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Abstract

Two modified extended Kalman filters, called the MGVA and MVVA filters, have been

developed which combine the attitude determination capabilities of magnetometers with

the standard extended Kalman filter. The standard extended Kalman filter is known to

experience observability problems during driving which does not provide enough excitation

to its sensors. The MGVA and MVVA filters attempt to remedy these problems by providing

an attitude solution to the filter, via a process that utilizes magnetometer measurements. In

order to show the e↵ectiveness of the MGVA and MVVA filters, the filters were tested both in

simulation, and experimentally for low excitation trajectories. It is shown in simulation that

the two filters are able to improve attitude and accelerometer bias estimation in situations

where the standard filter experiences estimation error. In addition to this, it is shown that

both modified filters increase the observability rank of the system such that it is full rank.

Experimental testing of the two modified filters reveals that both the MGVA and MVVA

filters provide improved attitude and accelerometer bias estimation during low-excitation

trajectories.

The MGVA and MVVA filters are also compared to a heading constrained filter that

has been studied in the past. It is shown that the heading constrained filter produces more

accurate estimates of heading than both of the modified filters. As a result, a further mod-

ification is implemented on both the MGVA and MVVA filters, and improved performance

is shown for the MGVA filter. Finally, the MGVA and MVVA filters were tested on both

simulated and experimental dynamic trajectories. This was done in order to test whether

or not the filters are useful under typical trajectories that a ground vehicle might drive, not

just low excitation trajectories. It is shown that under these circumstances the MGVA filter

is su↵ers from the increased vehicle dynamics. In contrast, it is also shown that the MVVA
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filter is, once again, able to estimate attitude and accelerometer bias well. It is concluded

from these tests that the MVVA filter is, in general preferable to the MGVA filter for more

dynamic trajectories.
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Chapter 1

Introduction and Background

1.1 Motivation, Objectives, and Contribution

In recent years, there has been an extensive amount of research performed in the areas of

GPS/INS based navigation systems. This is primarily due to an increased interest and need

for high integrity navigation systems in both civilian and military applications on ground,

aerial, and even aquatic vehicles [1–4]. However, as much as GPS/INS systems have been

used to provide accurate navigation solutions for many applications, it is apparent that

both GPS systems and INS systems su↵er from several flaws that diminish their reliability

in various contexts. GPS receivers require line-of-sight visibility to GPS satellites in order

to form an accurate position, velocity, and attitude (PVA) solution and it is well known

that GPS receivers will su↵er from multipath, unavoidable signal outages in urban canyons,

dense foilage, or other undesirable environments [5]. Additionally, most consumer grade INS

systems will su↵er from common sensor errors such as stochastic wide-band noise, sensor

bias, and sensor drift that will cause the INS PVA solution to drift over time [1]. As a result,

a large amount of literature has covered the use of alternative navigation methods for use in

aiding or completely replacing GPS or INS systems during PVA solution degradation.

Several di↵erent measurement based systems have been used in the past to mitigate

situations where GPS and INS systems become unreliable. In [6], the authors explored the

e↵ectiveness of terrestrial passive ranging systems, direct measuring equipment (DME), and

multilateration based navigation systems on aerial vehicles as alternatives to GPS navigation.

In [8], it was demonstrated that WiFi positioning could be used as a GPS alternative to

correct for drift in INS systems during indoor pedestrian navigation. In addition to these

works, it has more recently been proposed that novel landmarks in operating environments
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may be used to perform real-time navigation during GPS outages [7]. Another substitute for

INS dependent navigation is vehicle model based navigation. In [9], the authors implement

and demonstrate the use of a four wheel vehicle model on a dual extended Kalman filter

for ground vehicle navigation. Visual odometry is another method that has been explored

in detail for aiding GPS/INS systems. In [10], the authors show the capability of a visual

odometry system on a ground vehicle to produce accurate motion information for the vehicle

without any assistance from GPS or INS systems. These methods are just a few of the many

techniques which have been examined for aiding navigation systems during situations where

GPS or INS systems become unreliable.

In addition to this list of GPS/INS aiding sensors and substitutes, magnetic sensors have

often been used in literature to aid GPS/INS systems in heading stabilization and attitude

determination. In [11], Caruso briefly describes the fundamentals of magnetic technology,

and discusses their usefulness in heading calculation. In [12], a magnetic heading system was

designed and tested that reduced heading estimate errors from several degrees of error to

sub-degree errors. Additionally, in [13], an attitude determination system for low earth orbit

satellites was developed which relied entirely on three-axis magnetometer measurements.

While this is far from an exhaustive list of methods which are available, it can be clearly

seen from this list that GPS/INS systems are often in need of novel solutions to the inherent

navigation problems that they face. Of all the problems that GPS/INS systems encounter,

one of the most di�cult problems is that of error source estimation and correction. In partic-

ular, many researchers have attempted to enhance estimation of stochastic sensor errors in

inertial measurement units (IMUs). In [16], random constant, random walk, Gauss-Markov,

and autoregressive stochastic models were all described, and their implementation on a

loosely-coupled navigation filter for error estimation was demonstrated. In [17], the authors

designed and tested a new multi-position sensor calibration method and then compared the

results from their method with those from other traditional calibration methods.
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A corresponding problem which follows from an investigation into GPS/INS system

performance is the question of navigation filter observability. In particular, the topic of

Kalman filter observability is a subject that has been extensively covered in the past. In

[18], Goshen-Meskin and Bar-Itzhack developed a theoretical approach to the observability

analysis of linear time-varying systems. In [20], Hong showed that attitude errors, gyro bias

errors, and GPS lever arm errors cause position, velocity, and accelerometer bias estimate

errors to become unobservable. In [21], Rhee investigated the state observability of the

standard Kalman filter for various aerial maneuvers. It was shown that periods of straight

motion at constant speed cause the attitude of the system to become unobservable to the

filter, while excitation of various accelerometer modes, either by steady turning or by changes

in acceleration, cause various attitude and bias states to become observable. Finally in [23],

Ryan investigated the e↵ect of the trajectories explored in [21] on a modified Kalman filter

that only utilized sensors commonly found in electronic stability control (ESC) systems on

ground vehicles. In doing so, Ryan emphasized several points which Rhee previously noted.

First, one of the strongest inherent couplings in the standard Kalman filtering navigation

equations exists between the attitude states of the filter and the accelerometer bias estimates.

Following from this he also noted that this implies accurate estimation of accelerometer bias

states if the attitude states of the filter can be estimated.

In light of all of the problems faced by GPS/INS navigation systems and the previous

work which has been done to mitigate these errors, it is the goal of this thesis to provide a

solution to the specific problems of sensor error estimation and filter observability. In this

thesis, a magnetometer will be fused with a standard GPS/INS navigation filter to create two

modified filters which shall be called the Magnetic and Gravity Vector Aided (MGVA) filter

and the Magnetic and Velocity Vector Aided (MVVA) filter. In implementing these filters,

this thesis seeks to provide better attitude estimation during trajectories where the attitude

is otherwise unobservable. In doing so, it is theorized that this will lead to an increase in the

ability of the filter to estimate accelerometer biases which corrupt the inputs to the system.
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Finally, as a result of the enhanced estimation abilities of these modified filters, this thesis

seeks to also improve the overall observability of the standard GPS/INS navigation filter

with the proposed modified filters.

As can be seen, there is a wealth of prior art which precedes this thesis. The areas

of GPS/INS navigation, error estimation, and sensor fusion have been studied in great de-

tail. Additionally, the subject of attitude determination via vector observations has been

researched thoroughly, and several of the methods used in this thesis have been used and

suggested by others in the past. However, this work sets itself apart from the prior art with

the following contributions:

• Observability analysis of the MGVA and MVVA filters for low-excitation trajectories

on ground vehicles

• Analysis of the attitude and accelerometer bias estimation capabilities of the two filters

on low-excitation trajectories

• Comparison of the two filters to a heading constrained filter studied by another author

[23]

• Performance analysis of the two filters for dynamic ground vehicle trajectories

In order to give adequate background and context to the work which is to follow, it is

essential to have a fundamental understanding of the magnetic sensing technology that this

thesis is dependent on. As a result, the following sections will give a brief description of the

technology, discuss its uses as a navigational sensor and also explain inherent flaws and error

sources that these sensors su↵er from.

1.2 Magnetic Sensing Technology

Magnetic sensors (or magnetometers) are sensors that, simply put, measure magnetic

fields. There are, in general, two types of magnetometers: scalar magnetometers and vector
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magnetometers. Scalar magnetometers are capable of measuring the magnitude of magnetic

fields they are immersed in, while vector magnetometers are capable of measuring the mag-

nitude and direction of a magnetic field. Magnetometers have been used extensively in the

past for a wide range of applications such as space exploration, Earth magnetic field survey-

ing, submarine detection, and mineral exploration. One of their most well known uses in the

medical field is in magnetic resonance imaging (MRI) machines [24].

In addition to all of these applications, magnetometers are also very capable sensors

in the navigation industry. It is well known that magnetometers are highly capable of

producing accurate heading measurements [11]. In addition to their use as heading sensors,

magnetometers have also been used frequently for map matching in various types of vehicle

navigation and pedestrian navigation systems [25–27]. Finally, magnetometers have been

frequently used for six degree of freedom (DoF) attitude determination in cooperation with

other vector sensors [13], [14], [28]. For this thesis, magnetometers were used both for heading

stabilization and for six DoF attitude determination. As a result, a brief explanation on the

use of magnetometers for these two processes is given in the following sections.

1.2.1 Heading Calculation

The majority of the Earth’s magnetic field is created internal to the center of the earth,

and expresses itself similar to a large magnet with two poles as shown in Figure 1.1. This is,

of course, a simplified way of discussing the Earth’s magnetic field. The actual magnetic field

is a variable field which changes over time and with location. It is important to note that the

direction of the Earth’s magnetic field does not always coincide with geographic north, and

it is usually not horizontal to the surface of the earth. Because of this, the Earth’s field is

described by a declination angle (angular di↵erence between magnetic north and geographic

north), and an inclination angle (angular deviation from the horizontal).

Because magnetometers measure any magnetic field which they are immersed in, they

are very useful sensors for measuring the Earth’s magnetic field anywhere on the globe.
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Figure 1.1: Illustration of the Earth’s magnetic field [31]

In addition to this, vector magnetometers are particularly useful for navigation purposes

because they can “see” the direction of the Earth’s magnetic field in their own coordinate

frame. This capability in turn allows them to estimate the angular di↵erence between the

Earth’s field direction and their own orientation in the horizontal plane. Mathematically,

this expresses itself as in Equation (1.1)

 = atan2(
by
bx
) (1.1)

where  is heading, by is the magnetic field measurement in the y-direction, and bx is the

magnetic field measurement in the x-direction.

While this approach is fairly straightforward, it is important to recognize that measure-

ments made by the magnetometer in its own respective frame will often not reside perfectly

in the horizontal plane. As a result, before heading estimates can be formed using Equation

(1.1), all magnetometer measurements must be rotated into the horizontal plane via the roll
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and pitch tilt angles of the system, as in Equations (1.2) and (1.3)

bHx = bxcos(✓) + bysin(�)sin(✓)� bzcos(�)sin(✓) (1.2)

bHy = bycos(�) + bzsin(�) (1.3)

where bz is the z-direction magnetic field measurement, � defines the roll of the body, and

✓ defines the pitch, and the bH terms represent the magnetic measurements leveled in the

horizontal plane.

1.2.2 Attitude Determination via Vector Observations

The problem of determining attitude from vector observations is well known and has

been solved many times. In fact, there are many algorithms available for the process, and

faster algorithms for real-time calculations continue to be sought [32]- [36]. The problem was

first considered by Grace Wahba in 1965 and is commonly referred to as Wahba’s problem.

The driving concept behind the problem and its solution is as follows. Given two

coordinate frames in space, which are both able to observe two separate and distinct points,

it is possible, via vector observations of these points, to form estimates of the angular rotation

between the two coordinate frames. Figure 1.2 helps to shed some light on this concept.

Figure 1.2a depicts two di↵erent coordinate frames. The first is oriented along the x, y, and

z axes of the image, while the second is rotated by 45 degrees about each axis. Figure 1.2b

depicts two separate and distinct points, A and B, in the first coordinate system. Point A is

located along the system x-axis, and point B is located along the system y-axis. As a result,

the two vectors which point to A and B are also aligned with the x and y axes. Figure 1.2c

depicts points A and B as they are seen in the rotated coordinate frame, along with two

di↵erent vectors which point to them. It can be shown (and will be shown in Chapter 3) that

the same rotation between the first and second coordinate systems will also rotate the first
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(a) (b)

(c)

Figure 1.2: Illustration depicting vector measurements of two points in two di↵erent
coordinate systems
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set of vectors into the second set of vectors. Calculation of this rotation, therefore, becomes

a problem of estimation given four di↵erent vector measurements.

In the navigation industry, the solution of this problem is particularly useful for predict-

ing the rotation (or attitude) between a reference coordinate system and a user coordinate

system. Vector measurement devices such as magnetometers, sun sensors, star sensors, and

horizon sensors are all commonly used for spacecraft attitude determination [38]. Other iner-

tial sensors have also been used for attitude determination under more static conditions [14].

1.2.3 Magnetometer Error Sources

However useful magnetic sensors are for attitude determination, like all sensors, they

still su↵er from many inherent flaws that must be accounted for if they are to be used for

navigation. In this section, a brief discussion will be given on the several di↵erent kinds of

errors that must be accounted for.

Many of the error sources which are encountered by magnetometers are very similar to

those seen using inertial sensors. Like inertial sensors, magnetometers su↵er from the e↵ects

of stochastic bias and wide-band noise on their measurements. Magnetometers also su↵er

from the e↵ects of misalignment error. It is crucial that the axes of a given magnetometer

align with the axes of the coordinate system it resides in; otherwise, the vector measurements

it collects will not truly reside in the user coordinate system. Additionally, magnetometers

may su↵er from measurement drift as a result of temperature e↵ects if the sensors are used

outside of their operating range.

While all of these errors do serve to corrupt magnetic measurements, the errors that are

most prevalent in magnetic sensors are those due to magnetic distortion. Magnetometers

will always detect the Earth’s magnetic field, but in addition to the Earth’s magnetic field,

they will also measure all other magnetic activity in their vicinity. Errors due to magnetic

distortions are often categorized into hard-iron and soft-iron biases. Hard-iron biases are

9



(a) Locus of perfect data set (b) Locus of data corrupted
by hard-iron bias

(c) Locus of data corrupted
by hard and soft-iron bias

Figure 1.3: E↵ects of hard and soft-iron bias on magnetometer data

caused by any object which generates its own magnetic field in the vicinity of the magne-

tometer, while soft-iron bias is caused by any object which distorts a magnetic field which

it is immersed in.

The nature of these error sources is made clearer when they are viewed through loci of

magnetic field data. If a magnetometer is rotated 360 degrees only in the Earth’s magnetic

field, it will produce a locus of data like that shown in Figure 1.3a. However, hard-iron

biases from objects which generate their own magnetic field will cause a constant shift in the

data such as in Figure 1.3b. It should be noted that this will be the case for objects which

are located permanently near the magnetometer. Finally, soft-iron bias will manifest itself

as scale factor errors in the data such that the locus of data is stretched and rotated as in

Figure 1.3c.

Despite all of their flaws, magnetometers still carry large potential in the navigation

industry. Because of this, much work has been dedicated to correcting for the various error

sources they encounter. The subject of the following chapters will briefly discuss methods of

magnetometer error correction, the use of magnetometers in providing attitude information,

and finally their implementation into the modified filters this thesis proposes.
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1.3 Conclusion

In this chapter, some of the motivation and background information that supports

this thesis was discussed. Several current issues with GPS/INS navigation systems were

reviewed, and various works were presented which have sought to provide solutions to these

issues. A brief review of literature was presented regarding the use of magnetometers for

attitude determination, error source estimation and correction in GPS/INS systems, and

observability analysis of estimation systems. Following this review, the goals of this thesis,

along with its contributions, were presented.

Additionally, some of the fundamental information that supports magnetic sensing tech-

nology was discussed. The operation and functionality of magnetometers was defined at a

basic level. The process of determining heading as well as 6 DOF attitude was also pre-

sented at an introductory level. Finally, a brief discussion of the error sources that corrupt

magnetometers was given.
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Chapter 2

Magnetometer Calibration Algorithms

In lieu of all of the errors which magnetometers are susceptible to, many have set forth

to develop calibration algorithms that will correct for these errors in the data. In [39, 40],

Gambhir presented the RESIDG algorithm which calibrates data using a centering approach

that minimizes the weighted sum of squares of the residuals between measured and modeled

magnetic fields. In [41], a fixed-point algorithm called RESIDT was successfully implemented

on the AMPTE spacecraft. RESIDT simultaneously estimated the spin-axis attitude of the

spacecraft as well as the inherent magnetometer bias on its sensors. In [34], Davenport

developed an algorithm which first computes approximate values for magnetometer bias,

and then fine tunes these values via an iterative solution. This approach has been used in

the past on the Hubble Telescope. In [43] and [44], Alonso and Shuster presented their TWO-

STEP algorithm which improved upon some of the limitations seen by RESIDG, RESIDT,

and Davenport’s algorithm. In [42], the authors give a survey of these various methods as

well as a comparison of them to their own algorithm TWO-STEP.

Finally, in [29] and [30], Gebre-Egziabher developed two di↵erent algorithms; both of

which work utilizing features of the modeled magnetic field locus to calibrate magnetic field

data. In this thesis, several of the methods mentioned here were tested and validated both

by simulated and experimental processes. However, the algorithm that was selected for use

in the majority of this thesis was the algorithm presented in [29]. In the following section,

a brief explanation of this algorithm is given, and then simulated and experimental results

are shown which validate it’s use for the rest of this thesis.
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2.1 Gebre-Egziabher Magnetometer Calibration Algorithm

The algorithm described in [29] is a two-step estimator that begins by forming initial

estimates of magnetometer error parameters, and then fine tunes these values using an

iterative least-squares process. In particular, the algorithm seeks to estimate bias terms (bx,

by, bz) and scale factor errors (�x, �y, �z) for a three-axis magnetometer. It should be noted

that the bias terms estimated account for the e↵ects of stochastic bias and hard-iron bias,

while the scale factor terms account for the e↵ects of scale factor errors and soft-iron bias.

The algorithm does not, however, account for the e↵ects of misalignment error in any way.

Because of this, the use of this algorithm requires accurate alignment of the magnetometer

axes with the body axes of a chosen system.

2.1.1 Calculating Initial Estimates

The process of calculating initial estimates of the error parameters begins by establishing

an accurate error model for the system as in Equation (2.1)

h2 =

✓
h̃b
x � bx
�x

◆2

+

✓
h̃b
y � by
�y

◆2

+

✓
h̃b
z � bz
�z

◆2

(2.1)

where h is the magnitude of a given earth magnetic field model, and h̃b represents magnetic

measurements in each respective axis. Expanding Equation (2.1) we arrive at Equation (2.2)

h2 =
(h̃b

x)
2 � 2(h̃b

x)(bx) + (bx)2

�2x
+

(h̃b
y)

2 � 2(h̃b
y)(by) + (by)2

�2y
+

(h̃b
z)

2 � 2(h̃b
z)(bz) + (bz)2

�2z
(2.2)

Then, recognizing that many of the terms in Equation (2.2) are in fact vectors of data,

Equation (2.2) can be re-written as Equation (2.3)
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...

(h̃b
x(tk�1))2

(h̃b
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=


H11H12

�

2
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bx

µ2(by)

µ3(bz)

µ2

µ3

µ4

3

777777777777775

+ ~⌫ (2.3)

where H11 and H12 are defined as

H11 =

2

666666666666664

�2h̃b
x(t1) �2h̃b

y(t1) �2h̃b
z(t1)

�2h̃b
x(t2) �2h̃b

y(t2) �2h̃b
z(t2)

�2h̃b
x(t3) �2h̃b

y(t3) �2h̃b
z(t3)

...
...

...

�2h̃b
x(tk�1) �2h̃b

y(tk�1) �2h̃b
z(tk�1)

�2h̃b
x(tk) �2h̃b

y(tk) �2h̃b
z(tk)

3

777777777777775

(2.4)

H12 =

2

666666666666664

(h̃b
y(t1))

2 (h̃b
z(t1))

2 1

(h̃b
y(t2))

2 (h̃b
z(t2))

2 1

(h̃b
y(t3))

2 (h̃b
z(t3))

2 1

...
...

...

(h̃b
y(tk�1))2 (h̃b

z(tk�1))2 1

(h̃b
y(tk))

2 (h̃b
z(tk))

2 1

3

777777777777775

(2.5)

and the µ terms included in the state vector of the equation are defined as

µ1 = h2�2x (2.6)

µ2 =
�2x
�2y

(2.7)
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µ3 =
�2x
�2z

(2.8)

µ4 = (bx)
2 + µ2(by)

2 + µ3(bz)
2 � µ1 (2.9)

Finally, recognizing that Equation (2.3) is of the common state-space format ~y = H~x, the

state vector can be obtained via the least-squares solution in Equation (2.10) and the error

parameters subsequently solved for via Equations (2.6)-(2.9).

~x = (HTH)�1HT~y (2.10)

This portion of the algorithm only produces initial estimates of the error parameters.

However, as noted in [29], often the initial estimates produced are accurate enough for

calibration on their own. In this thesis, this was often the case, and as a result there

were many situations during data collection and processing where only the first part of the

calibration algorithm was utilized. It should also be noted that the state vector shown in

Equation (2.3) has been slightly modified from the vector originally published in [29]. The

fourth term of the vector has been modified from what was originally a µ1 to a µ2. Careful

examination of Equation (2.2) will reveal that a matrix representation of Equation (2.2) may

be more accurately described when µ2 replaces µ1 as the fourth element of the state vector.

This change ultimately led to more accurate calibration results in this thesis, which will be

presented and discussed later in this chapter.

2.1.2 Iterative Least-Squares Solution

Once a set of initial estimates for the error parameters has been established, more

accurate values can be estimated using an iterative least-squares process. This begins by

linearizing Equation (2.1) as in Equation (2.11).
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��h =

✓
h̃b
x � bx
h�2x

◆
�bx +

✓
h̃b
x � bxp
h�3x

◆2

��x

+

✓
h̃b
y � by
h�2y

◆
�by +

✓
h̃b
y � byp
h�3y

◆2

��y

+

✓
h̃b
z � bz
h�2z

◆
�bz +

✓
h̃b
z � bzp
h�3z

◆2

��z

(2.11)

Here, �h is the di↵erence in magnitude between a given magnetometer measurement and an

earth magnetic field model such that

�h = h� h̃b(tk) (2.12)

Allowing ⇣ and ⌘ to represent the various quantities in Equation (2.11), it may be simplified

into

��h = ⇣x�bx + ⌘x��x + ⇣y�by + ⌘y��y + ⇣z�bz + ⌘z��z (2.13)

and then, recognizing the vector quantities in Equation (2.11), Equation (2.12) is rewritten

in matrix form.

2

666666666666664

�h1

�h2

�h3

...

�hk�1

�hk

3

777777777777775

=

2

666666666666664

⇣x1 ⌘x1 ⇣y1 ⌘y1 ⇣z1 ⌘z1

⇣x2 ⌘x2 ⇣y2 ⌘y2 ⇣z2 ⌘z2

⇣x3 ⌘x3 ⇣y3 ⌘y3 ⇣z3 ⌘z3
...

...
...

...
...

...

⇣xk�1
⌘xk�1

⇣yk�1
⌘yk�1

⇣zk�1
⌘zk�1

⇣xk
⌘xk

⇣yk ⌘yk ⇣zk ⌘zk

3

777777777777775

2

666666666666664

�bx

��x

�by

��y

�bz

��z

3

777777777777775

(2.14)

Finally, recognizing that Equation (2.14) is once again of state-space form, the error-state

vector �~x can be computed via a least squares solution, and used to update the most current

estimate of the magnetometer error parameters.
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�~x = (HTH)�1HT �~h (2.15)

bx(+) = bx(�) + �~x(1) (2.16)

�x(+) = �x(�) + �~x(2) (2.17)

by(+) = by(�) + �~x(3) (2.18)

�y(+) = �y(�) + �~x(4) (2.19)

bz(+) = bz(�) + �~x(5) (2.20)

�z(+) = �z(�) + �~x(6) (2.21)

This process is repeated until the algorithm reaches convergence and the error state vector

�~x approaches zero.

2.2 Simulated and Experimental Calibration Results

In order to test and validate the chosen calibration algorithm, the algorithm was imple-

mented in MATLAB and tested on both simulated and real magnetometer data. The case of

simulated data will be discussed first, and then the real data experiments will be presented.

From the real data experiments, the ability of the algorithm will also be shown through

heading calculations prior to calibration and post calibration. These results will show that

post calibration, the magnetometer can much more accurately estimate the heading of a

vehicle.

2.2.1 Simulation Results

It is important to recognize that Gebre-Egziabher’s algorithm is, first, a batch least-

squares algorithm and then an iterative batch least-squares algorithm. In both parts, the

algorithm seeks to fit the entire batch of data to a perfect ellipsoid locus of data centered at
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the origin. This ultimately means the algorithm is limited by the set of data which is utilized.

The authors of [29] show that having at least 360 degrees of rotation about the vertical axis

is essential for use of the algorithm. They also show that variation of this rotation from the

planar case will assist the algorithm in identifying the correct error parameters. Without

variation from planar rotation, the estimates of the error parameters may be incorrect during

initialization, and ultimately cause the overall algorithm to diverge.

In order to simulate magnetometer measurements, a model similar to the model used

in [29] was utilized. Each axis of magnetometer measurements was simulated using Equation

(2.22)

h̃b = (hb + b)� (2.22)

where hb represents the true magnetic field value in each axis. In order to generate true

values for the Earth’s magnetic field, an International Geomagnetic Reference Field (IGRF)

model [50] was used to calculate the true field vector in Auburn, AL. This true field vector

was then rotated 360 degrees about the vertical axis, in order to simulate the measurements

a magnetometer would collect if it were rotated in a circular manner. In addition to this, the

true field vector was also rolled 5 degrees and rotated 360 degrees about the vertical axis,

and then pitched 10 degrees and rotated 360 degrees about the vertical axis. This was to

ensure variation in the simulated measurements from planar rotation. All of these simulated,

perfect measurements were then compiled into one data structure and then corrupted using

set bias values (b) and scale-factor errors (�) as in Equation (2.22). These values are listed

in Table 2.1.

The full data structure was then calibrated using the algorithm presented in Section

2.1, and the resulting corrected data was compared with the corrupted data. Figures 2.1 -

2.3 show this comparison. Figure 2.1a displays a perfect set of magnetometer data with a

three-axis view, and Figure 2.1b shows the same data set in the XY plane. For simplicity, the

data sets pictured in Figures 2.1 - 2.3 are just the data from the planar rotation about the

18



Applied Parameters Estimated Parameters Percent Error
bx (mGauss) 100 80.08 19.92%
by (mGauss) 20 24.04 20.2%
bz (mGauss) 200 209.7 4.85%

�x 0.8 0.807 0.875%
�y 1.2 1.210 0.833%
�z 1.1 1.121 1.9%

Table 2.1: Some Table of data

(a) Set of perfect magnetometer
measurements over a 360 degree
rotation about the vertical axis

(b) Set of perfect magnetometer
measurements viewed in the XY plane

Figure 2.1: Simulated perfect magnetometer measurements

vertical axis, although data from all three simulated rotations was used for the calibration.

The uniformity of the data in the absence of noise should be noted in 2.1a, as well as it’s

centering at the origin in 2.1b. Figure 2.2 shows the data after corruption. As can be

seen the uniformity of the data is now disrupted by Gaussian white noise. In addition to

this, Figure 2.2b shows bias has shifted the data from the origin, and scale factor errors have

stretched the y-axis measurements and shrunk the x-axis measurements. In contrast, viewing

the calibrated data from Figure 2.3, it can be seen that while the data is still corrupted by

noise, its center has now been shifted much closer to the origin and its axes scaled back to

their proper values. The exact estimates of the error parameters, along with a percent error

analysis, is given in Table 2.1.
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(a) Set of corrupt magnetometer
measurements over a 360 degree
rotation about the vertical axis

(b) Set of corrupt magnetometer
measurements viewed in the XY plane

Figure 2.2: Simulated corrupted magnetometer measurements

(a) Set of calibrated magnetometer
measurements over a 360 degree
rotation about the vertical axis

(b) Set of calibrated magnetometer
measurements viewed in the XY plane

Figure 2.3: Simulated magnetometer measurements after calibration
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2.2.2 Experimental Results

After successful validation of the algorithm in simulation, the algorithm was tested via

experimentation. An XSens MTi inertial measurement unit (IMU) mounted inside of a

modified Infiniti G35 vehicle was used for data collection. The vehicle was outfitted with a

three antenna Septentrio GPS system for attitude truth validation. The vehicle was then

driven such that the magnetometer experienced several full rotations about the vertical axis.

The corrupt magnetometer data was then calibrated in post processing using the algorithm

presented in Section 2.1. Figure 2.4 displays three-axis and XY plane views of the data

before calibration. It can be seen that in the x-axis, the data su↵ers greatly from bias which

has shifted the locus away from the origin. A closer view will also reveal a small amount

of bias in the y-axis, and some scaling errors which stretch the ellipse along the x-axis. In

contrast, Figure 2.5 shows that the calibration algorithm has accounted for the bias which

originally shifted the data from the origin. In addition to this, the e↵ects of scale-factor

errors in the XY plane have also been removed.

One error which the algorithm su↵ers from during this data run is its inability to esti-

mate bias in the z-axis. As can be seen, the post-calibration magnetic data has been shifted

very close to zero along the z-axis, when in fact the true magnitude of the field in the z-axis is

much closer to what was measured before calibration (around -0.4 Gauss). This discrepancy

in the calibrated data occurs because the collected data provides no variation from rotation

in the horizontal plane. Therefore, because the collected data does not vary from the hor-

izontal plane, the algorithm has no variation in z-axis measurements and ultimately seeks

to shift the locus of data closer to the origin along the z-axis as well as the y and x axes.

This presents a significant problem for ground vehicles since variation from rotation about

the horizontal plane requires dynamics which are often di�cult to accomplish in ground ve-

hicles. As a result, for ground vehicle navigation, z-axis bias which e↵ects the magnetometer

measurements should be closely monitored. These findings will play a much more important

role in the attitude determination work that will be described later in this thesis.
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(a) Set of raw magnetometer data
(b) Set of raw magnetometer

measurements viewed in the XY plane

Figure 2.4: Raw magnetometer data collected on the modified Infiniti G35

(a) Set of post process calibrated
magnetometer measurements.

(b) Set of calibrated magnetometer
measurements viewed in the XY plane

Figure 2.5: Post process calibrated data from tests run on the modified Infiniti G35 ground
vehicle
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(a) Ground vehicle heading calculated
from raw magnetometer

measurements vs. the true ground
vehicle heading

(b) Ground vehicle heading calculated
from calibrated magnetometer

measurements vs. the true ground
vehicle heading

Figure 2.6: Ground vehicle heading calculations

(a) Heading error from calibrated
magnetometer calculations

(b) Percent error from calibrated
magnetometer calculations

Figure 2.7: Error associated with ground vehicle heading calculations
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Fortunately, for ground vehicle heading calculation, if the tilt angles experienced by

the vehicle are small, any errors in the z-axis will not e↵ect the final calculation. This

allows for a comparison of heading calculation between the raw measurements and calibrated

measurements, which is shown in Figure 2.6. Figure 2.6a displays the heading calculated

from raw measurements by the magnetometer. As can be seen, the measurement errors

greatly corrupt the heading calculation. Referencing Figure 2.4b, it is evident that the bias

experienced by the magnetometer in the x-axis keeps it from identifying how the vehicle

is turning. The fact that the corrupt x-axis measurements never reach zero, or go below

zero, confines the heading calculation to a right-half plane of possible yaw angles. In sharp

contrast, it can be seen in Figure 2.6b that the calibrated measurements are much more

capable of calculating the true heading of the vehicle. Figure 2.7 depicts the error associated

with the heading calculated by the calibrated magnetometer. It is clear from Figure 2.7a

that the calibration provides higher accuracy in its heading estimate, however is still subject

to several spikes in error. Preliminary analysis of the data from this run has shown that the

spikes in heading error are correlated with the velocity of the vehicle. This may mean that the

magnetometer is experiencing magnetic interference due to some part of the ground vehicle

itself during the run. For example, it has been shown in the past that steel-belted radial tires

are capable of producing their own magnetic fields during rotation. [49] This theory leads to

interesting implications for the calibration of magnetometers on ground vehicles. However,

further analysis on this subject is not pursued in this thesis, and as a result is left to future

work.

2.3 Conclusion

There has been a wealth of research to develop faster and more capable methods of

magnetometer calibration. For this thesis, a specific algorithm was selected from among the

many capable and available algorithms. The algorithm is essentially a two-part least squares

algorithm which seeks to fit a batch of data to an ideal ellipse locus of data centered at the
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origin. Simulated magnetometer data was corrupted and then calibrated using a MATLAB

implementation of the chosen algorithm. Results from these simulated data experiments

showed that the algorithm is capable of estimating the bias and scale factor errors experienced

by the corrupt data.

Finally, experimental data was collected from an XSens MTi IMU, which was also

equipped with a built in 3-axis magnetometer. This sensor was mounted on a modified

Infiniti G35 ground vehicle, and the vehicle was driven in a circular trajectory on level

ground. The collected data was then calibrated using the chosen algorithm, and results

showed that the algorithm was capable of correcting for bias and scale factor errors in the

x and y axes. The calibrated data showed errors in the determination of any z-axis bias,

and as a result it was noted that, for ground vehicle magnetometer calibration, the e↵ects of

calibration in the z-axis should be kept in check in the event that the vehicle only experiences

rotation in the horizontal plane. In addition to observing correct bias estimation, it was also

observed that the corrected measurements were much more capable of estimating the heading

of the ground vehicle than the corrupt measurements.
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Chapter 3

Attitude Determination via Magnetic Vector Observations

While magnetometers have frequently been used for heading calculation and stabiliza-

tion on ground vehicles, they are also very useful for performing attitude determination on

many types of vehicles. A brief discussion on the use of vector measurements for attitude

determination was given in Section 1.2.2. In this section, several algorithms that perform

the calculation described in Section 1.2.2 will be discussed, and the specific algorithm that

was used in this thesis will be presented. After a thorough explanation of the algorithm has

been given, magnetometer measurements, inertial measurements, and velocity vector mea-

surements will all be applied to estimate the attitude of an aerial trajectory example. The

advantages and disadvantages of these various measurements will all be explored in their

application with the chosen algorithm, and results will show the capability of using vector

measurements for attitude determination on the aerial platform.

3.1 Background Information and Previous Work

The problem of determining the attitude of a system given vector measurements was

first proposed by Grace Wahba in 1965 [32]. As described in Section 1.2.2, the problem

entails determining the rotation between two vector sets. Each vector set must contain at

least two vectors, but may have more than two. These vector sets will reside in two di↵erent

coordinate frames, and each vector in a set will have a corresponding vector in the opposing

coordinate frame that points to the same point as itself. This essentially simplifies to the

rotation between the two vector sets ultimately being the same rotation as that between the

two coordinate frames they reside in.
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Wahba first solved this problem when he considered it in 1965, but since then many have

developed faster and more e�cient methods for solving the same problem. Davenport formed

his own q-method for solving the problem, which seeks a quaternion solution to the problem

by determining the largest eigenvector of a 4x4 symmetric matrix [33]. Since Davenport,

the QUaternion ESTimator (QUEST) and EStimators of the Optimal Quaternion (ESOQ

and ESOQ2) algorithms have also been developed [35, 36]. These algorithms provide much

faster solutions to Wahba’s problem; however, as Markley and Mortari pointed out, they are

ultimately less robust methods than Davenport’s q-method [37].

Finally, in [14,15], a solution to Wahba’s problem is presented that estimates a rotation

quaternion through an iterative Gauss-Newton method. This method was chosen for use in

this thesis, and a brief discussion of it is presented in the following section.

3.2 Attitude Determination Algorithm

Given two vectors y1b and y2b in a given vehicle body coordinate frame and two corre-

sponding vectors y1e and y2e in an Earth-Centered-Earth-Fixed (ECEF) frame, it is possible

to estimate the rotation matrix Re
b such that

y1e = Re
by

1
b (3.1)

y2e = Re
by

2
b (3.2)

Specifically, vector measurement devices may be used to estimate Re
b such that y1b and y2b

might be measurements from a magnetometer, star sensor, sun sensor, or any other kind of

vector measurement device, and y1e and y2e would be corresponding measurements or model

based calculations in the ECEF frame. For this thesis, two di↵erent sets of measurement

devices were used to perform attitude determination calculations. First, magnetic measure-

ments were paired with acceleration measurements such that the magnetic measurements
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collected observations of the Earth’s magnetic field and the acceleration measurements col-

lected observations of the Earth’s gravity vector. In the second set of measurements, mag-

netic measurements were paired with vehicle velocity measurements such that the magnetic

measurements collected observations of the Earth’s magnetic field and the velocity measure-

ments collected observations of the vehicle’s velocity vector. Both of these approaches have

varying advantages and disadvantages which will be explored going forward.

Having defined the vector sets that will be used to calculate an attitude solution, the

process begins by defining an error function H that the algorithm will seek to minimize.

H = ✏T ✏ = (ye �Myb)
T (ye �Myb) (3.3)

Letting magnetic measurements be indicated bym, and accelerometer/gravity measurements

be indicated by ↵, yb and ye can be defined as

yb =


mb ↵b

�T
(3.4)

ye =


me ↵e

�T
(3.5)

and M may be defined as

M =

2

64
Re

b 0

0 Re
b

3

75 (3.6)

When velocity measurements v are used rather than accelerometer/gravity measurements ↵,

↵b and ↵b are simply replaced by vb and ve in Equations (3.4) and (3.5).

The algorithm will seek to minimize H by finding the quaternion which best character-

izes the rotation between the body frame and the ECEF frame. In order for this to happen,

Re
b and ultimately M must be rewritten in a quaternion format. Defining a given quaternion

n such that
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n = âi+ bĵ + ck̂ + d (3.7)

a given rotation matrix R can be rewritten as

R =

2

66664

d2 + a2 � b2 � c2 2(ab� cd) 2(ac+ bd)

2(ab+ cd) d2 + b2 � a2 � c2 2(bc� ad)

2(ac� bd) 2(bc+ ad) d2 + c2 � b2 � a2

3

77775
(3.8)

Rewriting Re
b in terms of quaternion components, allows for a Gauss-Newton iterative

solution to be formed in terms of n and the jacobian matrix J such that,

n̂k+1 = n̂k � [JT (n̂k)J(n̂k)]
�1JT (n̂k)✏(n̂k) (3.9)

J =


�M
�a

yb
�M
�b
yb

�M
�c
yb

�M
�d
yb

�
(3.10)

✏(n̂k) = ye �M(n̂k)yb (3.11)

Iterating Equation (3.9) until convergence will give the quaternion rotation which minimizes

the error function H in Equation (3.3). Once this quaternion has been determined, it can be

converted back to a rotation matrix using Equation (3.8) and then converted to euler angles

from there if desired.

3.3 Attitude Determination for an Aerial Trajectory

In order to test the attitude determination algorithm presented in Section 3.2, an aerial

trajectory was simulated in MATLAB. A representation of the trajectory in the local North-

East-Down (NED) frame is shown in Figure 3.1. To simulate accelerometer measurements
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Figure 3.1: Simulated aerial trajectory

for the aerial vehicle, perfect measurements were defined as the combination of accelerations

due to gravity gb and accelerations due to vehicle trajectory ẍb such that

↵b = gb + ẍb (3.12)

Here ẍb was defined using standard 6 DoF dynamic equations for particle motion such that

ẍb = ẍlin + !̇ ⇥ xb + ! ⇥ (! ⇥ xb) + 2! ⇥ ẋb (3.13)

where ẋb and xb are the velocity and position of the vehicle defined in the body frame

coordinate system, !̇ and ! are the angular acceleration and angular velocity the vehicle

experiences, and ẍlin is the linear acceleration that the vehicle experiences.

Magnetometer measurements and velocity measurements were also simulated in both

the vehicle body frame and the global frame, and extracted for testing. Contrary to the

formulation shown in Section 3.2, a local NED frame was used as a global frame rather than

an ECEF frame. Other than this change, the same equations and formulation described
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in Section 3.2 were used to generate attitude estimates at each time step. The process of

utilizing the formulation was as follows:

1. The yb and ye vectors were defined by substituting the simulated magnetometer and

accelerometer/velocity measurements into Equations (3.4) and (3.5).

2. The n̂k quaternion was initialized with arbitrary guesses.

3. The M matrix and jacobian matrix J were defined using Equations (3.6), (3.8), and

(3.10).

4. The error function ✏ was evaluated using Equation (3.11)

5. A new quaternion estimate n̂k+1 was calculated using Equation (3.9)

6. Steps 3-5 were repeated until convergence of the quaternion estimate n̂

7. Equation (3.8) was used to convert n̂ to a rotation matrix, which was then transformed

into euler angles roll �, pitch ✓, and yaw  .

Figure 3.2 displays the results from the algorithm using simulated accelerometer mea-

surements and magnetometer measurements. As can be seen, the performance of the algo-

rithm with this pair of inputs does not provide a high amount of accuracy. While the roll

angle is estimated reasonably well, the yaw estimate su↵ers from considerable errors during

the first thirty seconds of the simulation, and the pitch angle estimate never truly converges

to the true pitch of the aerial vehicle. The reason for the poor performance of the algorithm

is found in the accelerometer inputs used. The purpose of using accelerometer inputs in the

algorithm is to supply an accurate measurement of the gravity vector as seen by the vehicle

body. However, as can be seen in Figure 3.3, the accelerometer will measure all of the ac-

celerations experienced by the body. As a result, if the body experiences a large amount of

acceleration in its trajectory, the measured gravity vector will be buried under many other
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(a) Roll estimate from attitude
determination algorithm vs. true roll angle

(b) Pitch estimate from attitude
determination algorithm vs. true roll angle

(c) Yaw estimate from attitude
determination algorithm vs. true roll angle

Figure 3.2: Attitude estimate from the attitude determination algorithm vs. true attitude
using magnetometer and accelerometer measurements

accelerations which corrupt the algorithm solution. Specifically, the simulated aerial trajec-

tory experiences a large amount of initial thrust, which explains the erratic behavior that

is initially seen in the pitch and yaw estimates of the system. As the simulation continues,

accelerations on the body due to rotation continue to distort measurement of the gravity

vector, further corrupting the estimate. One possible solution to this problem may be to use

an accurate dynamic model of the vehicle system in order to calculate the non-gravitational

accelerations experienced by the body. In doing so, it may be possible to separate the grav-

ity vector measured by the accelerometer from the overall measurement. However, this is a

study that is left for future work and will not be explored in this thesis.
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Figure 3.3: True gravity experienced by the aerial vehcile vs. total acceleration measured
by the accelerometer

In sharp contrast, pairing velocity measurements with magnetometer measurements

proved to be a much more reliable method of attitude determination for the aerial simula-

tion. As seen in Figure 3.4, the use of velocity measurements provides much more accurate

results. The attitude estimate follows the true attitude much more closely than it did us-

ing accelerometer measurements. There are several periodic spikes throughout the attitude

estimate which are produced from brief moments where the algorithm is unable to identify

a specific rotation between the vector sets. In other words, there are periodic moments as

the aerial vehicle rotates where there is more than one rotation which will solve the attitude

determination problem. Errors such as these are dangerous in an estimation scheme because

they increase the probability of a gimbal locked solution. In order to explain gimbal lock, it

is useful to picture a gyroscope with three gimbals (one for each rotation angle), as in Figure

3.5. Looking at the image, a gimbal locked solution is one in which the rotation angles of the

solution cause two or more of the gimbals to become parallel. When this occurs, it causes

dimesnions of the solution to be “lost”. This problem may be prevented by using more than

two vectors in each set, in order to avoid a trivial solution in the algorithm. However, the use

of more vector sets ultimately depends on the sensor suite available with any given vehicle.
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(a) Roll estimate from attitude
determination algorithm vs. true roll angle

(b) Pitch estimate from attitude
determination algorithm vs. true roll angle

(c) Yaw estimate from attitude
determination algorithm vs. true roll angle

Figure 3.4: Attitude estimate from the attitude determination algorithm vs. true attitude
using magnetometer and velocity vector measurements
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(a) Normal operation (b) Gimbal lock

Figure 3.5: Gyroscope with three gimbals

Another solution is to utilize the attitude determination algorithm in parallel with

another estimation scheme such as a Kalman filter. The idea of uniting this algorithm with

another estimator has been explored before [14] and will be explored later in this thesis. It

should also be noted that in order to produce the results shown in Figure 3.4, very high

update-rate sensors were simulated. The reason for this is due to the high dynamics of the

aerial vehicle. Specifically, the high roll rate of the vehicle will produce high acceleration,

velocity, angular, and magnetic rates of change. As a result, if high update-rate sensors

are not used, missing information will not only cause integration errors in most navigation

algorithms, but ultimately cause divergence of the estimates from the attitude determination

algorithm chosen for this thesis.

3.4 Conclusion

There has been a significant amount of previous work done in the area of attitude

determination from vector observations. In this thesis it was chosen to use the attitude

determination algorithm presented in [14]. In this chapter, an exposition of that algorithm

was given, followed by a presentation of simulation results that was meant to validate the
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algorithm. In order to validate the use of this algorithm with the proposed methodologies,

an aerial simulation was created which simulated accelerometer, magnetometer, and velocity

measurements in both a vehicle body frame and global frame. These measurements were then

implemented on the chosen attitude determination algorithm and the results were presented.

It was also shown that utilizing accelerometer and magnetometer measurements with

the algorithm produces high amounts of estimate error for trajectories with high dynamics.

In contrast, using velocity measurements rather than accelerometer measurements produced

much lower amounts of estimate error. As a result, it was shown that the algorithm is

capable of performing attitude determination in a high dynamic scenario given velocity and

magnetometer measurements. It is also hypothesized that in scenarios of low dynamics, it

may be possible to use accelerometer measurements rather than velocity measurements.
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Chapter 4

GPS/INS Navigation Algorithms

While magnetometers prove to be useful, stand-alone sensors for heading calculation

and attitude determination, it is often desirable to incorporate various useful sensors into

one optimal navigation scheme. Because of that, this thesis has also sought to improve the

performance of standard navigation algorithms with modified approaches to those algorithms

that incorporate magnetometers.

Among the various navigation algorithms available, one of the most commonly known

schemes is the Extended Kalman Filter (EKF). The EKF is essentially a navigation algorithm

which unites the benefits from several di↵erent measurement sources to produce an optimal

position, velocity, and attitude (PVA) solution. EKFs may be very broadly separated into

model-based and navigation-based EKFs. Model-based EKFs utilize measurements of vehicle

parameters in order to supply predictions of the PVA solution. Navigation based EKFs utilize

inertial navigation system (INS) sensors such as accelerometers and gyroscopes along with

standard INS mechanization equations in order to produce a PVA solution. Either type of

EKF will commonly use GPS measurements to improve the predictions supplied by either a

vehicle model or INS solution. It is important to di↵erentiate the EKF from its precursor the

Kalman Filter (KF). The KF is another commonly known estimation scheme, however it is

not ideal for vehicle navigation because it assumes linearity of its system equations. An EKF

is a KF that linearizes a nonlinear system such that the KFs assumption of linear equations

is met. In this thesis, it was chosen to begin with a standard navigation-based EKF, and

see if modifications could be made using magnetometers to improve the performance of the

EKF. For this reason, the rest of this chapter will focus on navigation-based EKFs and the

modified EKFs proposed in this thesis.
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4.1 Standard Extended Kalman Filter Algorithms

The advantage of using the standard EKF is found in its ability to utilize the benefits

of both INS sensors and GPS. INS sensors are often high update-rate devices that su↵er

from several di↵erent common error sources. Conversely, GPS has the ability to provide

high fidelity PVA measurements at a much slower update-rate. The EKF therefore, works

to provide high update-rate, high accuracy PVA solutions, often for use in real time systems.

Before an exposition of the standard EKF architecture can be given, a basic under-

standing of the error sources GPS/INS systems su↵er from must be grasped. INS sensors

will often su↵er from typical sensor errors such as stochastic wide-band noise, as well as

sensor bias and drift. For most cases, the noise experienced by these sensors can be modeled

as white Gaussian noise, while the sensor bias and drift must be modeled by a random walk.

Several di↵erent random walk models are usable, but for this thesis, sensor bias and drift

were modeled as a first order Markov process such that

ḃ = �1

⌧
b+ µ (4.1)

where ⌧ is the time constant of the process and µ is a driving white-noise term.

GPS PVA measurements themselves can be modeled as being corrupted by white Gaus-

sian noise. However, GPS pseudorange measurements will su↵er from the e↵ects of satellite

clock bias and reciever clock bias.

⇢̃ = ⇢+ bsat + brcvr (4.2)

GPS receivers will receive information from GPS satellites that will allow them to com-

pensate for satellite clock bias. However, the receiver clock bias and drift must still be

accounted for whenever pseudorange and pseudorange rate measurements are used. The

receiver clock bias and drift may be modeled linearly such that
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bclk = ḃclktk + wclk (4.3)

b̈clk = 0 (4.4)

4.1.1 Loosely-Coupled Algorithm

The first navigation filter that will be discussed is the loosely-coupled integration of the

EKF. The loosely-coupled EKF is capable of providing estimates of position P , velocity V ,

attitude A, accelerometer bias b↵, and gyroscope bias b!. These parameters together form

the state vector X̂ of the system. The reason why the filter is called a “loosely-coupled”

EKF is because the filter utilizes GPS position PGPS and velocity VGPS measurements to

provide correction to the filter state estimates. This occurs in the portion of the filter

which is typically referred to as the measurement update. A further discussion of the filter’s

measurement update will be given later. The algorithm begins by propagating the state

vector forward in time using the system inputs (accelerometer and gyroscope measurements

↵ and !).

˙̂P = V̂ (4.5)

˙̂V = Re
b(↵� b↵)� g (4.6)

˙̂A = Re
b(! � b!) (4.7)

Here g represents the local gravity vector in the ECEF frame. Also, Equation (4.1) is

used to propagate estimates of b↵ and b!. In addition to propagating the state vector X̂ it

is also necessary to propagate a state estimate error covariance matrix P such that

Ṗ = FP + PF T +BwQBT
w (4.8)
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where Q is the process noise covariance matrix and is defined by the variance of the system

process noise sources.

Q =

2

66666664

�2
f O33 O33 O33

O33 �2
! O33 O33

O33 O33 �2
bf O33

O33 O33 O33 �2
b!

3

77777775

(4.9)

Here each �2 term represents a 3x3 diagonal matrix of variances corresponding to each

process noise source, and O33 indicates a 3x3 matrix of zeros.

Bw is a matrix which introduces the system noise sources into the system model. It is

defined as

Bw =

2

66666666664

O33 O33 O33 O33

Re
b O33 O33 O33

O33 Re
b O33 O33

O33 O33 Re
b O33

O33 O33 O33 Re
b

3

77777777775

(4.10)

Finally, F is the state-transition matrix which is defined by a linearization of Equations

(4.1) and (4.5) to (4.7) around the current state estimate such that

F =

2

66666666664

O33 I33 O33 O33 O33

O33 O33 [(Re
b↵)^] �Re

b O33

O33 O33 O33 O33 �Re
b

O33 O33 O33 � 1
⌧f
I33 O33

O33 O33 O33 O33 � 1
⌧!
I33

3

77777777775

(4.11)

where I33 represents a 3x3 identity matrix.
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Propagation of the state X̂ and the state estimate error covariance matrix P makes up

what is commonly called the time-update portion of the EKF. Many methods of integration

are available for propagation; for this thesis, Equations (4.12)-(4.16) (which are based on the

equations given in [1]) were used for propagation.

Re
bk = Re

bk�1(I33 + ⌦b
ib�t) (4.12)

⌦b
ib = [(!k�1 � b!k�1

)^] (4.13)

f e
ib =

1

2
(Re

bk +Re
bk�1)(↵k�1 � b↵k�1

) (4.14)

V k = V k�1 + (f e
ib + ge)�t (4.15)

P k = P k�1 + (V k + V k�1)
�t

2
(4.16)

where ge in Equation (4.15) is the local gravity vector in the ECEF frame. Finally, the P

matrix may also be propagated using Equation (4.17)

Pk = FPk�1F
T +BwQBT

w (4.17)

Following the time update is a process called the measurement update, which was briefly

mentioned before. The measurement update begins by defining the measurements that will

be used to correct the state estimates. As previously stated, the loosely-coupled filter uses

GPS position measurements PGPS and velocity measurements VGPS to correct the state

estimates. In this way, the measurement vector z is defined as

z =


PGPS VGPS

�T
(4.18)

The measurements must be correlated to the state vector by a measurement matrix H such

that
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z = HX̂ (4.19)

Examining X̂ and z reveals that H is

H =

2

64
I33 O33 O33 O33 O33

O33 I33 O33 O33 O33

3

75 (4.20)

Having defined a model for measurement updates, the filter gain or Kalman gain L can be

defined by Equation (4.21)

L = PHT (HPHT +R)�1 (4.21)

where R is a measurement noise covariance matrix such that

R =

2

64
�2
P O33

O33 �2
V

3

75 (4.22)

Once the Kalman gain for the measurement epoch has been calculated, the state X̂ and

state estimate error covariance matrix P can be corrected such that

X̂k = X̂k + L(z �HX̂k) (4.23)

Pk = (I33 � LH)Pk (4.24)

4.1.2 Closely-Coupled Algorithm

While the loosely-coupled Kalman filter architecture has been widely used, many have

also chosen to use a closely-coupled Kalman filter architecture instead [45]- [47]. The distinc-

tion between the loosely-coupled architecture and the closely-coupled architecture is found

in their di↵erent uses of GPS measurements. While the loosely-coupled algorithm uses GPS
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position PGPS and velocity measurements VGPS, the closely-coupled algorithm goes a step

deeper and uses the actual pseudorange ⇢ and pseudorange rate measurements ⇢̇ that a GPS

receiver will produce.

The closely-coupled approach is advantageous because during GPS outages or GPS

degradation, the closely-coupled algorithm will outperform the loosely-coupled algorithm.

This is because, in situations where less than four satellites are in view, a GPS receiver

can no longer compute a PVA solution. However, the receiver may continue to generate

pseudorange and pseudorange rate measurements to whatever satellites are in view. For this

reason, in situations where less than four satellites are in view, the closely-coupled algorithm

is still able to provide some aiding during its measurement update.

In order to use pseudorange and pseudorange rate measurements as measurement up-

dates, several changes must be made to the loosely-coupled architecture in both the time

update and measurement update. The first change that must be made is the addition of

receiver clock bias and drift terms to the state vector of the system such that

X̂ =


P V A b↵ b! bclk ḃclk

�T
(4.25)

The new terms bclk and ḃclk may be propagated forward using Equations (4.3) and (4.4).

The addition of these states in X̂ will also lead to changes in Q, Bw, and F as shown in

Equations (4.26)-(4.28),

Q =

2

666666666666664

�2
f O33 O33 O33 O31 O31

O33 �2
! O33 O33 O31 O31

O33 O33 �2
bf O33 O31 O31

O33 O33 O33 �2
b! O31 O31

O13 O13 O13 O13 �2
bclk 0

O13 O13 O13 O13 0 �2
ḃclk

3

777777777777775

(4.26)
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Bw =

2

666666666666664

O33 O33 O33 O33 O32

Re
b O33 O33 O33 O32

O33 Re
b O33 O33 O32

O33 O33 Re
b O33 O32

O33 O33 O33 Re
b O32

O23 O23 O23 O23 I22

3

777777777777775

(4.27)

F =

2

666666666666666664

O33 I33 O33 O33 O33 O31 O31

O33 O33 [(Re
b↵)^] Re

b O33 O31 O31

O33 O33 O33 O33 Re
b O31 O31

O33 O33 O33 � 1
⌧f
I33 O33 O31 O31

O33 O33 O33 O33 � 1
⌧!
I33 O31 O31

O13 O13 O13 O13 O13 0 1

O13 O13 O13 O13 O13 0 0

3

777777777777777775

(4.28)

Since the closely-coupled algorithm replaces GPS position and velocity measurements

with pseudorange and pseudorange rate measurements, the measurement vector z becomes

z =


⇢1 . . . ⇢n ⇢̇1 . . . ⇢̇n

�
(4.29)

where ⇢n and ⇢̇n may be modeled as

⇢n = |Psat,n � P̂ |+ cbclk (4.30)

⇢̇n = uT |Ṗsat,n � V̂ |+ cḃclk (4.31)

Here P sat,n and Ṗsat,n represent the nth satellite position and velocity vectors, respectively,

c is the speed of light, and u is the line-of-sight vector from receiver to satellite given as
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u =
Psat,n � P̂

|Psat,n � P̂ |
(4.32)

Contrary to the loosely-coupled algorithm, there is not a linear relationship between the

measurement vector z and the state vector X̂ in the closely-coupled algorithm. As a result,

H must be computed as the Jacobian matrix of z with respect to X̂ such that

H =

2

666666666666664

uT
1 O13 O19 1 0

...
...

...
...

...

uT
n O13 O19 1 0

O13 uT
1 O19 0 1

...
...

...
...

...

O13 uT
n O19 0 1

3

777777777777775

(4.33)

Finally, the R matrix of the system will also be changed such that

R =

2

64
�2
⇢ O33

O33 �2
⇢̇

3

75 (4.34)

4.2 MGVA and MVVA Filter Algorithms

Due to the interesting and beneficial nature of the closely-coupled architecture, it was

chosen as a basis for the modified algorithms developed in this thesis. As a result, the modi-

fied algorithms are in large part the same as that of the standard closely-coupled algorithm.

The modifications made to the algorithms were all for determining the benefits of fusing

magnetic sensors with the other sensors already used in the standard architecture. In spe-

cific, it was believed that the fusion performed in the modified algorithms would ultimately

lead to improved performance when compared with the standard algorithm.

It has been discussed in previous chapters that magnetometers are very useful for both

heading stabilization and six DoF attitude determination. Since magnetometers have often
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Figure 4.1: Block diagram of the standard closely-coupled EKF algorithm

been used for six DoF attitude determination, it was chosen in this thesis to use magne-

tometers to provide an attitude measurement update to the standard closely-coupled EKF.

Figures 4.1 - 4.3 help to explain how these attitude measurement updates were implemented.

Figure 4.1 displays a block diagram of the standard closely-coupled algorithm. As can be

seen, INS sensors are mechanized and used to propagate the current state estimate in the

time update. These state estimates are then corrected using pseudorange and pseudorange

rate measurements in the measurement update.

The change in the algorithm can be seen in Figures 4.2 and 4.3. In the modified algo-

rithms, it is proposed that measurements of the earth’s magnetic field could be paired with

gravity vector or velocity vector measurements (whenever available) and used to calculate

a “measurement” of the current system attitude using the algorithm described in Chapter

3. As implied by the names of the filters, the MGVA filter would utilize magnetometer and

accelerometer measurements (the accelerometer measuring the gravity vector), along with

models of the earth’s magnetic field and gravity vector as in Figure 4.2. The MVVA filter

would utilize magnetometer and body frame velocity vector measurements (taken from ve-

hicle CAN wheel speed measurements), along with a model of the earth’s magnetic field and
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Figure 4.2: Block diagram of the MGVA filter

Figure 4.3: Block diagram of the MVVA filter
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GPS velocity vector measurements as in Figure 4.3. The attitude measurement update cre-

ated from these processes could then be added to the measurement vector and used together

with pseudorange and pseudorange rate measurements to correct the current state estimate.

This modification made to the standard algorithm will not have an e↵ect on the time

update portion of the algorithm. However, it will a↵ect the measurement update. The

measurement vector z will be modified to include the attitude calculation A as in Equations

(4.35) and (4.36)

A =


� ✓  

�T
(4.35)

z =


⇢1 . . . ⇢n ⇢̇1 . . . ⇢̇n A

�
(4.36)

where �, ✓, and  are roll, pitch and yaw angles respectively. This will result in a new H

matrix which relates the new attitude measurement updates to the attitude estimates in the

state vector. It will also lead to a new R matrix as shown below.

H =

2

666666666666666664

uT
1 O13 O13 O16 1 0

...
...

...
...

...
...

uT
n O13 O13 O16 1 0

O13 uT
1 O13 O16 0 1

...
...

...
...

...
...

O13 uT
n O13 O16 0 1

O33 O33 I33 O36 O31 O31

3

777777777777777775

(4.37)

R =

2

66664

�2
⇢ O33 O33

O33 �2
⇢̇ O33

O33 O33 �2
A

3

77775
(4.38)

The addition of the attitude measurements results in the addition of an identity matrix

to the last row of the modified H matrix. This is important to note because it creates a direct
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relationship between the observed attitude and the estimated attitude. This information will

become essential later when the observability of the MGVA and MVVA filters is discussed.

It is also important to note that when accelerometer measurements are paired with

magnetometer measurements for attitude determination, the attitude determination algo-

rithm is able to provide attitude updates at a much faster rate than GPS is provided to the

algorithm. For this reason, when attitude updates are available but GPS is not, z, H, and

R may be redefined as in Equations (4.39)-(4.41).

z =


~A

�
(4.39)

H =


O33 O33 I33 O36 O31 O31

�
(4.40)

R =


�2
A

�
(4.41)

This ability of the MGVA filter to operate in the absence of GPS measurements carries

interesting implications with it. Because the MGVA filter is able to operate in the absence of

GPS measurements, it is significant to note that the MGVA filter has the potential to improve

navigation performance during GPS signal outages. If the MGVA filter can provide good

attitude and accelerometer bias estimation during GPS signal outages, then it is possible

that the MGVA filter can ultimately allow the propagated state estimates from an IMU to be

corrected even during GPS outages. An exploration of this capability has not be performed

in this thesis, however, and as a result is left for future work.

4.3 Conclusion

Many navigation algorithms have been utilized in the past and are suitable for vari-

ous types of vehicle navigation. From among these, one of the most common navigation

algorithms is the Extended Kalman Filter. In specific, the loosely-coupled architecture of
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the EKF seeks to estimate an accurate PVA solution as well as inherent accelerometer and

gyroscope biases. The loosely-coupled EKF forms predictions of these states by propagating

its estimates forward using accelerometer and gyroscope observations, then corrects these

state estimates using GPS position and velocity observations when available.

In contrast to the loosely-coupled EKF, the closely-coupled EKF utilizes GPS pseudor-

ange and pseudorange rate observations, rather than position and velocity observations. In

doing so, it improves the performance of the EKF in GPS degraded environments. The e↵ect

of this is that GPS receiver clock bias and drift terms are added to the state vector of the

system, and GPS pseudorange and pseudorange rate measurements replace GPS position

and velocity observations in the system measurement vector. This also results in a new

measurement matrix which is formed as the jacobian matrix of the measurement vector with

respect to the state vector.

The architecture of the MGVA and MVVA filters was presented which utilizes magne-

tometers in order to provide the standard loosely and closely-coupled EKFs with attitude

measurement updates. It was chosen to base the MGVA and MVVA filters on the closely-

coupled filter due to the ability of the closely-coupled filter to work with limited functionality

in GPS degraded environments. This ability is an improvement over the loosely-coupled ar-

chitecture, which is often unable to function in GPS degraded environments. The MGVA

filter pairs magnetometer measurements with accelerometer measurements, while the MVVA

filter pairs magnetometer measurements with velocity measurements. In doing so the MGVA

and MVVA filters form calculations of the current system attitude. This calculated attitude

is then applied as an attitude update during state correction. The e↵ect of applying an atti-

tude update to the system is such that a direct relationship between observed and estimated

attitude is created. This will become essential later on when the observability of the MGVA

and MVVA filters is considered.
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Chapter 5

Observability of the MGVA and MVVA Filters

5.1 Observability Theory

Observability is an integral part of determining the capabilities of any given navigation

or estimation system. In general, the observability of a system can be defined as a system’s

ability to determine state variables based on system dynamics and measurements. For exam-

ple, if it is desired to know the distance between two points, a device or tool that measures

length (like a ruler or a tape measure) may be able to “observe” the distance between the

two points. In this way, it can be said that the system is observable. However, if such a

tool is not available, or if the only tools available cannot measure length (e.g., a level or a

drafting compass), then the system is said to be unobservable.

Because of this, the unobservability or observability of a system holds serious implica-

tions for a system. As was discussed in Section 1.1, there has been an extensive amount of

work done in the area of observability. Goshen-Meskin and Bar-Itzhack were at the forefront

of this thesis when they put forth a theoretical approach to the observability analysis of lin-

ear time-invariant (LTI) systems [18, 19]. In [20], Hong was able to show that unobservable

position, velocity, and accelerometer bias can arise from errors in attitude, gyro bias, and

GPS lever arm estimates.

In [21], Rhee investigated the observability of the standard loosely-coupled EKF for

various aerial vehicle maneuvers. Rhee was able to show that for low excitation trajectories of

constant linear acceleration, the attitude and x,y accelerometer biases of the loosely-coupled

filter are unobservable. It was also shown that for trajectories with changes in acceleration,

or steady-state turning, various modes of the filter experience a type of ’excitation’ that

causes them to become observable. Ryan also examined these trajectories for a modified
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loosely-coupled filter which relied on sensors commonly found in ground vehicle electronic

stability control (ESC) systems [23]. Ryan’s findings were consistent with Rhee’s in that he

showed that his modified filter was only observable during vehicle maneuvers which excite

various modes of the filter. Specifically, both Rhee and Ryan showed that for low excitation

trajectories, the attitude as well as the x and y accelerometer bias states are unobservable.

Examining a model of accelerometer inputs, the reasoning behind this becomes evident.

↵meas = ↵true + Cb
ege + b↵ + ✏↵ (5.1)

As Ryan shows in [22], accelerometer measurements ↵meas are a function of the true acceler-

ation ↵true, acceleration due to gravity ge, accelerometer bias b↵, and noise ✏↵. In Equation

(5.1) it is evident that if the estimated attitude of the system Cb
e is incorrect, the filter will

not be able to detect the true e↵ects of gravity Cb
ege. Because of this, if the attitude is in-

correct, the filter will lump errors due to attitude together with errors due to accelerometer

bias causing the combination of states to become unobservable. In contrast, if the system

experiences enough excitation in the various axes of the accelerometer, the accelerometer

bias b↵ and the true attitude Ce
b will become observable together. This ultimately leads to

two essential facts. First, the combination of attitude states and accelerometer bias states

are observable together. Specifically, the system equations of the navigation EKF are such

that very strong couplings exist between the x-axis accelerometer bias and the pitch angle,

and between the y-axis accelerometer bias and the roll angle. Second, if the system does

not experience enough dynamics, errors due to both attitude and bias estimates will become

lumped together, and cause the combination of estimates to become unobservable.

This lack of observability ultimately leads to the reasoning behind the modified filters

proposed in this thesis. Since accelerometer bias and attitude are states that are observ-

able together, it is proposed that if the attitude of the system can be observed during low

excitation trajectories, then the accelerometer bias should also become observable. Because

of this, the MGVA and MVVA filters should become observable even during low excitation
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Figure 5.1: Trajectory of a simulated ground vehicle driving straight with constant velocity

trajectories, because they both provide attitude updates to the system (via the aiding from

the magnetometer and acceleromter/velocity measurement) in all scenarios.

5.2 Simulation Results

In order to test the observability of the MGVA and MVVA filters, it was chosen to first

examine the filter for a simulated low excitation trajectory. A ground vehicle, traveling at

constant velocity and heading for a time period of 120 seconds was simulated. Figure 5.1

shows the trajectory of the simulated vehicle in the North-East plane. Accelerometer, gyro-

scope, magnetometer, velocity, GPS pseudorange, and GPS pseudorange rate measurements

were all simulated, corrupted and then implemented on both the standard closely-coupled

EKF as well as the MGVA and MVVA filters. The error parameters used to corrupt the

simulated magnetometer were the same as those used in Chapter 2. These parameters can be

found in Table 2.1. With regard to the accelerometer bias errors, all biases were modeled as

first order Markov processes (see Equation 4.1). To simulate these processes, a time constant

⌧ of 10, and an initial bias of 0.5 (m
s2
) were used. Additionally, the standard deviation of the

process driving white-noise µ was 0.0333 (m
s2
).

As a metric for evaluating the observability, Equation (5.2) given in [48] was used

53



OLTV (tf , t0) =

Z tf

t0

F T (⌧, t0)H
THF (⌧, t0)d⌧ (5.2)

Here, OLTV (tf , t0) is the observability grammian, evaluated on the interval from t0 to

tf , and observability of a system is indicated if the grammian is non-singular. In order to tell

whether or not OLTV is non-singular, the rank of the matrix is analyzed. If the grammian

matrix is full rank, this indicates that the matrix is non-singular, and therefore the system

is observable. It is important to note that the grammian is only valid on the interval from

t0 to tf , and that in general, if the grammian reaches full rank at any point on that interval,

it will remain full rank for the rest of the interval. Because of this, the time period that it

takes the grammian rank to stabilize will be important to consider moving forward.

Figures 5.2 and 5.3 display the grammian rank for the first twenty seconds of the simula-

tion with both the standard filter and the modified filters (MGVA and MVVA) respectively.

Because both modified filters performed identically during observability testing, the results

from both filters are represented by Figure 5.3. Also, only the first twenty seconds of the

simulation are displayed because, for these tests, once the rank reached a steady state value

it remained there for the remainder of the simulation. As can be seen, the standard filter

grammian reaches a rank of 14, and then is rank deficient by three for the remainder of the

simulation. Whereas, with the modified filters, the grammian rank is increased by three,

making the system full rank, and then remains full rank for the remainder of the simulation.

This does not come as a surprise because, referring to Equation (4.37) it can be seen that

the addition of the attitude measurement update to the modified filters serves to add a 3x3

identity matrix to the last row of the H measurement matrix in both filters. This e↵ectively

creates three direct paths between the filter states and the filter measurements, thus making

the attitude states observable and increasing the rank of both modified filters by three. It

is also important to note the rise time of the grammian rank. The grammian rank is only

valid inside time interval it is tested for (t0 to tf ). Changing the window of time over which

the grammian is examined will change the results seen in testing. If for example, a system is
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Figure 5.2: Rank of the observability grammian, evaluated for the standard (17 state)
closely-coupled filter, over the first twenty seconds of the simulation

Figure 5.3: Rank of the observability grammian, evaluated for the MGVA and MVVA
filters, over the first twenty seconds of the simulation

examined over a time interval of 5 seconds, and the grammian is seen to rise to full rank, this

does not imply that the system is full rank over a shorter interval (e.g., two seconds). When

tested over a two second interval, the grammian may still be rank deficient. As a result, the

rise time of the grammian rank is important because it tells the shortest interval over which

the rank is valid. For these tests, the rise time for the standard filter was 2 seconds, while

the rise time of the modified filters was 1.5 seconds.

Examining Figures 5.4 - 5.9, the e↵ectiveness of the standard filter, the MGVA filter,

and the MVVA filter during the simulation can be seen. Figure 5.4 displays the attitude
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Figure 5.4: Attitude error of the standard closely-coupled filter

estimate errors over the course of the simulation for the standard filter. As can be seen, a

combination of initial attitude errors and drifting estimates due to a lack of observability,

cause the estimate error to grow unbounded. Figure 5.5 shows that this ultimately leads

to an inability of the filter to estimate the x and y accelerometer biases. The estimates

begin near the true bias, but drift o↵ just as the attitude estimate does. In contrast, the z

accelerometer bias is still observable. This lines up with the findings of Ryan in [23], since

the z accelerometer bias should be observable always, regardless of dynamics.

In contrast, Figure 5.6 shows that the MGVA filter is able to accurately estimate the

attitude of the vehicle. In all three euler angles, sub-degree levels of accuracy are achieved

by providing attitude updates from the magnetometer and accelerometer measurements.

Additionally, Figure 5.7 shows that good estimation of the vehicle attitude allows the filter

to accurately observe the accelerometer bias in the x and y axes. As the attitude estimate

errors of the simulation begin to converge to zero near 30 seconds, the bias estimates of the

filter can also be seen to converge to their true values.
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Figure 5.5: Accelerometer bias estimates vs. truth for the standard closely-coupled filter

Figure 5.6: Attitude error of the MGVA filter
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Figure 5.7: Accelerometer bias estimates vs. truth for the MGVA filter

Figure 5.8: Attitude error of the MVVA filter
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Figure 5.9: Accelerometer bias estimates vs. truth for the MVVA filter

Similar results are seen using the MVVA filter. It can be seen in Figure 5.8 that the

MVVA filter outperforms the MGVA filter in several regards during the simulation. First,

no part of the attitude estimate ever exceeds more than a degree of error using the MVVA

filter, while the MGVA filter experiences initial errors greater than 1 degree in roll and pitch,

and must converge to the true attitude over time. Second, it can be seen that the yaw error

in the MGVA filter slowly grows as the simulation runs. However, with the MVVA filter, the

yaw error stabilizes near 0.2 degrees. Finally, examining Figure 5.9, it can be seen that with

the MVVA filter, the accelerometer bias estimates are able to converge to the true values

once both the pitch and roll estimates stabilize around 30 seconds.

5.3 Experimental Results

Having validated the MGVA and MVVA filters in simulation, the filters were further

tested using real data collected on a ground vehicle. The modified Infinity G35 test vehicle

that was described in Chapter 2 was once again used here. The vehicle was outfitted with

a three-antenna Septentrio GPS system, and an XSens MTi IMU was mounted inside the
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Figure 5.10: NCAT’s 1.7 mile long test track where the test vehicle was driven

vehicle, aligned with the vehicle body axes. In addition to these sensors, the vehicle CAN

messages were also collected and used to calculate the velocity vector of the vehicle at any

moment in the body frame. The vehicle was taken to the National Center for Asphalt

Technology (NCAT) in Auburn, Alabama. NCAT’s facilities posses a 1.7 mile long test

track (shown in Figure 5.10) where ground vehicle’s may travel at high speeds. The track

is made up two long straight portions which are connected by 8 degree banked turns. As

can be seen in Figure 5.11, the vehicle was driven with constant velocity for several full

revolutions around the track collecting data from the XSens, vehicle CAN system, and the

GPS Septentrio system.

The XSens collected accelerometer, gyroscope, and magnetometer data, while the CAN

system collected wheel speed measurements, and the Septentrio collected GPS pseudorange,

pseudorange rate, position, velocity, and attitude measurements. The accelerometer, gy-

roscope, pseudorange, and pseudorange rate measurements were all implemented on the

standard closely-coupled filter. The MGVA filter used accelerometer and magnetometer

measurements from the XSens, along with an IGRF model and a WGS84 gravity model to

provide attitude updates to the system. The MVVA filter used wheel speed measurements

from the CAN system to calculate the velocity vector of the vehicle in the body frame,

and then this measurement was used along with the magnetometer measurements to pro-

vide body frame vector measurements for the attitude determination algorithm. In order

to provide global frame vector measurements an IGRF model was used once again, but this
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Figure 5.11: Trajectory driven by the test vehicle at NCAT

time with GPS velocity measurements. Position, velocity and attitude measurements from

the Septentrio were all used as a truth reference for the vehicle trajectory. Finally, in order

to have a reference for the actual accelerometer bias corrupting the sensor measurements,

attitude updates from the Septentrio were run with the standard filter to obtain estimates

of the accelerometer bias. The mean value of the steady-state bias estimates was used to

define what the ’true’ accelerometer bias. However, for the tested algorithms (the standard

filter, the MGVA filter, and the MVVA filter), no GPS based attitude updates were utilized

to improve estimation. Only the methods defined in Chapter 4 were used during testing.

Results from all three filters are discussed below.

Figure 5.12 displays the accelerations and yaw rates measured by the XSens IMU during

the run. As can be seen, the only periods where the vehicle experiences acceleration is during

turning. Other than this, accelerations in both the x and y axes are kept near zero, and the

yaw rate of the vehicle is also kept near zero.

Figures 5.13 and 5.14 show the attitude estimate and the accelerometer bias estimates

for the standard closely-coupled filter during this run. As can be seen in Figure 5.13, the
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Figure 5.12: Accelerations and yaw rates experienced by the vehicle during testing at
NCAT

filter has a reasonable amount of success in estimating the roll of the vehicle. It is able to

achieve estimates within several degrees of the true roll. The errors that the filter experiences

with regard to the roll angle are most evident during turning of the vehicle, and during the

second straight driving portion of the trajectory. It can be seen that in these moments the

estimates struggle due to small amounts of drift that pull them away from the true angle.

However, during the final straight portion of the track, the roll estimate once again converges

to the true value. Examining the trajectory of the vehicle, it seems likely that the reason

behind the standard filter’s success in roll estimation lies in the lateral excitation that the

vehicle experiences on the turns. While the estimate still struggles from drift, it is quickly

able to reconverge to the true roll angle when the vehicle experiences a change in acceleration

(moments where the y axis acceleration changes in correspondence with the changing yaw

rate). In contrast, the filter is not able to estimate the pitch angle of the vehicle well. In

particular, during turning the pitch estimate diverges from the true pitch angle by about

6 degrees. Finally, the filter appears to be successful in estimating the yaw of the vehicle,
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(a) Roll estimate vs. truth (b) Pitch estimate vs. truth

(c) Yaw estimate vs. truth

Figure 5.13: Attitude estimate vs. truth for the standard closely-coupled filter during
testing at NCAT

Figure 5.14: Bias estimates vs. true bias for the standard closely-coupled filter during
experiments at NCAT
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Figure 5.15: Yaw estimate error for the standard closely-coupled filter during experiments
at NCAT

however a closer look at the data reveals that the estimate actually su↵ers from a small

amount of heading drift.

Figure 5.15 displays the yaw estimate error over the course of the run. As can be seen,

the estimate error grows over time because the filter is unable to observe the true heading

of the system. Examining Figure 5.14 shows that the system is unable to observe the x

axis accelerometer bias. Rather than converging toward the true bias, the estimate oscilates

around an incorrect estimate. Studying Figure 5.13, it can be seen that this is largely due

to the filter’s incorrect estimate of the vehicle pitch angle. As the pitch estimate varies and

diverges from the true pitch angle, so the bias estimate varies and is never able to observe

the true x axis bias. However, the filter has a reasonable amount of success in estimating

the y axis accelerometer bias. Again, looking back at Figure 5.13, the ability of the filter

to estimate the roll angle of the vehicle is directly tied to it’s ability to estimate the y axis

accelerometer bias. As the roll angle converges and diverges from the true roll angle, the

bias estimate also converges and diverges from the true bias. Finally, it can be seen that the

standard filter is able to accurately estimate the z-axis accelerometer bias. This does not

come as a surprise since the z-axis accelerometer bias should always be observable.
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(a) Roll estimate vs. truth (b) Pitch estimate vs. truth

(c) Yaw estimate vs. truth

Figure 5.16: Attitude estimate vs. truth for the MGVA filter during testing at NCAT

Figure 5.17: Bias estimates vs. true bias for the MGVA filter during experiments at NCAT
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Figures 5.16 and 5.17 show results from the same test, but for the MGVA filter. It can

be seen that the MGVA filter succeeds in estimating the attitude of the vehicle. The filter

is able to estimate the attitude within several degrees of the reference for all three euler

angles. Correspondingly, Figure 5.17 shows that the filter also succeeds in estimating the

accelerometer bias e↵ecting the system. With regard to both the x and y axis accelerometer

bias, the filter produces estimates which converge to values that are near the reference values

of bias. Specifically, comparing Figures 5.14 and 5.17, it can be seen that the MGVA filter

shows a large amount of improvement in the estimation of x axis accelerometer bias.

It should be noted that in order for the MGVA to function during this experimental run,

it was necessary to account for centripetal acceleration experienced by the vehicle. Examin-

ing Figure 5.12, it can be seen that while turning, the vehicle experiences lateral acceleration

due partially to centripetal acceleration and partially to gravitational acceleration acting in

the y axis as the vehicle rolls on the banked turns of the track. The MGVA filter utilizes

accelerometer measurementes to provide the attitude determination algorithm with an ob-

servation of the Earth’s gravity vector. However, an accelerometer mounted to a turning

vehicle, will measure not just the e↵ects of gravity, but also any centripetal accelerations

encountered by the vehicle. If this raw measurement is used in the attitude determination

algorithm, it will inevitably cause the algorithm to calculate an incorrect attitude solution.

This would lead to an inability of the MGVA filter to accurately estimate the attitude of

the vehicle. As a result, the centripetal acceleration experienced by the vehicle must be ac-

counted for. In order to do this during experimental testing, the vehicle yaw rate measured

by the gyroscope and the vehicle velocity calculated from vehicle CAN measurements, were

both used to calculate the centripetal acceleration encountered by the vehicle as in Equation

5.3

↵cent =  ̇Vt (5.3)
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(a) Roll estimate vs. truth (b) Pitch estimate vs. truth

(c) Yaw estimate vs. truth

Figure 5.18: Attitude estimate vs. truth for the MVVA filter during testing at NCAT

where ↵cent is the calculated centripetal acceleration,  ̇ is the measured yaw rate, and Vt

is the tangential velocity of the vehicle. Subtracting ↵cent from the y axis acceleromter

measurement ultimately accounts for the centripetal acceleration experienced by the vehicle,

and allows the MGVA filter to continue functioning while turning.

Finally, Figures 5.18 and 5.19 display the attitude and accelerometer bias estimates for

the MVVA filter. The MVVA filter is able to estimate the roll, pitch, and yaw of the vehicle

to within several degrees of the truth during the run. Additionally, Figure 5.19 shows that

the MVVA filter is able to observe the accelerometer bias in all three axes. Corresponding

to it’s pitch estimate, the MVVA filter’s x axis bias estimate is able to converge toward the
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Figure 5.19: Bias estimates vs. true bias for the MVVA filter during experiments at NCAT

Figure 5.20: Absolute attitude error of the standard filter and the MVVA filter
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true bias, while the standard filter’s x axis estimate was not. Similarly, the y axis and z axis

bias estimates of the MVVA filter are both able to converge to their true values.

Figure 5.20 displays a comparison of the roll, pitch, and yaw estimate errors between

the standard filter, the MGVA filter, and the MVVA filter. It can be seen that, the MGVA

and MVVA filters are able to provide roll estimates on par with the standard filter. With

regard to the pitch angle, the MVVA filter is more accurate than the standard filter by

several degrees during the run, and the MGVA filter is more accurate than the MVVA filter

through out. With regard to yaw, the MGVA filter is initially more accurate than both the

standard filter, and the MVVA filter. However, as the experiment progresses, the MVVA

filter yaw error grows until it is larger than both the standard filter and the MVVA filter.

Comparing, the MVVA filter and the standard filter, the standard filter is at first able to

provide more accuracy than the MVVA filter. However, closer examination of the end of

the experiment shows that the standard filter’s estimate error during striaght driving grows

during the experiment (reaching a maximum of 4 degrees), while the MVVA filter’s estimate

is bounded (remaining near 1.5 degrees of error). Because of this, it appears that the MVVA

filter is superior in its ability to prevent the drift of the yaw estimate over time.

5.4 Conclusion

The topic of navigation filter observability is essential for fully determining the capa-

bilities of any navigation scheme. Those who have studied this topic in the past have found

that for the EKF, trajectories of constant acceleration and straight driving cause the atti-

tude and x, y accelerometer bias of a system to become unobservable. In this chapter, the

modified filters introduced in Chapter 4 have been proposed as a solution to the problem of

unobservable trajectories. It was hypothesized that if the MGVA and MVVA filters could

successfully apply accurate attitude updates from magnetometer measurements, then per-

haps the filters would be able to not only observe the attitude of a system, but also any

inherent x, y accelerometer biases as well.
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A vehicle driving straight, at constant speed, for a prolonged period of time, was first

simulated. The inputs, and measurements from this simulation were then implemented

on the standard filter, the MGVA filter, and the MVVA filter. The MGVA filter utilized

magnetometer and accelerometer measurements to provide the filter with attitude updates,

while the MVVA filter used velocity vector and magnetometer measurements to do so. The

observability of all three filters was tested in simulation, and it was shown that the standard

filter, for the given trajectory, was only able to reach an observability rank of 14, with

full rank being 17. In contrast, the MGVA and MVVA filters, for the case of straight and

steady driving, were able to achieve full rank observability over the course of the simulation.

Additionally, it was shown that the MGVA and MVVA filters were able to provide much

more accurate estimates of attitude and accelerometer bias for the trajectory.

To further validate the MGVA and MVVA filters, real data was collected at the National

Center for Asphalt Technology’s test track. A modified Infinity G35 test vehicle was driven

around the track several times at a constant speed, and all the sensor measurements collected

were then applied in post-process to the standard filter, the MGVA filter, and the MVVA

filter. It was shown that, similar to what was seen in simulation, the standard filter was

unable to accurately estimate the pitch and yaw of the vehicle. However, in contradiction

to the simulation results, the filter was able to accurately estimate the roll of the vehicle. It

was seen that this may have been due to the lateral excitation that the vehicle experienced

while turning on the track at NCAT. In simulation, the trajectory of the vehicle was such

that no lateral or longitudinal accelerations were experienced by the vehicle. However, at

the NCAT test track, the avoidance of lateral excitation by the vehicle was impossible due

to the turns of the track. As a result, it is likely that the lateral excitation experienced

by the vehicle improved the system’s ability estimate the roll angle. In correspondence to

these results, the filter was also able to estimate the y accelerometer bias of the system well,

however the x axis accelerometer bias estimate was not able to converge to the true bias.
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Similar to what was seen in simulation, the MGVA filter was able to estimate the

attitude and accelerometer bias of the system correctly. It was noted, however, that in order

for the filter to function, centripetal acceleration had to be accounted for using gyroscope

yaw rate measurements and vehicle velocity calculations obtained from vehicle CAN system

measurements. In agreement with what was seen in simulation, the MVVA filter was also

successful in estimating the attitude of the vehicle during it’s test drive. This ultimately led

to the filter’s ability to estimate the true accelerometer bias acting on the system in all three

axes.

Comparing filter attitude estimate errors, it was shown that the MGVA and MVVA

filters were both able to achieve roll estimates on par with the standard filter. With regard

to pitch, the MVVA filter produced estimate errors that were lower than the standard filter

by several degrees. Additionally, the MGVA filter’s pitch estimate errors were lower than

the MVVA filter’s estimates throughout the experiment. Finally, the MGVA filter produced

low initial yaw estimate errors that grew large as the experiment progressed. Comparing the

MVVA filter and the standard filter, it was seen that the standard filter at first produced

lower yaw estimate errors than the MVVA filter. However, as the experiment progressed

the standard filter’s yaw estimate errors grew while the MVVA filter’s yaw estimate errors

remained bounded. Because of this, it was concluded that the MVVA filter, in this regard,

provided an improvement to the standard filter, and demonstrated greater yaw estimation

capabilities than the MGVA filter during this run.
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Chapter 6

Utilization of the Heading Constraint for Ground Vehicle Applications

While Chapter 5 showed that the MGVA and MVVA filters were able to provide good

results for the low excitation trajectories, it is important to compare them to other methods

which have been used in the past to supplement the standard filter. Therefore, this chapter

compares the MGVA and MVVA filters to a method tested by Ryan in [23] that uses velocity

measurements, under known conditions of straight driving, to present the standard filter with

a heading constraint for the vehicle. An exposition of this method will be given in the sections

below, followed by several tests which compare the performance of the heading constraint

method to that of the MGVA and MVVA filters.

6.1 Heading Constraint Formulation

For ground vehicle estimation, there are several distinctions that must be made with

regard to vehicle heading. As Ryan explains in [23], a ground vehicle will have both a course,

and a heading (or yaw angle). Heading is defined as the angular direction a vehicle is facing

with respect to north, while course is defined as the angular direction of the vehicle’s velocity

vector with respect to north. The di↵erence between these two angles is referred to as the

side-slip that a vehicle experiences, and can be defined by Equations (6.1) and (6.2)

� = ⌫ �  (6.1)

� = atan(
Vy

Vx

) (6.2)
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Figure 6.1: Vehicle heading, course and side-slip defined

where � is the side-slip angle, ⌫ is course,  is the heading of the vehicle, and Vx and

Vy represent x and y body frame velocities, respectively. For the case of a vehicle driving

straight, with no lateral velocities, it can be seen that the expression in Equation (6.2) will

go to zero. When this happens, the sideslip of the vehicle is zero, and ultimately the course

of the vehicle ⌫ is equal to the heading of the vehicle  .

Leveraging this information, it is possible to improve the performance of the standard

loosely-coupled EKF by setting heading equal to course in the filter. This process is imple-

mented by first calculating the course of the vehicle based on velocity measurements in the

local navigation frame such that

⌫ = atan(
Veast

Vnorth

)GPS (6.3)

Next, the course calculation can be supplied to the filter as a measurement update, such

that the z measurement vector of the filter becomes

z =


PGPS VGPS ⌫

�T
(6.4)
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the H measurement matrix becomes

H =

2

66664

I33 O33 O31 O31 O31 O33 O33

O33 I33 O31 O31 O31 O33 O33

O13 O13 0 0 1 O13 O13

3

77775
(6.5)

and the R covariance matrix becomes

R =

2

66664

�2
P O33 O31

O33 �2
V O31

O13 O13 �2
 

3

77775
(6.6)

This formulation leads to several important considerations that must be made. First,

the filter may only apply the heading constraint when it holds true that the vehicle is not

experiencing any side-slip. In order to account for this, Ryan configured the EKF he studied

to only apply the constraint when the gyroscope of the system had measured very low

amounts of z-axis rotation (less than 3 deg/s) over the course of some time period. It is also

important to note that this assumptionof zeros sideslip does not always hold for straight

driving. As a result, the use of the heading constraint can be a potential source of error in

the estimation scheme. Second it should be noted that the filter used by Ryan in [23], as well

as this formulation, rely upon measurement updates of the yaw angle between the local NED

frame and the body frame. Because of this, the simplest loosely-coupled filter to utilize the

heading constraint is one which operates in a local NED frame rather than an ECEF frame

(as was done in Chapter 4). This is the type of filter that Ryan analyzed, and following

from Ryan’s work, it is the type of filter that the heading constraint was implemented on

in this thesis. Next, it should be noted that in addition to the zero side-slip assumption,

the constraint also assumes zero velocity in the down direction. Because of this, if it is so

desired, the Vdown component of the VGPS vector in Equation (6.4) may be set equal to zero,

further constraining the filter. Finally, Ryan showed that the heading constraint a↵ects the
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observability of the filter such that the heading and z-axis gyro bias are made observable.

The benefit of heading and z-axis gyro bias observability should not be underestimated, since

the yaw angle is the critical rotation angle for navigation.

6.2 Comparison of the MGVA and MVVA Filters to the Heading Constraint

In order to compare the MGVA and MVVA filters to the heading constrained filter, the

loosely-coupled EKF implementing the heading constraint was evaluated using the simulated

and experimental trajectories that the MGVA and MVVA filters were tested on in Chapter

5. Results from these tests can be seen in Figures 6.2-6.8.

Figures 6.2 and 6.3 show how the EKF with the heading constraint performed in sim-

ulation. Comparing these results with those from the standard filter in Chapter 5 (Figure

5.4) reveals that, with respect to the tilt angles, the heading constrained filter experiences

drifting errors similar to the standard filter. However, it can be seen that contrary to the

performance of the standard filter, the heading constrained filter achieves sub-degree levels

of accuracy with it’s yaw estimate.

Results from experimentally testing the EKF, with data collected at NCAT, can be seen

in Figures 6.4-6.6. The EKF is able to estimate the roll with small amounts of drift e↵ecting

the algorithm throughout. The filter’s estimate of pitch diverges from the true value almost

immediately, and su↵ers from drifting errors through the run. However, the yaw estimate is

successfully corrected by the heading constraint. As Figure 6.5 shows, as soon as the vehicle

leaves the turn and begins driving straight, the heading constraint is activated, and the yaw

estimate errors are reduced to the sub-degree level.

Figure 6.7 gives a comparison of attitude estimate errors between the heading con-

strained EKF, MGVA filter, and the MVVA filter. The MGVA and MVVA filters are able to

obtain more accurate estimates of the tilt angles compared to the heading constrained filter.

It is clear that the MGVA and MVVA filters are able to mitigate some of the di�culties

seen in estimating these angles during the trajectory. In contrast, the heading constrained
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Figure 6.2: Attitude estimate error for the loosely-coupled EKF with the heading
constraint over the course of the dynamic simulation

Figure 6.3: Accelerometer bias estimates vs. truth for the loosely-coupled EKF with the
heading constraint over the course of the dynamic simulation

76



(a) Roll estimate vs. truth (b) Pitch estimate vs. truth

(c) Yaw estimate vs. truth

Figure 6.4: Attitude estimate vs. truth for the loosely-coupled EKF with heading
constrained during dynamic trajectory at NCAT

filter is clearly able to provide a more accurate heading estimate during portions of straight

driving.

These results lead to an important consideration. It is possible that the MGVA and

MVVA filters may be improved using the heading constraint in their design rather than

yaw updates from the attitude determination algorithm. In other words, it is possible that

more accurate filters could be produced if the MGVA and MVVA filters used the attitude

determination algorithm to update only roll and pitch during portions of straight driving.

They could then supplement their yaw updates with information from a heading constraint,

thus creating greater accuracy in heading estimation. Figure 6.8 depicts the e↵ects of such an

implementation. As can be seen, the MGVA filter’s yaw estimate greatly benefits from the use

77



Figure 6.5: Yaw estimate error for the loosely-coupled EKF with heading constrained
during dynamic trajectory at NCAT

Figure 6.6: Accelerometer bias estimates vs. truth for the loosely-coupled EKF with
heading constrained during dynamic trajectory at NCAT
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Figure 6.7: Attitude error comparison between the heading constrained EKF and the
MVVA filter

of the heading constraint for portions of straight driving while testing. The use of the heading

constraint results in several degrees of less error compared to the MGVA filter without the

heading constraint. In contrast, the MVVA filter does not show improvement from the use

of the heading constraint. Closer analysis of the yaw measurement updates coming from the

attitude determination algorithm reveals that for portions of straight driving the attitude

determination algorithm supplies the MVVA filter with a yaw updates that di↵er from the

heading constraint update by a mean value of 0.07 degrees. As a result, it is evident that

the accuracy of the heading constrained filter compared to the MVVA filter without the

heading constraint is due first to the errors the MVVA filter experiences while turning and

next to other aspects of the heading constrained filters architecture (e.g., its loosely-coupled

implementation, or its use of just a heading update rather than a three Euler angle update).
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Figure 6.8: Yaw estimate error comparison between the heading constrained EKF, and the
MGVA and MVVA filters using the heading constraint

6.3 Conclusion

In this chapter, a comparison of the MGVA and MVVA filters was made to a loosely-

coupled filter with constrained heading that was studied by Ryan [23]. A presentation of

this filter was given detailing how the filter utilizes velocity measurements to calculate the

course of the vehicle, and then set the heading equal to the course during periods of straight

driving. Having defined the heading constrained filter, it was then implemented on the data

that the MGVA and MVVA filters were previously tested on in Chapter 5.

In simulation, the heading constrained filter performed similar to the standard filter in

Chapter 5, su↵ering from drifting tilt angle estimates which led to drifting accelerometer bias

estimates. In contrast to the standard filter however, it was seen that the heading constrained

filter was able to maintain sub-degree levels of accuracy with respect to it’s yaw estimate.

Testing with experimental data revealed that the filter once again performed similar to the

standard filter, obtaining reasonable roll estimates that su↵ered from some drifting errors,

and poor pitch estimates which never converged to the true pitch. In contrast to this, the

heading estimate of the filter was successfully corrected by the heading constraint, leading

to an increased amount of accuracy in the yaw estimate.

Comparison of the heading constrained filter with the MGVA and MVVA filters showed

that the MGVA and MVVA filters were able to provide better estimates of the tilt angles,

while the heading constrained filter displayed better estimates of the yaw angle. It was

concluded from these results that a better version of the MGVA and MVVA filters might be
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possible if the MGVA and MVVA filters were to utilize heading constrained measurements

during straight driving, rather than their own yaw measurement update. Implementation of

such filters showed that the MGVA filter was able to benefit significantly from the use of the

heading constraint during straight driving. In contrast, the MVVA filter did not benefit from

the use of the heading constraint. Further analysis revealed that the updates provided by

the heading constraint during straight driving were almost identical to those provided by the

attitude determination algorithm in the MVVA filter. Because of this, it was concluded that

the heading constrained filters success over the MVVA filter (without the heading constraint)

was not simply due to the use of the heading constraint, but rather due other di↵erences

between the heading constrained architecture studied by Ryan [23] and the MVVA filter.
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Chapter 7

Performance of the MGVA and MVVA Filters Under Dynamic Trajectories

Having shown the capabilities of the MGVA and MVVA filters under trajectories of low

dynamics (straight and steady driving), the question arises as to how the filters will perform

under normal vehicle operating conditions. In other words, the case of driving with either

constant velocity, acceleration, or heading is fairly rare. It follows that if the MGVA and

MVVA filters are to be considered truly useful, they cannot function only under these rare

conditions but must function under any kind of vehicle trajectory. Because of this, several

simulations and experiments were performed in order to validate the use of the MGVA and

MVVA filters for a more dynamic trajectory. In the following sections, the results from these

simulations and experiments will be presented, in order to show the usefulness of the MGVA

and MVVA filters under more dynamic conditions.

7.1 Dynamic Trajectory Simulation Results

In order to test the e↵ectiveness of the MGVA and MVVA filters, a simulated trajectory

was created which consisted of several seconds of rapidly changes linear acceleration, followed

by several seconds of no acceleration. The simulated trajectory consisted of straight driving

without any changes in roll or pitch, for simplicity. This type of trajectory represents what a

ground vehicle would experience during rapid acceleration and braking, followed by driving

at constant velocity, during straight and level driving. Both the MGVA filter and the MVVA

filter were tested with this trajectory, and results from these simulations are shown below.

Figure 7.1 displays the true accelerations and yaw rates of the simulated vehicle. As can be

seen the vehicle experiences rapidly changing accelerations, in the longitudinal direction, for

several seconds beginning around the 15 second mark, followed by a period of no acceleration.
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Figure 7.1: Simulated ground vehicle accelerations and yaw rates

Figures 7.2 and 7.3 display how the MGVA filter performed during the simulation. As

can be seen, the variations in acceleration had a large e↵ect on the filter’s attitude estimate.

The roll, pitch, and yaw estimates all follow trends which appear to come from the variation

in acceleration shown in Figure 7.1. The result of these variations is that all three euler

angles experience errors on the order of several degrees during acceleration changes. It is

possible, as has been shown before in this thesis, the MGVA filter may not be suitable

for trajectories which experience increased dynamics. The dynamics experienced by the

system make the accelerometer’s measurements a function of both the gravity vector and

vehicle accelerations, and ultimately corrupt the attitude calculations made by the attitude

determination algorithm.

In spite of the poor attitude performance during the initial portion of the trajectory,

Figure 7.3 shows that the filter is still able to observe the accelerometer bias. This is simply

due to the constant velocity the system experiences after rapid acceleration and deceleration.

Taking a closer look at Figure 7.3 shows that the x and y accelerometer bias estimates su↵er
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Figure 7.2: Attitude estimate error for the MGVA filter over the course of the dynamic
simulation

Figure 7.3: Accelerometer bias estimates vs. truth for the MGVA filter over the course of
the dynamic simulation
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Figure 7.4: Attitude estimate error for the MVVA filter over the course of the dynamic
simulation

from a slight oscillation right before convergence, due to the corrupt attitude estimates. It

is evident that oscillations in attitude estimates from the MGVA filter ultimately lead to

oscillating accelerometer bias estimates. If the attitude estimates oscillate about the true

attitude of the system, then the bias estimates will also oscillate about the true bias e↵ecting

the system. However, if the oscillations are large enough, the filter will still experience error

due to accelerometer bias. Because of this, it is evident that accelerations experienced by

the vehicle ultimately lead to a degradation in performance of the MGVA filter.

Figures 7.4 and 7.5 show the attitude estimate error and accelerometer bias estimates

for the MVVA filter. In Figure 7.4, despite the extreme changes in vehicle acceleration,

the MVVA filter is still able to achieve sub-degree levels of accuracy with all three euler

angles. This is because accurate measurements of the vehicle’s velocity allow the attitude

determination algorithm to form an accurate estimate of the vehicle attitude, and supply

the filter with an update. In Figure 7.4 it can be seen that this ultimately leads to accurate

estimation of accelerometer bias. Therefore, this demonstrates that even during increased
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Figure 7.5: Accelerometer bias estimates vs. truth for the MVVA filter over the course of
the dynamic simulation

vehicle dynamics, the MVVA filter is still able to perform well, estimating both the vehicle

attitude and accelerometer biases accurately.

7.2 Dynamic Trajectory Experimental Results

Having tested the filters on a simulated dynamic trajectory, the results seen in simulation

were further validated through experimentation with real data. The same experimental setup

used in Chapter 5 was used once again to collect data for two di↵erent dynamic trajectories.

The first trajectory involved periodically accelerating and deccelerating the vehicle as it drove

down the track. This resulted in in varying linear accelerations of the vehicle as it moved

down the track. The second trajectory involved the performance of double lane change

maneuvers at high speeds on the straight portions of the track. Results from implementing

the MGVA and MVVA filters on the two trajectories are given in the following sections.
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Figure 7.6: Acceleration and yaw rate of the vehicle for the first dynamic trajectory

7.2.1 Dynamic Trajectory with Changes in Linear Acceleration

Figure 7.6 shows the accelerations and yaw rates experienced by the vehicle during the

first trajectory. The accelerations in the x-axis of the vehicle change constantly, while the

y-axis accelerations of the vehicle experience little acceleration unless the vehicle is turning.

During the turns, the y-axis of the vehicle experiences varying amounts of acceleration. With

regard to the yaw rate, the vehicle only experiences changes in yaw on the turns of the track;

otherwise the vehicle was driven straight.

Figures 7.7 and 7.8 depict the attitude estimate and the accelerometer bias estimates

from the MGVA filter during the test. Figure 7.7 shows that during the experiment the

MGVA filter struggles to give an accurate estimate of the attitude, producing oscillating

estimates, similar to what was seen in simulation. Of the three Euler angle estimates, the

filter shows the largest success in roll estimation. Additionally, a comparison of Figures 7.7

and 7.2 reveals that with regard to the tilt angles, longitudinal changes in acceleration cause

larger errors in pitch estimation than roll estimation. It is possible that this is the case

because, longitudinal changes in the vehicle’s acceleration cause the vector measured by the
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(a) Roll estimate vs. truth (b) Pitch estimate vs. truth

(c) Yaw estimate vs. truth

Figure 7.7: Attitude estimate vs. truth for the MGVA filter during dynamic trajectory at
NCAT

Figure 7.8: Accelerometer bias estimates vs. truth for the MGVA filter over the course of
the dynamic trajectory at NCAT
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(a) Roll estimate vs. truth (b) Pitch estimate vs. truth

(c) Yaw estimate vs. truth

Figure 7.9: Attitude estimate vs. truth for the MVVA filter during dynamic trajectory at
NCAT

accelerometer to pitch away from the vector that would be measured by a static sensor. This

ultimately leads the attitude determination algorithm to believe that the vehicle is pitching

when in fact the orientation of the vehicle is not changing. As a result, it may be that

longitudinal changes in acceleration cause the MGVA filter’s largest tilt angle estimation

errors to occur in pitch estimation. Figure 7.8 shows that these attitude errors during the

trajectory ultimately lead to errors in the filter’s accelerometer bias estimates. In the y axis,

the estimate experiences small oscillations, and ultimately diverges from the reference value.

In the x axis, the estimate experiences even larger oscillations, however it is able to oscillate

near the reference.
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Figure 7.10: Accelerometer bias estimates vs. truth for the MVVA filter over the course of
the dynamic trajectory at NCAT

In contrast, Figures 7.9 and 7.10 shows that the MVVA filter has much more success in

its estimation of the attidue and accelerometer biases. Figure 7.9 shows that with increased

dynamics, the system is actually able to produce a more accurate attitude estimate than

what was seen during the low dynamics trajectory (see Figure 5.18). Closer examination

of the data reveals that during these tests, the MVVA filter achieves sub-degree levels of

accuracy for all three euler angles of the vehicle. Finally, examining Figure 7.10 shows that

once again, the ability to observe the attitude of the vehicle leads to the MVVA filter’s ability

to obtain valid accelerometer bias estimates in both the x and y axes.

7.2.2 Dynamic Trajectory with Double Lane Change Maneuver

The second dynamic trajectory that the filters were tested on involved the vehicle per-

forming double lane change maneuvers. The double lane change maneuvers consisted of the

vehicle merging from one lane into an adjacent lane for a prolonged period of time, and

then merging back into the original lane. During each straight portion of the track, two

double lane change maneuvers were performed. The acceleration and yaw rate of the vehicle

for this trajectory are shown in Figure 7.11. In the y axis, the vehicle experiences varying
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Figure 7.11: Acceleration and yaw rate of the vehicle for the double lane change maneuver

lateral acceleration during merging and turning. Additionally, the x axis of the vehicle also

experiences varying accelerations. Specifically, varying acceleration occurs due to moments

of breaking and acceleration while turning the vehicle.

Figures 7.12 and 7.13 depict how the MGVA filter handled the attitude and accelerom-

eter bias estimation during the double lane change maneuvers. As can be seen, the filter

has some success in estimating all three rotational angles, however, it struggles once again

from oscillations in the estimates due to changing accelerations while merging and during

acceleration/braking. Oscillations in the estimates can be most clearly recognized in the roll

estimates during lane changing, and the e↵ects of acceleration/braking can be seen in the

two large dips in the pitch estimate during turning. The e↵ects of the oscillating attitude

estimates can also be seen in Figure 7.13. Once again, the filter is able to estimate the

accelerometer bias e↵ecting the system, however its estimates su↵er from oscillations just as

the attitude estimates do.

Figures 7.14 and 7.15 display results from implementing the MVVA filter on the trajec-

tory. The MVVA filter is once again successful in its attitude estimation. It can be seen that

the filter is able to provide good estimation of the roll of the vehicle during lane changes.
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(a) Roll estimate vs. truth (b) Pitch estimate vs. truth

(c) Yaw estimate vs. truth

Figure 7.12: Attitude estimate vs. truth for the MGVA filter during double lane change
maneuver

Figure 7.13: Accelerometer bias estimates vs. truth for the MVVA filter over the course of
the double lane change maneuver
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(a) Roll estimate vs. truth (b) Pitch estimate vs. truth

(c) Yaw estimate vs. truth

Figure 7.14: Attitude estimate vs. truth for the MVVA filter during double lane change
maneuver

Figure 7.15: Accelerometer bias estimates vs. truth for the MVVA filter over the course of
the double lane change maneuver
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It can also be seen that the filter produces a pitch estimate that follows the trend of the

reference, however is in error throughout by roughly two degrees. It is possible that this

two degree o↵set is due to misalignment errors that were not noticed during testing and

data collection. If the sensor was slightly pitched downwards from the vehicle frame by two

degrees, then it may account for the errors seen in Figure 7.14. Finally, Figure 7.15 shows

that the attitude estimation the filter provides ultimately leads to bias estimates which are

stable, and converge near the reference accelerometer bias.

7.3 Conclusion

In order to further validate the MGVA and MVVA filters, the algorithms were tested

in simulation and experimentation on a more dynamic trajectory. The filter was tested on

a simulated trajectory which contained several seconds of longitudinal acceleration and dec-

celeration, followed by several seconds of no acceleration. It was shown that under dynamic

portions of the trajectory, the MGVA filter was unable to obtain a valid estimate of the ve-

hicle attitude. It was not until the simulated vehicle stopped accelerating and deccelerating

that the filter was able to accurately estimate the attitude. In spite of the initial attitutde

estimate errors, the filter was still able to produce accurate estimates of the accelerome-

ter bias, largely due to the filter’s accurate attitude estimate that followed the period of

vehicle accleration and decceleration. In contrast, the increased dynamics did not hinder

the performance of the MVVA filter. The filter was still able to calculate accurate attitude

measurements during the test and update the filter with valuable information. This in turn

led to accurate estimates of the accelerometer biases corrupting the filter inputs.

The MGVA and MVVA filters were then tested on two experimental sets of data col-

lected at NCAT. During the first experimental run, the vehicle was driven around the track

periodically accelerating and decellerating. For this experimental run, the MGVA filter suf-

fered from oscillating attitude estimates as a result of the changing linear accelerations. It

was noted that, with regard to tilt angle estimation, the filter su↵ered the most in pitch
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estimation. It was also noted that these results may imply a correlation between linear ac-

celeration and pitch estimation error in the MGVA filter. Corresponding to these results,

the filter su↵ered from oscillating accelerometer bias estimates, as well as a diverging y axis

bias estimate. The conclusion from this experiment was that the MGVA filter may only be

suitable for use during periods of steady driving. In contrast the MVVA filter performed

well during the experimental run. The MVVA filter was able to produce sub-degree accurate

attitude estimates during portions of the run, and ultimately was able to produce accurate

estimates of the accelerometer biases.

During the second experimental run, the vehicle performed several double lane change

maneuvers as it traveled down the track. For this trajectory, it was seen that the MGVA filter

once again su↵ered from oscillations in the attitude estimates due to changing accelerations

on the vehicle during lane changing and turning. Corresponding to the oscillations in attitude

estimates, the filter accelerometer bias estimates also su↵ered from oscillations. However,

these estimates were still able to draw near to the reference. With regard to the MVVA

filter, the filter was able to provide good roll estimation, and a pitch estimate which followed

the trend of the pitch reference. However, it was noted that the pitch estimate did su↵er

from a small o↵set which e↵ected the estimate throughout the experiment. It was suggested

that the o↵set that was seen may have been due to small misalignment errors that were

not detected during experimentation. Finally, it was seen that the MVVA filter was able

to provide accelerometer bias estimates that were stable and converged near the reference

values.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

This thesis has shown that magnetometers are useful sensors, with large opportunities

for use in the navigation industry. Despite the sensors nature to be prone to error, it has

been shown that proper correction can yield high value information for navigation systems.

The versatility of these sensors a↵ords them the potential to provide many di↵erent kinds

of navigation information. Specifically, this thesis has shown that magnetometers can be

applied to standard algorithms to provide increased accuracy and observability for ground

vehicle navigation filters.

There has been an extensive amount of research done in the areas of sensor fusion and

GPS/INS enhancement. In this thesis, it was chosen to explore how magnetometers could

be used to enhance the observability and the estimation capabilities of a standard closely-

coupled EKF. As a result, this thesis contributes the following. First, it contributes an

observability analysis of the MGVA and MVVA filters, and shows that for low excitation

ground vehicle trajectories, the two filters are able to increase the observability to full rank.

Next, this thesis provides an analysis of the attitue and accelerometer bias estimation ca-

pabilities of the two filters, for low-excitation ground vehicle trajectories. This thesis, also

contributes a comparison of the two modified filters, to a heading constraint method studied

by another author in the past [23]. Finally, this thesis contributes a performance analysis of

the MGVA and MVVA filters on a dynamic ground vehicle trajectory.

At the start of this thesis, it was shown that magnetometers struggle from di↵erent error

sources. Among these the most prominent error sources are due to magnetic interference

that is measured by the magnetometer. In this thesis, a two-part least squares estimator was
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chosen for magnetometer calibration. The architecture of the chosen algorithm was explained

in detail, and the algorithm was tested on both simulated and experimentally collected

magnetometer data. The simulations and experiments that were performed showed that the

algorithm was successful in accounting for various error sources and ultimately correcting

heading calculations from magnetometers.

It was also shown that magnetometers are highly useful sensors for euler angle attitude

determination. From among the available literature, a Newton-Gauss based estimator was

chosen that was able to calculate the angular rotation between two vector sets in di↵erent

coordinate frames. This algorithm was explained in detail, and then tested in simulation on

an aerial trajectory of interest. The algorithm was first tested using magnetometer measure-

ments and accelerometer measurements. It was shown that the accelerometer-magnetometer

pair did not work well on trajectories with high dynamics, largely due to a clouding of the

gravity vector in the accelerometer measurements taken. The algorithm was then tested

magnetometer measurements and velocity vector measurements. These tests showed that

under high dynamics the velocity-vector and magnetometer pair are much more able to

determine an accurate attitude solution.

This thesis has also delivered an exposition of the standard loosely-coupled EKF, the

standard closely-coupled EKF, and two modified EKFs, the MGVA filter and the MVVA

filter. Following this exposition, the stadard closely-coupled EKF, the MGVA filter, and the

MVVA filter were both tested in simulation and experimentation on low dynamics trajecto-

ries. Results in simulation showed that the standard filter was unable to provide accurate

accelerometer bias estimates due to incorrect attitude estimates from the filter. In contrast,

the MGVA and MVVA filters were able to provide much more accurate estimates of the

vehicle attitude, which led to good estimation of the accelerometer bias. Experimentally,

the standard EKF avoided some of the drifting roll estimates found in simulation. It is likely

that this was the case due to the lateral changes in acceleration that the vehicle experienced

while turning. In contrast, the filter experienced drifting pitch and yaw estimate errors due
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to the unobservable trajectory. All of this led to poor estimation of the x-axis accelerom-

eter bias, but good estimation of the y and z axes accelerometer biases. Along the same

experimental trajectory, the MGVA and MVVA filters were both successful in estimating

the attitude and accelerometer bias during the run. Comparison of the MGVA and MVVA

filters with the standard filter showed that the MGVA and MVVA filters were able to achieve

better pitch accuracy and roll estimates on par with the standard filter. Additionally, it was

seen that the MGVA filter provided higher pitch accuracy than the MVVA filter throughout

the experiment. With regard to yaw, the MGVA filter initially produced lower errors than

the standard filter and MVVA filter, however as the experiment progressed the yaw estimate

error from the MGVA filter grew larger than both the standard filter and the MVVA filter.

Comparing the MVVA filter to the standard filter, it was seen that initially the standard

filter produced higher accuracy than the MVVA filter. However, toward the end of the ex-

periment it was seen that bounded errors in the MVVA filter’s estimate allowed the filter to

achieve higher accuracy than the standard filter.

The MGVA and MVVA filters were also compared to a method studied by Ryan in

[23] and termed the heading constraint. The heading constraint method was explained

in detail, and then tested on both the simulated and experimental trajectories that the

MGVA and MVVA filters was tested on in Chapter 5. In simulation, it was shown that

the heading constraint was successful in reducing the yaw estimate errors to the sub-degree

level. Experimentally, the filter was able to perform the same, reducing yaw errors during

portions of straight driving. Comparison of the heading constraint to the MGVA and MVVA

filters showed that the MGVA and MVVA filters were superior in providing estimates of the

roll and pitch of the vehicle. However, the heading constrained filter was able to provide

more accurate estimates of the yaw angle. This led to the conclusion that the MGVA and

MVVA filters could be improved upon if they were to utilize a heading constraint during

portions of straight driving rather than using their own yaw estimates. Implementation of the

heading constraint on the MGVA and MVVA filters revealed that the heading constraint was
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successful in improving heading estimation on the MGVA filter, but not on the MVVA filter.

Further analysis showed that the yaw updates provided to the MVVA filter from the attitude

determination algorithm were almost identical to those that the heading constraint could

provide. This led to the conclusion that the increased accuracy of the heading constrained

filter compared to the MVVA filter (without the heading constraint) was due in part to

errors the MVVA filter encountered while turning, and in part to other aspects of the filter

architectures not directly related to the use of the heading constraint.

Finally, in order to validate the MGVA and MVVA filters for typical driving scenarios,

the two filters were tested on two trajectories with much higher dynamics. Results from the

first trajectory showed that, under increased dynamics the MGVA filter struggled due to

oscillating attitude estimates that ultimately led to poor bias estimation. This led to the

conclusion that the MGVA filter may only be suitable for use during steady driving. As ex-

pected, the MVVA filter provided better estimates of the attitude due to its use of the vehicle

velocity vector rather than the acceleration due to gravity. During experimental testing with

the MVVA filter, it was shown that sub-degree attitude estimates were achieved during the

run. This ultimately also led to good estimation of the accelerometer biases corrupting the

system. Results from the second trajectory also showed that under increased dynamics the

MGVA filter struggled from oscillating attitude and accelerometer bias estimates. In con-

trast, the MVVA filter was able to provide good estimation without oscillations. However, it

was noted that the MVVA filter’s pitch estimate su↵ered from a slight o↵set that e↵ected it

throughout the experiment. It was concluded that this may have been due to misalignment

errors that were not detected during experimentation.

8.2 Future Work

Moving forward from this thesis, there are several questions that have been raised that

remain to be answered. With regard to magnetometer calibration and data collection, it

has been discussed that if a magnetometer does not rotate about the vertical axis, in a
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plane other than the horizontal, the calibration algorithm may not perform optimally. This

presents an issue for ground vehicles, since it is di�cult to perform 360 degree rotations

outside of the horizontal plane while in a ground vehicle. The sensor cannot be rotated

apart from the vehicle, because then it would not detect the errors that corrupt it as a result

of being in the vehicle. Additionally, a set of data in the horizontal plane cannot simply be

rotated out of the plane in post-processing, and then used for calibration. This would not

be a true representation of the errors corrupting the sensor; it would only rotate the errors

presented in the horizontal plane, rather than measuring the errors that corrupt the mag-

netometer as it is rotated. In addition to this, only post-process magnetometer calibration

was utilized in this thesis, however, several algorithms exist that are capable of estimating

calibration parameters in real-time. These would prove beneficial due to their ability to

modify calibration parameters during experimentation. This ability could potentially lead

to more accurate calibrations tailored to each data set. None of these methods were explored

in this thesis, however, and are therefore left as an endeavor for future work.

Although sub-degree attitude accuracy was achieved during some of the experimental

testing performed in this thesis, the majority of testing done with both the MGVA and

MVVA filters did not yield this type of accuracy. There are several parts of the current

algorithm which could be modified in order to make the algorithm more accurate. One

area of interest that has already been mentioned is in magnetometer calibration. It is no

surprise that a more accurate calibration of the magnetometer could lead to better results

on a consistent basis. In addition to this, this thesis has not explored the use of more than

2 vector sensors for enhanced attitude determination. The use of sun sensors, star sensors,

and other vector measurement devices could potentially increase the accuracy of the attitude

solutions output by the attitude determination algorithm. Using more than two sensors could

also lead to specific attitude solutions on a consistent basis, thus removing any error spikes

in the solution whenever the algorithm cannot determine a specific solution (see Figure 3.4

and Section 3.3).
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Finally, examining the architecture of the MGVA filter, it is significant to note that the

attitude estimation capabilities of the filter are independent of GPS measurements. This is a

useful quality of the MGVA filter because, it gives the filter potential to improve navigation

performance during GPS signal outages. During a GPS outage, the MGVA filter theoretically

has the capability to continue attitude and accelerometer bias estimation, and ultimately

improve vehicle navigation even when GPS is unavailable. This capability has also been left

as future work, however, and was not explored in this thesis.

There are many opportunities for forward movement in the disciplines of sensor fusion

and attitude determination. It has been the goal of this thesis to provide a thorough ex-

amination of one way in which magnetic sensors can be used in the pursuit of this forward

motion. As can be seen, there are still areas of the subjects explored in this thesis that

remain to be pioneered. But it is certain that the momentum of the navigation industry can

only bring about better and brighter things from the future.
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