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Abstract

The motivation of this dissertation is a path planning task for an autonomous robot-

trailer system in geophysical surveys. The path planning task includes two main stages. In

the first stage, an efficient coverage path is required to obtain a fully sensor coverage of a site

to provide a complete map of anomalies. After the locations of anomalies are determined, in

the second stage, an efficient traversal path is required to visit these anomalies to mark or

obtain more data for further identification. The first stage can be regarded as the coverage

path planning problem and the second stage can be regarded as a special case of traveling

salesman problem. The robot-trailer system is modeled as a Dubins vehicle that can only

move forward and turn with upper bounded curvature. Motivated by this autonomous

inspection task, the author makes several contributions to the solution of coverage path

planning problem and the solution of traveling salesman problems.

In the coverage path planning, the author presents an optimization approach that takes

the vehicle’s characteristics into account to minimize the non-working travel of the vehicle.

Since turns are often costly for Dubins vehicle, minimizing the cost of turns usually produces

more working efficiency. Prior researches on coverage path planning tend to fall into two

complementary categories: (1) minimize the number of turns, by finding the optimal decom-

position of a complex field into subfields and the optimal driving directions; (2) minimize

the cost on a fixed number of turns, by finding the optimal visiting sequence of subfields

and the optimal traversal sequence of parallel tracks for each subfield. This dissertation

firstly presents a new algorithm to find the optimal decomposition that belongs to the first

category; then designs a novel traversal pattern of parallel field tracks that belongs to the

second category; finally extends the proposed traversal pattern to connect with the decom-

position approach in the first category, providing a complete coverage path planning method

ii



for the mobile robot. Experiments show that the proposed method can provide feasible solu-

tions and the total wasted distance can be greatly reduced, when compared against classical

boustrophedon path or recent state-of-the-art.

In the traveling salesman problems, given a set of waypoints and the turning constraint

on the vehicle, the addressed problem is to determine a visiting sequence of these waypoints,

and to assign a configuration of the vehicle at each waypoint. The objective function is

to minimize the total distances traveled by the vehicle. A genetic algorithm is designed to

find the shortest path and the performance is evaluated in numerical study. The proposed

genetic algorithm can perform very well in both low waypoint density and high waypoint

density situations. The author then takes the sensor scope into consideration to further

minimize the total travel distance. The problem can be regarded as a special case of the

Traveling Salesman Problem with Neighborhoods (TSPN). The concept of a neighborhood

is used to model the physical size of the sensor scope. The neighborhoods are represented

by disks in this dissertation. The author uses a two-step approach to solve the problem:

(1) design a new algorithm for the TSPN to search the optimal visiting sequence and entry

positions; (2) design a new algorithm for the Dubins vehicle to determine the heading at

each entry position. The theoretical and numerical studies show that the proposed approach

can perform very well for both disjoint and overlapped disks cases. The practical experiment

shows that the model is feasible for the robot-trailer application.

While the authors focus on a robot-trailer system in this dissertation, the proposed

algorithm could be applied to any Dubins vehicle that has similar mission requirements.

iii



Acknowledgments

The author would like to express thanks to the members of his committee Dr. John Y.

Hung, Dr. David M. Bevly, Dr. Thaddeus A. Roppel, Dr. Bogdan M. Wilamowski for their

valuable assistance and guidance. The author also thanks the university reader Dr. Andrew

J. Sinclair for his valuable suggestions on this dissertation.

Special thanks are given to Dr. John Y. Hung for the many hours of guidance and

encouragement he has provided during this research. His suggestions have aided in the

design of algorithms and experiments, and his advice has improved the visualization and

written presentation of this work.

Thanks are also expressed to the Siwei Wang, Aditya Singh, Michael L. Payne and

William J. Woodall for their collaboration and the wealth of background knowledge they

have provided. Particular thanks go to David W. Hodo for his extensive previous work for

the basis of this research and his invaluable support while performing the experiments.

This work would not have been possible without the funding and support provided by

the Environmental Technology Certification Program (ESTCP) through the Army Corp of

Engineers Huntsville Center.

Finally, the author dedicate this dissertation to his family and Zhongyuan Jia. None of

this would be possible without their tremendous love and enthusiasm.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization and Contributions of the Dissertation . . . . . . . . . . . . . . 3

2 Relevant Literatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Coverage Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Optimal Decomposition and Track Layout . . . . . . . . . . . . . . . 8

2.1.2 Optimal Traversal Sequence . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Some Unresolved Issues . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Traveling Salesman Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Dubins Traveling Salesman Problem . . . . . . . . . . . . . . . . . . 12

2.2.3 Traveling Salesman Problem with Neighborhoods . . . . . . . . . . . 13

2.2.4 Dubins Traveling Salesman Problem with Neighborhoods . . . . . . . 14

2.2.5 Some Unresolved Issues . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Coverage Path Planning: Optimal Decomposition and Track Layout . . . . . . . 16

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Coverage of Convex field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Coverage of Non-convex field . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



3.4.1 Convex Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2 Optimal Coverage for Each Convex Polygon . . . . . . . . . . . . . . 26

3.4.3 Sweep Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.4 Merging Adjacent Polygons . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.5 Time Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Coverage Path Planning: Optimal Visiting Sequence . . . . . . . . . . . . . . . 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Optimization on a single convex field . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.2 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.3 Cost Between Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.4 Depot Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.5 Transformation from GTSP into ATSP . . . . . . . . . . . . . . . . . 39

4.3.6 Complexity of the Proposed Algorithm . . . . . . . . . . . . . . . . . 41

4.4 Extension to multiple fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Four Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.1 Effect of Parity (Even or Odd Number of Tracks with One Depot) . . 42

4.5.2 Effect of Specified Start/End Position . . . . . . . . . . . . . . . . . . 45

4.5.3 Performance with Unspecified Start/End Position . . . . . . . . . . . 45

4.5.4 Performance on Multiple Decomposed Subfields . . . . . . . . . . . . 53

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Dubins Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



5.3 Algorithm Design for DTSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.2 Encoding and Initialization . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.3 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.4 Selection Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.5 Crossover Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.6 Mutation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Dubins Traveling Salesman Problem with Neighborhoods . . . . . . . . . . . . . 75

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.1 Find the Optimal ETSP Tour . . . . . . . . . . . . . . . . . . . . . . 76

6.3.2 Combination Operation . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.3 Alternating Iterative Algorithm for TSPN . . . . . . . . . . . . . . . 81

6.3.4 Compute the Headings for Entry Points to Form a DTSP . . . . . . . 83

6.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Numerical Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6 Practical Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.1 Review of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

vii



List of Figures

1.1 Unexploded ordnance. (a) Munitions Debris located during surface sweep and ex-

cavated anomalies. (b) An 81mm mortar. Image courtesy of ECC. Source: http:

//www.earthexplorer.com/2009-07/uxo_lands_restoration_and_release.asp. 3

1.2 (a) Geophysical survey operated by an UXO technician. Image courtesy of

David W. Hodo. Source: http://www.auburn.edu/\nobreakspace{}hododav/

projects/segway_project/DSCN3821.JPG. (b) An autonomous robot-trailer

system for geophysical survey. The towing robot is a modified SegwayR© RMP 440. 4

2.1 Remaining issues in finding optimal traversal sequence: (a) the non-working

travel distances from track C to track A are different between path 1 and path

2, (b) optimal traversal of endpoints may skip a track (3-4). . . . . . . . . . . . 11

3.1 Different track directions for convex fields. [1] . . . . . . . . . . . . . . . . . . . 17

3.2 Different track directions for non-convex fields. [2] . . . . . . . . . . . . . . . . . 18

3.3 (a) Trapezoidal decomposition. (b) The proposed convex decomposition (3.4.1). 22

3.4 Eight event types: OPEN (1), CLOSE (5), SPLIT (9), MERGE (12), FLOOR CONVEX

(2, 3, 4, 10), FLOOR CONCAVE (11), CEIL CONVEX (6, 7, 8, 14) and CEIL CONCAVE

(13, 15). The sweep line is horizontally swept from left to right. . . . . . . . . . 23

3.5 (a) Solution of Huang’s algorithm [1]. Arrows indicate the track directions. (b)

Solution of the proposed algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 29

viii



3.6 (a) Solution of Li’s algorithm [2]. Arrows indicate the track directions. (b)

Solution of the proposed algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Test field near Auburn University and solution of the proposed algorithm. . . . 31

4.1 Example Dubins Paths [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 GTSP node representation: (a) A given set of parallel field tracks (dashed lines)

(b) Each track has two directed path options (dashed lines, SP: starting point,

EP: ending point) (c) Corresponding GTSP node representation and two feasible

GTSP solutions (in gray and in black) . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Illustration of transformation from GTSP into ATSP: (a) A GTSP representation

with arc costs for the example in Fig. 4.2. Note that only an essential subset of

arcs is shown for clarity of illustration. (b) A zero-cost directed cycle is created for

each cluster by adding zero-cost arcs between consecutive nodes in each cluster.

(The dash arcs in blue have zero cost.) (c) The inter-cluster arcs are circularly

shifted so they emanate from the previous node in its cycle. (d) A large finite

cost β is added to each inter-cluster arc. Here ĉi,j = ci,j + β, where +∞ > β >
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Chapter 1

Introduction

This chapter introduces a real-world problem that has motivated this dissertation: the

inspection of unexploded ordnances (UXO) by an autonomous mobile robot. This challenge

has inspired the development of new path planning techniques that achieve sensor coverage

of complex 2D fields or a collection of waypoints. The problem statement in Section 1.1 is

followed by a statement of contributions of this dissertation in Section 1.2.

1.1 Motivation and Problem Statement

Detection and clearing sites of unexploded ordnances (UXO) are generally labor-intensive,

slow and expensive. In a report [5] of Department of Defense (DoD), it is estimated that in

excess of 10 million acres of land on around 1400 sites of DoD may be affected by UXO. The

cost would be tens of billions of dollars to detect and clear all of the possibly affected land.

And the DoD are currently spending more than 200 million dollars per year on the UXO

problems.

To map, locate, identify and select anomalies for sampling and removal within areas

containing UXO, the process is typically done by conducting what is known as a geophysical

survey. A geophysical survey provides a complete map of any detectable geophysical anoma-

lies on a site. Different geophysical mapping sensors are used to detect metal or ferrous

objects on or below the ground. Once these anomalies are located, they are either excavated

by an explosives disposal team or more data is taken at their locations to attempt to deter-

mine if the anomaly is a piece of ordnance before excavating them. [6] Traditional techniques

for geophysical surveys involve the use of hand-held detectors operated by UXO technicians

who must walk across a survey area, as illustrated in Fig. 1.2a. It is not only time consuming,

1



but also exposes the operators to risk of serous injury. The use of an autonomous unmanned

vehicle can not only reduce the risk to UXO technicians by providing the precise location of

suspicious objects, but also relieve the operators of the tedious search process in large areas.

Auburn University has developed an autonomous tow vehicle, as illustrated in Fig. 1.2b.

The goal of the project is to increase safety, productivity, and accuracy of the geophysical

survey process by using autonomous vehicle technologies. The platform is capable of towing

an array of industry standard geophysical mapping sensors in either tele-operated or semi-

autonomous modes. It has been used to collect geophysical data with Geonics EM61-MK2

time domain metal detectors and Geometrics G858 magnetometers, but is capable of towing

most any sensor package. The towing robot is a modified SegwayR© Robotic Mobility Plat-

form (RMP) 440. Position information is provided to centimeter accuracy by a commercial

integrated differential Global Positioning System (GPS) / Inertial Navigation System (INS)

solution, the NovatelR© SPAN system with the high precision HoneywellR© HG1700 AG58

gyro. The location of geophysical mapping sensor is determined by geometric calculations

based on tow bar hitch angles and the fixed tow bar lengths and alternately by a second

GPS placed on the trailer. [6]

The central focus of this dissertation is to plan an efficient inspection path for geophysical

surveys. The path planning task includes two main stages. In the first stage, an efficient

coverage path is required to obtain a fully sensor coverage of a site to provide a complete

map of UXO. After the locations of anomalies are determined, in the second stage, an

efficient traversal path is required to visit these anomalies to mark or obtain more data for

further identification. It is assumed a priori knowledge of the environment to be surveyed.

Motivated by the autonomous UXO inspection task, the author contributes several new

algorithms to the solution of coverage path planning problem and the solution of traveling

salesman problems in this dissertation.
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(a)

(b)

Figure 1.1: Unexploded ordnance. (a) Munitions Debris located during surface sweep and
excavated anomalies. (b) An 81mm mortar. Image courtesy of ECC. Source: http://www.
earthexplorer.com/2009-07/uxo_lands_restoration_and_release.asp.

1.2 Organization and Contributions of the Dissertation

The rest of this dissertation is organized as follows: In Chapter 2, the algorithms and ap-

plications of coverage path planning problem and traveling salesman problems are reviewed,
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(a)

(b)

Figure 1.2: (a) Geophysical survey operated by an UXO technician. Image courtesy of
David W. Hodo. Source: http://www.auburn.edu/~hododav/projects/segway_project/
DSCN3821.JPG. (b) An autonomous robot-trailer system for geophysical survey. The towing
robot is a modified SegwayR© RMP 440.
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as well as some unresolved issues of these two path planning problems. The contributions of

coverage path planning are mainly discussed in Chapter 3 and Chapter 4. The contributions

of traveling salesman problems are mainly discussed in Chapter 5 and Chapter 6.

In Chapter 3, the author presents an optimization approach to minimize the number

of turns of autonomous vehicles in coverage path planning. For complex polygonal fields,

the problem is reduced to finding the optimal decomposition of the original field into simple

subfields. The optimization criterion is minimization of the sum of widths of these decom-

posed subfields. A new algorithm is designed based on a multiple sweep line decomposition.

The time complexity of the proposed algorithm is O(n2 log n). Experiments show that the

proposed algorithm can provide nearly optimal solutions very efficiently when compared

against recent state-of-the-art. The proposed algorithm can be applied for both convex and

non-convex fields. The work on this topic is also drafted in a paper for a conference.

In Chapter 4, the author presents an optimization approach that takes the vehicle’s

characteristics into account to minimize the non-working travel of the robots in coverage

path planning. The aim is to minimize the cost on a fixed number of turns, by finding

the optimal traversal sequence of parallel tracks for the surveyed field. The author firstly

presents a novel traversal pattern of parallel tracks for a single convex field, then extends the

proposed traversal pattern to connect with decomposition algorithms, providing a complete

coverage path planning method for non-convex fields. Experiments show that the proposed

method can provide feasible solutions and the total wasted distance can be greatly reduced

for both single convex field and multiple decomposed fields, when compared against classical

boustrophedon path or recent state-of-the-art. The work on this topic is also drafted in a

paper for a journal.

In Chapter 5, the author studies the traveling salesman problems. Taken the vehicle’s

characteristics into account, the problem is modeled as a Traveling Salesman Problem for

Dubins vehicles. A genetic algorithm is designed to find the shortest path and the perfor-

mance is evaluated in numerical study. The experiments show that the proposed algorithm
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can perform better than the well-known Alternating Algorithm and Random Headings Al-

gorithm, in both low waypoint density and high waypoint density situations. The work on

this topic is also documented in [7].

In Chapter 6, the author takes the physical size of the actual sensors into considera-

tion when planning a path for the waypoints visiting problem. The trailer equipped with

geophysical mapping sensors traverses among a collection of waypoint neighborhoods. The

concept of a neighborhood is used to model the size of sensor scope. The problem is mod-

eled as a Dubins Traveling Salesman Problem with Neighborhoods (DTSPN), where the

neighborhoods are represented by disks. The authors firstly design a new algorithm for the

Traveling Salesman Problem with Neighborhoods (TSPN), then extend this algorithm to

find the shortest path for the DTSPN. The experiments show that the proposed algorithm

can perform very well for both disjoint and overlapped disks cases. The work on this topic

is also documented in [8] and drafted in a paper for a journal.

In Chapter 7, the author concludes the key results and discusses promising areas for

future work.
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Chapter 2

Relevant Literatures

Path planning is one of the fundamental problems in robotics. The most general case

involves a robot finding a trajectory from one state to another automatically, while avoiding

collisions with obstacles. Approaches for path planning include exact roadmap methods, such

as cell decompositions [9,10], visibility graphs [11–13] and Voronoi diagrams [14,15]; sampling

based methods [16], such as probabilistic roadmap method [17] and rapidly exploring random

tree [18]. Methods such as evolutionary algorithms [19–22], neural networks [23], potential

field methods [24] and optimal control theory [25] have also been applied for industrial

applications in recent literatures.

2.1 Coverage Path Planning

Coverage path planning is a special type of path planning, which requires the robot to

determine a path that passes all points of an area. It is a common challenge in many industrial

applications, and extensively studied in recent years. Examples include demining robots [3],

autonomous lawn mowers [26], indoor service robots [27–31], exploration robots [32–35],

autonomous underwater vehicles [36] and automated harvesters [37]. Several solutions to the

coverage path planning have been reviewed and categorized in surveys [38,39]. The surveys

show that most existing algorithms adopt cellular decomposition of the given field to achieve

the provable guarantee of complete coverage. A cellular decomposition finds efficient ways

to subdivide the given field into cells that can be easily traversed by a coverage path.

Based on the main method they use, cellular decompositions can be subdivided into

three types: approximate, semi-approximate and exact. Approximate cellular decomposi-

tion approximates the target field by using cells of same size and shape. Semi-approximate
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decomposition uses cells with fixed width to approximate the target field, but the top and bot-

tom of cells can have any shape. Exact cellular decomposition uses a set of non-intersecting

cells without size and shape constraints, and the union of cells exactly fills the target field.

In this dissertation, only exact cellular decomposition is considered. The exact cellular

decomposition algorithms usually include three procedures: (1) decomposition of the complex

coverage field into subfields with parallel tracks; (2) selection of a traversal sequence of those

subfields; and (3) generation of a boustrophedon path (straight parallel paths with alternate

directions) that covers each subfield individually.

One popular exact cellular decomposition technique is the trapezoidal decomposition

[40], in which the free space is decomposed into trapezoidal cells. Since each cell is a trape-

zoid, coverage in each cell can be easily achieved with the boustrophedon path. Coverage of

the field is achieved by visiting each cell in the adjacency graph. The shortcoming of this

method is that it requires too many redundant turns to guarantee complete coverage. Since

turns are often costly and considered as non-working time, minimizing the cost of turns

usually produces higher working efficiency. Two main categories of solution strategies are

recently studied to reduce the cost of turns, which can be seen as improvements for procedure

(1) and procedure (3) separately.

2.1.1 Optimal Decomposition and Track Layout

The first category of solution strategy is to find the optimal decomposition of a given

field and the optimal layout of parallel tracks in each subfield.

Choset and Pignon [41] develop a boustrophedon decomposition to reduce the redundant

turns. In this method, a line segment, termed a slice, is swept through the environment.

Whenever there is a change in connectivity of the slice, a new cell is formed. When the

connectivity increases, two new cells are spawned. Conversely, when connectivity decreases,

two cells are merged into one cell. The tracks in each cell are parallel to the slice.
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Huang [1] introduces a decomposition algorithm to minimize the total number of turns

required to cover a field. The algorithm adopts multiple line sweeps to divide the coverage

field into cells, then combines cells into larger subfields by dynamic programming, and finally

assigns each subfield a sweep direction according to the minimum sum of altitudes. The

parallel tracks in each subfield are perpendicular to the sweep direction of that subfield.

Oksanen and Visala [37] propose an algorithm that incrementally decomposes the field

into subfields using trapezoidal decomposition, merges small subfields into larger ones, then

searches for the merged subfield with the best cost and removes it from the original field.

In searching for the subfield with best cost, the layout of parallel tracks is determined by a

heuristic approach. The process is repeated for the remaining field until the whole field is

computed.

Fang and Anstee [42] propose an iterative decomposition scheme based on the gen-

eralized Voronoi diagram [43]. They firstly compute an approximate generalized Voronoi

diagram of the given field, then apply boustrophedon decomposition along the longest line

segment of the approximate generalized Voronoi diagram, select the subfields that contain

the longest line segment, and remove these subfields with well planned path. The algorithm

is repeated for the remaining field until the whole field is fully covered.

Jin and Tang [44] adopt a divide-and-conquer strategy to the decomposition. The

algorithm firstly searches the optimal layout of parallel tracks without any decomposition,

then finds “all possible ways” to splitting the field into two and for each possible way sees if

the field would be more efficient as two subfields instead of one. The algorithm is implemented

recursively on each subfield until there is no valid decomposition that achieves a better

solution.

Li et al. [2] propose a decomposition algorithm to minimize the number of turns based on

a greedy recursive method. The process recursively decomposes the field into two subfields

until no concave region remains. In each decomposition step, the criterion of optimization is

9



the minimum width sum of two subfields. The final tracks in each subfield are perpendicular

to the width of that subfield. The algorithm is proven to have polynomial time complexity.

2.1.2 Optimal Traversal Sequence

The second category of solution strategy is toward computing optimal traversal sequence

for the parallel field tracks, instead of using boustrophedon path.

Rankin et al. [45] propose a set pattern to determine the traversal sequence of field tracks,

by taking into account the minimum turning radius of the vehicle to skip the adjacent tracks.

Hodo et al. [3] extend this pattern in the application of Dubins vehicle and also consider

avoidance of known obstacles on the straight tracks. Bochtis and Vougioukas [46] propose

a method to model this problem as a Traveling Salesman Problem (TSP). They treat each

field track as a node in the TSP. The travel cost between tracks is related to the degree of a

maneuver. After the cost matrix is constructed, the problem can be solved by the existing

TSP solvers. Bochtis et al. [4] further extend this problem to cases with capacity constraint,

and model it as Vehicle Routing Problem (VRP). The VRP is a generalization of the TSP,

and reduces to a TSP when the vehicle number is one and capacity is infinite. In their work,

each field track is represented by two nodes, one for each endpoint of that track. Each node

corresponds to a “customer” in the VRP. In order to ensure the track be covered, the cost

between nodes in the same track is set to be zero and the connection between two nodes is

avoided if they represent endpoints of different tracks at opposite side. After the cost matrix

is constructed, the problem can be solved by existing VRP solvers.

2.1.3 Some Unresolved Issues

Upon deeper investigation, key issues still remain in finding the optimal traversal se-

quence. In [46], the travel costs from different endpoints of one track to the corresponding

endpoints of the other track are assumed to be the same. But in many applications, the

travel cost from one track to another may vary, as illustrated in Fig. 2.1a. On the other
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Figure 2.1: Remaining issues in finding optimal traversal sequence: (a) the non-working
travel distances from track C to track A are different between path 1 and path 2, (b) optimal
traversal of endpoints may skip a track (3-4).

hand, when dealing with some applications that require the vehicle to return to the starting

point after traversal, the optimal solution may not be always feasible by using the method of

representing the tracks with two endpoints, and traversing all endpoints to ensure covering

each track. For an instance with odd number of tracks, the optimal path to traverse all end-

points may skip tracks and fail to cover the field entirely, as illustrated in Fig. 2.1b. Among

the many methods of finding the optimal decomposition and track layout, the default path

to traverse tracks in each subfield is the boustrophedon path, which can be improved by

other kind of motions.

2.2 Traveling Salesman Problems

2.2.1 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is one of the best known and most studied

optimization problems. [47] In TSP, given a set of points, the task is to determine the

shortest tour to visit each point only once and return to the starting point. In most cases,
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the distance between two points in the TSP network is the same in both directions. When

the distance between two points are not the same from different directions, the problem is

called Asymmetric Traveling Salesman Problem (ATSP). If the distance between any two

points is determined by Euclidean distance, it is called the Euclidean Traveling Salesman

Problem (ETSP). [48] ETSP has been applied to many robot path planning problems.

2.2.2 Dubins Traveling Salesman Problem

However, when working with a car-like robot, researchers have to consider kinematic

constraints such as minimum turning radius, i.e. the ETSP result may not provide an opti-

mal solution. Typically, the car-like robot that can only move forward at a constant speed,

with a minimum turning radius can be modeled as a Dubins vehicle [49]. The traveling sales-

man problem for the Dubins vehicles is usually called Dubins Traveling Salesman Problem

(DTSP). Previous researches about DTSP may belong to two different categories, based on

the main methods they used.

Category (1): Use existing TSP methods or other ordering methods to calculate the

optimal visiting order of the given waypoints, and then design different algorithms to deter-

mine the heading of each waypoint based on that visiting order. Savla et al. [50] provide

an Alternating Algorithm (AA) that connects the optimal ordered waypoints by straight

lines, after which the odd-numbered edges along with respective headings are retained; the

even-numbered edges are replaced by Dubins paths. Other researchers such as Ma and Cas-

tanon [51] firstly extend the two points Dubins path to three successive points Dubins path,

then connect the ordered waypoints by the three points Dubins path, and use receding hori-

zon theory to optimize the result. Tang et al. [52] design another algorithm by modifying

the gradient descent method to determine the headings and offer some intuitive suggestions

to improve the result. Medeiros and Urrutia [53] adopt an Angular-metric TSP [54] method

to minimize the sum of direction changes in determining the visiting order, then design an

algorithm based on heading discretizaiton and Dijkstra’s Algorithm [55] to determine the
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heading at each waypoint. Macharet et al. [56] also adopt the Angular-metric TSP method

to determine the visiting order, then propose an improvement for the Alternating Algorithm

to obtain the headings, finally apply a Greedy Randomized Adaptive Search Procedure

(GRASP) [57] to further optimize the result.

Category (2): Determine heading for each waypoint first, and then transform DTSP

into ATSP; finally use existing ATSP methods to solve the problem. Le Ny et al. [58]

design a Randomized Headings Algorithm (RHA) in which they first assign each waypoint

a random heading, and then calculate the distance between each pair of waypoints with

Dubins path. In the following step, they use these distances to transform the DTSP to an

ATSP. An improved version of this algorithm based on heading discretization [59] assigns

a fixed number of discrete headings for each waypoint, and then treats the problem as a

Generalized Traveling Salesman Problem (GTSP), finally transforms the GTSP into ATSP.

2.2.3 Traveling Salesman Problem with Neighborhoods

A generalization of ETSP is the Traveling Salesman Problem with Neighborhoods

(TSPN). In TSPN, given a collection of n regions in the plane, called neighborhoods, the

task is to find a shortest tour that visits all neighborhoods. The researchers need to deter-

mine not only the visiting sequence of the neighborhoods, but also the entry points. Many

researchers have addressed TSPN with various neighborhoods [60] [61]. Specially, for the

case that the neighborhoods are represented by disks, Dumitrescu and Mitchell [62] pro-

vide a Polynomial Time Approximation Scheme (PTAS) for disjoint unit disks. de Berg et

al. [63] provide a constant factor algorithm for disjoint convex fat neighborhoods of varying

size, where the approximation factor is 12, 000α3 (α = 4 for disks). Elbassioni et al. [64]

improve this approximation factor to (9.1α+ 1) by an approximation algorithm for disjoint

α fat objects with possibly varying size (α = 4 for disks). Later, Yuan et al. [65] provide an

approach that firstly obtains the visiting sequence of the disjoint disks by an external TSP

algorithm, then adopts Evolutionary Algorithm to search the entry points. Recently, He et
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al. [66] propose a Combine-Skip-Substitute (CSS) scheme for both disjoint and overlapped

disks cases.

In the case when the neighborhoods are disconnected vertex sets, then the problem is

called Generalized Traveling Salesman Problem (GTSP), also known as the Set TSP, Group

TSP, One-of-a-Set TSP. The tour is required to visit at least one point from each set. The

GTSP can be solved by many algorithms. Among them include exact algorithms [67, 68],

heuristic algorithms [69, 70], and methods of transforming GTSP into ATSP [71–73].

2.2.4 Dubins Traveling Salesman Problem with Neighborhoods

The Dubins Traveling Salesman Problem with Neighborhoods (DTSPN) can be seen as

a combination of the well known TSPN and DTSP. When the turning radius is zero, DTSPN

reduces into the TSPN case; when the neighborhood size is zero, then the DTSPN reduces

into the DTSP case. Since both TSPN and DTSP are NP-hard problems, the DTSPN is

also NP-hard.

Obermeyer [74] firstly addresses the DTSPN by using a genetic algorithm, then in [75]

designs a sampling based algorithm to transform the DTSPN into a Generalized Travel-

ing Salesman Problem (GTSP) and then into an Asymmetric Traveling Salesman Problem

(ATSP) via the Noon and Bean transformation [71]. Isaacs et al. [76] further improve the

sampling based algorithm by adopting a more general version of Noon and Bean transfor-

mation [71].

2.2.5 Some Unresolved Issues

Although each algorithm has its advantages, there are also disadvantages revealed by

deeper investigation. For the TSPN, the previous approximation algorithms mostly deal

with the disjoint disks case and have large approximation factors. Although the CSS scheme

can perform very well in both disjoint and overlapped disks cases, which is the best result so

far, there is still room for improvement in the disjoint disks case. For the DTSP, the Category
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(1) algorithms can perform very well when waypoints are spaced far apart, but may perform

worse when the distances between waypoints are very small relative to the turning radius.

Category (2) algorithms can perform well when the distances between waypoints are small

relative to the turning radius, but need much more computing effort. For the DTSPN, the

sampling based algorithms may obtain better solutions when the number of samples are very

large. However, it significantly increases the total number of nodes that need to be solved for

the ATSP. For large scale instances, the ATSP solver may perform worse and the computing

time will increase significantly, as the total number of nodes increases.
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Chapter 3

Coverage Path Planning: Optimal Decomposition and Track Layout

3.1 Introduction

Coverage path planning determines a path that guides a robot to pass every part of a

workspace completely and efficiently. Since turns are often costly for autonomous vehicles,

minimizing the cost of turns usually produces more working efficiency. In this chapter, the

authors propose a polynomial time algorithm to minimize the number of turns in coverage

path planning, and the time complexity is greatly improved comparing to the existing algo-

rithms. The remainder of this chapter is organized as follows. In Section 3.2, the problem

of coverage path planning is transformed into width calculation of the coverage field and

the problem statement is formally introduced. A linear time algorithm for convex fields is

described in Section 3.3. A polynomial time algorithm for non-convex fields is designed in

Section 3.4. In Section 3.5, the proposed algorithm is compared with existing algorithms

and a practical experiment with real field data is also conducted. Section 3.6 summarizes

the key results in this chapter.

3.2 Problem Statement

The goal of this dissertation is to find a path to completely cover a field by a vehicle

and the travel distance of the vehicle must be minimized. Since boustrophedon method is

the most common method to cover a simple field, this chapter will adopt parallel tracks that

can be used by boustrophedon method (or other similar methods) to cover the field. Based

on this assumption, the travel distance of the vehicle consists of the distance along tracks

and the distance to turn at the end of tracks.
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Figure 3.1: Different track directions for convex fields. [1]

Before giving further problem statement, the authors firstly introduce the concept of

altitude and width of convex polygons as follows:

Definition 3.1. Given a convex polygons P , a line of support L is a line intersecting P and

such that the interior of P lies to one side of L.

Definition 3.2. The altitude A of a convex polygon P is the shortest distance between a

pair of parallel lines of support (L1, L2).

Definition 3.3. The width W of a convex polygon is the minimum altitude of that polygon.

If the field is convex and does not contain any obstacles, the coverage planning with

parallel tracks is quite simple. The main task is to find the optimal direction of the parallel

tracks. By deeper analysis, the problem can be further reduced. As illustrated in Fig. 3.1,

covering the field in different directions can produce nearly the same distance along the

tracks, but can produce a large difference in number of turns, which means a large difference

in distance on turns. Therefore, the total travel distance mainly depends on the number of

turns, i.e. the total distance will decrease as the number of turns decreasing. Furthermore,

the number of turns in a given track direction is also proportional to the altitude of the

convex polygonal field in that direction. Therefore, the problem can be reduced to search

the minimum altitude (width) of the field and its corresponding direction. The parallel

tracks can be generated along the vertical direction of width.

If the field is non-convex (concave or with obstacles), finding the optimal solution is

hard. One possible strategy is to decompose the complex field into convex subfields. Each
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Figure 3.2: Different track directions for non-convex fields. [2]

subfield can be covered by parallel tracks in a different direction. Fig. 3.2 shows an example

that assigns each subfield a different track direction results in a better solution than applying

only one track direction to the whole fields. Furthermore, the minimum number of turns in

each subfield can be determined by the width of the subfield. To obtain an optimal solution

for the non-convex field, the total sum of widths must be minimized.

The coverage problem becomes to find a convex decomposition of the non-convex field

that has the minimum sum of widths. The authors refer such a decomposition as the Min-

imum Sum of Widths (MSW) Decomposition. Let P be the polygon that represents the

non-convex field with n vertices. In a convex decomposition D, the polygon P is decom-

posed into m (m ≤ n) convex polygons P1,P2, . . . ,Pm, whose widths are W1,W2, . . . ,Wm

respectively. Let S(D) be the sum of width of D. Then the problem can be stated more

formally:

Problem 3.4 (MSW Decomposition).

minimize
D

S(D) =
m∑

i=1

Wi

subject to Pi ∈ convex polygon
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Note that the optimal coverage of a convex field can be seen as a degenerate of the

above problem statement where m = 1.

3.3 Coverage of Convex field

As described in the previous section, the optimal coverage of a convex field can be

determined by the width of that polygon. However, a convex polygon admits parallel lines of

support in any direction, and for each direction the altitude is usually different. Fortunately,

not all directions need to be examined to determine the width. Suppose a convex polygon

is given, along with two parallel lines of support. If neither of these lines coincides with an

edge, it is always possible to rotate them to decrease the distance between them. Therefore,

the width of polygon can be determined by examining only the edge orientations. A formal

proof of this result can be found in [1].

Based on this result, a linear time complexity algorithm is given in [77]. The algorithm

adopts rotating calipers, which is a method used to construct efficient algorithms for a

number of computational geometry problems. The method is analogous to a vernier caliper

that rotates around the outside of a convex polygon. Every time one blade of the caliper lies

flat against an edge of the polygon, it forms an antipodal pair with the point or edge touching

the opposite blade. The complete rotation of the caliper around the polygon detects all

antipodal pairs and can be carried out in O(n) time. The process is described in Algorithm 1.

The unit of angle is radian.

After the width is calculated, the minimum number of turns Nturn can be determined

by

Nturn = ⌈W
d
⌉ (3.1)

where W is width of the given convex polygon, d is the space between two adjacent tracks

and ceiling symbol ⌈∗⌉ is the smallest integer not less than ∗. [2] Then the Nturn parallel

tracks can be generated in the direction Angle that is returned by the algorithm.
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Algorithm 1 Width of a Convex Polygon

Input: Vertex list of the given convex polygon in counterclockwise order
Output: Width of the polygon and direction of the corresponding parallel lines of support
1: Delete middle vertices of any collinear sequence of three vertices
2: Va ←Vertex with minimum y-coordinate
3: Vb ←Vertex with maximum y-coordinate
4: RotatedAngle← 0
5: Angle← 0
6: Width←∞
7: Calipera ←Unit vector along positive x-axis
8: Caliperb ←Unit vector along negative x-axis
9: while RotatedAngle < π do
10: Ea ←Edge from Va to its next adjacent vertex
11: Eb ←Edge from Vb to its next adjacent vertex
12: Aa ←Angle between Calipera and Ea

13: Ab ←Angle between Caliperb and Eb

14: Altitude← 0
15: if Aa < Ab then
16: Rotate Calipera by Aa

17: Rotate Caliperb by Aa

18: Va ←The next adjacent vertex of Va

19: Altitude←Distance from vertexb to Calipera
20: RotatedAngle← RotatedAngle + Aa

21: else
22: Rotate Calipera by Ab

23: Rotate Caliperb by Ab

24: Vb ←The next adjacent vertex of vertexb

25: Altitude←Distance from vertexa to caliperb
26: RotatedAngle← RotatedAngle + Ab

27: end if
28: if Altitude < Width then
29: Width← Altitude

30: Angle← RotatedAngle

31: end if
32: end while
33: return Width and Angle

3.4 Coverage of Non-convex field

To obtain the coverage of a non-convex field, the author uses a strategy based on a

multiple sweep line decomposition. Firstly a new convex decomposition method is designed

based on the sweep line method in one sweeping direction (3.4.1) and the optimal coverage for
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each convex subfield is searched (3.4.2). Then, for each edge orientation (including edges of

the polygon and edges of the obstacle), the authors apply the designed convex decomposition

and obtain the sum of widths. After that, the convex decomposition with minimum sum of

widths is selected (3.4.3). To avoid unnecessary tracks to cover the subfields, the resulting

decomposition are finally refined by merging adjacent similar convex polygons (3.4.4).

3.4.1 Convex Decomposition

The proposed convex decomposition method is an enhancement of the trapezoidal de-

composition [40] and is designed to reduce unnecessary cells. As illustrated in Fig. 3.3a,

the trapezoidal decomposition comprises cells that are shaped like trapezoids or triangles

(which can be seen as degenerate trapezoids). To improve time complexity, trapezoidal de-

composition adopts a sweep line method and treats each vertex as an event. To form the

decomposition, a vertical line is swept from left to right through the polygon field. When

an event is encountered, it extends rays upward and downward through the free space of the

polygon field until an edge that lies immediately above and below the event is hit. Many

events will have either just an upward ray or a downward ray. Trapezoidal cells are formed

at the event depending on the event type. Once the sweep line finishes the rightmost event,

a trapezoidal decomposition results. However, the drawback of trapezoidal decomposition

is that it produces too many redundant convex cells. Some adjacent small convex cells can

be merged into a larger convex cells in the sweep line process, as shown in Fig. 3.3b. What

follows is an improvement of trapezoidal decomposition that reduces the redundant convex

cells.

Events

The following definitions of events are based on the assumption that vertices of the

polygon are listed in counter-clockwise order and vertices of holes (obstacles) are listed in

clockwise order. Then the interior of the polygon is always to the left of each edge when
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(a) (b)

Figure 3.3: (a) Trapezoidal decomposition. (b) The proposed convex decomposition (3.4.1).

following the order. The sweep line is perpendicular to the x-axis and horizontally swept

from left to right.

In trapezoidal decomposition, all vertices are classified into five types of events: OPEN,

CLOSE, SPLIT, MERGE and INFLECTION. These types of events are defined as follows:

Definition 3.5. A vertex v is an OPEN event if its two neighbor vertices lie on the right

side of the sweep line and the interior angle at v is less than π; if the interior angle is greater

than π, then v is a SPLIT event. A vertex is a CLOSE event if its two neighbor vertices lie

on the left side of the sweep line and the interior angle at v is less than π; if the interior

angle is greater than π, then v is a MERGE event. A vertex is an INFLECTION event if

its two neighbor vertices lie on opposite sides of the sweep line.

In the proposed convex decomposition, the INFLECTION event is replaced with four

more types of events: FLOOR CONVEX, FLOOR CONCAVE, CEIL CONVEX, CEIL

CONCAVE which are defined as follows:

Definition 3.6. A vertex v is a FLOOR CONVEX event if its previous neighbor vertex vprev

lies on left side of the sweep line while its next neighbor vnext lies on right side of the sweep

line, and the interior angle at v is less than π; if the interior angle is greater than π, then v

is a FLOOR CONCAVE event. On the contrary, a vertex v is a CEIL CONVEX event if its

previous neighbor vertex vprev lies on right side of the sweep line while its next neighbor vnext
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Figure 3.4: Eight event types: OPEN (1), CLOSE (5), SPLIT (9), MERGE (12),
FLOOR CONVEX (2, 3, 4, 10), FLOOR CONCAVE (11), CEIL CONVEX (6, 7, 8, 14) and
CEIL CONCAVE (13, 15). The sweep line is horizontally swept from left to right.

lies on left side of the sweep line, and the interior angle at v is less than π; if the interior

angle is greater than π, then v is a CEIL CONCAVE event.

Examples of eight event types are illustrated in Fig. 3.4.

Sweep Line Algorithm

Next, the sweep line algorithm is applied to form the decomposition. The events are

firstly sorted based on their x-coordinates in an ascending order. During the sweeping

process, a balanced binary search tree L is used to maintain the “current” edges that the

sweep line intersects. A cell in the algorithm can be represented by two lists: ceiling list and

floor list, both of which bound the cell. The sweep line algorithm starts from left to right,

and visits each event in order. When the sweep line encounters an event, different operations

are made depending on the type of event:

OPEN event: Two incident edges of this event are inserted into L. A new cell is opened

and the vertex of this event is added to floor list of the cell.
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SPLIT event: The edges immediately above and below this event are searched in L.

Then the intersection of the sweep line and the above edge, and the intersection of the sweep

line and the below edge are determined. Find the cell to which this event belongs. Add

the above and below intersection points into ceiling list and floor list of the cell respectively.

Now the current cell is considered to be closed. After that, two new cells are opened. Add

vertex of this event into floor list of the top new cell and ceiling list of the bottom new cell

respectively. Add the above intersection point into ceiling list of the top new cell and the

below intersection point into floor list of the bottom new cell. After the cell operations, two

incident edges of this event are inserted into L.

FLOOR CONVEX event: Find the cell to which this event belongs. Add the vertex of

this event into floor list of the current cell. Delete the left incident edge of this event from

L and insert the right incident edge of this event into L.

CEIL CONVEX event: Find the cell to which this event belongs. Add the vertex of

this event into ceiling list of the current cell. Delete the left incident edge of this event from

L and insert the right incident edge of this event into L.

FLOOR CONCAVE event: Delete the left incident edge of this event from L. Search

the edge that is immediately above this event in L, and determine the intersection point of

the sweep line and the above edge. Then add the right incident edge of this event into L.

Find the cell to which this event belongs. Add the vertex of this event into floor list of the

current cell and the intersection point into ceiling list of the current cell respectively. Now

the current cell is considered to be closed. After that, a new cell is opened. Add the vertex

of this event into floor list of the new cell and the intersection point into ceiling list of the

new cell respectively.

CEIL CONCAVE event: Delete the left incident edge of this event from L. Search the

edge that is immediately below this event in L, and determine the intersection point of the

sweep line and the below edge. Then add the right incident edge of this event into L. Find

the cell to which this event belongs. Add the vertex of this event into ceiling list of the
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current cell and the intersection point into floor list of the current cell respectively. Now the

current cell is considered to be closed. After that, a new cell is opened. Add the vertex of

this event into ceiling list of the new cell and the intersection point into floor list of the new

cell respectively.

MERGE event: Two incident edges of this event are deleted from L. The edges imme-

diately above and below this event are searched in L. Then the intersection of the sweep

line and the above edge, and the intersection of the sweep line and the below edge are deter-

mined. Find the two cells to which this event belongs. Add the vertex of this event into floor

list of the top cell and ceiling list of the bottom cell respectively. Add the above intersection

point into ceiling list of the top cell and the below intersection point into floor list of the

bottom cell respectively. Now the two cells are considered to be closed. After that, a new

cell is opened. Add the above intersection point into ceiling list of the new cell and the below

intersection point into floor list of the new cell respectively.

CLOSE event: Two incident edges of this event are deleted from L. Find the cell to

which this event belongs. The vertex of this event is added to floor list of the current cell

and the current cell is considered to be closed.

After all events are visited, the polygonal field is decomposed into a list of convex

cells. The adjacency graph of these cells can also be determined in the process. The main

difference between the proposed convex decomposition and trapezoidal decomposition is

at the FLOOR CONVEX and CEIL CONVEX events. At these two events, the proposed

decomposition doesn’t open or close a cell, but rather just updates the current cell. Note that

the above description of sweep line algorithm assumes that the x-coordinates of all events

are distinct. For general cases, the assumption can be achieved by rotating the coordinate

system in a sufficiently small amount.

25



3.4.2 Optimal Coverage for Each Convex Polygon

In one sweeping direction, the field is decomposed into convex sub-polygons by applying

the proposed convex decomposition. The width of each sub-polygon can then be determined

independently by applying the method described in Section 3.3. Also, the optimal orientation

of parallel tracks in each sub-polygon can be determined independently. Then the sum of

width of these polygons can be calculated.

3.4.3 Sweep Direction

Until this section, the convex decomposition is done in a particular sweeping direction.

However, the best sweep direction is not known and has to be searched. In [1], the author

shows that the best sweep direction is perpendicular to one of the boundary or obstacle

edges, if all tracks are perpendicular to the sweep direction. In this dissertation, the author

also assumes that the best sweep direction is perpendicular to one of these edges. So only

sweep directions that are perpendicular to the boundary or obstacle edges are examined. For

each sweep direction, the field is decomposed into convex sub-polygons and the width of each

sub-polygon can be determined independently. Among all the possible sweep directions, the

convex decomposition with minimum sum of width is selected. By now, the minimum sum

of widths decomposition is done.

3.4.4 Merging Adjacent Polygons

Since each sub-polygon is covered independently, it may produce redundant tracks to

cover two adjacent sub-polygons, when parallel tracks of these two adjacent sub-polygons

have the same track orientation [41]. To avoid the redundant tracks, two convex sub-polygons

are merged if they have the same track orientation and are entirely adjacent to each other [2].

The definition of adjacency and entire adjacency of two polygons are described as follows:
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Definition 3.7 ( [2]). Consider two polygons P1 with n vertices and P2 with m vertices. If

an edge of P1, v1iv1(i+1) (i ∈ [1, n]), coincides with an edge of P2, v2jv2(j+1) (j ∈ [1, m]), P1

is adjacent to P2.

Definition 3.8 ( [2]). P1 and P2 are adjacent to each other, whose coincidence edges are

v1iv1(i+1) and v2jv2(j+1) respectively. If v1i = v2j (or v1i = v2(j+1)) and v1(i+1) = v2(j+1) (or

v1(i+1) = v2j), P1 is entirely adjacent to P2.

With the decomposition and adjacency graph, the planner determines a merge process

into four steps. First, assign each sub-polygon an unique group number. Secondly, iterate all

these sub-polygons. For each sub-polygon, test it with all its neighbors to see whether these

two polygons satisfy the merging condition. If the neighbor sub-polygon satisfies, change the

group number of the neighbor sub-polygon to that of the current sub-polygon. Thirdly, sort

the sub-polygons according to their group numbers. Finally, iterate the ordered sub-polygons

and merge the sub-polygons that have the same group number.

Then parallel tracks can be generated in each sub-polygon according to their track

orientations.

3.4.5 Time Complexity Analysis

Let n be the number of vertices of the input polygonal field. In the proposed convex

decomposition (3.4.1), the first step is to sort the events based on the x-coordinates. This

takes O(n logn) time. Then in the sweep line process, for each event, determining an edge

that is immediately above or below the event takes O(logn) time if the edges are stored

in a balanced binary search tree. So for all events, the sweep line process takes O(n logn)

time. Since each sub-polygon takes linear time to calculate the width and the total number

of vertices of these sub-polygons is linear to n, it takes O(n) time to determine the sum of

width of these sub-polygons (3.4.2). As long as the sweep line process takes O(n logn) in one

sweeping direction, examining sweep directions that perpendicular to all edges of the polygon

takes O(n2 log n) time (3.4.3). In the merging process (3.4.4), the number of sub-polygons
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and the number of edges in the adjacency graph are both linear to the number of vertices n.

The first step takes O(n) time. In the second step, examining the entire adjacency of two

polygons can be taken in O(n logn). To test the entire adjacency for all sub-polygons, edges

in the adjacency graph will be visited twice which is linear to n. So the second step requires

O(n2 log n). Sorting in the third step requires O(n logn) time. In the last step, merging

of two sub-polygons takes O(n logn) time. To merge all sub-polygons that have the same

group number, it requires O(n2 log n) time. So the whole merging process takes O(n2 log n)

time.

Therefore, the total time complexity of the proposed algorithm in this chapter is O(n2 log n).

3.5 Test Results

The algorithm is implemented in C++ and tested on a computer with 1.3 GHz CPU and

4 GB RAM. To test the performance, the result of the proposed algorithm is compared with

two former researchers’ results. Both former algorithms use sum of widths as cost function

to search the optimal decomposition. Fig. 3.5a is an example given by Huang [1], who adopts

dynamic programming technique to search the optimal decomposition. Since the dynamic

programming in [1] searches all possible decompositions, the solution in Fig. 3.5a can be seen

optimal in such case. Fig. 3.5b shows the solution generated by the proposed algorithm. By

comparing the total width of these two solutions, the total width of the proposed algorithm

is 3.5% greater than that of the optimal solution. Note that the method in Huang’s work [1]

needs exponential time to obtain the optimal solution. However, the proposed algorithm

requires only O(n2 log n) time, which is much faster to obtain the nearly optimal result. The

computational time for the proposed solution is 0.10 second as an average of 10 running

times.

Fig. 3.6a is an example given by Li et al. [2], who design a greedy recursive method for

the decomposition. Fig. 3.6b shows the solution generated by the proposed algorithm. The

total width of the proposed algorithm is 3.6% less than that of the greedy recursive method
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Figure 3.5: (a) Solution of Huang’s algorithm [1]. Arrows indicate the track directions. (b)
Solution of the proposed algorithm.

in [2]. Also the proposed algorithm requires less time to obtain the result, since the greedy

recursive algorithm in [2] requires O(n4) time. The computational time for the proposed

solution is 0.09 second as an average of 10 running times.
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Figure 3.6: (a) Solution of Li’s algorithm [2]. Arrows indicate the track directions. (b)
Solution of the proposed algorithm.

Another experiment field [32◦35′29.5′′N 85◦29′31.3′′W], shown in Fig. 3.7a, has an area

of 6.65 acres (or 26896.73 m2) and has one obstacle area. The solution of the proposed

algorithm is shown in Fig. 3.7b. The space between two adjacent parallel tracks is set to

2 meters. The solution shows that the optimal sweeping direction is 87.40◦ and the field is
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(a)

(b)

Figure 3.7: Test field near Auburn University and solution of the proposed algorithm.

decomposed into 8 sub-polygons. The computational time for the proposed solution is 0.25

second as an average of 10 running times.

31



3.6 Summary

In this chapter, the authors try to minimize the number of turns in coverage path plan-

ning. The problem is reduced to find the optimal decomposition of a complex field into

convex subfields. The criterion of optimization is the sum of width of these decomposed

subfields. Firstly, a new convex decomposition algorithm in one sweeping direction is de-

signed based on sweep line method. Then the convex decomposition is performed in all

directions that are perpendicular to the edges, and the convex decomposition with minimum

sum of width is selected. To avoid unnecessary tracks to cover the subfields, the resulting

decomposition is finally refined by merging adjacent similar convex sub-polygons. The time

complexity of this algorithm is O(n2 log n). The proposed algorithm is compared with two

state-of-the-art algorithms. The results show that the proposed algorithm can produce a

nearly optimal solution with much greater efficiency. Another experiment, based on real

field data, shows that the proposed algorithm can produce feasible and effective solution for

a large area field containing obstacles.
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Chapter 4

Coverage Path Planning: Optimal Visiting Sequence

4.1 Introduction

In this chapter, the authors propose a novel traversal pattern in finding optimal traversal

sequences of parallel tracks. The problem is modeled as a Generalized Traveling Salesman

Problem (GTSP), which can be transformed into a standard Asymmetric Traveling Salesman

Problem (ATSP). The method can also be extended to connect the field tracks decomposed

by the algorithm in Chapter 3. In searching the optimal traversal sequence, the proposed

pattern can simultaneously determine the traversal sequence of tracks for each subfield and

the visiting sequence of subfields, such that the total non-working distance will be minimized.

The remainder of this chapter is organized as follows. In Section 4.2, the vehicle model based

on the Dubins vehicle is reviewed. In Section 4.3, an algorithm is designed to find the optimal

traversal sequence of tracks in a single convex field, and Section 4.4 extends the method to

connect multiple subfields. Several experiments are presented in Section 4.5 to show the

performance of the proposed algorithm. Section 6.7 summarizes the key results.

4.2 Vehicle Model

The autonomous vehicle can be modeled as the Dubins vehicle. A Dubins vehicle is

one that can only move forward at constant speed and turn with upper bounded curvature

(or lower bounded turning radius) in the plane. The configuration of Dubins vehicles can

be described by (x, y, θ), where (x, y) defines the position of the vehicle in the plane, and θ
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Figure 4.1: Example Dubins Paths [3]

defines the heading of the vehicle. The vehicle dynamic is described by:
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, |u| ≤ 1 (4.1)

where v is the speed of the vehicle, ρ is the minimum turning radius and u is the control

input.

Dubins’ [49] work characterizes the optimal paths between any two configurations of

such vehicle. The main results show that the optimal path is contained in a finite number

of Dubins paths. This reduces the problem to determine the shortest path between any two

configurations by examining only six path types, divided into two families:

• Family CCC: types RLR,LRL

• Family CSC: types LSL,RSR,RSL, LSR

where C is the “curve” or arc segment of radius ρ, and S is the “straight” line segment.

When a subgraph is a C-segment, it could be either a left turn or right turn, denoted by

L and R respectively. One method for generating the optimal Dubins path and computing
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the Dubins distance between two configurations can be found in [78]. Several examples of

Dubins paths between initial configuration I and final configuration F are shown in Fig. 4.1.

4.3 Optimization on a single convex field

In this section, the optimal traversal sequence of tracks in a single field is presented.

The given field is of convex shape and covered by a set of parallel tracks, which start at one

boundary of the field and end at a different boundary. It is assumed that the track locations

are predetermined and all tracks are parallel. The task is to find the optimal traversal

sequence of these field tracks.

4.3.1 Algorithm

The main idea of the proposed method is to model the problem as a Generalized Trav-

eling Salesman Problem (GTSP). Then the GTSP is transformed into a standard ATSP

through the Noon and Bean transformation [71]. Finally a variety of existing ATSP solvers

can be applied to find the optimal solution. The GTSP is defined on a directed graph

G = (N,A), where N is a node set partitioned into m clusters S1, S2, . . . , Sm and A =

{(Ni, Nj) : Ni, Nj ∈ N, i 6= j} is an arc set. For each arc (Ni, Nj) ∈ A, a cost cij is defined

as the distance from Ni to Nj . The matrix C = (cij)n×n is called the cost matrix, where

n is the number of nodes. The objective of GTSP is to find a minimum cost cycle, which

includes exactly one node from each cluster.

4.3.2 Nodes

According to the above definition of GTSP, let S = {S1, S2, S3, . . . , Sm} be the arbi-

trarily ordered set of field tracks. Each field track consists of two endpoints and one line

segment. The vehicle can cover the field track from either endpoint to the other one, so

there are two directed path options for each track. The algorithm treats each track as a

cluster of two nodes. Each node represents a directed path of the track on which the vehicle
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Figure 4.2: GTSP node representation: (a) A given set of parallel field tracks (dashed lines)
(b) Each track has two directed path options (dashed lines, SP: starting point, EP: ending
point) (c) Corresponding GTSP node representation and two feasible GTSP solutions (in
gray and in black)
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may travel. Two directed paths in the same cluster are parallel to the corresponding actual

track, but have opposite directions. The node set of the corresponding GTSP can be written

as N = {N1, N2, N3, . . . , N2m}. The node set is partitioned into m clusters and each cluster

contains exactly two nodes. One example of the node representation is illustrated in Fig. 4.2.

In order to generate Dubins paths, a set of configurations are required. For each node, the

starting point (SP) is the point where the vehicle enters the track, and the ending point (EP)

is the point where the vehicle leaves the track. The headings of the Dubins vehicle at the

starting point and ending point are equal to the direction of the corresponding directed path.

From the node representation, every node contains two configurations: SP configuration and

EP configuration.

4.3.3 Cost Between Nodes

Two nodes in the same cluster should never be connected together, because the vehicle

should not traverse the same track in two different directions. Therefore, the cost between

nodes in the same cluster is set to beM whereM is a large positive number. Nodes belonging

to different clusters are connected by Dubins path. The path is always computed from the EP

configuration of one node to the SP configuration of the other node. Let ∆(Ni) ∈ S,Ni ∈ N

denote the cluster where node i belongs and D(Ni, Nj) denote the Dubins distance from

node Ni to node Nj. The cost cij from node Ni to node Nj can be expressed as follows:

cij =







D(Ni, Nj), if ∆(Ni) 6= ∆(Nj)

M, if ∆(Ni) = ∆(Nj)
(4.2)

The Dubins distances D(Ni, Nj) and D(Nj , Ni) may be different. After the costs being

computed for each pair of nodes, the cost matrix for GTSP is constructed. The cost matrix

is actually described by the non-working distance, which means the formation of GTSP is

to minimize the total non-working distance travelled during turnings. By the above cost

expression, there is no constraint that successive ending point and starting point must lie on
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the same boundary or the same side of the tracks, which is different from existing methods.

This assumption has no effect on the feasibility of the solution, but gives the algorithm more

freedom to find the optimal solution.

4.3.4 Depot Considerations

In some applications, the traversal of field tracks starts and ends at a depot outside the

working field, such as a barn in agriculture or parking area for vehicles. The travel distance

between the depot and field tracks can also be seen as non-working distance, and thus is

necessarily considered. A depot can be modeled as one cluster with only one node in the

GTSP. The starting point and ending point of the depot node coincide. The coordinate of

starting point and ending point is the same as the position of the depot. The starting direc-

tion and ending direction of Dubins vehicle at the depot can be determined arbitrarily, e.g.

align to the direction of the entry road. The cost from depot node to track node is computed

by the Dubins distance from EP configuration of the depot node to SP configuration of the

track node. Conversely, the cost from any track node to depot node is computed from EP

configuration of track node to SP configuration of depot node. These costs are included in

the cost matrix.

In other applications, there is no depot, but the starting location and ending location

are separated. In this dissertation, it is assumed that the starting location and ending

location are endpoints of different tracks. Two conditions need to be considered: (1) If the

starting location and ending location are not specified, the task is to find a least cost path

to traverse all field tracks without returning to the start. In such case, a virtual depot node

is added to the problem, by setting the cost between depot node and any track node to be

zero. Therefore there is no effect of depot position on the optimal solution for the traversal

sequence. The paths connecting the depot can be then removed from the final result tour.

(2) If the starting location and ending location are specified, the starting track node and

ending track node can also be determined. In such case, a virtual depot node with only two
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arcs is added to the problem. One arc is from the depot node to the starting track node, and

the other is from the ending track node to the depot node. To represent them in the cost

matrix, the cost from the depot node to the starting track node and cost from the ending

track node to the depot node are set to be zero, while other costs that relate to the depot

node are set to be M where M is a large positive number. The paths connecting the depot

can be then removed from the final result tour.

4.3.5 Transformation from GTSP into ATSP

After the cost matrix being constructed, the GTSP can be solved by many algorithms.

Among them include exact algorithms [67], heuristic algorithms [70], and methods of trans-

forming GTSP into ATSP [71]. In this chapter, the author adopts the Noon and Bean

transformation [71]. There are two reasons to use this transformation. First, there ex-

ist many efficient ATSP solvers. By using this transformation, the state-of-the-art ATSP

solvers are directly available to use. Second, the number of nodes in ATSP is equal to that

of the original GTSP, which will not increase the computing complexity for ATSP solvers,

while other transformation methods have larger number of nodes for ATSP than that of the

original GTSP.

A brief summary of Noon and Bean transformation is described as follows. The trans-

formation consists of two stages. In the first stage, the GTSP is transformed into a Clustered

TSP. The nodes in each cluster are firstly given an arbitrary order. Then a single directed

cycle is created for each cluster, by adding intra-cluster arcs with zero cost according to

the given order. The inter-cluster arcs are then circularly shifted for each cluster so that

they emanate from the previous node in the cycle. In the second stage, the Clustered TSP

is transformed into a standard ATSP by adding a large cost to all inter-cluster arc costs.

Finally the GTSP solution can be extracted from the ATSP solution by taking only the first

node visited in each cluster. An illustration of the transformation can be seen in Fig. 4.3.

Readers interested in more details should study the reference [71].
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ĉ1,3
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Figure 4.3: Illustration of transformation from GTSP into ATSP: (a) A GTSP representation
with arc costs for the example in Fig. 4.2. Note that only an essential subset of arcs is shown
for clarity of illustration. (b) A zero-cost directed cycle is created for each cluster by adding
zero-cost arcs between consecutive nodes in each cluster. (The dash arcs in blue have zero
cost.) (c) The inter-cluster arcs are circularly shifted so they emanate from the previous node
in its cycle. (d) A large finite cost β is added to each inter-cluster arc. Here ĉi,j = ci,j + β,
where +∞ > β >

∑

(i,j)∈A ci,j. The optimal ATSP tour is shown in red with a cost of
ĉ1,6 + ĉ6,3 + ĉ3,1. The GTSP solution can be extracted from the ATSP solution by taking
only the first node visited in each cluster.
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4.3.6 Complexity of the Proposed Algorithm

Since each cluster contains at most two nodes, for n clusters, this algorithm will compute

the ATSP over at most 2n nodes. The worst case computational complexity of the Noon

and Bean transformation [71] is O(n2). Then the worst case computational complexity for

solving the ATSP by using the modified version of Christofides’ algorithm provided in [79]

is O(n3). So overall the computational complexity of the proposed algorithm is O(n3).

4.4 Extension to multiple fields

For case where the field is complex, e.g. of concave shape, the field is usually decomposed

into multiple simple subfields. By any decomposition algorithm described in the first category

of section I.A, the complex field is divided into simple subfields and the layout of parallel

tracks is determined in each subfield. Then methods can be applied to find the optimal

traversal sequence of these field tracks. Based on different situations, two strategies are

shown in this section.

In the first situation, it is assumed that each pair of subfields can be connected. The

proposed method in previous section can be extended to minimize the total non-working

travel distance of these decomposed subfields. Tracks belongs to different subfields are put

together and treated equally as in the same field. In this sense, the cost matrix is constructed

for all tracks, rather than tracks belong to individual subfield. The final solution is the

optimal traversal sequence of all the tracks.

In the second situation, it is assumed that some connections between tracks or subfields

are forbidden. Since most decomposition algorithms consider obstacles in the decomposition

process, the result subfields are typically obstacle free. Directly applying the above strategy

for all tracks places some constraints on the cost matrix, because some connections between

tracks or subfields are not permitted if they intersect with the obstacles or restricted areas.

If two tracks are disconnected, the costs between corresponding track nodes are set to be

M where M is a large positive number. If two subfields are disconnected, tracks belong to
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different subfields are not connected. Among these two subfields, the costs between track

nodes that belong to different subfields are all set to be M where M is a large positive

number.

4.5 Four Experiments

In this section, four experiments are conducted to examine the performance of the

proposed method. The minimum turning radius of the test robot is 4 m, and the line

spacing between adjacent tracks is 2.4 m. The optimal ATSP tour is obtained using the LKH

solver [80], which is an effective implementation of the Lin-Kernighan heuristic for solving

a Traveling Salesman Problem. It is widely accepted that LKH will efficiently produce an

exact result in scales up to hundreds or even thousands of nodes [80].

Let the track set S be numbered from west to east, then S = {1, 2, 3, . . . , n} where n

is the number of tracks. Let Π∗(S) be the visiting sequence of S by using a certain pattern,

where elements in the sequence are track numbers according to the visiting order.

4.5.1 Effect of Parity (Even or Odd Number of Tracks with One Depot)

The first experiment is established to test the effect of parity of the number of tracks,

when dealing with applications with one depot. Two rectangular fields are used, which have

dimensions of 24 m × 30 m, 26.4 m × 30 m respectively (gray shaded areas). The depot

positions are both (20, 0). In order to completely cover each field, the required number of

field tracks are 10 and 11 respectively.

Fig. 4.4a shows the GTSP pattern for odd number of tracks and the visiting order of

each track. The track set is S = {1, 2, 3, . . . , 11}, and the visiting sequence is Πgtsp(S) = 〈2,

6, 10, 1, 5, 9, 4, 8, 11, 7, 3〉. Fig. 4.4b shows GTSP pattern for even number of tracks and

the visiting order of each track. The track set is S = {1, 2, 3, . . . , 10}, and the visiting

sequence is Πgtsp(S) = 〈2, 6, 10, 7, 3, 8, 4, 9, 5, 1〉. The result of B pattern [4] is also

shown in Fig. 4.5a to compare with the proposed GTSP pattern in such case. The results
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Figure 4.4: (a) GTSP pattern for odd number of tracks (11 tracks) with one depot. (b)
GTSP pattern for even number of tracks (10 tracks) with one depot. Shaded area is field
that must be covered. The number on each track is the visiting order of that track. Arrows
indicate the driving direction on each track. (Experiment 4.5.1)

demonstrate that all field tracks are successfully covered by the GTSP pattern regardless of

parity. In the case with odd number of tracks, however, B pattern may skip tracks by finding
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Figure 4.5: (a) B pattern [4] for odd number of tracks (11 tracks) with one depot. The
result of B pattern skips one track in this case by traversing the endpoints of tracks, i.e., the
area in middle of the field is not covered. (b) B pattern [4] for even number of tracks (10
tracks) with one depot. The number on each endpoint of tracks is the visiting order of that
endpoint. (Experiment 4.5.1)
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the optimal path to traverse the endpoints, even though the cost between two endpoints in

the same track is set to zero. The path of B pattern in such case is not feasible because the

area in middle of test field will not be covered.

4.5.2 Effect of Specified Start/End Position

The second experiment is established to test the effect of specified start position and

end position on the optimal traversal sequence. In such case, the vehicle starts and ends at

specified endpoint of two different tracks. A rectangular field is used, which has dimensions

of 60 m × 30 m (gray shaded areas). In order to completely cover the field, the required

number of field tracks is 25.

Two cases are tested. In the first case, the start and end positions are specified on

the same side of two different tracks. In the second case, the start and end positions are

specified on the opposite sides of two different tracks. Fig. 4.6 shows the result of proposed

GTSP pattern and Fig. 4.7 shows the result of B pattern [4]. The result demonstrates that

proposed GTSP pattern provides feasible solutions for different specified start/end positions,

while the B pattern can not guarantee to obtain a feasible solution because it may skip one

track.

4.5.3 Performance with Unspecified Start/End Position

The third experiment is established to show the performance of the proposed method

in dealing with applications that have no depot, as well as the situation of unspecified start

location and end location. The proposed pattern in this paper is compared with three other

well-known patterns. The field is non-rectangular in this series of tests. The track set is

S = {1, 2, 3, . . . , 20}.

The first pattern that the vehicle follows is the boustrophedon pattern. The field tracks

are traversed continuously from one track to the adjacent uncovered track with alternate

directions. Fig. 4.8 shows the solution of traversing the field with boustrophedon path and

45



10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

East (m)

N
o
rt

h
 (

m
)

Start End

2
4 6

8
10
121416

18 20
1
3 5

7 9
11
131517

19 Visiting 

 Order
21 22

24
23
25

(a)

10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

East (m)

N
o
rt

h
 (

m
)

Start

End

2

4 6

8

10

12

14

16 18

20

1

3 5

7

9

1113

15

17 19

Visiting 

 Order
21 22

24

23

25

(b)

Figure 4.6: GTSP pattern for specified start and end positions (25 tracks). (a) Start position
and end position are on the same side of two different tracks. (b) Start position and end
position are on the opposite side of two different tracks. Shaded area is field that must be
covered. The number on each track is the visiting order of that track. Arrows indicate the
driving direction on each track. (Experiment 4.5.2)

the visiting order of each track. The visiting sequence is Πbous(S) = 〈1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20〉.
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Figure 4.7: B pattern [4] for specified start and end positions (25 tracks). (a) Start position
and end position are on the same side of two different tracks. (b) Start position and end
position are on the opposite side of two different tracks. The number on each endpoint of
tracks is the visiting order of that endpoint. The B pattern skips one track in case (a) by
traversing the endpoints of tracks, which results an infeasible solution. (Experiment 4.5.2)

The second pattern that the vehicle follows is the set pattern described in [3]. In this

experiment, field tracks are grouped into three sets. The first set and the second set both

contain 9 tracks and the third contains 2 tracks. Once the first set has been completed, the
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Figure 4.8: Boustrophedon pattern (20 tracks, trapezoidal shaped field). (Experiment 4.5.3)

second set is started with a similar way, but the initial driving direction is opposite. Since

the last set has tracks fewer than 9, the tracks in this set are travelled in order. Fig. 4.9

shows the solution of traversing the field with set pattern and the visiting order of each track.

The visiting sequence is Πset(S) = 〈1, 6, 2, 7, 3, 8, 4, 9, 5, 10, 15, 11, 16, 12, 17, 13, 18, 14,

19, 20〉.

The third pattern that the vehicle follows is the B pattern described in [4]. Since the B

pattern can not always provide a feasible solution for specified start/end locations, in this

experiment, the start and end locations are not specified. Each track is represented by its

two endpoints. The cost between two endpoints in the same track is set to zero and the cost

between two endpoints in opposite sides of different tracks is set to a large penalty value.

Other costs between endpoints are set to their corresponding Dubins distance. The TSP

solution is also calculated by the LKH solver. Fig. 4.10 shows the solution of traversing
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Figure 4.9: Set pattern [3] (20 tracks, trapezoidal shaped field) Set pattern is also called
“Zamboni pattern”, or “overlapping concentric ovals”. (Experiment 4.5.3)

the field with B pattern and the visiting order of each track. The visiting sequence is

Πb(S) = 〈14,10,7,11,8,4,1,5,2,6,3,9,12,18,15,19,16,20,17,13〉

The fourth pattern that the vehicle follows is the GTSP pattern proposed in this paper.

The GTSP pattern is also implemented with unspecified start and end locations. Fig. 4.11

shows the optimal solution of traversing the field with GTSP pattern and the visiting order

of each track. The visiting sequence is Πgtsp(S) = 〈13,17,20,16,19,15,18,14,11,7,10,4,1,5,

8,12,9,3,6,2〉.

The non-working distances measured during turnings by the above four traversal pat-

terns are given in Table 4.1. The waste percentages of different patterns comparing to the

working distance are also shown in this table.

In order to test the effect of minimum turning radius and operating width (space between

tracks) on the non-working travel distance, cases with different minimum turning radius and

operating width are also tested in this experiment. The minimum turning radius is ranged
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Figure 4.10: B pattern with no specified start position and end position (20 tracks, trape-
zoidal shaped field). (Experiment 4.5.3)

Table 4.1: Non-working distance of different path patterns for a single field (4m turning
radius, 2.4m operating width). (Experiment 4.5.3)

Path pattern Working Non-working Waste

distance (m) distance (m) (%)

GTSP pattern (Fig. 4.11) 1000 321.68 32.17

B pattern (Fig. 4.10) 1000 321.68 32.17

Set pattern [3] (Fig. 4.9) 1000 369.28 36.93

Boustrophedon pattern (Fig. 4.8) 1000 498.38 49.84

from 4 m to 8 m with an incremental step of 0.5 m. The operating width is ranged from 1.2

m to 9.6 m with an incremental step of 1.2 m. In each case, the non-working distances of

four patterns are measured. The savings of using GTSP pattern instead of the other three

patterns are shown in Fig. 4.12, Fig. 4.13 and Fig. 4.14 respectively. As shown in Fig. 4.12,

the savings for Boustrophedon pattern are increased as a function of increasing turning radius

and as a function of decreasing operating width. By using GTSP pattern, the reduction of
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Figure 4.11: GTSP pattern with no specified start position and end position (20 tracks,
trapezoidal shaped field). (Experiment 4.5.3)

non-working distance can reach up to 50% by comparing with the Boustrophedon pattern .

Unlike the trend in Fig. 4.12, Fig. 4.13 shows that the savings for the Set pattern increase as

the tuning radius decreases and the operating width increases. It is because when the turning

radius is near half operating width or less than half operating width, the optimal solution

tends to visit adjacent tracks first, which is very similar to boustrophedon pattern, but the

Set pattern only follows path by skipping adjacent tracks in that case, which increases the

non-working distance. The savings of non-working distance by using GTSP pattern instead

of Set pattern can reach up to 40%. Fig. 4.14 shows that the saving percentages of non-

working distance range from −0.4% to 0.9% by using GTSP pattern instead of B pattern.

Considering the saving percentages are within a very small amount of range, the GTSP

pattern performs very similarly to B pattern in the test field with unspecified start and end

locations.
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Figure 4.12: Savings in non-working distance by using GTSP pattern instead of Boustro-
phedon pattern. (Experiment 4.5.3)
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Figure 4.13: Savings in non-working distance by using GTSP pattern instead of Set pattern
[3]. (Experiment 4.5.3)
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Figure 4.14: Savings in non-working distance by using GTSP pattern instead of B pattern [4].
(Experiment 4.5.3)

4.5.4 Performance on Multiple Decomposed Subfields

The fourth experiment is established to show the performance of the proposed method in

dealing with multiple decomposed subfields. The experimented field is decomposed into three

subfields. The dimensions of these subfields are: 52.8 m× 100 m (subfield 1), 19.2 m× 40 m

(subfield 2), 19.2 m× 30 m (subfield 3).

Situation I: Each Pair of Tracks Can Be Connected

The distance between adjacent tracks is 2.4 m in each subfield. The numbers of tracks

in these subfields are 22 tracks (subfield 1), 8 tracks (subfield 2) and 8 tracks (subfield 3).

The traversal path is obtained by the first situation method in section 4.4, that is all tracks

are treated equally as in the same field. The starting and ending locations are separated

and not specified in this experiment. The track set S is numbered from west to east and

from subfield 1 to subfield 3, represented by S = {1, 2, 3, . . . , 37, 38}. Fig. 4.15 shows
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Figure 4.15: GTSP pattern for multiple subfields (4 m turning radius, 2.4 m operating
width). The number on each track is the track number. Visiting sequence is in the paper.
(Experiment 4.5.4)

the optimal traversal path with 4 m turning radius. The track numbers are also marked

in Fig. 4.15. The optimal visiting sequence is Πgtsp(S) = 〈
subfield1

︷ ︸︸ ︷

2, 6, 10, 14, 18, 22,

subfield2
︷ ︸︸ ︷

26, 30, 27, 23,
subfield1

︷ ︸︸ ︷

19, 15, 11, 7, 3, 8, 4, 1, 5, 9, 13, 17, 12, 16, 20,

subfield3
︷ ︸︸ ︷

32, 36, 31, 35, 38, 34, 37, 33,

subfield1
︷︸︸︷

21,

subfield2
︷ ︸︸ ︷

25, 29, 24, 28〉.

From the traversal sequence, it is noticed that the resulting traversal pattern is not

similar to any conventional pattern. In conventional patterns, one subfield is started only if

the previous subfield is completely covered. But in the proposed pattern, one subfield can be

started without completion of the previous subfield. In this test, subfield 1 is visited three

times to complete, and subfield 2 is visited twice to complete. This property can also be seen

in the case with 6 m turning radius, as shown in Fig. 4.16. As the turning radius increasing,

the non-working path at lower side of subfield 2 and the non-working path at upper side of

subfield 3 are getting closer. The path planner can find a shorter path by connecting tracks
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Figure 4.16: GTSP pattern for multiple subfields (6 m turning radius, 2.4 m operating
width). (Experiment 4.5.4)

in subfield 2 and subfield 3. It can be seen that the path between subfield 2 and subfield 3

runs in an alternate way to minimize the non-working travel distance.

Situation II: Some Connections Between Tracks Are Forbidden

For some applications, connections between some subfields are not permitted (possibly

due to an obstacle). In the following tests, it is assumed that connections between subfield

2 and subfield 3 are not permitted. The connections between subfield 1 and subfield 2

are permitted only if the connection between tracks is through the upper side of these two

subfields. And the connections between subfield 1 and subfield 3 are permitted only if the

connection between tracks is through the lower side of these two subfields.

By adopting the second situation method in section 4.4, the traversal path with 6 m

turning radius and 2.4 m operating width is shown in Fig. 4.17a. Comparing to the results

in Fig. 4.16, the tracks in subfield 2 and subfield 3 are not connected directly and other
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Figure 4.17: GTSP pattern and B pattern for multiple subfields (6 m turning radius, 2.4 m
operating width). (a) Solution of GTSP pattern with restricted connections. (b) Solution of
B pattern with restricted connections. (Experiment 4.5.4)

constraints are also satisfied. The result of B pattern under the same constraints is also

shown in Fig. 4.17b for comparison. In this case, both GTSP pattern and B pattern can

find the feasible solution and have the same traversal sequence.
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Figure 4.18: GTSP pattern and B pattern for multiple subfields (6 m turning radius, 3.76
m operating width). (a) Solution of GTSP pattern with restricted connections. (b) Solution
of B pattern with restricted connections. (Experiment 4.5.4)

To further compare the feasibility of GTSP pattern and B pattern for multiple subfields,

the other test case with 6 m turning radius and 3.76 m operating width is implemented on
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the same subfields. The numbers of tracks in these subfields are 14 tracks (subfield 1), 5

tracks (subfield 2) and 5 tracks (subfield 3), correspondingly. The results of GTSP pattern

and B pattern are shown in Fig. 4.18. As illustrated, The GTSP pattern can find the feasible

solution under the constraints. The B pattern skips track 14, which is not feasible for the

application. In fact, in many other cases with different operating widths, the B pattern can

not always obtain a feasible solution under constraints for multiple subfields.

Effect of Turning Radius and Operating Width

In order to test the effect of minimum turning radius and operating width (space between

tracks) on the non-working travel distance, cases with different minimum turning radius and

operating width are considered for GTSP pattern. The minimum turning radius is ranged

from 4 m to 8 m with an incremental step of 0.5 m. The operating width is ranged from 1.2

m to 9.6 m with an incremental step of 1.2 m. Because the B pattern can not always obtain a

feasible solution under constraints for the multiple subfields case, only boustrophedon pattern

and set pattern are implemented to compare with the GTSP pattern. For boustrophedon

pattern and set pattern, tracks in each subfield are traversed independently and the visiting

sequence of subfields is set to be subfield 2 → subfield 1 → subfield 3. Then the final tour

is obtained by connecting these sub-tours according to the visiting sequence of subfields.

For GTSP pattern, it follows the above constraints that connections between subfield 2 and

subfield 3 are not permitted; the connections between subfield 1 and subfield 2 are permitted

only if the connection between tracks is through the upper side of these two subfields; the

connections between subfield 1 and subfield 3 are permitted only if the connection between

tracks is through the lower side of these two subfields.

In each testing case, the non-working distances of three patterns are measured. The

savings of using GTSP pattern instead of boustrophedon pattern and set pattern are shown

in Fig. 4.19 and Fig. 4.20 respectively. As illustrated, the similar trends of savings in the

single field case are also held in the multiple subfields case. The GTSP pattern can reduce
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Figure 4.19: Savings in non-working distance by using GTSP pattern instead of Boustro-
phedon pattern for multiple subfields. (Experiment 4.5.4)
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Figure 4.20: Savings in non-working distance by using GTSP pattern instead of Set pattern
[3] for multiple subfields. (Experiment 4.5.4)
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Table 4.2: Non-working distance of different path patterns for multiple subfields (4m turning
radius, 2.4m operating width). (Experiment 4.5.4)

Path pattern Working Non-working Waste

distance (m) distance (m) (%)

GTSP pattern (Fig. 4.15) 2760 547.68 19.84

Set pattern [3] 2760 661.86 23.98

Boustrophedon pattern 2760 1037.05 37.57

Table 4.3: Non-working distance of different path patterns for multiple subfields (6m turning
radius, 2.4m operating width). (Experiment 4.5.4)

Path pattern Working Non-working Waste

distance (m) distance (m) (%)

GTSP pattern (Fig. 4.16) 2760 791.69 28.68

Set pattern [3] 2760 1124.21 40.73

Boustrophedon pattern 2760 1571.17 56.93

the non-working distance up to 55% when compared with boustrophedon pattern and up to

50% when compared with set pattern.

The non-working distances of different patterns with 4 m turning radius and 2.4 m

operating width are selected and shown in Table 4.2. The non-working distances of different

patterns with 6 m turning radius and 2.4 m operating width are also selected and shown in

Table 4.3.

4.6 Summary

The work in this chapter has introduced an optimization approach that takes the ve-

hicle’s characteristics into account to minimize the non-working distance in coverage path

planning problems. The main task is to find the optimal traversal sequence for a given set of

field tracks. The problem is modeled as a Generalized Traveling Salesman Problem (GTSP),

which can be transformed into a standard Asymmetric Traveling Salesman Problem (ATSP),
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and then the existing ATSP solvers can be applied to find the optimal solution. The exper-

iments show that the proposed method provides feasible solutions for either odd number of

tracks or even number of tracks with one depot. When compared to classical boustrophedon

path or even set pattern, the total non-working distance can be reduced for both single con-

vex field and multiple decomposed fields. In the given examples, wasted travel was reduced

by up to 55% using the proposed methods, compared to the boustrophedon pattern and set

pattern. The proposed work also solves several previously unresolved issues of B pattern in

coverage path planning. While the authors focus on the Dubins vehicles in this paper, the

proposed method could be applied to any non-holonomic vehicle whose cost between nodes

is well defined.
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Chapter 5

Dubins Traveling Salesman Problem

5.1 Introduction

In Traveling Salesman Problem (TSP), given a set of waypoints, the task is to determine

the shortest tour to visit each waypoint only once and return to the starting waypoint. If

the distance between any two waypoints is determined by Euclidean distance, it is called

the Euclidean Traveling Salesman Problem (ETSP). ETSP has been applied to many robot

path planning problems. However, when working with a car-like robot, researchers have to

consider kinematic constraints such as minimum turning radius, i.e. the ETSP result may

not provide an optimal solution. Typically, the car-like robot that can only move forward at

a constant speed, with a minimum turning radius can be modeled as a Dubins vehicle [49].

In this chapter, the authors will focus on the Dubins Traveling Salesman Problem (DTSP)

and design a genetic algorithm to solve the DTSP.

The rest of this chapter is organized as follows. In Section 5.2, the problem statement

of the DTSP is introduced. In Section 5.3, a genetic algorithm is designed for the DTSP,

and several numerical experiments are conducted in Section 5.4 to compare the performance

of different algorithms. Section 5.5 summarize the key results of this chapter.

5.2 Problem Statement

Let Σ = (σ1, σ2, . . . , σn) denote a permutation of the given waypoints {(x1, y1), (x2, y2),

(x3, y3), . . ., (xn, yn)}, and Θ = {θ1, θ2, θ3, . . . , θn} denote the corresponding orientations

of a Dubins vehicle. Here σi ∈ {1, 2, . . . , n}, θi ∈ [0, 2π], for i = 1, 2, . . . , n. The Dubins

distance between configuration (xi, yi, θi) and configuration (xj , yj, θj) is denoted by D(i, j).
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The optimal path between any two waypoints in the ordered sequence can be calculated by

Dubins path. Therefore the Dubins Traveling Salesman Problem (DTSP) is to find sets Σ

and Θ that minimizes the total tour length L:

L =

n−1∑

i=1

D(σi, σi+1) +D(σn, σ1) (5.1)

5.3 Algorithm Design for DTSP

5.3.1 Genetic Algorithm

Genetic algorithm (GA) [81] is a global searching method that mimics the natural evo-

lution process to optimize the searching problem. It attempts to find the best solution

by generating a collection (called population) of strings (called chromosomes) that encode

the potential solutions (called individuals), and uses genetic operations such as selection,

crossover, and mutation to produce a new better solution. This process continues until an

acceptable solution is found. GA has many advantages including the ability to search in

continuous variable domain, discrete variable domain or mix type variable domain. In this

chapter, the algorithm has several parameters, maximum generation size (Ng), population

size (Np), elitism rate (Pe), crossover rate (Pc), permutation mutation rate (Pm), orien-

tation mutation rate (Pa). The main process is described in Algorithm 3, and the detail

implementation of each operation will be discussed in the following sections.

5.3.2 Encoding and Initialization

Encoding of the individual is the first problem when starting genetic algorithms. The

choice of encoding method depends largely on the specific problem. Since DTSP must de-

termine not only the visiting order of the waypoints but also the corresponding orientations,

both discrete and continuous variables must be considered. Therefore the mixed permutation

encoding and value encoding method is adopted: {(σ1, θσ1
), (σ2, θσ2

), . . . , (σn, θσn
)}.
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Algorithm 2 process of GA for DTSP

Input: List of given waypoints
Output: Optimal visiting sequence and optimal orientation at each waypoint
1: set values to Ng, Np, Pe, Pc, Pm, Pa

2: encode the given waypoints
3: initialize the current generation Gc with Np

4: calculate the fitness value of each individual in Gc

5: sort population of Gc by fitness values in decreasing way
6: for i ← 2 to Ng do
7: elitism selection for top ⌊Np × Pe⌋ individuals
8: for j ← ⌊Np × Pe⌋ + 1 to Np do
9: parent1 ← roulette wheel selection
10: parent2 ← roulette wheel selection
11: if possibility ≤ Pc then
12: child ← crossover parent1 and parent2;
13: else if parent1 has greater fitness value then
14: child ← parent1
15: else
16: child ← parent2
17: end if
18: if possibility ≤ Pm then
19: reversion mutation of child;
20: end if
21: if possibility ≤ Pm then
22: reciprocal exchange mutation of child;
23: end if
24: if possibility ≤ Pa then
25: shift mutation of child;
26: end if
27: add child to the next generation Gn

28: end for
29: calculate the fitness values of each individual in Gn

30: sort Gn by fitness values in decreasing way
31: substitute Gc with Gn

32: end for
33: return top individual of Gc
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For example, {(1, 2.1), (2, 1.5), (4, 6.2), (5, 1.6), (3, 4.2)} means the robot starts from

waypoint 1 with orientation 2.1, then goes to waypoint 2 with orientation 1.5, then goes to

waypoint 4 with orientation 6.2, and so on, finally returning to the starting waypoint 1 with

orientation 2.1. For initialization, given population size Np, the permutation order and the

corresponding orientations are randomly generated for each individual.

5.3.3 Fitness Function

The fitness function guides the genetic algorithm to the best solution within a large

search space, and must be well-chosen so that the GA searches effectively and avoids local

minima. For DTSP, the goal is to find the shortest total length to visit all waypoints, so the

authors use the reciprocal of the total length to be the fitness function:

fitness =
1

L (5.2)

where L is defined in (6.1). In this case, one individual is more fit than another one if

fitness1 > fitness2.

5.3.4 Selection Operator

Selection is the stage of a genetic algorithm in which individuals are selected as parents

to generate the next generation. In this dissertation, the elitism selection [82] and roulette

wheel selection [82] are adopted. In elitism, the top ⌊Np × Pe⌋ fittest individuals in the

current generation are directly copied into the next generation. Elitism prevents loss of the

best found solution. Then the remaining individuals are selected by roulette wheel selection.

The process of roulette wheel selection is described as follows:

1. Calculate the accumulated fitness values, where the accumulated fitness value of an

individual is the sum of its own fitness value and the fitness values of all the previous

individuals.
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2. Chose a random number m between 0 and the sum of fitness values of all individuals.

3. The selected individual is the first one whose accumulated fitness value is greater than

m.

5.3.5 Crossover Operator

Crossover is the stage that two parents are joined together to produce a new offspring.

The underlying idea of this operation is that the new offspring may be better than both of the

parents if it obtains the best characteristics from each of the parents. In this dissertation, a

greedy crossover method [83] is adopted. Let E(i, j) denotes the Euclidean distance between

configuration (xi, yi, θi) and configuration (xj , yj, θj). Let p1(i) denotes the waypoint at the

position i in parent1, and p2(j) denotes the waypoint at the position j in parent2. The

process is as follows:

1. Make two copies of the selected parents, say parent1 and parent2 respectively.

2. Randomly select a waypoint w to be the current waypoint of the child.

3. Find the positions of the current waypoint in parent1 and parent2, say i, j respectively.

4. Calculate the Euclidean distance from the right neighbor waypoint to the current

waypoint in each parent, E(p1(i), p1(i+1)) and E(p2(j), p2(j+1)). If i or j is the last

position in the parent, then calculate distance E(p1(i), p1(1)) or E(p2(j), p2(1)).

5. If neither the right neighbor waypoint in parent1 or parent2 exists in the child, then

select the right neighbor which yields the shortest distance to be the current waypoint.

If the distances are equal, then select one of the two right neighbors randomly. If both

the right neighbor waypoints in parent1 and parent2 exist in the child, then randomly

select the other waypoint which does not exist in the child to be the current waypoint.

6. Remove w from parent1 and parent2.
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7. If the child tour is complete, stop; otherwise, go to step 3.

5.3.6 Mutation Operator

The mutation operator introduces and sustains diversity of the generation. It allows the

algorithm to avoid local minima by preventing the individuals from becoming too similar

to each other. In this dissertation, the mutation operation consists of reversion, reciprocal

exchange and shift mutation [82].

• Reversion Mutation: Reversion mutation selects two waypoints along the length of the

child, which is cut at these waypoints, and waypoints between the two waypoints are

reversed, including the orientations.

• Reciprocal Exchange Mutation: Reciprocal exchange randomly selects two waypoints

in the child, and swap these two waypoints, including the orientations.

• Shift Mutation: In shift mutation, a waypoint is chosen randomly, then the orientation

of this point is reset randomly in the interval [0, 2π].

5.4 Experiment

The performance of GA has been examined for both low waypoint density case and high

waypoint density case. The authors conduct experiments on two cases. The first experiment

(low density case) is implemented on a 20× 20 square with minimum turning radius 1. The

other (high density case) is on a 5×5 square with minimum turning radius 1. In both cases,

the waypoints are generated randomly, and the numbers of waypoints varies from 5 to 50 with

increment 5. For each given number of waypoints, 30 samples are randomly generated, and

the average length of these samples is computed. The authors also compare the result of GA

with Alternating Algorithm (AA) [84] and the Randomized Headings Algorithm (RHA) [58].

The headings of RHA in this experiment are randomly generated in the interval [0, 2π]. The

Lin-Kernighan Heuristic (LKH) [80] is used to calculate the Euclidean Traveling Salesman
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Table 5.1: Parameter Table for 20x20 case

Parameter Symbol Value

maximum generation size Pg 7000

population size Pn 20

elitism rate Pe 20%

crossover rate Pc 90%

permutation mutation rate Pm 7%

orientation mutation rate Pa 90%
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Figure 5.1: 20x20 square (low density) case comparison.

Problem (ETSP) orders for AA and Asymmetric Traveling Salesman Problem (ATSP) orders

for RHA. The ETSP result also represents the lower bound. Fig. 5.1 shows the performance of

different algorithms under low waypoint density. Fig. 5.3, Fig. 5.4 and Fig. 5.5 are instances of

different algorithms in this case. Fig. 5.2 shows the performance of different algorithms under

high waypoint density. Fig. 5.6, Fig. 5.7 and Fig. 5.8 are instances of different algorithms in

this case. The genetic algorithm parameters for these two cases are shown in Table 5.1 and

Table 5.2.
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Table 5.2: Parameter Table for 5x5 case

Parameter Symbol Value

maximum generation size Pg 11000

population size Pn 35

elitism rate Pe 55%

crossover rate Pc 100%

permutation mutation rate Pm 7%

orientation mutation rate Pa 7%
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Figure 5.2: 5x5 square (high density) case comparison.

As shown in Fig. 5.1 and Fig. 5.2, when the density of the waypoints increases, the

performance of the Alternating Algorithm decreases comparing to the performance of the

Randomized Headings Algorithm. However when waypoints are far apart, the Dubins prob-

lem becomes similar to the Euclidean problem, therefore the Alternating Algorithm performs

almost optimally. This has already be described in Le Ny’s work [58]. Therefore the authors

focus the discussion on the comparison between GA and AA in low waypoint density case

and comparison between GA and RHA in high waypoint density case.
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When the waypoint density is low, the performance of GA is much better than AA,

because the ETSP order plays the dominant role in the DTSP. But since AA does not

optimize the orientations, then when the result of ETSP is obtained, AA is finished after

connecting the ordered points. In contrast, the proposed GA optimizes the orientations after

achieving the ETSP order.

When the waypoint density is high, i.e. the distance between each pair of waypoints

is small relative to the turning radius, the performance of GA is no worse than RHA. The

reason is the optimal order of the ETSP is no longer the optimal order for DTSP. There-

fore, searching other orders for DTSP becomes important. RHA takes this situation into

consideration in its implementation, but once the initial random headings are fixed, the al-

gorithm result is based on those fixed headings. RHA discards other possible headings. The

GA algorithm addresses this problem with a shift mutation operator, which enhances the

searching ability for other possible headings.

It should be noted, however, that when waypoint number is larger, the time performance

of GA decreases comparing to RHA and AA. The reason is that RHA and AA benefit from

the state of the art TSP solving tool to calculate the optimal asymmetric or symmetric TSP

result. The implementation of GA described in this chapter is not as fast as those tools

when dealing with large number of waypoints. Introducing more advanced GA searching

techniques, however, may improve the computing time issue.

5.5 Summary

In this chapter, a genetic algorithm is designed to find the shortest length tour within

a given set of waypoints for the Dubins vehicle (DTSP). The numerical results show that

the GA method performs well in both low waypoint density case and high waypoint density

case because of the global searching ability. When the number of waypoints becomes very

large, however, the proposed GA algorithm is not as efficient as the well-established Alter-

nating Algorithm and Randomize Headings Algorithm. In the future work, the authors will
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Figure 5.3: Alternating algorithm for low waypoint density case with 10 waypoints. The
tour length is 76.64 m.
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Figure 5.4: Random headings algorithm for low waypoint density case with 10 waypoints.
The tour length is 83.89 m.
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Figure 5.5: Genetic algorithm for low waypoint density case with 10 waypoints. The tour
length is 68.89 m.
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Figure 5.6: Alternating algorithm for high waypoint density case with 10 waypoints. The
tour length is 40.62 m.
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Figure 5.7: Random headings algorithm for high waypoint density case with 10 waypoints.
The tour length is 38.03 m.
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Figure 5.8: Genetic algorithm for high waypoint density case with 10 waypoints. The tour
length is 26.82 m.
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explore the searching ability by adapting the parameters of the genetic algorithms during

the searching process to enhance the global searching ability, and mix state of the art local

searching techniques to improve the local searching ability.
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Chapter 6

Dubins Traveling Salesman Problem with Neighborhoods

6.1 Introduction

The work in this chapter takes the physical size of sensor scope into consideration when

planning a path for the waypoints visiting problem. Considering the sensor scope, there is no

constraint that the center of sensor scope need to locate at the exact waypoint position, i.e.

a waypoint may be located anywhere within the perimeter of the sensor scope. Thus, each

waypoint can be treated as a disk, whose center locates at the waypoint and radius equals

to the radius of sensor scope. Once the center of sensor scope enters a disk during traversal,

it is assured that the waypoint represented by this disk will be covered by the sensor. The

problem is to find a shortest length tour such that the sensor center traverses every disk and

returns to the starting one. Then the path planning problem of the robot-trailer system can

be modeled as a Dubins Traveling Salesman Problem with Neighborhoods (DTSPN) [76],

where in this dissertation the neighborhoods are represented by disks. Considering the nature

of the DTSPN, the author proposes a new approach to approximate the DTSPN. The main

idea is to decompose this problem into two stages: firstly the authors design a new algorithm

for the TSPN to determine the visiting sequence of the disks and entry points, which can be

applied for both disjoint case and overlapped case; secondly use the result of TSPN to form

a DTSP, and design a DTSP algorithm to determine the heading at each entry point.

The remainder of this chapter is organized as follows. In Section 6.2, the problem

statement of DTSPN is formally introduced. In Section 6.3, an algorithm is designed for

the DTSPN. The theoretical analysis of this algorithm is shown in Section 6.4. Then nu-

merical experiments and practical experiments are conducted in Section 6.5 and Section 6.6

respectively. Section 6.7 summarizes the key results in this chapter.
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6.2 Problem Statement

Let R = {R1, R2, . . . , Rn} be a set of n compact regions in the plane, and Σ =

(σ1, σ2, . . . , σn) be an ordered permutation of {1, . . . , n}. Let X = {X1, X2, . . . , Xn} denote

configurations of a Dubins vehicle when it enters corresponding region Ri, for i = 1, . . . , n.

The Dubins distance between configuration Xi and configuration Xj with minimum turning

radius ρ is denoted by Cρ(Xi, Xj). The Dubins Traveling Salesman Problem with Neighbor-

hoods (DTSPN) is to find a set Σ and X that minimizes the total tour length L:

L =
n−1∑

i=1

Cρ(Xσi
, Xσi+1

) + Cρ(Xσn
, Xσ1

) (6.1)

In this chapter, the regions are described as disks. The disk radius equals to radius

of sensor scope and disk centers locate at the given set of waypoints. The sensor center is

assumed to follow the tour path.

6.3 Algorithm Design

The proposed algorithm composes of four sequential steps. It firstly takes the disk

centers to be entry points and obtains an optimal Euclidean Traveling Salesman Problem

(ETSP) tour over these entry points; then adopts a Combination Operation to combine

overlapped disks and seek entry points that can simultaneously visit several disks; and then

uses an Alternating Iterative Algorithm (AIA) to further shorten the tour length by finding

alternative entry points of the disks; finally uses the alternative entry points to form a DTSP,

and obtains the headings of entry points by a DTSP method. An illustration of the process

is shown in Fig. 6.1.

6.3.1 Find the Optimal ETSP Tour

In this section, the algorithm firstly takes the disk centers to be entry points and obtain

the optimal ETSP tour Ttsp over these entry points. The optimal ETSP tour can be obtained
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Figure 6.1: Illustration of DTSPN process. (a) Optimal ETSP tour (b) Combination Oper-
ation (c) Odd step of Alternating Iterative Algorithm (d) Even step of Alternating Iterative
Algorithm (e) Optimal DTSP tour
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by the LKH solver [80], which is an effective implementation of the Lin-Kernighan heuristic

for solving Traveling Salesman Problem. Although it is a heuristic approach, computational

experiments have shown that it performs very well in practice. It is widely accepted that

LKH will produce an efficiently exact result in scales up to hundreds or even thousands of

cities [80].

6.3.2 Combination Operation

For the case in which the disks are overlapped, the authors further introduce a Combi-

nation Operation [66] that seeks to take advantage of the possibility of visiting several disks

at one single entry point.

In [66], the researchers modified the Welzl’s algorithm [85] to combine several entry

points into one entry point that can simultaneously visit several disks, based on the order

of the optimal ETSP tour. The original Welzl’s algorithm is a randomized algorithm for

solving the minimum enclosing disk problem in the Euclidean plane. It can find the smallest

disk that contains a given set of points in expected O(n) time.

In this section, the authors adopt a new version of implementation for the Combination

Operation. The main idea of Combination Operation is to find the maximal group of entry

points covered by an enclosing disk whose radius equals to that of the given disks, via

Welzl’s algorithm. The algorithm iterates the ordered entry points. At each entry point, it

tests whether the current entry point belongs to the previous enclosing disk. If it does, the

algorithm includes the current entry point in the previous enclosing disk and proceeds to test

the next entry point. If the current entry point does not belong to the previous enclosing

disk, the algorithm obtains the intersection region of given disks whose entry points included

in the previous enclosing disk, and then takes the center of previous enclosing disk as a new

entry point, instead of the entry points included in the previous enclosing disk. Since the

center of previous enclosing disk lies inside this intersection region of overlapped disks, the

algorithm associates it with this intersection region. Then the algorithm restarts Welzl’s
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algorithm from the current entry point and goes on testing the rest entry points. The

process is described in Algorithm 3. Note that the number of entry points in any tour of this

chapter is 1 greater than the actual number of entry points, because the first entry point of

the tour is also the last entry point, thus ensuring the tour is closed.

The notations used in the algorithm are listed as follows:

• Optimal ETSP tour over entry points, Ttsp, where Ttsp[i] denotes the ith entry point

in the tour.

• Radius of the given disks, r.

• Test entry point set, T .

• Tour after Combination Operation, Tcom.

• Current enclosing disk, Dc.

• Previous enclosing disk, Dp.

In line 10 of Algorithm 3, the reason to obtain the intersection region of disks is based on

the fact that there are many choices to place one entry point that can visit several overlapped

disks, e.g. any point within the intersection region of these overlapped disks. In order to

seek the optimal entry point within the intersection region in the next step, it is necessary

to identify the intersection region of the overlapped disks. It is possible that there is only

one entry point in T , in such case the intersection region is the the corresponding disk whose

entry point in T .

The intersection region of overlapped disks is a convex shape bounded by circular arcs

that meet at vertices where two or more circles intersect, as shown in Fig. 6.2. To obtain

it, the first thing to do is to identify these vertices and the arcs that connect them to each

other. The process is as follows: consider every pair of circles; find their two intersection

points, which form two candidate vertices; if a candidate vertex is inside all other circles,

then it is indeed a vertex on the boundary of intersection region; sort the result vertices in a
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Algorithm 3 Process of Combination Operation

Input: Ttsp and r

Output: Tour after Combination Operation Tcom

1: T ← ∅, Tcom ← ∅

2: n ← Number of entry points in Ttsp

3: for i← 1 to n− 1 do
4: T ← T ∪ Ttsp[i]
5: Dc ← Welzl’s algorithm of T
6: if Radius of Dc ≤ r then
7: Dp ← Dc

8: else
9: T ← T \ Ttsp[i]
10: Obtain intersection region of disks whose entry

points in T and associate it with center of Dp

11: Add center of Dp to Tcom

12: T ← ∅

13: T ← Ttsp[i]
14: Dp ← Welzl’s algorithm of T
15: end if
16: end for
17: Add center of Dp to Tcom

18: Add Tcom[1] to Tcom

19: return Tcom

consistent order around the intersection region, i.e. clockwise or counterclockwise. (Notice

that there may be more than three circles coincide at one vertex, the result vertices need to

be set unique if multiple vertices coincide.) Then the circular arcs on the boundary can be

determined by the ordered vertices and disk radius. The intersection region can be finally

represented by a list of these circular arcs.

Theorem 6.1 ( [66]). Given a set of n ≥ 2 possibly intersecting disks, with r > 0, the tour

length of Tcom is no longer than that of Ttsp,

length(Tcom) ≤ length(Ttsp)
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Figure 6.2: Intersection region of the overlapped disks (in grey). The entry point lies within
the intersection region.

6.3.3 Alternating Iterative Algorithm for TSPN

Through the previous step, the entry points are all located at either the center of the

disjoint disk or the intersection region of overlapped disks. In this step, the authors design

an Alternating Iterative Algorithm (AIA) to find alternative entry points of the disks that

may further shorten the TSPN tour length.

The input is the tour Tcom after Combination Operation. The main idea of AIA is that it

utilizes the intersection points between the tour path and the boundaries of the intersection

regions or disjoint disks. For an intersection region, the boundary is an ordered list of circular

arcs that enclose the region. For a disjoint disk, the boundary is the circle that encloses the

disk. Each intersection region or disjoint disk is associated with an entry point in Tcom.

The algorithm firstly selects the first intersection point on each boundary and connects

these points to form a new tour; then in the next step, the new tour path is used to compute

new intersection points. Updating the entry points with the second intersection point on

each boundary, the algorithm forms a new tour path again; then repeats the former steps.

For each boundary, the entry point alternates between the first intersection point and the

second intersection point in successive steps. In order to stop the process, this algorithm
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Algorithm 4 Process of Alternating Iterative Algorithm

Input: Tcom

Output: ETSPN tour Taia obtained by AIA
1: Lp ← Tour length of Tcom

2: OddStepTSPN (Tcom)
3: Ln ← Tour length of Tcom

4: i ← 2
5: while Lp - Ln > δ do
6: Lp ← Ln

7: if i mod 2 = 0 then
8: EvenStepTSPN (Tcom)
9: else
10: OddStepTSPN (Tcom)
11: end if
12: Ln ← Tour length of Tcom

13: i ← i+ 1
14: end while
15: Taia ← Tcom

16: return Taia

introduces a termination condition parameter δ. If the reduction between the previous step

tour length (Lp) and the next step tour length (Ln) is less than δ, then AIA considers that

there is no more improvement of the length and stops. The main process is described in

Algorithm 4. It calls Algorithm 5 and Algorithm 6.

Theorem 6.2. Given a set of n ≥ 2 possibly intersecting disks, with r > 0, let Tcom and

Taia denote the tours produced after combination operation and the AIA, respectively. Then

the tour length of Taia is no longer than that of Tcom,

length(Taia) ≤ length(Tcom)

Proof. The process of AIA starts from the Tcom. By triangle inequality, the tour length of

each step in AIA is no longer than that of previous step. This property can be seen from

Fig. 6.1c and Fig. 6.1d.
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Algorithm 5 OddStepTSPN (Tcom)

Input: Tcom

Output: New entry points of Tcom

1: T ← ∅

2: n ← Number of entry points in Tcom

3: for i ← 1 to n− 1 do
4: L ← Line segment from Tcom[i] to Tcom[i+ 1]
5: Boundary ← Region Boundary associated with Tcom[i+ 1]
6: Num← Number of intersection points between L and Boundary

7: if Num ≥ 1 then
8: P1 ← First intersection point between L and Boundary

9: Add P1 to T

10: else
11: Add Tcom[i+ 1] to T

12: end if
13: end for
14: Add T [1] to T

15: Tcom ← T

Algorithm 6 EvenStepTSPN (Tcom)

Input: Tcom

Output: New entry points of Tcom

1: T ← ∅

2: n ← Number of entry points in Tcom

3: for i ← 1 to n− 1 do
4: L ← Line segment from Tcom[i] to Tcom[i+ 1]
5: Boundary ← Region Boundary associated with Tcom[i]
6: Num← Number of intersection points between L and Boundary

7: if Num = 2 then
8: P2 ← Second intersection point between L and Boundary

9: Add P2 to T

10: else
11: Add Tcom[i] to T

12: end if
13: end for
14: Add T [1] to T

15: Tcom ← T

6.3.4 Compute the Headings for Entry Points to Form a DTSP

Once the set of entry points are determined, the Dubins Traveling Salesman Problem

with Neighborhoods (DTSPN) is reduced into a Dubins Traveling Salesman Problem (DTSP)
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that finds the shortest Dubins path connecting all these entry points. All categories of

algorithms for DTSP as mentioned in Section 2.2.2 can be applied in this problem, and have

their advantages and disadvantages for this application. Category (1) algorithms can utilize

the visiting order of the disks which is determined by the previous step in this chapter.

They need only to determine the heading at each entry point, in order to calculate the

corresponding Dubins path. That saves the computing efforts. But these algorithms may

perform worse when the distances between entry points are very small relative to the turning

radius. Category (2) can perform well when the distances between entry points are very small

relative to the turning radius, but need more computing effort because the visiting order

needs to be determined again. The genetic algorithms can find an approximate solution

efficiently, but have no proven performance guarantees.

Since the entry points in many practical robot-trailer applications are spaced relatively

far apart, in this section the authors adopt the algorithms in Category (1). One of the

well-established techniques is called Alternating Algorithm (AA) [84]. By using AA, the

optimal ordered entry points Taia are connected by straight line segments, after which the

odd-numbered edges along with respective headings are retained; the even-numbered edges

are replaced by the Dubins paths. Since the solution of AA depends on the choice of starting

entry point, there are many possible solutions for AA: (1) for a tour with even number of

edges, starting AA from different entry points gets two sets of parities of edge numbers, thus

has two kinds of possible solutions; (2) for a tour with odd number of edges, AA requires to

replace not only all even-numbered edges, but also the last odd-numbered edge by the Dubins

path. There is one special entry point that connects two Dubins paths, and starting AA

from different entry points will obtain different special entry points. Thus, if the number of

entry points is N , there are N possible solutions. If the entry points are visited in a reversed

order, the lengths of Dubins paths that connect to the special entry point will change as

the headings change, which account for another set of N possible solutions. Thus the total

number of possible solutions in such case is 2N .
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In order to obtain the minimum cost tour, one option is to generate all the possible

solutions and see which one is the shortest, as mentioned in [56], but it requires O(n2) time

complexity. In this chapter, the authors propose a more efficient method to obtain the

minimum cost tour, and call it Improved Alternating Algorithm (IAA). The method follows

the visiting order determined by the previous section, and consists of the following steps:

1. For each entry point, compute two candidate headings: one pointing to the next entry

point, and the other pointed from the previous entry point. Construct a cluster that

contains two nodes. The cluster corresponds to the entry point, and each node cor-

responds to a candidate heading. (Note that the last cluster and the first cluster are

identical, because the last entry point in Taia is also the first entry point.)

2. Create arcs from each node in each cluster to all nodes in the successive cluster. The

arc costs equal to the corresponding Dubins distances between two nodes.

3. For the above directed graph, apply Dijkstra’s Algorithm to find the shortest path

from the first node in the first cluster to the first node in the last cluster. Then repeat

Dijkstra’s Algorithm to find the shortest path from the second node in the first cluster

to the second node in the last cluster.

4. Pick the path with minimum cost between the two result paths in step 3.

6.4 Performance Analysis

Let P be a set of n waypoints in a compact region Q⊂R2 and Pn be the collection

of all waypoint sets with cardinality n. Let ETSP (P) denotes the shortest tour length of

Euclidean Traveling Salesman Problem over P, and DTSPρ(P) denotes the shortest tour

length of Dubins Traveling Salesman Problem over P with minimum turning radius ρ. Let D

be a set of n equal disks with radius of r in a compact region Q⊂R2 and Dn be the collection

of all disk sets with cardinality n. Let ETSPN(D) denote the shortest tour length of

Euclidean Traveling Salesman Problem with Neighborhoods over disks D, and DTSPNρ(D)
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denote the shortest tour length of Dubins Traveling Salesman Problem with Neighborhoods

over disks D with minimum turning radius ρ. Let LAIA(D) denote the tour length of ETSPN

over disks D after the Alternating Iterative Algorithm. Let LAA,ρ(P) denote the tour length

of DTSP over waypoint set P as given by Alternating Algorithm with minimum turning

radius ρ. Let LIAA,ρ(P) denote the tour length of DTSP over waypoint set P as given

by Improved Alternating Algorithm with minimum turning radius ρ. Let LAIA+IAA,ρ(D)

denote the tour length of DTSPN over disks D after the Alternating Iterative Algorithm

and Improved Alternating Algorithm with minimum turning radius ρ.

Theorem 6.3. (Upper bound on ETSPN for disks) Given a compact region Q, there exists

a finite constant β(Q), for D ∈ Dn, such that

ETSPN(D) ≤ β(Q)
√
n

Proof. Assuming that P is the set of entry points in the optimal ETSPN tour over D, it

can be seen that the optimal ETSPN tour over D is also the optimal ETSP tour over P.

Recall the fact for ETSP in [86], given a compact region Q, there is finite constant β(Q),

for P ∈ Pn, such that ETSP (P) ≤ β(Q)√n. Therefore, the statement is proved.

Theorem 6.4. (Performance of AIA) Given n ≥ 2 possible intersecting disks D with r > 0,

ETSPN(D) ≤ LAIA(D) ≤ ETSPN(D) + 2nr

Proof. It is fairly easy to see that ETSPN(D) ≤ LAIA(D). For the second inequality, an

extended tour can be obtained by going along the optimal ETSPN tour and making a detour

of length at most 2r to visit the center of each disk, when the ETSPN tour enters the disk.

The length of optimal ETSP tour over these centers is less than that of the extended tour.

Furthermore, from Theorem 6.1 and Theorem 6.2, the tour length of AIA is less than the

length of the extended tour.
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Lemma 6.5. (Theorem 3.4 in [50]) Given two configurations X = (x, y, θ) and X ′ =

(x′, y′, θ′), and ρ > 0 for Dubins vehicle, there exists a constant κ ∈ [2.657, 2.658], such

that

Cρ(X,X ′) ≤
√

(x− x′)2 + (y − y′)2 + κπρ

Lemma 6.6. (Lemma 3.5 in [50]) Given P ∈ Pn with n ≥ 2 and ρ > 0 for Dubins vehicle,

LAA,ρ(P) ≤ ETSP (P) + κ⌈n
2
⌉πρ

Theorem 6.7. (Bounds on the DTSPN for disks) Given any set of n ≥ 2 possible intersect-

ing disks D with r > 0, and ρ > 0 for Dubins vehicle,

ETSPN(D) ≤ DTSPNρ(D) ≤ ETSPN(D) + κ⌈n
2
⌉πρ

Proof. Given the optimal DTSPN tour over D, a feasible ETSPN tour can be formed by

connecting the entry point in each disk with Euclidean path. The new ETSPN tour is no

longer than the optimal DTSPN tour and no shorter than the optimal ETSPN tour, thus

ETSPN(D) ≤ DTSPNρ(D). Conversely, given the optimal ETSPN tour over D, a feasible

DTSPN tour can be formed by connecting the entry point in each disk with Alternating

Algorithm, whose tour length will be no shorter than that of the optimal DTSPN tour.

While from Lemma 6.6 for the Alternating Algorithm, the length of the feasible DTSPN tour

is no longer than ETSPN(D)+κ⌈n
2
⌉πρ. Thus, DTSPNρ(D) ≤ ETSPN(D)+κ⌈n

2
⌉πρ.

Theorem 6.8. (Performance of Improved Alternating Algorithm for DTSP) Given P ∈ Pn

with n ≥ 2 and ρ > 0 for Dubins vehicle,

LIAA,ρ(P) ≤ LAA,ρ(P)

Proof. Considering different starting waypoints in an order, there are two possible headings of

each waypoint by AA, which are included in the node set of IAA. The possible Dubins paths
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between successive waypoints in AA are also included in the arc set of IAA. If the waypoints

are visited in a reversed order, there are another two possible headings of each waypoint

in AA, which are opposite to the two headings of each waypoint in the original order. By

changing the headings of waypoints in the reversed tour to their opposite directions, the

reversed tour can be transformed into a tour in the original order, without changing the tour

length. Since the opposite directions are also included in the node set of IAA, the directed

graph of IAA in the original order is sufficient to find the minimum cost AA tour. The

Dijkstra’s Algorithm can guarantee to find a shortest path from one node to another in a

graph. Therefore, if the result of AA is the shortest path, then it is also the result of IAA;

otherwise, it is longer than the result of IAA.

Notice that, AA requires that the straight line segment and Dubins path are connected

in an alternate way (except the last edge in odd number of edges). From the representation

of IAA, there is no such constraints, which gives the algorithm more freedom to find a shorter

solution than the method in [56] of testing all possible AA solutions.

Theorem 6.9. (Upper bound on the performance of AIA with IAA) Given any set of n ≥ 2

possible intersecting disks D with r > 0, and ρ > 0 for Dubins vehicle,

LAIA+IAA,ρ(D) ≤ ETSPN(D) + 2nr + κ⌈n
2
⌉πρ

Proof. From Lemma 6.6 and Theorem 6.8, LAIA+IAA,ρ(D) is no longer than LAIA(D) +

κ⌈n
2
⌉πρ. From Theorem 6.3, the tour length LAIA(D) is no longer than ETSPN(D) +

2nr.

Note. For D ∈ Dn, Theorem 6.3 implies that ETSPN(D) belongs to O(
√
n) and Theorem

6.7 implies that DTSPN(D) belongs to O(n) and Ω(
√
n). Furthermore, Theorem 6.9 implies

that LAIA+IAA,ρ(D) belongs to O(n).

For the time complexity, the running time of the new version Combination Operation

is upper bounded by O(n2). The running time of obtaining the intersection region for
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Table 6.1: Experiment Parameters

Parameter Symbol Value

Minimum Turning Radius ρ 1.0

Disk Radius r 1.0

Termination Condition Parameter δ 0.001

overlapped disks is O(n2). The running time of Alternating Iterative Algorithm is O(n).

The running time of Improved Alternating Algorithm is O(n log(n)). Taking LKH to be the

ETSP solver, the average running time of LKH is approximately O(n2.2) [80].

6.5 Numerical Experiment

The performance of the proposed algorithm is examined for both high density case (most

disks are overlapped) and low density case (most disks are disjoint). The first experiment

(high density case) is implemented on a 10 × 10 square. The other (low density case) is

on a 40 × 40 square. In both cases, the positions of disk center are generated randomly,

and the numbers of disks varies from 5 to 50 with increment 5. For each given number

of disks, the authors randomly generate 30 samples, and compute the average length of

these samples. The experiment parameters are listed in Table 6.1. The performance of the

proposed algorithm is compared step by step. The final result is compared with Dubins

Traveling Salesman Problem (DTSP) over disk centers, which simulates the case that does

not take advantage of the sensor scope to reduce the tour length. The DTSP result is

computed by ETSP + IAA. The result of ETSP + CO + IAA is also provided to compare

the effects of Combination Operation (CO) and Alternating Iterative Algorithm (AIA) in

DTSPN process.

Fig. 6.3 shows the performance of different steps in high density case. Fig. 6.4 is an

instance in this case. Fig. 6.5 shows the performance of different steps in low density case.

Fig. 6.6 is an instance in this case. As shown in Fig. 6.3 and Fig. 6.5, the proposed al-

gorithm in this chapter performs much better than DTSP over disk centers, in both low
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Figure 6.3: 10x10 square (high density) case comparison.

density case and high density case. It reduces the tour length by taking the sensor scope

into consideration. Especially, when the disks are overlapped frequently, the Combination

Operation greatly reduces the number of entry points for the last step to calculate Dubins

paths. For the low density case that most disks are disjoint, Alternating Iterative Algorithm

can further reduce the TSPN tour length after the Combination Operation, finally reduce

the total DTSPN tour length.

6.6 Practical Experiment

In this section, a practical experiment is established to test performance of the proposed

algorithm based on practical parameters of a robot-trailer application. The towing robot is a

modified SegwayR© Robotic Mobility Platform (RMP) 440. Position information is provided

to centimeter accuracy by a commercial integrated differential Global Positioning System

(GPS) / Inertial Navigation System (INS) solution, the NovatelR© SPAN system with the

high precision HoneywellR© HG1700 AG58 gyro. The towed sensor is a GeonicsR© EM61-MK2

metal detector. The location of sensor center is determined by geometric calculations based
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Figure 6.4: Instances for high density case with 15 disks. (a) Euclidean Traveling Salesman
Problem with Neighborhoods (b) Dubins Traveling Salesman Problem with Neighborhoods.

on tow bar hitch angles and the fixed tow bar lengths. The test field is about 30 × 90 m2

and 20 waypoints are randomly placed within the test field. The towed sensor must cover all
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Figure 6.5: 40x40 square (low density) case comparison.

waypoints during traversal. The minimum turning radius of the system is 4 m. The sensor

width is 2 m, thus the disks whose center at waypoints should have radius of 1 m. Fig. 6.7

shows the practical experiment result. As shown in that figure, all disks are traversed by

the tour path, which means all waypoints are covered by the towed sensor. Therefore, the

DTSPN model is feasible for this robot-trailer application.

6.7 Summary

In this chapter, the author takes the sensor scope into consideration for the path plan-

ning problem and model it as a Dubins Traveling Salesman Problem with Neighborhoods

(DTSPN) where the neighborhoods are represented by disks. A new algorithm is proposed

for solving the DTSPN, in which the visiting sequence of the neighborhoods and the cor-

responding entry points are firstly determined by a TSPN algorithm, and then the task of

finding the headings for the entry points is formed as a DTSP. The advantage is that the

DTSPN can be divided into two subproblems, TSPN and DTSP, then one can directly ex-

ploit the existing methods on TSPN and DTSP. The theoretical and numerical studies show
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Figure 6.6: Instances for low density case with 15 disks. (a) Euclidean Traveling Salesman
Problem with Neighborhoods (b) Dubins Traveling Salesman Problem with Neighborhoods.

that the proposed algorithm performs well in both disjoint disks case and overlapped disks

case. The practical experiment shows that the DTSPN model is feasible for the robot-trailer
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Figure 6.7: The green line represents the positions of the trailer center taken during the test.
The waypoints and disk regions are represented by red and black circles respectively. The
desired entry point of each disk is represented by blue triangle. (a) Practical experiment
result. (b) One portion of the path.
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application. This work can be extended in many directions. While the author focuses on a

robot-trailer application, the proposed algorithm of DTSPN could be applied to any Dubins

vehicle that has similar mission requirements, such as a fixed-wing Unmanned Aerial Vehicle

(UAV) in a multi-target surveillance mission, or a car-like mobile robot that collects data in

Wireless Sensor Networks (WSNs).
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Chapter 7

Conclusion

In this concluding chapter, the author summarizes the contributions of this dissertation,

and offers a few comments on future work.

7.1 Review of Contributions

In Chapter 3, the author presents an optimization approach to minimize the number

of turns of autonomous vehicles in coverage path planning. For complex polygonal fields,

the problem is reduced to finding the optimal decomposition of the original field into simple

subfields. The optimization criterion is minimization of the sum of widths of these decom-

posed subfields. A new algorithm is designed based on a multiple sweep line decomposition.

The time complexity of the proposed algorithm is O(n2 log n). Experiments show that the

proposed algorithm can provide nearly optimal solutions very efficiently when compared

against recent state-of-the-art. The proposed algorithm can be applied for both convex and

non-convex fields.

In Chapter 4, the author presents an optimization approach that takes the vehicle’s

characteristics into account to minimize the non-working travel of the robots in coverage

path planning. The aim is to minimize the cost on a fixed number of turns, by finding

the optimal traversal sequence of parallel tracks for the surveyed field. The author firstly

presents a novel traversal pattern of parallel tracks for a single convex field, then extends

the proposed traversal pattern to connect with the decomposition algorithm, providing a

complete coverage path planning method for non-convex fields. Experiments show that the

proposed method can provide feasible solutions and the total wasted distance can be greatly
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reduced for both single convex field and multiple decomposed fields, when compared against

classical boustrophedon path or recent state-of-the-art.

In Chapter 5, the author studies the traveling salesman problem. Taken the vehicle’s

characteristics into account, the problem is modeled as a Dubins Traveling Salesman Problem

(DTSP). A genetic algorithm is designed to find the shortest path and the performance

is evaluated in numerical study. The experiments show that the proposed algorithm can

perform better than the well-known alternating algorithm and random headings algorithm,

in both low waypoint density and high waypoint density situations.

In Chapter 6, the author takes the physical size of the actual sensors into consideration

for the path planning. The trailer equipped with sensors collects data among a collection of

waypoint neighborhoods. The concept of a neighborhood is used to model the size of sensor

scope. The problem is modeled as a Dubins Traveling Salesman Problem with Neighborhoods

(DTSPN), where the neighborhoods are represented by disks. The author uses a two-stage

approach to solve the problem: (1) design a new algorithm for the TSPN to search the optimal

visiting sequence and entry positions; (2) design a new algorithm for the Dubins vehicle to

determine the heading at each entry position. The time complexity analysis shows that the

first stage runs in O(n2) and the second stage runs in O(n log(n)). The theoretical and

numerical studies show that the proposed approach can perform very well for both disjoint

and overlapped disks cases. The practical experiment shows that the model is feasible for

the robot-trailer application.

7.2 Future Work

Several aspects of the path planning module can be improved in future revisions. The

algorithms developed in this dissertation are suitable for single robot applications. A more

general algorithm can be designed for the situation in which multiple robots can work si-

multaneously to finish a task. Consider the vehicle’s characteristics, the first stage of the

task (coverage path planning) can be modeled as a Generalized Vehicle Routing Problem
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(GVRP) and the second stage of the task (waypoints traversal planning) can be modeled

as a Multiple Traveling Salesman Problem (MTSP) for Dubins Vehicles. Both GVRP and

MTSP are challenging and emerging research areas, especially for Dubins vehicles.

Another improvement that can be made in future revisions is for the obstacle avoid-

ance. The algorithms of Traveling Salesman Problems developed in this dissertation make

assumptions that there is no obstacles in an area where the system is turning. A more robust

algorithm should be designed to take such cases into consideration when planning an optimal

route. Also, the path in the clearance region around obstacles and boundary can be taken

into consideration when planning the optimal route.
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