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Directed by Gary Gruenhage

Alleche, Arhangel’skĭı and Calbrix defined the notion of a sharp base and posed the

question: Is there a regular space with a sharp base whose product with [0, 1] does not

have a sharp base? Chapter 2 contains an example of a space P with a sharp base whose

product with [0, 1] does not have a sharp base. The example in Chapter 2 also answers

the following 3 questions found in the literature: Is every pseudocompact Tychonoff space

with a sharp base metrizable? Is there a pseudocompact space X with a Gδ-diagonal

and a point-countable base such that X is not developable? Is every Čech-complete

pseudocompact space with a point-countable base metrizable? The space we construct

is pseudocompact, Čech-complete, has a Gδ-diagonal, a sharp base and a point-countable

base, but is not metrizable nor developable.

In Chapter 3, we study open-in-finite (OIF) bases and introduce the notion of a

δ-open-in-finite (δ-OIF) base. Each δ-OIF base is also OIF. We show that a base B for

the space X is δ-OIF if and only if for each dense subset Y of X, B � Y is OIF. We

also define OIF-metacompact, δ-OIF-metacompact, (n, κ)-metacompact, and (< ω, κ)-

metacompact and show that for generalized order spaces and κ = ω these properties
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are equivalent. The (< ω,ω)-metacompact property is corresponds to the < ω-weakly

uniform base property. We show that for Moore spaces X, the space X has an OIF base

(resp. δ-OIF base, < ω-weakly uniform base) if and only if the space is OIF-metacompact

(resp. δ-OIF-metacompact, (< ω,ω)-metacompact).

In the final chapter, we prove that for the class of linearly ordered compact spaces,

i-weight reflects all cardinals. We find necessary and sufficient conditions for i-weight

to reflect cardinal κ in the class of locally compact linearly ordered spaces. In the last

section we calculate the i-weight of paracompact spaces in terms of the local i-weight

and extent of the space. This result determines that for compact spaces i-weight and

local i-weight are the same.
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Chapter 1

Introduction and Background

1.1 Introduction

This dissertation focuses on three different research topics. In Chapter 2 we con-

struct a space P that answers several questions found in the literature. The space P has

what is known as a sharp base, yet it’s product with the space [0, 1] does not have a

sharp base.

Chapter 3 is about open-in-finite (OIF) bases and δ-open-in-finite (δ-OIF) bases. In

[4] OIF bases are introduced and the question is posed: Must each dense subspace of a

space with an OIF base have an OIF base? That question is still open. However, we

show that a base B for a space X is a δ-OIF base if and only if for each dense subset Y

of X, the base B�Y is an OIF base.

We demonstrate that for OIF spaces the cardinal functions weight and π-weight

coincide, and that the same is true of character and π-character. Further, we prove that

if X is OIF, then for each dense subset Y of X, then the weights Xand Y are the same.

Several covering properties related to OIF, δ-OIF and < ω-weakly uniform bases are

discussed in the final sections of Chapter 3. We prove that for the class of Moore spaces

these covering properties are equivalent to the corresponding base properties. We also

show that for generalized order spaces (GO spaces), these properties are all equivalent

to each other and to paracompactness.

The last chapter contains reflection theorems for i-weight and formulas for the i-

weight of linearly ordered compact and locally compact spaces, and for paracompact
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spaces. We show that i-weight reflects for linearly ordered compact. Then we find condi-

tions under which i-weight reflects for linearly ordered locally compact spaces. We define

local i-weight, denoted liw(X), and the last section provides that for a paracompact space

X, the i-weight of X is max{log(e(X)), liw(X)}.

1.2 Definitions and Background Results

This section contains definitions from general topology and set theory that are used

throughout this work. All the material in this chapter may be found in one of [7], [12]

or [14].

First we define several cardinal functions.

Definition. The weight of space X, denoted w(X) is the minimum cardinality plus ω

of a base for the topology on X.

Definition. A π-base for X is a collection V of nonempty open sets in X so that if U is

any nonempty open set in X, then V ⊆ U for some V ∈ V. The π-weight of X, denoted

πw(X), is the minimum cardinality plus ω of a π-base for X.

Definition. A local base at x is a collection V of open sets each containing x, so that if

U is an open set containing x, V ⊆ U for some V ∈ V. The character of X at x, denoted

χ(x, X), is the minimum cardinality of a local base at x. Then χ(X) = sup{χ(x,X) :

x ∈ X}+ ω.

Definition. A local π-base at x is a collection V of open sets, so that if U is an open set

containing x, then V ⊆ U for some V ∈ V. Then π-character at x , denoted πχ(x,X),

is the minimum cardinality of a local π-base at x, and πχ(X) = sup{πχ(x,X) : x ∈ X}.
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We call a cardinal function ϕ monotone if ϕ(Y ) ≤ ϕ(X) for each subspace Y of X.

Theorem 1.1 Weight is monotone.

Proof. For a space X let B be a base for X so that |B| = w(X) and let Y be any

subspace of X. Then B�Y = {B ∩ Y : B ∈ B} is a base for Y and |B�Y | ≤ |B|. �

Definition. A subset C of a space X is called discrete if for each c ∈ C there is

an open set Uc so that Uc ∩ C = {c}. We define the extent of X, denoted e(X) by

e(X) = sup{|C| : C is closed and discrete subset of X}+ ω.

Definition. Let A be a set and λ be a cardinal less than λ ≤ |A| Then define [A]λ = {C ∈

P(A) : |C| = λ}, [A]≤λ = {C ∈ P(A) : |C| ≤ λ} and [A]<λ = {C ∈ P(A) : |C| < λ}.

Definition. A tree is a partial order , 〈T,≤〉, so that for each x ∈ T , {y ∈ T : y < x}

is well ordered by <. If x ∈ T , then we call x a node and the height of x in T, denoted

ht(x, T ), is type({y ∈ T : y < x}). For each ordinal α, the αth level is {x ∈ T :

ht(x, T ) = α}. The height of T is the least α so that αth level is empty. A chain in T is

a set C ⊆ T which is totally ordered by <, and an antichain is a set A ⊆ T , such that

∀x, y ∈ A(x6=y → (x 6≤ y ∧ y 6≤ x)). A branch of a tree is a maximal chain. If a node t

is contained in a branch b, we write t ∈ b. If a node t is of height α, then we say that t

is β-branching, where β is a cardinal, if |{x ∈ T : ht(x, T ) = α + 1 and t < x}| = β.

There are two specific types of trees that we discuss.

Definition. For any regular κ, a κ-Aronszajn tree is a tree such that every chain and

level is of cardinality < κ. A κ-Suslin tree is a tree T so that |T | = κ and every chain

and antichain of T has cardinality < κ.
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Let T be a tree so that the 0th level has cardinality 1. If each node is either 0 or 2-

branching, we can identify the nodes t of T with functions σt : α → 2 where α = ht(t, T ),

as we describe. Let the single node at the 0th level correspond to the empty sequence

and the two nodes of level 1 correspond to (0) and (1). Above those are (0, 0), (0, 1),

(1, 0) and (1, 1), et cetera. So a node t at the αth level corresponds to an element σt

of α2. For each node t ∈ T that is 2-branching, let σ_t (0) and σ_t (1) correspond to

the two nodes above t in the tree ordering. Similar to nodes, a branch b corresponds to

a sequence from ht(b)2. We write b(α) = 0 (respectively 1) if the node of b on level α

corresponds to a sequence from α2 ending with 0 (respectively 1).

Let X(T ) denote the set of branches of T . We are able to define two different

topologies on X(T ). The first topology is a linear order topology. For branches c, d ∈

X(T ) so that c6=d, there is a minimal level n so that c(n)6=d(n). We write c < d if and

only if c(n) = 0 and d(n) = 1. Then < orders the points of X(T ).

For the second topology, let t ∈ T and define [t] = {b ∈ X(T ) : t ∈ b}. Then

{[t] : t ∈ T} defines a clopen base for a topology on X(T ).

These topologies are used on X(T ) in different sections of this work. We rely on the

different notation for the basic open sets to make it clear to the reader which topology

is under discussion.
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Chapter 2

An Example of a Space with a Sharp Base

2.1 Introduction

Definition. A sharp base is a base B such that whenever (Bi)i<ω is an injective sequence

from B with x ∈
⋂
i<ω

Bi, then {
⋂
i≤n

Bi : n < ω} is a base at x.

In [1], Alleche, Arhangel’skĭı and Calbrix introduced and studied sharp bases and

asked if there is a regular space with a sharp base whose product with [0, 1] does

not have a sharp base. Good, Knight and Mohamad [8] claimed to have a Tychonoff

counterexample, but it turns out that their space is not regular. It is not regular because

they added a closed discrete set L to the Baire metric space ωc, in such a way to make

the new space P pseudocompact. Such P cannot be regular: for if it is, one may find

a neighborhood of p ∈ ωc whose closure misses L. That neighborhood can be assumed

to come from a clopen basis for ωc, and would then be homeomorphic to ωc and be

pseudocompact, a contradiction.

In this chapter we give a modification of the Good, Knight and Mohamad space

which makes the space Tychonoff; instead of taking a union of a closed discrete set with

ωc, we add a σ-discrete set to ωc so that the added set is dense in the union. The space

we construct is pseudocompact but not compact, hence not metrizable; we also show

it is not developable. Our space has no isolated points and a sharp base, and for T1

spaces a sharp base is always weakly uniform. Since Heath and Lindgren show that a

T2 space with a weakly uniform base has a Gδ-diagonal [11], our space has one also. In

[3], it is shown that a pseudocompact space with a Gδ-diagonal is Čech-complete, and
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that if a space with not more than ω1 isolated points has a sharp base, then it has a

point countable base. Therefore, the space we construct also answers these three other

questions in the negative:

Is every pseudocompact Tychonoff space with a sharp base metrizable? [3]

Is every pseudocompact space X with a Gδ-diagonal and with a point-countable base

developable? [2]

Is every Čech-complete pseudocompact space with a point-countable base metrizable?

[2]

2.2 The Construction of Space P

Let B = ωc and for σ ∈ <ωc define [σ] = {g ∈ B : σ ⊆ g}. We also denote

σ ∈ n+1c by (α0, α1, · · · , αn), where σ(i) = αi. By σ1 ⊥ σ2 we mean that σ1 and σ2 are

incompatible (i.e. the two finite partial functions disagree at a point in both domains).

�
�
�
�

Sα(0)

�
�

�
�

Sα(1)

���� Sα(2)
XXXXX Sα(3)@

@
@ Sα(4)

ppp
ρα

Figure 2.1: A typical Sα with root ρα.

Define S to be the collection of elements of ω(<ωc) subject to these two conditions:

1. For all S ∈ S there exists a ks < ω and a ρs ∈ <ωc such that whenever σ ∈ S,

σ�ks = ρs. This ρs will be called the root of S.
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2. Whenever σ1 and σ2 are distinct elements of S, σ1(ks)6=σ2(ks).

Let S = {Sα : α < c}, and let the root of Sα be ρα. Define Tα ∈ ω(<ωc) so that

T = {Tα : α < c} has these three properties:

(i) for i 6= j, Tα(i) ⊥ Tα(j)

(ii) if β, α < c, β 6= α, with Tα and Tβ defined, then ranTβ ∩ ranTα = ∅, and

(iii) for β, α < c, β 6= α, Tα and Tβ defined, if Tα(i) ⊇ Tβ(j), then whenever j′ 6=j,

Tα(i′) ⊥ Tβ(j′) for all i′ < ω.

Assume for α < γ we have either constructed a Tα ∈ ω(<ωc) subject to the conditions

above or we have not constructed a Tα at all. Now we define Tγ . Choose a δ ∈ c not in⋃
{ranTα(j) : α < γ, j ∈ ω}. Then for each i ∈ ω let S′

γ(i) = Sγ(i)_(δ). The sequence

(Tγ(i))i<ω will be a subsequence of (S′
γ(i))i<ω, so the fact that no previous Tα contains a

finite partial function with δ in the range will yield property (ii) for Tγ . In addition, the

fact that the elements of S′
γ are pairwise incompatible will make the elements of Tγ also

incompatible, satisfying property (i). So we need only concern ourselves with property

(iii).

Case 1. Suppose there exists some α < γ for which Tα was defined, such that for

infinitely many j there is some i ∈ ω with Sγ(i) ⊇ Tα(j). If this is the case, do not define

Tγ .

Case 2. If for each α < γ there are at most finitely many j for which Sγ(i) ⊇ Tα(j)

for some i, we will define a Tγ .

Suppose that for i ≤ k we have already selected a sequence of natural numbers

0 = n0 < n1 < · · · < nk and defined Tγ(i) = S′
γ(ni).
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There are at most finitely many different finite partial functions f such that f ⊆

Tγ(i) for some i ≤ k. The second induction condition implies that there are at most

finitely many α < γ with such an f in the range of Tα. List these as α(0), . . . , α(m).

We have assumed that for each α < γ, there are at most finitely many j for which S′
γ(i)

extends Tα(j) for some i. Using this fact, we see that for each α(p) there is a jp such that

for all j ≥ jp, S′
γ(i) does not extend any Tα(p)(j). Then define nk+1 = max{jp : p ≤ m}

and Tγ(k+1) = S′
γ(nk+1). To check property (iii), suppose that β < γ and Tγ(k) ⊇ Tβ(j)

for some j, k < ω. Assume that k is the least possible for which there exists such a j.

Then β = α(p) for some p ≤ m in the above construction. Since nk+1, nk+2, . . . are all

greater than jp, Tγ(i) cannot extend Tβ(j′) for any j′ 6=j and any i, so we have property

(iii). Note that Tβ(j) could not extend Tγ(i) because δ ∈ ranTγ(i)\ranTβ(j). Indeed,

from this and from (iii) with conditions 1 and 2 of S ∈ S it is easy to see that we have

the following.

(iv) If ρα = ρβ , then Tα(j) and Tβ(i) are compatible for at most one pair (i, j) in

ω × ω.

[ρα]

. . .{[Sα(i)]}i<ω

. . .{[Tα(i)]}i<ω

Figure 2.2: An open set [ρα] and the sequence of disjoint open sets {[Tα(i)]}i<ω.
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Choose L disjoint from B such that L = {sα : Tα is defined}. Let the root of sα

refer to ρα. Let P = B ∪ L.

For σ ∈ <ωc, let B(σ) = [σ]∪{sβ : ρβ ⊇ σ} and let Bn(sα) = {sα}∪
⋃
m≥n

([Tα(m)]∪

{sβ : ρβ ⊇ Tα(m)}). These will be the basic open sets for P , and call the collection of

them B.

2.3 Verifying Properties of P

First, we will observe some properties of B.

Theorem 2.1 The collection B has the following properties.

(a) For σ1, σ2 ∈ <ωc, σ1 ⊥ σ2 iff B(σ1) ∩ B(σ2) = ∅ and if ρα ⊥ ρβ then Bn(sα) ∩

Bm(sβ) = ∅.

(b) σ1 ⊆ σ2 iff B(σ2) ⊆ B(σ1), and if ρα ⊇ σ, then for each n < ω, Bn(sα) ⊆ B(σ).

(c) Suppose B(σ) ∩ Bn(sα)6=∅. Then σ ⊆ ρα or ρα ⊆ σ. If σ ⊆ ρα then B(σ) ∩

Bn(sα) = Bn(sα). If σ ) ρα, then the intersection is either B(σ) or B(Tα(m))

for some m ≥ n. Finally, if B(σ) ⊆ Bn(sα) then for some m ≥ n we have

B(σ) ⊆ B(Tα(m)).

(d) If Bn(sα) ∩ Bn′(sα′)6=∅ and ρα′ ⊆ ρα, then the intersection is either Bn(sα) or a

set of form B(σ), for some σ ∈ {Tα(m), Tα′(m′) : m ≥ n, m′ ≥ n′}. In particular,

the latter holds if ρα′ = ρα.

Proof. (a) Suppose that σ1 ⊥ σ2; then there is no point of B nor any finite partial

function that could extend both σ1 and σ2. If sα ∈ L is in B(σ1) ∩ B(σ2) then ρα
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extends both, contradiction. Suppose for the reverse, that B(σ1)∩B(σ2) = ∅; then since

[σ1] ∩ [σ2] is contained in this set, it is clear that σ1 ⊥ σ2.

Now if the roots of sα and sβ are incompatible then each pair of extensions of the

roots will be incompatible, hence B(Tα(n′))∩B(Tβ(m′)) = ∅ for each n′ ≥ n and m′ ≥ m.

Further, sα ∈ Bm(sβ) implies that ρα extends ρβ , which has been assumed to be not the

case. So Bn(sα) ∩Bm(sβ) = ∅.

(b) Clear from the definition of B(σ) and sα.

(c) Suppose that B(σ) ∩Bn(sα)6=∅. Since Bn(sα) ⊆ B(ρα) we have σ 6⊥ ρα, by (a).

If σ ⊆ ρα, then for each m ≥ n, σ ⊆ Tα(m) and sα ∈ B(σ), so Bn(sα) ⊆ B(σ).

Suppose σ 6⊆ ρα; then for some m ≥ n, B(σ)∩B(Tα(m))6=∅, while property (i) of T

implies that B(σ) ∩B(Tα(k)) = ∅ for k 6=m. By (a) and (b), one of B(σ) and B(Tα(m))

is contained in the other, and the intersection is simply the contained set. This implies

the last sentence of (c).

(d) Suppose Bn(sα) ∩ Bn′(sα′)6=∅, where sα 6=sα′ . If ρα′ ( ρα then sα′ 6∈Bn(sα) and

[Tα′(j)]∩[ρα]6=∅ for at most one j ∈ ω. Therefore, Bn(sα)∩Bn′(sα′) = B(Tα′(j))∩Bn(sα)

for some j ≥ n′. Now the rest follows from (c).

If ρα = ρα′ , then the conclusion follows from condition (iv). �

Proposition 2.2 The base B is a clopen base for P .

Proof. Notice that the properties show immediately that B is a base. To see that

Bn(sα) is closed consider sγ ∈ L \ Bn(sα). Suppose that Bj(sγ) meets Bn(sα), where j

is sufficiently large that sα 6∈Bj(sγ). Then by c) the intersection is one of B(Tα(n′)) for

some n′ ≥ n, B(Tγ(j′)) for some j′ ≥ j, Bj(sγ) or Bn(sα).
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Since sγ 6∈Bn(sα) and sα 6∈Bj(sγ), we know that the intersection cannot be Bj(sγ) or

Bn(sα). If the intersection is B(Tγ(j′)) then Bj′+1(sγ) misses Bn(sα). So the intersection

has to be some B(Tα(n′)). We have that ργ 6⊇ Tα(n′), so there exist j′′ < ω so that for

i > j′′ we have Tγ(i) 6⊇ Tα(n′). So B(Tα(n′)) ⊆ B(Tγ(j′)) or Bn(sα) ⊆ Bj(sγ). So then

Bj′′+1(sγ) misses Bn(sα).

To see that each limit point of Bn(sα) in B is in Bn(sα), suppose that p is such a

limit point of Bn(sα) not in Bn(sα). Choose k < ω so that p�k 6⊆ ρα. Then by property

(d), B(p�k)∩Bn(sα) = B(Tα(m)) for some m ≥ n. Then for k′ < ω so that k′ > |Tα(m)|

we have B(p�k′) ∩Bn(sα) = ∅.

Lastly, we observe that B(σ) is clopen. Since B is dense and the subspace base is

clopen, we only need to turn our attention to limit points of B(σ) in L. Suppose then

that sα ∈ L is a limit point of B(σ), not in B(σ); then for all n < ω, Bn(sα) meets

B(σ). If ρα ⊥ σ, then clearly B(σ) ∩Bn(sα) = ∅. If ρα ⊇ σ, then sα is in B(σ) which is

contrary to our assumptions. So assume that σ ) ρa, then there is at most one Tα(m)

that extends σ or is extended by σ. Then Bm+1(sα) ∩B(σ) = ∅. �

Proposition 2.3 The base B is sharp.

Proof. Let the injective sequence (B(σi))i<ω come from B. If p ∈ B is contained in every

B(σi) then p ⊇ σi, so since |σi| must be unbounded, it is clear that {
⋂
i≤n

B(σi) : n < ω}

is a base at p. If sα is in every B(σi), then ρα extends every σi, but since |ρα| is finite,

this is not possible.

Now consider an injective sequence (Bni(sαi))i<ω, with nonempty intersection. If

there is an infinite subset J of ω such that the ραi , i ∈ J , are distinct, then it is
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easy to see that {B(ραi) : i ∈ J} is a base for a unique point p ∈ B. Hence, so is

{
⋂
i≤j

Bni(sαi) : j < ω}, since for each i ∈ J we have Bni(sαi) ⊆ B(ραi).

Next, suppose that sαi = sα for all i in an infinite subset J of ω. Then {Bni(sαi) :

i < ω} is a base at sα, therefore {
⋂
i≤j

Bni(sαi) : j < ω} is a base at sα too.

The final case, without loss of generality, is when the sαi ’s are distinct, but ραi = ρ

for all i < ω. Then by (d), pairwise intersections have the form B(σ) for some σ in the

range of the corresponding pair from T . By property (ii) of T , {Bni(sαi)∩Bni+1(sαi+1) :

i is even, i < ω} consists of distinct B(σ)’s. Therefore, this must be a base at some

p ∈ B, and {
⋂
i≤j

Bni(sαi) : j < ω} is as well. �

Proposition 2.4 The space P is not compact.

Proof. Consider C0 = {sα ∈ L : ρα = ∅}. Note that P \C0 =
⋃
α<c

B((α)). We intend to

show that the closed set C0 is infinite and discrete. To see that this is a discrete set, notice

that for sα ∈ C0, the set B1(sα) ∩ C0 can only contain sα. Examine {(αγi )i<ω : γ < c},

where αγi = αγ
′

i′ iff both i = i′ and γ = γ′. Call this collection S0; then this is a subset

of S. Note, that for each Sα ∈ S0 and i < ω, we have that the length of Sα(i) is exactly

one. Each Tγ(j) is constructed to have length at least 2. Therefore, during the induction

that defined T , for each Sα ∈ S0, Case 1 does not hold. Hence, a corresponding Tα is

constructed for each Sα ∈ S0. This implies that {sα ∈ L : ρα = ∅} has size at least c. �

A space is called perfect if every open set is Fσ. A development for a space X is

a sequence (Gi)i<ω of open covers so that for each point x ∈ X the set {G ∈ Gi : x ∈

G, i < ω} is a local base for x. A space with such a development is called developable

and each regular developable space is perfect.

Proposition 2.5 The space P is not perfect, hence not developable.

12



Proof. Let U = P \ C0. We show that U is not Fσ, and hence P is not developable.

Suppose that {Fj}j<ω is a collection of closed sets so that
⋃
j<ω

Fj = U . By the Baire

property of B, each [(α)] is Baire. So for all α < c there is an nα and an [α̃] =

[(α, β1, · · · , βnα)] ⊆ Fnα . Choose n0 so that {α : [α̃] ⊆ Fn0} is infinite. Order {αi}i<ω ⊆

{α : [α̃] ⊆ Fn0}, then S = ((α̃i))i<ω ∈ S, and has the empty set as its root. So an s ∈ L

was defined as a limit point of S, and σ the root of s is also the empty set. Therefore,

s is a limit point of a closed set, Fn0 , which implies that s ∈
⋃
α<c

B((α)). So there is a

β < c so that ∅ ⊇ (β), a contradiction. �

Recall that a Tychonoff space is pseudocompact if every continuous real valued

function is bounded.

Proposition 2.6 The space P is pseudocompact.

Proof. Suppose that ϕ is an unbounded continuous real valued function on P . Since B

is dense, for each n ∈ ω there is an xn such that ϕ(xn) > n. Let D = {xn : n ∈ ω} and

let’s note that D is closed discrete, hence not compact. If p were a cluster point of D,

then every open neighborhood of p contains infinitely many elements of D. This implies

that ϕ increases unboundedly over every neighborhood of p, contradicting the continuity

of ϕ.

Since D is closed and not compact we can find a k < ω such that {xn�k : xn ∈ D}

is infinite. Choose the minimum such k. Then there is a σ ∈ <ωc and an infinite subset

A of ω, such that xn�(k− 1) = σ for n ∈ A, and xn(k− 1) is different for these infinitely

many n ∈ A.

Let D∗ = {xn : n ∈ A}. Since ϕ(xn) > n by continuity of ϕ there exists jn > k so

that ϕ(B(xn�jn)) > n. Then for some α < c, {xn�jn : xn ∈ D∗} is Sα and ρα = σ. If sα
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was not defined then for some β < α, Tβ(j) ⊆ Sα(n) = xn�k for infinitely many n. Then

each basic open neighborhood of sβ contains infinitely many of the sets B(xn�k). So ϕ

takes on arbitrarily large values over every neighborhood of sβ contradicting continuity.

If sα was defined, then Tα(i) was chosen so that Tα(i) ⊇ xni�jni for each i ∈ ω, so

B(Tα(i)) ⊆ B(xni�jni). So again, ϕ takes on large values over every open set containing

sα, contradicting the continuity of ϕ. �

For a metric space, compact and pseudocompact are equivalent, so P clearly cannot

be metrizable.

The following definition can be found in [5].

Definition. An n-weakly uniform base B for the space X is a base so that given any

subset A of X, the set {B ∈ B : A ⊆ B} is finite. A < ω-weakly uniform base B is

a base so that given any infinite subset A of X there is a finite subset F of A so that

{B ∈ B : F ⊆ B} is finite.

The notion of a weakly uniform base, which is due to [11], corresponds to a 2-weakly

uniform base. For n < w < ω it is clear that n-weakly uniform base are m-weakly

uniform, and that each n-weakly uniform base is < ω-weakly uniform. Also, for any T1

space a sharp base is a weakly uniform base.

Lemma 2.7 Let X be a Tychonoff, pseudocompact, non-compact space with no isolated

points which partitions into B∪L, and has an n-weakly uniform base B (resp. < ω-weakly

uniform base B). If

(a) B = B1 ∪ B2 where B1 is a σ-point finite base for B

14



(b) for all x ∈ L there is a local base {Bn(x) : n < ω} so that n < m implies Bm(x) (

Bn(x) and B2 = {Bn(x) : n < ω, x ∈ L}

(c) for x6=y ∈ L, n, m ∈ ω, Bn(x)6=Bm(y).

Then X × [0, 1] does not have an n-weakly uniform base (resp. < ω-weakly uniform

base).

Proof. Assume, by way of contradiction, that W is an n-weakly uniform base for

X × [0, 1]. Let C be a countable base for [0, 1]. For each x ∈ L, choose W x
n ∈ W, Bx

n ∈ B

and Cx
n ∈ C so that (x, 1

2) ∈ Bx
n × Cx

n ⊆ W x
n ⊆ Bn(x) × [0, 1]. Let BC = {B ∈ B : for

some n ∈ ω and x ∈ L, B = Bx
n and C = Cx

n}.

We claim that BC is point-finite. Suppose not; then there exists an infinite collection

(Bj)j<ω from BC that has nonempty intersection. Let y ∈
⋂
j∈ω

Bj ; then there are xj ∈ L

and nj ∈ ω so that Bj = B
xj
nj and C = C

xj
nj . Then {y}×C ⊂

⋂
j∈ω

(Bxj
nj ×C

xj
nj ) ⊆

⋂
j∈ω

W
xj
nj .

If xj 6=xk then Bn(xj)6=Bn′(xk).

There are two cases to consider.

Case 1. There is an infinite J ⊆ ω so that xj 6=xk whenever j 6=k with j, k ∈ J . Then

{W xj
nj : j ∈ J} is infinite. Suppose not; then some open W is contained in infinitely

many different Bnj (xj)× [0, 1]. That B is n-weakly uniform implies that
⋂
j<ω

Bnj (xj) is

finite. Let it be F , implying W ⊆ F × [0, 1], which is impossible since X has no isolated

points. Hence {W xj
nj : j ∈ J} is infinite, and so {y} × C ⊆

⋂
j∈ω

W
xj
nj is a finite set, a

contradiction.

Case 2. There is an infinite K ⊆ ω so that xj = xk = x for j, k ∈ K. Then the set

{nk : k ∈ K} is infinite, since the Bxk
nk

are distinct. Again, {y}×C ⊆
⋂
k∈K

(Bxk
nk
×Cxk

nk
) ⊆
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⋂
k∈K

W xk
nk

=
⋂
k∈K

W x
nk

. Once again, this must be finite, so we have the same contradiction

as in Case 1.

Therefore, BC is point finite. Let B′ =
⋃
C∈C

BC ; then B1 ∪ B′ is a σ-point finite base

for X. All pseudocompact spaces with σ-point finite bases are metrizable [17]. However,

all metrizable pseudocompact spaces are also compact, contradiction. �

Theorem 2.8 The product P × [0, 1] does not have a sharp base.

Proof. We use Lemma 2.7. Let B1 =
⋃
n<ω

{B(σ) : |σ| = n} and B2 = {Bn(sα) : sα ∈

L, n < ω}. Since for T1 spaces sharp implies weakly uniform, this means that P × [0, 1]

has no sharp base. �
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Chapter 3

Open-in-finite bases

3.1 Introduction

Definition. A base for a topological space X is open-in-finite (OIF) if every nonempty

open set is contained in at most finitely many elements of the base. If space X has an

OIF base then we say X is an OIF space.

In [4] the base property OIF was introduced and the following question was asked:

Is every dense subspace of a regular OIF space OIF? This work came out of an attempt

to answer that question. In the next section, we examine the relationship between the

cardinal functions of dense subsets of an OIF space and the cardinal functions of the OIF

spaces. In section 4 we find properties that a space must have if it is densely contained

in an OIF space.

We show that every left or right separated dense subset of an OIF space must be

OIF. We also give a necessary and sufficient condition for when dense subsets of OIF

spaces are themselves OIF.

In the last section of this chapter we introduce some covering properties that are

related to the base properties OIF, δ-OIF and < ω-weakly uniform. We show that for

GO spaces these properties are equivalent to each other and to paracompact. We also

show that for Moore spaces the covering properties are equivalent to the corresponding

base property.

17



3.2 OIF Spaces and Cardinal Functions

Next, we present some results regarding cardinal functions and OIF spaces. The

definitions of these cardinal functions can be found in Chapter 1.

Theorem 3.1 If X is OIF, then w(X) = πw(X) and χ(X) = πχ(X).

Proof. For any space X, we know w(X) ≥ πw(X), because any base is a π-base.

Suppose w(X) > πw(X). Let B be any base of X, and let A be a π-base of size πw(X).

Then if each A ∈ A is in finitely many members of B then |B| = |A|. So some A ∈ A

is in infinitely many members of B and since B was arbitrary, X is not OIF. Hence

w(X) = πw(X) for any OIF space.

Let p ∈ X, where X is an OIF space. Suppose V is a local base for p where

the elements of V are taken from an OIF base. Then let U be a local π-base for p of

cardinality πχ(p, X). Any local base is a local π-base so πχ(p, X) ≤ χ(p, X). Suppose

that |U| = πχ(p, X) < χ(X) = |V|. Then each element of V must contain an element of

U . For each V ∈ V assign UV ∈ U so that UV ⊆ V . Then some U ∈ U is assigned to

infinitely many V ∈ V, which means that V is not an OIF collection. So for each p ∈ X

we have πχ(p, X) = χ(p, X). Therefore, πχ(X) = χ(X). �

Theorem 3.2 If X is a regular OIF space with OIF dense subspace Y , then πw(Y ) =

w(Y ) = πw(X) = w(X).

Proof. Suppose that A is a π-base of Y . Then let A′ = {(A)◦ : A ∈ A}. We show that

A′ is a π-base for X. Let U be an open set in X; since Y is dense, U ∩ Y 6= ∅. Let

x ∈ U ∩ Y ; then by regularity there is a V open in X so that x ∈ V ⊆ V ⊆ U . Also,

V ∩Y is open in Y , so there an A ∈ A so that A ⊆ V . So (A)◦ ⊆ V ⊆ U . We know that
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(A)◦ 6= ∅. So A′ is a π-base of X of the same cardinality as A. Thus πw(X) ≤ πw(Y ).

We already know that πw(Y ) = w(Y ) ≤ w(X) = πw(X), so equality holds. �

In Section 3.4 we will see that if X is an OIF space then all the dense subspaces of

X have the same weight as X.

Examples. The space βω is not OIF because the weight of βω is c and the weight

of ω is ω. Also, βR is not OIF because the weight of R is ω while the weight of βR is c.

Corollary 3.3 If X is a completely regular space and C is an infinite closed discrete

subspace of X such that 2|C| > w(X), then βX is not OIF.

Proof. If C is an infinite closed discrete space, then βC has weight 2|C| and w(βC) ≤

w(βX). Then w(βX) 6= w(X), so β(X) is not OIF. �

This means that if βX has an OIF base and w(X) < 2ω, then X is countably

compact. Recall that βX is only defined for completely regular X, so if X is also second

countable, then X is metrizable. For metrizable spaces, countably compact is equivalent

to compact. Therefore if X is a completely regular second countable space for which βX

is OIF, then X is compact. So if βX and X are distinct OIF spaces, it must be the case

that w(X) > ω.

In [4] the authors noted that if X and Y are OIF then X × Y is OIF. Also, the

question was raised : If X × X is OIF does that imply that X is OIF? In connection

with that question we explore the relationship between the cardinal functions of X and

X ×X.

Proposition 3.4 If X ×X is OIF, then πw(X) = w(X) = w(X ×X) = πw(X ×X),

and πχ(X) = χ(X) = χ(X ×X) = πχ(X ×X)
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Proof. Assume X ×X is OIF and let x ∈ X. Then πw(X) ≤ w(X) = w(X × {x}) ≤

w(X ×X) = πw(X ×X). If A is a π-base of X, then A ×A is a π-base of X ×X, so

πw(X ×X) ≤ πw(X). So the claimed equality holds.

Suppose (x1, x2) is a point in X ×X. Let A1 and A2 be open neighborhood bases

at x1 and x2 respectively, with each Ai having size πχ(X). Then A1 × A2 is a local

base at (x1, x2). It follows that πχ(X × X) ≤ πχ(X), while it is already known that

πχ(X) ≤ χ(X) ≤ χ(X ×X) = πχ(X ×X). �

This last result is an easy observation.

Proposition 3.5 Let X be a space with OIF base B and let the character of X be κ.

Then B is a point-≤ κ base.

Proof. Suppose that x is a point in X contained in more than κ many elements of

an OIF base B. There is a local base at x of size cardinality less than or equal to κ.

Each of the ≥ κ+ sets in B containing x must contain some set from the local base.

Therefore some element of the local base is contained in infinitely many elements of B,

contradiction. �

Corollary 3.6 Suppose X is a regular, first countable, countably compact space. If X

is OIF, then X is a compact metrizable space.

3.3 Stronger Base Properties

Here we primarily discuss the property called δ-OIF, but we shall also refer to a

generalization of weakly uniform bases. The δ-OIF property is of interest because δ-OIF

implies OIF, each example of an OIF space in [4] is also a δ-OIF space, and every dense

subspace of a δ-OIF space is δ-OIF.
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Definition. A base B for space X is called a δ-OIF base if every infinite intersection

from B is nowhere dense, and X is called a δ-OIF space if X has a δ-OIF base.

Proposition 3.7 If B is a δ-OIF base then B is an OIF base.

Proof. Suppose B is a base as above. Let {Bi : i < ω} be a subset of B. Since
⋂
i<ω

Bi

is nowhere dense,
⋂
i<ω

Bi must have empty interior. So it must be that every open set is

contained in at most finitely many members of B. �

Definition. A sequence of sets {Vi : i < ω} is called strongly decreasing if Vi+1 ⊆ Vi for

each i < ω.

Lemma 3.8 Any strongly decreasing sequence {Vi : i < ω} of open sets from an OIF

base is a δ-OIF collection.

Proof. Suppose that {Vi : i < ω} is strongly decreasing and a subset of some OIF base.

Then consider C =
⋂
i<ω

Vi. If x ∈ C, either x ∈
⋂
i<ω

Vi or x is a limit point of this set. In

the second case, for each i < ω, x ∈ Vi+1. Therefore, x ∈ Vi for each i < ω. So C ⊆ Vi

for each i. It follows now that C must have empty interior. �

Definition. A collection U of open sets is called regular if for each U ∈ U there is a

U ′ ∈ U so that U ′ ⊆ U .

Example. There is a regular OIF collection of open sets in R that is not δ-OIF. Let

Un =
(

2− 1
n

, 2 +
1
n

)
for each n ∈ N. Then U = {Un : n ∈ N} is a regular OIF collection

of open sets in R. Let An =
{
k
3n : 1 ≤ k < 3n

}
. Then define U∗

n = (Un ∪ (0, 1)) \An.

21



Then

(⋂
n∈N

U∗
n

)◦

= ∅, since it misses the set
⋃
n∈N

An which is dense in (0, 1).

Therefore U∗ = U ∪ {U∗
n : n ∈ N} is OIF. Also, Un+1 ⊆ Un ⊆ U∗

n, so U∗ is a regular

collection. However,

(⋂
n∈N

U∗
n

)◦

= (0, 1), and so U∗ is not δ-OIF.

Theorem 3.9 An OIF base B of X is a δ-OIF base if and only if for every dense subset

Y of X, the trace of B on Y is an OIF base for Y .

Proof. For the forward direction, let X be a space with a δ-OIF base B. Let Y be a

dense subset of X and let B�Y = {B ∩ Y : B ∈ B}. Suppose that Ci ∈ B�Y for each

i ∈ ω and let G =
⋂
i<ω

Ci. Suppose G
◦ 6= ∅ in Y . Then G

◦ 6= ∅ in X, and G
◦ ⊆

⋂
i<ω

Ci
◦
,

which contradicts our assumption that B is δ-OIF. Thus, B�Y is δ-OIF.

For the reverse direction, let B be an OIF base so that for each dense subset Y of

X, B�Y is OIF. Suppose that B is not δ-OIF, and let Bn ∈ B for each n ∈ ω so that

W =
⋂
n<ω

Bn

◦
6=∅.

Consider Y ′ =
⋂
n<ω

Bn∪ (X \
⋂
n<ω

Bn). This Y ′ is dense, for if U is an open set of X,

then either U ∩
⋂
n<ω

Bn is empty or it isn’t. If it is empty then U ⊆ (X \
⋂
n<ω

Bn) ⊆ Y ′.

If the intersection is not empty then U meets Y ′. Next we add points to Y ′ to form Y

so that {Bn ∩ Y : n < ω} is infinite.

Choose two disjoint open sets in W , say A1 and A2. Next for each {m, n} ∈ [ω]2

choose xm,n ∈ (Bm \Bn) ∪ (Bn \Bm). Then let P1 = {{m,n} : xm,n 6∈A1} and P2 =

[ω]2 \ P1. Ramsey’s Theorem states that if we partition [ω]2 into P1 and P2, then there

is an infinite P ⊂ ω such that [P ]2 is contained in one partition. Let Y = Y ′ ∪ {xm,n :

{m,n} ∈ P}. We show that {Bn ∩ Y : n < ω} is infinite. Consider Bn ∩ Y and Bm ∩ Y
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with {m,n} ∈ P . The point xm,n is contained in Y and is contained in only one of Bn

and Bm, therefore Bn ∩ Y 6=Bm ∩ Y .

If P ⊆ P1 then let U = A1 and let U = A2 otherwise. Note that U ⊆ W \ {xm,n :

{m,n} ∈ P} and W ∩ (X \
⋂
i<ω

Bi) = ∅, and therefore, U ∩Y ⊆
⋂
i<ω

Bi∩Y =
⋂
i<ω

(Bi∩Y ),

contradiction. �

Corollary 3.10 If X has a δ-OIF base then every dense subset of X has a δ-OIF base.

It is known that every metacompact Moore space has a OIF base; it is in fact true

that every metacompact Moore space has a δ-OIF base.

Theorem 3.11 Every metacompact Moore space has a δ-OIF base.

Proof. Let G = (Gi)n<ω be a development for metacompact Moore space X, so that

Gn+1 refines Gn, each Gn is point-finite. Then consider {Vi : i < ω} ⊆
⋃
i∈ω G; with⋂

i<ω

Vi 6=∅. If some Gn contains infinitely many sets from {Vi : i < ω}, then because Gn

is point finite,
⋂
i<ω

Vi = ∅, contradiction. Therefore, we have that {n : there exists i < ω

so that Vi ∈ Gn} is cofinal in ω. Therefore, {Vi : i < ω} either has empty intersection or

contains a base for some point of
⋂
i<ω

Vi. This means that |
⋂
i<ω

Vi| < 2, and therefore is

nowhere dense. �

In [4], the authors show that if a space has an OIF base of regular open sets, then

each dense subset of that space is OIF. The OIF property is also known to be productive

and the third theorem below shows the same is true for δ-OIF.

Theorem 3.12 An OIF base of regular open sets is a δ-OIF base.
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Proof. Suppose B is a regular open OIF base for space X.

Consider
⋂
i<ω

Bi

◦
⊆

(⋂
i<ω

Bi

)◦

⊆
⋂
i<ω

Bi
◦ =

⋂
i<ω

Bi. So each Gδ set from B is nowhere

dense, hence B is δ-OIF. �

Theorem 3.13 Suppose X is a space with an OIF base B. Then X has a δ-OIF base

if and only if for all B ∈ B there is an collection CB = {Vi : i ∈ IB} ⊆ B so that

1. Vi
◦ ⊆ B for each i ∈ IB,

2. B =
⋃
i∈IB

Vi, and

3. for each infinite F ⊆ IB, we have
⋂
F

Vi
◦

= ∅.

Proof. Take X, B and CB as above and let C =
⋃
B∈B

CB. Then this C is a base for X.

Suppose that {On : n < ω} ⊆ C and consider
⋂
n<ω

On. For each n < ω, let Bn be an

element of B so that On ∈ CBn . If {Bn : n < ω} is finite then infinitely many On are from

the same CB and therefore the intersection of them is nowhere dense. If {Bn : n < ω}

is infinite, then observe that
⋂
n<ω

On

◦
⊆

(⋂
n<ω

On

)◦

⊆

(⋂
n<ω

Bn

)◦

= ∅. Therefore, C is

δ-OIF.

Now suppose that X has a δ-OIF base C and let B be a base for X. Then for each

B ∈ B let CB be any collection from C of sets contained in B whose union is B. �

Corollary 3.14 If X is a regular OIF space that is hereditarily metacompact, then X

has a δ-OIF base.

Proof. Let X be such a space and let B be an OIF base for X. For each B ∈ B and

each x ∈ B let Vx,B be a set from B so that x ∈ Vx,B ⊆ Vx,B ⊆ B. Then for each B the
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collection VB = {Vx,B : x ∈ B} covers B. Find a point finite open refinement CB of each

VB. Then CB satisfies the conditions of the previous theorem. �

Theorem 3.15 If for each α < κ the space Xα is δ-OIF, then
∏
α<κ

Xα is δ-OIF.

Proof. Let Bα be a δ-OIF base for Xα. For F ∈ [κ]<ω, a basic open set in the

product would be
⋂
α∈F

π−1
α (Aα) where Aα ∈ Bα. Suppose that the open set G =

⋂
i<ω

 ⋂
α∈Fi

π−1
α (Aα,i)

◦

where

 ⋂
α∈Fi

π−1
α (Aα,i)


i∈ω

is an infinite collection of basic open

sets and each Aα,i 6=Xα. Let G′ be a basic open set contained in G. Then for all but

finitely many α, πα(G′) = Xα, and therefore πα(G) = Xα for all but finitely many α.

Hence, there is a finite set F so that Fi ⊆ F for each i ∈ ω. To verify this claim, aiming

for a contradiction, suppose that
⋃
i<ω

Fi is infinite. Then let γ < κ so that γ ∈
⋃
i<ω

Fi and

πγ(G) = Xγ . Then let Bγ ∈ Bγ be a set that misses Aγ . Then
∏
α<γ

Xα ×Bγ ×
∏

γ<α<κ

Xα

is an open set that misses
⋂
i<ω

 ⋂
α∈Fi

π−1
α (Aα,i)

, contradiction.

There is a β ∈ κ so that β ∈ Fi for infinitely many i < κ and {Aβ,i : β ∈ Fi}

is infinite; else

 ⋂
αi∈Fi

π−1
a (Aαi)


i∈ω

is a finite collection of open sets. But notice that

{Aαi : i ∈ I} ⊆ Bβ.

Then we have πβ(G) ⊆ πβ

⋂
i<ω

 ⋂
α∈Fi

π−1
α (Aα,i)

◦ ⊆

(⋂
i∈I

Aα,i

)◦

. This contra-

dicts that Bβ is a δ-OIF base. �

Recall from Chapter 2 that an n-weakly uniform base B for a space X is a base such

that given any subset A of X with |A| = n, the collection {B ∈ B : A ⊆ B} is finite.

Call B < ω-weakly uniform if, given any infinite set A, there is a finite subset F ⊆ A

with {B ∈ B : F ⊆ B} finite.
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Theorem 3.16 Suppose X has a < ω-weakly uniform base that is point finite at every

isolated point in X. Then X is δ-OIF.

Proof. Let B be a base for X, as above. Suppose {Bi : i < ω} ⊆ B.

Consider
⋂
i<ω

Bi. If this intersection is finite, then it is closed and does not contain

an open set because any isolated point is in only finitely many elements of the base.

Therefore, it is nowhere dense.

If
⋂
i<ω

Bi is infinite, then there exists a finite subset F of
⋂
i<ω

Bi so that {B ∈ B :

F ⊆ B} is finite, contradiction. �

Theorem 3.17 There is a space that has a δ-OIF base but does not have a < ω-weakly

uniform base.

Proof. The product P×[0, 1], where P is the space from Chapter 2, is such a space. The

space P × [0, 1] does not have a < ω-weakly uniform base by Lemma 2.7, but Theorems

3.16 and 3.15 shows it does have a δ-OIF base. �

Example. If κ is an uncountable cardinal, then [0, 1]κ will be δ-OIF but not

metrizable.

Definition. A space is neighborhood OIF at a point x if there is a local base for x that

is an OIF collection. We call a space neighborhood OIF if it is neighborhood OIF at each

point x ∈ X.

A space X is neighborhood δ-OIF at point x if there is a local base for x that is a

δ-OIF collection. We call X a neighborhood δ-OIF space if it is neighborhood δ-OIF at

each point x ∈ X.
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Naturally, each δ-OIF space is neighborhood δ-OIF, and each neighborhood δ-OIF

space is neighborhood OIF.

Proposition 3.18 If X is a regular space that is neighborhood OIF at x, then X is

neighborhood δ-OIF at x.

Proof. Let U be a OIF local base at x, and order U = {Ui : i < κ}. For each i < κ,

if possible, let U ′
i be a member of U so that x ∈ U ′

i , U ′
i ⊆ Ui and U ′

j 6=U ′
i for each

j < i. If for some i < κ we are unable to find a U ′
i that has not already been assigned

to a previous member of U , then do not define U ′
i . Then U ′ = {U ′

i : U ′
i defined and

i < κ} is also a local OIF base at x. It is a δ-OIF collection, for J ∈ [κ]ω and consider⋂
j∈J

U ′
j

◦
⊆

⋂
j∈J

U ′
j

◦

⊆

⋂
j∈J

Uj

◦

= ∅. �

Corollary 3.19 All regular neighborhood OIF spaces are neighborhood δ-OIF spaces.

Corollary 3.20 If Z is a regular neighborhood δ-OIF space, then each dense subspace

of Z is a neighborhood δ-OIF space. In fact, each dense subspace of a regular OIF space

is neighborhood δ-OIF.

Proof. By the proof of Theorem 3.9, we know that each δ-OIF collection in Z will have

an OIF trace in any dense subspace. By Proposition 3.18, each of these OIF local bases

in the dense subset will contain a δ-OIF local base. �

Corollary 3.21 No non-trivial regular P-space can be embedded in a regular OIF space.

Proof. Suppose that X is a non-trivial regular P-space, and let x ∈ X be any non-

isolated point. Then let Bx be any local base for x in X. Let {Bi : i < ω} ⊆ Bx;
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then x ∈
⋂
i<ω

Bi. So
⋂
i<ω

Bi is nonempty, and as a Gδ subset of a P-space it is also

open. Therefore Bx is not an OIF collection. Thus X is not neighborhood OIF at any

non-isolated point. �

3.4 The z Property

Recall that the question that motivates this research is: Is every dense subspace

of a regular OIF space OIF? While trying to answer this question we considered the

possibility of creating a counterexample by embedding a space that is known not to be

OIF in a space that is regular and OIF. Naturally, this cannot be done with an arbitrary

space. This section contains conditions under which a space cannot be densely embedded

in a regular OIF space. In this section we prove that every left (or right) separated space

that is dense in an OIF space is OIF, and every space contains left separated dense

subspaces. Therefore, if X is a space that is not OIF but can be densely embedded in

a regular OIF space, then each dense left separated subspace of X is OIF. Later in this

section we examine some of the properties that must be enjoyed in order for space Z

and some dense subspace X of Z to both be OIF. This section ends with a necessary

and sufficient condition for a dense subset X of an OIF space Z to be OIF.

The following z property is necessary for a space to be a dense subspace of a regular

OIF space.

z: There exists a base B so that for each point-selection p : B → X with p(B) ∈ B there

is a gp : B → B so that p(B) ∈ gp(B) ⊆ gp(B) ⊆ B and ran(gp) is OIF.

Proposition 3.22 If X is a dense subset of a regular OIF space then X has the z

property.
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Proof. Suppose that X is a dense subset of a regular OIF space, Z. Let B be an OIF

base for Z, then B�X is a base for X. Let p : B�X → X be a point-selection. For each

p(B ∩X) find B′ ∈ B so that p(B ∩X) ∈ B′ ⊆ B′ ⊆ B, where the closure in taken in Z;

this is possible since Z is regular. Then define gp : B�X → B�X by gp(B ∩X) = B′ ∩X.

Aiming for a contradiction suppose that ran(gp) is not OIF. Then there is a V ∈ B

and {Bi : i < ω} so that V ∩X ⊆ gp(Bi ∩X) = B′
i ∩X for each i < ω. Since B′

i ⊆ Bi,

we see that V ⊆ Bi for i < ω. This contradicts the assumption that B is OIF. �

The z property arose from an examination of the proofs that the following two

examples cannot be densely embedded in a regular OIF space.

Example 1. Tangent-Disk space. The underlying set is X = {(x, y) ∈ R2 : y ≥ 0}.

By Bn(x, y) we denote the Euclidean ball of radius
1
n

centered at (x, y). For each

(x, 0) we denote Dn(x, 0) = {(x, 0)} ∪ Bn

(
x,

1
n

)
. Then B = {Bn(x, y) : y > 0 and

n ∈ N} ∪ {Dn(x, 0) : n ∈ N} is a base for the Tangent-Disk topology.

-�

6

r
p p
p p

pp
ppr pp ppp pp p

pp
p
p

pp
p
p

Figure 3.1: The tangent-disk space and some open sets

Let B be any base for X and define p : B → X so that if there exists a unique

(x, 0) ∈ B then p(B) = (x, 0). This is possible since for each Dn(x, 0) there is an element

of B that contains (x, 0) and is contained in Dn(x, 0). For other B ∈ B, let p(B) be

arbitrary. Then for any gp : B → B so that p(B) ∈ gp(B) ⊆ gp(B) ⊆ B we intend to
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show that ran(gp) is not OIF. Since the cardinality of the real line is c, the range of

gp has cardinality c. Therefore there is at least one open set from a countable base for

R× (0,∞) that is contained in infinitely many members of ran(gp).

Proposition 3.23 If X has z property then X is neighborhood OIF.

Proof. Suppose that X has the z property. Let B be the base guaranteed by z.

We intend to show that X is neighborhood OIF at each point. Pick x ∈ X and let

Bx = {B ∈ B : x ∈ B}. Then let p : B → X be defined so that p(B) = x for B ∈ Bx

and let p(B) be arbitrary for B 6∈Bx. Then there is a gp : B → B so that ran(gp) is OIF.

Therefore, gp(Bx) is OIF and a local base at x in X. �

Example 2. Sequential Fan on ω1 many sequences. Suppose X is the space of

consisting of a point, ∞, and ω1 many sequences converging to ∞. The points of each

sequence are isolated, and each neighborhood of ∞ is made up of a tail from each

sequence. Then ∞ is a point whose local base must always fail to be OIF.

Since all first countable spaces are neighborhood OIF, the Tangent-Disk space de-

scribed above serves as an example of a space that is neighborhood OIF but not OIF.

We observed that if X has the z property, then X is neighborhood OIF. Further-

more, this implies that each dense subset of a regular OIF space must be neighborhood

OIF. For left or right separated dense subsets we can say more.

Proposition 3.24 Suppose that a regular space X is left or right separated, and has the

z property. Then X is OIF.

Proof. We will assume that X is a regular left separated space, and our proof will work

analogously for a right separated space.
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Since the space is left separated, there is a well-ordering, say ≺, under which each

{y : y ≺ x} is closed. Let B be the base from z and for each x ∈ X choose Bx ∈ B so

that x ∈ Bx ⊆ [x,∞). This assignment is one-to-one. For each x ∈ X let Bx = {B ∈ B :

x ∈ B ⊆ Bx}. Then we see that Bx is a local base at x and Bx∩By 6=∅ if and only if x = y.

Choose an arbitrary point x0 and define p : B → X by p(B) = x if B ∈ Bx and p(B) = x0

otherwise. Then by z, there is a gp : B → B so that p(B) ∈ gp(B) ⊆ gp(B) ⊆ B and

ran(gp) is OIF. Therefore, ran(gp) is an OIF base for X. �

The following lemma and its proof are both well known.

Lemma 3.25 Every space contains a left separated dense subset.

Proof. The subset is created recursively. At stage α, choose xα from X \ {xβ : β < α},

if possible. If X \ {xβ : β < α} = ∅, then L = {xβ : β < α}. This method assures that

each [x,∞) in L is open in L, and that L is dense. Clearly this does terminate at some

stage less than or equal to |X|. �

Corollary 3.26 If Z is a regular OIF space, then any dense subspace of Z will have the

same weight as Z.

Proof. Suppose X is a dense subspace of Z. We use Lemma 3.25 to find a left separated

dense subspace X ′ of X, which will also be dense in Z. Then by Proposition 3.24 X ′ is

OIF, and by Theorem 3.1 w(X ′) = w(Z). Since weight is monotonic, w(X) = w(Z). �

Next, we present a condition that does not depend upon the points of the space,

just the open sets.

zz: There is B and a g : B → B satisfying ∅6=g(B) ⊆ g(B) ⊆ B and {g(B) : B ∈ B} is

OIF.
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We note that z implies zz. The next example shows that zz does not imply z.

Proposition 3.27 There is a space with the zz property that does not have the z

property.

Proof. Let L denote the set of limit ordinals less than ω1. Define X = (ω1+1)\L with the

topology inherited from the order topology. Let B = {[α, ω1] : α ∈ X} ∪ {{α} : α ∈ X}

be a base for X. Define g : B → X by g([α, ω]) = {α} and g({α}) = {α}. Then for each

B ∈ B we have g(B) ⊆ B and g(B) is OIF.

Also, X is not neighborhood OIF at the point ω1, since any local base for ω1 in X

is would contain ω1-many different open sets. Therefore for any local base for ω1 some

isolated point is contained in infinitely many different sets from the local base. Since X

is not neighborhood OIF, X cannot have the z property. �

Proposition 3.28 If X is a dense subspace of a regular OIF space then X has the zz

property.

Proof. Since z implies zz, this follows from Proposition 3.22 �

Lemma 3.29 If X is a space with uncountable π-weight and a π-base A which is an

ω1-Suslin tree under reverse inclusion, then X cannot be densely embedded in a regular

OIF space.

Proof. For contradiction, suppose that X and A are as above and is dense in an OIF

space. Then there is a base B for X and g : B → B so that g(B) ⊆ B and g(B) is an OIF

collection. Define g∗ : B → A by g∗(B) ⊆ g(B). Because g(B) is OIF, the tree (g∗(B),⊇)

has height ω and |g∗(B)| = |g(B)| > ω. Therefore, (g(B),⊇) has an uncountable level ,

which is an uncountable antichain in (A,⊇), contradiction. �
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Theorem 3.30 A Suslin line cannot be densely embedded in a regular OIF space.

Proof. If X if an arbitrary Suslin line we intend to show that there is a collection of

open sets in X that is an ω1-Suslin tree ordered by reverse inclusion. If X is any Suslin

line by Theorem II.4.4 in [14], there is an L which is dense in X, dense in itself and has

no separable open subset. To form L, we define equivalence classes in X by letting x ∼ y

if (x, y) or (y, x) is a separable subset of X. Then L is the set of ∼ equivalence classes.

Since X is ccc, only countably many equivalence classes are more than just one point.

For the countably many non-trivial separable intervals, there is a countable collection

of open intervals that is a π-base for each interval. If the rest of X also has a π-base

that is an ω1-Suslin tree under reverse inclusion, then the union of these countably many

countable trees with the ω1-Suslin tree is still an ω1-Suslin tree. Therefore, we work with

the line L.

In [14] Theorem II.5.13 describes the construction of an ω1-Suslin tree from a Suslin

line L which is dense in itself and has no nonempty open subset which is separable. In

the construction, the nodes of the tree are open intervals from the line, and the order is

reverse inclusion. Kunen let J denote the collection of all the nonempty open intervals

of L. Then for each β < ω1 defined Jβ so that for each β,

1. the elements of Jβ are pairwise disjoint,

2.
⋃
Jβ is dense in L,

3. if α < β, I ∈ Jα and J ∈ Jβ then either,

a. I ∩ J = ∅, or

b. J ⊂ I and I \ J 6=∅.
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4. if α < β for each J ∈ Jβ there exists I ∈ Jα so that J ⊂ I.

These conditions ensure that

 ⋃
β<ω1

Jβ ,⊃

 is an ω1-Suslin tree. Now we intend to

show that
⋃
β<ω1

Jβ is a π-base for L. Suppose that (a, b) is a nonempty open interval of L

and that no element of
⋃
β<ω1

Jβ is contained in (a, b). Then by properties 1 and 2, for each

β < ω1 there are cβ , dβ and eβ so that dβ < a < cβ < b < eβ, and (dβ, cβ), (cβ, eβ) ∈ Jβ.

Then {(dβ , cβ) : β < ω1} is chain of cardinality ω1 in

 ⋃
β<ω1

Jβ,⊃

, which is not

possible. Therefore, for some α < ω1 there is a U ∈ Jα so that U ⊆ (a, b). �

Recall that the space X(T ) generated by the tree T has as its points the maximal

chains in the tree and in the following theorem the basic open sets are [σ] = {c : σ ∈ c},

where σ ∈ T .

Theorem 3.31 The space generated by an ω1-Suslin tree cannot be embedded in a reg-

ular OIF space.

Proof. Let S be an ω1-Suslin tree. Then the base B = {[v] : v ∈ S} for X(S) is clearly

an ω1-Suslin tree under reverse inclusion. �

Proposition 3.27 gives an example of a regular space that has zz property and not

the z property; hence the space is not OIF. This leaves us with the open question: Is

there a regular space that has the z and is not OIF?

3.5 Covering Properties

The base properties that we have studied have natural associations with covering

properties, which are just as intertwined. We define OIF metacompact, and (n, κ)-

metacompact, determine that they are the same for GO spaces but establish that the
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properties do not necessarily coincide even if the space is required to be monotonically

normal. We also define δ-OIF metacompact and find some conditions for which these

covering properties imply the base property.

The following definition can be found in [5].

Definition. A space X is n-metacompact if every open cover U has an open refinement

V so that for each A ⊆ X such that |A| = n, then |{V ∈ V : A ⊆ V }| < ω. A space is

< ω-metacompact if every open cover U has open refinement V so that for each A ⊆ X

such that |A| = ω there is a finite subset B of A so that |{V ∈ V : B ⊆ V }| < ω.

Thus the well-known property “metacompact” is the same as 1-metacompact. The

following definitions allow us to generalize these metacompact properties to cardinals

larger than ω.

Definition. Let n < ω and κ be an infinite cardinal. A space X is (n, κ)-metacompact if

every open cover U has an open refinement V so that for each A ⊆ X such that |A| = n,

then |{V ∈ V : A ⊆ V }| < κ. A space X is (< ω, κ)-metacompact if every open cover U

has an open refinement V so that for every infinite set A ⊆ X, there is a finite set B so

that |{V ∈ V : B ⊆ V }| < κ.

Therefore, (n, ω)-metacompact is n-metacompact and (< ω,ω)-metacompact is < ω-

metacompact. Also, (1, ω1)-metacompact is the same as meta-Lindelöf. Fix κ and let

n < m < ω. Clearly, (n, κ)-metacompact implies (m,κ)-metacompact which implies

(< ω, κ)-metacompact.

Proposition 3.32 If a space has a < ω-weakly uniform base then it is < ω-metacompact.
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Proof. For any open cover, any refinement consisting of members of the < ω-weakly

uniform base will witness < ω-metacompactness. �

Definition. A space X is OIF-metacompact if every open cover U has an open refinement

V that is an open-in-finite collection. A space X is δ-OIF-metacompact if V is a δ-open-

in-finite collection.

Since each δ-OIF collection is OIF, we know that δ-OIF-metacompact implies OIF-

metacompact. Also, clearly any OIF space (resp. δ-OIF space) will be OIF-metacompact

(resp. δ-OIF-metacompact).

Proposition 3.33 If X is an OIF-metacompact space with character κ, then X is

(1, κ+)-metacompact.

Proof. Let U be an arbitrary open cover, and let V be the OIF-metacompact refinement

of U . Then since the character of X is κ, we know that each x ∈ X is contained in not

more than κ many elements of V, because if x is contained in κ+ many members of V,

then there is some member of the local base for x that is contained in infinitely many

members of V. �

Corollary 3.34 Every space that is OIF-metacompact and first countable is metaLin-

delöf.

Definition. A linearly ordered space is a pair (X,≺) so that ≺ is a linear order on the

set X and {(a, b) : a, b ∈ X, a ≺ b}∪ {(−∞, a) : a ∈ X}∪ {(b,∞) : b ∈ X} is a base for a

topology on X. This topology is referred to as the order topology. A generalized ordered

space, or GO space, is a subspace of a linearly ordered space.
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Proposition 3.35 For GO spaces OIF-metacompact implies paracompact.

Proof. Let U be an open cover of X an OIF-metacompact space, and let V be an

OIF-refinement of U . We may assume that V consists of convex subsets of X. Then by

Bennet and Lutzer [6] we may assume that V is a σ-point-finite collection. In fact, they

show that if V0 = {V ∈ V : |V | = 1} and for n ≥ 0, Vn+1 is the collection of maximal

subsets of V \
⋃

0≤k≤n
Vk, then each Vn is star-finite (e.g. each member of Vn meets only

finitely many other members of Vn). Then V0 ∪V1 covers the same set as all of V and is

locally finite. �

Proposition 3.36 For GO spaces (< ω, κ)-metacompact implies (1, κ+)-metacompact.

Proof. Let X be a (< ω, κ)-metacompact GO space, and let ≺ be the order on X.

Let U be an open cover of X. Then let V be a refinement of U witnessing (< ω, κ)-

metacompact. We may assume that the elements of V are convex. We define V0 and V1,

V0 = {V ∈ V : |V | = 1} and V1 = V \ V0. Obviously, V0 is point-finite.

We wish to show that each point of X is contained in only κ many elements of V1.

For contradiction, assume b ∈ X and that B = {V ∈ V1 : b ∈ V } has cardinality κ+.

Then the sets {inf(V ) : V ∈ B} and {sup(V ) : V ∈ B} cannot both have cardinality

less than or equal to κ. However, all the supremums are ≺-greater than b and all the

infimums are ≺-less than b.

Assume that the set of supremums is of size κ+, call this set S. Then we will show

that there is a x ∈ X so that the cardinality of the set of supremums in S ≺-less than x

is at least κ.

For each x ∈ S, let L(x) = {y ∈ S : y ≺ x} and R(x) = {y ∈ S : x ≺ y}. These

are the “left” and “right” sides of x. Notice that L(x) ∪ R(x) ∪ {x} = S, therefore for
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each x we have max{|L(x)|, |R(x)|} = κ+. Next, define L = {x ∈ S : |L(x)| ≥ κ} and

R = {x ∈ S : |R(x)| ≥ κ}; then clearly L ∪ R = S. Finally, we note that |S \ L| ≤ κ.

If |S \ L| = κ+, then because κ+ is regular, no sequence of κ many elements of S \ L is

cofinal in S \ L. Therefore, for any κ sized subset of S \ L, there is an upper bound z

in S \ L. But then |L(z)| ≥ κ, contradiction. Similarly, S \R is also a set of cardinality

not more than κ. Hence, L ∩R 6=∅.

Choose x ∈ L ∩ R and let A = {V ∈ B : x ≺ sup(V )}. Then because the elements

of A are convex, all contain b and have supremums ≺-greater than x. So for all V ∈ A

we have [b, x] ⊆ V , contradicting (< ω, κ)-metacompact.

If the infimums are uncountable, the proof is analogous.

Therefore, V1 is point-≤ κ. So V0 ∪ V1 is a (1, κ+) open refinement of U . �

It is known that for GO spaces, meta-Lindelöf implies paracompact. Naturally,

metacompact implies both (< ω,ω)-metacompact and δ-OIF-metacompact, so we have

the following corollary.

Corollary 3.37 For GO spaces, the following are equivalent:

a) X is paracompact,

b) X is δ-OIF-metacompact,

c) X is OIF-metacompact,

d) X is (< ω,ω)-metacompact,

e) X is (n, ω)-metacompact for each n < ω.

Proposition 3.38 The (n, κ)-metacompact and (< ω, κ)-metacompact properties are

hereditary for closed sets.
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Proof. Let X be either (n, κ)-metacompact or (< ω, κ)-metacompact, and let C be a

closed subspace of X. Then let U be an open cover of the space C. For each U ∈ U ,

there is an open set U ′ in X so that U ′ ∩C = U . Let U ′ = {U ′ : U ∈ U}∪ {X\C} be an

open cover of X, then there is V ′ an open refinement of U ′ which is (n, κ)-metacompact

or (< ω, κ)-metacompact. So V = {V ′ ∩ C : V ′ ∈ V ′} is an open refinement of U and is

either (n, κ)-metacompact or (< ω, κ)-metacompact, according to V ′. �

Corollary 3.39 If X is a monotonically normal (< ω, ω)-metacompact space, then X

is paracompact.

Proof. If X is not paracompact, then X contains a closed subspace C that is homeo-

morphic to a stationary subset of an uncountable cardinal. Then since C is closed, C is

(< ω,ω)-metacompact. Also, C is a GO space therefore, C is paracompact, contradic-

tion. �

Corollary 3.40 For GO spaces, OIF-metacompact is hereditary for closed sets.

The following theorem can be found in [9].

Theorem 3.41 A space is monotonically normal if and only if for each open set U and

x ∈ U , one can assign an open set Ux containing x such that Ux ∩ Vy 6=∅ implies x ∈ V

or y ∈ U .

Theorem 3.42 Every space X is a closed subset of a δ-OIF space O(X) such that if X

is monotonically normal, then so is O(X).

Proof. We follow the construction found in [4]. The authors show that O(X) is OIF

and if X is T1, then X is a Gδ subset of O(X). They also state that O(X) has the same

separation axioms as X, but monotonically normal is not mentioned.
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Let X be a space with base A and let F [A] be the set of all finite subsets of A. Let

Y = {〈p,F〉 : p ∈ X and F ∈ F [A]}. For each U ∈ A, define f(U) = {〈p,F〉 ∈ Y : p ∈

U ∈ F} and let S(U) = U ∪ f(U). The space is O(X) = X ∪ Y where the topology is

generated by the subbase S = {S(U) : U ∈ A} ∪ {{x} : x ∈ Y }.

First, we show that S generates a δ-OIF base. For any collection {Bi : i < ω} ⊆ S

we may consider
⋂
i<ω

Bi =
⋂
j<ω

S(Uj) =
⋂
j<ω

(Uj ∪ f(Uj)) =
⋂
j<ω

Uj ∪
⋂
j<ω

f(Uj). Note that⋂
j<ω

f(Uj) = ∅. Therefore,
⋂
j<ω

S(Uj) =
⋂
j<ω

Uj , and because the points of Y are isolated

Y ∩
⋂
j<ω

Uj = ∅. However, Y is dense in O(X), so
⋂
j<ω

Uj
◦

= ∅.

Now we show that if X is monotonically normal then O(X) is as well. Let O be

open in O(X), and let x ∈ O. There is a basic open set containing x and contained

in O, which has the form
⋂
i<nx

S(Ux
i ). If x ∈ Y , then let Ox = {x}. If x ∈ X, then

x ∈
⋂
i<nx

Ux
i = Ox. Since X is monotonically normal, there is an assigned set Ox

x as in

Theorem 3.41. In O(X) let Ox = S(Ox
x) ∩ O. We need to check that if V is open in

O(X) and y ∈ V then Ox ∩ Vy 6=∅ implies x ∈ V or y ∈ O.

Assume that Ox ∩ Vy 6=∅. There are essentially two cases; either both points x and

y are contained in X or not.

1. If y ∈ Y , then Ox ∩ Vy 6=∅ and Vy = {y} implies y ∈ Ox ⊆ O. Similarly, if x ∈ Y ,

then x ∈ Vy ⊆ V .

2. If x, y ∈ X, then let Vy = S(V y
y )∩V be assigned to V . Let

⋂
i<ny

V y
i be the basic open

set containing y and used to define Vy. Therefore, Ox∩Vy = S(Ox
x)∩S(V y

y )∩O∩V .

This means that Ox
x ∩ V y

y 6=∅, therefore y ∈
⋂
i<nx

Ux
i or x ∈

⋂
i<ny

V y
i . Without loss

of generality, let y ∈
⋂
i<nx

Ux
i . Then y ∈

⋂
i<nx

Ux
i ⊂

⋂
i<nx

S(Ux
i ) ⊆ O.
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So we see that O(X) is monotonically normal. �

Corollary 3.43 There is a monotonically normal space that is OIF, hence OIF-metacompact,

but not paracompact.

Proof. Let X = ω1 with the order topology. Then X is monotonically normal, since it

is an ordered space, but not paracompact. Form O(X), as in Theorem 3.42, and then

O(X) is OIF, hence OIF-metacompact. This cannot be a paracompact space, because

all closed subspaces of paracompact spaces are paracompact, and X is such a closed

subspace. �

This is also an example of a space that is OIF-metacompact but not metacompact

or (< ω,ω)-metacompact. For if it were (< ω,ω)-metacompact, then X would be as

well, and therefore X would be paracompact.

It is already known that metacompact Moore spaces are OIF and have a n-weakly

uniform base for each n < ω, but we are able to be more precise in the next theorem.

We are able to say, informally, that for Moore spaces “the base property is the same as

the covering property”.

Theorem 3.44 Suppose X is a Moore space. Then we have the following.

1. X has an OIF base if and only if X is OIF-metacompact.

2. X has an δ-OIF base if and only if X is δ-OIF-metacompact.

3. For n ≥ 2, X has an n-weakly uniform base if and only if X is (n, ω)-metacompact.

Proof. For 1, suppose X has an OIF base B and let U be an open cover of X. Then

refine U with elements of B to find an OIF-refinement of U . This proves the forward
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direction, we now prove the reverse. Suppose that X has development G = (Gi)i<ω and

that X is OIF-metacompact. Then let G′′0 be an OIF refinement of G0. For G′′i defined,

let G′i+1 = {V ∩ U : V ∈ Gi+1, U ∈ G′′i }, then take G′′i+1 to be an OIF refinement of G′i+1.

Therefore, G′′ = (G′′i )i<ω is a development for X with each G′′i an OIF collection of open

sets, and each G′′i+1 a refinement of G′′i . Therefore
⋃
i<ω

G′′i is an base for X. To see that⋃
i<ω

G′′i is OIF, suppose that V is an open set from
⋃
i<ω

G′′i . Then for some n < ω we have

that V ∈ G′′n and V is a subset of finitely many of the elements of each G′′i for i ≤ n. If

there are infinitely many sets from
⋃
i>n

G′′i containing V , then we may assume that every

G′′i for i > n has an element containing V . For each i < ω, let Ui be an element of

G′′i containing V . Then (Ui)i<ω is a base for any point of V . This implies that V is a

singleton, contradiction.

Based on the proof of 1, the proof for 2 should be clear.

For 3, the forward direction is analogous to Proposition 3.32, and the reverse direc-

tion is much the same as 1. For each i < ω, choose G′′i to be a (n, ω) refinement. Suppose

that F is a subset of X having cardinality n, and that F is contained in infinitely many

sets from
⋃
i<ω

G′′i . Then we may assume that there is an Ui ∈ G′′i so that F ⊆ Ui for each

i < ω. Yet, (Ui)i<ω is a base for some point of F , implying |F | = 1, contradiction. �

There is an example of a space that has each of these covering properties but does

not have any of these base properties. Indeed, the example we present is paracompact.

Example. The sequential fan was described in Section 3.4. Suppose that X is the

sequential fan, and let U be any covering of X. Choose U∞ ∈ U so that ∞ ∈ U∞. Then

let V = {U∞} ∪ {{x} : x ∈ X \ U∞}. Then V refines U and is locally finite.
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3.6 Set Theoretic and Combinatorial Conditions

In [5] the axiom CECA was introduced and proven consistent with ZFC. The authors

show that CECA is equivalent to GCH plus a weakening of �λ for singular λ. So in

particular, CECA holds in Gödels constructible universe. In the same paper, CECA is

used to prove the following result.

Theorem 3.45 Assume CECA. Suppose that σ, τ are regular infinite cardinals, and let

〈Aα〉α<κ be a sequence of sets such that for every I ∈ [κ]τ there is J ∈ [I]<τ so that

|
⋂
α∈J

Aα| < σ. Then there exists 〈A′
α〉α<κ such that |A′

α| ≤ σ for each α < κ and the

sequence 〈Aα\A′
α〉α<κ is point-< τ .

We have already established the next result for GO spaces without special set the-

oretic considerations; in [5] this result is given for κ = ω.

Theorem 3.46 Assume CECA. Fix a regular infinite cardinal κ. If X is (< ω, κ)-

metacompact, then X is (1, κ+)-metacompact.

Proof. Let U be an open cover of X and let V be an (< ω, κ)-metacompact refinement

of U . List X = {xα : α < λ} and for each α < λ let Aα = {V ∈ V : xα ∈ V }. For

each infinite collection of points, there is some finite subcollection that is contained in

less than κ-many elements of V. Hence for each I ∈ [λ]ω there is some finite subset J

of I so that |
⋂
α∈J

Aα| < κ. We apply Theorem 3.45 with τ = ω and σ = κ. Therefore

for each α < λ there is a A′
α ∈ [Aα]≤κ such that 〈Aα\A′

α : α < κ〉 is point-finite on the

set V. For each V ∈ V let I(V ) = {xα ∈ V : V ∈ Aα\A′
α}. Each I(V ) is finite and

if xα ∈ V \I(V ), then V ∈ A′
α. For each α < λ choose some Vα ∈ V so that xα ∈ Vα.

Then for each V ∈ V, define V ∗ = (V \I(V )) ∪ {xα ∈ I(V ) : V = Vα}, note that each
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V ∗ ⊆ V . Therefore V∗ = {V ∗ : V ∈ V} is an open refinement of U . Such a V∗ is a

(1, κ+)-metacompact refinement, because if xα ∈ V , then V ∈ A′
α ∪ {Vα}, and this is a

set of size ≤ κ. �

Now the question is raised whether the statement “(< ω, κ)-metacompact implies

(1, κ+)-metacompact” is independent of ZFC. If the following combinatorial principal

holds (and is consistent with MA + ω3 ≤ 2ω), then there is a space that is (< ω,ω)-

metacompact and not (1, ω1)-metacompact.

(*) If X is a set and |X| = ω3, then there exists a collection H of subsets of X

and a partition {Hn : n < ω} of H such that : (1) if H1,H2 ∈ H and H1 6=H2, then

|H1∩H2| < ω; and (2) if Y ⊆ X and |Y | = ω3, then for each n ∈ ω, there exists H ∈ Hn

such that |Y ∩H| = ω2.

Theorem 3.47 (MA + ω3 ≤ 2ω + *) There is a space with a weakly uniform base that

is not (1, ω2)-metacompact.

Proof. Assume MA + ω3 ≤ 2ω. This construction is essentially due to [18]. Let S be

a subset of the x-axis of size ω3 and let K be a countable dense subset of the upper

half plane of R2. Denote K = {pn : n < ω}. Then we let X = S ∪K. For x ∈ S, the

neighborhoods are Bn(x) define to be an open disk in the upper half plane of radius 1/n

tangent to the axis at x intersected with K, together with {x}. The points of K are

isolated. Now let H =
⋃
n<ω

Hn be the collection and partition satisfying condition (*).

For each n < ω let K ′(n) = {(pn,H) : H ∈ Hn} and define K ′ =
⋃
n<ω

K ′(n). Now let

X ′ = S ∪K ′.

In X ′ we define the open neighborhoods of x ∈ S to be B′
n(x) = {x} ∪ {(pi,H) :

(pi,H) ∈ K ′(i), pi ∈ Bn(x) and x ∈ H}. The points of K ′ are isolated. Let Bn =

44



{B′
n(x) : x ∈ S}∪{{q} : q ∈ K ′}, then define B =

⋃
n<ω

B′n. We claim that this is a weakly

uniform base for X ′. Suppose that x1 and x2 are both in K ′, and let x1 = (pk,H1) and

x2 = (pj ,H2). We have that |H1 ∩ H2| < ω; suppose that y0, y1, · · · , ym list H1 ∩ H2.

Then for each yi there is an ni so that x1 is not in B′
ni

(yi). Let n = max{ni : 0 ≤ i ≤ m};

then we have that {x1, x2} is contained in less than n ·m many sets from B.

Next, we claim that X ′ has an open cover with no point ≤ ω1 open refinement.

Consider B′1 = {B′
1(x) : x ∈ S} ∪ {{q} : q ∈ K ′}, which is an open cover of X ′. Suppose

that V is an open point ≤ ω1 open refinement of B′1. Then for each x ∈ S, there is an

nx so that B′
nx

(x) is contained in some element of V; then U ′ = {B′
nx

(x) : x ∈ S} must

be point ≤ ω1. Let U = {Bnx(x) : x ∈ S}. Since K is dense in X, there is pi that is

contained in ω3 many sets from U , say {Bnx(x) : x ∈ Y } for some subset Y of X of

cardinality ω3. So there exists H ∈ Hi so that |H ∩ Y | = ω2 and the point (pi,H) is in

K ′. For each x ∈ Y ∩H we have (pi,H) ∈ G′
nx

(x). So (pi,H) is contained in ω2 many

elements of U ′, contradiction. �
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Chapter 4

I-weight and separating weight

4.1 Introduction

The study of reflection was started by Tkacenko in [16], and a systematic study was

made by Hodel and Vaughan in [13]. Hajnal and Juhász proved that weight reflects every

infinite cardinal [10]. Ramı́rez-Páramo proved that under GCH for the class of compact

Hausdorff spaces, i-weight reflects all infinite cardinals [15]. In the second section of this

chapter we prove that for compact linearly ordered spaces i-weight reflects all infinite

cardinals. We show that the point-separating weight must reflect, which implies that

i-weight must reflect.

In section three, we find necessary and sufficient conditions for i-weight to reflect

in the class of locally compact linearly ordered spaces. The lemmas used to determine

under what conditions i-weight will reflect for these spaces provide a means of calculating

the i-weight of an ordinal space.

We begin with some definitions which may be found in [15], [13].

Definition. A cardinal function φ is said to reflect cardinal κ, if when φ(X) ≥ κ there

is a subset Y of X so that |Y | ≤ κ and φ(Y ) ≥ κ.

Definition. We say that X is condensed onto Z if there is a bijection from f : X → Z

so that for each open subset U of Z, f−1(U) is open in X. Commonly, Z is regarded as

a copy of X, and the topology on Z is considered to be contained in the topology on X.
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Definition. For a Tychonoff space X the i-weight of X is the minimum weight of a

Tychonoff space onto which X may be condensed.

So for example, the i-weight of Tychonoff space X is ω if and only if X has a weaker

separable metric topology.

Definition. We say that V ⊆ P(X) is separating if for each pair (x, y) ∈ X2, x6=y, there

is an U ∈ V so that x ∈ U and y 6∈U . By separating weight, denoted sw(X), we mean

min{|V| : V is a separating open cover of X}.

4.2 Compact Linearly Ordered Spaces

In this section we show that for compact linearly ordered spaces, point-separating

weight and i-weight reflect all cardinals. For the reader’s comfort we now briefly outline

how we intend to show this.

A κ+-Aronsajn tree is a tree such that every chain and every level is of cardinality

< κ+. For a κ+-Aronsajn tree T we construct the space X(T ) of chains in T , and

show that there is no point-separating open cover of cardinality less than κ+. For each

compact linearly ordered space we construct the tree T (X). If every subset of X that has

cardinality κ+ may be point-separated by κ or fewer open sets, then T (X) will contain

κ+-Aronsajn tree A for which the points of X(A) may be point-separated by κ or fewer

open sets, which contradicts the earlier result.

Let A be a κ+-Aronszajn tree where every node is 2 or 0-branching, and level 0 has

only one node. For node t at level α, node t corresponds to a sequence σt ∈ 2α and, if t is

2-branching, the two nodes above t correspond to the sequences σ_t (0) and σ_t (1). Then

for each node t that is 2-branching let l(t) = σ_t (0, 0, 0, · · ·) and r(t) = σ_t (1, 1, 1, · · ·)
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be 2 branches passing through node t. Let c and d be two maximal branches of A. Since

c6=d, we know that for some n < κ+ we have c(n)6=d(n). Then define c < d if and only

if for the least n < κ+ for which σc(n)6=σd(n), σc(n) = 0 and σd(n) = 1. We give X(A),

the space of maximal branches of A, the topology generated by this order.

Lemma 4.1 Let A be a κ+-Aronszajn tree such that

1. A has one node at level 0.

2. A is 2-branching, or 0-branching at each node t

Then less than or equal to κ many open sets in X(A) cannot separate the pairs

{{l(t), r(t)} : t ∈ A}.

Proof. Let A be as above and let A′ be the collection of nodes that are 2-branching.

Consider in X(A) the branches l(t) and r(t) for each t ∈ A′. Suppose that V is a

collection of ≤ κ-many open sets that point separate r(t) and l(t) for t ∈ A′. For each

t ∈ A′, let 〈Vt,Wt〉 be a pair from V that separates l(t) and r(t) with l(t) ∈ Vt, r(t) ∈ Wt,

r(t)6∈Vt and l(t)6∈Wt. Each V ∈ V can be decomposed into disjoint convex subsets, so

for each t ∈ A′ let (vt, v′t) be the neighborhood of l(t) from the decomposition of Vt.

Similarly, define (wt, w′
t) so that r(t) ∈ (wt, w′

t) ⊂ Wt.

For the set (vt, v′t) to contain l(t) and not r(t), the branch vt must contain a node at

that is immediately to the left of a node below t and v′t must be a branch that contains

node t.

Let S be a stationary subset of κ+, and for each t ∈ A′ so that level(t) ∈ S, let

p(t) = at. Now we define a map f from S into κ+. First, for each s ∈ S, pick ts ∈ A′ in

the sth level of A, then let f(s) = α if and only if the level of (p(ts)) is α. By the Pressing
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Down Lemma, there is a level of the tree, α, so that f−1{α} is a stationary subset of κ+.

Since each level has cardinality less than or equal to κ this means that there is a node a

in level α so that |p−1{a}| = κ+. Consider {Vt : t ∈ p−1{a}} ⊆ V. Since |V| ≤ κ, there is

a V so that V = Vt for κ+-many t ∈ p−1{a}. Since a is immediately to the left of a node

below each t ∈ p−1{a}, there is one convex set (v, v′) from the disjoint decomposition of

V so that v = vt and v′ = v′t for each t ∈ p−1{a}. Let β be the height of branch v′, and

note that |β| ≤ κ. Then the number of nodes t so that l(t) ∈ (v, v′) is less than |β| ≤ κ,

yet p−1({a}) ⊆ (v, v′), contradiction. �

Lemma 4.2 For a compact Hausdorff space X, iw(X) = w(X) = nw(X) = sw(X).

Proof. By [12], we know that sw(X) ≤ nw(X), and for compact Hausdorff spaces,

w(X) = nw(X) = psw(X). Also, psw(X) ≤ iw(X) ≤ w(X), therefore, iw(X) = w(X)

if X is compact Hausdorff. We intend to show that sw(X) ≥ nw(X) if X is compact

Hausdorff. Suppose V is a separating open cover of X. Then let N = {X \ W : W is

a finite union of elements of V}. We claim that N is a net for X. Suppose that U is

an open set of X, then pick p ∈ U . For each q ∈ X \ U , find Vq ∈ V so that q ∈ Vq

and p 6∈Vq. Then {U} ∪ {Vq : q 6∈U} covers X, hence there is a finite subcover, V ′. Let

W =
⋃
{V ∈ V ′ : V 6=U}, and N = X \ W . Then N ∈ N and clearly, p ∈ N ⊆ U .

Therefore, N is a net with the same cardinality as V. �

The following lemma and its proof are found in [13].

Lemma 4.3 If φ is a monotone cardinal function that reflects successor cardinals, then

φ reflects all infinite cardinals.
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Next, we need to observe that separating weight is monotone. We combine this with

a similar lemma for i-weight.

Lemma 4.4 I-weight is monotone, and for compact spaces point-separating weight is

monotone.

Proof. Let X and Y be topological spaces, with Y ⊂ X. If B is a base for X, then

{U ∩ Y : U ∈ B} is a base for Y . So the minimum cardinality of a base for X is not less

than the minimum cardinality of a base for Y .

For separating weight, let X and Y have the same relationship as above. Then, if

V is a separating open cover of X, V�Y is a separating open cover of Y with cardinality

not more than |V|. �

Theorem 4.5 For a compact linearly ordered space, separating weight reflects κ+. Hence,

for compact linearly ordered spaces, separating weight reflects all infinite cardinals.

Proof. Suppose X is a compact linearly ordered space and sw(X) ≥ κ+, but every

subset Y of X such that |Y | ≤ κ+ has separating weight κ.

We construct a tree T (X) from the space X.

I∅

I〈0〉 I〈1〉

I〈0,0〉 I〈0,1〉 I〈1,0〉 I〈1,1〉

ppp
Iτ p p p

Level 0

Level 1

Level 2

ppp
Level ω

ppp

Figure 4.1: The tree T (X).
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Let X = I∅, then divide the space X into two closed intervals with at most one point

in common, I〈0〉 and I〈1〉, so that every point of I〈0〉 is less than or equal to every point

of I〈1〉. For a reason that will only be important near the end of this construction, we

choose to split the interval at a non-isolated point, if the interval contains a non-isolated

point. Next, form I〈0,0〉 , I〈0,1〉, I〈1,0〉 and I〈1,1〉 by dividing each of I〈0〉 and I〈1〉 into two

parts, again at a non-isolated point, if possible. This process is done at each successor

level of the tree. At the level ω, consider σ : w → 2. If
⋂
n<ω

Iσ�n is a non-degenerate

interval, then Iσ is a node at the ω level. Likewise at each limit level, nodes appear only

if the intersection of preceding intervals is a non-degenerate interval. If at some successor

level an interval should have only one point in it, then that node does not branch. The

ordering on the tree is that Iσ ≤ Iτ if and only if σ ⊆ τ .

Suppose that at some level less than κ+, there are at least κ+ many non-degenerate

intervals (if necessary, choose κ+ of them). Let α be the least such level.

Since |α| ≤ κ, the collection of nodes that precede the α level has size not more than

κ. Let the κ+ many non-degenerate intervals at the level α be {Iγ : γ < κ+} = {[lγ , rγ ] :

γ < κ+}. Assume that there is a collection V of κ-many open sets in X that T1 separate

points rγ and lγ for γ < κ+. Then for each γ < κ+ there is a pair 〈Vγ ,Wγ〉 ∈ V × V so

that lγ ∈ Vγ , rγ ∈ Wγ , rγ 6∈Vγ and lγ 6∈Wγ . There is a pair 〈V,W 〉 and some J ∈ [κ+]κ
+

so that 〈V,W 〉 = 〈Vγ ,Wγ〉 for γ ∈ J .

Next, decompose W into disjoint convex subsets, and for each γ ∈ J let (wγ , w′
γ) ⊂

W be the convex neighborhood of rγ from this disjoint decomposition. The assign-

ment γ 7→ (wγ , w′
γ) is one-to-one since if (wγ , w′

γ) = (wβ, w′
β), then either lγ or lβ is in

(wγ , w′
γ) ⊂ W . Now each rγ is the limit of a sequence of right end points of the intervals

that precede Iγ in the ordering of the tree. Therefore, for each γ ∈ J , there is a right
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end point r′γ of an interval preceding Iγ that is contained in (wγ , w′
γ). However, there are

only κ-many nodes below the α level of this tree, and therefore only κ-many potential

r′γ for κ+-many disjoint (wγ , w′
γ), contradiction. Therefore, we conclude that every level

below the κ+ level has cardinality less than κ+.

Suppose this tree contains a branch of length κ+. Then either the sequence of left

endpoints or the sequence of right endpoints of intervals forming the branch in the tree

has cardinality κ+. Without loss of generality, the set of right end points {rα : α < κ+}

has cardinality κ+. Then {rα}α<κ+ is a non-increasing sequence, and must converge to

r ≥ sup{lα : α < κ+}. For each α < κ+ let Uα ∈ V be the open set that contains r and

not rα. Then some U is Uα for κ+-many α. However, for some β < κ+ we will have

rγ ∈ U whenever γ > β, contradiction.

We have now shown that every level of T (X) has cardinality not more than κ and

that every chain has length less than or equal to κ. So either T (X) is a κ+-Aronszajn

tree or the height of T (X) is less than κ+. It follows from Lemma 4.1 that T (X) cannot

be a κ+-Aronszajn tree. If T (X) were a κ+-Aronszajn tree, then consider X(T (X)) and

the points corresponding to r(t) and l(t) for the nodes t ∈ T (X). By our assumptions, in

X we are able to separate these ≤ κ+ points in X with κ-many open sets, contradiction.

Since the tree has height less than κ+, without loss of generality, assume the height

of the tree is κ. Then the left and right endpoints of the intervals contained as nodes in

the tree form a subset of X, call this collection Y and |Y | = κ. We claim that this subset

together with the isolated points is dense in X. Consider a nonempty open convex subset

(a, b) of X. Either (a, b) contains a left or right endpoint of some interval contained in

the tree, or (a, b) is contained in an interval from each level of the tree. Then let β

be the height of the tree, and for each α < β let Jα be the interval from level α that
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contains (a, b). Then (a, b) ⊆
⋂
α<β

Jα, while |
⋂
α<β

Jα| = 1. So nonempty (a, b) = {x}. So

Y together with the isolated points is a dense set in X.

We now claim that the set of isolated points has cardinality at most κ. Let {Jm :

m ∈ M} be the collection of minimal intervals contained in the tree which we were not

able to split at a non-isolated point. We claim each Jm can contain at most countably

many isolated points. Let [lm, rm] = Jm, then pick am ∈ Jm; we have [lm, am] is a

closed set, and is therefore compact. Pick any open neighborhood W of lm, and then

{W} ∪ {{x} : x ∈ [lm, am] \W} covers [lm, am]. Therefore, all but finitely many of the

points of [lm, am] must be in W . Since W is arbitrary, this implies that[lm, am] contains

countably many isolated points. By symmetry, so does [am, rm]. Now it remains to note

that every isolated point of X is contained in Jm for some m ∈ M , and since |M | ≤ κ,

we have at most κ many isolated points.

We use Y to construct a base of cardinality κ for X. Let B = {(a, b) : a, b ∈ Y, a <

b} ∪ {{x} : x is isolated }. Let Y ′ = Y ∪ {x : x is isolated }.

Let x be a point in X and (u, u′) be a convex neighborhood of x. Unless x is isolated,

we have that at least one of (u, x) and (x, u′) is nonempty. Without loss of generality,

assume that (u, x) is nonempty, and choose a ∈ Y ′ ∩ (u, x). If (x, u′) is nonempty, then

choose b similarly, and x ∈ (a, b) ⊆ (u, u′). So assume instead that (x, u′) is empty.

Consider an increasing sequence of nodes in the tree (which is a decreasing sequence

of intervals) that contain the point x, say {Kα : α < β}. Then
⋂
α<β

Kα = {x}. Let

γ be the least ordinal so that for rγ , the right end point of Kγ , rγ ≤ u′. If rγ = u′,

then u′ ∈ Y , and the set we need is (a, u′). If rγ = x, then there is a second increasing

sequence of intervals in the tree that contain x, but for this sequence x is a left end

point. Then consider all the members of this second sequence that also contain u′. The
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intersection of them would be [x, u′], and would be a node of the tree. Therefore, u′ ∈ Y ,

and again the set we want is (a, u′), for then x ∈ (a, u′) ⊆ (u, u′). Therefore, X has

weight κ, and hence i-weight κ, contradiction. �

Corollary 4.6 For compact linearly ordered spaces, i-weight reflects all cardinals.

Proof. Since iw(X) = sw(X) for each compact Hausdorff space, if iw(X) ≥ κ then

sw(X) ≥ κ. Therefore, there is Y ⊆ X so that |Y | ≤ κ yet sw(Y ) ≥ κ. Any base for a

Tychonoff topology, would also be a separating open cover, therefore, iw(Y ) ≥ sw(Y ) ≥

κ. �

4.3 Locally Compact Linearly Ordered Spaces.

In this section we prove reflection theorems for locally compact linearly ordered

spaces and i-weight. We begin with several lemmas that build toward the main result.

We determine that the i-weight of an ordinal space is the cardinality of the ordinal.

Also, we determine the i-weights of subspaces of ordinal spaces. We find necessary and

sufficient conditions for i-weight to reflect cardinal κ in the class of locally compact

linearly ordered space. This section ends with the presentation of several examples.

We use the following definitions throughout the rest of this section.

Definition. For a locally compact linearly ordered space X and a, b ∈ X we write a ∼ b

if and only if either [a, b] or [b, a] is compact. Then ∼ is an equivalence relation. Let

ã = {b ∈ X : a ∼ b} denote the equivalence class of a. Then for a locally compact linearly

ordered space X, we define E(X) to be the number of distinct equivalence classes under

the ∼ relation, i.e., E(X) = |{ã : a ∈ X}|.

54



Lemma 4.7 For a locally compact linearly ordered space X, each ã is an open subset of

X.

Proof. To see that ã is open, let p ∈ ã. We assume that a < p, and the proof for the

case with p < a is analogous. Then since X is linearly ordered and locally compact there

is an open interval (c, d) of X so that p ∈ (c, d) and (c, d) = [c, d] is compact. Then

either a < c or c ≤ a ≤ d. If a < c, then [a, d] = [a, p] ∪ [p, d]. Since [p, d] is a closed

subset of the compact space [c, d], [p, d] is compact and [a, d] is compact as a union of

finitely many compact sets. Also, for each b ∈ (c, d) the set [a, b] is compact. Therefore,

(c, d) ⊆ ã, which implies that ã is open.

If c ≤ a ≤ d then for each b ∈ (c, d), either [a, b] or [b, a] is nonempty and compact

as a closed subset of [c, d], so in this case (c, d) ⊆ ã. �

Lemma 4.8 For a locally compact linearly ordered space X, if E(X) is infinite then

E(X) = e(X).

Proof. Notice first that e(X) ≥ E(X). We form a closed discrete set C of cardinality

E(X) by taking one point from each equivalence class. We have shown that for each

a ∈ X the set ã is open, so C is discrete. Also, ã \ {a} is open, so C is closed.

Next, suppose that e(X) > E(X). Since E(X) is infinite, e(X) ≥ ω1. Then there

is at least one equivalence class, call it ã, that contains at least ω1-many members of a

closed discrete set C. Choose a point p′ ∈ C ∩ ã. At least one of P = {c ∈ C ∩ ã : c < p′}

and S = {c ∈ C ∩ ã : c > p′} is uncountable. We assume the set P is uncountable,

as the proof for S uncountable is analogous. We claim that we can find p < p′ ∈ ã so

that |C ∩ [p, p′]| ≥ ω. For c ∈ P , let Ac = {d ∈ P : c < d}. If Ac were finite for each

c ∈ P , then P would be an increasing union of sets which are all finite, and so |P | ≤ ω,

55



contradiction. Hence there is a p so that |Ap| ≥ ω, then [p, p′] ∩ C is infinite, [p, p′] is

compact and cannot contain an infinite closed discrete set, contradiction. �

Lemma 4.9 For spaces X and Y , iw(X × Y ) = max{iw(X), iw(Y )}.

Proof. Suppose that X and Y are topological spaces, and consider X × Y . If BX and

BY are bases for X and Y , then BX × BY is a base for X × Y .

So w(X × Y ) ≤ |BX × BY | = |BX ||BY |. Therefore, iw(X × Y ) ≤ iw(X)iw(Y ) =

max{iw(X), iw(Y )}.

Next, suppose that B is a base for a Tychonoff topology on X × Y which is coarser

than the product topology. Fix y0 ∈ Y and consider UX = {U ∩ (X ×{y0})6=∅ : U ∈ B}.

Then π1(UX) is a base for a Tychonoff topology on X.

The above argument is symmetric with respect to x and y, so the i-weights of X and

Y are not more than |B|. Therefore, i-weights of X and Y are not more than i-weight of

X × Y . �

Theorem 4.10 Let κ be a regular cardinal, and let A be a stationary subset of κ. Then

A with the subspace topology inherited from the order topology on κ has i-weight κ.

Proof. Let κ be a regular cardinal and assume that A is a stationary subset of κ.

Suppose by way of a contradiction that B is a base for a Tychonoff topology on A so

that |B| < κ. For each U ∈ B, there is an open subset U ′ of κ so that U ′ ∩ A = U . Let

B′ = {U ′ : U ∈ B}. Since A is stationary, A contains stationarily many limit ordinals.

Let S denote the limit ordinals contained in A.

For each s ∈ S, let ps be any element of A so that ps > s. Also, for each s ∈ S let

(Us, Vs) ∈ B2 be such that s ∈ Us, ps ∈ Vs and Us∩Vs = ∅. Since U ′
s must be open in the
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order topology, we know that each U ′
s contains a convex segment containing s. Let g(s)

be an ordinal less than s so that (g(s), s] ⊆ U ′
s. Then since S is stationary, there is a γ

so that g−1(γ) is stationary. Because |B| < κ and |g−1(γ)| = κ, there is (U∗, V ∗) so that

(U∗, V ∗) = (Us, Vs) for κ-many different s ∈ g−1(γ). Then s ∈ (γ, s] ⊆ U∗ and ps 6∈U∗

for each s ∈ g−1(γ). For any fixed s ∈ g−1(γ), let p∗ = ps. We claim that p∗ is an upper

bound on the set g−1(γ), else if there is a s′ so that p∗ ≤ s′ then p∗ ∈ (γ, s′],⊆ U∗. �

Corollary 4.11 For any cardinal κ, the i-weight of the ordinal space κ is κ.

Proof. If κ is not regular then κ must be a limit ordinal, since each successor ordinal

is regular. Each limit cardinal is the limit of the preceding regular cardinals. Therefore,

let L = {α < κ : α is a regular cardinal}, and notice that κ is equal to
⋃
α∈L

α. Then

|κ| ≥ iw(κ) ≥ sup{iw(α) : α ∈ L} = κ. �

Corollary 4.12 The i-weight of any ordinal space κ is |κ|.

Proof. Assume that κ is an ordinal but not a cardinal. Then, as ordinals, |κ| < κ. By

monotonicity of i-weight we know that iw(|κ|) ≤ iw(κ). Also, iw(κ) ≤ w(κ) = |κ| =

iw(|κ|). �

Lemma 4.13 A Tychonoff space X with iw(X) ≤ λ can be condensed into Iλ.

Proof. Any Tychonoff space of weight m can be embedded in Im. So if a space X has

i-weight m ≤ λ, then X has a Tychonoff topology τ so that (X, τ) is homeomorphic to

a subset of Im. Call the corresponding embedding f .

Then we embed each Im into Iγ by the defining h : Im → Iγ as follows. Let x ∈ Im

be denoted as (xi)i<m; then h(x) = (xi)i<m _(0)m≤j<γ . Let G : X → Iγ be defined by

h ◦ f . Clearly, G is one-to-one and continuous. �
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Recall that Dκ denotes the discrete space of cardinality κ.

Theorem 4.14 Let κ be an ordinal, and C a club subset of κ. Suppose that κ \ C =⋃
i<γ

(ai, bi) so that γ ≤ |κ| and (ai, bi)∩ (aj , bj)6=∅ if and only if i = j. Then, iw(κ \C) =

max{iw(Dγ), sup{iw((ai, bi)) : i < γ}}.

Proof. Let κ and C be as above, i.e. κ \ C =
⋃
i<γ

(ai, bi). Then by monotonicity of

i-weight, we have iw(κ \ C) ≥ iw((ai, bi)) for each i < γ. Also, since the (ai, bi) are

pairwise disjoint, and each is nonempty and open, we may choose xi ∈ (ai, bi) so that

X = {xi : i < γ} is a discrete space homeomorphic to Dγ . Then, invoking monotonicity

once again, iw(κ \ C) ≥ iw(X).

We prove that iw(κ \ C) ≤ max{iw(Dγ), sup{iw((ai, bi)) : i < γ}} by considering

two cases.

Suppose that there is λ < |κ| so that λ = sup{iw((ai, bi)) : i < γ}. We condense each

(ai, bi) into Iλ. Then, κ \C can be condensed to a subset of Dγ × Iλ. So by Lemma 4.9,

iw(Dγ × Iλ) = max{iw(Dγ), λ}. Therefore, iw(κ \ C) ≤ {iw(Dγ), sup{iw((ai, bi) : i <

γ}}. Suppose on the other hand that sup{iw((ai, bi)) : i < γ} = |κ|. Since |κ| = iw(κ) ≥

iw(κ \ C) ≥ sup{iw((ai, bi)) : i < γ}, iw(κ \ C) = |κ| = max{iw(Dγ), sup{iw((ai, bi)) :

i < γ}}. �

For the following corollary, recall that log(κ) = min{λ : 2λ ≥ κ}.

Corollary 4.15 The i-weight of Dκ is log(κ).

Proof. From Theorem 4.2 in [12], we know that for any Hausdorff topology on X,

|X| ≤ w(X)ψ(X) ≤ w(X)w(X) = 2w(X). This gives us a means of bounding the i-

weight of a space, in particular, κ ≤ 2iw(Dκ). So iw(Dκ) ∈ {λ : 2λ ≥ κ}. Notice
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that for each λ so that 2λ ≥ κ, we may consider κ to be a subset of 2λ. Then under

the product topology on 2λ, the weight of 2λ is λ, which means that iw(X) ≤ λ. So

iw(X) = min{λ : 2λ ≥ κ} = log(κ). �

Lemma 4.16 If X is a locally compact linearly ordered space so that for each pair

a, b ∈ X with a < b the set [a, b] is compact, then iw(X) = w(X). Moreover, for such a

space X, i-weight reflects all cardinals.

Proof. Let X be as above. Then pick a ∈ X. Either (−∞, a] or [a,∞) has the same

weight as X. Without loss of generality, let w([a,∞)) = w(X).

We intend to show that w([a,∞)) = iw([a,∞)) = max{cf([a,∞)), sup{w([a, b]) :

b > a}}.

First, suppose that B is a base for a Tychonoff topology on [a,∞) which is coarser

than the order topology. Since weight equals i-weight for compact Hausdorff spaces, we

know that iw([a, b]) = w([a, b]) and by monotonicity of weight, we know that w([a,∞)) ≥

sup{w([a, b]) : b > a}. Also, suppose that cf([a,∞)) = κ. We construct a set C that is

homeomorphic to κ. Let c0 = a. Suppose that for j ≤ i each cj has been defined, and

pick ci+1 > ci. If α is a limit ordinal so that for each j < α, cj has been defined, define

cα = sup{cj : j < α}. Since the cofinality of [a,∞) is κ, ci is defined for each i < κ.

Let C = {ci : i < κ}. If i is a successor ordinal, (ci−1, ci+1) ∩ C = {ci} and is open. If

α is a limit ordinal then (ci, cα] ∩ C = {cj : i < j ≤ α} is open for i < α. We map C

homeomorphically to κ by h(ci) = i. Then the i-weight of C is κ, the i-weight of κ. This

implies that iw([a,∞)) ≥ κ = cf([a,∞)).

Next, we observe that w([a,∞)) ≤ max{cf([a,∞)), sup{w([a, b]) : b > a}}. Let K

be a cofinal subset of [a,∞) of cardinality cf([a,∞)); so K = {ki : i < κ} and ki < kj
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iff i < j. The set {[a, κα) : α < κ} is an open cover of [a,∞). Also, w([a, κα)) ≤

w([a, κα]). Let Bα be a base for [a, κα) under the subspace topology for the order

topology on [a,∞). Then B =
⋃
α<κ

Bα is a base for [a,∞). The cardinality of B is

less than max{κ, sup{w([a, kα)) : α < κ}} ≤ max{κ, sup{w([a, kα]) : α < κ}} ≤

max{κ, sup{w([a, b]) : b > a}}.

So w([a,∞)) = iw([a,∞)).

Now we will show that i-weight reflects. Suppose that γ ≤ iw([a,∞)). Then consider

several quick cases.

1. If γ ≤ cf([a,∞)), then let C be the cofinal subset above in this proof. Then

Y = {ci : i < γ} is a subset of [a,∞) that is homeomorphic to γ, hence Y has

i-weight γ.

2. If there is a b > a so that iw([a, b]) ≥ γ, then take Y to be a subset of [a, b] that

reflects γ.

3. Now assume that γ > cf([a,∞)) and that iw([a, b]) < γ for each b > a. Then

let Yi ⊆ [a, ki] so that |Yi| ≤ iw([a, ki]) = iw(Yi). Take Y =
⋃
i<κ

Yi. We claim

iw([a,∞)) ≥ iw(Y ) ≥ sup{w([a, ki]) : i < κ} = sup{w([a, b]) : b > a} = γ. It’s

clear that sup{w([a, ki]) : i < κ} = sup{w([a, b]) : b > a} since K is cofinal. To

verify that sup{w([a, b]) : b > a} = γ recall that w([a, b]) = iw([a, b]) and that

iw([a, b]) < γ ≤ iw([a,∞)), so sup{w([a, b]) : b > a} = γ. So iw(Y ) ≥ γ, because

iw(Y ) = max{κ, sup{iw([a, κi]) : i < κ}} = max{κ, λ} and κ ≤ λ.

Therefore, for [a,∞), i-weight reflects all cardinals. Recall, that w([a,∞)) = w(X) ≥

iw(X) ≥ iw([a,∞)) = w([a,∞)). So the i-weight of X is the i-weight of [a,∞); therefore,

i-weight reflects for the space X. �
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Theorem 4.17 Let X be a locally compact linearly ordered space. Then iw(X) =

max{iw(DE(X)), sup{iw(ã) : a ∈ X}} = max{log(e(X)), sup{iw(ã) : a ∈ X}}.

Proof. By monotonicity, we know that iw(X) ≥ max{iw(DE(X)), sup{iw(ã) : a ∈ X}}.

Now suppose that λ = sup{iw(ã : a ∈ X}. Then there is a condensation of X into

DE(X) × Iλ, which has i-weight max{iw(DE(X)), λ}. So iw(X) = max{iw(DE(X)),

sup{iw(ã) : a ∈ X}}.

Also iw(DE(X)) = log |E(X)| = log(e(X)), therefore, iw(X) = max {log(e(X)),

sup{iw(ã) : a ∈ X}}. �

Theorem 4.18 Let X be a locally compact linearly ordered space. If iw(X) = iw(DE(X))

= log(e(X)), then i-weight reflects the cardinal κ if and only if either 2λ < κ for all λ < κ

or κ ≤ sup{iw(ã) : a ∈ X}. Hence, if iw(X) = sup{iw(ã) : a ∈ X}, then i-weight reflects

all cardinals.

Proof. Suppose first that X is as above, and iw(X) = iw(E(X)). Assume that i-weight

reflects the cardinal κ and κ > sup{iw(ã) : a ∈ X}. There is a Y contained in X so that

|Y | ≤ κ and iw(Y ) ≥ κ. Since iw(Y ∩ ã) ≤ iw(ã) we have that iw(Y ∩ ã) < κ for each

a ∈ X. Also, since |Y | ≤ κ, Y ∩ ã is nonempty for only κ-many different equivalence

classes. So let {ãi : i < κ} = {ã : ã ∩ Y 6=∅}. Then for we may condense Y into

κ × Isup{iw(ãi):i<κ}, which has i-weight iw(k) since κ > sup{iw(ã) : a ∈ X}. Therefore,

κ = iw(Y ) ≤ iw(κ) ≤ κ. So, for each λ < κ, we have 2λ < κ; else, if 2λ ≥ κ for some

λ < κ, the i-weight of κ would be λ.

Next, assume that i-weight reflects κ and 2λ ≥ κ for some λ < κ. Aiming for a

contradiction, further assume that κ > sup{iw(ã) : a ∈ X}. Since i-weight reflects
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κ, there is a set Y so that |Y | ≤ κ and iw(Y ) ≥ κ. Then Y can be condensed into

κ× Isup{iw(ã):a∈X} which has i-weight max{λ, sup{iw(ã) : a ∈ X}} ≤ κ, contradiction.

Now we prove the reverse direction.

Assume that 2λ < κ for all λ < κ and κ ≤ iw(X) = iw(E(X)) ≤ E(X). Pick

κ-many different ai so that {ãi : i < κ} is a collection of pairwise disjoint open sets.

Then for each i < κ, pick yi ∈ ãi and define Y = {yi : i < κ}. So Y is a discrete space

of cardinality κ, so the i-weight of Y is log(κ) = κ.

If κ ≤ sup{iw(ã) : a ∈ X}, then consider two cases. First, if κ < sup{iw(ã) : a ∈

X}, then let x ∈ X be so that iw(x̃) ≥ κ. Then for x̃, i-weight reflects κ.

Suppose that κ > iw(ã) for each a ∈ X. Then for some γ ≤ κ let {ai : i < γ} be

a subset of X so that {iw(ãi) : i < γ} is cofinal in κ. Then for each i < γ pick Yi ⊆ ãi

so that |Y | ≤ iw(ãi) = iw(Yi). Let Y =
⋃
i<γ

Yi. Then |Y | ≤ κ and iw(Y ) = sup{iw(ãi) :

i < γ} = κ. �

Next, we present some examples of linearly ordered spaces for which i-weight does

not reflect some cardinal because E(X) > iw(X). So the conditions on E(X) in the

preceding theorem may not be omitted. There is also an example of a locally compact

linearly ordered space for which E(X) > iw(X) and yet i-weight will reflect all cardinals

less than iw(X).

Lemma 4.19 Any infinite discrete space is homeomorphic to a linearly ordered space.

Proof. Suppose that X is a discrete space of cardinality κ. Let X ′ = κ×Z and order X ′

lexicographically. Then ((α, n− 1), (α, n + 1)) = {(α, n)} for each point (α, n) ∈ κ× Z,

so X ′ is a discrete space of cardinality κ. Then X is homeomorphic to X ′. �
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Theorem 4.20 (GCH). There is a locally compact linearly ordered space X with iw(X) =

ω1, yet for X i-weight does not reflect ω1.

Proof. Consider X = D2ω1 . Then by [12], we know that 2ω1 ≤ 2iw(X). Since the order

topology is coarser than the discrete topology, iw(X) = ω1.

Take any subset Y of X so that |Y | ≤ ω1. Since Y is discrete, Y may be condensed

onto a subset of the real line. Thus iw(Y ) = ω. �

We may eliminate the need for GCH if we are willing to allow the i-weight to exceed

ω1. The following is also an example of a paracompact space for which the i-weight does

not reflect.

Proposition 4.21 There is a locally compact linearly ordered space X that has iw(X) ≥

ω1, yet for X i-weight does not reflect ω1.

Proof. Take X = D22ω1 . Then iw(X) ≥ ω1; else if iw(X) = ω then |X| < 2ω ≤

2ω1 < 22ω1 . Take Y to be a subset of cardinality not exceeding ω1 and just as above,

iw(Y ) = ω. �

Theorem 4.22 For each κ there is an example of a linearly ordered locally compact

space X so that κ = iw(X) < E(X) and yet i-weight reflects all cardinals.

Proof. Suppose X ′ is any compact linearly ordered space so that iw(X ′) = κ. Give

λ = |2κ| the order topology, and let L be the set of successor ordinals in λ. Notice that

L has cardinality λ and that iw(L) ≤ κ. Let X = L×X ′ have the topology induced by

the lexicographic order.

First, notice that E(X) = e(X) = λ. Next, we observe that iw(X) ≤ κ. We

know that the i-weight of X under the product topology is κ. We just need to show
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that the product topology is weaker than the order topology. Suppose that U × V is

a basic open set in the product topology. Then let (α, x) ∈ U × V . So α ∈ λ and

x ∈ X ′. If α is a successor ordinal then for any (a, b) so that x ∈ (a, b) ⊆ V , the point

(α, x) ∈ ((α, a), (α, b)) ⊆ U × V . So iw(X) ≤ κ and by monotonicity, iw(X) ≥ κ; hence

iw(X) = κ.

Now suppose that iw(X) ≥ γ. Then iw({j} × X ′) ≥ γ for each j < λ, and by

Corollary 4.6 i-weight reflects cardinal γ for X ′. Find Y ′ ⊆ X ′ so that |Y ′| ≤ γ and

iw(Y ′) ≥ γ. Then iw({j} × Y ′) ≥ γ and |Y ′| ≤ γ. �

4.4 Paracompact Spaces

In this section we calculate the i-weight of paracompact spaces. This gives us a

formula for the i-weight of a compact space as well. We begin with a definition.

Definition. For a Tychonoff space X and x ∈ X, let the local i-weight of x in X be

defined as liw(x,X) = min{iw(U) : U is an open neighborhood of x}. Then the local

i-weight of X is liw(X) = sup{liw(x,X) : x ∈ X}.

To see that the local i-weight of a space need not coincide with the i-weight, consider

the ordinal space ω1. The i-weight of ω1 has been shown to be ω1. However, the local

i-weight of each point in ω1 is ω, thus liw(ω1) = ω < iw(ω1). This example is not

compact, indeed it is not paracompact. If we consider the space X = ω1 ∪ {ω1} we find

that the liw(ω1, X) = ω1 = iw(X), so in this case local i-weight and i-weight are the

same. We will prove that this is true for all compact spaces.

Recall that, by monotonicity of i-weight, iw(X) ≥ max{log(e(X)),

liw(X)} for any space X.
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Theorem 4.23 If X is a paracompact, Tychonoff space then iw(X) = max{log(e(X)),

liw(X)}.

Proof. Let X be a paracompact Tychonoff space, and cover X with open sets witnessing

local i-weight. We may accomplish this by taking for each x ∈ X, a neighborhood Nx

of x so that iw(Nx) = liw(x,X); then {Nx : x ∈ X} is the desired cover. Next, let

V be a σ-discrete open refinement of the cover; V =
⋃
i<ω

Vi and each Vi is a discrete

family. Then let Wi =
⋃
{V ∈ Vi}, so that {Wi : i < ω} is a countable open cover of X.

Notice that since for each i < ω, the set Wi is the union of pairwise disjoint open sets,

iw(Wi) = max{log|Vi|, sup{iw(V ) : V ∈ Vi}} ≤ max{log(e(X)), liw(X)}.

Now for each i < ω find a open set W ′
i so that W ′

i ⊆ Wi, and {W ′
i : i < ω} is a cover

of X; we can do this by Remark 5.1.7 in [7]. Also, let R be a countable base of convex

sets for the interval [0, 1].

Denote the original topology on X by T . Let Bi be a base for a Tychonoff topology

τi on Wi which is weaker than the subspace topology inherited from T and |Bi| = iw(Wi).

Since we will be discussing several different topologies and subspaces we will denote the

closure of a set U as a subset of X under the topology T by clX,T (U). Let B′i = {B∩W ′
i :

B ∈ Bi} and define Ai = {(U ′, U) ∈ B′i × Bi : clWi,τi(U
′) ⊆ U}.

We claim for each x ∈ W ′
i and y 6=x there is a (U ′, U) ∈ Ai with x ∈ U ′ and

y 6∈U . Take x ∈ W ′
i ⊆ Wi, and suppose that y 6=x. If y ∈ W ′

i then there is a pair

U, V ∈ Bi so that x ∈ U and y ∈ V and U ∩ V = ∅. Next, find U ′′ ∈ Bi so that

x ∈ U ′′ ⊆ clWi,τi(U
′′) ⊆ U and let U ′ = U ′′ ∩W ′

i . Then x ∈ U ′ ⊆ clWi,τi(U
′) ⊆ U and

U ′ ∈ B′i so (U ′, U), so (U ′, U) ∈ Ai.
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Now assume that y 6∈W ′
i . Then find U ∈ Bi so that x ∈ U and y 6∈U , and find U ′ as

above.

We claim that if (U ′, U) ∈ Ai, then clX,T (U ′) ⊆ clWi,τi(U
′). Aiming for a contradic-

tion, suppose that y ∈ clX,T (U ′) and y 6∈clWi,τi(U
′). Since U ′ ⊆ W ′

i and clX,T (W ′
i ) ⊆ Wi,

we have clX,T (U ′) ⊆ clX,T (W ′
i ) ⊆ Wi. Then there is a set V so that y ∈ V ∈ τi and

V ∩ U ′ = ∅. Yet, V is open in X, contradiction.

Next, since X is normal and clX,T (U ′) ⊆ U for each (U ′, U) ∈ Ai , there is a map

fU ′,U : X → [0, 1] so that fU ′,U (U ′) = {0} and fU ′,U (U c) = {1} for each (U ′, U) ∈ Ai.

Let Fi = {fU ′,U : (U ′, U) ∈ Ai} and let F =
⋃
i<ω

Fi. Suppose x, y ∈ X and x6=y. Choose

i < ω so that x ∈ W ′
i . We showed above that there is a (U ′, U) ∈ Ai with x ∈ U ′ and

y 6∈U , so fU ′,U (x) = 0 and fU ′,U (y) = 1.

Then define F : X → [0, 1]F by F (x) = (f(x))f∈F. This map is continuous and

one-to-one. Consider F (X) ⊆ [0, 1]F. The weight of the Tychonoff topology on F (X)

is less than or equal to |F| · ω. Let T ′ be the topology on F (X) and take F−1(T ′) as a

topology on X that is Tychonoff and weaker than T .

Now note that |F| = max{|Fi| : i < ω} and that |Fi| = |Ai| = |Bi| = iw(Wi).

Therefore, this will generate a Tychonoff topology whose weight is less than or equal

to sup{iw(Wi) : i < ω} and recall, iw(Wi) ≤ max{log(e(X)), liw(X)}. Therefore,

iw(X) ≤ max{log(e(X)), liw(X)}. �

Corollary 4.24 In the class of compact spaces, i-weight equals local i-weight. Further-

more, for a compact space X, there is a point x ∈ X so that liw(x,X) = liw(X) =

iw(X).
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Proof. Suppose that X is a compact space. For each point x ∈ X, choose open sets

Wx and W ′
x so that x ∈ W ′

x ⊆ W ′
x ⊆ Wx and iw(Wx) ≤ liw(x,X). Then {W ′

x : x ∈ X}

is an open cover of X. Choose a finite subcover and denote it {W ′
xi

: i < N}. Then

{Wxi : i < N} is also an open cover of X. By the proof of Theorem 4.23 above, iw(X) =

sup{iw(Wxi) : i < N} = max{iw(Wxi) : i < N} ≤ liw(X). So iw(X) = liw(X), and

liw(xi, X) = liw(X) for some i < N . �

Example. There is a paracompact space X so that iw(X) = log(e(X)). Let X ′ be

a paracompact space for which i-weight and local i-weight coincide. Let iw(X ′) = κ and

consider D22κ . Define X = D22κ ×X ′. Then {α} ×X ′ is clopen for each α ∈ D22κ , so

X is still paracompact. Also, liw(X) = κ while log(e(X)) = 2κ, so iw(X) = log(e(X)).

Recall Theorems 4.17 and 4.18 for locally compact linearly ordered spaces. Theorem

4.23 somewhat parallels Theorem 4.17, so we considered the question: For the class of

paracompact Tychonoff spaces, if i-weight is determined by the local i-weight, does i-

weight reflect all cardinals? This next example shows that that is not necessarily the

case.

Example. Let L denote the set of limit ordinals strictly less than ω2. Then let

X = (ω2 ∪{ω2}) \L with the topology inherited from the order topology. We claim that

X is a paracompact GO space for which i-weight is ω2 and i-weight does not reflect the

cardinal ω1.

Aiming for a contradiction, suppose that the i-weight of X is ω1 and that B is a

base for a Tychonoff topology for X of cardinality ω1 or less. For each x ∈ X, let Ux ∈ B

be so that x6∈Ux and ω2 ∈ Ux. Then for each x ∈ X let βx be the least ordinal so that

(βx, ω2] ⊆ Ux. Since |B| ≤ ω1 at most ω1 different βx are chosen; therefore, for some
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β < ω2 the set {x ∈ X : β = βx} has cardinality ω2. However, |β| ≤ ω1. Therefore, for

some x ∈ X we have x ∈ (βx, ω2] ⊆ Ux, contradiction.

We now claim that any subset of X of cardinality ω1 is discrete and therefore has

i-weight ω. Note that if A is a subset of cardinality ω1 that does not contain ω2 then

A is clearly discrete. Next, suppose that A is a subset of X that contains the point ω2.

Observe that since ω2 is regular, no subset of cardinality ω1 is cofinal in ω2. Therefore,

each subset of ω2 with cardinality ω1 is bounded. We find γ < ω2 so that γ > a for all

a ∈ A \ {ω2}. So (γ, ω2] ∩A = {ω2}; hence A is discrete.
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