm.org/citation.cfm?id=2032497.2032503.

[14] Changhee Park, Hongki Lee, and Sukyoung Ryu. All about the with statement in

javascript: Removing with statements in javascript applications. In Proceedings of the

9th Symposium on Dynamic Languages, DLS ’13, pages 73–84, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-2433-5. doi: 10.1145/2508168.2508173. URL http:

//doi.acm.org/10.1145/2508168.2508173.

[15] Chuan Yue and Haining Wang. Characterizing insecure javascript practices on the

web. In Proceedings of the 18th International Conference on World Wide Web, WWW

’09, pages 961–970, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-487-4. doi:

10.1145/1526709.1526838. URL http://doi.acm.org/10.1145/1526709.1526838.

[16] Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. Automated construction

of javascript benchmarks. In Proceedings of the 2011 ACM International Conference

48

http://dl.acm.org/citation.cfm?id=1863166.1863169
http://dl.acm.org/citation.cfm?id=1863166.1863169
http://doi.acm.org/10.1145/1809028.1806598
http://doi.acm.org/10.1145/1809028.1806598
http://dl.acm.org/citation.cfm?id=2032497.2032503
http://dl.acm.org/citation.cfm?id=2032497.2032503
http://doi.acm.org/10.1145/2508168.2508173
http://doi.acm.org/10.1145/2508168.2508173
http://doi.acm.org/10.1145/1526709.1526838

on Object Oriented Programming Systems Languages and Applications, OOPSLA ’11,

pages 677–694, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0940-0. doi: 10.

1145/2048066.2048119. URL http://doi.acm.org/10.1145/2048066.2048119.

[17] Winweb Crawlerv2.0, December 2008. URL http://www.winwebcrawler.com/index.

htm.

[18] Standard ECMA-262. The strict mode of ecmascript, November 2012. URL http:

//www.wirfs-brock.com/allen/draft-ES5.1/#sec-C.

[19] Fadi Meawad, Gregor Richards, Floréal Morandat, and Jan Vitek. Eval begone!: Semi-

automated removal of eval from javascript programs. In Proceedings of the ACM In-

ternational Conference on Object Oriented Programming Systems Languages and Ap-

plications, OOPSLA ’12, pages 607–620, New York, NY, USA, 2012. ACM. ISBN 978-

1-4503-1561-6. doi: 10.1145/2384616.2384660. URL http://doi.acm.org/10.1145/

2384616.2384660.

[20] Douglas Crockford. With statement considered harmful, April 2006. URL http://www.

yuiblog.com/blog/2006/04/11/with-statement-considered-harmful.

[21] J.H. Saltzer and M.D. Schroeder. The protection of information in computer systems.

Proceedings of the IEEE, 63(9):1278–1308, Sept 1975. ISSN 0018-9219. doi: 10.1109/

PROC.1975.9939.

[22] Standard ECMA-262. Section 12.1, November 2012. URL http://www.ecma262-5.

com/ELS5_HTML.htm#Section_12.1.

[23] ECMAScript Standards committee. Es6 specification draft, November 2012. URL

https://people.mozilla.org/~jorendorff/es6-draft.html.

49

http://doi.acm.org/10.1145/2048066.2048119
http://www.winwebcrawler.com/index.htm.
http://www.winwebcrawler.com/index.htm.
http://www.wirfs-brock.com/allen/draft-ES5.1/#sec-C
http://www.wirfs-brock.com/allen/draft-ES5.1/#sec-C
http://doi.acm.org/10.1145/2384616.2384660
http://doi.acm.org/10.1145/2384616.2384660
http://www.yuiblog.com/blog/2006/04/11/with-statement-considered-harmful
http://www.yuiblog.com/blog/2006/04/11/with-statement-considered-harmful
http://www.ecma262-5.com/ELS5_HTML.htm#Section_12.1
http://www.ecma262-5.com/ELS5_HTML.htm#Section_12.1
https://people.mozilla.org/~jorendorff/es6-draft.html

[24] Asger Feldthaus, Todd Millstein, Anders Møller, Max Schäfer, and Frank Tip. Tool-

supported refactoring for javascript. In Proceedings of the 2011 ACM International Con-

ference on Object Oriented Programming Systems Languages and Applications, OOP-

SLA ’11, pages 119–138, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0940-0. doi:

10.1145/2048066.2048078. URL http://doi.acm.org/10.1145/2048066.2048078.

[25] N. Zakas. Does javascript need classes?, November 2012. URL http://www.nczonline.

net/blog/2012/10/16/does-javascript-need-classes/.

[26] Jan Kasper Martinsen and Hakan Grahn. A methodology for evaluating javascript

execution behavior in interactive web applications. In Proceedings of the 2011 9th

IEEE/ACS International Conference on Computer Systems and Applications, AICCSA

’11, pages 241–248, Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-

1-4577-0475-8. doi: 10.1109/AICCSA.2011.6126611. URL http://dx.doi.org/10.

1109/AICCSA.2011.6126611.

[27] Salman Mirghasemi, John J. Barton, and Claude Petitpierre. Naming anonymous

javascript functions. In Proceedings of the ACM International Conference Compan-

ion on Object Oriented Programming Systems Languages and Applications Companion,

SPLASH ’11, pages 277–288, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-

0942-4. doi: 10.1145/2048147.2048222. URL http://doi.acm.org/10.1145/2048147.

2048222.

[28] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker, Wouter

Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. You are what you

include: Large-scale evaluation of remote javascript inclusions. In Proceedings of the

2012 ACM Conference on Computer and Communications Security, CCS ’12, pages

736–747, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1651-4. doi: 10.1145/

2382196.2382274. URL http://doi.acm.org/10.1145/2382196.2382274.

50

http://doi.acm.org/10.1145/2048066.2048078
http://www.nczonline.net/blog/2012/10/16/does-javascript-need-classes/
http://www.nczonline.net/blog/2012/10/16/does-javascript-need-classes/
http://dx.doi.org/10.1109/AICCSA.2011.6126611
http://dx.doi.org/10.1109/AICCSA.2011.6126611
http://doi.acm.org/10.1145/2048147.2048222
http://doi.acm.org/10.1145/2048147.2048222
http://doi.acm.org/10.1145/2382196.2382274

[29] John Resig. Javascript as a language, December 2013. URL http://ejohn.org/blog/

javascript-as-a-language/.

51

http://ejohn.org/blog/javascript-as-a-language/
http://ejohn.org/blog/javascript-as-a-language/

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	History of JavaScript
	The Problem
	Thesis statement
	Corpus
	Methodology
	Results

	Organization of Thesis

	Strict Mode
	Motivation
	Approach
	Results
	Discussion
	Why is strict mode Unpopular?
	Proper Usage of Strict mode
	Concatenation bug

	Impact

	With statement
	Motivation
	Approach
	Results
	Discussion
	Impact

	For..in
	Motivation
	Approach
	Results
	Discussion
	Impact

	Variable Scope
	Introduction
	Approach
	Results

	Discussion
	const keyword
	let
	Impact

	Function Inside Block
	Motivation
	Approach
	Results

	Discussion
	Impact

	Objects in JavaScript
	Motivation
	Approach
	Results

	Discussion
	Impact

	Related Work
	Introduction

	Conclusion and Future Work

