JavelinaCode: A Web-Based Object-Oriented Programming Environment
with Static and Dynamic Visualization

by

Jeong-sug Yang

A dissertation submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the
requirements for the Degree of
Doctor of Philosophy

Auburn, Alabama
August 6, 2016

Keywords: JavelinaCode, static visualization, dynamic visualization
web-based programming environment

Approved by

Kai H. Chang, Chair, Professor and Chair of Computer Science and Software Engineering
T. Dean Hendrix, Associate Professor of Computer Science and Software Engineering
David A. Umphress, Professor of Computer Science and Software Engineering

Abstract

This research proposes an approach to provide source code along with structural and
behavioral aspects of visualizations synchronized in a web-based programming environment,
JavelinaCode. The aim of the approach is to help student programmers better understand the
structure and the runtime behavior of a Java program, and to improve their ability to comprehend
object-oriented programming concepts, thereby reducing their cognitive workload in Java
programming through an effective development environment. Using JavelinaCode, student
programmers can write Java programs directly in a frontend web browser without any software
or plug-in installation. They are provided with a view of the static state of a Java program in
UML class diagrams and the dynamic run-time state of the program by stepping forward and

backward through program execution.

In this dissertation, an overview of the JavelinaCode system, its unique design principles, and
implementation are described in detail. To investigate the effectiveness of JavleinaCode, both
quantitative and qualitative evaluations were carefully designed and conducted to test hypotheses
on student performance on programming tasks. The quantitative study indicated that having both
visualizations in JavelinaCode did positively impact the correctness of solving problems. The
qualitative study supported the positive effect of JevelinaCode on helping students better
understand Object-Oriented design concepts and meeting goals of providing satisfaction. The

dissertation makes a conclusion with the discussion of contributions, benefits, and future work.

1

Acknowledgments

I would like to express a sincere appreciation to my advisor, Dr. Kai H. Chang, for his
continued support. It is truly amazing to see him consistently support me after such a long time
since I left Auburn. Throughout the years, I feel very lucky to have him in my work for both
masters and doctoral degrees at Auburn. I would also like to extend my sincere appreciation to
the advisory committee members, Dr. Dean Hendrix and Dr. David Umphress, for their help in
many different ways, and Dr. Soo-young Lee for his generous support on serving as a University

reader.

My deepest gratitude goes to my husband, Dr. Young Lee. Without his unconditional love,
thoughtful guidance, and persistent support, it would not even be possible to finish the

dissertation and this precious moment would not have come to me.

111

Table of Contents

AADSITACE ...ttt h et et a bt e h bt e a e e h e h et eh e e bt et ea s e bt enbeeate e il
ACKNOWIEAZIMENTS.eoiiiiiieiiecie ettt ettt e et e e taeeabe e taeesbeessseenseesseeenseennns il
LISt O TADIES ..ottt sttt ettt et e bt et et e bt et saeenbe et vii
LSt OF FIGUIES ...ttt ettt ettt et e bt e taeebe e teeesbeessaeenbaesseeasseessesnsaensneans viii
I INEEOAUCTION ..ttt h et st b et e bt et e saeenbeeneeeneenees 1
2 LIErature REVIEW ...c.eeiiiiieiieiieiieie ettt ettt et sttt et e bt et st esbe e e et e eaeentesnee e 7
2.1 BIUCT et ettt ettt et st nae e 7
A) i (1] B o RSP SR 9
2.3 JRHOE 3 e ettt sttt sae e bt et es 11
B N~ - N PR 12
2.5 JIVE et ettt ettt b et e es 14
2.6 JGRASP e ettt es 16
3 JAVEINACOMAE ..ot ettt e 19
3.1 SYSLEM OVEIVIEW ..eiiiiiieiiieeiiieeiteeeteeeteeetteeeteeeeteeesseeessseeessseeesseesnsseessseesnssens 19
3.2 DeSigN PrINCIPIES ..oiioiiiieiiieiie ettt ettt et e e e enneas 20
RICI (1010) (53001211218 103 o KOTSRS 21
3.4 UNSEr INtEITACE ..o.eiiiiiiiiiiiie et 24
3.5 Modeling EXampleooooiiiiiiiiiiieeiieecee ettt 27
3.0 MECRAMNIC ...ttt ettt ettt 28

3.6.1 Getting Startedoccieiiieiiieieee e 28

3.6.2 Editing with Ace Editorcccoeiiieiiiiiiiiieeiieeeeeeeeee e 29

3.6.3 Creating, Opening, and Deleting a Projectcccceevieviienieniieniiennnee, 30

3.6.4 Adding, Closing, Renaming, and Deleting a Classc.ccccceeevrecuiennnnne. 32

3.6.5 Saving, Compiling, and Running a Projectc.ccceevveviiienienciieniennnene, 34

3.6.6 Viewing UML Class Diagramsccccccoceeeiierienieeniienieeieeeie e 35

3.6.7 Visualizing Program EXeCUtionccceevuiieiieniieniieiieeie e 38

3.7 Anticipated BN itscccovviiiiiiiiiiiiieiieeeee e 38
4 Synchronized Static and Dynamic Visualization............ccceccueveiierieeriienieeiienieereesee e 41
4.1 Plant UML ..ottt sttt sttt 41
4.2 JaVa VISUALIZET ...eeuiiiieiieieeiieeeete ettt sttt ettt 42
4.3 Static and Dynamic Visualization in JavelinaCodeccccoevvveviieniieicieenieeneenen. 44
4.3.1 Customized Plant UML for Static Visualizationc..ccccceveevenienennene 44

4.3.2 Customized Java Visualizer for Dynamic Visualizationccccceceueee. 49

4.3.3 Case Study: yo-yo effect with Synchronized Static and Dynamic

VISUALIZATION ..oiiiiiiiiiiiiciec e 54

5 Comparative Analysis of Educational Programming Environmental Toolc..ccc..... 57
5.1 Comparison of Download and Install Timecccccoceviiiiniiniininineeeiceeee, 57

5.2 Comparison of Quality of User Interface and Aspects of Visualization 59

6 EVAlUALION ..ottt 71
6.1 INtrOAUCLIONeiiiiiiiiiiieiieee et 71

6.2 ValIdAtION ..c..iiiiiiiiiieiiiieieceee ettt 72

6.3 Quantitative Evaluationc.cccccuiiiiiiiiiiiiccecce e 73

6.3.1 HYPOtRESES ...ttt ettt ettt ene 74

6.3.2 QUESTIONNAITEuveeeivieeeireeeeiie et e et e eieeeeteeeeaeeesaeeeeabeeeeareeeaseeenseeenneas 74

6.3.3 Data ANALYSIS ..oocviiiieeiieiieeie ettt ettt enne 79

6.3.4 EXPEIIMENt 1....ocoiiiiiiiiiieiiieieeiiece ettt 80

6.3.4.1 PartiCIPANES........eevuieeiieiieeieeite et eieeete et e site e seeeeeeesaaeebeesenes 80

6.3.4.2 Method and Procedureccccooeeveiiinieniniienieececeee 80

6.3.4.3 RESUILS ..o e 89

6.3.5 EXPEIIMENT 2 ...oovviiiniieiiieiieeie ettt ettt et saee e e ssaeeseeseaeesseessaeenseeneseenne 93

6.3.5.1 PartiCIPANtS........ceoueeeiieriieeieeiieereeiee et e e ereeseeeeaeseaeesee e 93

6.3.5.2 Method and Procedurec.ccooceevieiiinieniniienieececeee 93

6.3.5.3 RESUILS ...eeiiiiiiieeieeeee e 93

6.4 Qualitative EvValuationccccoeeiiiiiiiiiciiec e e 97
6.4.1 Objectives and QUESLIONNAITEcccveerereeriieriieiieeieeiee e eiee e eeeeneee e 98

6.4.2 PartiCIPANES.....eeeiciieeeiieeesiieeiieeesteeerteeeireeeaeeesseeesbeeessaeeennseeensseessseesnnns 104

0.4.3 MEthOd ..ottt 100

6.4.4 Results and Discussion for Aspect of Visualization.............cccccveeenvennnee. 101

6.4.5 Results and Discussion for Usability of the Systemccceeeveernnennne. 106

6.4.6 Results and Discussion for Associated ObjectiVes.......c.cevvvvevrveeenreennee. 112

7 Conclusion and Future Workoooiiiiiiiiie e 115
7.1 Contributions and Benefitscocccoiiiiiiiiiiiiiie e 120
7.2 FULUTE WOTK .ot st 121
8 RETEIENCES ...ttt ettt st be e st e bt e st e sbee e 124

vi

List of Tables

Table 1. Symbols used in Plant UML to draw a class diagramcccceeveevieniienienieeieennen. 41
Table 2. Comparison of download and install time of programming environmental tools 58
Table 3. No. of subjects participated in both eXperimentscccecveevveriieniencieerieeieereeene. 80
Table 4. Statistical evaluation of response time in Experiment 1cccccoevieniiiiiieniiennnennen. 90
Table 5. Statistical evaluation of correctness in Experiment 1cccecoveviieviieniiiiiienieeieeen. 92
Table 6. Statistical evaluation of response time in Experiment 2ccccccceevveviienienieenneennnn. 95
Table 7. Statistical evaluation of correctness in EXperiment 2ccccccveviievieenieeneenieenneennn. 97
Table 8. Background qUESTIONS........cc.eeiuieriieiieeiieecieetee ettt e ereebeeseeebeesaseesbeessaessseesseeenseensnas 98
Table 9. Visualization related qUESTIONScccueeruieriieriieiieeieeeie ettt e sre e eeae s eenes 98
Table 10. Usability related qUESHIONS.........eeeiiiieiiiieiieeeieeee ettt e 99
Table 11. Mean rating and percent agreement for visualization related questions................... 107
Table 12. Mean rating and percent agreement for usability related questions 108
Table 13. Mean rating and percent agreement for associated objectivescceceeeueeriennenns 113

vil

List of Figures

Figure 1. JavelinaCode SYSteIM OVEIVIEW......cccuvieiriieiiieecieeesieeeiteeeireeseeeesseeeseseeesreeessseeennseas 20
Figure 2. JavelinaCode infrastructure on AWS cloud computing platformcccceeeeveeneen. 23
Figure 3. User interface of JavelinaCode............ccouiiiiiiiiiiieciieeiecceeee e 26
Figure 4. Modeling example linking source code with static and dynamic visualization........... 28
Figure 5. LOZIN WINAOWoiiuiiiiiiiiieiie ettt sttt ettt et e bt e e esneeebeesaeeenne 29
Figure 6. Creating @ NEW PIOJECT......ccuiruiiruiriirieeieeiteete et ettt ettt et st sbeeteeaeesbe et saeenaeenrens 30
Figure 7. Opening an eXiSting PrOJECT......cc.eruiriirirtirieiierteniteteeitesre et st sttt sbeeaesaeesae e 32
Figure 8. Deleting @ PrOJECTcccuuiiiiiiiiiiieiie ettt sttt ettt ettt e et e s et esaeeenne 32
Figure 9. Adding @ Class......cocueeuiiiiiiiieeeee et ettt et 33
Figure 10. ClOSING @ CIASSeiuiiriiiiiiiiiieeeteseee ettt ettt 33
Figure 11. Renaming @ ClaSSc..ccouieiiiiiiiiiiiriiciectetteteet ettt 34
Figure 12. Deleting @ Class........covivuiiiiiiiiiiiirecectetce ettt 34
Figure 13. Output of the project in the terminal Windowcccceeeveriiniininiiniinienees 35
Figure 14. Example of an individual class diagram..........c.cccoceeveriiniiiiniiniinenceeenecneeens 36
Figure 15. Example of a compact class diagramccccecveviiiiiniinieneniinieieeecsececseeneeen 36
Figure 16. Example of a detailed class diagramcccccecveviiiiiniiniiniiniinecieeceec e 37
Figure 17. Run time state of program eXeCULION.cc.eeerieeriieriiieniieeiiesiee et esiee e seee e 39
Figure 18. Textual input and its class diagram by Plant UMLccccooiniiiiniiniiniiicnees 42
Figure 19. Visualization of Java program execution by Java Visualizer..........cccccceevveeriienieenieennennn. 43
Figure 20. Class, extended class, and implemented interface..........c..coccevieveinenicniencniieneenns 45

viil

Figure 21. DePENAENCYeeiiieiiiiiieiieeit ettt ettt ettt et st e e bt e steeebeessaeenbeessneensaensseenne 46

Figure 22, MEthOd.ooiiiiiiiiieieece ettt sttt ettt 47
Figure 23. Vari@bles.......coeeuiiiiiiiiicieeeeee ettt sttt s st 48
Figure 24. Flow of drawing a UML class diagram in JavelinaCodec.ccccceecvereeneniencnnnens 48
Figure 25. Dynamic visualization of Java program using customized Java Visualizer.............. 50
Figure 26. Flow of generating a run-time visualization in JavelinaCode..........c..ccoceevirienennnens 51
Figure 27. Modeling example of y0-y0 €ffeCtcociiriiiiiiiiiiiiieiecee e 55
Figure 28. Screenshot 0f BIUETcccooiiiiiiiiiiiieeeeee et 60
Figure 29. Screenshot of Jeliot 3 with @ Theatercccovoveiiiiiiiinieeeeeee e 62
Figure 30. Screenshot of JGRASP with a Canvas Window..........ccccoeeeveriinienieeiienienceieseeens 63
Figure 31. Screenshot 0f AGUIATcc.ooiiiiiiiiiiie et 65
Figure 32. Screenshot of JIVE with object and sequence diagrams.............ccceeceeeerieneeereennnnne. 67
Figure 33. Screenshot of JavelinaCode with static and dynamic visualizationc..ccc.c..... 68
Figure 34. Java classes used for Session 1 in both Experiments 1 & 2.........cocceeriienieniieiniennieennenn 77
Figure 35. Java classes used for Session 2 in both Experiments 1 & 2ccoocveiiniinicannenn 78

Figure 36. Screenshots of (a) PolyShape project in NetBeans IDE, (b) Web Page loaded for ID
and Class selection, and (c) Web Page for the first question...........cccceeveerieeiieniieniieneee 82

Figure 37. Screenshots of (a) yo-yo problem project in NetBeans IDE, (b) Web Page loaded for
ID and Class selection, and (¢c) Web Page for the first question..........c.cceecveeeeiveinieeinieenne. 83

Figure 38. Java classes used to familiarize with JavelinaCode systemcccccceoeeviinicenncnne 85

Figure 39. Screenshots of (a) PolyShape project in JavelinaCode, (b) Web Page loaded for ID
and Class selection, and (c) Web Page for the first question...........ccccceevieviieiienieeniieneene 87

Figure 40. Screenshots of (a) yo-yo problem project in JavelinaCode, (b) Web Page for ID and

class selection, (¢c) Web Page for the first question, and (d) sample page for usability
QUESTIOS .teeutieiieenieeeuteenttestteeteeseteenteesaeeenseeesseenseaesseenseessseenseesssaenseensseenseenssaenseenssesnseennsennne 88

X

Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.

Figure 62.

Comparison of average response time with PolyShape projectcccceevvrenennee. 90
Comparison of average response time with yo-yo problem project.............cccuu.e.... 90
Comparison of correctness with PolyShape project..........ccocvevveeciieniennienieeieenen. 92
Comparison of correctness with yo-yo problem projectccceeeveerveecieenieenneennen. 92
Comparison of average response time with PolyShape projectcccccvevirenennen. 94
Comparison of average response time with yo-yo problem project.............cccuv.e.... 95
Comparison of correctness with PolyShape project..........ccocvevveeviieniiennienieeneenen. 96
Comparison of correctness with yo-yo problem projectcccceeeveevveeviieneeenneennen. 96
Comparison of average response time with PolyShape projectcccccvevevenennee. 98
Comparison of average response time with yo-yo problem project.............cccuv.e.... 99
Comparison of correctness with PolyShape project.........c.covveevieriieniienciieniiennnnn. 100
Comparison of correctness with yo-yo problem projectcccoeeveeviverveecreennnnne. 100
Rate Students N JAVAccooviiiiiiiieeeee s 104
UML class diagram related question ©.........cccceeeoieeeiiieniieesieeeeee e 105
UML class diagram related qUeStion 2.........ccccvveeiieeeiiieeniieeeiie e e eeee e 105
Run time visualization related qUestion 1ccccoeeiiiiniieeniiiiee e 107
Run time visualization related qUEStION 2ccovveeiiiieeiieeeiieeeee e 107
Both static and dynamic visualization related question 1cccceeevvveriveenieennnnen. 109
Both static and dynamic visualization related question 2ccocveevcvveenieennnnen. 109
Both static and dynamic visualization related question 3c.cccccveeviieinieeennnen. 109
Mean rating for visualization related qUEStIONS.........cceevveeervieeeiieeniieecie e 110
Mean rating for usability related qUESLIONSceeeviieeriieeiiieeieeeee e 111

1 Introduction

Brian Kerninghan stated, “No matter what, the way to learn to program is to write code,
and rewrite it, and see it used, and rewrite again. Reading other people's code is invaluable as

well” [1].

Object-Oriented Programming (OOP) is one of the core areas in Computer Science, and
learning OOP becomes a major challenge in Computer Science education. While Java has been
widely used in teaching and learning of an object-oriented programming language and it is one of
the most popular programming languages taught at universities and colleges, studies have
discovered it is difficult for students to learn due to the underlying OO concepts and principles,
such as encapsulation, abstraction, inheritance, and polymorphism [2, 3]. With inheritance,
polymorphism, and dynamic binding features, objects in OOP typically interact with each other

asynchronously, and method calls are difficult to track.

In learning OOP in Java, difficulties, including programming language syntax, programming
environment, and problem solving skills, have been also commonly mentioned. The reasons for
learning difficulty have been originated from different sources, such as programming language
itself, complexity and domain of a problem, program design, programming environment,
programmer’s logical thinking ability and programming skills as well as OO concepts and

principles. Comprehension of the functionality, structure, and behavior of a program is a crucial

component of the programming learning process. OO programs are also known for being complex

to visualize and their control flow difficult to follow, making the learning process challenging.

A student’s development environment is another factor that influences learning OOP,
because it requires students to manage issues, such as platform dependencies and conceptual
understanding of classes, objects, and Object-Oriented Design (OOD). To help student
programmers better understand the structure of a program and the concepts of Object-Oriented
design, visualizations in various formats have been applied to programming environments.
Software visualization tools are seldom employed in the OOP development environment. This is
because current tools provide visualization for a single aspect (i.e., structure or behavior) of the

software. Visualizations from these tools are not enough to support the understanding of OOP.

Many programming tools have been developed to visualize source code as graphs, diagrams,
or animations in such a way they attempt to help students to enhance source code
comprehension. Other visual programming tools provide visual notations as objects to develop a
program, without writing a single line of program code. One problem in visualizing the source
code is the visualization does not help programmers write code, and code writing is still the
programmer’s responsibility. Source code visualization can only help programmers understand
the code. It does not help the programmers to write code. Even software developers can write
code, using visual programming tools, but they still must know how to code in programming

languages.

Studies have pointed out that novice student programmers often encounter difficulties in
installing Integrated Development Environment (IDE), Java Development Kit (JDK), and plugins,

and setting up and modifying system environment variables on their own machines [4, 5, 6]. In
2

addition, some IDEs, like Dev-C++ and Visual Studio, run on only the Windows Operating
System (OS), while Mac OS is in high demand these days. Students who own a Mac, but must

program on Windows, would have more restricted access to computers in program development.

To address the limitation of current visualization techniques, this research proposes an
approach to integrate abstraction with structure and behavioral aspects of OOP. The research
presents a web-based interactive and educational programming environment, JavelinaCode,
designed for teaching object-oriented programming in Java. It aims to enhance student
programmers’ programming and logical thinking skills and to help them gain object-oriented
design concepts. JavelinaCode provides integrated static and dynamic visualizations, representing
the static state of a Java program in a UML class diagram and the dynamic run-time state of the
program execution. When a student is writing a line of code, its corresponding structural
information of the program is highlighted in the class diagram, and the functional information of
data is synchronized in the run-time state visualization. Through the synchronized multi-view real
time visualization, both the structural and functional feedback of the current line of the source
code is immediately provided to the student while coding. Students access JavelinaCode through a
web browser to program in Java, with no required software or plugin installation on their local

computer.

The motivation for this work is the lack of an interactive OOP environment integrated with
both static and dynamic visualizations. A static class diagram is generated from the static
information derived from source code. Dynamic tracing visualization is generated from the
dynamic information of the program execution. When polymorphism is taught using class

diagrams, sequence diagrams, and source code, students must simulate running a program in

3

their minds to understand how it works. As the combined visualization of both static and
dynamic aspects suggests [7], visualizing the dynamic run-time state corresponding to the source
code and static diagrams will reduce the burden of a complex simulation in students’ minds. This
interactive hybrid visualization approach is expected to help students better understand current
code and choose the right design alternatives. The research hypothesis explored in this
dissertation is whether an interactive static and dynamic visualization that incorporates structural

and behavioral views supports OOP comprehension in an OOP development environment.

The aims of this research are: 1) to provide an effective OOP environment with a static and
dynamic visualization; 2) to enhance OOP learning by improving the effectiveness of the OOP
development environment; and 3) to support OOP teaching by inspecting students’ behavioral

patterns in OOP learning, which would be a future work to be accomplished.

Main objectives of this research are: 1) to provide student programmers an easier set-up
process for an online programming environment; 2) to help student programmers better
understand their programming by linking program source code with the visualizations of UML
diagrams and run-time execution; 3) to make programming easier for students by understanding

the structure of a program and the execution state of data while they are coding.

The dissertation comprises seven chapters, structured as follows:

In Chapter 2, various educational programming environmental tools are introduced and
compared, based upon how the OO features are highlighted in visualization in terms of static and

dynamic components of an object-oriented program. It describes a literature review and

discusses how this research is directly and/or indirectly different from the past and current

works.

Chapter 3 presents a web-based educational programming environment, JavelinaCode, for
enhancing student learning capabilities in OOP and OOD. JavelinaCode proposes an approach to
program in Java, supporting static and dynamic visualizations in a real time multi-view model.
The chapter demonstrates the overall architecture of JavelinaCode system, its unique design
principles, a user interface of the system, and various techniques and strategies used in

implementation.

Chapter 4 highlights how the static structural information of a program and the functional
information of the program data are customized, deployed, and used in both visualizations and
how this hybrid static and dynamic visualization with source code will help students better
understand the structure of the program and the execution of the program data. Motivating

modeling examples are used to indicate the benefits of using the JavelinaCode system.

Chapter 5 reports on the results of a comparative analysis of the educational programming
environmental tools discussed in Chapter 2, on the basis of time constraints for download and
installation, complexity of the download process and tool’s interface, and the provision of static

and dynamic visualizations.

Chapter 6 reports on the results of experiments conducted in evaluating the educational
effectiveness of JavelinaCode. Both qualitative and quantitative experiments are carefully
designed and conducted to correlate student users’ usage and performance in program

comprehension by comparing the results of data from a group of student users using Java source

5

with two aspects of visualizations in JavelinaCode and another group of student users using the

same code in plain text in the standard IDE, NetBeans.

Chapter 7 summarizes the dissertation with the goals and objectives of the research, its
anticipated benefits and contributions, and the results of the experiments, and finally, makes a
conclusion with general observations about the JavelinaCode system. The dissertation is

finalized with a description of future work.

2 Literature Review

This chapter compares programming environmental tools, based upon how the OO features
are highlighted in visualization. Unlike JavelinaCode, these tools must be downloaded and
installed as a stand-alone program or plugged into Eclipse (AguiaJ] and JIVE) or NetBeans

(CoffeeDregs).

2.1 BlueJ

Description: Blue is an integrated system for both a programming language and a software
development environment [8]. Bluel originated from Blue and is a development environment
designed for teaching how to develop Java programs. Its main strengths are interactivity,
visualization, and simplicity. According to Kolling and Rosenberg [9], BlueJ provides an
interactive creation of objects from any class in a project. Once an object is created, the object is
visible to programmers; any of the object’s public methods can be invoked by selecting it from a
pop-up menu, method parameters may be entered, and its results are presented in dialog
windows. It allows programmers to interact with objects by inspecting their values, calling

methods, and passing them as parameters.

BlueJ also presents a graphical visualization through UML class diagram. When a Java
project is opened, the main window displays a UML class diagram visualizing its structure, so

programmers can directly interact with classes and objects [10]. Kolling et al. claimed BluelJ is

simple for students to use [9, 10]. They need not spend too much time getting used to the
programming environment; instead, they get started programming easily. BlueJ is claimed for
first year object-oriented programming teaching due to its simplicity and pedagogy. Kolling et al.
suggested a set of guidelines and a sequence of assignments confirming the guidelines with
BlueJ for teaching object-oriented programming [9, 10]. The guidelines are: a) Objects first; b)
Don’t start with a blank screen; ¢) Read Code; d) Use “large” projects;) Don’t start with
“main”; f) Don’t use “Hello World”; g) Show program structure; and h) Be careful with user

interface.

Evaluation: The effectiveness of Blue] was initially evaluated at Monash University during
the first semester of using BlueJ in 1999, and its results were reported [5]. Students participating
in the evaluation felt frustration initially, but by the end of the semester, they felt that BlueJ
helped them learn Java programming. A follow-up evaluation study was also done with students
in the second of the two consecutive first year programming courses at the same university [11].
According to the paper, the student participants indicated BlueJ helped them understand object-
oriented paradigm [11]. The biggest strengths of using BlueJ include an ability to help students
link source code and visualizations and an ability to support learning in the cognitive domain,

while some issues, such as usability and performance, were identified.

Issues: While the positive effectiveness of BlueJ has been discussed and evaluated, these
issues were raised as well: a) Hagan and Markham reported students participated in the study had
difficulties with installing and running BlueJ system [5]. Although it was highlighted the
installation difficulties were resolved [11], the paper mentioned speed or performance had been

raised due to the computers in the student labs needing to be upgraded with optimal

8

configuration for running BlueJ. To run Bluel, users must download and install it on their own
platform. Each platform has its own installation guideline, and proper configuration is needed for
some platforms; b) Linking Java source code and its UML class diagram visualization is done in
separate windows. To see the source code and its correspondent class diagram, users must switch
windows from one to another. It is hard to synchronize them with each other; c¢) BlueJ does not
emphasize communication between objects or illustrate the association or aggregation of classes
[12]; d) BlueJ provides no dynamic visualization of program execution [13, 14]; and e) One of

BluelJ’s guidelines, ‘Don’t start with main’ makes users get confused how to run a Java program.

2.2 CoffeeDregs

Description: CoffeeDregs is an educational visualization tool of executing Java programs to
support teaching. The aim of CoffeeDregs is clear to teach Object-Oriented programming and to
build a conceptual semantic model through the visualization of the connection between static
source code and dynamic execution in objects [13]. CoffeeDregs’s approach in teaching OO
programming differs greatly from Bluel’s ‘Objects first’ approach. CoffeeDregs introduces the
activity of a Java program, providing its semantics of the execution model and presenting an
abstract view of variables and objects. A program execution is visualized in snapshots of run-

time state of a Java program, showing its structure and changes made during the execution.

The main concepts CoffeeDregs seeks to visualize are objects (variables and methods), the
lifetime of objects and methods, the structures of classes and objects, and the difference between
classes and objects [13]. The contours and boxes are used to visualize objects, variables, and

methods inside the objects and local variables inside the methods. The contours are also used to

indicate the scope and lifetime of the objects and method calls. Methods are only visualized
while they are active. The references between objects and their method calls are visualized
through visible arrow pointers, showing the structure of objects and method calls from outside
objects. Each object is separately displayed in the main window for an active class. The
visualization is done by stepping through the program code, and reverse stepping is also possible.
CoffeeDregs is a stand-alone visualization tool, but also, it can be incorporated as a plug-in to

NetBeans IDE.

Evaluation: To access the educational effectiveness of CoffeeDregs, the qualitative
experiments with the students in Innovation Sciences at Eindhoven University of Technology
were conducted, and their results were reported in [15]. The student participants could find the
delicate bug in the assignment, while running the program with the visualization. Another
student used CoffeeDreg’s visualization to check if the execution model and program code were
equal. From the experiments, CoffeeDregs can be considered to represent for a classroom

lecture, and it was beneficial for students learning OOP [15].

Issues: Luijten found the link between source code and run-time execution visualization was
not directly recognized, in particular, to trace instance variables and method arguments when
fixing a problem [15]. However, the paper pointed out the problems would not occur if the
student participants became more familiar with using the tool. To make its visualization more
feasible, CoffeeDregs is under development to better suit programmers covering the use of

library code, multi-threads, and user-interaction GUI [13].

10

To run CoffeeDregs, its stand-alone version must be downloaded and installed, or its plug-in
module plugged-in to NetBeans IDE, with JDK and NetBeans installation required on a local

computer. CoffeeDregs only provides the stand-alone version for Windows.

2.3 Jeliot 3

Description: Jeliot 3 is a program visualization tool designed to help novice students learn
both procedural and object-oriented programming [14]. Jeliot 3 originated from Eliot and Jeliot
I, with the basic production of algorithm animation for the data flow of variables in different
platforms and Jeliot 2000 with the supporting visualization of control flow and expression

evaluation.

The main goal of Jeliot 3 is to have the system easy to use, consistent in its visualization in
all cases, and extensible, both internally and externally. Although Jeliot 3 is aimed for novice
programmers, the system provides visualization of a large subset of Java programs, supporting
object-oriented concepts, such as objects and inheritance. The main structure of the animation
frame used in visualization includes method frame, expression evaluation frame, constant frame,
and instances frame. Each element appears in its own frame. UML class diagram-like notation is
used to visualize objects shown as boxes containing attributes and values and references shown
as lines connecting the object and its variable. The link between program source code and its
corresponding visualization area is also synchronized and highlighted to identify them together at

a time.

Jeliot 3 is claimed to be used for an introductory programming course, since it helps students

in providing semantics and engaging them to the learning process, and it helps students and

11

teachers in sharing graphical and verbal vocabularies with animation visualization that makes it

easier to discuss programming concepts [14]. Jeliot 3 is integrated to BlueJ 1.3.5 and BluelJ 2.0.

Evaluation: A qualitative investigation of Jeliot 3 was conducted to see how undergraduate
students at the University of Warwick in Finland used the tool in solving programming
assignments and how the animation was understood by the students, and its preliminary findings
were reported [16]. It was found that the animation of Jelot 3 was easy to use and useful for the

students to debug programs.

Another experimental study to examine students’ performance and attitudes on OO
programming was conducted at Thammasat University in Thailand [17]. Based on the regression
analysis with the collected data from the experiment, the paper concluded the student group
significantly outperformed on their exam scores by achieving higher exam scores through Jeliot
3. However, the use of Jeliot 3 showed no significantly difference on students’ attitudes toward

OO programming.

Issues: The paper reported Jeliot 3 animation was difficult for the novice student
programmers to understand, and it was suggested to add verbal explanations to the Jeliot 3 visual
animation, which might optimize students’ learning with graphics and audio or textual captions
[16]. As the length of code and its complexity increase, the visual animation becomes difficult to
understand, and objects are sometimes overlapped, which makes it more challenging to follow the

program execution.

2.4 AguiaJ

12

Description: Aguial is a pedagogical tool for interactive experimentation and visualization of
OOP in Java [18]. Aguil uses a visual representation of metaphors to illustrate OO concepts
(encapsulation, interface, polymorphism, and inheritance) by showing and hiding private instance

variables, indicating inherited members and overridden operations, and using image domains [19].

The Aguial window comprises two major areas: a class area and an object area. Defined
classes in source code are adapted into the class area, and created objects are populated in the
object area. The class area contains constructors, static methods, and static variables. The static
members are illustrated in this area to distinguish instance members in the object area. When a
method or constructor is called by a user, its object appears in the object area. The object is
illustrated as a box containing interaction widgets to its constructor, and references are
represented by pointers to the objects referenced. The objects can be directly controlled by the
user by typing Java instructions, for instance, to call methods of the object in the Java bar at the

bottom of the window.

Aguial uses interaction metaphors to aid understanding of OOP concepts, such as
encapsulation, interface, polymorphism, and inheritance. This novel metaphor supports the user
interaction with the objects, for instance, if a method in a program may not be executed due to
encapsulation [19]. The metaphor supports polymorphic behaviors by associating reference types
and structural elements of objects. The metaphor also supports inheritance concept by visualizing

inherited objects and identifying the difference between the objects of superclass and subclass.

Evaluation: An evaluation study of Aguial was conducted with 47 Computer Science and

Engineering (CSE) major students and 53 Informatics and Management (IM) major students at

13

the University of Lisbon [20]. The study was to measure the impact of using the Aguial
environment in terms of success rates to pass a 12 week course and student satisfaction. Some
observed approval rates were increased in both major groups. In terms of student satisfaction, the
survey data revealed most the students positively answered the process of developing a project

with Aguial was fun [20].

Another evaluation study was done through a two-week intensive training with 13 employees
in a consulting company, whose background was not Computer Science [19]. At the end of the
training, the trainees were given a small project to develop, with a questionnaire, regarding the
suitability of the Aguial and the usages of the images. Resultant data revealed positive impacts on
training for both suitability and visualization of the images used. It was concluded that Aguial
was usable for interactive lecturing and exercising, and teaching OOP worked effectively with the

domain of image manipulation [19].

Issues: While Aguial supports an instant change between source code and object illustration,
it is hard to map them together, because the editor window and the visualization window are not
seen simultaneously. The user must switch between the windows from one to another. Like BlueJ,
Aguial exercises OO concepts, without starting the ‘main’ method. Aguial is open source running
on top of the Eclipse IDE. Users first download and install the Eclipse IDE and then install AguiJ

as a plugin.

2.5 JIVE

Description: JIVE (Java Interactive Visualization Environment) is an interactive program

execution environment, supporting the visualizations of both the runtime state and the call history

14

of a Java program. Its approach is to facilitate program understanding and to enhance the
comprehension of the runtime execution of object-oriented programs in Java, through displaying
runtime object structures, providing object states in multiple views, visualizing the history of
program execution with sequence diagrams, supporting forward and backward program
execution, and producing clear drawings of the object structure and method-invocation sequence

[21,22].

A complete run-time state of a program is visualized through a contour (object) diagram,
showing an object structure with method activations in object contexts. The contour diagram
comprises a set of rectangles (contours) with bindings of parameters and variables. A contour
diagram is visualized in both a detailed view and a compact view. The detailed view demonstrates
the highest level of detail about object’s complete run-time states, including an object’s context,
variables defined in the context, and values for the variables. A history of program execution is
visualized, using a time sequence diagram. In the visualization, object contours are represented as
contexts, and active methods are shown as rectangles with vertical lines. When a user selects an
object context or a method in the sequence diagram, JIVE jumps to the contour diagram for the

corresponding state.

Evaluation: Through the experiences of using the extended notation of the contour model in
years, Jayaraman and Baltus found the technique of using the contour (object) diagrams were
appropriate for object-oriented programs [23]. It also clarified the diagrams were useful for
debugging, particularly to make a clear difference between a user’s imagined structure and an
actual structure created. The time sequence diagrams generated in JIVE also have proven

effective in explaining the behavior of design patterns and program structures [22].

15

Other experiments on several programs were conducted to carry out multiple runs of each
program, to merge state diagrams, and to produce a composite diagram. The experiments found
that both single and composites state diagrams provided good insight into the program and helped

uncover subtle flaws in the implementation [24].

Issues: Despite the effectiveness of the sequence diagrams, JAVE makes the history of the
diagrams very complicated, with a large program providing a comprehensive diagram. It was
suggested to modularize the history information into multiple diagrams and relate them to the
corresponding compact contour diagrams [22]. Jumping from one program state to another in the
sequence diagram became inefficient, because the interaction module only supports stepping in a
sequence from the beginning to the end. In addition, it is more likely to have difficulty writing and
understanding the code, because the visualizations of a Java program behavior with object and

sequence diagrams are done with or without the Java source code.

2.6 jGRASP

Description: JGRASP is a lightweight IDE for program visualizations [31, 32], which allows
interactions with its dynamic viewers to support understanding of data structures [36]. Three
ways to interact with the viewers are via debugger, workbench, and text-based interaction tab.
Using the debugger, users can select a line of the source code to stop program execution and start
debugging from the line by clicking the ‘down arrow’ button of Threads and continue checking
the values of variables or references for each line. Using the workbench viewer, users can see the
drawing of data structure on the basis of references and values. Users also can create instances of

a class, using menus on the UML class diagram or source code editing windows. The text-based

16

interaction tab allows users to enter expressions and statements that can be evaluated and

executed, without compiling and running an entire program.

JGRASP supports structure identifier viewer to analyze source code, detect arbitrary data
structures, and visualize them. It displays internal workings of data structures as elements are
removed or added, which might be useful in finding bugs in algorithm and data structure
implementations [33]. JGRASP also allows for standard program execution using a canvas
window to step through code line by line [37]. The canvas is displayed in a separate window
from the source code. Program output is displayed at the bottom of the initial window. Execution
of program in the canvas can be paused, and elements from the debugger or work bench can be
dragged into the canvas window. This process transforms elements into visualization, a frame

with the name of an object and its variables, and the values of these variables.

Evaluation: An data structure visualization system in JGRASP has been evaluated in the
light of recognizing data structures using structure identifier, conducting code understanding
experiments, and analyzing feature utilization data from end users [33]. In testing structure
identifier against textbook data structure examples, the results of testing textbook examples
revealed structure identifier worked correctly to display 82% of the examples directly, 92% by
selecting a field, and 97% by configuring the viewer [34]. For the code understanding
experiments using JGRASP data structure viewers, it was found students could detect and correct
logical errors more accurately using the viewers than the traditional methods of visual debugging
for singly linked lists [35]. Other experiments to investigate if students would code faster and
with higher accuracy, using data structure visualization on certain programming tasks, also have

shown students in the experimental group consistently performed better than a control group, and

17

the viewers were helpful during the code development [36]. From the viewer utilization data
collected from January 1, 2012 to May 13, 2014, it was analyzed that viewer usage alone was
high, while debugger usage alone was relatively low. Viewer usage as a fraction of debugger
usage was the highest when the debugger was heavily used. Hundreds of thousands of viewers
were opened by end users each year, and the debugger and viewer usage had been gradually

increased during the period.

The efficacy of canvas viewer was also evaluated through controlled experiments and user
questionnaires to investigate the impacts of viewers in terms of student performance on
programming tasks [37]. The results of the experiments revealed positive effect of the viewers
that students used the viewers did code faster and had fewer errors in program development, and
found more errors and faster in existing code than students not using the viewers. The results of
questionnaires with faculty members across the country and students at Auburn University also
showed that canvas visualization could positively affect student learning and was a useful aid in

learning.

18

3 JavelinaCode

This chapter presents a web-based educational programming environment, JavelinaCode, on
the basis of its system overview, unique design principles, implementation, and interface.
JavelinaCode is designed for teaching object-oriented programming in Java. It aims to enhance
student programmers’ programming skills and to help them understand object-oriented design
concepts. It provides integrated static and dynamic visualizations: the static state of a Java

program in a UML class diagram and the dynamic run-time state of the program execution.

JavelinaCode provides integrated static and dynamic visualization of Java programs at line
level and a full overview of a project under development. This interactive hybrid visualization
approach is expected to help students better understand current code and choose the right design
alternatives. With the synchronized multi-view real time visualization with source code,
JavelinaCode is expected to reduce student programmers’ cognitive workload in Java
programming and to enhance comprehension of object-oriented programming and design
concepts. The research hypothesis explored in this paper is whether an interactive static and
dynamic visualization that incorporates structural and behavioral views supports OOP

comprehension in an OOP development environment.

3.1 System Overview

19

Figure 1 gives the system overview of JavelinaCode. A student accesses JavelinaCode
through a front end web browser. Java source code created by the student is sent to a back end

SCrver.

(— Static Infnrmaﬁnnw (Dvnamiu Infurmatl'nrm

Compile
L Java Source Code J -TTTTT AL Java Byte Code J
Information Extraction and Visualization J

UML Class Diagram \

/R; n-Time State of Execution

<init g7

A this — radius | 10.0

r [10.0 A
height| 30.0
sprass h |30.0

Retur void ghapeName | “Cylinder™

Figure 1. JavelinaCode system overview

From the source code, static structural information, such as instance/class variables and their
types, methods and parameters, and relationships among classes, is extracted and visualized in a
UML class diagram. From the Java bytecode translated by the Java compiler on the server,
dynamic functional information, such as values of instance/class variables, is extracted and

dynamic run-time state of the program is visualized.

3.2 Design Principles

20

For the best practice of OOP and OOD, JavelinaCode is designed with these principles: 1)
Easy to Access, 2) Easy to Use, 3) Easy to Understand, 3) Source Code and User Centered, 4)
Static Visualization of Structural Information of a Program, 5) Dynamic Visualization of
Functional Information of Data, 6) Static and Dynamic Visualization together, 7) Synchronized

Multi-View with Source Code, and 8) Structural and Functional Feedback in real Time.

JavelinaCode is platform-independent. Students use a web browser to develop and run a Java
program with no required software or plug-in installation. They can program anywhere and
anytime, using their laptops, desktops, tablets, and mobile phones. The project files created by a
student are saved on the cloud storage. The student needs no memory system to keep and manage
the data. The student is freed from concern of continuous version changes and evolutions to the
Java language, IDEs, plug-ins, and operating systems. This provides a great deal of accessibility

and usability to the program development environment.

JavelinaCode is both source code and user centered. When a student writes a line of code, the
corresponding structural information of the program is dynamically linked with the two sets of
UML class diagrams, and the functional information of data is synchronized in the run-time state
visualization. Real time feedback of the current line of the code is immediately given to the
student. The links are highlighted when the user clicks the ‘Back’ or ‘Forward’ key after
completing the line, such as variable declaration and/or initialization, method declaration, or
expression. This will greatly help the student establish the mental model of program execution

[17].

3.3 Implementation

21

JavelinaCode is being implemented with a front end, written in HTMLS5, CSS3, and jQuery,
and a back end, written in PHP. Ace, an embedded open-source code editor, is fully integrated
into the environment [25]. To generate a UML class diagram for the static information of the Java
source code, PlantUML, an open-source tool that converts textual code description to draw UML
diagrams, is integrated into the system [26]. For the run-time state visualization of program
execution, the Java Visualizer by David Pritchard and Will Gwozdz [27], based on the Online
Python Tutor [28] by Philip Guo, is fully integrated into the interface. The Java Visualizer reads
Java source code as input, traces the Java bytecode data (objects, methods, and variables) using
Java debugger, and outputs the trace in JASON format for the front end visualization. Information

of the abstract design of the Java source code is extracted to draw the UML class diagram.

Platform: JavelinaCode is being developed on the AWS (Amazon Web Services) cloud
computing platform on the back end virtual server, running the Ubuntu 14.04 LTS operating
system, Apache 2 HTTP server, and MySQL database server with php5 and Java 8 installed.
Also, PhpMyAdmin is used to handle the administration of the MySQL and to interact with its

databases for managing users and project files.

Figure 2 shows the infrastructure of the JavelinaCode that employs the services provided by
AWS [29]. Users access JavelinaCode web IDE through a front end web browser. This web IDE
is typically structured into three logical tiers: the first tier - web browser, the second tier - an
application server, and the third tire - a database server. On the AWS infrastructure, an EC2
(Elastic Compute Cloud) instance of Ubuntu 14.04 LTS virtual server and a DB instance of

MySQL as a database server are created and used in the cloud. The web and application tiers run

22

on the EC2 instances, and the database tier runs on the DB instances. The load balancer

distributes traffic evenly among the EC2 instances.

oy

DB instance
Private subnet 1|

|
. ECZ2 instance l
Public subnet 1 |
|
|

Users Inteynet Lopd
gatgway balapcer

DB instance
Private subnet 2

Public subnet 2

|
! EC2 instance
|
|

| Aute Scaling
qroup

Route 53 VPC)

Figure 2. JavelinaCode infrastructure on AWS cloud platform

The Auto Scaling group maintains the EC2 instances and handles any traffic loads. It spans
multiple Availability Zones to protect a potential failure of another Availability Zone. AWS
Route 53 provides reliable routing of four domains: http://javelinacode.com/,

http://javelinacode.org/, http://www. javelinacode.code/, and http://www .javelinacode.org/.

Cloud computing: There are some benefits of running JavelinaCode on the AWS cloud
computing. The system is reliable, secure, and scalable. Since data is stored and retrieved from
multiple virtual servers on the cloud, even if one of the servers crashes unexpectedly, the system
won’t go down. On the AWS global infrastructure, the system is secure with the foundation
services of computing, storage, database, and network. The elastic scalability helps us match

resources to the demands of our own. We choose the resources we need to scale our web
23

http://javelinacode.com/
http://javelinacode.org/
http://www.javelinacode.org/

application, up or down, based on our demand. It is also flexible to run any software we want.
We choose the operating system, programming language, software, and other web application

platform to build and run our web application.

Web-based: The biggest benefit of using web-based IDE is users simply use a web browser
to run JavelinaCode, with no required software and plugin installation or configuration on a local
computer. When students learn programming in Java, they need to know how to edit, compile,
debug, and run on a Java programming environment, which gets involved with the JDK (Java
Development Kit), an editor, and an input/output console. As indicated [4], many novice Java
programmers encounter difficulties in using the software tools, including installing the JDK on
their machine and modifying the system environment variables to complete the JDK installation.
They need to understand and use the tools and to compile, debug, and run Java programs in the
environment. Using JavelinaCode IDE, students need not know how to install tools or modify
environment variables. They can program anywhere and anytime, not only with their laptops or
desktops, but also their tablets or mobile phones. This provides a great deal of easy accessibility

to an environment for program development.

Target users: The target users of JavelinaCode are students, learning how to program in
Java and how to design an OO system, and instructors, teaching Java programming and
designing a system. However, not only the students and instructors can benefit from this system,
but also professional developers can benefit in tracing and understanding their code, especially

for debugging.

3.4 User Interface

24

The user interface of JavelinaCode is presented in Figure 3. The user interface comprises four
main components: static UML diagram areas (a) and (b), an editor area (b), a dynamic run-time
state visualization area (d), a terminal area (e), and an input/output console area (d). The editor
area displays the active Java code a student user is working on, and by selecting a tab, the user can
create multiple Java files and add them into a project. When a new class is added, the default
code, representing the basic structure of a class, is generated for the user to start immediately
changing the existing code. For each line of code, its corresponding class is highlighted in the
compact class diagram in (b) and the functional information of data is synchronized in the run-
time state visualization in (d). Three sets of UML diagrams are generated: (a) one for the active
Java program in the editor, (b) one for the whole project, and (g) one for a detailed diagram

containing all the information related to the current project.

When an enlarged icon in area (b) is clicked, a detailed UML diagram for the project is

illustrated in a separate window (g). The detailed UML diagram in the new window shows all
classes created in the project. Each class is outlined as a rectangle containing three sections to
represent class name, attributes, and methods. The diagram also visualizes all relationships
among classes, such as association, inheritance, and interface. This is to give student users a better
understanding of a program’s design, and it will become helpful, especially, when the program

gets larger with more classes added to the project.

The corresponding Java class to an active class in the editor window is highlighted in the
compact UML diagram (b) to dynamically synchronize it with the source code and the run-time

state of the program execution (d).

25

File View JavelinaCode - pPolyShape(2015-12-26)]

View Class Diagram m ‘Compile & Run
Spherejava ~ Cylinderjava - | Main.java ~ | Rectangle.java - Shapejava - - - -

Main
. main:67 Rectangle instance
+main(String]] args)-void Add Class +
1 deck | e length {20.0
5 . SN
: bigBall | o W\ width [35.0
4 pu :
5. { \ shapeMame g
(a) 6 id main (String[] args) N
7- A testVariable| 100
3 | ————
9 Rectangle deck = new Rectangle(20, 35); Sphere Instance
1@ System.out.println (deck + " and its ares is " + deck.area());
11 \ radius|15.0
12 Sphere bigBall = new Sphere(15); v ———————
13 System.out.println (bigBall + " and its ares is " + bigBall.area()); shapeMame | "Sphere”
14 _
15 Cylinder tank = new Cylinder (10, 3@); testvariable | 100
c—1 A 16 System.out.println (tank + " and its ares is " + tank.area());
| 17
pal
/AN \il\ 13 }
/ i// \ Y 1}
28
Rectangle Cylindar Sphere 21
L] &]k] 22
23

(b) (©) @

[=] Terminal Console m

Welcome to JC Web Console!

IC$cd /var/wwn/himl/ProjectDir/samplefigmail.com Input
JC§cd *fvar/wwm/html/ProjectDir/sample@igmail.com/PolyShape(2815-12-26)" (e)

JC§javac Main.java

java Main output
JC§java Main

Rectangle of length 20.8 and width 35.@ and its ares is 7@@.@

Sphere of radius 15.@ and its ares is 2827.4333882388138 and its ares is 2827.43

33882308138 (f)
Cylinder of radius 10.8 height 30.8 and its ares is 9424.77796876938 and its are

s is 9424.77796076938

hls

Rectangle of length 20.0 and width 35.0 and its ares is 700.0
Sphere of radius 15.0 and its ares is 2827.4333882308138 and its ares is
2827.4333882308138

Class Diagram

Shape
Main
() +shapeName:String
g +Shape(String namel +mainlString[] args):vaid
+tostringl): String - i Y
/ A
/ \
-\""-\-_ '
AL\
R,_\H A
Rectangle k ™ 3
length: double Cylinder enere
width: double - adius: double
+Cylinder(double r, double h) +5phere(double r)
+Rectangle(double |. double wi +areal):double +;rea-]'duuble
+areal) double +toString(): String +toStringll- Strin
+taStringl): String 9! g

Figure 3. User interface of JavelinaCode

26

The terminal area (e) is for users’ interactive input and output operations, and the console area
(f) is to get input directly from the user if the user runs ‘Visualize Program Execution’ without
compiling the project. The console accepts ‘stdin’ property containing all the standard input fed

for in memory compilation and used for run time visualization of program execution.

3.5 Modeling Example

The modeling example of JavelinaCode is presented in Figure 4. In this example, it is clearly
noted the UML notation and run-time state are instantly changed when a line of code changes.
The running example involves five classes having inheritance and polymorphism relationships:

Shape as a parent (super) class and Rectangle, Cylinder and Sphere as children (sub) classes.

As illustrated in (a) of Figure 4, after the Rectangle, Cylinder, and Sphere classes are defined
with inheritance and an object of Rectangle is created in the testing Main class, its corresponding
UML class diagram, with the Main highlighted in yellow on the left, indicates the inheritance
relationship between Shape and Rectangle and association between Main and Rectangle.
Highlighting Main in yellow means Main is an active Java class in the editor window. The values
of the rectangle object are assigned to its instance variables, which are also visualized in the run-

time state on the right.

As shown in (b) of Figure 4, when a new Sphere class is added and its object is created in the
editor, the UML diagram instantly changes, showing the new inheritance relationship between
Shape and Sphere and the association between Main and Sphere. The values of the instance

variables of the Sphere object are also illustrated in the dynamic visualization.

27

4 ¢ class Main fectonale inct
5. { main:62 ectangle instance
Shape Main i i i s :
6 public static void main (String[] args) a
7- { deck — length |20.0
8 -
9 Rectangle deck = new Rectangle(20, 35); \ width [35.0
\ 1e System.out.println (deck + " and its ares is " + deck.area()); el
\ 11 shapeName| “Rectangle”
A 12 Sphere bigBall = new Sphere(15); E—
Rectangle Cylinder Sphere 13 System.out.println (bigBall 4+ " and its ares is " + bigBall.area()); .
9 Y P 12 ! P (vig & 0 testVariable| 100
15 Cylinder tank = new Cylinder (1@, 3@);
16 System.out.println (tank + " and its ares is " + tank.area()});
17
18 }
19 }
2 public class Sphere extends Shape P Rectangle instance
Shape Main 3-1 .) . o i length|20.0
4 private double radius; //radius in feet I
5 710 NN width|35.0
G // Constructor: Sets up the sphere minsen '-\\ shapeName| “Rectang1e®
\ 7 pub Sphere(double r) L E—
\ Bl» { deck | testvariable|100
Rectangle Cylinder Sphere 9 super{"sphere™); "‘.‘ Sphere instance
18 radius = r; \
* (b) \ radius|0.0
11 —
12 } shapeName|null
13 .
testVariable (0

Figure 4. Modeling example linking source code with static and dynamic visualization

3.6 Mechanics

JavelinaCode provides a complete environment for programming tasks in Java. This section
gives all aspects of the task, including creating, editing, compiling, executing, and visualizing

programs within the environment.

3.6.1 Getting Started

Login: To get started, a user must access one of the web URLs, http://javelinacode.org,
http://javelinacode.ocom, http://www.javelinacode.org, and http://www.javelinacode.ocom, and
complete a sign up form with an email ID and password (first time user). After signing up, the

user’s credentials are saved in a database and the user can log in to the system (Figure 5).

28

http://javelinacode.ocom/
http://www.javelinacode.org/

C f [javelinacode.org

Email ID: sample@gmail.com

Password: eenee

Figure 5. Login window

Under this ID, project files are saved on the server side, when a Java project is created with
multiple classes, and log files of the users’ behavioral patterns in programming will be recorded

for analytics.

3.6.2 Editing with Ace Editor

Ace, an embedded open-source code editor, is fully integrated into the environment [14]. The
Ace editor is easily embeddable in any web application built on JavaScript, and it comes with a

lot of advantage:

o Syntax highlighting makes it easy for users to differentiate the key words, variables, and
methods, which makes the code more readable and easier to understand.
e The look and feel of the editor can be adjusted, as it supports over 20 themes.

o [t also supports automatic indentation, which can help users to maintain the code.

29

o It provides the facility to handle large files, almost up to four million lines of code. This a
very important feature, as novice programmers add their Java classes in the same file,
rather than creating different files.

e Block highlighting makes it easy to understand the scoping issues, as the editor
automatically highlights the matching brackets when clicked on either the start or the end.

e Users can drag and drop the source code from other sources, which makes it easy for

them to test the code.

A class just created is given basic elements of a Java class, including a class name, a private
instance variable, and a public method. From the default code representing the basic structure of

the class created, users can instantly edit the code and make changes to the code.

3.6.3 Creating, Opening, and Deleting a Project

The file menu contains multiple options, including creating a new project, opening an

existing project, deleting a project, and signing out.

File View Create a New Project Mainjava - | Add Class &
R 1~ public class Mai
‘ New Project 2 g =i
: Project Name: 3~ yublic static void in{5tri
Open pI'OJECt 4 L""'-'l :Ic; ::-n'e; 1:2"(cranel] erest
. Hellg| 5
Delete Project 6 }
=
Exi =3 :
9
10

(@) (b) (©

Figure 6. Creating a new project

30

Creating a new project: To create a new project, users can select the ‘New Project’ option
from the ‘File’ on the top menu bar. This prompts the user to enter the project name. Once the
user enters the project name, a new project is created with Main.java (see (a), (b), and (c) of

Figure 6).

When a new project is created, the createProject method in idelntegratedWithAce.js is
triggered, and it validates its project modal and creates an instance of the Ace editor for
Main.java. This method internally is chained with a few other method calls, such as
createProjectFolder method, used to build a unique project name for the user, based on the time
stamp. This call is followed by createClassUI method in which an editor instance is initiated for
each JAVA class, and the initial properties, such as theme, mode, and height of the editor, are

set.

Opening an existing project: When ‘Open Project’ option is chosen from the FILE menu,
openProject method is invoked, so the user can select a project listed and open the project (see
(a), (b), and (c) of Figure 7). This connects to the server and fetches the list of all the projects
saved for the user from the server. Once the project is chosen from the list, all the JAVA classes
associated with the project are listed. After the project is chosen, the project name and list of

classes of the project are sent to open Java files to the editor window.

31

File View .
Open Project Open Project

‘ Mew Project

Open Project [Select Project . | PolyShape(2015-12-26) v Shape java

Rectangle.java

‘ No project Selected

Main.java
Cylinder.java
Sphere.java

HelloWorld(2016-04-15) -
HighlightMew(2016-03-04)
Main(2015-12-01)

Main(2016-04-14)

Main(2016-04-18)
MyFirstProject(2016-04-20)
PolyShape(2015-12-26)

Delete Project

Exit

(a)

SDA(2016-02-03)
Sample(2016-02-09)
Sample(2016-04-17)
Scanner(2016-04-25)
Scanner2(2016-05-04)
Seq(2016-02-28)
Shape(2016-05-12)
Shapes(2016-05-12)
Shirt{2016-03-04)
Shirt{2016-04-15)
Shirt{2016-04-18)
ShirtTest(2016-04-10)

ShirtTest(2016-04-15)
tha/201a-02-10

©

(b)

Figure 7. Opening an existing project

Deleting a project: When the ‘Delete Project’ option from the FILE menu is selected, all the
projects he user has created are listed. When a project is chosen to be deleted, the user is
prompted for a confirmation. Once the ‘OK’ button is clicked, the project files are removed from

the server folder that belongs to the user ((a), (b), and (c) of Figure 8).

File View)
Delete PI'OJECt Are you sure you want to delete?

‘ New Project

Open Project | Cancel m

Delete Project Select Project v

Exit Select Project
(2016-04-06)
Annimal{2016-02-27) Project deleted!
Bike(2016-02-29)
(a) Car(2016-04-17)
Console
Console1(2016-05-04)
Del(2016-01-21)
EXP1(2016-03-04)
EXP2(2016-04-05)
Hello(2016-06-01) (¢
Helloworld(2016-04-15)
HighlightNew(2016-03-04) . . X
Main(2015-12-01) Figure 8. Deleting a project
Main(2016-04-14)
Main(2016-04-18)
MyFirstProject(2016-04-20)
PolysShape(2015-12-28a)
SDA(2016-03-03)
Sample(2016-02-09)
amplaf2016-04-17

(b)

3.6.4 Adding, Closing, Renaming, and Deleting a Class

32

The Ace editor can display multiple Java classes, using bootstrap tabbing. Using these tabs, a
user can add, close, rename, and delete a Java file. By clicking ‘Add Class’ tab, the user is
prompted to enter the class name (Figure 9). After the name is entered, it is validated, and an
instance of the editor is created for the class. After the user interface is created for this new class,
the Java file is created on the server, with the class name, and saves the content when ‘Save’

button is clicked.

Mainjava - Add Class + Create a New CIaSS Rectangle.java ~ | Main.java =~ Add Class #
1~ public class Rect 1
1- public class Main{ o ectangle(
2 Class Name: 3 private int x;
3 4
4- ublic st c void in(String[] args){ Rectangle| s public Rectangle()
5 //Your code comes re 6
7 } 8 1}
8 9
9 1} 10 }
Figure 9. Adding a class
Sphere.java u Cylinder.java ~ Main.java ~ Rectangle.java ~ Shape.java ~ Cylinder.java ~ | Mainjava ~ | Rectangle.java ~ Shape.java ~ Add Class + -
X Close ! Sphere.java
1 2 PolyShape Project p B
3 _
~
~ Rename Sphere extends Shape 4 public class Main
-) 5-
[Delete uble radius; radius in feet 6 public static void main (String[] args)
7= d
6 / Constructor he sphere. sdsadada g
7 public Sphere(double 9 Rectangle deck = new Rectangle(20, 35);
8- { 10 System.out.println (deck + " and its ares is " + deck.area());
9 super(”Sphere™); 11
10 radius = r; 12 Sphere bigBall = new Sphere(15);
11 13 System.out.println (bigBall + " and its ares is " + bigBall.area:
12 } 14
13 15

Figure 10. Closing a class

When the user closes a file, the tab for the Java file is closed, and the name of the closed file
is listed with a small arrow on the right corner of the editor (Figure 10). This is seen only when
the user hovers on the arrow. When the user renames a file, the user is prompted to enter a new
file name (Figure 11). When a new name is given, the tab name is changed, and the same is done

on the server. When ‘Delete’ is selected, the user is asked for a confirmation (Figure 12). When

33

the user confirms to delete the file, that tab is deleted from the user interface, and the file is also

deleted from the server.

Spherajaval;l Cylinder.java ~+ Main.java ~ Rectangle.java ~ Shape.java =~ Rename

X Close
- 1 Oval
= Rename Sphere extends Shape

I Delete uble radius; //radius in feet Update
f Sets) The sphere.

6 / Constructe sdsadada

7 public Sphere(do

8- { . ; ; . ; ;

9 super("Sphere™); Oval.java ~ | Cylinder.java ~ Main.java ~ Rectangle.java ~ Shape.java ~
10 radius = r; Add Class +

11

12 } // polyshapel 1

public class Sphere extends Shape

{

private double radius; //radius in feet

Figure 11. Renaming a class

// Constructor: Sets up the sphere. sdsadada
public Sphere(double r)

1
2
3
4
5
6
7
8

Cylinder.j ~ || Main.j ~ Rectangle.j ~ Shape.j ~ Addcl + - :
ylinder.java u ain.java ectangle.java ape.java ass Delete Class in a PFO_]ECt
% Close P -
ylinder extends Shape
< Rename | o) , Contirm delete Class?
ius; f/radius in feet of the cylinder
i Delate ght; f/height in feet
7 pubTTc tylinder(double r, double h)
8- {
9 super("Cylinder™);
1@ radius = r;
11 height = h;
12 : :
= Figure 12. Deleting a class

3.6.5 Saving, Compiling, and Running a Project

After editing the class, the whole project can be saved, compiled, and executed. Clicking the
‘Save’ button triggers the method that collects the content of all the Java classes in the project
and saves them in the project folder under the user. Clicking the ‘Compile and Run’ button
compiles and executes the project. This involves a complete dependency and association
analysis, and the compilation of all classes in the project is done. If errors are detected by the

compiler, error messages are displayed in a pop-up window, so the user can fix the error in the

34

appropriate manner. The output of the results is displayed in the ‘Terminal’ window at the

bottom of the screen (Figure 13).

(s] compte s]
Sphere.java ~ Cylinder.java ~ |Main.java ~ | Rectangle.java ~ Shape.java ~ Add Class +
1 PolyShape ject
2
3 publi Main
4~ {
5 publi tati bid main (String[] args)
6- |
7 Rectangle deck = new Rectangle(28, 35);
8 System.out.println (deck + " and its ares is " + deck.area());
9
10 Sphere bigBall = new Sphere(15);
11 System.out.println (bigBall + " and its ares is " + bigBall.area());
12
13 Cylinder tank = new Cylinder (18, 30);
14 System.out.println (tank + " and its ares is " + tank.area());
15]
16 }
=] Terminal

Welcome te 1C Web Console!

JC%cd /var/www/html/ProjectDir/sample@gmail.com
IC%cd " /var/www/html/ProjectDir/sample@gmail.com/PolyShape(2815-12-26)
JC$javac Main.java

JC$java Main

Rectangle of length 208.8 and width 35.8 and its ares is 700.0

Sphere of radius 15.@ and its ares is 2827.4333882308138 and its ares is 2827.43
33882308138

Cylinder of radius 18.8 height 38.8 and its ares is 9424 _.77796876938 and its are

s is 9424.77796076938
cs

Figure 13. Output of the project in the terminal window

3.6.6 Viewing UML Class Diagrams

There are three types of UML class diagrams supported by JavelinaCode: an individual class

diagram, a compact class diagram, and a detailed class diagram.

35

An individual UML class diagram, as presented in Figure 14, is created from the active Java
class currently on the editor window. From the Java source code, its textual input is generated by
the expressions defined in Chapter 4. Then, the input is sent to the Plant UML API, which
returns the image of the class diagram. The diagram is represented as a box that contains three
sections for the name of the class, the attributes of the class with their data types and access
modifiers (+, -), and the list of methods, with return type and parameters, with which the class

can operate.

Rectangle Shape Main
-length: double
-width:double
+Rectangle(double |, double w)
+areal):double ,
+toStringl(): String Rectangle Cylinder Sphere
Figure 14. Example of an individual class diagram Figure 15. Example of a compact class diagram

A compact class diagram, as presented in Figure 15, is generated from the project. The
diagram includes all classes for the project and the relationships among them, including
inheritance and associations. The plant UML textual input described in Chapter 5 is generated
from the Java classes in the project. When this text is given to the Plant UML server as an input,

it generates an image, which includes the relationship between all the classes in that project.

It is easily noticed, in the example, there are five classes (five boxes: each box represents a
class), including Main, Shape as a parent (super) class of Rectangle, Cylinder, and Sphere
classes, and Main acts as a client to create objects of the children classes to communicate with.

Rectangle class is highlighted in yellow, which means a user is editing and working on that class

36

in the editor window. When the user switches to another class in the editor window, that

switched class is active in the editor window and highlighted in the compact class diagram.

A detailed class diagram for the same project is presented in Figure 16. This diagram is

displayed in a separate pop-up window when the user clicks the ‘Enlarge’ button on the left
side of the initial interface or selects the ‘View Class Diagram’ button on top left. This button is
only enabled after visualizing the project. On click, the full details from the JSON output are

collected and sent to the Plant UML server to get a class diagram image.

Shape
- Main
+shapeName: String
+ShapelString name) +main(String[] args):void

+toString(): String

Rectangle
lenath- doubl Cylinder Sphere
:;iﬁa'da[:;ilee -radius:double
' +Cylinderidouble r, double h) +Sphere(double r)
+Rectangle(double |, double w) +areal):double tarealtdoble |
+areall.double +toString(): String

+toStringl): String

+toString():String

Figure 16. Example of a detailed class diagram

The diagram shows the classes of the project, their relationships, including inheritance and
association, the methods and attributes of the classes. Each attribute and method has its own
detailed information, such as a data type, an access modifier, a return type, and parameters. The
diagram provides an overview of the system, so users can build a conceptual model of the

system.

37

3.6.7 Visualizing Program Execution

By clicking the ‘Visualize Program Execution’ button, users can begin monitoring the run-
time state of program execution line by line. In the source code display, a highlighted yellow line
bar indicates the line just executed. When the yellow bar moves forward or backward by clicking
one of the buttons, Back or Forward, in Fig 17, the representation of objects and their references
at the current execution point is visualized. The example shows objects (instances of Rectangle
and Sphere) and stack frames at the current execution point, with the stack growing downward
when a new object is created. Each frame shows the name of the instance and a list of instance

variables and values.

When the button is clicked, the system connects to the Java Visualizer API installed on the
server, which triggers each tab in the editor, so the Ace API can generate the DOM elements for
each line of the code in all the Java classes. This is required to ensure the highlight in the code is

synchronized with the run-time visualization.

3.7 Anticipated Benefits

For the best practice of OOP and OOD, JavelinaCode is designed with these principles: 1)
Easy to Access, 2) Easy to Use, 3) Easy to Understand, 3) Source Code and User Centered, 4)
Static Visualization of Structural Information of a Program, 5) Dynamic Visualization of
Functional Information of Data, 6) Static and Dynamic Visualization together, 7) Synchronized

Multi-View with Source Code, and 8) Structural and Functional Feedback in real Time.

38

First Back Forward Last

B < D

TEEmEET Rectangle instance
deck |e— length | 20.0
T
bigBalf \ “a width|35.0
\ shapeMame | "Rectangle"
N,
\\ test\ariable | 100

\
\.\ Sphere instance

\

\ radius | 15.0

\

shapeMame | "Sphere”

test\ariable | 100

Figure 17. Run time state of program execution

JavelinaCode is platform-independent. Students use a web browser to develop and run a Java
program, with no required software or plug-in installation. They can program anywhere and
anytime, using their laptops, desktops, tablets, or mobile phones. The project files created by a
student are saved on cloud storage. A student needs no memory system to keep and manage data.
Students are free from concern of continuous version changes and evolutions to the Java
language, IDEs, plug-ins, and operating systems. This provides a great deal of accessibility and
usability to the program development environment. JavelinaCode will be further developed as

mobile applications that runs on both 10S and Android.

JavelinaCode is both source code and user centered. When a student writes a line of code, the
corresponding structural information of the program is dynamically linked with the two sets of
UML class diagrams, and functional information of data is synchronized in the run-time state

visualization. Real time feedback of the current line of the code will be immediately given to the

39

student. The links will be highlighted, when the user hits the ‘Enter’ key, after completing the
line, such as variable declaration and/or initialization, method declaration, or expression. This
will greatly help students establish the mental model of program execution [12]. Figure 3
illustrates the modeling example of linking and highlighting a line of code with its static and

dynamic changes in visualization.

The main contributions of JavelinaCode are: a) Students use a web browser to run a Java
program, with no required software and plugin installations or configuration on a local computer.
They can program anywhere and anytime, using their laptops, desktops, tablets, or mobile
phones; b) Students need no memory system to keep and manage project files. They are free
from concern of continuous version changes and evolutions of the Java language, IDEs, plug-ins,
and operating systems; c¢) JavelinaCode will help students establish the mental model of program
execution, with the source code of a program; d) With the synchronized multi-view real time
visualization with source code, JavelinaCode is expected to reduce students' cognitive workload
in Java programming and to enhance comprehension of the OO concepts, such as inheritance,

polymorphism, and OO design.

40

4 Synchronized Static and Dynamic Visualization

This chapter describes two open source visualization tools based upon how these tools are
utilized to transfer a textual input to a static or dynamic visualization. As a similar approach was
adapted to merge static information with dynamic information in generating visualizations [41,
42, 43], in JavelinaCode, Plant UML [26] is deployed for a static state of a Java program in a
UML class diagram and Java Visualizer [27] is used for a dynamic run-time state of the program

execution.

4.1 Plant UML

Plant UML is a web-based open-source visualization tool that allows users easily to create
UML diagrams from a plain textual description [26]. Various UML diagrams, such as a sequence
diagram, a use case diagram, a class diagram, a state diagram, and an object diagram, can be

generated using an intuitive textual language.

Table 1. Symbols used in Plant UML to draw a class diagram

OO concept Sg;}‘azlrgr OO concept Sg:;zzlrgr
Extension <|-- Composition *on
Aggregation o-- Field or method
Static field or method {static} Abstract method {abstract}
Abstract class a‘ta)l:tsrgzc;[:l(; rss Ineterface interface

41

In order to draw a UML class diagram, Plant UML defines notations, symbols, and keywords
for relations between classes, labels on relations, static fields and methods, abstract classes, and
interfaces as presented in Table 1. In drawing diagrams, Graphviz/Dot is used to compute node
positions. Once Graphviz/Dot generates a simplified Scalable Vector Graphics (SVG) output from
the users’ textual input, the SGV data is parsed and the drawings of the diagrams are completed.
Figure 18 illustrates an example of a class diagram generated by Plant UML based on its textual

input with the symbols and keywords.

@startuml _
abstract class AbstractList @it
abstract AbstractCollection A
interface List
List <|-- AbstractList .
AbstreLctCollection <|- AbstractList @srocicobectonk {@posrecesn
AbstractList <|-- ArrayList A
class ArrayList {

{static} etData:Object[] ©) arraytist

{abstract} size():double etData Object]]
} size().double
@enduml

Figure 18. Textual input and its class diagram by Plant UML

4.2 Java Visualizer

Java Visualizer is a web-based program visualization tool [27], which illustrates the dynamic
run-time state of a Java program by stepping forwards and backwards through program
execution. It is based on ‘Online Python Tutor,” a Python visualizer [6, 28], whose purpose is to
help programmers learn programming better and to understand what happens when each line of

source code executes.

42

Java Visualizer readapts and uses the Javascript frontend from the Python visualizer and
replaces the backend with Java jail that runs in a sandbox. The backend installation consists of
safeexec, a safe execution environment. The safeexec provides a general-purpose sandbox
environment which safely executes user programs and prevents any malicious users from causing
troubles or mistakes that can damage a server. The Java jail serves as a chroot (changed root) for
executing Java programs, and TracePrinter, a Java package, is used to print the traces of Java

programs as the results in JSON format as they execute.

public class Person {
private int age; Frames Objects

private String name;

in:14 Person inst;
public Person(int a, String n) { man sreon nstEnes
age = a; name = n; myDad | ", age |33
b myMom | &
))) S name | "Lucius"
public void printInfo() { .
System.out.println(age + name); A)
\\ Person instance
} A
public static void main(String[] args) { 4 age |30
Person myDad = new Person(33, "Lucius"); N N
name | "Elena
myDad.printInfo(); L

Person myMom = new Person(3@, "Elena");

myMom. printInfo();

Edit code

<< First | | < Back | Step 15 of 27 | Forward > | | Last >>
Lo gl = TSI OPEPINSS iRy

Figure 19. Visualization of Java program execution by Java Visualizer

A Java feature example of a class by Java Visualizer is visually represented in Figure 19. In
the source code display, a highlighted grey line bar indicates the line that has just been executed
(line # 13 in this example), and a yellow line bar indicates the next line to be executed (line #
14). When the gray bar, along with the yellow bar, moves forward or backward by clicking one

of the buttons (First, Back, Forward, Last), the representation of objects and their references at
43

the current execution point is visualized. Although this example involves three classes, the
visualizer deals with them as a single main class with multiple inner classes and the highlighted

bars move forward and backward between classes in the class when objects are used.

4.3 Static and Dynamic Visualization in JavelinaCode

JavelinaCode is a web-based educational programming environment [40, 51] that runs in a
web browser. It is the only web-based IDE that supports the synchronized visualization of both
static and dynamic aspects of Java source code. Plant UML and Java Visualizer are customized
and integrated into the JavelinaCode interface to help students better understand the structure of
a Java program and the behavior and interactions of objects. A static aspect of the source code is
visualized, using a customized Plant UML class diagram, and a dynamic aspect of the program
execution is visualized, using a customized Java Visualizer. In both cases, program execution
happens in memory. All Java files made from the editor for a project are merged into a single
class file, which will serve as a main class. Other classes in the project will be inner classes for

the main class.

4.3.1 Customized Plant UML for Static Visualization

To draw a UML class diagram and to integrate it into JavelinaCode, textual input from the
single Java file is produced with the four different regular expressions defined below and used to
detect classes, extended classes, implemented interfaces, dependencies, methods, and variables.
With the customized version of Plant UML in JavelinaCode, the colors of relations, borders, and

backgrounds are also changed in the UML class diagram to match the ones used in the dynamic

44

visualization, and the circles of classes and interface are hidden to follow standard UML

notation.

Class, Extended Class, and Implemented Interface

[\\w.]* *(?:publiclfinal|) *(abstract|) *(?:public|final|) *(class|interface|enum|@interface)

H([\\Ww. <>,1*?)(?: +extends+([\\w. <>,]*?)[)(?: +implements +([\\w. <>,]*7?)[) *\\{ (1)

@startuml —

class Example (a) (b)
Sample <|-down- Example
interface OnReject Example
class Example --> OnReject
interface OnSubmit

class Example --> OnSubmit

@enduml

OnReject onsubmit

Figure 20. Class, extended class, and implemented interface

The regular expression (1) is defined and used to detect classes, extended classes, and
implemented interfaces. Since Java matcher returns the pattern matches, all the values can be
found in groups using this regular expression. The groups give us the important values, like class
name, parent class name (if class declaration has the ‘extends’ keyword), and interface name (if

class declaration has the ‘implements’ keyword).

The first keyword when defining a Java class is always public, which can be used to find the
first line of the class, and then check whether it is an abstract class or not. If a class is extending
another class, the ‘extends’ keyword is searched. The word followed by ‘extends’ keyword is the

extended class. If a class implements an interface a keyword ‘implements’ is searched. Since a

45

class can implement multiple interfaces, all the words after the ‘implements’ keyword separated
by a comma are found. All the comments are removed from the source code, or else, they can

cause issues while using the regular expression.

public class Example{

Example
public static void main(String[] args){
Sample Sample = new Sample();
(©

}
} (a) Sample
@startuml
class Example
class Example --> Sample (b)
@enduml

Figure 21. Dependency

If we assume the first line of a Java source code is ‘public class Example extends Sample
implements OnSubmit, OnReject {‘, this code is passed to the Java pattern matcher, then the
matcher will provide the details, like ‘Example’ as a class name, ‘Sample’ as an extended class,
and ‘OnSubmit and OnReject’ as implemented interfaces. Therefore, a Plant UML textual input
for the code and its corresponding UML class diagram generated by the Plant UML are as shown

in Figure 20.

Dependency

(new)(\sH[MNs]HOSHOCFNNG) (2)

The regular expression (2) is defined and used to look for dependencies among classes. It is
assumed that there is a dependency on a class if an object creation pattern happens with a ‘new’

keyword in the class. For instance, if we have the source code as in (a) of Figure 21, its Plant
46

UML textual input for the code and UML class diagram generated by Plant UML are as shown

in (b) and (c) respectively of Figure 4.

Method

(OWNASW TR HOWH) FNAYTHY *ON) (3)

The regular expression (3) is defined and used to find methods in a class. A method generally
contains an access modifier followed by the return type, method name, and arguments. The first
value in the regular expression pattern gives us a word which is an access modifier, the second
value is the return type of the method followed by a space. Finally, the values between the
parentheses are the arguments. This expression provides information about a return type of
method and a name of the method, checks whether the method has arguments, and extracts the
argument if the method has them. If we have the source code as in (a) of Figure 22, its textual

input for the code and UML class diagram are as shown in (b) and (c) of Figure 22.

public class Example{
public static void main(String[] args){
H
} (@)
@startuml
class Example{
inam(Strmg[] args):void (b)
@enduml ©

Example

main(String[] args):veid

Figure 22. Method

Variables

Private variables: private\\s+(\\w*)\\s+([\\w,]*)\\s*;

47

Public variables: public\\s+(\\w*)\\s+([\\w,]*)\\s*;

Protected variables: protected\\s+(\\w*)\\s+([\\w,]*)\\s*; (4)

public class @startuml
Example{ class Example { |
private int x; -x:int Example
.. =iint
public int y; +y:int :ylz?nt
protected int z; Hz-int Fzint
;)
(b) (©
@) @enduml
Figure 23. Variables

Regular expressions (4) are defined and used to find three different types of variables. A
variable syntax generally contains an access modifier and a data type followed by the name of the
variable. By using this expression, the data type and access modifier of the variable are detected.
Private, public, and protected variables are denoted with *-¢, “+’, and ‘#’, respectively. If we have
the source code as in (a) of Figure 23, its textual input for the code and UML class diagram

generated by Plant UML are as shown in (b) and (c), respectively, of Figure 23.

Front End

A

public class Example extends [m====p | Input Source Code Analyze Source Code
onsubmit, CnReject

Back End

i }

s ™

Exarmpla

l
I
i
. /o Generate Textual Input
I
1
I
1
1

* SVG Output H Plant UML Server)

OnRefect OnSubmit

o iy

Figure 24. Flow of drawing a UML class diagram in JavelinaCode

48

file://s*

Figure 24 demonstrates the flow of drawing a UML class diagram in JavelinaCode. A single
Java source file from the frontend is processed by the expressions defined above to produce
textual input that is sent to the Plant UML server to produce a Scalable Vector Graphics (SVG)
output representation. For drawing diagrams, Graphviz/Dot is used to compute node positions.
Once Graphviz/Dot creates a simplified SVG output representation, the SGV data is parsed and

the drawings of the diagrams are completed.

4.3.2 Customized Java Visualizer for Dynamic Visualization

The original Java Visualizer is customized and integrated to the JavelinaCode interface to
better support understanding of the behavior and interactions of objects. To avoid any confusion
of using two colored bars, only one highlighted bar in yellow is used to indicate the line that has
just been executed. As shown in Figure 8, in the editor window of JavelinaCode, there are taps
for multiple Java class files created for a project and one active class is open. The color of the tap
of the active class in white that has a current line of the code being executed is distinguished

from others.

The running example involves five classes having inheritance and polymorphism
relationships: Shape as a parent (super) class and Sphere, Rectangle, and Cylinder as children
(sub) classes. After executing line 4 in (a) of Figure 25, when a new object of Sphere is created
with the instant values of the object assigned, the yellow bar jumps to the constructor of the
Sphere class which is open in the active editor window in (b) of Figure 25. When the constructor

calls the super class’s constructor in line 8, again the highlighted bar will jump to Shape class

49

which is a parent of Sphere. The values of the instance variables of each object are accordingly

illustrated in the visualization area.

Sphere.java Cylinder.java Rectangle.java Shape.java Main.java
Frames Objects
Add Class + !
1~ public class Main{ main:5 Rectangle instance
2
3- puslic static void main(String[] args){ deck | | 20-0
4 Rectangle deck = new Rectangle(2e, 35); T)
5 Sphere bigBall = new Sphere(15); width | 35.0
6 Cylinder tank = new Cylinder(1e, 3@);
7 shapeName | "Rectangle”
8 System.out.println {deck + " and its ares is " + deck.area());
9 System.out.println (bigBall + " and its ares is " + bigBall.area());
10 System.out.println {tank + " and its ares is " + tank.area());
11 }
12
5) @)
14
15
16
Sphera.java Cylinder.java Ractangle java Shapejava Main java - - | > | -
Add Class + Framas Objects
1 public class Sphere extends Shape cinits:d2 Rectangle instance
2- {
3 pi double radius; radius i this Cf length | 20.0
4
S ructor: sets up the sphere. r|1s.0 width | 35.0
5 public sphere{double r) Return |, id h
e value shapeMName | "Rectangle”
g8 super{"sphere”);
9 radius = rj
18 } main:s
11 decdk radius | 15.0
12 rReturns the surface area of the sphere I—
13 public double area() (b) shapeName | “sphere”
14 - { _
1s return 4 * Math.PI * radius * radius;
15 1
17
18 Returns the sphere as a String
13 public String toString()
2@ - {
21 return super.tostring() + " of radius " + radius +
22 " and its ares is " + area();
23 }
24
;s }
26

Figure 25. Dynamic visualization of Java program using customized Java Visualizer

Through one step forward or backward of program execution by line, the behavior and
interactions of the objects are much more easily captured and understood. Using this runtime
visualization, students can clarify the concepts of tracing different classes, parameters and return
values of method calls, and values of variables, and referencing multiple identifiers of the same

object.

50

Figure 26 demonstrates the flow of generating a run-time visualization of a Java program. A
single Java source file from the frontend is taken to the backend server and compiled to bytecode
in memory. An instance of the Java Virtual Machine (JVM) is launched, the bytecode is loaded
to the JVM, and the program is executed under supervision of the Java Debug Interface (JDI),

which records the program’s run time state for every executed line.

Front End
Back End

rublic class Main

paklic static veid mein (String[) args)
{
Sphere bigBall — new Sphere([l:);
Cylinaer cank = new Cylinder(.o,
!

Input Source Code _4 Compile Source Code ‘

I

Start JSON Tracing Thread 4—‘ Launch VM

l

Output JSON Trace === JDI2JSON ‘

Figure 26. Flow of generating a run-time visualization in JavelinaCode

A JSON Tracing Thread is used for the event handling loop, and then JDI2JSON converts
everything to a text output JSON trace. The output JSON trace contains the dynamic run time
state of all the objects, methods, and variables of the Java program, which is converted to a

visualization generated by Javascript 3D library in the frontend.

Environment

On the AWS cloud server, Java Visualizer is installed on the Ubuntu operating system with a

safeexec environment along with Java jail that acts as Chroot. To execute a Java program and

51

collect the trace of its execution, the Trace program of Java platform debugger architecture is

used. Then the trace runs the Java program and generates an output of its execution.

Using EventRequest, a notification of an event such as BreakPointRequest can be requested.
Whenever an event occurs, an event set is placed on an event queue and then the events are
managed by EventRequestManager. There are different kinds of event sets, which are enabled
like ThreadStart, ThreadEnd, methodEntry, and methodExit. EventRequest is a parent class of
StepRequest. When a step request occurs in the Java virtual machine, a notification is requested.
All the step requests are also placed in the event queue and its trace is printed. Java Debug
Interface (JDI) is used to get access to the virtual machine. JDI provides a control of the virtual
machine state including information of classes, arrays, primitive data types, instances of the

classes, etc.

Using ToolsProvider, an instance of Java compiler is obtained, and using that object Java
files are compiled. If the compiler generates errors, error messages will be sent to an error
listener. In the application of JavelinaCode, RAMClassFileManger is used as a file manager,
which gives the compiler an instance of RAMClassFile so that the compiler can write the byte

code. Upon the successful compilation, the byte code can be retrieved from the RAMClassFile.

To communicate between debugger and the target Virtual machine (VM), a connector is
needed. Using a launching connector, an instance of target virtual machine is obtained and can
be launched, and MethodEntryRequest, MethodExitRequest, ThreadDeathRequest and

ExceptionRequest are created. Once a request is created and processed, an event set is placed on

52

the event queue. All the events on the EventQueue convert the execution point into JSONObject

and all the JSONObjects are added to a JSONArray for trace output.

Chroot ad Safeexec

Chroot acts as a virtual root folder to an application to recover a system in case the system
becomes unbootable. Chroot installs another operating system inside the host system so that
applications are not able to access the files in the root hierarchy. This is called as a jail or
sandbox environment, which is needed for any security breach. If an application is installed in a
sandbox environment, applications outside of the system can’t access to the base system.
Safeexec is a sandbox environment to execute programs safely inside a virtual root environment.
It sets limits on CPU time and memory usage since there are multiple users simultaneously

working on the same system and the CPU must be efficiently used.

The virtual root folder contains all the folders of the host system. It has a duplicate copy of
the original system. In JavelinaCode, a virtual root is installed with Java jail, which has
traceprinter files that execute the program in memory and print the JSON trace. The virtual root
also contains its own Java installation since Java programs need to be executed on the virtual
root environment not on the host system. The few important Java files which perform the
operation are included: InMemory that is the main class of the application that takes the Java
source code as input and generates output JSON trace, RAM Tools that uses a default file
manager object and executes Java files and generates the bytecode, VMCommander that loads
the byte code into VM memory and starts execution, JSONTracingThread that converts all the

events from Event Queue to the JSON object and this operation works in a loop, JDI2JISON

53

which all the event information from is converted into the required JSON format, Compile2Bytes
that converts the Java source to byte code with the help of a compiler object, RAMJavaFile that
simulates the file object of Java source code in memory, RAMClassFile that simulates the file
object of a compiled Java source code in memory, and RAMClassFileManager that simulates the

collection of RAMClassFile in memory.

4.3.3 Case Study: yo-yo effect with Synchronized Static and Dynamic Visualization

A modeling example of a synchronized static and dynamic visualization in JavelinaCode and
its detailed UML class diagram are graphically presented in Figure 27. The example simulates
the yo-yo effect that causes problems and results in a data flow anomaly from method overriding
and polymorphism with an overridden method ‘bounced’ up and down among levels of
inheritance hierarchy [44]. In the presence of dynamic binding, a runtime visualization technique

presented in JavelinaCode shows all possible executions by lines.

The user interface consists of three main components: a static UML class diagram area
(compact class diagram (a) and detailed class diagram (b)), an editor area (c), and a dynamic run-
time state visualization area (c). The editor area displays the active Java code a user is currently
working on, and, by selecting a tab, the user is able to create multiple Java files and to add them
into a project. When a forward or backward button is clicked, the line that has just been executed
is highlighted in yellow in the editor window, the active Java class is synchronized in yellow in
the class diagram area, and the functional information of the line is synchronized in the run-time
state visualization. Two sets of UML diagrams are generated: (a) one for the active Java class in

the editor and (b) the other for the whole project.

54

& (c) (d)
staffEmployeejova - Manjava - | Employesjoe - | studentEmployeejsva - -- --

Main 1= public class Employee { 5 T
al - private int hour hour lyRate:40 Emglovee instance
3 private double rote; this (&=, hour 10
4- public tmployee() { et e W
: m : :: workbours: 36 _'m.m'.o
7 } this
Employee| 8- public void weeklyPay(int h) {
] [® workHours(h); h [10

1o
11- public void workMours(int h) { weeklyPay:32

| 12 hour = h;)
13 hourlyRate(); this
14 } h 10

studentEmployee | staffEmployee | 5 - public void hourlyRate() {
rate = 19;
1 printCheck(); saini7
18 } john |«
19- public double printCheck() {
20 return { hour * rate);
21
n)
Main hourlyRate: 53 Emglovee ditince

[this

staffEmployeejove « Msnjwa - Employeejova - o - o]0
1+ public class studentimpl extends loyee { — rm_m.o
2. public studentEmployee() {

this studentfmployee instance

3 super();
% hl1s
public void hourlyRate() { 4 hour |15 y

6 printCheck();
= } weeklyPay:32 rate 0.0
8- public double printCheck() { this ' .
9 return (super.printCheck());
10 } h 15
ln
sain:ll
John |«
mary
Main |
(b) —
+main(String[] args):void

Employee
<hour:int
-rate.double

+Empllt°b,;ea§d“ hl:void
+wee int h):voi
+workHours(int h):void
+hourlyRate():void
+printChecki):double

StudentEmployee I
]
+StudentEmployee()
+hourlyRate():void
+printChecki):double

StaffEmployee

+StaffEmployes()
+hourlyRate():void
+printCheck():double

Figure 27. Modeling example of yo-yo effect

55

Considering the inheritance between the ‘Employee’ and ‘studentEmployee’ classes that
have an overridden method ‘hourlyRate()’, due to the fact that the ‘hourlyRate()’ in the
‘studentEmployee’ sub-class does not have a rate assigned for an instance of that class, the
student’s hourly rate (mary) is ‘0.0’ resulting in a ‘$0.0’ payment despite having 15 hours of
work. As the line that has just been executed is highlighted in the center editor window, its
corresponding class in the static UML class diagram on the left is synchronously highlighted and

its dynamic run time information is also visually represented on the right.

Using this technique, users can easily trace and detect changes of the values of instances
through stepping forward and backward by clicking buttons as shown in (d) of Figure 27 (top

right).

56

5 Comparative Analysis of Educational Programming Environmental Tools

To investigate the usability of a software system, a comparison test can be used in
conjunction with a validation test [45]. The objective of the comparison test is to compare
designs and functionalities between competitive software products to establish which design is
easier to use or learn and to better understand the advantages and disadvantages of different
designs. In this study, a comparative analysis was conducted between JavelinaCode and other
educational programming environment tools, including Bluel, Jeliot 3, Aguial, JIVE, and
JGRASP. Each of these tools was evaluated on the basis of time constraints for download and
installation, complexity of the download process and tool’s interface, and the provision of static

and dynamic visualizations.

5.1 Comparison of Download and Install Time

This section reports a comparison analysis conducted to measure and compare the time
required to download and install educational programming environmental tools including the

best Java IDEs for Java programmers in 2014 [30], e.g., Eclipse and NetBeans.

JavelinaCode was compared against other tools listed above in terms of time and complexity
constraints. These factors are measured and compared to determine how students will be able to
efficiently use their time and critical thinking skills for writing code rather than being impeded

by setting up the environments. Table 2 presents the details of the comparison of time to install

57

and download the environmental tools and other fundamental characteristics of each tool, which
includes the version of the tool used for comparisons, whether or not the tool was stand-alone or
a plugin for another tool, and the size of the tool in megabytes (MB) both before and after
installation. The process of downloading and installing was done on Mac OS X Yosemite
version 10.10.1 under a stable network connection on the campus of Texas A&M University-
Kingsville. The specifications of the computer system used for JGRASP are OS X Yosemite

10.10.5, 2.5 GHz Intel Core i5, 4 GB 1333 MHz DDR3.

Table 2. Comparison of download and install time of programming environmental tools

File size Download Install Time
Version OS supports Plugin (Before/After Time .
. . (mm:ss)
installation) (mm:ss)
Windows, Linux, 254.7 MB/ .)
NetBeans 8.0.2 Mac OS No 764MB 00:49 9:54
Eclipse Windows, Linux, 173.4 MB/ .
4.4 Mac OS No 2715 MB 00:34 N/A
BlueJ Windows, Linux, 169.8 MB/ . .
3.1.5 Mac OS No 338.6 MB 00:32 00:07
Jeliot 3 3.7.2 Windows, Linux, 1.6 MB/ . .
Mac OS No 2 IMB 00:02 00:02
CoffeeDregs Windows, Yes 8§ MB/ .
N/A Mac OS (NetBeans) 17.9 MB 00:04 0 (Portable)
i i i 00:01 0:10
Aguial 1.1 Windows, Linux, Yes (Eclipse) | N/A . . :
Mac OS (Via menu in Eclipse)
Windows 7 or .]
JIVE N/A later, Mac OS X Yes (Eclipse) | 238.1 MB 00..10 ' .
. (Via menu in Eclipse)
or later, Linux
jGRASP 1927 | Windows, Linux, | i 5/10.6 MB 00:01 00:02
Mac OS
Windows, Linux, . .
JDK 8 Mac OS, Solaris N/A 227.07 MB 00:41 01:10

While these tools must be downloaded and installed as either a stand-alone program, or as a

plugin for Eclipse (Aguial, JIVE) or NetBeans (CoffeeDregs), this is not an issue for
58

JavelinaCode since it is web-based. From a user’s perspective, there is no worry about hardware
capability, version changes of operating systems, nor data loss. They are freed from concerns

about continuous version changes of the Java language, IDEs, and operating systems.

5.2 Comparison of Quality of User Interface and Aspects of Visualization

Additional comparison tests were conducted to identify any difficulties that student
programmers encounter to start programming under these environments, and to compare aspects
of static and dynamic visualization provided by the tools. The tests are to present the differences
between JavelinaCode and the tools listed above to demonstrate how JavelinaCode improves

students’ understanding of OOP and OOD concepts.

Each tool was compared on the quality of user interface in terms of fundamental design and
the means of handling two Java projects, PolyShape and yo-yo problem projects. The Polyshape
project is considered as a relatively easy project while the yo-yo problem project is a relatively
difficult one. The PolyShpe project has five Java classes including a Shape, Rectangle, Cylinder,
Sphere and Main class. It introduces some fundamental class hierarchy with the Shape as a
parent class, others as children, and Main as a client. It also introduces a polymorphic behavior
with a overridden method, area(), to calculate an area of each shape. The yo-yo problem project
creates a data anomaly that occurs when its execution bounces up and down the class hierarchy
due to unintentional values assigned in an overridden method. The project was simulated with
three classes, an Employee as a parent along with a StaffEmployee and StudentEMployee that

inherit variables and methods from the Employee. The hourlyRate() method is a overridden

59

method that fails to set a proper value for hourly rate for objects of both StaffEmployee and

StudentEMployee, resulting in a ‘0’ payment for those objects.

BlueJ

BlueJ’s (Version 3.1.7, released in February 2016) user interface was found to be
straightforward and intuitive to build a new project, write Java classes for a project, and compile
the project. However, running a project was not integrated with the other features and it was
required a counterintuitive process of right-clicking the Main class and selecting the main
method. The program source code and output of the programs are also displayed in a separate
window rather than integrated on the initial window with the Java files. Testing the PolyShape
project showed the use of the primary window as a class diagram. Java classes added to the

project were connected based on relationships of inheritance and association (Figure 28).

- 5
<% Blue): PolyShape = 5 BS <& Shape - PolyShape = | E |
Project Edit Tools View Help Class Edit Tools Options
[Pasts | Close] [source coge - |
D P R ngle .:bstra:t puklic class Shape -
Shape |<}———>
i f private String shapeName;
|
|
7} v\\ public Shape (String name)
| {
I
Cylinder shapellame = name;:
Sphere —

1

public abstract double area();

=
@
g
m

public String to3tring()
{

return shapeName;
I
|} Sia

‘ No changes need to be saved

saved ‘

Figure 28. Screenshot of BlueJ

60

The main issue is that the automatically generated relationships in BlueJ were not correct and
had to be corrected manually. BluelJ relies on the static visualization only, thus it seems to be
very difficult to detect the source of errors with the yo-yo problem project. By setting a
breakpoint at a meaningful line in the Main class, users must step through the remaining lines
using the debugger to identify the problem. The debugger window shows threads, call sequences,
and variables as separated text fields. This provides a dynamic approach in analyzing the source
code but no run time visualization technique is employed, which makes stepping through lines of

code more difficult to read and follow.

Jeliot 3

In Jeliot 3 (Version 3.7.2, released in March 2014), Java source code is displayed on the left
hand side of the window and program execution is animated line by line in the theater, the
animation frame, on the right hand side of the window to show how values are assigned to
variables and how output is displayed to the appropriate window. The buttons to compile and
execute the program and manage the animation are listed at the bottom of the window. (Figure

29).

Jeliot 3 does not support adding multiple files into a single project. All classes are specified
in a single file, limiting students’ understanding of how classes are distinct from one another.
Execution of the PolyShape shows that the dynamic visualization, the theater, is split into four
sections for methods, constants, instances and arrays, and expression evaluations. As values are

specified in method calls for initializing objects of a class, those values are transferred over as

61

variables of the object. Different values from method calls, constants, and object variables are

collected into the expression evaluation section to construct output statements.

Control Animation Options Help
5 :: Theater | CallTree | History |
(3 public static void main (String[] args) ;| = B
? . m Method Area Expression Evaluation Area
8 Rectangle deck = new Rectangle (20, 35); || Main.main
9 Sphere bigBall = new Sphere(lS5):
10 Cylinder tank = mew Cylinder{l0o, 30): : String[] ‘"9=D
11 :
1z Systam.nut.p[n.ltln (dec.:k & @ anf its ares is ".45 : Rectangle deck
13 System.out.println (bigBall + and its ares ig :
14 System.out.println (tank + " and itz ares i=s 7 :
15 : I
16 } :
17 1
15 abstract public class Shape |
13
20 private String shapeNane: A
21]
22 public 3hape (3tring name) 3 % Brea v
zz { shapeliane - nawes Cohstant Area Ohject of the class Rectangle int length 0 |
25 1 : L
6 |String shapeNamel Rectangle || EMPTY
27 ARRAY
28 public abstract double area(): |doub|e Iengthl 20.0 ||
23
30] I m
31 public $tring toitring() EEE Wldth-
3z { :
33 return shapeName;
34 }
35)
36
37 public class Rectangle extends Shape
L
39 private double length, width; /¢ length and widt
40
41 S Constructor: Sets up the rectangle with the
42 A given length and widtl. =
ZY I—T— L] fl I [[

Figure 29. Screenshot of Jeliot 3 with a Theater

While running the yo-yo problem project, it is assumed that users can readily identify the
likely location of program error, and those lines of code can be analyzed using the theater and
stepping through each line. Then users can determine the problem based on the value of zero
being passed as rate between sections of the theater. Due to the lack of a meaningful static
visualization, this method of assessing the problem is dependent on the users’ assumptions about

the program’s execution and a trial and error method.

jGRASP

62

JGRASP (Version 2.0.2 01, released in March 2016) allows line by line program execution
through the use of the debugger and the canvas window. The canvas is displayed in a separate
window from the source code and actually covers the initial window, resulting in a clustered

viewing experience for users. Program output is displayed at the bottom of the initial window.

File Edit View Build Debug Project Settings Tools Window Help = x
2 = E
aHms X3ea DD heY s sEEE
22 M [a]
[eu 1 [w] =) B
: public class Main
[Threads g i
] Call Stack ;{:;b,;c static void main (String[] args)
[1]1 Main.main (Mainjava : 10) pc = 39 Reckangle deck = new Rectangle (20, 35);
H Sphere bigBall = new Sphere(15);
Cylinder tank = new Cylinder (10, 30):
+ System.out.println (deck + " and its ares is " + deck.area()); T
: System.out.println (bigBall is " + bigBall.areaf()):
System.out.println (tank + " and ics ares is " + tank.area()):
H
4 r B
Main,grasp_canvasxml * CAUsers\kujy2000\Dropbox\DISSERTATION ava ... - =) e
S File Edit View Run Debug Help ||
Varibles | Fual | | >0 (@] velay == os0sec [3]G]J1H] »
W static - Main : B
i ¢ O Arguments :
Il args —> (obj 434 - javalang]| |
A+ O Locais : FEldeck
o~ [l deck —= (obj 439 : Rectangl|| | shapeMama Rectangle
o [l bigBall — (obj 443 : Spherd ||’ length HEltank —
o [l fank > (0bj 447 : Cylinden)| |)] Cylinder - El
Al width 35.0 = = Iv]
: shapelame Cylinder||—|
: | Rectangle.java | - iewer Main.jgr... H
A e B ¥
fComp\Ie Messages r_TﬂI +ElbigBall height 30.0 =2
: shapeMame E—P[Sphere] 4] [» —
| : s 5
% -
i |: |7 MO tank > {obj 447 : Cylinder) Cylinder : Basic viewer
H ————jGRASP exec: java —-Xnoagent -Djava.compiler=HONE -Xdebug —Xrunjd'r.rp:transpcrtﬁi
<| Ml “ ’V ————3jGRASP: connected to debugger.
H [

Figure 30. Screenshot of JGRASP with a Canvas window

Execution of the PloyShape project in the canvas can be paused and elements from the
debugger or work bench can be dragged into the canvas window. This converts the elements to
the visualization as a frame with the name of the object and its instance variables as well as the

values of the variables as shown in Figure 30. Users need to drag elements from the debug frame

to the canvas to check the information.

63

For running the yo-yo problem project, three objects created can be observed near the end of
the program’s execution. By dragging each of these objects into the canvas, users can observe
that the object of Employee has a rate of nonzero while the objects of StaffEmployee and

StudentEmployee have a rate of zero.

AguialJ

Aguial (Version 1.1, released in October 2013) is an Eclipse plug-in designed to emphasize
class instantiation. It embodies novel interaction metaphors to illustrate object-oriented
programming concepts with first class representations [19]. This is made possible by introducing
a graphical environment for creating and controlling classes and objects interactively [18]. From
what was observed, there are windows for presenting an overview of the classes involved,

holding instantiated objects of each class, and inputting a line of code for the objects (Figure 31).

Classes and objects are not bound to the runtime environment of the program. Objects are
freely created and used, regardless of the original program’s intent, using either the appropriate
button in the interface or inputting a line of constructor code. Users can make visible the fields,
private fields, and operations (variables and methods) for each object. In the context of
PolyShape, various instances of Rectangle, Sphere, and Cylinder can be created independent of
the original Main class. Through the implementation of multiple classes, users would be

provided with an incredibly useful and flexible static visualization of code.

64

000 | | Aguia) - Koli/src/TestBinarylmages.java - Eclipse Platform Ll
[3] Dimension.java 52 = 0 [3] TestBinarylmages.java 5% = O 5
class Dimension - E =
Final int widih' static BinaryImage createChessBoard(int squareSide) in|
H . ;
final int height; It asde : ;
BinaryImage image = new BinaryImage(side * =zqua
: sdas 14 .
DimensionCint width, int height fortint Line.s 0y line <si=ide; linwsg & d Java Editor
2 width = wideh: for{int col = (line+l) % 2; col < side; col -
this‘height = P;eig;ﬂ-_‘ fillSquare(image, col*squareSide, line*
. H
} /
} return image;
}
{3 Classes HE v= 0 [Objects 8 Tew = O
B} default [images | S | reference e
\ ~— an | _’ : Dimension
Dimension) S
packages 35x50
Canstrustars: -
- - i
[new 35 50 _ - Fields:]
—_—— - width |35 instance
-—— . .
™ invocation fields
height S0 (non-modifiable}
)) visualization widget
Test Binary Images == (IImage type)
ma _’ : Binary Image & —
Static methods: iraryimage]
create Chess Board 10 »
— iy -
o — ccinterfacess»
fill Square | null[w invocation IImage
. T + getDimensicn() : Dimension
+ getColor(x, y) : Color
Properties: &
accessor e !
methods | DQmension 8080 !
(non-modifiable) BinaryImage
- pixels : boolean[][]
Operations: - dimension : Dimensicn
[lsBlack ': .G o + getDimension() : Dimension
— + iselack(x, y) : boolean
2 § + getColor(x, y) : Color
I__getColor | 0 o + setBlack(x, y)
. . , —— -~ + setWhite(x, y)
invocation | s_g_t__ﬁ!l_ag_k_!/ 10 15
p———

Figure 31. Screenshot of Aguial (image source from [19])

However, restrictions in Aguial became more noticeable while testing

code. One of the most notable problems is that inherited methods cannot be

the yo-yo project

used as input to a

particular object. In this context, the methods inherited from the Employee class by

StudentEmployee and StaffEmployee cannot be used. Additionally, method calls within methods

will not be executed. Since classes and objects generated in Aguial are not dependent on a

particular runtime environment, this is not an effective tool for detecting runtime errors. At best,

if users are testing lines of code from the current runtime environment, this would require

65

stepping back and forth between the Aguial interface and the standard Java interface for Eclipse.
To solve this problem, users would have to know the issue is present in the hourlyRate() method,

execute this method on each of the three classes, and observe the value of rate after execution.

JIVE

JIVE system provides a novel approach to the runtime visualization and analysis of OOP
[22]. To use JIVE in Eclipse, users must properly configure the debugger. To enable the
debugger for a project, users need to create a launch configuration for the project, edit the
configuration to specify that JIVE must be used for debugging, and open the JIVE window
perspective for checking the visualization of the program execution. The project must be run at
least once before configurations can be modified to include JIVE. This process seems

unnecessarily complicated compared against the other tools.

The JIVE interface itself includes two UML diagrams (Figure 32), an object and sequence
diagram, and a contour model. Each is given its own set of buttons for stepping through the code
by lines. This is extraneous as users stay in the same location of the code on both diagrams along
with the source code. Given the use of an object and sequence diagram in JIVE, as users step
through the code using the diagrams, the execution of code can be observed based on
instantiations and method calls. However, to trace the values of the instance variables of an
object, users must click the ‘Contour Model’ tab to switch over another panel and select the

name of the variables.

66

% Debug = %I ¥ = B & Object Diagram =B
4 [T <terminated>Main [Java Application] DRO) "(;| ,._.E| BEaa | 4 0d 00 OB -
< <terminated>Main at localhost:55637 Main at localhost:55637
w/ <terminated, exit value: 0=C\Program Files\Java\jre1.8.0_71\bin\javaw.exe (Jun 4, 2016,

@ Object
‘G Main HG String ‘ @ Shape
IS | S

" m b ‘0 Rectangle HG Sphere HG Cylinder |
[]] 1
[Mainjava & =B
1 -
2 public class Main {
3
4 pub.{'l.ic static void main (String[] args) ‘% String[]:l‘ ‘% Rectangle:1| ‘Q_, Sphere:l‘ ‘% Cylinder:1
5 [L 10 I 1
6 Rectangle deck = new Rectangle(2@, 35):
7 Sphere bigBall = new Sphere(15);
8 Cylinder tank = new Cylinder(1@, 30);
9 % Sequence Diagram # | & Sequence Model =
10 System.out.println (deck + " and its ares is " + deck

0% > @ -
11 System.out.println (bigBall + " and its ares is " + A | 0a o pome

12 System.out.println (tank + " and its ares is " + tan

.73 } |G Main ‘ |% Rectangle:1 ‘ |% Sphere:l | ‘%Cylinder:l ‘

Main at localhost:55637

main:1
—

Rectangle:1
ape:

1

4 {11} 3

& Console X%k &BEEEE-0~-=0
<terminated> Main [Java Application] C\Program Files\Java\jre1.8.0_71\bin\javaw.exe (Jun 4, 201
Rectangle of length 20.0 and width 35.@ and its ares is 700.0 -)
Sphere of radius 15.8 and its ares is 2827.4333882308138 and its ares Cylinder:1
Cylinder of radius 10.@ height 30.0 and its ares is 9424.77796076938 Shape:3

Figure 32. Screenshot of JIVE with object and sequence diagrams

Considering the design space and view of the interface, it should be noted that windows can
become cluttered with larger projects. This was already becoming noticeable in the PolyShape
project, which creates only six Polygon objects. Users may jump to specific points in a particular

time line of the sequence diagram, allowing for more flexibility in parts of the code to focus on.

The biggest issue with JIVE while testing the yo-yo problem is that output is not generated
alongside a line by line step through of the code. Similarly, the default setting for the class
diagram does not provide enough visual evidence of the expected output of the program. In
addition, observing the values of variables within a particular object requires setting the class

diagram to objects with tables. Once the class diagram has been modified as such, users can

67

identify the issue when stepping through the methods for each class and noting that the value of

rate is never set for objects of StaffEmployee or StudentEmployee.

JavelinaCode

JavelinaCode interface presents a static visualization of the code as a class diagram on the
left hand side, the source code in the center, and a dynamic visualization on the right hand side.
During line by line execution, the current line of code being executed and its encompassing class

are highlighted in the source code and class diagram, respectively. Output is displayed at the

bottom of the window.

File View

JavelinaCode - PolyShape(2015-12-26) |
[ove] compic o | |
Man Sphere.java - Cylinderjava - | Mainjava « | Rectanglejava -~ Shapejava - - - - ‘ » |
in:7 Rectangle instance
+main(String([] args)-void Add Class + 0Tt
a deck - length |20.0
- . ™
: : bioBall | & Ny width 35,0
4 tank \ e
5-{ Return) \ Y shapeName | "Rectangle”
6 ic void main (String[] args) value void \ \ e 00
7- : \ testVariable| 100
8 VN
9 Rectangle deck = new Rectangle(20, 35); \ \ Sphere instance
1e System.out.println (deck + " and its ares is " + deck.area()); \ “.‘
11 Vo radius|15.0
12 Sphere bigBall = new Sphere(15); I
13 System.out.println (bigBall + " and its ares is " + bigBall.area()); '\I‘ shapeName| "Sphere”
14 _
\
= | testvariable| 100
16 Cylinder tank = new Cylinder (1@, 3@); I‘. . |
17 System.out.println (tank + " and its ares is " + tank.area()); \
18 | Cylinder instance
!
|
;: } ' '\I‘ radius| 10.0
2L \ -
22 ¥ height|30.0
23
24 shapeName | "Cylinder"
25 |
26 testvariable| 100
27 I
23
29
38
31
32
33
34
35
36

Figure 33. Screenshot of JavelinaCode with static and dynamic visualization

68

For the PolyShape project, during execution, the dynamic visualization is useful in observing
the assignment of values to variables of each object. These objects are kept relatively organized
in the window and can be easily referenced at the end of program execution. By stepping through
each line of code in the project for the yo-yo problem, it can be observed that rate was not
properly set for objects of StudentEmployee or StaffEmployee. This is easily identified by the
dynamic visualization showing a value of zero being assigned to rate for instances of these
classes as illustrated in Figure 33. Users are also able to analyze the class diagram to determine
that a line of code is missing in the hourlyRate() method of StudentEmployee and StaffEmployee

to assign some value to rate.

In summary, the results of the comparative analysis reveal that JavelinaCode provides a more
effective means for understanding OO concepts than those considered. This is due to a simplified
user interface and a better integrated set of both static and dynamic visualizations along with
source code. Through the use of static and dynamic visualizations, student users can easily
identify OO concepts such as polymorphic behavior, inheritance, and other OO paradigms. Static
visualizations provide them a reference when identifying the inheritance between classes in class
diagrams, and detecting problems such as the yo-yo problem. Dynamic visualizations aid in
reinforcing how each line of code is associated with the construction of class instances and
actions, including effectively showing polymorphic behavior at runtime. Combining both static
and dynamic visualizations enables users to transition between identifying both the structure and

behavior of object-oriented programs.

JavelinaCode excels in the simplicity of its interface. This includes reducing clutter, such as

the issue found in JIVE, and keeping both the code and visualizations to a single window, such

69

as the issue found in BlueJ and jGRASP. Additionally, the set up process for JavelinaCode is
reduced to navigating to a web page and registering an account as opposed to downloading and

installing new software, allowing students to immediately begin programming.

70

6 Evaluation

6.1 Introduction

What do we mean by “usable” and what makes a software system usable? Rubin and Chrisnell
[45] discussed the basic concepts of usability of a software product and the six aspects of
usability. If a product is to be usable, it must be useful, efficient, effective, satisfying, learnable,

and accessible.

Usefulness is to concern the degree to which attributes of a software product enables users to
accomplish their specific goals and to assess the user’s willingness to use the product. Efficiency
is the matter of time to be measured that the user’s goal can be achieved accurately to ensure its
performance. Effectiveness is more likely to refer to the extent to which a software product does
behave in a way that users expect and does provide easiness that users can do what they intend. A
benchmark to test efficiency could be “95 percent of all users will be able to load the software in
10 minutes” while a benchmark to test the effectiveness could be “95 percent of all users will be
able to load the software correctly on their first attempt™ [45]. Learnability refers to the user’s
ability to utilize a software system after a certain period of time and training and to re-utilize the
system after a certain period of inactivity. It is to measure ease of learning that how fast users can
achieve tasks without previous experience about the system. Satisfaction is regarding the user's

perceptions, feelings, and opinions of using a system. It is usually measured from written and/or

71

oral questioning about the system. Accessibility is the matter of how easily access to the system

needed to perform tasks.

International Organization for Standardization (ISO) also defined that usability is extent to
which a product can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use: effectiveness - accuracy and
completeness with which users achieve specified goals, efficiency - resources expended in
relation to the accuracy and completeness with which users achieve goals, and satisfaction -

freedom from discomfort, and positive attitudes towards the use of the product [49].

To evaluate JavalinaCode, the aspects of effectiveness, efficiency, and satisfaction were
adopted, since usability testing is a good research method in experimental study to evaluate the

degree to which a software system meets specific criteria.

6.2 Validation

In order to evaluate the educational effectiveness, efficiency, and satisfaction of JavelinaCode,
both quantitative and qualitative experiments were carefully designed and conducted. The
quantitative and qualitative evaluation approach was adopted based on the suggestions by Rubin
and Chisnell [45] and by the ITiCSE working group [46], which is one of six groups of

approaches to assess educational systems.

This study aimed at evaluating the impact of using JavleinaCode with static and dynamic
visualizations. The quantitative evaluation measures the results of data on performance from a

group of users using JavelinaCode supporting both static and dynamic representation of source

72

code and a group of users using a standard IDE, NetBeans, with only the source code without
using any visual aspects of the code. The resultant data is statistically analyzed. The qualitative
study is designed to access whether using JavelinaCode demonstrates the enhanced usability. An
effective interface should be intuitive and user friendly rather than clustered and convoluted. The
survey questionnaire was formed to measure whether the JavelinaCode environment does help
students make their OOP learning easier and to alleviate the difficulties in programming. This is
to measure if the usability of the JavelinaCode interface will contribute to similar unnecessary
complexities and the more user friendly interface will improve student’s intuitive and reasoning
skills. The qualitative data collected from the questionnaire can be also used to guide an analysis

that produces a quantitative output.

6.3 Quantitative Evaluation

Effectiveness could be measured in terms of accuracy and completeness with which users can
achieve certain goals and another indicator of effectiveness could be the quality of a solution [48].
Efficiency is the relation between accuracy and completeness, and the resources expanded to
achieve them. Task completion time and learning time could be good indicators of measuring
efficiency [48]. In this study, the correctness of solving programming problems is used as the
quality of solution and is the primary indicator of the effectiveness of the JavelinaCode system.
The completion time to solving a programming problem is used as a primary indicator of

measuring efficiency.

Two controlled experiments were conducted to test hypotheses formulated in the following

section. The study would be a controlled experiment that separates students into a controlled

73

group and an experimental group to do a comparative analysis of their performance statistical data

on solving problems.

6.3.1 Hypotheses

The evaluation study may claim that the availability of both static and dynamic visualizations
in JavelinaCode will reduce the amount of time taken to solve Java programming comprehension
test questions and to increase the correctness of solutions. Accordingly, the following null and

alternative hypotheses can be formulated:

e Hlo: Having both static and dynamic visualizations available in JavelinaCode does not
impact the correctness of solving problems.

e H2(: Having both static and dynamic visualizations available in JavelinaCode does not
impact the time for solving programming problems.

e HI: Having both static and dynamic visualizations available in JavelinaCode increases
the correctness of solving programming problems.

e H2: Having both static and dynamic visualizations available in JavelinaCode reduces the

time for solving programming problems.

Two dependent variables, the time subjects spent to answer questions and the correctness of
the answers to the questions, are used to statistically analyze the results of the collected data. The

same hypotheses are used in both experiments.

6.3.2 Questionnaire

74

For the first session of both experiments, five Java classes including Main in Figure 34 are
used and the following questionnaire is formed for tasks on program tracing and understanding.
The Java classes simulate a PloyShape project that introduces some fundamental inheritance
hierarchy with a Polygon, Rectangle, Sphere, and Cylinder class. The later three classes inherit
variables and methods from their parent class and have an overridden method that calculates the
area for each. This is considered as a relatively easy project to understand.

1. What is the parent (super) class of the class P?

a. C b. M c. R d. S
2. How many child (sub) classes does class S have?
a. 1 b. 2 c. 3 d. 4
3. Can an instance (object) of class R be an instance (object) of class S?
a. Yes b. No
4. Can an instance (object) of class S be an instance (object) of class C?
a. Yes b. No
5. Which method does demonstrate polymorphic behavior?
a. a b. sl c. gr d. sh
6. What is output by the statement atline # 9 marked // Problem 1in Main.java?
a.R:1is 2.0 and wis 3.0 b.P:1is 2.0 and w is 3.0
c.C:1lis2.0 and wis 3.0 d.S:lis2.0 and wis 3.0
7. What is the output by the statement at line # 11 marked // Problem 2 in Main. java?
a. Itsais 1.0 b.Itsais 6.0 c. Itsais 2.0 d.Itsais 3.0
8. What is the output by the statement at line # 13 marked // Problem 3 in Main. java?

a. Riris1.0 b.C:ris 1.0 c. P:ris 1.0 d.S:ris 1.0
75

9. What is the output by the statement at line # 15 marked // Problem 4 in Main. java?
a. Itsais2.0 b. Itsais 3.0 c. Itsais 1.0 d. Itsais 6.0

10. What is the output by the statement at line # 17 marked // Problem 5 in Main. java?
a.P:ris 1.0 b.C:ris 1.0and h is 3.0
c.Riris2.0and his 3.0 d. S:risl.0andhis 3.0

11. What is the output by the statement at line #19 marked // Problem 6 in Main. java?
a. Itsais 1.0 b. Itsais 2.0 c. Itsais 6.0 d. Itsais 3.0

For the second session of both experiments, four Java classes including Main in Figure 35

were used and the following questionnaire is formed on program understanding and tracing.

1. What is the output by the statement at line # 7 marked // Problem 1 in Main.java?
a. John's payment is 10.0 b. John's payment is 100.0
c. John's payment is 0.0 d. John's payment is 150.0

2. What is the output by the statement at line # 11 marked // Problem 2 in Main.java?
a. Mary's payment is 10.0 b. Mary's payment is 15.0
c. Mary's payment is 150.0 d. Mary's payment is 0.0

3. What is the output by the statement at line # 15 marked // Problem 3 in Main.java?
a. Henry's payment is 20.0 b. Henry's payment is 200.0

c. Henry's payment is 0.0 d. Henry's payment is 10.0

Three Java classes (Employee.java, studentEmployee.java, staffEmployee.java) simulate
the yo-yo effect that causes problems and results in a data flow anomaly from method overriding
and polymporhism with an overridden method ‘bounced’ up and down among levels of

inheritance hierarchy [44]. Considering the inheritance between the ‘Employee’ and

76

‘studentEmployee’ classes that have an overridden method ‘hourlyRate()’, due to the fact that the
‘hourlyRate’ method in the ‘studentEmployee’ sub-class, it does not have a rate assigned for an
instance of that class, two student’s hourly rate (mary and henry) would be a ‘0.0’ resulting in

‘$0.0° payments despite having 15 (mary) and 20 (henry) hours of work.

1~ public class Main {

1 - gbstract class S {
2 2
3~ public static veid main(String[] args){ 3 private String n;
4 4
5 R d = new R(2, 3); 5~ public S (String na) {
6 P b = new P(1); 6 n = na;
7 Ct=new C(1, 3); 7 1
8 8
9 System.out.println(d.o()); // Problem 1 9 public abstract double a();
10 10
11 System.out.println("Its a is " + d.a()); // Problem 2 11~ public String o() {
12 12 return n;
13 System.out.println(b.o()); // Problem 3 ii I
14
15 System.out.println("Its a is " + b.a()); // Problem 4 5.1
16
17 System.out.println(t.o()); // Problem 5
18
19 System.out.println("Its a is " + t.a()); // Problem &
20
21 }
22
23}
Sy . T il - public double a() {
; Zilc close Radani 5 4 12 return (r * r * h);
3 private double 1, w; 13 i
4 bt)
5~ public R (double le, double wi) { 1;‘ :L‘;’;C:‘E:L‘: sh(double he) {
6 super(“R"); = he;
z = le; i ¥
8 W= wij; ¥ L
& 3 19 - public double gh() {
1@ 28 return (h);
11 ~ public double a() { i ¥
2 return (1% w); 23- public String o{) {
7 } 24 return (super.o()+ ": r is " + r + " and h is " + h);
15 ~ public void sl(double le) { 52 }
16 1 = 1le;
= ! 27}
18 Subl s - e
19 - public void sw(double wi) { 1- public class P extends S {
20 I 2 .
21 } 3 private double r;
22 “ o
23 - public double gl() { 5~ public P (do
24 return (1); 6 super(”P
25 } 7 r o= ra;
26 8 i
27 ~ public double gw() { o
28 return (w); 18 - public double a() {
29 } 11 return (r * r);
3e 12 T
31~ public String o() { 13
32 return (super.o() + ": 1 dis " + 1 + " and w is " + w); 14 - public weoid sr(double ra) {
33 1 15 r = ra;
34 18 ¥
35 } 17
18 - public double gr() {
19 return { r);
. . . 2%
Figure 34. Java classes used for Session 1 in both 2? !
1 22 - public String o() {
Experlments 1 & 2 23 return { super.o() + ": r is " + r);
24 ¥
25
26}

77

4

LN R W e

- public class Main {

public static void main(String[] args) {
Employee john = new Employee();

john.weeklyPay(1@);

System.out.println(john.printCheck()); // Problem

studentEmployee mary = new studentEmployee();
mary.weeklyPay(15);
System.out.println(mary.printCheck()); // Problem

staffEmployee henry = new
henry.weeklyPay(20);

staffEmployee();

System.out.println(henry.printCheck()); // Problem 3

4

4

4

W00 = W s R e

ublic class studentEmployee extends Employee {

public studentEmployee() {
super();
¥

public void hourlyRate() {
printCheck();

b

public double printCheck() {
return { super.printCheck());

b

¥

Figure 35. Java classes used for Session 2 in both
Experiments 1 & 2

1~ public class Employee {
2
3 private int hour;
4 private double rate;
5
6 public Employee() {
7 hour = @;
8 rate = @;
9 ¥
16
11 - public void weeklyPay(int h) {
12 workHours({h);
13 }
14
15 - public void workHours(int h) {
16 hour = h;
17 hourlyRate();
18 ¥
19
20 - public void hourlyRate() {
21 rate = 18;
22 printCheck();
23 ¥
24
25 - public double printCheck() {
26 return (hour * rate);
27 ¥
28
29 }
1- public class staffEmployee extends Employee {
2
3- public staffEmployee() {
4 super();
5 ¥
6
7- public void hourlyRate() {
8 printCheck();
9 ¥
18
11 - public double printCheck() {
12 return (super.printCheck());
13 }
14
15

This is considered as a relatively difficult project to understand and it serves as an example of

the issues students encounter when transitioning to practical programming applications. To

record a response time and answer accurately for each question, the questionnaire was presented

in a series of web pages. Each page contains a single question. Whenever a question is answered

by selecting one of the choices (radio buttons) and clicking on ‘Next’ button, the response time

and response to that question were saved in a database. A response time is calculated as the time

elapsed from when the current question is loaded until the student submits a response by clicking

the ‘Next’ button for a next question.

78

6.3.3 Data Analysis

The experiments were designed in such a way that each observation (question) in one
population (a controlled group) is matched with an observation in other population (an
experimental group). The matching is conducted by using the same set of questions for each
group. Thus, it is logical to compare the difference for both groups for each question. To
statistically verify whether both static and dynamic visualizations provided in JavelinaCode have
impact on the response time and correctness to answer questions, the null hypotheses were tested
using Student’s t-test, which was used to analyze the data since the experiments were designed to
have matched samples in two groups. In a t-test, differences among the means of both response

time and correctness between two populations were studied. The null hypotheses are that the

group means for all responses and correctness are the same (us = 0), which is labeled with s =

1 - u2. To test the null hypothesis about 4, the following test statics was used:

;— l’_d— Hd
(3)

where X7 is a sample mean, Sy is a sample standard deviation, and n is the number of

differences.

To validate that the t-test can be used, the Kolmogorov-Smirnov (K-S) test was applied to
verify normal distribution in the sample. As shown in the tables 4, 5, 6, and 7, p-values of the K-S

test are greater than a value 0.05, which is what we are looking for and is significant that the

79

sample is normal. Due to a small sample size (observation), the two-sample K-S test was applied

for the yo-yo problem project.

6.3.4 Experiment 1
The hypotheses for this experiment were that students would respond faster and with higher
accuracy for programming tracing and understanding using both static and dynamic

visualizations in JavelinaCode.

6.3.4.1 Participants

Sixteen lower-division computer science major students enrolled in Data Structures and
Algorithms at Texas A&M University-Kingsville participated in this experiment (see Table 3).
The student participants are considered as novices without much experience in JAVA except for
taking Object-Oriented Software Engineering in Java as a prerequisite of the current course. To
treat the participants in accordance with the “Ethical Principles of Psychologists and Code of
Conductor” [47], they were given a small amount of extra credits for their participation toward
their final grade in their course.

Table 3. No. of subjects participated in both experiments

No. of participants
Experiment 1 Experiment 2
Total
Undergraduates Graduates
Controlled group 6 33 39
Experimental group 10 42 52
Total 16 75 91

6.3.4.2 Method and Procedure

80

Student participants were divided into two groups. One controlled group was given Java
projects (PolyShape project with Java classes in Figure 34 for Session 1 and yo-yo problem
project with Java classes in Figure 35 for Session 2) in plain text with NetBeans IDE 8.0.2 while
the other experimental group was given the same Java projects with two aspects of static UML
class diagrams and dynamic run time visualization of program execution in JavelinaCode. To
equally balance two groups for reliable results, the selection of the participants was based on
their cumulated grade for the course. The experiment was held in one of the computer
classrooms located in the College of Engineering at Texas A&M University-Kingsville. There
were two one-day sessions (one session each day) for each group. Each session lasted

approximately one hour.

For the controlled group:

e Session 1 —Day 1

o The student participants were given a short instruction about the experiment.

o They were given a consent form to sign that they agreed the participation was
voluntary and unpaid.

o They were instructed to log into the course Blackboard, download a prepared zip file
of the PolyShape project, unzip it, and open the project in the NetBeans IDE.

o They were also instructed to close the ‘Output’ window and not to run the project
because the questions are related to the output results by the statements executed.

Two graduate assistants were assigned to an instructor to observe the experiment.

81

' = ——— ——
EXP1 - NetBeans IDE 802 _1 - - [E=yEE—
) e — — — - S—
File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help [Q~ search (ctri+1) |
& D @ [comitane) -8 - & - Al
P RS D (e T W DB G i O
=2 = [Files | Servi...| [|[[&ExPLiava =[[d Cjava u[&] Pjava =[] Riava =[[J] Sjava =] EREE
z[5&er Sowres) sty |[@ -0 -0 TS BG P LR @0 0| & ®
2 = | Source Packages
L E!@ expl 1 package expl; [~ /m
® : iave 2 public class EXP1 { o
| Java 3|8 public static void main(String[] args) {
@ EXP1l.java 2
@ P.java
H - 5 R d = mnew R(2, 3):
H R.java
H H & P b = new P(1):;
(| Bl s 7 Ct =new Cil, 3):
[‘E Test Packages . 4 4
& Libraries . - .
H 9 Syvstem.cut.println{d.o()); // Problem 1
(g TestLibraries o
11 System.ocut.println("It=s a i=s " + d.a()): 2 3
12
13 System.cut.println{ b.o()): /¢ Problem 3
14
A5 System.cut.println("Its a i= " + b.a()): /4 Problem 4
16
17 System.cut.println{ t.o()): // problem S
18
19 System.cut.println("It=s a i= " + t.a());: // Problem € | N
20 - ¥
21
22 H
: (a)
e
=il | NS
L -

(=) & o
[} CSEN 5303 Web Program X !
/ [} CSEN 5303 Web Program X \. |
/ —

| € > C M [javelinacode.org/net/ses1/ = =
€ < C f [javeilnaocode.org/net/sesi/qlphp B ™ [=

Dear Participant,

Thank you for your time for participating m this research

Question 1 (1/11)

If you have any questions. please feel free to contact

Ms. Jeong Yang at jeong yang@tamuk edu. What is the parent (super) class of the class P?

O ClassC O ClassM © ClassR © Class §

Ewtersour Knumber:| |

Select your class enrolled
© C'SEN 2328 Data Structures and Algorithms

0 CSEN 3303 T: Mobile Application Programming

(b) (©)

Figure 36. Screenshots of (a) PolyShape project in NetBeans IDE,
(b) Web Page loaded for ID and Class selection, and (c) Web Page for the first question

o They were instructed to take their time as much as possible until they fully
understood the code and be ready to answer questions listed in section 6.3.2 related to

the PloyShape project.

82

o To begin answering the questions, the participants were instructed to load a specific
URL and to do their best to answer each question correctly.

Figure 36 gives the screenshots of (a) the PloyShape project opened in NetBeans IDE, (b)

the first web page loaded to give an ID and selection of the classes enrolled and begin

answering questions, and (c) a web page loaded for the first question.

Session 2 — Day 2

o The student participants were instructed to log into the course Blackboard, download
a prepared zip file of the yo-yo problem project, unzip it, and open the project in the
NetBeans IDE.

o They were also instructed to close the ‘Output’ window and not to run the project
because many of the questions asked the output results by the statements executed.
Two graduate assistants were assigned to an instructor to observe the experiment.

o They were instructed to take their time as much as possible until they fully
understood the code and be ready to answer questions listed section 7.3.2 related to
the yo-yo problem project.

o To begin answering the questions, participants were instructed to load a specific URL

and to do their best to answer each question correctly.

Figure 37 gives the screenshots of (a) the yo-yo problem project opened in NetBeans IDE,

(b) the first web paged loaded to give an ID and selection of classes enrolled and begin

answering questions, and (c) a web page loaded for the first question.

For the experimental group:

Session 1 — Day 1
83

T
&xpz - NetBeans IDE 8.0. |
File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help Q- Search (Ctrl+T)
PEEY DE o T H DB G
= | proj... HlFilg; |Sgw'pg; | =l || [Exp2java H Employee. java Hl staffEmployee.java Hl studentEmployee.java Hl D E
5 e-& ez Source | History |[@ [- B0 - |'Q B R P S R B
= -1 Source Packages
o : 1 package exp2: S
= £-EH exp2 . |
@ . P2 java 2 public class EXP2 {
" . 33 public static void main(String[] args) {
Employee.java G
staffEmployee java
5 Employee John = new Employee();
studentEmployee.java " Zonn KlyPay (10)
ohn.wee a; H
(s TestPackages yray . . B)
L T System. out.println("John's payment iz " + John.printCheck()): // Problem 1
[l g Libraries o
[&-| g TestLbraries
9 studentEmployee Mary = new studentEmplovee(): =]
10 Mary.weeklyPav(15);
11 System.out.println ("X v's payment 1s " + Mary.printCheck()): // Problem 2
12 =
13 staffEmployee Henry = new staffEmployee():
14 Henry.weeklyPay (20) : I
15 System.out.println("Hensy's payment is " + Henry.printCheck()): |/ Problenm 2
16
17| - H I
18 ¥ (a)
19
o
q n | ¢ I
| 15:72 | s
S—

. -
B9 =) N =
/ [CSEN 5303 Web Program X ', [CSEM 5303 Web Pregram X '\,

€ > C fi [javelinacode.org/net/ses2/ = = €& - C f [jevelinacodeorg/net/ses2/qlphp B ™ @ =
Dear Participant. Question 1 (1/3)
Thank vou for vour tume for participating in this research. What is the output by the statement at line # 7

marked // Problem 1 in Mam. java?
If vou have any questions. please feel free to contact

= John's pavment is 10.0
Ms. Jeong Yang at jeong. yang@tamulk.edu) John's pavment 15 100.0

- John's payment 15 0.0

Enter your K number: l:l 0 John's payment 15 150.0
Select your class enrolled:

0 CSEN 2328 Data Structures and Algorithms

0 CSEN 5303 T: Mobile Application Programming

(b) ©

Figure 37. Screenshots of (a) yo-yo problem project in NetBeans IDE,
(b) Web Page loaded for ID and Class selection, and (¢c) Web Page for the first question

o The student participants were given a short instruction about the experiment.
o They were given a consent form to sign that they agreed the participation was

voluntary and unpaid.

84

o

[¢]

They were instructed to open the Chrome browser to access JavelinaCode

(http://javelinacode.org) and to log into the system using their assigned id and

password.

Pre session activity was provided for the participants to get familiarize with

JavelinaCode system in terms of creating a project, adding Java files into the project,

editing source code, closing or deleting a file from the project, renaming a file,

compiling and running the project, checking the compact and detailed UML class

diagrams, and visualizing the run time state of program execution.

Main.java

Pl

Pl

[T=J00 - I I) BV, [WV K

-

public

pu

Shirt.java = Tshirt.java = Add Class =+
class Main{
blic static void main(String[] args){
Tshirt ts = new Tshirts(4,5);

System.out.println(ts.getShade());

Shirt s2 =
s2.wash();
s2.wash();
System.out.println(s2.getShade());

rew TShirts(1@, 4);

Main.java ~ |Shirt.java| » | Tshirt.java =~ Add Class 4+
1~ public class Shirt{
2
3 private int shade;
4
5 public Shirt (int s)
6- {
7 shade = s@;
8 ¥
9
18- public void wash () {
11 shade--;
12 1
13
14 - public int getShade() {
15 return shade;
16 }
17
18 }
19
Main.java = Shirt.java = |Tshirt.java | = Add Class =+
1- public class Tshirt extends Shirt {
2
3 private int mult;
a4
5~ public Tshirt(int s, int m) {
6 super(s);
7 mult = m;
8 }
9
18 - lic void wash() {
11 (int i = @; 1 < mult; i++)
12 super.wash();
13 ¥
14
15}
16

Figure 38. Java classes used to familiarize with JavelinaCode system

The instructor led the class to show how to use menus and how to do related activities

listed above and two graduate assistants were assigned to the instructor to observe

85

http://javelinacode.org/

and help the participants. The Java classes involved in this activity are represented in
Figure 38.

After the pre session is over, the student participants were instructed to open the
prepared Java project (project named EXP1 for the same PolyShape project) and
close the output console window.

They were instructed to take their time as much as possible until they fully
understood the code and be ready to answer questions listed section 7.3.2. This time
the visualization of UML class diagrams and program execution to the code were
provided from JavelinaCode.

To begin answering the questions, the participants were instructed to load a specific

URL and to do their best to answer each question correctly.

Figure 39 gives the screenshots of (a) the PloyShape project opened in JavelinaCode with

two aspects of static and dynamic visualizations, (b) the first web paged loaded to give an ID and

selection of classes enrolled and begin answering questions, and (c¢) a web page loaded for the

first question.

« Session 2 — Day 2

[¢]

Student participants were instructed to open the Chrome browser to access
JavelinaCode and to log into the system using their assigned id and password.

They were instructed to open the prepared Java project (project named EXP2 for the
yo-yo problem project) and close the output console window.

They were instructed to take their time as much as possible until they fully

understood the code and be ready to answer questions listed section 6.3.2. The

86

visualization of UML class diagrams and program execution to the code were

provided from JavelinaCode.

O

C M [javelinacode.org/#mode=display

TH=Q=

File View

View Class Diagram

JavelinaCode - EXP1(2016-03-04)

e compie . ran | Veuoiz rogrom Cein
Main Pjava - Cjava - ‘MEH"-JEVE - | Rjava - Sjava - AddClass + - - - -

1- public class Main { main:gl Finstance

+main(String(] args).void 2 , 4 1|20
3- public static void main(String[] args) { _ |/
2
5
6
7
8
) System.out.println(d.o(}); // Problem 1
10
11 System.out.println("Its a is " + d.a()); // Preblem 2
12
13 System.out.println{ b.o(}); // Problem 3
14 E—
15 System.out.println("Its a is " + b.a()); // Problem & instance
16
17 System.out.println{ t.o()); // problem 5 r|1.0
18]
19 System.out.println({"Its a is " + t.a()); // Problem & h(3.0
20 —

i
2Z Class Diagram
23}
24
25
s

* “String Main .

s()
+5(String nal
o] String

+main(String]] args):veld

/4

B
+dauble £ [
“w double
“rdouble -
Aldouble le_ double wi) hidouble wdouble
Ty veidauble e deubieber || 1SS a
():double
+3ldouble le} void Saridouble rarvoid
“shidoubls helvoid
“swidouble wilvoid +arlldouble
+gll):doubl Fablidoukle +all. String
i) double]
+ai-string

- -

" [CSEN 5303 Web Program X '\,

C fi [Ijavelinacode.org/jav/sesl/

ek [

- -

/[CSEN 5303 Web Program. X |

=

C f [javelinacode.org/jav/sesl/ql.php

Thank yvou for your time for participating in this research.

Dear Participant.

If vou have any questions. please feel free to contact

Ms. Jeong Yang at jeong vang @ tamulk edu.

Select vour class enrolled:
) CSEN 2328 Data Structures and Algorithms

) CSEN 5303 T: Mobile Application Programming

(b)

Question 1 (1/11)
What is the parent (super) class of the class P?

@ Class C

© Class M © Class R © Class S

(©

Figure 39. Screenshots of (a) PolyShape project in JavelinaCode,
(b) Web Page loaded for ID and Class selection, and (c) Web Page for the first question

87

e View JavelinaCode - EXP2(2016-04-05) |

(oo Jconoiean ——

e
PP —— — 1+ public class Main { main:7s Employee instance
“main(String[] args a
hour|10
3. public static void main(String[] args){ John | e——
4 Mary
5 Employee John = new Employee(); . rate| 10.0
6 John. weeklyPay(18) ; enry)
7 System.out.println("John's payment is " + John.printCheck()); // Problem 1 Return " StudentEmployee instance
voi
; o hour| 15
9 Studentemployee Mary = new Studentemployee();
10 rary . weeklyPay(15);
1 System.out.println("Mary's payment is " + Mary.printCheck()}; // Problem 2 rate|0.0
12
13 staffemployee Henry = new StaffEmployee(); StaffEmployes instance
14 Henry . weeklyPay(20);
1s System.out.println("Henry's payment is " + Henry.printCheck()); // Problem hi 20
16 e
17 } rate|0.0
18 kil
19 }
. Class Diagram

Employee
hour int
rate:double
+Employes()
ekdyPayint h)-void
+warkHoursfint h)-void
r \ 1 +hourlyRatel) voi
[1 +printCheck) double
| | |
E 1 E |
; | t | (a)
StaffEmployee StudentEmployee
+hourlyRate()-void +hourlyRate()-void
= +printChecki] double +printCheck() double

e = | [e E=nEEn |

/ [CSEN 5303 Web Program X

/[CSEN 5303 Web Program x __| -
€« > C A [javelinacode.org/jav/ses2/ e = & =& C f [javelinacode.org/jav/ses2/ql.php e =

Dear Participant. Question 1 (1/3)

Thank vou for vour time for participating in this research. What is the output by the statement at line # 7
marked // Problem 1 in Main_java?

If you have any questions, please feel free to contact
) John's payment is 10.0

© John's payment is 100.0

© John's payment is 0.0

© John's payment is 150.0

Ms. Jeong Yang at jeong.yang@tamuk.edu,

Select vour class enrolled:

CSEN 2328 Data Structures and Algorithms

' CSEN 5303 T- Mobile Application Programming

(b) (c)

S - S e =

/[CSEM 5303 Web Progran X ‘ = —

&« - C M [javelinacode.org/jav/ses2/quesl.php HE =0 =

Please indicates the degree of agreement or disagreement on the questions. (1/3)

Strongly Strongly
Disagree Agree
1. UML class diagrams help me to better understand overall) 1 - 3 4 5

structure of Java programs.

2. UML class diagrams help me to better understand
‘Object-Oriented design concepts.

3. Please add any other comment on the “UML class diagrams ™.

(d)

Figure 40. Screenshots of (a) yo-yo problem project in JavelinaCode, (b) Web Page for ID and
class selection, (c) Web Page for the first question, and (d) sample page for usability questions

88

o To begin answering the questions, the participants were instructed to load a specific
URL and to do their best to answer each question correctly
o Figure 40 gives the screenshots of (a) the yo-yo problem project opened in
JavelinaCode with two aspects of static and dynamic visualizations, (b) the first web
page loaded to give an ID and selection of classes enrolled and begin answering
questions, (c) a web page loaded for the first question, and (d) a sample web page for
usability questions.
o After the source code related questions were answered, a series of visualization and
usability related questions described in Tables 8. 9, and 10 in section 6.4.1 were asked to

gather data on how satisfied the participants were with JavelinaCode.

6.3.4.3 Results

Response Time

The average response time is the total average time taken to respond each question. Figure 41
shows the comparison of the average response times taken to answer questions related to the
PloyShape project by both groups (group 1: the controlled group with source code in plain text
using NetBeans IDE and group 2: the experimental group with the same code along with
visualizations using JavelinaCode). While the average response times in group 2 for six
questions (ql, 92, g4, q6, g8, q10) are less than the ones in group 1, as shown in Table 4, the
statistical analysis reveals that there is no significant difference between two groups in terms of

the response time.

89

Average Response Time - Experiment 1 with PolyShape Project

120

100

80

60

Time in Second

o

Question

40
0 i
ql q2 q3 qd q5 qb q7 q8 q9

ql0

qll

M Source code in plain text in NetBeans |48.4645 33.2967 30.8282 25.467 51.6985 96.8967 36.1088 32.0407 19.6015 37.5295 23.5907
M Source code with visualizations in
JavelinaCode

Figure 41. Comparison of average response time with PolyShape project

32.9067 22.24 51.8054 12.2408 102.426 76.0851 50.0748 25.6624 27.607 33.9203 26.3992

Average Response Time - Experiment 1 with yo-yo Problem Project

gl g2 a3

120

100

[a=)
(=]

Timein Sceond

M Source code in plain text in NetBeans

M Source code with visualizations in

Figure 42. Comparison of average response time with yo-yo problem project

JavelinaCode

Table 4. Statistical evaluation of response time in Experiment 1

96.435

85.646

Question
32.208

40.177

34.853

46.699

Mean (Time | Standard .
in Second) | Deviation Observation K-S t p
Session 1 with Gl 39.593 21.340 0.14
PolyShape project | G2 | 41.942 | 26.676 i 027 | 0378 | 037
Session 2 with yo- | Gl 54.499 36.342
yo problem project | G2 57.507 24.586 3 0.58 -0.430 | 0.354

G1 denotes ‘Controlled Group’ and G2 denotes ‘Experimental Group’.

90

Figure 42 shows the comparison of the average response time taken to answer each
question related to the yo-yo problem project by both groups. As shown in Table 4, the
statistical analysis again reveals that there is no significant difference between two groups in

terms of the response time.

Correctness

The correctness is the total percentage of correct responses to each question. Figure 43
shows the comparison of the correctness to answer questions related to the PloyShape project
by both groups. While the correctness for 9 questions (81.81%: ql, g2, q3, q4, 96, q7, q9, q10,
qll) in group 2 are equal to or higher than the ones in group 1, as shown in Table 5, the
statistical analysis reveals that there is a significant difference between two groups in terms of
the correctness. The result of t-test rejects the first null hypothesis and accepts the alternative
hypothesis, which means that the correctness is statistically significantly increased by the

availability of both visualizations in JavelinaCode as the p-value is with 0.025.

Figure 44 shows the comparison of the correctness to answer each question related to the
yo-yo problem project by both groups. Although the correctness for all three questions (100%:
ql, g2, q3) in group 2 are equal to or higher than the ones in group 1, as shown in Table 5, the
statistical analysis reveals that there is no significant difference between two groups in terms
of the correctness. This is due to higher variances with a relatively smaller sample size,

(observation 3).

91

Correctness - Experiment 1 with PolyShape Project

120

100

8
0 I
ql q2 q3 q4 q5 q6 q7 q8 q9

ql0 qll

Percentage
3 3

o

[
o

Question
W Source code in plain text in NetBeans 66.67 | 100 @ 33.33 50 66.67 66.67 83.33 100 100 | 66.67 83.33

B Source code with visualizations in

. 100 100 50 50 60 100 90 90 100 90 100
JavelinaCode

Figure 43. Comparison of correctness with PolyShape project

Correctness - Experiment 1 with yo-yo Problem Project

120
100
80
2
= 60
8
5 40
a
20
0
ql q2 q3
Question
m Source code in plain text in NetBeans 100 0 0
® Source code with visualizations in 100 70 80

JavelinaCode

Figure 44. Comparison of correctness with yo-yo problem project

Table 5. Statistical evaluation of correctness in Experiment 1

Mean Standard .
(Percentage) Deviation Observation | K-S t p
Session I with | Gl 74243 21.556 0.62
PolyShape project | G2 | 84.545 20.671 1 015 | 2232 | 0025
Session 2 with yo- | G1 33.333 57.735
yo problem project | G2 83.333 15.275 3 0.518 | -1.987 | 0.093

G1 denotes ‘Controlled Group’ and G2 denotes ‘Experimental Group’.
92

6.3.5 Experiment 2

The same hypotheses were applied for this experiment that students would respond faster and
with higher accuracy for program tracing and understanding using both static and dynamic

visualizations in JavelinaCode.

6.3.5.1 Participants

Seventy five graduate level computer science major students enrolled in Mobile Application
Programming (Android platform) at Texas A&M University-Kingsville participated in this

experiment. The student participants are considered as relative experts in the experimental task.

6.3.5.2 Method and Procedure

Student participants were divided into two groups. One controlled group was given Java
projects in plain text with NetBeans IDE while the other experimental group was given the same
Java projects with two aspects of static UML class diagrams and dynamic run time visualization
of program execution in JavelinaCode. To equally balance two groups for reliable results, the
selection of the participants was based on their cumulated grade for the course. The experimental
method and procedure for both controlled and experimental groups were the same described in
section 6.3.4.2 for Experiment 1. Both the amount of time taken to answer each question and the
correctness of the solution were recorded. To record responses and response times accurately, the

questions were presented in a series of web pages.

6.3.5.3 Results

93

Response Time

Figure 45 shows the comparison of the average response times taken to answer questions
related to the PloyShape project by both groups. While the average response times in group 2 for
five questions (ql, g2, g8, q10, and q11) are less than the ones in group 1, as shown in Table 6,
the statistical analysis reveals that there is no significant difference between two groups in terms

of the response time.

Figure 46 shows the comparison of the average response time taken to answer questions
related to the yo-yo problem project by both groups. As shown in Table 6, the statistical analysis
reveals that there is a significant difference between two groups in terms of the response time.
The result of t-test rejects the second null hypothesis, which means that the response time is
statistically significantly increased by the availability of both visualizations in JavelinaCode as

the p-value is with 0.012. This is a new finding of an opposite result of what is expected.

Average Response time - Experiment 2 with PolyShape Project

120
100

80

ql q2 q3 q4 q5 q6 q7 q8 q9

ql0 qll

Time in Second
[*2]
o

B
o

N
o

Question
B Source code in plain text in NetBeans 55.642 54.187 44.366 32.013 96.009 113.69 45989 49.918 29.112 48.768 28.674

B Source code with visualizations in

. 50.879 30.776 69.428 33.007 111.78 113.79 59.129 37.989 33.3 40.503 23.155
JavelinaCode

Figure 45. Comparison of average response time with PolyShape project

94

Average Reaponse Time - Experiment 2 with yo-yo Problem Project

140

120
- 100
c
g =
[
£ 60
@
£ 40
=
0
ql q2 q3
Question
M Source code in plain text in NetBeans 89.38709 51.89285 30.70912
M Source code with visualizations in 1216161 69.81833 5793843

JavelinaCode

Figure 46. Comparison of average response time with yo-yo problem project

Table 6. Statistical evaluation of response time in Experiment 2

Mean (Time | Standard .
in Second) | Deviation Observation | = K-S t P
Session 1 with Gl 54.398 26.971 0.08
PolyShape project G2 54.886 31.587 1 0.46 0.118 1 0.454
Session 2 with yo- Gl 57.330 29.714
yo problem project | G2 83.124 33.860 3 0.518 | -6.155 | 0.012

G1 denotes ‘Controlled Group’ and G2 denotes ‘Experimental Group’.

Correctness

Figure 47 and 48 show the comparison of the correctness to answer questions related to
the PloyShape project and the yo-yo problem project respectively by both groups. While the
correctness for 8 questions (72.73%: q2, q3, 94, 95, 96, q7, 99, and q11) in group 2 are higher
than the ones in group 1 for the session 1, the correctness for all three questions (100%: ql,
g2, q3) in group 2 are also higher than the ones in group 1 for the session 2. As shown in
Table 7, the statistical analysis reveals that there is a significant difference between the two

groups in terms of the correctness for both sessions with two different projects. The results of

95

t-test reject the first null hypothesis and accept the alternative hypothesis, which means that
the correctness is statistically significantly increased by the availability of both visualizations
in JavelinaCode as the p-value is with 0.027 for the PloyShpe project and 0.006 for the yo-yo
problem project.

Correctness - Experiment 2 with PolyShape Project

120

100

0
ql q2 q3 q4 q5 q6 q/ a8 q9

ql0 qll

8

Percentage
g

(=]
(=]

Question
B Source code in plain text in NetBeans ' 96.97 93.94 | 60.61 = 39.4 | 57.58 72.73 | 63.64 78.7/9 | 78.79 78./9 84.85

M Source code with visualizations in

. 95.12 100 65.85 56.1 97.56 78.05 70.73 78.49 878 7561 878
JavelinaCode

Figure 47. Comparison of correctness with PolyShape project

Correctness - Experiment 2 with yo-yo Problem Project

120
100
& 80
©
T &0
(]
2
2 40
B] []
0
ql q2 q3
Question
B Source code in plain text in NetBeans 64.71 23.53 2941
® Source code with visualizations in 95.35 67.44 72.00

lavelinaCode

Figure 48. Comparison of correctness with yo-yo problem project

96

Table 7. Statistical evaluation of correctness in Experiment 2

Mean Standard .
(Percentage) | Deviation Observation | K-8 t p
Session 1 with Gl 73.281 16.915 0.93
PolyShape project | G2 81.192 13.877 1 0.99 | 2190 | 0027
Session 2 with yo- Gl 39.127 22.273
yo problem project G2 78.293 14.953 3 0.1 | -9.231 | 0.006

G1 denotes ‘Controlled Group’ and G2 denotes ‘Experimental Group’.

In summary, it was observed that students in the experimental group using two aspects of
visualizations in JavelinaCode consistently performed better to correctly respond to questions on
program understanding for both relatively easy and hard questions than the controlled group.
Therefore, the statistical analysis of the experimental data supports the conclusion that having
both static and dynamic visualizations available in JavelinaCode does positively impact the
correctness of solving problems. The analysis also helps draw a conclusion that having both static
and dynamic visualizations available in JavelinaCode does positively impact on increasing the
correctness of solving problems, in particular, for relatively difficult questions (yo-yo problem

project).

6.4 Qualitative Evaluation

The qualitative study is designed to access whether using JavelinaCode with the
synchronized static and dynamic visualization could contribute to its goals of meeting user’s
needs and providing satisfaction. Satisfaction is regarded as the users’ subjective reaction,
comfort and positive attitude with using a system. In this study, the questionnaires with the
System Usability Scale (SUS) suggested by ISO standard 9241 [50] are used to gather data on
how satisfied users were with JavelinaCode. The degree of disagreement or agreement on a 5

point rating scale is ranged from 1 ‘Strongly Disagree’ to 5 ‘Strongly Agree’.
97

6.4.1 Objectives and Questionnaire

For student users, the main objectives of the evaluation can be established in the following:

a. Do the UML class diagrams in JavelinaCode support student’s understanding of object-

oriented concepts?

b. Does the run-time visualization in JvaelinaCode support student’s understanding of

object-oriented programming?

c. Does the JavelinaCode system make learning of object-oriented program easier?

d. Is the JavelinaCode system easy to use?

e. Are students satisfied and comfortable using the JavelinaCode system?

Background related questions for student’s class status, major, and rating in Java were

formed as shown in Table 8. As described in Tables 9 and 10, the questionnaires related to

visualizations and usability of the JavelinaCode system were formed to measure attainment of

the objectives addressed above.

Table 8. Background questions

Background questions

1. What is your class status? a. Freshman b. Sophomore c. Junior d. Senior e. Graduate
2. What is your major? a. Computer Science b. Electrical Engineering c. Other

3. How do you rate yourself in Java? a. Beginner b. Advanced beginner c. Competent

d. Proficient e. Expert

Table 9. Visualization related questions

Associated
objectives

UML class diagram related questions

98

1. UML class diagrams helped me better understand overall structure of Java
programs.a. 1 b. 2 ¢ 3 d 4 e 5

2. UML class diagrams help me to better understand Object-Oriented design
concepts. a. 1 b. 2 ¢ 3 d 4 e 5

3. Please add any other comment on the “UML class diagrams”.

Run time visualization related questions

4. I understand the “dynamic run time visualization of Java program
execution”.
a. 1 b.2 ¢ 3 d 4 e 5

5. The “dynamic run time visualization of Java program execution” helps me
correct and improve the quality of my program.
a. 1 b. 2 ¢ 3 d 4 e 5

6. Please add any other comment on the “dynamic run time visualization of
Java program execution”.

Synchronized UML diagrams and run time visualization related questions

7. Synchronized UML class diagram and run time visualization along with
source code make it easier for me to comprehend Java program.
a. 1 b. 2 ¢ 3 d 4 e 5

8. Synchronized UML class diagram and run time visualization along with
source code alleviate the intimidation of Java programming.
a. 1 b. 2 ¢ 3 d 4 e 5

9. Which visualization aspect was more useful to comprehend the code?
a. UML class diagrams b. Run time visualization c. Both

Table 10. Usability related questions

Associated
objectives

Usability related questions

d

1. JavelinaCode makes it easier for me to start writing Java programs.
a. 1 b. 2 ¢ 3 d 4 e 5

2. The interface of JavelinaCode is user friendly.
a. 1 b.2 ¢ 3 d 4 e 5

3. JavelinaCode is easy to use.
a. 1 b.2 ¢ 3 d 4 e 5

4. 1 enjoy the time I spent using JavelianCode.
a. 1 b. 2 ¢ 3 d 4 e 5

5. Working with JavelinaCode is satisfying.
a. 1 b.2 ¢ 3 d 4 e 5

99

d 6. The way that JavelinaCode is presented is clear and understandable.
a. 1 b. 2 ¢ 3 d 4 e 5

7. 1 was comfortable in programming with JavelinaCode.

© a 1b 2 ¢ 3 d 4 e 5

8. I would like to use JavelinaCode for the rest of the subject
© a 1b 2 ¢ 3 d 4 e 5
. 9. The speed of using JavelinaCod is fair enough.

a. 1 b. 2 ¢ 3 d. 4 e 5

10. Please specify any difficulties or problems you have encountered while
using JavelinaCode?

11. Please specify key benefits of using JavelinaCode.

12. What do you think needs most important improvement on JavelinaCode,
and why?

6.4.2 Participants

41 students (6 undergraduates and 35 graduates) out of 52 students from the experimental
groups of both Experiment 1 and Experiment 2 participated in this evaluation. They experienced
the JavelinaCode system through two sessions of both experiments for about one and half hours
before taking the questionnaire. As shown in Figure 53, among the 41 respondents, the majority,
29 (71%) of respondents indicated that they were either an advanced beginner or competent in
rating themselves in Java. All respondents were Computer Science majors: including thirty five

graduates, four seniors, and two sophomores.

6.4.3 Method

In both Experiments 1 and 2, after the completion of the questions related to the source code
in session 2, a series of visualization and usability related questions described in Tables 8, 9, and
10 were asked for the participants to rate the degree of disagreement or agreement on a 5 point

rating scale and gather data on how satisfied the participants were with JavelinaCode.
100

Rate in Java

0%

M Beginner (5)

m Advanced Beginner (16)
Competent (13)
Proficient (7)

M Expert (0)

Figure 53. Rate students in Java

6.4.4 Results and Discussion for Aspect of Visualizations

Aspect of static visualization in UML class diagrams

Question 1: UML class diagrams help me better understand overall structure of Java

programs.

For the UML class diagram related question #1, among the 41 respondents, 40 (98%)
respondents indicated that they strongly agreed or agreed that the UML diagrams helped them
better understand overall structure of Java programs as shown in Figure 54 (mean agreement

rating = 4.44).

Question 2: UML class diagrams help me better understand Object-Oriented design

concepts.

For the UML class diagram related question #2, among the 41 respondents, the majority, 37

(88%) of respondents indicated that they strongly agreed or agreed that UML class diagrams

101

helped them to better understand Object-Oriented design concepts as shown in Figure 55 (mean

agreement rating = 4.39).

UML Class Diagram Related Question 1 UML Class Diagram Related Question 2

0% 2%
0%
\ | D

\ 49%

12% 0%

\/_o%

M5 Strongly Agree (21)
m4(15)

W 5 Strongly Agree (20)
m4(20)
3(0) 3(s)

49%

2(1) 2(0)

M 1 Strongly Disagree (0) M1 Strongly Disagree (0)

Figure 54. UML class diagram related question 1 ~ Figure 55. UML class diagram related question 2

Question 3: Please add any other comment on the “UML class diagrams”.

Overall, student respondents were satisfied with the aspect of static visualization in both
compact and detailed UML class diagrams provided in JavelinaCode. As an illustration of this

point, general responses include:

o Those are good to understand.

o [t helps in better understanding of code.

o The UML diagram is an easy way to understand how the execution works.

e Very good idea.

o With the UML diagram, I was quickly able to understand the structure of program,

o Useful and self-explanatory.

o They help to understand how the Java programs are structured.

o UML Diagrams helps us to understand the code structure in a simple and better way.
o It helps to understand the flow of the program.

o Very self-explanatory and great visualizations. Clean interface and very nice flow.

e Nice feature!
102

Aspect of dynamic run time visualization in program execution

Question 1: I understand the “dynamic run time visualization of Java program execution”.

For the run time visualization related question #1, among the 41 respondents, 40 (97%)
respondents indicated that they strongly agreed or agreed that I understood the “dynamic run
time visualization of Java program execution provided in JavelinaCode as shown in Figure 56

(mean agreement rating = 4.61).

Run Time Visualization Related Question 1 Run Time Visualization Related Question 2
3% N 14% OT/O%
| 5 Strongly Agree (26) W5 Strongly Agree (24)
4 (14) m4(13)
3(1) 3(6)
2(0) 2(0)
M 1 Strongly Disagree (0) M 1 Strongly Disagree (0)

Figure 56. Run time visualization related question 1 Figure 57. Run time visualization related question 2

Question 2: The “dynamic run time visualization of Java program execution” helps me

correct and improve the quality of my program.

For the run time visualization related question #2, among the 41 respondents, the majority,
37 (86%) respondents indicated that they strongly agreed or agreed that the “dynamic run time
visualization of Java program execution” helped them correct and improve the quality of their

program as shown in Figure 57 (mean agreement rating = 4.39).

103

Question 3: Please add any other comment on the “dynamic run time visualization of Java

program execution”.

Overall, student respondents were satisfied with the aspect of run time visualization of
program execution provided in JavelinaCode. As an illustration of this point, general responses

include:

o Gives better understanding of how code executes and what is output at each step.

e Dynamic run time visualization of Java program execution helps in understanding the
logic of program.

o With the dynamic run time visualization it was very to understand the structure of
classes.

o Freshmen can easily get interest on java.

o Code comprehension become easy by dynamic run time visualization.

o Easy to understand.

o Excellent.

e Dynamic visualization helps to better comprehend the program.

Two aspects of synchronized static and dynamic visualizations

Question 1: Synchronized UML class diagram and run time visualization along with source

code make it easier for me to comprehend Java program.

104

For the two aspects of synchronized static and dynamic visualization related question #1,
among the 41 respondents, 38 (93%) respondents indicated that they strongly agreed or agreed

that both visualizations together helped them to make easier to Java programs (Figure 58).

Question 2: Synchronized UML class diagram and run time visualization along with source

code alleviate the intimidation of Java programming.

Both Static and Dynamic Visualization

Both Static and Dynamic Visualization
Related Question 1

Related Question 2

5%

0%

-

2%
0% | /—0%
W 5 Strongly Agree (25) N W 5 Strongly Agree (21)
m4(13) m4(11)
3(1) 3(8)
2(2) 2(1)
W 1 Strongly Disagree (0) W 1 Strongly Disagree (0)

Figure 58. Both static and dynamic visualization Figure 59. Both static and dynamic visualization
related question 1 related question 2

For the two aspects of synchronized static and dynamic visualization related question #2,
among the 41 respondents, 33 (78%) respondents indicated that they strongly agreed or agreed

that both visualizations together could alleviate the intimidation of Java programming (Figure

59).
Question 3: Which visualization aspect was more useful to comprehend the code?

For the two aspects of synchronized static and dynamic visualization related question #3,

among the 41 respondents, the majority, 31 (76%) respondents indicated that both visualization

105

together was useful in comprehending code and 9 (22%) of them indicated that the dynamic run

time visualization was useful (Figure 60).

Both Static and Dynamic Visualization
Related Question 3

2%

22% \ W Both (31)
M Dynamic Run Time (9)

Static UML (1)

Figure 60. Both static and dynamic visualization related question 3

Figure 61 and Table 11 show the mean rating and percentage agreement for each of the
visualization related questions. The mean ratings for all six questions ranged between 4.268 and
4.610, which can be considered as the respondents agreed highly for all questions. The
respondents agreed most that the UML diagrams helped them to better understand overall
structure of Java programs and they properly used and understood the “dynamic run time

visualization of Java program execution provided in JavelinaCode.

6.4.5 Results and Discussion for Usability of the System

Figure 62 and Table 12 show the mean rating and percentage agreement for each of the
usability related questions described in Table 10. The mean ratings for the first nine questions

ranged between 4.415 and 4.683, which can be considered as the respondents mostly agreed for

106

all questions. Most respondents highly agreed that JavelinaCode is easy to use, they were

comfortable in programming with it, and they’d like to use it for the rest of the subject.

Mean Rating
5 4439 439 &bt 4392 4.488 4268
4
3 3
m
-
2
1
0
ql q2 q4 g5 q7 q8
Question

Figure 61. Mean rating for visualization related questions

Table 11. Mean rating and percent agreement for visualization related questions

Ovjeeive | Questont | pltety | 2 | 3 | 4 | AgmesS | Ratmg | Agee
a Question 1 0 1 0 20 20 4.439 97.56%
a Question 2 0 0 5 15 21 4.390 87.80%
b Question 4 0 0 1 14 26 4.610 97.56%
b Question 5 0 0 6 13 22 4.392 85.37%
c Question 7 0 2 1 13 25 4.488 92.68%
c Question 8 0 1 8 11 21 4.268 78.05%

*Percent Agree (%) = Strongly Agree (5) and Agree (4) responses combined.

In the last three questions of the questionnaire, student participants were asked to provide
additional suggestions or comments on the JavelinaCode system regarading any difficulties, key

benefits, and needed improvements.

Question 10: Please specify any difficulties or problems you have encountered while using

JavelinaCode?

107

Mean Rating

4.683

5 SN 4512 4512 4561 4537 au30 4488
4
g 3
[}
(- 3
2
1
0

ql q2 g3 a4 a5 a6 a7 a8 q9

Question

Figure 62. Mean rating for usability related questions

Table 12. Mean rating and percent agreement for usability related questions

fbjectve | Questiont | iUl 2 | 3 | 4 | Agee | Ratmg | A
d Question 1 0 0 6 12 23 4.415 85.37%
e Question 2 0 0 6 9 26 4.488 85.37%
d Question 3 0 0 3 7 31 4.683 92.68%
e Question 4 0 1 4 9 27 4.512 87.80%
e Question 5 0 1 5 7 28 4.512 85.37%
d Question 6 0 0 3 12 26 4.561 92.68%
e Question 7 0 0 3 13 25 4.537 92.68%
e Question 8 0 1 2 16 22 4.439 92.68%
e Question 9 0 0 4 13 24 4.488 90.24%

*Percent Agree (%) = Strongly Agree (5) and Agree (4) responses combined.

For the question regarding any difficulties or problems using JavelinaCode, some student
respondents have pointed out that the speed of visualizing the code was little slow and the error
messages were not informatively displayed. 11 respondents indicated no difficulties or problems.

As an illustration of this question, the following are general responses:

108

o Errors during the execution of the program are not specific. Where the error has been
made is not showing and its showing some piece of code which is not understood.

o While deleting a class that was created by mistake it faced a difficulty in removing it from
the work-space.

o System take much time to visualize the code.

o Everything was good but to find out the specific errors occurred in program.

e The machines we used were a little slow.

Question 11: Please specify key benefits of using JavelinaCode.

For the question specifying key benefits of using JavelianCdoe, 23 respondents positively
commented. Overall, they were satisfied using JavelinaCode, which is simple, user friendly,
understandable, and easy to use. They mentioned that both UML class diagrams and run time
visualization techniques helped them understand the code better, the flow of program and the
structure of inheritance and classes. Many of them also commented that one of the key features
of using JavelinaCode is online with no installation of software, which they can use and benefit
from it on any device to compile software and test programs. As an illustration of this question,

the following are general responses:

o UML class diagrams and visualization tool adds the beauty to JavelinaCode which makes
understanding of the program easily.

o Simple and understandable.

o User friendly.

o The Key benefits of using the JavelinaCode is having the facility to work online and get a
UML understanding of the code.

o Excellent to use.

o UML diagram.

o UML diagrams and visualization makes it better.

109

Helps in understanding the code better through visualization.

Good Ul and easy to use.

It makes me easier to understand the code and interaction between code and how it
behaves.

Easy and simple.

Online.

Would help to understand the java code step by step.

We can learn java code perfectly .we can understand the java code.

Clarity on java oops concepts.

Dynamic visualization.

CAN UNDERSTAND CLEARLY AND USER FRIENDLY.

Can understand clearly.

Dynamic Visualization and Run time helped me to understand the working of the code.
UML Visualization makes it a simpler task in debugging code and to understand the
program flow.

It is simple and user friendly because of visualization I could easily get the outputs and
other necessary stuff really easy instead of understanding each and every line of the
code.

It helps me to understand my code better, the flow of the program and structure of
inheritance and classes.

Using JavelinaCode helps in understanding the code flow. This in turn helps in writing
better code.

Software is online, no installation of software on my PC, online debugging is a plus. |
can use this from any device to compile software and test small programs.

Easy file creation, entire project is stored online, program tracer feature

The UML Diagrams are very nice and helpful and the compiler setup is simple and not
hard to use.

1 think the run time visualization is the best.

It will be easier for professors to show us a program and will be helpful to explain to

students how that program will run in a step-by-step process.

110

o Easier to follow along with the coding.

Question 12: What do you think needs most important improvement on JavelinaCode, and

why?

For the question asking any improvement on JavelinaCode, a few respondents commented
that specifying the errors during editing programs and after executing the programs can be
improved, and the execution speed can be also improved. The supporting of other programming
languages was a good suggestion by two respondents. As an illustration of this question, the

following are general responses:

o Specifying the error during the typing of the program or at the end of execution such that
it shows the exact line where the mistake has been done.

o It may helpful higher than previous, if we make it as more user friendly.

o Able to visualize proper flow of execution

o The LOOK & Feel can be better along with a user tutorial to understand the working of
the IDE. The speed of the Execution can be improved!

e Responsiveness

o Execution speed can be improved

o FErrors solving

e Run-time and Execution.

o Visualize Program can be improved by adding more details and it lags a little bit so can
improve that also.

o [It’s perfect.

o Satisfied with the site.

o Support for more languages.

o Supporting other languages would be a very good enhancement. Also, you may add

various coding problems to the repository and allow user to solve those and submit. Give

111

a detailed statistics of the code considering the run time complexity and space

complexity. Solution optimization techniques.

6.4.6 Results and Discussion for Associated Objectives

To access whether using JavelinaCode with synchronized static and dynamic visualization
could contribute to achieve its goal of meeting user’s needs, evaluation results for objectives
established in section 6.4.1 are analyzed. Table 13 demonstrates which objective is associated
and addressed by which questions, and shows the mean rating and percent agreement for each

objective from the combined data associated with.

Objective a: Do the UML class diagrams in JavelinaCode support student’s understanding of

object-oriented concepts?

This objective was addressed by the visualization related questions 1 and 2. 41 participants
completed the questions and 92.68% of them strongly agreed or agreed that the UML class
diagrams in JavelinaCode helped them understand object-oriented concepts (mean agreement

rating = 4.415).

Objective b: Does the run-time visualization in JvaelinaCode support students’

understanding of object-oriented programming?

This objective was addressed by the visualization related questions 4 and 5. 91.46% of the
participants strongly agreed or agreed that the run-time visualization in JvaelinaCode supported

their understanding of object-oriented programming (mean agreement rating = 4.501).

112

Table 13. Mean rating and percent agreement for associated objectives

Associated . Strongly Strongly Mean | *Percent
Objective Questions Disagree (1) 2 3 4 Agree(5) | Rating Agree
Visualization related
a Questions 1 & 2 0 1 5 35 41 4.415 92.68%
Visualization related
b Questions 4 & 5 0 0 7 27 48 4.501 91.46%
Visualization related
c Questions 7 & 8 0 3 9 24 46 4.378 87.5%
Usability related
d Questions 1, 3, & 6 0 0 12 | 31 80 4.553 91.74%
Usability related
e Questions 2, 4, 5, 7, 0 3 24 67 152 4.496 89.02%
8, &9

*Percent Agree (%) = Strongly Agree (5) and Agree (4) responses combined.

Objective c: Does the JavelinaCode system make learning of object-oriented program

easier?

This objective was addressed by the visualization related questions 7 and 8. 87.5% of the
participants strongly agreed or agreed that JavelinaCode system made their learning of object-

oriented program easier (mean agreement rating = 4.378).

Objective d: Is the JavelinaCode system easy to use?

This objective was addressed by the usability related questions 1, 3, and 6. 91.74% of the
participants strongly agreed or agreed that JavelinaCode system was easy to use (mean

agreement rating = 4.553).

Objective e: Are students satisfied and comfortable using the JavelinaCode system?

113

This objective was addressed by the usability related questions 2, 4, 5, 7, 8, and 9. 89.02% of
the participants strongly agreed or agreed that they were satisfied and comfortable using

JavelinaCode system (mean agreement rating = 4.496).

114

7 Conclusion and Future Work

The motivations of this research are that the difficulty for students to learn the Java
programming language, a lack of programming environments for student programmers, and the

difficulties of installing IDEs or plug-ins and setting up system environments.

While the Java language has been widely adopted as an introductory programming course in
Computer Science, it has been known for being complex and difficult for students to learn due to
its underlying Object-Oriented (OO) concepts and principles [19, 38]. Visualizations in various
formats have been added to programming environments to help students better understand source
code. Some only provide visual notations without source code, while others support a single
aspect, structural or functional behavior, of the program. Despite all the efforts made, it is still
difficult to match directly the source code to its visual notation due to separate windows for code
and illustrations [7]. In addition, most IDEs including Eclipse and NetBeans provide static views
of the program source code, but studies have pointed out that with only the static information, it
is hard to understand the runtime behavior of the program, especially when polymorphism and
dynamic binding are present in the code [7, 38]. It has been suggested to provide an approach
which combines static and dynamic information together with the source code, which could
reduce the burden of a complex mental simulation in the programmer’s mind. Studies have also

found that novice programmers often face difficulties in installing IDEs and Java Development

115

Kit (JDK) and in setting up and modifying system environment variables on their local machines

[4, 39]. Downloading and installing software is a mandatory process to even start programming.

In order to deal with these issues, this research proposed an approach to provide source code
along with static structural and dynamic behavioral visualizations in a web-based programming
environment, JavelinaCode. The aim of this approach is to help student programmers better
understand static structure and runtime behavior of a Java program, and to improve their ability
to comprehend object-oriented programming concepts, thereby reducing their cognitive

workload in Java programming through an effective development environment.

Using JavelinaCode, student programmers can write Java programs directly in a frontend
web browser without any software or plug-in installation. They are provided with a view of the
static state of a Java program in UML class diagrams and the dynamic run-time state of the
program by stepping forward and backward through program execution. A case study simulating
the yo-yo effect has revealed that our approach is useful, in particular, to easily trace and detect
an object flow anomaly caused by method overriding and polymorphism. A preliminary
comparison test result also has shown that through our web-based platform-independent
environment, student programmers are freed from concern with continuous version changes and

evolutions of the Java language, plug-ins, and operating systems.

To investigate the educational effectiveness of JavleinaCode with static and dynamic
visualizations, both quantitative and qualitative evaluation experiments were designed. In the
quantitative evaluation, two controlled experiments were conducted to test hypotheses on student

performance on OO programming tasks. The null hypotheses were a) having both static and

116

dynamic visualizations available in JavelinaCode would not impact the correctness of solving
problems, and b) having both static and dynamic visualizations available in JavelinaCode would
not impact the time for solving programming problems. The goal of the experiments was to
determine if students would be able to write Java program more accurately and in less time using
the synchronized static and dynamic visualizations provided in JavelinaCode. The experiments
were conducted using different levels of difficulty on program understanding, i.e., one for a
relatively easy project and the other for a relatively hard project while both incorporate
fundamental OO concepts such as inheritance and polymorphism. In the qualitative evaluation,
the student feedback on the usability of JavelinaCode interface was gathered and evaluated by
means of a debriefing usability related questionnaire. This was to investigate whether the
JavelinaCode environment would help students make their OOP learning easier and help their
understanding of OO concepts, and whether the interface would contribute to meeting its goals of

providing satisfaction.

The results of the quantitative evaluation from the experiments support the conclusion that
students in the experimental group using two aspects of visualizations in JavelinaCode
consistently performed better to questions on program understanding than the controlled group.
The application of t-tests rejects the first null hypothesis and accepts the alternative hypothesis
meaning the correctness is statistically and significantly increased by the availability of both static
and dynamic visualizations along with source code in JavelinaCode. This is evident that the p-
values of 0.025 and 0.027 from Experiment 1 and Experiment 2 respectively are for the relatively
easy project and 0.006 is for the relatively hard project considerably. All are lower than a = 0.05.

Therefore, the statistical analysis of the experimental data supports the conclusion that having

117

both static and dynamic visualizations in JavelinaCode does positively impact the correctness of

solving problems.

In testing the second hypothesis regarding the response time, the statistical analysis from
Experiment 2 reveals that, for the relatively hard project (yo-yo problem project), there is a
significant difference between the controlled group and the experimental group. While the result
of t-test does not accept the second alternative hypothesis, it rejects the second null hypothesis,
which means that the response time is significantly increased by the availability of both
visualizations in JavelinaCode with the p-values of 0.012 from Experiment 2. This is an
interesting finding of how both visualizations did affect student understanding on program
execution. Students took longer to answer, in particular, the relatively difficult questions using the
visualizations supported in JavelinaCode, which led to higher accuracy for answering the

questions correctly.

The results of the qualitative evaluation support the positive effect of JevelinaCode on helping
students better understand OO concepts and meeting goals of providing comfortability and
satisfaction. From the observations of visualization related questions during the qualitative
evaluation, the mean ratings of all six questions remain high and consistently range between 4.268
and 4.610. With the percentage agreements ranging between 78.05% and 97.56%, the subjects
strongly agreed or agreed that UML class diagrams helped them better understand overall
structure of Java programs (mean agreement rating = 4.4439) and Object-Oriented design
concepts (mean agreement rating = 4.390), they understood the “dynamic run time visualization
of Java program execution” (mean agreement rating = 4.610), the “dynamic run time

visualization of Java program execution” helped them improve the quality of the program (mean

118

agreement rating = 4.392), and the synchronized UML class diagram and run time visualization
made it easier for them to comprehend Java program (mean agreement rating = 4.488) and

alleviated the intimidation of Java programming (mean agreement rating = 4.268).

From the observations of the usability related questions, the mean ratings are high and
consistently ranging between 4.415 and 4.683 along with high percentage of agreements (78.05%
- 97.56%) throughout all questions. With percentage agreements ranging between 85.37% and
92.68%, the subjects strongly agreed or agreed that JavelinaCode was easy to use (mean
agreement rating = 4.683), they enjoyed the time spent using JavelianCode (mean agreement
rating = 4.512), working with JavelinaCode was satisfying (mean agreement rating = 4.512), the
way that JavelinaCode presented was clear and understandable (mean agreement rating = 4.561),

and they were comfortable in programming with JavelinaCode (mean agreement rating = 4.537).

For the associated objectives to access whether or not the visualizations in JavelinaCode could
contribute to achieving its goal of meeting user’s satisfaction, the mean ratings of all objectives
remain high and consistently ranging between 4.378 and 4.553. With percentage agreements
ranging between 87.5% and 92.68%, the subjects strongly agreed or agreed that the UML class
diagrams in JavelinaCode helped them understand object-oriented concepts (mean agreement
rating = 4.415). The run-time visualization in JvaelinaCode also supported their understanding of
object-oriented programming (mean agreement rating = 4.501), made their learning of object-
oriented program easier (mean agreement rating = 4.378), was easy to use (mean agreement rating
= 4.553), and they were satisfied and comfortable using JavelinaCode system (mean agreement

rating = 4.496).

119

For the questions regarding any difficulties or improvements in using JavelinaCode, a few
subjects have pointed out that the speed of visualizing the code was a little slow and error
messages were not informatively displayed. Therefore, specifying detailed error messages during
editing and executing programs can be improved, and the execution speed of visualization can
also be improved. However, while only several students expressed their concerns about the speed
and error message displaying in JavelinaCode, thirty-three students did specify key benefits of
using JavelinaCode. It was clearly observed that they were very satisfied using JavelinaCode - it
is simple, user friendly, understandable, and easy to use. They mentioned that both UML class
diagrams and run time visualization techniques helped them understand the code better, i.e., flow
of program and the structure of inheritance and classes. Many of them also commented that one
of the key features of using JavelinaCode is its online accessibility with no software installation,

which can be used on any device.

7.1 Contributions and Benefits

This research has presented an approach to better support OOP learning in Java by providing
synchronized static and dynamic visualizations of source code in a web-based programming
environment, JavelinaCode. Following the best practices of OOP, its design principles are:
providing easy access to the programming environment, creating a programming environment
that is easy to use, making the environment source code and user centered, providing static
visualization of structural information of a program and dynamic visualization of functional
information of program execution synchronized along with the source code, and providing

structural and functional feedback in real time. Through case studies and comparison tests, it has

120

been found that our approach is useful to uncover and clarify data flow anomalies and to offer a

worry-free programming environment.

Therefore, the main benefits and contributions of this research are: a) Student programmers
can use a web browser to program in Java without any software or plug-in installation or setting
up or modifying system environment variables on their local machine. b) Student programmers
do not need any kind of storage system to keep and manage their project files. They are freed
from concern about continuous version changes of Java language, IDEs, and operating systems.
c¢) Student’s cognitive workload can be reduced and program comprehension can be enhanced
with the synchronized visualization along with source code. d) Student’s programming patterns
can be saved in log files, their behavioral patterns in programming can be monitored and

analyzed in the future.

7.2 Future Work

Based on the work and contributions of this research, important goals for future work of
JavelinaCode are to extend its use and embed more functionality to the current version. Plans are
to include a One-To-One (Many) Virtual Mentoring (VM) capability, a student learning
analytics, a simplified run time visualization of program execution, and an optimized sequence

diagram.

The Virtual Mentoring System (VMS) will consist of two main components, a screen sharing
capability for presenting a student’s code in real time to a course instructor or a teaching
assistant (TA) and a list of commonly used coding segments. The student will be provided a

mentoring session room to communicate with the instructor or TA who can instantly join the

121

room and connect to the code editor to help the student complete an assignment. The student
will be also provided a list of code segments from which to make a selection. The selected
segment can be imported to the student’s code at the cursor’s current position in the editor
window. The objectives of VMS are to give students real-time assistance on coding and an
easier means of implementing code segments that are unfamiliar to them. This serves to reduce
the amount of workload dedicated to memorization and allows for greater focus on the intuitive
elements of programming. The VMS will provide rapid feedback to students, improve coding
skills, and enhance logical reasoning and critical thinking skills. The overall expectation is an

increased completion and retention rate for Computer Science students.

Student’s programming patterns can be saved in log files to measure, collect, analyze, and
report of data about their behavioral patterns in programming, which can be monitored and
analyzed. The purpose of student’s learning analytics is to enhance student’s programming,
logical reasoning, and thinking skills through individualized mentoring based on individual

learning speed and ability.

As indicated from the qualitative evaluation, one improvement that can be made to
JavelinaCode is the speed of visualizing the run time program execution. The slow speed of the
visualization is due to Java program execution in memory on the server. The speed can be
improved by removing all unnecessary steps in the visualization and visualizing only the key
values of, for instance, variables and objects or replacing it by an object diagram, which can still
provide necessary information about objects and their elements in such a simple way. A

reasonably better performance in speed can be achieved with careful design consideration.

122

As source code becomes large and complex, current sequence diagrams generated by the
source code provide limited execution coverage in such a way that they contain redundant, dead
and faulty driven methods, therefore the size and complexity of the diagrams is getting increased.
Optimized sequence diagrams are being developed in order to reduce complexity and provide
complete behavior of the system [52, 53]. The optimized sequence diagrams, which are less
complex and provide more detailed description of functionality of a system, are planned to be
embedded in the JavelinaCode system. This is to effectively represent complete run-time

behavior of the project which can help student programmers in program comprehension.

123

8 References

[1] The A-Z of Programming Languages (interviews with programming language creators),

Computerworld, 2008-2010.

[2] I. Lavy, R. Rashkovits, and R. Kouris, Coping with abstraction in object orientation with a

special focus on interface classes, Computer Science Education,19 (3):155-177, 2009.

[3] N. Liberman, C. Beeri, and Y. Ben-David Kolikant, Difficulties in learning inheritance and

polymorphism, Trans. Computer Education, 11(1):4:1-4:23, Feb. 2011.

[4] Nghi Truong, Peter Bancroft, Paul Roe, A Web Based Environment for Learning to Program,
ACSC '03 Proceedings of the 26th Australasian computer science conference - Volume 16,

pp. 255-264.

[5] Dianne Hagan and Selby Markham, “Teaching Java with the BlueJ Environment,”
Proceedings of Australasian Society for Computers in Learning in Tertiary Education

Conference ASCILITE, 2000.

[6] Philip J. Guo, “Online Python Tutor: Embeddable Web-Based Program Visualization for CS
Education,” Proceedings of the ACM Technical Symposium on Computer Science

Education, March 6-9, 2013.

[7] Noa Ragonis and Mordechai Ben-Ari, “On Understanding the Statics and Dynamics of
Object-Oriented Programs,” SIGCSE °05, February 23-27, 2005, St. Louis, Missouri, USA.

[8] Michael Kolling, “The design of an object-oriented environment and language for teaching,”

PhD Dissertation, University of Sydney, 1999.

124

[9] Michael Koélling and John Rosenberg, “Guidelines for Teaching Object Orientation with

Java,” The Proceedings of the 6th conference on Information Technology in Computer

Science Education (ITiCSE 2001), Canterbury, 2001.

[10] Michael Kolling, Bruce Quig, Andrew Patterson, and John Rosenberg, “The BlueJ system

and its pedagogy,” Journal of Computer Science Education, Special Issue on Learning and

Teaching Object Technology, Vol 13, No 4, Dec 2003.

[11] Van Haaster, K. and Hagan, D., “Teaching and Learning with BlueJ: an Evaluation of a

Pedagogical Tool.” Information Science & Information Technology Education Joint

Conference, Rockhampton, QLD, Australia, June, 2004.

[12] Jens Bennedsen, “Teaching and Learning Introductory Programming - A Model-Based

[13]

[14]

Approach,” PhD Dissertation, University of Oslo, 2008.

Cornelis Huizing, Ruurd Kuiper, Christian Luijten, and Vincent Vandalon, “Visualization
of Object-Oriented (Java) programs,” CSEDU 2012 4" International Conference on
Computer Supported Education, pp. 65-72, 2012.

Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari, “Visualizing
Programs with Jeliot 3,” Proceedings of the International Working Conference on

Advanced Visual Interface AVI 2004, May 2004.

[15] C. A. Luijten, “Interactive visualization of the execution of object-oriented programs.

Master’s thesis,” Eindhoven University of Technology, 2009.

[16] Andrés Moreno and Mike S. Joy, “Jeliot 3 in a Demanding Educational Setting”, Fourth

International Program Visualization Workshop, June 29-30, 2006.

[17] Nuttanont Hongwarittorrn and Donyaprueth Krairit, “Effects of Program Visualization

(Jeliot3) on Students’ Performance and Attitudes towards Java programming,” The spring
8" International Conference on Computing, Communication and Control Technologies,
2010.

125

[18] Andre L. Santos, “AGUIA/J: A Tool for Interactive Experimentation of Objects,” ACM
ITiICSE’11, June 27-29, 2011, Darmstadt, Germany.

[19] Andre L. Santos, “Novel Interaction Metaphors for Object-Oriented Programming
Concepts,” 14" International Conference on Computer Science Education, Koli, Finland,

2014.

[20] Andre L. Santos, An open-ended environment for teaching Java in context, ACM
ITiCSE’12, 17" Annual Conference on Innovation and Technology in Computer Science,

pp. 87-92, Haifa, Israel, 2012.

[21] Paul V. Gestwicki, Bharat Jayaraman. JIVE: Java Interactive Visualization Environment.
In Companion to the 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), pp. 226228, 2004.

[22] Paul V. Gestwicki, Bharat Jayaraman. Methodology and Architecture of JIVE.
In Proceedings of the 2005 ACM Symposium on Software Visualization (SOFTVIS), pp.
95-104, 2005.

[23] Bharat Jayaraman, Charlotte M. Baltus. Visualizing Program Execution. In Proceedings of

the 1996 IEEE Symposium on Visual Languages, pp. 30-37, 1996.

[24] J. Swaminathan, Kishor Kamath, and Bharat Jayaraman: Towards program execution
summarization: Deriving state diagrams from sequence diagrams. Seventh Intl Conference

on Contemporary Computing, pp. 299-305, August 2014.
[25] Ace, The High Performance Code Editor for the Web, http://ace.c9.10/.
[26] PlantUML, http://plantuml.com/.
[27] Java Visualizer, http://www.cs.princeton.edu/~cos126/java_visualize/.

[28] Online Python Tutor, http://www.pythontutor.com/.

126

http://ace.c9.io/
http://plantuml.com/
http://www.cs.princeton.edu/~cos126/java_visualize/
http://www.pythontutor.com/

[29] Amazon Web Service, https://aws.amazon.com/.

[30] Codecall, http://codecall.net/2014/11/12/11-best-desktop-web-ides-java-programmers/.

[31] T. Dean Hendrix, James H. Cross, and Larry A. Barowski, “An extensible framework for
providing dynamic data structure visualizations in a lightweight IDE,” Proceedings of the
35th SIGCSE technical symposium on Computer science education, March 03-07, 2004,
Norfolk, Virginia, USA.

[32] James H. Cross, T. Dean Hendrix, Jhilmil Jian, and Larry A. Barowski, “Dynamic object
viewers for data structures,” Proceedings of the 38th SIGCSE technical symposium on

Computer science education, March 07-11, 2007, Covington, Kentucky, USA.

[33] Larry A. Barowski, “A Low-Effort Animated Data Structure Visualization Creation
System,” Ph.D. dissertation, August, 2014, Auburn University, Auburn, AL.

[34] L. Montogomery, J. H. Cross, T. D. Hendrix, and L. A. Barowski, “Testing the JGRASP
Structure Identifier with Data Structure Examples from textbooks,” In Proceedings of the

46th Annual Southeast Regional Conference, Auburn, Al, 2008.

[35]J. Jian, J. H. Cross, T. D. Hendrix, and L. A. Barowski, “Experimental Evaluation of
Animated-Verifying Object Viewers for Java,” in Proceedings of SoftVis 2006, Brighton,
UK, 2006.

[36]J. H. Cross, T. D. Hendrix, D. A. Umphress, L. A. Barowski, j. Jian, and L. Montogomery,
“Robust Generation of Dynamic Data Structure Visualizations with Multiple Interaction
Approaches,” ACM Transactions on Computing Education, vol. 9, no. 2, pp. 13:1-13:32,
June 2009.

[37]1J. H. Cross, T. D. Hendrix, L. A. Barowski, and D. A. Umphress, “Dynamic Program
Visualizations — An Experience Report,” Proceedings SIGCSE 2014, Atlanta, GA, March 5-
8,2014, 609-61.

127

https://aws.amazon.com/
http://codecall.net/2014/11/12/11-best-desktop-web-ides-java-programmers/

[38] Rothlisberger, David, et al. "Exploiting dynamic information in IDEs improves speed and
correctness of software maintenance tasks." Software Engineering, IEEE Transactions

on 38.3 (2012): 579-591.

[39] Lewis, S. and Watkins, M. (2001) In 5th Java in the Computing Curriculum Conference
(JICC 5) South Bank University, UK.

[40] Jeong Yang, Young Lee, David Hicks, and Kai Chang, “Enhancing Object-Oriented
Programming Education using Static and Dynamic Visualization”, IEEE Frontiers in

Education 2015: Launching a New Vision in Education Engineering, pp. 806-810, 2015.

[41] B. de Alwis and G.C. Murphy, "Answering Conceptual Queries with Ferret,"Proc. 30th Int'l
Conf. Software Eng., ” pp. 21-30, 2008.

[42] S.P. Reiss, "Visualizing Java in Action, "Proc. ACM Symp. Software Visualization, pp. 57-
66, 2003.

[43] W. Lowe, A. Ludwig, and A. Schwind, "Understanding Software —Static and Dynamic
Aspects," Proc. 17th Int'l Conf. Advanced Science and Technology, pp. 52-57, 2001.

[44] Offutt, J., Alexander, R., Wu, Y., Xiao, Q., Hutchinson, C.: A fault model for subtype
inheritance and polymorphism. In: Proceedings of the 12th International Symposium on
Software Reliability Engineering. pp. 84-93. ISSRE °01, IEEE Computer Society,
Washington, DC, USA (2001).

[45] Jeffrey Rubin and Dana Chisnell, Handbook of Usability Testing, Second Edition: How to
Plan, Design, and Conduct Effective Tests, Wiley Publishing, Inc., 2008.

[46] Almstrum, V. L., Dale, N., Berglund, A., Granger, M., Currie Little, J., Miller, D. M., et al.
(1996). Evaluation: Turning technology from toy to tool: Report of the Working Group on
Evaluation, In ITiCSE '96: Proceedings of the 1st conference on integrating technology

into computer science education, Volume 28 Issue SI, 1996.

128

[47] Ethical Principles of Psychologists and Code of Conduct, http://www.apa.org/ethics/code/.

[48] Erik Frokjer, Morten Hertzum, and Kasper Hornbak, Measuring usability: are
effectiveness, efficiency, and satisfaction really correlated?, Proceeding CHI ’00
Proceedings of the SIGCHI conference on Human Factors in Computing Systems, pp. 345-
352, 2000.

[49] ISO 9241-11:1998(en), Ergonomic requirements for office work with visual display
terminals (VDTs) — Part 11: Guidance on usability.

[50] ISO 9241-210:2010(en), Ergonomics of human-system interaction - Part 210: Human-

centered design for interactive systems.

[51] Jeong Yang, Young Lee, and David Hicks, “Synchronized Static and Dynamic
Visualization in a Web-Based Programming Environment,” IEEE International Conference

on Program Comprehension (ICPC), May 16-17, 2016.

[52] Madhusudan Srinivasan, Jeong Yang, and Young Lee, “Case Studies of Optimized
Sequence Diagram for Program Comprehension,” IEEE International Conference on

Program Comprehension (ICPC), May 16-17, 2016.

[53] Madhusudan Srinivasan, Young Lee, and Jeong Yang, “Enhancing Object-Oriented
Programming Comprehension using Optimized Sequence Diagram,” IEEE Conference on

Software Engineering Education and Training (ICSEE), pp. 81-85, April 6-8, 2016.

129

http://dl.acm.org.spot.lib.auburn.edu/author_page.cfm?id=81100265136&coll=DL&dl=ACM&trk=0&cfid=753098510&cftoken=67702466
http://dl.acm.org.spot.lib.auburn.edu/author_page.cfm?id=81100047223&coll=DL&dl=ACM&trk=0&cfid=753098510&cftoken=67702466

