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Abstract

Data centers are ever increasing as we become more reliant on web based transactions.

The bene�ts of such massive computing are obvious by the speed and ease we can get most

media or information. A challenge is that new large data centers introduce a level of energy

consumption that the world has not seen before. The obvious energy cost of running the

computers is a billion dollar problem, but there are hidden costs like running cooling systems

as well. Moreover, data centers are getting more concentrated on speci�c tasks, be it SQL or

Hadoop or anything else an organization needs. To help combat the problems of large data

centers, we aim at developing solutions that can work for each type of data center. This

could entail creating tools that are generic enough to work for all data centers, or focusing on

speci�c tools the type of software running in the data center. Our dissertation study works

in both ways. We build a thermal model that is �exible enough to be applicable for all data

centers; within our thermal model research we even show how it can be used to save energy.

We also create energy saving techniques for Hadoop clusters speci�cally, where we focus on

very data centric implementations of Hadoop to gain a signi�cant energy savings. Lastly we

propose a Spark speci�c process that takes what we have learned from Hadoop and thermal

research and developed techniques that o�er large energy and thermal savings within Spark

clusters.
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Chapter 1

Introduction

Energy e�ciency and energy conservation are e�orts that becoming important issues

for society at whole. The amount of power needed to continue to run our daily lives isn't

sustainable. As we scale into a world of more power consumption we will need to �nd creative

aways to �ll that power. A good way to get ahead of this problem is to make everything more

energy e�cient, and today one of the fastest growing energy hogs are data centers. In fact in

2013 data centers contributed to 91 billion kilowatt-hours of electricity, enough electricity to

power all the households in New York City twice over [43]. The NRDC states that much of

the power used by these data centers is in "under-utilization of data center equipment and

the misalignment of incentives, including in the fast growing multi-tenant data center market

segment." [43]. Since the data centers are growing and there is opportunity to create more

e�cient energy aware data centers we simply had to decided to what level of granularity do

we want to e�ect the data centers.

Not only is energy important recent studies show that thermal management is an impor-

tant issue to data centers due to ever-increasing cooling cost [57]. Cooling costs contribute to

a signi�cant portion of the operational cost of large-scale data centers; therefore, increasing

the size of a data center leads to huge amount of energy consumed by the center's cooling

system. An e�cient way to combat the high cost of cooling systems is to develop thermal-

aware management techniques that place jobs and data on servers to minimize temperatures

of data centers.

Its the ubiquity of data centers that makes energy and thermal management so inter-

esting. Our research focuses on �nding creating ways to manage and save energy within
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speci�c data center environments. We create these tools and processes then go on validate

them so they can be implemented on real life systems.

Contributions.

1. We created iTad, which is a thermal model for single server nodes. This model if light

weight so any data center can make smart decisions on thermal energy.

2. We created NAP, which is a process for Hadoop clusters to manage its disk energy.

This process saves energy at only a minimal cost to performance.

3. We propose a Spark energy pro�le which we use to develop Sparke which is an en-

ergy/thermal aware application for Spark clusters that will use the architecture of

spark to �nd either energy savings or thermal savings.

Organization. Each contribution is under the umbrella of data center optimizations,

but vary from perspective of thermal management, Hadoop energy management, or Spark

energy and thermal management. So we decided to organized this paper is organized by our

contributions. Each chapter will detail the related work, motivations and algorithms for each

contribution. We will use those contributions to show how data centers can be optimized

with real life data and models as evidence.
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Chapter 2

iTad

2.1 Introduction

Recent studies show that thermal management is an important issue to data centers

due to ever-increasing cooling cost [57]. Cooling costs contribute to a signi�cant portion of

the operational cost of large-scale data centers; therefore, increasing the size of a data center

leads to huge amount of energy consumed by the center's cooling system. An e�cient way to

combat the high cost of cooling systems is to develop thermal-aware management techniques

that place jobs

Thermal management aims at reducing cooling costs of data centers; thermal man-

agement mechanisms largely rely on thermal information to make intelligent job and data

placement decisions. Thermal information can be acquired in the following three means:

1. Temperature sensors measure inlet and outlet temperatures of servers

2. Computational �uid dynamics simulators (see, for example, Flovent) simulate temper-

atures of servers in data centers

3. Thermal models estimate a server's temperature based on the server's workloads.

After looking through these options we decided to create an CPU and I/O aware thermal

model called iTad. iTad standing for I/O Thermal Aware Data center. The reason we decided

to make such a model than use the other two options will be explained in the following

subsections.

3



2.1.1 Reducing Monitoring Cost

The �rst approach is to monitor server inlet temperatures by deploying sensors in a

number of locations in a data center [50]. This approach faces a dilemma; while high levels

of accuracy can be achieved by increasing the number of sensors, this leads to an expensive

monitoring solution. Reversely reducing the number of sensors may cause inaccuracies, and

an algorithm would need to be developed to extrapolate the heat from individual nodes thus

taking away the simplicity that makes this route so appealing. For large-scale data centers,

this approach is not very practical for two reasons. First, it is prohibitively expensive to

deploy hundreds of thousands of sensors to o�er accurate temperature measurements. Each

server needs at least two sensors; each sensor may cost up to $100 [8]. Second, wiring and

maintenance cost of the large number of sensors can further increase the operational cost of

data centers.

2.1.2 Reducing Monitoring Time

To reduce the high cost of deploying an excessive number of sensors, data center man-

agers can make use of the computational �uid dynamics simulators to simulate and collect

inlet temperatures of servers [42]. Although this simulation approach o�ers accurate thermal

information at low cost without employing any sensor, it is time consuming (e.g., several

hours) to run each simulation study. Thus, the simulation studies must be conducted o�ine,

indicating that thermal management mechanisms are unable to retrieve thermal information

from the simulators at run-time.

2.1.3 Bene�ts of Thermal Model

Thermal models are arguably a more promising approach to providing thermal manage-

ment mechanisms; they can provide temperature information of servers at run-time without

incurring any cost to purchase and maintain sensors. Thermal models o�er the following

four major bene�ts for data centers. First, thermal models signi�cantly reduce thermal

4



monitoring costs. Second, unlike thermal simulators, thermal models o�er temperature in-

formation to thermal management schemes in a real-time manner. For example, our iTad

thermal model is able to pro�le the thermal characteristics of a data center in a matter of

seconds. Third, thermal management powered by thermal models helps cut cooling costs

and boosts system reliability. Last, thermal models allows data center designers to quickly

make intelligent decisions on thermal management in an early design phase.

Most existing thermal models in the market treat servers as a uniform black box because

it is unclear what all factors are involved in the heat distribution of a data center [37]. There

are a few thermal models (see, for example, [56]) that can derive power consumption and

necessary cool power from inlet and outlet temperatures of servers. However, implementing

these models requires (1) many thermometers and (2) the management of thermal informa-

tion in real time (3)only based on CPU work. CPU Workload has been known to a�ect

thermal load, for example Figure 2.1 shows that when CPU utilization is increased, there

is a large increase in temperature [56], but it neglects I/O workload. I/O-intensive activities

in servers are commonly overlooked in these models. One of the goals of this research is to

demonstrate that I/O utilization plays an important role in a server's thermal dissipation.

We believe I/O-intensive applications running in data centers impose heavy load on servers,

making disks of the servers hot-spots.

2.1.4 Contributions

Contributions. The major contribution of this study are summarized as follows:

1. We develop the iTad thermal model that provides outlet temperatures of servers in a

data center. We show that both CPU and I/O thermal outputs can be extrapolated

from radiation heat and convection heat applied to a server. With iTad in place,

thermal management schemes can quickly make workload management decisions at

run-time based on I/O and CPU utilizations.
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Figure 2.1: Temperature of Processor when CPU utilization 100% vs Time [56].

2. We validate the accuracy of the iTad model using a server's real-world temperature

measurements obtained by an infrared thermometer (Figure 2.2).

3. Our experimental results suggest that iTad is an accurate model to derive server outlet

temperatures according to I/O and CPU activities.

4. We show that this model is easily can be plugged into any data centers.

5. We analytically study the relationship between I/O load and server outlet tempera-

tures. Our analysis con�rms that I/O-intensive workloads have signi�cant impact on

temperatures of servers.

2.2 Related Work

2.2.1 Energy-E�cient Data Centers

Large data has become on the hottest topics in computer. With refocus there has been

more interest in energy e�cient data centers [11] [12], because a recent study shows that

1.2% of all energy consumption in U.S. is attributed to data centers [33]. To minimize the
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Figure 2.2: Thermometer used in testing

e�ect of the data centers on the national consumption there has been many energy-saving

approaches, one that relates to this research is the work of Bieswanger et al. where they

deploy sensors to analyze the power consumption instantaneously, our research deals with

real-time thermal management has some overlap [9].

2.2.2 Thermal Aware Data Centers

Energy aware data centers has been the classical way of thinking about reducing the

e�ect of data centers on the environment. Another school of though is if we manage the

thermal outputs of the data centers, thus reducing the cooling cost we can have the same

impact that as energy e�cient data centers. [58]

2.2.3 Thermal Simulations

Most of the research related to thermal management in data centers use a commercial

simulation software FloVent, which provides detailed 3D visualization of air�ow and tem-

perature throughout the server room [2]. It can get very accurate heat recirculation results.

The downside is that, it is very complicated to setup or con�gure and it takes huge amount

of time to run each simulation. Such software is very useful for machine learning because

of the time needed to implement machine learning techniques but not very e�ective on split
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second decision making. We use iTad to implement a low cost and less time consuming

management technique.

2.2.4 Thermal Models

Eibeck et al [17] developed a model to predict the transient temperature pro�le of an

IBM 5-1/4-in. �xed disk drives by experimentally determining the thermal characteristics

of the disk drive. Tan et al presented a 3D �nite element modeling technique to predict

the transient temperature under frequent seeking [55]. Gurumurthi et al investigated the

thermal behavior of the hard disk and presented an integrated disk model. Their model

calculates the heat generated from the physical components of the disk drive like spindle

motor, voice-coil motor and disk arms [22]. Kim et al studied thermal behavior of disks

by varying the platter types and number of platters and established a relationship between

seek time and the disk temperature [30]. However, the impact of the disks utilization on the

disk temperature and contribution of disks to the outlet temperature of nodes have not been

investigated. Even though clearly thermal footprints of computing has a breathe of research.

Microsoft research and Carnegie Mellon University [37] presented a model which pre-

dicts the future temperature of servers through machine learning. As this model relies on the

sensor data, it will be costlier for large data centers to buy large amount of sensors. In our

research, instead of predicting future temperature we want a model to calculate the current

temperature based on the workload without using sensors.

Tang et al [59] [56] developed an interesting model demonstrating the e�ect of heat

recirculation on the inlet temperature of servers in a data center, and in turn, on the e�ciency

of cooling system. They calculate inlet temperature of servers based on the temperature of

the air supplied by the cooling room air condition (CRAC) and CPU utilization. Li et al

[36] showed that CPU intensive applications cause dramatic heat change for processor. We

believe that data intensive applications running in data centers will have the similar e�ect

on the disks of storage nodes, which has to be taken into account while calculating the total
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heat generated by the node. Kozyrakis [16] studied the e�ect of di�erent application and

observed the power consumption of the nodes. It showed that disk and memory consumes

signi�cant amount of power, even as compared to CPU (as shown in Example 2). As power

consumption has direct impact on heat generated, there is a need to investigate the thermal

load of I/O intensive applications on the nodes in data centers.

2.3 Methodology

2.3.1 Determine Recirculation Factors

We achieve the aforementioned goal by focusing on heat recirculation of active data

centers. Figure 2.3 depicts a general model for a data center, where each blade server's outlet

temperature a�ects room temperatures. The outlet temperature of the server depends on its

inlet air that enters the front of the server's rack. The inlet air temperature is the computer

room temperature cooled by an air conditioning system.

Figure 2.3: An Overview of a data center.
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Figure 2.3 shows that heat recirculation in a data center can be derived as the sum of

each server's outlet temperature. To build a model representing the heat recirculation of a

data center (see Figure 2.3), we start this study by paying attention to constructing a thermal

model for each individual server. Here we are using the assumption that since recirculation

is the sum of single servers, then if we can model a single server, we just need to apply it

to all the servers in the data center and add it all together. Essentially we will modeling

two di�erent things, the �rst will be the server heat transfer and the the inlet temperatures

value before the server heat transfer. Figure 2.4 shows how the initial temperature will feed

into our �rst model and they feeds into our inlet temperature model.

Figure 2.4: Model Overview

In our iTad model, there are three components (see Figure 2.5, where Tout denote outlet

temperature) a�ecting the outlet temperatures of a blade server. These three a�ecting factors

are inlet temperature, CPU utilization, and I/O workload.

Our iTad model makes use of these factors to estimate the outlet temperature for server

i, thereby enabling thermal management schemes to place workloads to control outlet tem-

peratures. The iTad model is orthogonal to existing thermal management schemes; iTad can

be seamlessly integrated with any thermal management scheme to either minimize outlet

temperatures or minimize heat recirculation in a data center. In this study, we focus on the

accuracy of iTad by validating it against real-world temperature measured by an infrared

thermometer.
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Figure 2.5: Three factors a�ect the outlet temperature of a single blade server.

Figure 2.6: Three factors a�ect the inlet temperature of a single blade server.

A challenge in the development of iTad is the measurements of inlet temperatures of

servers. More speci�cally, Figure 2.3 indicates that the air entering the servers is not equiv-

alent to initial temperature. Rather, the inlet temperature equals to the initial temperature

subtracted by some factor of air supplied by the air conditioning system. The inlet temper-

ature of a server is a�ected by three factors, namely, computer room temperature, cooling

supply air temperature, and the outlet temperatures of other servers (see Figure 2.6). For

this model we decided to model only the current server outlet temperature an instantaneous

moment so its the only one that a�ects input temperatures. In one of our current studies,

we are extending the iTad model to investigate the heat recirculation e�ect by considering

the impact of all nodes outlet temperatures on inlet temperatures.
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2.3.2 Determine Hardware Factors

After dealing with actual inlet temperatures, we incorporate I/O and CPU workloads

into iTad. In this part of the study, we show how the outlet temperature of a server changes

based on I/O-intensive activities. The iTad model has to deal with heat transfer, especially

convection heat transfer. Convection heat transfer [60] is based on temperature and spe-

ci�c heat, all of which have a linear relationship. A study conducted by Barra and Ellzey

demonstrates how a wide range of shapes a�ect heat transfer [10]. iTad is the �rst model

that attempts to incorporate I/O-intensive workload therefore, we consider cases where all

the components in a data center have the same transfer rate. Nevertheless, we do not imply

by any means that all the components have an identical transfer rate. In our future work,

we will extend iTad to consider multiple heat transfer rates to further improve the accuracy

of iTad.

The iTad model helps in improving the energy e�ciency of data centers because thermal

information o�ered by iTad assists dynamic thermal management to reduce the energy con-

sumption in cooling systems in data centers. We show that thermal management mechanisms

can quickly make workload placement decisions based on thermal information facilitated by

iTad.

2.4 Modeling

2.4.1 Assumptions and Notation -

We described the plan of our model as well as the basic components necessary for the

model. In this subsection, we will present the assumptions and the notations we used in the

model. Following are the assumptions :

1. Initial temperature is always consistent throughout the data center.

2. The air �ow is static in all parts of the data center.
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3. Supplied temperature strength is linearly proportional to the distance from the vent.

4. Our model is models temperature at an instantaneous moment so nothing is being

circulated in our model.

5. The adjacent nodes will not heat up enough to cause an e�ect to the node in question.

6. PC components are all similar in shape so the heat transfer is consistent.

7. The entire experiment is based on the premise that taking a single node from a cluster

and running our experiments we can grasp the important factors in thermal change in

computers. With this information we will able to model large scale environment.

After laying out the assumptions, the notations used in the model are described in Table

2.1.

Table 2.1: Model Notation
Variables Description
i Number of Server Node
Q Heat generated (J)
p Density of air (kg/m3)
f Flow rate (m3/s)
cp Speci�c Heat (J/kg/c)
Tout Outlet Temperature (c)
Tin Inlet Temperature (c)
T Change in temperature (c)
hr Heat Transfer Co�ecnt (J/s*m2*c)
A Surface area of PC components(m2)
Z Percent of added temperature after workload
R Ratio of distance
k The amount outlet a�ects inlet temperature
di Distance of the server from AC vent (m)
d Height of room (m)
TINIT Room Initial Temperature (c)
Ts Supplied temperature from CRAC (c)
Tworkload, Tw Surface Temperature at a workload (c)
Tidle Surface Temperature at a idle (c)
W Workload supplied (%)
TMax Max Temperature the components(c)
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This equation can be reorganized to solve for outlet temperature.

2.4.2 Modeling impacts of heat on temperature

The heat transfer in a data center node can be expressed by Equation 2.1 [37] [56] [57].

There are two kinds of heat transfer in this system: convective heat transfer adn radiant

heat transfer. We organized Equation 2.1 to solve for outlet temperature. In Equation 2.1,

Qi is the convective heat transfer of server i, which means as the inlet air passes through the

amount of heat is builds up is Qi.

Qi = pfcp(Touti − Tini
)

Touti =
Qi

pfcp
+ Tini

(2.1)

The heat generated in the chassis is actually the heat being radiated from the compo-

nents of a server, which also know as radiant heat. So, in this case, the convective heat

transfer of inlet temperature and outlet temperature is equal to the radiant heat transfer of

the PC components. Figure 2.7 shows you the model how all the heat that radiates o� the

components mixes into the air to form the outlet temperature and its convective heat gain.

The equation 2.2 shows the formula for radiation heat transfer [1]. The radiant heat

is dependent on the surface of the object and the heat it generates on its surface.

Qi = hrA4Ti (2.2)

In Equation 2.3, the 4Ti is the change of temperature caused by the PC components,

which we modeled as the change in temperature of the server at the speci�ed workload

(4Tworkload) plus di�erence between inlet and outlet temperature of server at idle state

(Toutidle − Tinidle
).
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Figure 2.7: Radiant heat equals convective heat

4Ti = 4Tworkloadi + (Toutidle − Tinidle
) (2.3)

To help simplify what we need to �nd we set Equation 2.1 and Equation 2.2 equal to

each other to give us the variable Z, thus letting us relate Tout to Tin and 4Ti, as shown

Equation 2.4

hrA4Ti = pfcp(Touti − Tini
)

Z =
hrA

pfcp
=

Touti − Tini

4Ti

Touti = Z4Ti + Tini
(2.4)

2.4.3 Modeling impacts of workload on temperature

In the article [57], they de�ne Tin as dependent on Ts and a vector which models the

exact strength of Ts at each height. We simpli�ed the model further by declaring the Tin as

the room temperature subtracted by the a percentage of the temperature supplied by the

CRAC as shown in Equation 2.5.
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The amount that Tout e�ects the inlet temperature is proportional to k which is some-

thing that is outside the scope of our paper. That being said the way it is implemented now,

only the a current server outlet temperature will e�ect the outlet temperature.

R =
di
d

Tin = TINIT −RTs + kTout (2.5)

Also in Equation 2.3, the other variable that de�nes Tout is 4Ti, and we modeled 4Ti

after the Figure 2.8.

Figure 2.8: Visual representation of workload e�ects outlet temperature

The theory behind our proposed model is that some components of the server get more

heated by I/O intensive applications while others get more heated by CPU intensive ap-

plications; and based on the percent of CPU or I/O utilization the components will get to

some percentage of its maximum temperature. After the calculations of Equation 2.5 we

are given 4Tworkloadi which is the increase in the temperature as compared to idle server.
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4TMAX
CPU = TworkloadMAXCPU

− Tidle

4TMAX
I/O = TworkloadMAXI/O

− Tidle

4Tworkloadi = 4WCPU4TMAX
CPU +4WI/O4TMAX

I/O (2.6)

In the end all of these equation are the components needed in modeling a single server

node. This is important because, as we discussed before, getting each single server outlet

temperature can help to model a data center thermal pro�le. Before we can do that we need

to verify that these equations are accurate.

2.5 Experimental Parameters

In this subsection we will be determining the parameters for the model we created in

the modeling subsection for server. Do this we need to prove that all the factors describe

in the model will indeed have an e�ect, and then solve for the constants described in the

previously in the modeling subsection.

2.5.1 Set up

Since our models, described in the previous subsection, model a single server node, we

decided to verify the equations by setting up an experimental machine. The machine we

used is an OptiPlex 360 whose speci�cations are listed in Table 3.2. So in this subsection

we will de�ne the characteristics of our machine and later use those constants to verify how

accurate our models are.

To test our server we used a command called "stress" in Ubuntu, which can spawn

multiple CPU workers or I/O workers. This process would allow us to get a estimate how

a computer would act under such a load. To get an estimate of CPU utilization impact we

just used "stress" to call only CPU workers [6]. To get an estimate of I/O utilization impact
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Table 2.2: Server Speci�cations
Dimensions 15.65 x 4.59 x 14.25
RAM 1GB
Chipset Intel G31/ICH7
DC Power Supply 255 W
Processor Type Intel Core 2 Duo
Memory 800 MHz DDR2 SDRAM

we just used "stress" to call only I/O workers. Finally to �nd a mixture of I/O and CPU

utilization impacts we called a ratio of CPU workers to I/O workers. (i.e 80 CPU workers

and 20 I/O workers will be 80% CPU utilization and 20% I/O utilization).

After running our stress tests, we used 3 di�erent tools to help design experiment.

First, we used the Linux command "iostat", which gave us details about server usages. The

most important pieces of information in "iostat" were the "CPU user%" which displays the

percentage of CPU utilization, "system%" which displays the percentage of I/O utilization

[4] [5].

Another tool we used "HDDTemp"; a software that can measure the temperature of the

hard drives [3]; more of as a reassurance, to make sure our thermometer was working.

When we say thermometer, we are referring to the HDE Temperature Gun Infrared

Thermometer w/ Laser Sight. This thermometer measures the surface temperature of what-

ever surface it is pointed on. The thermometer has a reading ratio that is 12:1, which means

for every 12 cm away we have a 1 cm radius of temperature. We used this tool to measure

all kinds of temperatures used for veri�cation.

2.5.2 Period

Since it takes time for di�erent components to heat up to its max temperature, we

needed to test how long it would take for our each application to reach it hottest point. For

CPU intensive application we can assume that the processor would be the most highly active

component. So we ran our stress test at 100% CPU utilization and periodically checked the

processors temperature. We plotted the temperatures over time as shown in Figure 2.10(a).
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Figure 2.9: Utilization of Components at �xed utilization
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If you look at Figure 2.10(a), you can see the temperature plateaus around 30 minutes, but

we wait till the blue line to turn o� the stress test.

In Figure 2.10(a), we did similar procedure, but we used I/O intensive application.

During the I/O intensive application, instead of monitoring the processor we monitored the

I/O controller. From Figure 2.10(b), it is clear that I/O application takes longer to heat up

and once we turned it o�, at the blue line, it takes longer to cool down. So for all our other
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Figure 2.10: Measured Area of Temperatures

tests we run them for 1 hour before taking temperature readings, to give the CPU and I/O

components ample time to heat up. We waited 1.5 hours between tests to allow server to

cool down.

2.5.3 Determining a baseline temperature

After �nding out how long it takes to run an experiment we were able to run our tests.

The �rst experiment we needed to run was one to �gure out the thermal impact of the idle

machine. In order to do this, we decided to take an array of temperatures and extrapolate

the information we need.

Figure 2.10 shows the insides of the our server; the numbers 1-32 are areas where we

measured the temperature, 33 is the place we measured the hard drive, 34 is the place where

we measured power supply, 35 is the place where measured inlet temperature and �nally 36

is the outlet temperature. So once we determined what to measure, we measured each grid

area with our thermometer for the server at the idle state. The measurements are given in

Figure 2.12(a).
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In Figure 2.11, we arranged the gathered data to graphically match Figure 2.10. In

Figure2.11, the inlet temperatures are temperatures in the middle on the far left. All the

numbers in the middle row are the temperatures of grid spots of 1-32. The two temperatures

on the bottom left are the temperature of the disk drive measured by two di�erent methods,

one using HDDtemp and other using thermometer. After gathering the temperatures we

calculated the average, which we labeled o� to the bottom on the far right. This gives us a

baseline value, which is called Tidle in our model. We compared this baseline value with the

other values. Another number that we needed to keep for later calculations is the di�erence

between the idle inlet and idle outlet temperatures (Toutidle − Tinidle
), which is 1.8oC.

2.5.4 Impact of I/O utilization on temperature

Once we have the idle data as a reference we started to test an active machine. We

started with an I/O intensive machine, and to make the machine I/O intensive we use the

following command:

$stress â��io 3 â��vm 7

The ratio of �io to �vm and �io is 30% which means that the I/O is set to 30% utilization.

Using this pattern we created the a �gure similar to 2.11. We then allowed the computers to

cool down and then rechecked the temperatures at 60% utilization, then once more for 100%

utilization. Although we kept and organized the data for these runs similar to the format of

the idle calculations above for simplicity to show how the utilization e�ected the heat with

Figure 2.12. Each bar represents a group of points from Figure 2.10. Table 2.3 lists each

group to help interpret the results.
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Figure 2.11: Surface Temperatures

(a) Idle Temperatures

(b) Max CPU Temperatures

(c) Max I/O Temperatures

2.5.5 Impact of CPU utilization on temperature

After conducting the I/O tests it was time to test CPU utilization impacts. To do this

we used the stress command in the following way:

$stress â��cpu 3 â��vm 7
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Table 2.3: Temperature Zones
Group Number Number of points from Figure 2.10 Reasoning
1 34 Power Supply
2 1-12 Rarely changing
3 13,14,17,18 CPU Controls
4 15,16,19,20 I/O Controls
5 33 Hard drive

The ratio of �cpu to �vm and �cpu is 30% which means that the CPU is set to 30%

utilization. Using that pattern we created a �gure similar to 2.11. Just as we did for I/O we

checked the temperatures at 3 di�erent utilization levels; making sure to give the machine

time to cool down before each experiment. We found the average temperature, like we did

for the idle case and I/O, and also created a group heat graph as seen in Figure 2.13(b).

After plotting the average temperatures we were able use curve �tting techniques which we

discuss in subsection 2.5.7.

2.5.6 Shared I/O and CPU Utilization

Finally we decided to test a mixture of both I/O and CPU utilizations. We did this by

calling the command:

$ stress â��cpu 50 â��io 50

This would set utilization for each component to 50%. So we did the same procedure

as we did on the I/O intensive and CPU intensive. After running the experiments for the

mixed utilization we created the Figure 2.13(c), which we will discuss in subsection 2.5.7.

2.5.7 Determining Constants

After our experiments, we are left with many impressions about iTad. First of all,

there is a clear relation between utilization and temperature which is shown in Figures

2.13(a), 2.13(b). This relationship seemed to be linear relationship shown by the curve �tting
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Figure 2.12: Utilization Temperature
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techniques we used on the Figure ( 2.13) where we graph the change in outlet temperature

change over the percent utilization.

Figure 2.13: Relationship between Utilization and Outlet Temperature

After using the data from the I/O runs we were able to calculate, the slope of the line

is 2.7 which represents the speed with which the temperature was increasing with R2 value

of 0.981, where R2 represents the accuracy of the slope. In the case of CPU data, the slope

of the line is 3.5 which represents the speed with which the temperature was increasing with

a R2 value of 0.961. Which indicates that a CPU intensive application will get server hotter

than an I/O intensive one. This is nearly con�rmed by the mixed data because it clearly

shows that when CPU is higher than I/O the server is warmer.

Once we accept that the relationship is linear we can start to �gure out some of the

values on constants in the equation that we proposed. The proposed Equation 2.4 has

consolidated all the constants of the experiment into one variable and with all our data

readings we can solve for Z.

In Table 2.4, we consolidated all the information we gather while trying to determine the

experimental parameters process. In Table 2.4, column 2 is the average surface temperature

of the machine at that utilization, while column 3 is the average surface temperature with
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Table 2.4: Compilation of all the values gathered

I/O Intensive

Wio TW TIdle ∆TWorkload TidleIn−Out
Q Tin Tout TIn−Out Z

30% 34.021 33.692 0.315 1.800 2.115 26.700 28.700 2.000 0.946
60% 34.237 33.692 0.630 1.800 2.430 24.700 26.900 2.200 0.905
100% 34.742 33.692 1.050 1.800 2.850 26.900 29.900 3.000 1.052

CPU Intensive

Wcpu TW TIdle ∆TWorkload TidleIn−Out
Q Tin Tout TIn−Out Z

30% 34.039 33.692 0.442 1.800 2.242 26.100 28.300 2.200 0.981
60% 34.400 33.692 0.884 1.800 2.684 26.900 29.700 2.800 1.043
100% 35.166 33.692 1.474 1.800 3.274 27.900 31.400 3.500 1.069

I/O and CPU Intensive

Wcpu,Wio TW TIdle ∆TWorkload TidleIn−Out
Q Tin Tout TIn−Out Z

20%,80% 34.347 33.692 1.135 1.800 2.935 27.700 29.900 2.200 0.750
50%,50% 34.326 33.692 1.262 1.800 3.062 26.600 28.800 2.200 0.718
80%,20% 34.639 33.692 1.389 1.800 3.189 26.200 28.800 2.600 0.815

no utilization; the di�erence in column 2 and 3 is the observed di�erence in the values. This

shows how much extra heat is generated once the server is pushed to that speci�c utilization.

Column 4 shows what the extra temperature generated should would be, from iTad. As you

can see the values are closely related. Any di�erence could be accounted by the change in

air �ow of the room or own server fans.

Column 5 of Table 2.4 is Tworkload we calculated plus the di�erence between inlet and

outlet temperature for the idle server. This is essentially 4T from Equation 2.4. And since

we were able to actually measure the �nal inlet and outlet temperature for server, we were

able to calculate the value of Z. The value of Z is ratio of 4T from column 9 to the surface

heat listed in column 6. As you can see, in Figure 2.14, the value of Z has an average just

under 1.
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Figure 2.14: Values of Z in all experiments

This simply means that the current arrangement of hardware has a one to one rela-

tionship between heat exuding from the server and outlet temperature. The change in Z

for di�erent utilization maybe an indication that the air �ow is changing, but our assump-

tion is that the air �ow stays constant and since the values don't vary that much it doesn't

contradict iTad.

Through our results the accuracy seems close enough to say that the equations used

to model the outlet temperature can work as a basis to for thermal management based on

workload, or even just a starting point for future expansion.

2.6 Usage

In the veri�cation subsection we took our server and determined all the constants of

the machine. In the following subsection we will discuss how accurate the numbers from the

veri�cation process are. First we would simply like to explain a use case how this model can

be used a in data center.
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As we you can tell by Equation 2.4 the most important value you need to solve for the

the Z variable. So when building a data center you should �nd the Z for every machine then

you can plug it into equations.

After gathering the Z values like we did in the veri�cation subsection for all the machines

we will need to run another task that ill keep track of CPU and I/O utilization of each

machine

After setting up a monitor you take the values and plug them into Equation 2.6 and

the outcomes will give the individual outlet temperature. Now this is where the model is

lacking there is no heat circulation model, that will need to extended research to help control

thermal output.

2.6.1 Veri�cation

Now that we developed the model and got all the constants of the experiment solved

the only thing left to do was to actually run iTad model on a server with random amount

of CPU and I/O utilization. In Figure 2.15 you can where we ran a server for 5 hours,

with utilization variation. The model had a tendency to over estimate the the temperature

especially at the beginning of the process.

We would account for this problem to a poor recirculation constant and the fact that

the model isn't time variant. That being said the longer the machine ran the better the

results were because this would return back to the state how we tested our machines to �nd

Z value. The variation of the model and actual is a not perfect because at points our model

is over 2 degrees o�, but the good thing is the trend stays very close to the original so we

have a model that is going to err in the safe side of calculations.

2.6.2 MPI

One of the goals of this experiment was to make that this model could work for any

kind of data center. So if the data center was to using a C version of MPI, message passing
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Figure 2.15: Veri�cation of Model

interface, then iTad should work for them. So we set up a method called "iTad" inside an

toy MPI project. iTad would return an outlet temperature, and based on that value it would

make a decision about data movement. The method iTad would pull the utilization from

the OS and get the other values from system to determine the its output, and all of this

happened seamlessly without any noticeable change in performance.

Figure 2.16: Sample MPI Usage
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2.6.3 Hadoop

We also wrote the model for JAVA, this would allow the model to used for other data

centers that would use JAVA. This version had to use a runtime shell to get CPU and I/O

utilization because the JAVA virtual machine doesn't have direct access to the OS informa-

tion like C does. This version of the model would work for a JAVA MPI implementation, but

for Hadoop each node is not responsible for its own data so we needed to see if our model

could be used for an Hadoop data center. In the work of our group member paper [35] shows

that the scheduler and heartbeat of Hadoop can be updated to take account of CPU and

I/O utilization to make thermal decisions. So implementing our model is as straight forward

as replacing there thermal method with out iTad method.

2.7 Experience

2.7.1 Improvements

Our experiment is not beyond criticism, but no criticism that is so heinous that will

crush the results of this experiment. The �rst critic that can be made about this experiment

is that the stress command is not pushing the computer enough, especially the I/O commands

seems to be inaccurate so the temperatures we are reading are o�. This criticism is one that

has some true concerns but the fact that when I/O intensive the I/O controller is the hottest

spot proves that the I/O is being pushed. Some people may see the fact that our machine

is an isolated machine not actually on a rack as concern. This in fact a true issue, while

other reports [23] an increase 10 degree di�erent in inlet and outlet with CPU utilization our

machine shows a max of 1.7. This concern is invalid because our computer is prototype to

monitor trends to prove our model. The next concern is the method of gathering temperature

readings, in which we use the surface temperature using IR thermometer. This concern is

slightly justi�ed because of the cables and clutter on a machine the reading can be o�. But

each subsection in Figure 2.11 is actually a sample of points in that block thus giving us a

30



fairly good representation of the machine, and since most of the materials stay the same and

we average out the hotspots out with the cold spots before using any of the data it takes

care of small temperature reading issues. The last concern may hold the truest of all the

concerns, the way we created a recirculation variable k which without doing much research

on how that variable must be used. In our experiment we pick a very small number for k

because our setup had alot of room so the outlet temperature would dissipate very easily so

a improvement would be to aggregate all the servers and layouts and update the k variable

in real time.

2.7.2 Extension

The next step would be to run these similar results in a full blown data center, or

at least one with AC unit and multiple servers. Also for the future research we would

like to use more sophisticated pieces of hardware for testing temperatures. The follow up

research should have a �owing air thermometer for the inlet and outlet temperatures, some

kind of heat measurement to keep from extrapolating heat from surface temperatures, and

lastly mounts for our sensors and programmatic way to gather these multiple pieces of data

without manually scanning them to get more accurate results. Future research should look

at neighboring nodes and heat recirculation more closely to see how they will a�ect the

output in a more exact fashion. Equation 5 is a possible enhancement to the model that

takes in account of the neighboring nodes.

Another place for future research could be to look at the model as function of time.

This could be useful because some application may run short while other run long. Since

this model was made to help facilitate quick modeling of thermal pattern of data centers, a

model that will run in real time could help in develop even more robust algorithms. As a

quick preview equation 6 explains what a time based model could look like.
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2.8 Conclusion

Growing evidence show that cooling costs contribute a signi�cant portion of the op-

erational cost of large-scale data centers. Therefore, thermal management techniques aim

to reduce energy consumption and cooling costs of data centers. A thermal management

mechanism relies on thermal information to make intelligent decisions. Thermal information

can be acquired in three ways: 1) using "Computational Fluid Dynamics" simulators (e.g.,

Flovent is a commercial product), 2) deploying temperature sensors to measure inlet and

outlet temperatures of servers, and 3) applying a thermal model to estimate temperatures

based on speci�c workloads.

We advocate that thermal models are a cost-e�ective and practical approach to providing

information on server temperatures to thermal management mechanisms. In this study, we

develop a thermal model - iTad - that enables thermal management techniques to quickly

make management decisions based on intensive I/O activities. We show that in light of iTad,

both CPU and I/O thermal outputs can be extrapolated from radiation heat and convection

heat applied to a server. The iTad model helps in improving the energy e�ciency of data

centers, because thermal information o�ered by iTad assists dynamic thermal management to

reduce the energy consumption in cooling systems in data centers. We validate the accuracy

of the iTad model using a server's real-world temperature measurements obtained by an

infrared thermometer. Our experimental results suggest that I/O-intensive workloads have

signi�cant impacts on temperatures of servers. We demonstrate that thermal management

mechanisms can quickly make workload placement decisions based on thermal information

facilitated by iTad.
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Chapter 3

NAP

3.1 Introduction

Energy e�ciency and energy conservation are e�orts that becoming important issues

for society at whole. The amount of power needed to continue to run our daily lives isn't

sustainable. As we scale into a world of more power consumption we will need to �nd creative

ways to �ll that power. A good way to get ahead of this problem is to make everything more

energy e�cient, and today one of the fastest growing energy hogs are data centers. In fact in

2013 data centers contributed to 91 billion kilowatt-hours of electricity, enough electricity to

power all the households in New York City twice over [43]. The NRDC states that much of

the power used by these data centers is in "under-utilization of data center equipment and

the misalignment of incentives, including in the fast growing multi-tenant data center market

segment." [43]. Since the data centers are growing and there is opportunity to create more

e�cient energy aware data centers we simply had to decided to what level of granularity do

we want to e�ect the data centers.

When it comes to energy e�ciency of data center there are a wide range of things we

could do. It can range from using more power e�cient hardware all the way to changing

the clock speed of each servers CPU. One area we determined to be a interesting area to

research is the data storage at data centers. According to Baseline [41] data is projected

to double every year for the foreseeable future. By 2020 we should expect 40,000 exabytes

of data. This seems far-fetched until you hear the statistic that nearly 90% of all the data

we have stored to today has been created in the last 2 years. Directly proportional to the

amount of data being collected and processed is the amount of energy used. Google talked

about storing a 1 petabyte of data in 2008 on 48,000 di�erent disks of di�erent sizes [14].
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At aggregate the energy consumed by these disks are not insigni�cant. Since the nature of

hard drives are storage more than processing there is opportunity to save energy even if a

data center is highly active.

After focusing our attentions to storage and speci�cally hard disks in data center nodes

we narrowed our focus to data centers that used Hadoop. Hadoop is Yahoo's implementation

of Google's groundbreaking work in "MapReduce". Google's MapReduce introduced a new

shift in big data processing which would take the power of commodity hardware to process

unorganized data in two stages the "Map" phase and the "Reduce" phase [15]. Another

aspect introduced with "MapReduce" was the Google File System (GFS) [15], which Hadoop

implements as Hadoop Distributed File System (HDFS), which creates metadata to manage

where data is located within a cluster and creates replicas to ensure more availability. Hadoop

version of MapReduce is becoming the go-to big data platform, in fact market forecasts from

2013-2020 predict that Hadoop will grow at the rate of 59.2% year over year because of it

popularity [46]. The reason Hadoop is so popular is because its open sourced and it design

for the "unsupervised land�ll" theory for data, which means Hadoop encourages a lot of

data storage, therefore plenty of hard disks to be managed. This popularity and reliance on

data makes Hadoop an ideal platform to develop energy saving techniques.

Hadoop was design in terms of performance, so it still have plenty of optimization for

energy that can be made [18]. Especially when it comes to disk energy Hadoop relies on

JVM and OS management more than its own systems. So in this paper we discuss our novel

approach to bringing disk energy management to a more visible position within Hadoop.

We call our approach NAP (eNergy Aware hadooP) because we make Hadoop more energy

aware by manually checking which disks are in use in Hadoop and putting all inactive nodes

to sleep for a short period (ie a nap). We will go over our methodology implementing these

techniques, discuss its performance in a variety of scenarios, and how to make it a viable

solution for all Hadoop clusters.
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3.2 Related Work

3.2.1 Energy Aware Datacenters

Energy Aware Scheduling

There has been many di�erent research for distributed systems line in papers by Kong

et al [32] or Sheikh et al [51]. In these paper they use knowledge of things like the hardware,

the energy pro�les, and power infrastructure to make smarter decisions when it comes to

scheduling tasks. They introduce ideas like batching tasks so the data center uses energy

more e�ciently so they can put the servers in to sleep. There were even ideas that if we

know that some green energy is being created we could schedule our task for when there is

enough green energy to use. All of this is important to the research we are doing because it

shows that when we are energy aware scheduling we may have to wait on resources to gain

any savings.

Energy Aware Sensors

Recent study shows that 1.2% of all energy consumption in U.S. is attributed to data

centers [33]. The way that study was able to get that information was in small part due to

sensors. Also to minimize the e�ect of the data centers on the national consumption there

has been many energy-saving approaches, one that relates to this research is the work of

Bieswanger et al. where they deploy sensors to analyze the power consumption instanta-

neously [9]. While we dont employ active sensors for our algorithm, we do use sensor to

monitor our results and recognize that a power feedback loop would help make good energy

savings pro�les.

Brown Energy Aware

Brown energy is the typical kind over energy we think of then we think of power. It is

energy made from none renewable resources and contrast to green energy. Data centers have
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to pay large cost for all the energy they take out of the power grid. So many times these

data centers will make deals about when to take energy away from the grid so the cost per

kilo watt is much cheaper. The real dollar cost brown energy has created work like Govindan

et al [19] where they try to set utilization around di�erent hours to conserve cost. This

research is applicable to our research because we to are trying to map jobs to lower energy

cost, where we are trying to lower the amount of wattage we use and this research simple

changes when that energy is used.

3.2.2 Green Hadoop

Hadoop speci�c energy saving techniques are growing because of the popularity of

Hadoop. One of the �rst papers on working on Hadoop and energy e�ciency was Goiri

et al [18] called Green Hadoop. This paper looked at Hadoop's batching pattern as place

for energy savings. It waits for either cheap brown energy or green energy because running

each section of its batch programming. This is applicable to us because it shows that Hadoop

batch programming can lend itself to energy savings.

Another greening of Hadoop was introduced in Krish work [34] where they use the fact

that Hadoop clusters can and tend to be heterogeneous, so if they make the scheduler aware

to which machines have the best energy e�ciency and schedule more tasks to them. This

research is important to our work because helped highlight the important of scheduler in

Hadoop, in that it controls how active a Hadoop node is, which in turns controls how much

energy that node uses.

3.2.3 Disk Management

The �rst thing we need to learn about disk management is that parallelism in disks

means more disk will be used per server node [48] [7]. This is important to our research

because focuses on I/O being important, and its increase in speed will keep disks from being a
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big bottleneck. That doesn't mean that disks bandwidth is unlimited because of parallelism

and the wall of I/O reads and writes means we need to creative in our disk management [7].

The key research that helps our paper is the work on dynamic power management

[21]. This is the concept of changing the state of disks to a state where it uses less energy.

Disk have this ability because there are many di�erent states for disk including active, idle

or standby. You can see in Hylick [25] that these states vary greatly in power. This is

important to our research because its this concept but a smarter switching algorithm that

can maximize the lower power states.

3.3 Motivations

3.3.1 Hadoop Architecture

While looking for ways to save costs and energy in data centers we explored many ideas,

but decided to focus on Hadoop because of its popularity but also because its architecture

lends itself to some energy savings. As you can see in Figure 3.1 Hadoop has a staged

approach, where we �rst split the �les and replicate them throughout the cluster, then

mapper agents are released throughout the cluster to run the map phase, then reduce agents

are run throughout the system. As you can see there are atleast three stages where Hadoop

runs in a di�erent way which could mean that you could develop di�erent policies to get

di�erent energy utilization.

Another reason why Hadoops' structure makes it an interesting candidate for energy

savings is because, as stated before, it creates replicas of data which means much of the data

in the Hadoop cluster will not be accessed unless of some kind of problem. If we are able to

isolate that variable we could use it to our advantage to gain energy savings.

Lastly a reason Hadoop is appealing in terms of energy savings is because the imple-

mentation itself was not looking to save energy. The whole idea of this kind of distributed

architecture in Figure 3.1 is so data can be highly available and quickly processed. Slowing

down and actively monitoring energy is not the active goal in Hadoop. That means there
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Figure 3.1: Hadoop Data Flow Chart [40]

could be potential energy hogging activities. As we mentioned before Hadoop increasing

popularity makes it very costly to not explore every avenue for energy savings.

3.3.2 Disk Consumption

As we went through the related work on Hadoop and disk consumption we needed to

see if it was critical for Hadoop disk energy to be managed better. One of the �rst things

we needed to see was what are the general Hadoops' disk hardware con�gurations. Cloudera

manages a very popular Hadoop distribution called CDH. On the Cloudera website they

have some recommendation for Hadoop con�gurations, as you can see in Table 3.1, which

show that an Hadoop node is recommended to have between 4 and 24 disks depending on

its use [44]. Even though those are the recommend con�guration Hadoop disk con�guration

can be managed by RAID or JBOD which theoretically have limits in the hundreds of disks

per node. The price of storage is falling so quickly [31] that Hadoop teams will be temped

to add many more drives to increase the functionality of each node and saving costs.
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Table 3.1: Recommended Hadoop con�gurations [44]
Con�guration CPU # of Disks Size of Disk
Light Processing Two hex-core 8 1TB or 2TB
Balanced Compute Two hex-core 12 â�� 16 1TB or 2TB
Storage Heavy Two hex-core 16-24 2TB â�� 4TB
Compute Intensive Two hex-core 4-8 1TB or 2TB

After �guring out how many a disks Hadoop cluster will likely be in each single server

node we started to look towards what e�ect does the disks has on the server as an whole.

To do this we simulated the amount of extra energy that will be used per added disk. As

you can see if Figure 3.2 depending on the type of disk on the low end disks contribute

to about 8% - 15% of total energy of a node, but on the recommended high end the disk

contribute between 25% - 50% of the total energy. Figure 3.2 clearly shows that at just

the recommended con�guration the disk energy is not negligible, and if a data center was

inclined to go over the recommendation it could be even greater. Therefore the managing

Hadoops' disk energy throughput is a not a meaningless task. With the billions of dollars

energy costs that data center have now every percentage of savings we achieve will cut costs

by millions.

Figure 3.2: Showing the importance of hard drives on energy
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3.3.3 Hadoop Disk Management

After establishing that disk management can be a viable mean to energy savings we

needed to see if Hadoops management would lend itself to some kinds of savings. The �rst

trade-o� we become aware of is the cost bene�ts of adding more disk vs. the speed of

processing. Kambatla et al [28] clearly show that there is a direct increase in performance

as more disk drives are added. This is because the more disk in a server node the more data

can be processed at once because of parallelism in disk reads. The thing that Kambatla et al

doesn't address what is the limit to this increase is. The speed increases he sees will decline

because for every added disk for two reasons: I/O interconnects, and processing power. To

use disks in parallel your CPU needs to be handle the �ow of data, while CPU's are very

powerful and generally its the I/O bus that is limitation, as more disk are added in parallel a

CPU bus will not get bogged down especially for very large data sets that Hadoop may see.

The more important factor to the decline in data parallelism is the I/O interconnects. Many

I/O interconnects are not rated to handle 20+ hard drives, so on data intensive Hadoop

con�gurations that could be cause a slow down.

Another phenomenon discovered in Kambatla et al [28] work is the fact that splitting

solid state drives (SSDs) into multiple directories increased speed dramatically. That was

because of the nature of SSDs they don't need to seek which means if the Hadoop has more

ways to access the data in parallel the job would get better performance. The same although

can not be said about standard hard disk drives (HDDs). HDDs need to seek to retrieve data

so random access would hurt performance. Using that logic and the fact that there is a limit

to how many disks can be read in parallel we propose that HDDs could be grouped together

as a single directory to limit strain on I/O and CPU bus but maximizing the amount of data

per server. In Figure 3.4(a) you see a general implementation of Hadoop where disks are

all a single directory that the JobTracker will call, but we propose Figure 3.4(b) because it

will allow more disks with less strain, but also may give us opportunity for energy savings.
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Figure 3.3: Hadoop Disk Con�gurations

Disk 1 Disk 2 Disk 3 Disk 4 Disk n-1 Disk n 

dir1 dir2 dir3 dir4 dir(n-1) dir(n) 

JobTracker 

Hadoop Node n 

(a) Every disk a separate directory to called

Disk 1 Disk 2 Disk 3 Disk 4 Disk n-1 Disk n 

dir1 dir2 dir(n) 

JobTracker 

Hadoop Node n 

(b) Disks are grouped as single directories

This method is adaptive from the idea of Intra-Disk Parallelism [48] where they were able

to place a larger disk array with a smaller and achieve similar performance.

3.3.4 Dynamic Disk Power

The main motivation of looking into Hadoop disks for a source of energy savings is

because of the research that has ready been done with hard drives. All modern disk drives

have modes that carry a certain wattage. In Hylick et al [25] the discuss looking at many

drives and �guring out how the disk energy changes as the state changes.
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Figure 3.4: Disk State Energy Utilization [25]

Table 3.2: Server Speci�cation
Server Type Acer Veriton M661
Number of Disks installed 4
Disk Types Western,Digital WD1200JB
RAM Upgraded 4gb

Figure 3.4 clearly shows a big change of energy utilization based on state. Active, idle,

and standby are all disk states that can be manipulated manually. Generally disks are

quickly sent to the idle state when its not being accessed because there is low turn up cost,

there would be far greater savings if a disk could go to sleep more than idle.

3.4 Methods and Materials

3.4.1 Equipment and Software

This section we will discuss all the things we did to set the experiments we discuss later

in this section. We used 3 server that connected by a private hub with gigabyte rated wires.

Each server has default speci�cation of a Acer Veriton M661 with the customization seen in

Table 3.2.
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The drives above are connected as JBOD (Just a Bunch of Disks) which means the only

data redundancy will be done through Hadoop. In Hadoop we declared a folder in each drive

for inputs and outputs so all drives would be used connected with a symbolic link rather

than doing a separate folders per drive. In our algorithms we talk about "disk groups" the

number of symbolically link folders are considered a disk group, for this research we left the

group size as 1 disk. The type of Hadoop installed is the distribution known as CDH, or

Cloudera Hadoop, this distribution installs many things like MapReduce, Hbase, Hive and

more. We deal exclusively with MapReduce in these experiments, and Cloudera helped to

gather results for our conclusions. Unless speci�ed other wise we used famous open sourced

books text with randomly generated �les sizes ranging from 100 - 250mb, with the default

block size of 128mb. For any experiment where the program we used is not speci�ed we used

the default word count program that comes with Hadoop.

We connected the servers in to a power strip and plug that power strip into a power

meter which we used for these results. The monitors and bridges were plugged into a di�erent

plug outlet. The power meter would record kWh for how long the power meter was turned

on, so for our experiments we would turn on the meter when we hit start on our programs.

This way we didn't get the energy needed for uploading the input and getting the work

started. We recorded the kWh averaged over the number of machines and the duration and

high and lows wattage for our calculations.

To legitimize our data we ran a minimum of 35 runs for each variable and each algorithm

and used the averages in the data in the following sections. This choice was to make sure any

outlying data would be obvious. While not in the exact scope of this research it is important

to note that despite an aggressive disk management we use the slowdown of our algorithms

is very low. Figure 3.6 has the original, non tampered with, Hadoop algorithm normalized

as 1 and with the other algorithms Figure 3.6 shows that with some test programs that the

worst time increase happens at teravailidate with a 1.3x increase in time. The program we

use for most of experiments "Word Count" is right in the middle of time increase, and for
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Figure 3.5: Powermetere

most map reduce environments this loss of performance might be worth the energy savings

we demonstrate later in this paper.

Figure 3.6: E�ect on speed
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3.4.2 Algorithm Design

From the related work you can see that there has been many energy saving techniques

used in data centers. In terms of hard disk one of the most common techniques to save

power is switching from active to idle or standby modes. Remembering from Figure 3.4 such

techniques can be quite advantageous in saving energy.

The thing about such power schemes are they are reactive measure. Meaning that once

the conditions are met then it takes a speci�c actions. The bene�ts of such reactionary

measures are that it easy to set up and if the data it reacts to is perfectly tuned then you

can a max energy savings. The problem a reactive power scheme has if it mistakenly puts a

disk to sleep it will have a big e�ect on energy savings, and if it does it too much it could

even cause more use of energy. The other problem with this kind of reactive approach to disk

management is there slow down time that is noticeable, because the algorithm only knows

to turn o� a disk and waits for a system to wake the disk up like in Figure 3.7(a).

We introduce a second method for disk management. In this method we use Hadoop

information to tell us which disks will be active and when the next disk will be active. This

way we are being being predictive in the way we manage the disks.It is easy to set thresholds

and tweak those thresholds to set a point where power should be switched o�. This tweaking

and pinpointing of disk transition could allow data centers to create very accurate times to

spin down and spin up disks. On the other hand a problem that occurs is that you need to

have a lot of information about previous runs of an applications to get a very exact time to

turn o� a disk. If the system does not have enough data on the process we can either have

disks that are on too long or disks that have to keep transitioning back and forth. As you can

see in Figure 3.7(b) the advantage of this system we wont have the performance drag that

the reactive has. There could be a energy savings loss as compared to a reactive strategy

but that is only if you assume a reactive strategy never mistakenly puts an important disk

to sleep.
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We implement an Hadoop version of both algorithms to show that there is bene�ts over

the a non-controlled Hadoop node.
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3.5 Experiments and Results

Our experimentation is based on real life clusters connected whose energy usage is

monitored with a power meter. We use the measurements to determine the average power

in watts during each run of our experiment. In cases where we represent power took the

energy readings and divided it but how long each run took and used the experiments time

divided by the control experiments time to normalize our numbers. The reason for this is

so we can have a clear understanding what the cost of each experiment without the length

of execution to be a factor. This real life data gives alot of insight that simple forecasting

can not give us because it shows us how real life machines react where things are not perfect

and where our assumptions are justi�ed them or misguided. Later on we will discuss how to

expand this small scale energy models for larger clusters .

The next few sections discuss all the experiments we ran and the reason these choices

were made. We wanted to make sure to test out power saving scheme as many ways as

possible so we could get an accurate idea of how well our approaches really worked.

3.5.1 Block Size

One of Hadoop advantages is its �le system Hadoop File System (HDFS). What good

about this �le system, it takes �les and replicates them over the cluster and process each

�les as little chucks know as blocks. Block processing is good for parallel computing because

you are able to load data quicker and �nish chucks out of order so as the processing power

become available it can be assigned a task. If the tasks get too small a new problem emerges

of not enough power to run them all and the schedule has to be wait and do more work

scheduling future tasks. The trick to performance is to �nd a block size that gives the best

trade o� between processing and availability for the the type of machines and data you are

processing. [49]

Since we know how the block size e�ects the performance is likely to assume that the

energy used might changed based on block size. Cloudera Hadoop(CDH), the distribution
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of Hadoop we tested on, recommended block size is 128mb. If you look to Figure 3.8(a) you

can see that 128mb has a clear energy savings as compared to 32mb. Lower than 128mb

block size is not recommended because a node will process smaller blocks very quickly so

their will be alot of competition for open slots thus creating overhead that slows down

performance. That overhead and CPU utilization that slows down the performance also

contributes to the higher energy consumption. Another factor that makes block sizes smaller

than recommended more of energy hogs is the fact that there are more disk reads. The disk

reads e�ect our algorithm energy e�ciency rather than the original because original Hadoop

has very few disk exceptions. The multiple disk reads e�ect the reactive algorithm negatively

because if it calls on a sleeping disk it may try to look for other copies waking up more disk

than needed. The proactive model su�ers also because it gets harder to predict when a

drive needs to be spun up so it either wakes too early or wakes late and we add the penalty

that we got from the reactive process. Lastly you can see as the the block size increase the

energy savings also get larger, but with minor gains. This gains can be explained by more

predictable memory accesses and fewer times blocks have wake up disks for changing. The

128mb seems to be a good trade o� in speed and energy savings, making it a very good

recommended block size.

3.5.2 File Size

Hadoop �le system although very robust it has a weakness in regards to �le size and

data locality. [62] The problem being that the way Hadoop creates blocks and store �les on

a servers is not optimized for heterogeneous servers. For instance if some machines were to

process tasks faster than other then there will be extra cycles looking for blocks to process.

This would be a bigger problem with larger �les uploaded because if Hadoop has to do some

correlation between blocks there is a bigger chance the blocks are not local. So in work by

Xie [62] they explain di�erent patterns of data locality to decrease the scheduler in Hadoop

to search for appropriate blocks.
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Our theory in designing this experiment was using this idea of data locality in Hadoop

and how that might e�ect energy consumption. We assumed any loss in performance shown

with would impact the energy e�ciency, and we though perhaps our implemented algorithms

would be hurt energy e�ciency more aggressively because if the scheduler has to do more

search then it would have to wake up disks more aggressively.

Figure 3.8(b) shows our results from this experiment. We were able to change the input

size of �les, but keeping the block size the same. Aside from the change we see in typical

reruns we are presented with data that suggests that �le size has no e�ect on the energy

e�ciency. One reason is that the research that we design this experiment around explains

the need for heterogeneous cluster and ours was closer to homogeneous, but that being said

the discovery of energy e�ciency of input size on homogeneous Hadoop clusters still needed

to be explored. Lastly we may have over estimated the cost of a more active scheduler

on energy e�ciency because when the �le sizes are bigger the utilization will be high from

processing data and when the energy e�ciency is low the utilization will remain high for

scheduler logic. Combining theses concepts its easy to understand why the input �le size

didn't e�ect energy e�ciency of the machine processing data.

3.5.3 Map vs Reduce Routine

As we talked about earlier Hadoop is based on Google seminal paper on MapReduce,

which discusses a new parallel programming paradigm where tasks are either map or reduce

routines. Map routine is generally where the data is organized locally and lightly processed

into intermediate data, and reduce routine is where this intermediate results are compiled

in an order and processed again for its �nal results. We wanted to design experiments and

see how each phase is e�ected by our proposed energy saving techniques.

While map and reduce routine are explicitly called in the way we program �les, and

there are "mappers" and "reducers" elements they do not run strictly separately. Generally

100% of map tasks run before any reduce task run, but there are cases where they may
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Figure 3.7: Results how �le size e�ects the energy savings
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(a) We used a variety of block sizes to see how our
energy saving techniques would match up
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(b) We used a variety of �le sizes to see how our
energy saving techniques would match up
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(c) We compare the map phase vs reduce phase for
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(d) We compare di�erent Hadoop program design
patterns

run simultaneously. The �gure 3.8(c) took a weighted percentage of mappers vs reducers to

determine the energy cost on display.

On to the actual results of this experiment you can see that both the map and reduce

section bene�ted from our algorithms. The reactive process was better suited in the reduce

phase rather than map phase. The reason being the program we used to test map vs. reduce,

creates smaller output than input which means fewer disk will have to be woken up total so

there is less waiting for disks to wake up. To that same point the predictive model did worse

than reactive one in the reduce because it is harder to predict which drives will be turned

and in which order during reduce because the amount of drives needed are not 100%. So a

consequence the predictive model constantly made the wrong call to the drives.
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3.5.4 Map Heavy vs Reduce Heavy Programs

In the previous section we discussed how the energy e�ciency of the map process com-

pared to the energy e�ciency of the reduce process. Although that experiment gives us

insight to how each process could save energy, those two process can di�er greatly in the

amount of time either process is executed, how much data it might use, or even what uti-

lization it uses. This is a main reason why when creating benchmarks for Hadoop there

are many considerations that people use. The Intel China Software Center research team

discusses a variety of benching marking techniques covering small benchmarks and large real

life application benchmarks. [24] The part we found most interesting in their research was

the workload data access patterns they discuss because of the way it directly e�ects our

energy saving algorithm design.

As China Software Center research team showed Hadoop programs can be categorized

in many ways but the way that makes sense in terms of experimentation is the size of its

input and output data. The amount of data that we given to process at the start of an

execution directly e�ects the amount of time the mapper agents will be running in Hadoop.

Mapper agents take the input chunks and create the intermediate data that will later be

processed by reducer agents. Then those same reducer agents directly e�ect how big output

of an program will be. So we have given the terminology of a program that takes in large

data set then return a small data set a "Map-Heavy program", if the program rather takes

in a small input then return a large data set we called that a "Reduce-Heavy program", and

lastly if we take in a large data set then return a large data set we called that "Map and

Reduce Heavy program".

Table 3.3: Hadoop Application Pro�les
Input Size Output Size Example

Map Heavy Large Small Word Count
Reduce Heavy Small Large Teragen
Map and Reduce Heavy Large Large Terasort
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Table 3.3 gives a quick look at the information we explain above, and we list out appli-

cation that for each group. Strictly speaking word count doesn't always guarantee a "small"

output we knew our data had many repeat words which gave a relatively small output. Ter-

agen can create massive amounts of data with simple parameter change so its a very good

test for reduce heavy outputs. Lastly all sorts are good examples of map and reduce heavy

programs because the size of input will the same size as the output.

The results of testing each of these program characteristics are represented in Figure

3.8(d). The word count or map heavy results are the results we are most familiar with

from other experiments because it has been the benchmark test so far. Word count has

good predictability and long processing time in both map and reduce phase which allows for

energy savings.

The reduce heavy results are interesting when you compare it to the results from Figure

3.8(c). The reduce heavy application actually had an average energy consumption lower than

the map heavy consumption, but the energy savings of map phases was shown to but higher

than the reduce phase. The way to reconcile these results are to look at the reasoning why

map was more energy e�cient compare to reduce in Figure 3.8(c). Word count, the bench

mark used in Figure 3.8(c), while map heavy it has a much larger reduce phase than teragen

has map phase. This explains why the overall energy consumption is lower in Figure 3.8(d)

for reduce heavy applications, but not why the trends for reactive and proactive algorithms

don't match the reduce phase trends. Teragen map phase is very short so uses virtually

no energy compared to its reduce phase so no real savings will happen in the map phase.

The reduce phase for teragen is much more systematic and predictable than word count,

which means the disk transitions will be much more reliable in the predictive model; thus

explaining the trends accurately.

Lastly comes the map and reduce heavy applications, whose results are the most dis-

heartening but not unpredictable. As you can see in Figure 3.8(d) the map and reduce

heavy application, terasort, had no energy savings, in fact in general case you can see we
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actually used additional energy. This can be explained from the fact that if a resource is

being used very heavily its very di�cult to get any savings. Sort as a concept requires

looking at everything over and over so disks will remain active as will scheduling resources,

and this is exacerbated by the fact there will be no compression between input and output.

The mapping portion of this experiment would see the similar gains we'd expect from map-

ping in any other application, with caveat that sort requires a few more �le checks than the

other algorithms. The reduce phase in a sorting problems requires alot of random accesses,

this unpredictability caused an increase in disks to spin up and use energy, anecdotally this

unpredictability causes disk failures and scheduling problems causing terasort to crash very

often. This over head for failures adds greatly to overall energy consumption. The proac-

tive proved to be more aggressive than the reactive algorithm, spinning up and down disk

very often, and like in the case of reduce phase in Figure 3.8(c) it created a worse energy

e�ectiveness.

3.6 Evaluation

In the Experiments and Results sections we discuss why our experiments and results

are valid, but we don't discuss the actual savings demonstrated. On the average of all our

experimental data we �nd that per server we save between 8 - 10 watts or about 4% of the

total energy utilization or about 20% of the max disk utilization. These results may seem

small but Hadoop is a parallel highly distributed framework that can be implemented on

thousands of server, which could make this research very pro�table. This section we will

cover what the theoretical savings we could see and how it compares to our experimental

data.

3.6.1 Model

We have already demonstrated in Figure 3.2 that as the number of disks increase the

percentage of the total energy disks used can be signi�cant. No algorithm or process will ever

53



Table 3.4: Model Variables
Variables Description

Etotal Energy of the entire system
Edisks Energy from all the disks
Edisk Energy from single disk

Etransitioni
The energy from a speci�c transistion for a speci�c disk

Estandbyi The energy of a standby disk for a speci�c disk
Eidlei The energy of a idle disk for a speci�c disk

Eactivei The energy of a active disk for a speci�c disk
D Number of disks
N Size of disk group

reduce that energy used by disk down to zero for Hadoop, so to get a clear understanding

on the max energy we could theoretical save we developed a model. Based on the work

of Manzanares prefetching for parallel I/O bu�er disks [39] but we make the simpli�cation

where he uses time disk are active and standby based on the request per job we assume all

requests are the same in how long they take to be accomplished. These are assumptions are

simpli�cations but they will over estimate the max which is good for a maximum.

Etotal = Eserver + Edisks (3.1)

In Equation 3.1 we separate the rest of the server components from the disks. So all

need to do is calculated how much energy the disks will use.

Edisks =

D/N∑
i=1

N

D
Egroup

i∗
D

N

+
D∑
i=1

D −N

D
Estandbyi + Etransitionsi (3.2)

The next thing we need to �gure out is how the disk energy is going to be determined.

Equation 3.2 takes the number of active disks and get its weighted average to total number

of disks. Then we get energy cost from each transition, the number of transitions is based

on how aggressive our algorithm is so its considered a static variable for each disk. Last we
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the weighted average of standby disk to total energy where each disk standby contributes

an equal amount. The theory behind this calculation is that in the group of disks that are

in parallel whatever that is not active will in standby.

Egroupn =
N+n∑
i=n

Eactivei (3.3)

To fully illustrate the point about how the amount of active disks are inversely propor-

tional Equation 3.3 shows that max energy an active group of disk can have is when group

size is equal to number of disks, but the larger the group size is in Equation 3.2 the small

the standby energy becomes. Since active energy consumption is much greater than standby

energy consumption in disks then to achieve maximum savings we want to make group size

as small as possible.

3.6.2 Usage

After creating model and doing our experiments we can now compare how our algorithm

stack up to the theoretically limits. To �nd the max savings possible for experiments we

need to think of the most ideal case for Hadoop using our algorithms. That would be a

single drive active at a time while the others are in standby, and once one drives data is

perfectly processed we can move to the next drive and turn the previous drive to standby

mode. In this scenario our group size is 1 and the number of transition per disk is 2 using

the information from Table 3.5 we are able to the max savings from Equation 3.2 we can

�nd the max energy savings to be 12 w.

Table 3.5: Western Digital WD1200JB consumption model
Active Power Consumption 8 w
Idle Power Consumption 7.25 w
Standby Power Consumption 1.2 w

Our experimental data gave up average of 7.6 w savings for our reactive algorithm and

about an average of 9.1 w of savings for our proactive algorithm. These results show that
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our implementation is about 70% of full savings. The di�erence can be marked by that data

isn't perfectly partitioned and there are more state transition for the reactive algorithm or

in the case of the predictive algorithm it could be guessing to turn on disks too early loses

some bene�t. Also because we had a disk grouping of 1 the number of active disks was 1

and the results were very slow cause empty cycles to increase energy used. All that being

said at the scale that we ran our experiments the savings under 4% of our total sever, but

as the a number of disk increases the results could be more interesting.

Figure 3.8: The max percentage of disk consumption we could save
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Figure 3.8 shows what is the possible amount of energy that could be saved at di�erent

number of disk. it also shows with di�erent groups sizes so our results could be faster. If

you combine the results from Figure 3.8 and Figure 3.2 with the knowledge that our current

implementation is about 70% of ideal, at 64 disks we are looking at 15% savings across the

board as a conservative estimate. Which is a signi�cant result especially talking in terms of

dollars.
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3.7 Future Work

3.7.1 Reactive and Proactive algorithms

We developed and implemented two separate algorithms to save energy consumed by

disks. These algorithms had speci�c problems for example the reactive model would get

caught making lots of disk state changes that may not be needed, this slows down perfor-

mance, causes scheduler to work harder, and cause an increase energy consumption. The

predictive algorithm calculated when to spin-up and spin-down disk more intelligently which

took away a lot of lost speed up an energy loss, but in cases where it had to spin up disks in

a way that was not predictable it failed with great loss in energy savings and time. Future

research could devoted into merging the strengths and weaknesses of these two algorithms.

The reactive algorithm seem to work better for reduce phase while predictive worked

better in a map phase so an hybrid model could switch between these two algorithm depend-

ing on the mapper or reducer agent that is called. You could add a predictive agent into

current reactive agents that could more knowledgeably spin down to standby for previous

disk so it would have to wake disk less often.

3.7.2 Savings model

Our current modal for total savings is a little simplistic it makes a lot of assumption

about run time that are not true for all Hadoop use cases. Future research can invest e�orts

to �nding how time e�ect the weighted average of each active or standby disk. Also the

transitions model is very broad, we could develop a model based of speci�c parts of Hadoop

programs, like reducer agent and mapper agent deployed or input size, to determine how

many transition we are to expect to more accurately present the savings we can achieve.
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3.7.3 Heterogeneous disk arrangement

This research dealt the identical disk with identical machines with group sizes that were

also identical. This is generally how servers are purchased in industry so the results are

useful for most accounts. Although we could explore the idea of grouping disks for energy

purposes in more depth by creating variation in the types of disk (HDD, SSD), the sizes of

those disk, the groups we put the disks and the performance of the machines.

In the case of SSD vs HDD, solid state is much faster and less energy consuming com-

pared to hard disk drives. So if were to create disk groups that could use some SSDs for

processing in the map and HDD for storing reduce phase and control the state transitions

we could create a very cost a�ordable green solution. The same goes for the other variables

in the experiment, we could see if we could leverage their unique properties for more savings.

3.8 Conclusion

The concern with the use of energy is not just an environmental issue that but a huge

factor in the economics of running a data center. While its energy is getting greener and

cheaper all the time the best solution to save the money and world is to create more energy

e�cient data centers. Managing power supplies and computing utilizations are the big factors

in the energy consumed by data centers, but the disks in data centers are not negligible. We

showed that the trend towards bigger data requires a trend towards bigger storage, and

the most a�ordable storage tend to be the least e�cient in terms of energy. We discussed

managing those ine�cient disks in two di�erent ways, an approach that reacts to which disks

are in use and keep the other disk to a lower power state or a second model that predicts

when disks are needed and manages when those power state changes should happen. We

used Hadoop as an industrial standard with access pattern that could favorable shown to

gain energy savings. We were able to show that these models save energy for servers in

many cases, but not all cases will bene�t from these models. This is to be expected because

the conditions in which disk energy savings can happen are not great for very active disks
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in a very active server. Even with this imperfect solution the gains are not minor and can

easily save data centers thousands. This kind of though into energy savings can be expanded

throughout di�erent parts of data centers and save even more.
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Chapter 4

Sparke

4.1 Introduction

AMPLab at UC Berkeley developed a new method to process big data, called Spark, to

compete directly with Hadoop implementation of MapReduce. The process they proposed

can be conceptualized as a micro batch processing compared to Hadoop's macro batch pro-

cessing. With the shorter batches Spark is able to move all calculations onto internal memory,

it does that by creating Resilient Distributed Dataset (RDD). These RDDs are immutable

distributed collection of records that live in the volatile memory that can be called itera-

tively, so instead of mapping everything creating intermediate data on disks then reducing

that data from the disks Spark takes a small batch creates intermediate data in-memory

then takes the next batch of data and updates its data. [63]

There has been plenty of research looking at the speed up that Spark provides over

most general map reduce programs, they mostly focus on performance in terms of time or

memory activity but the thermal and energy e�ciency of Spark has been overlooked. This

oversight is because the objective of Spark has always been speed as seen through their all

their documentation and advertisement [63], but now that it is a a top-level apache project

the uptake of Spark is increasing and these factors will become more important.

Our research outlines the current thermal and energy pro�le of Spark and compare them

to Hadoop's Map Reduce. We create a package of algorithms called Sparke that will manage

disks power states in Spark. We then do an array of benchmarks on Sparke using real world

data, we develop models speci�cally for Sparke, and used models we have already developed

like iTad with Sparke.

60



4.2 Related Work

4.2.1 Spark Benchmarks

Spark is maturing as platform but the industry standard of benchmarks have yet to be

determined. Almost all research you read about Spark will cite that is can get 100 times the

performance of Hadoop [54][52][63][13] but that is a speci�c scenario where Spark is optimized

and not the truth across the board. There has been researching look at multiple other ways

to benchmark Spark from memory consumption [20] to CPU utilization and throughput [27].

This idea of benchmarking Spark is important for the next iteration of research of Spark to

continue. Where Kaewkasi [27] starts to benchmark the energy consumption of Spark we

will delve a deeper and with more focus.

4.2.2 Memory Consumption

Spark will always be compared to Hadoop, this research will also do that, and when it

comes to speed Spark always wins. The trade o�s it makes is in memory consumption. [20]

A lot of what makes Spark appealing to research is how it handles memory, for one it tries

to avoid disks as much as possible but the nature of RDD is that it has to create alot of

intermediate data, in most cases more than Hadoop. [20] This work is seminal to the start

of our Spark research because it discusses how Spark performs at di�erent sizes of inputs

as compared to Hadoop. Large data sets need to replacement policy, and which could be

another place to do some disk management. The work by Shi and team on Mammoth also

show that for iterative processes Spark is very fast and memory handling is very straight

forward but in other cases it can be chaotic full of merges. [52] It will be useful to know

which applications are straight forward versus chaotic when looking for places to save energy.
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4.2.3 Mobile Consumption

One of the few places you hear about Spark and power consumption is in the work

by Kai Sun called "Energy E�cient Mobile Cloud System for Deep Learning" called M2C,

where they implement a deep learning tool with Spark because of its speed to process data

for near real time results. [54] They talk about how Spark �nishing faster allows them to not

waste as much battery. Spark is only used here to speed up the backend [45] to process things

very quickly saves them battery on receiver side, our research will deal with the reverse how

to save Spark energy and generally faster something process the more energy it uses.

4.2.4 Hadoop Power Management

Hadoop is a more mature platform than Spark so there has already been some good

background into the world energy e�ciency for Hadoop. Our own work with NAP was

focused on Hadoop disk management, which should provide a good starting point for how to

adequately test Spark. Much research has gone into pro�ling di�erent jobs in Hadoop [38]

that can provide good background on how to approach Spark. The Hadoop pro�les along

with our iTad thermal model can help could help get an idea of what kind of thermal savings

Hadoop could get and see if any of that can be inherited by Spark.

4.3 Motivation

Almost all Spark literature makes mention of Hadoop. Hadoop is now the big name in

big data, but it su�er from the problem that it has to uses so much of its processing. Spark,

on the hand, uses the faster cache memory to manipulate process the same HDFS �led data

in a far shorter period of time. Our research with NAP and parts of iTad dealt with Hadoop

and how we can save lower it energy/thermal footprint and we want to extend this research

for Spark.

Spark has an interesting concept from the sense of saving energy. While doing compu-

tations on the main memory the disk are left alone, and if the disk are left at full power then
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there is an opportunity to save some energy. Even though Spark tries to do all computation

in memory but for large datasets it usually uses more reads and writes than Hadoop, but

that being said it manages its bandwidth better so it I/O utilization stays low [26] and fewer

bursts are good for energy savings [61]. Fewer busts also mean more predictability which we

want to leverage to get some energy savings.

4.4 Spark-e

Spark while is very optimized for speed its energy output has been neglected. In this

section we will introduce the our designs for algorithms to 1) lower energy consumption 2)

lower outlet temperature that will lower air conditioning cost that will ultimately lead to

lowering energy consumption. These algorithms we call "Sparke", 'e' for energy aware. After

explaining our algorithms we will use them in actual Spark clusters to help to pro�le the

thermal and energy output of spark.

4.4.1 Algorithms

The following sections are the algorithm that we used for our experiments. We designed

these algorithms to be e�ective to lower the energy consumption and thermal output of a

Spark cluster. The concept behind these designs are that we want disk to be used less which

would lead to lower out put in thermal output and energy output.

Reactive Algorithm

Spark uses disks as little as possible so we want to leverage the fact that disks don't

have to be active at all times for the calculations to happen. We repurposed the ideas we

developed for Hadoop here in Spark creating disk groups. The size of the group will remain

active at all times while the rest of the disks can go to sleep. Theory behind this is that once

all the data from these disks are read then we will spin up other disks and the current disks

group to sleep. So instead of all the disks being active only the disks in use are active, like
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in Figure 3.7(a) in the NAP algorithms. There are added costs like spinning a disk up that

add energy and time costs. For these experiments we are simply trying to discuss Sparks

the energy impact so we disregard the time costs. If a disk that is asleep has to be woken

up then the whole group will be woken up and will not be turned to standby until another

group is turned to active, so in this case there are high costs to mistakenly turning a disk to

standby. In terms of thermal output, the most more disks we can put to standby the lower

our outlet temperature, but Spark is known for its high CPU utilization, so the number of

disks needs to be massive to see gains.

Proactive Algorithm

As we discussed in the reactive algorithm there is a large cost to turning a disk to sleep

if its not �nished with data. To prevent this cost we have to known for sure when a disk will

be called and when it can go to sleep. So in that case we implement a proactive algorithm

that will wake a disk group up early and keep a old disk group awake until it crosses a

threshold, like in Figure 3.7(b) in the NAP algorithms. If data is perfectly tasked by disk

this algorithm will be ine�cient in saving energy, but otherwise can be very useful. In terms

of thermal footprint this will be equivalent to the reactive algorithm.

Empty Algorithm

This algorithm uses a unique feature of Spark that many other services don't have, the

fact that all calculations happen in memory. This means when processing happens then no

drive is actually needs to be active until the memory calls it. So in a perfect case while

the other two algorithms have to have atleast one drive active this algorithm could have

zero. The trade o� that it has to transition the disk state very often, but if the memory

is large enough this could yield enough time for real savings. In terms of thermal energy

this algorithm could be better than the other algorithms and long as the disk are needed to

transition so often. Also to facilitate this we turned on the "fair" job scheduler which sends
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jobs fairly throughout Spark cluster so it lowers the chances the same disk will be called

after the current job ends. [63]

4.5 Setup

Just as we did for NAP we used 3 server that connected by a private hub with giga-

byte rated wires. Each server has default speci�cation of a Acer Veriton M661 with the

customization seen in Table 3.2.

We model this setup like we did in NAP, the drives above are connected as JBOD (Just

a Bunch of Disks) with folders in each drive for inputs and outputs, and group size is equal

to how many disks have to be active in reactive or proactive algorithm. Cloudera Hadoop

(CDH) has Hadoop MapReduce and Spark already in the package so we reuse our setup from

NAP. The advantage of this is we can use the same data to test both Hadoop and Spark

for our experiments. We also use the word count program in both Hadoop and Spark as the

benchmark for our results.

We gather the actually power readings the same way we did for NAP, with a power

meter. As for the thermal readings we use thermometers like we did for iTad and also use

the iTad model to model outlet temperature.

4.6 Observations

Since Spark has not been examined for its thermal patterns nor its energy consumption

patterns our �rst contribution is a record account of real life data of a Hadoop vs Spark

cluster. We will later describe these trends and the reason behind why we got those results.

4.6.1 Thermal Observations

Using the information about the servers we were able to �nd the constants needed to

use the iTad model we developed to take utilization values from the cluster and extrapolate

outlet temperature. The Figure 4.1 shows how Hadoop and its NAP algorithms compare to
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Spark using the Sparke algorithms we proposed; we achieved this by using the model but

also added probed the actually temperature a few times for veri�cation. The �gure shows

that outlet temperature change throughout a lifecycle of a word count. Overall you can

see Hadoop overall uses the same amount of energy for all the algorithm and is less energy

expensive than that of Spark. This can be explained by simple utilization, because Spark

uses all main memory for its calculations which make it become over 85% CPU utilization

which heats up components very quickly, while Hadoop rest around 40% utilization. The

disk are just not biggest heat distributors at this scale to add any temperature variance. We

can deduce that the disk have no e�ect because the precision of the Hadoop temperatures

are very high this and if disk had any great e�ect we would atleast see in the Hadoop case

the reactive or proactive have an noticeable di�erence. We already have seen Hadoop energy

savings from NAP so we know that the algorithms save energy which in turns should save

heat but from these results you can see that the heat saved was negligible. This can be

attributed to the fact that the disks' physical size being very large compared to the other

components in a the server, as we know [10] the bigger something is to dissipate heat the

less it actually does. Also since we know Spark is CPU intensive compared to I/O then the

heat from the CPU components over matched the heat from the disks.

After seeing these results of Figure 4.1 we concluded at our scale that controlling for any

other variables would not change the thermal output in meaningful way because the nature

of Spark being CPU intensive that the thermal output will be roughly the same no matter

what so continued onto the energy observations.

4.6.2 Energy Observations

The thermal observations showed that CPU utilization of Spark was too great to see

any real thermal energy change using Sparke or any disk management at a small scale.

Thermal energy is usually a good indicator for energy used [35] we can assume that Spark

uses more energy than Hadoop based on Figure 4.1. We were optimistic we would expect
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Figure 4.1: Spark vs Hadoop (Group 4) Temperature
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better energy savings versus thermal savings is because after our work with NAP and Spark

thermal pro�ling implies the portion of disks contribute to energy of servers is greater than

the heat disks contribute to servers. You can see in Figure 4.2 Spark uses much more energy

as compared to Hadoop which is to be expected results if you considered that the CPU

utilization numbers of Spark as compared to Hadoop. Then you notice Hadoop has more

energy e�ciency between its algorithms compared to Spark and its Sparke algorithms, this

can be explained because Hadoop being less I/O intensive so us managing Hadoop disks

would have more energy savings than managing the more active Spark disks. Lastly if you

look at the di�erent algorithms in Sparke the reactive and proactive disks seems very close

in savings while the empty algorithm had the most savings. An explanation of why the

algorithms performed as they did include our main memory was large enough/slow enough

to allows disks to sleep in all the algorithms, but for the reactive and proactive the amount

of disk on was greater than the number of transitions.

We then ran an experiment to determine how group size e�ected energy for the reactive

and proactive algorithms. The results in Figure 4.3 were interesting because when the group

size was 3 and under it was lower energy output than our empty algorithm. This results
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Figure 4.2: Spark vs Hadoop (Group 4) Energy
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can be explained by the number of cores this machine was running with. These machines

being dual core machines make data reads in parallel, since unlike Hadoop, Spark only wants

to read the data it can use in main memory it lowers the main memory calls based on the

number of cores as explained by the research at Box [29].

Figure 4.3: Spark vs Group Size
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The last characteristic we pro�led the size of the ram we used, this is because Spark

is highly dependent on how much on board memory there is we concluded this could be a

major factor in its energy. Spark does all its calculations in memory and with the smaller

memory we used in Figure 4.4 had to make more disk calls so energy went up for the empty

algorithm because the disks were not getting long enough to sleep to make any savings. The

other algorithm would leave their drives on no matter what so the main memory didn't e�ect

how it used its energy.

Figure 4.4: Spark vs Group Sizes vs Memory
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4.7 Model and Simulations

4.7.1 Thermal and Standard Energy Model

Our observations and knowledge of Sparks architecture [64] shows very clearly that CPU

utilization will stay high for all Spark use cases. This means any savings we want to gain can

only easily happen on the disks, which is luck for us because all of Sparkes proposed algorithm

deal with disk management. The fact that CPU utilization is so high and CPU utilization is

key in both energy e�ciency and thermal e�ciency any savings energy or thermal we could
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Table 4.1: Model Variables
Variables Description

Etotal Energy of the entire system
Edisks Energy from all the disks
Edisk Energy from single disk

Etransitioni
The energy from a speci�c transistion for a speci�c disk

Estandbyi The energy of a standby disk for a speci�c disk
Eidlei The energy of a idle disk for a speci�c disk

Eactivei The energy of a active disk for a speci�c disk
D Number of disks
N Size of disk group
P Number of Processing cores

SM Size of Main Memory
SD Size of total disks

gain will be proportional to each other. This proportional gain means our thermal e�ciency

and energy e�ciency have the same trend lines, but the scale in number of disks need to

gain a signi�cant thermal gain is very large compared to have many disk we would need to

get that same gain through energy e�ciency.

We also learned that proactive and reactive algorithms have no di�erence in Spark

because of the structure of Spark and the every disk read or write is predictable and iterative

for word count so the order reactive algorithm reads disks is the way Spark does naturally

and proactive can easily predict when to start a disk.

To gain the most savings we want to have the fewest drives on for the longest amount of

time. We know the key factors to energy in Spark are the size of main memory and number

of disk used for data parallelism which has in Spark is managed by the amount cores on each

machine. The empty algorithm is e�ected by the size of the main memory more greatly than

reactive or proactive because it does not ever let a disk stay asleep, because there will be alot

more disk transitions causing a loss of energy/thermal savings. The reactive and proactive

algorithms are more e�ected by the number of disks needs in its data parallelism, because

once the size of the group outweights the size of cores there will be disks that are active but

not needed, and it is at that point where the empty algorithm bene�ts over them.
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In equation 4.1 we take the model we developed for NAP's reactive and proactive al-

gorithms, that says that each disk has a weighted sum to the total energy, and repurpose

them for Sparke's reactive and proactive algorithms. This assumption holds true still be-

cause Spark uses the same �le system and �le come in as uniformed blocks for calculations

only di�erence is it happens at a faster same speed. The part that we changed in the case

of Sparke is that, unlike Hadoop NAP, because of Sparks disk parallelism is limited by on

memory cores of the computer more than Hadoop. Unlike the I/O stream on Hadoop, Spark

has to do transfers from disk to main memory which is done by "one bu�er per core" [63],

this is why we multiplied the energy by the number of disks active divided by core, if the

disk active number is bigger than available cores then we will have energy loss, but if there

are more cores than groups no energy should be lost.

N/P ≥ 1 (4.1)

EdisksRP
=

N

P
∗ (

D/N∑
i=1

N

D
Egroup

i∗
D

N

+
D∑
i=1

D −N

D
Estandbyi + Etransitionsi) (4.2)

Sparke has one last algorithm that doesn't function like the other ones, the "empty"

algorithm doesn't have a disk group number because it closes all the disks down and open

just the ones need for every memory call. Which is essentially saying the group size is equal

to the max data parallelism. The other change this algorithm does changes how often things

are transitioned are calculated. There will be a transition anytime the main memory cannot

continue doing its calculation and needs to dump intermediate data. The amount it will call

the disk is proportional to the size of disk divided by the size of main memory as you can

see in 4.3.
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D/P ≥ 1 (4.3)

W = SD/SM (4.4)

EdisksE =

D/P∑
i=1

P ∗W
D

Egroup

i∗
P

D

+
D∑
i=1

D − P

D
Estandbyi +

P

SM

W∑
i=1

Etransitionsi (4.5)

To generalize the trends of these trends we can turn the summation into functions. For

the reactive and proactive algorithms the �rst summation in equation 4.1 has active disk

energy multiplied by a number less than 1 we know this because of the proof in equation

4.3. Given an Egyptian fraction [53] it can be expressed a function y/x like we describe

in equation 4.6 where y is the group size and x is the number of cores in a machine. The

standby energy is also variable of the group that we want to test for so we add it to our

general form. The other variables like transition are static so they are expressed like as a

the constant e.

N/P ≥ 1 (4.6)

N ≥ P (4.7)

∴ EdisksRP
' f(X) = D(N/X + cN + e) (4.8)

We used the knowledge we learned from equation 4.6 and apply the same thing to the

empty algorithm. There are no groups in this algorithm so the function will not change

according to it. In equation 4.9 you can see that there is a new term that that incorporates

the main memory. As the memory gets bigger there will be more less energy consumed so it

is another inverse function.
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D/P ≥ 1 (4.9)

D ≥ P (4.10)

∴ EdisksE ' f(X) = D(W ∗ c/X + d/SM + e) (4.11)

4.7.2 Thermal and Standard Energy Simulation

After creating our model and even a more generalize model in the previous section we

wanted to simulate some possible outcomes of our model and explain what they mean. Then

used our observations to �ll-out the unknowns in Equations 4.6, 4.9 then plotted them in a

few �gures in this section.

In Figure 4.5 we �rst used our observations which is label original, then we created

2 more possible outcomes to show how energy savings can be e�ected in Spark. For the

original you can see reactive/proactive and empty lines meet then veer o� this suggests that

the number of cores in our machines are low because the reactive and proactive algorithms

are not able to utilize there data parallelism. The �gure also shows the lower the processor

size the better the energy savings. The 2gb lines on Figure 4.5 show that with an increase

in disks we can start getting real savings, also at some point the size of main memory will

be a drain on energy savings for the empty algorithm. Finally the 1000gb test shows that

at the most memory intensive case if we don't pick a proper group size we could lose any

energy savings at all.

4.8 Future Work

This work was simply a survey of Spark energy and thermal e�ciency, and while we

implemented some energy savings techniques they were not very e�ective overall. On further

examination there should be research into the di�erent primitives that spark employs and

whether those primitives have areas for energy savings.

73



Figure 4.5: Spark Energy Savings Model
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We also focuses our e�orts into a the word count application, which would generalize

for small-medium data calls in terms of Spark disk interaction. Future research could use

our techniques for other Spark applications.

The RDD that Spark employees is very active especially if it �ts inside the main memory.

Some research further research could delve into how it would change the process if RDD was

mostly called from disk, and whether we use the disk copy to save manage energy.

Lastly in term of thermal e�ciency we were looking at the node level to save thermal

energy and found there is very little room to do that, but perhaps at a cluster level we can

organize the data to create hot spots and cold spots like previous Hadoop research [35].

4.9 Conclusion

Apache Spark is getting alot of notoriety these days for it improvements over Hadoop

while being �exible and easily sharing resources with Hadoop through HDFS. Spark as the

name implies is about speed, a lot of speed and so leveraging the fast cache memory is great

idea for throughput but causes very high CPU utilization. If Spark becomes a prevailing

application on data centers you will see spikes in cooling cost and power bills. Our proposed
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algorithms, Sparke, look at Spark through a energy conservationists eyes. This research

combined with the previous work of iTad showed that pulling down outlet temperature with

in Spark is very hard because the CPU utilization is very high and the I/O utilization is

low but constant and CPU utilization dominates most thermal environments. As for energy

e�ciency we found that using the dynamic power of disks in spark can give some gains, it

still isn't ideal. Spark is very much an up incomer in big data but it still very new and

without dramatic uptake that lead to rise in huge data center costs, it will be hard shift the

priority from speed to energy.
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Chapter 5

Savings

In the previous chapters we talked about how the changes we implemented could help

reduce costs. Our work was very much practical using real machines so we could estimate

real data center savings in terms of energy. So in this chapter we want to discuss savings in

terms of real dollars.

Assuming the average cost per kWh is $0.10 then an average data center could cost

around $5.2 million a year.[47] Using iTad you could start balance your thermal output,

which has been shown that, could to save 15% - 30% in cooling cost. [47] That could be

between $250,000 and $500,000 in savings.

Saving energy is a more powerful way to cut costs in a data center. Assuming a Hadoop

data center NAP we showed that although we would need 10% more time to run applications

we could still have 15% on cost which is close to $0.75 million dollar savings.

If the data center was an Hadoop data center that could be migrated to Spark data

center than we could implement Spark-e. This will give us up to 20% savings in time and

on top of that a 10% energy savings is quite easy to obtain as shown through work with

Spark-e. Which would have a savings to the tune of 1.43 millions dollars.

Combining energy savings with thermal savings we are looking at 20% - 33% savings

every year for moderately well optimized energy aware data center, which shows that there

is huge incentive to continue this line of research.
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Chapter 6

Conclusion

Our research has proven that data center are a drain on resources but one that will be

growing as we enter a world in which more people relies on cloud services. Instead of trying

to reduce the number of data center that we have the goal should be to optimize them to be

e�cient in everything we can including energy e�ciency and cost.

In this work we showed that thermal energy is a important indicator on air conditioning

power used and energy e�ciency of a data center. We showed discussed how tools could

help to allow companies and programmers to more e�ciently monitor and manage thermal

energy. To that end we proposed a model of data centers that would be low cost to use and

in terms of computing resources. The model we proposed was dubbed iTad, I/O Thermal

Aware Datacenter, and it contribution to the world of thermal e�ciency was two fold: it

created an easy way to model outlet temperature for a single node, it was both I/O and CPU

model that allowed for more accurate temperature prediction. This model was able to model

outlet temperature for small scale server very accurately, over time with more research this

model could be scaled up to take in more information to correctly predict the temperatures

and complex thermal model.

Our next contribution was to show �nd a novel approach to lower energy consumption

in a data center. We did that by choosing a speci�c data center con�guration, in this case

Hadoop, and look for ways to cut down on its disk energy cost. Our solution was to leverage

the Hadoop architecture and target the disks that didnt need to be in an active state during

any given task. We implemented to energy conservation algorithms which we packaged

together and called NAP, energy aware Hadoop. NAP contain two algorithms one which

reacted to which disks were being called on and turned other disks to standby until they
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were needed; the second algorithm would predict when the next disk will need to be spun

up and woke it up early so it wouldn't run into a loss in performance. We were able to prove

that at scale we could save over 15% of the energy with the algorithms in still a primitive

state.

Lastly we wanted to take our previous research and extend it to pro�le a relatively under

researched cluster computer framework, Spark. Spark is often compared to Hadoop because

of the way it works and even can run on the same �le structures. So we extended our NAP

algorithms to create an energy aware Spark algorithm set called Sparke. Sparke contains the

reactive and proactive algorithms from NAP but also introduces the idea of keeping no disks

active while Spark does all its computation in memory. We also though because of the lower

disk energy from Sparke we might get some thermal bene�t as well, but using iTad pro�le

Spark thermal usage and show that the Sparke is better suited for energy e�ciency. Even

the energy bene�ts we saw with Sparke were much lower than NAP for Hadoop. We were

still able to contribute some rough models and energy pro�les for a more in-depth Spark

analysis.

These three research products were formed together to show that data centers have

plenty of di�erent energy problems but can be solved in an array of ways. The only way

to �x those problems is to identify the energy weaknesses, develop tools to analyze the

weakness, and systems to �x those weakness; thus why we introduced Sparke, iTad, and

NAP respectively.
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