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Abstract 

 

Predicting the survival of heart transplant patients is an important, yet challenging problem since 

it plays a crucial role in understanding the matching procedure between a donor and a recipient. 

Recent studies have shown that data mining models can be used to effectively analyze and extract 

novel information from large/complex transplantation datasets. The objective of this dissertation 

is to gain hidden, novel and useful information from these large and complex heart transplant 

datasets by employing data mining techniques, which helps decision makers to have a better 

understanding. Specifically, this work: 1) identifies the predictive factors for short-, mid- and long-

term survival after the heart transplant, as well as their time-dependent effects on the given follow-

up time point. Therefore, it enables us to differentiate the factors whose effect change over time, 

2) develops a DSS tool that provides the patient-specific failure risk score based on the values of 

the relevant preoperative predictors, as well as to investigate the conditional relations among the 

important predictors of long term survival after heart transplants and 3) is an exploratory study 

that is still in progress, which evaluates the effect of the newly added variables to the predictability 

of the survival outcome.  Overall, the research goal is to develop mathematical models and tools 

that present important retrospective findings, which can be the basis for a prospective medical 

studies.
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Preface 

 

 

This dissertation is submitted to the Graduate Faculty of Auburn University in partial fulfillment 

of the requirements for the Degree of Doctor of Philosophy in Industrial and Systems Engineering.  

The completion of this dissertation involves many steps. In the fall semester of 2013, I met with 

Dr. Megahed to talk about the research concept that I am interested in. The general concept was to 

apply data mining models to extract useful information from heart transplant datasets. After having 

consecutive several meetings with him, we came up with a stream of research ideas involving data 

analytical applications on the concept of survival prediction after heart transplantation.  

The first paper in the stream used several data mining models to predict short-, mid- and 

long-term survival after heart transplantation. He recommended such an idea since it allowed us 

to differentiate the factors whose importance (on survival) vary over time. After completing the 

analyses, we have shared our findings with Dr. Serkan Bulur and Dr. Hussam Farhoud, who are 

cardiologists (MD) and have been doing research in this area. They both provided their expertise 

in the field which in turn significantly improved the discussion part of the paper. Then, I have 

presented this study at the INFORMS 2014 DMA (Data Mining & Analytics) Workshop in San 

Francisco, California. Afterwards, we wrote it up as a journal article and submitted it to Decision 

Support Systems Journal (DSS).  After completing the revision of this study, we have resubmitted 

it to the same journal. It is currently under second review. This study is presented in Chapter 2. 

 



 

xi 

 

After finishing the first paper, I have met with Kazim Topuz, who is currently a PhD 

candidate at Wichita State University. We have talked about using probabilistic data mining 

approaches to obtain a patient-specific survival risk score. This idea was well received by Dr. 

Megahed. He gave a very good suggestion that involved building a graphical user interface (GUI) 

that can be freely used by the medical experts. Such tool would allow the medical experts to 

calculate the risk scores (after heart transplant) without having any expertise in the data mining 

area. The idea was well received by the other team members that also include our medical expert, 

Dr. Serkan Bulur. Then, I have presented it in INFORMS 2015 DMA (Data Mining & Analytics) 

Workshop in Philadelphia, Pennsylvania.  Afterwards, it was accepted for the publication in 

Decision Support Systems Journal (DSS).  This paper is presented in Chapter 3. 

Finally, in the third paper, the idea was to eluate the effect of the newly added variables 

to the heart transplant datasets, which Dr. Megahed came up with. Such analysis would allow us 

to know whether the new variables are contributing in the predictive analytics concept. We have 

written it up as a journal article and are planning to submit the paper to Health Care Management 

Science. 

Completing these three studies enabled me to learn a great deal about not only the field of 

data mining, but also heart transplantation. I have addressed two major critical research problems 

that have not been investigated before, which has made my dissertation more valuable. 
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1.Introduction 

1.1 Problem Description and Significance 

Heart failure is a very common medical condition in which the heart is weakened and cannot pump 

enough blood to meet the bodies needs [1].  The reader should note that the term heart failure does 

not indicate that the heart has stopped working (or is about to stop working).  That being said, heart 

failure is a serious medical condition that affects an estimated 2-3% of the world’s adult population, 

which corresponds to over 26 million people worldwide [2].  In the U.S. there are an estimated 5.8 

million people living with heart failure, with an annual estimated incidence rate of over 550,000 

[1, 3].  Among these patients, those who have severe end-stage heart failure (meaning all possible 

treatments except transplant have failed) are selected through a careful process to be placed on the 

heart transplant waiting list.  If a patient is eligible, then she/he is placed on a waiting list for a 

transplant until a suitable donor heart is found [4].  The current matching process is determined 

based on a printed out list from the United Network for Organ Sharing (UNOS) computers, which 

is based on “blood type, body size, UNOS status, and length of time on the waiting list” [6]. 

The goal of my dissertation is to analyze the large and complex heart transplant datasets by 

employing data mining techniques. Specifically, my goal is to investigate the critical factors that 

affect the survival time after heart transplantation, the relations among these critical factors and 

provide a Decision Support System (DSS) tool that will aid medical decision makers to improve 

the efficiency of heart transplants. Effective utilization of this critical information can help to 

improve the prediction of survival, which, in turn, may help to better allocate the donated hearts. 
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This concern has recently become more important since the demand for heart transplantations has 

been dramatically increasing for several reasons, such as aging of the population, increasing 

obesity and diabetes etc. [5] and increasing life expectancy [6]. Currently, in the U.S. there are 

about 3,000 people waiting for a heart transplant on waiting lists at any one time, while there are 

only about 2,000 donor hearts available each year [4].  This ever-increasing gap between supply 

and demand of donated healthy hearts leads to longer waiting times and thereby leaves many to 

die while on the waiting lists [7]. Although the survival rates increased slightly in the recent years, 

there are many critical issues that have not yet been investigated, which potentially can be a 

potential driving force in decision making processes in the heart transplantation domain. Therefore, 

I address different discussions to analyze the related data and examine the root causes. 

1.2 Research Objectives 

By employing the proposed analytical methods, the objectives of my research are to: 

1) Identify the predictive factors for short-, mid- and long-term survival after the heart 

transplant, as well as their time-dependent effects on the given follow-up time point. 

Therefore, we will be able to differentiate the factors whose effect change over time. 

2) Develop a DSS tool that provides the patient-specific failure risk score based on the values 

of the relevant preoperative predictors, as well as to investigate the conditional relations 

among the important predictors of long term survival after heart transplants 

3) Investigate the contribution (to the prediction performance) of recently added variables to 

the heart transplantation databases. 

By developing mathematical models that employ both data mining algorithms and conventional 
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statistical method, the proposed study will enable researchers to find the hidden patterns embedded 

in large and complex heart transplantation datasets. The dataset used in this study has been 

provided by the United Network for Organ Sharing, UNOS, which is a “private, non-profit 

organization that manages the [United States]’s organ transplant system under contract with the 

federal government” [8].  This heart transplantation data contains information on all waiting list 

registrations and heart transplants that have been listed or performed in the U.S. and reported 

starting from October 1, 1987 until December 31, 2012.  The variables in UNOS heart 

transplantation datasets include clinical and demographic factors related to donors, recipients and 

the transplant procedure.  The variables can be classified into three major groups: a) preoperative 

factors that include donor/recipient demographics (age, gender, race, etc.), donor/recipient medical 

history, funding sources, and other factors that are considered prior to an operation; b) intra-

operative factors, which describe several medical conditions during the transplant such as: if there 

is a chronic steroid use at transplant, or if the recipient is on life support at the time of transplant; 

and c) post-operative factors that include whether the patient died or lived, length of hospitalization 

after transplant, and information on any other complications.  It should be noted that the data has 

been de-identified by UNOS prior to being received by the research team.   

1.3 Dissertation Layout 

This dissertation is organized as follows:  In Chapter 2, the methodology that was proposed to 

differentiate the factors whose effect (on survival) vary over time. It should be noted that this paper 

was submitted to Decision Support Systems Journal, and it is currently under second review. 

Chapter 3 describes the methodology that was employed to calculate patient-specific risk score 

(after heart transplant). A comprehensive variable selection procedure is adapted in the study. In 

addition, a decision support systems tool (GUI) is provided for the medical experts to freely use in 
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their decision making processes. This study was published in Decision Support Systems Journal 

(DSS) in 2016. In Chapter 4, a methodology, by which the effect of newly added variables to the 

predictability of transplant outcome, has been described. This study will be submitted to Health 

Care Management Science journal. Finally, Chapter is the conclusion part of the dissertation, in 

which the contributions of the two studies are summarized and some future recommendations are 

made. 

1.4 References 

1. What is Heart Failure ? 2012  [cited 2014 01/26/2014]; Available from: 

http://www.nhlbi.nih.gov/health/health-topics/topics/hf/. 

2. López-Sendón, J., The heart failure epidemic. Medicographia, 2011. 33(4): p. 363-369. 

3. What Is Heart Transplant? 2012 01/03/2012 01/31/2014]; Available from: 

http://www.nhlbi.nih.gov/health/health-topics/topics/ht/. 

4. What to Expect Before a Heart Transplant ? 2012  [cited 2014 01/26]; Available from: 

http://www.nhlbi.nih.gov/health/health-topics/topics/ht/before.html. 

5. Carmona, M., et al., Heart failure in the family practice: a study of the prevalence and co-

morbidity. Fam Pract, 2011. 28(2): p. 128-33. 

6. Kong, G.L., et al., A belief rule-based decision support system for clinical risk assessment of 

cardiac chest pain. European Journal of Operational Research, 2012. 219(3): p. 564-573. 

7. Healy, D.G., et al., Heart transplant candidates: factors influencing waiting list mortality. Ir 

Med J, 2005. 98(10): p. 235-7. 

8. UNOS | About Us. 2014  2014/6/2]; Available from: http://www.unos.org/contact/index.php. 
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2 Predicting Heart Transplantation Outcomes through Data Analytics 

 

2.1 Abstract 

Predicting the survival of heart transplant patients is an important, yet challenging, problem for 

researchers and medical practitioners since it plays a crucial role in understanding the matching 

procedure between a donor and a recipient. Data mining models can be used to effectively analyze 

and extract novel information from large/complex transplantation datasets. The objective of this 

study is to predict the 1-, 5-, and 9-year patient’s graft survival following a heart transplant surgery 

via the deployment of analytical models that are based on four powerful classification algorithms 

(i.e. decision trees, artificial neural networks, support vector machines, and logistic regression). 

Since the datasets used in this study has a much larger number of survival cases than deaths for 1- 

and 5-year survival analysis and vice versa for 9-year survival analysis, random under sampling 

(RUS) and synthetic minority over-sampling (SMOTE) are employed to overcome the data-

imbalance problems. The results indicate that the logistic regression when combined with synthetic 

minority over-sampling achieves the best classification performance for 1-, 5- and 9-year survival 

prediction, with area-under-the-curve (AUC) values of 0.624, 0.676 and 0. 838, respectively. By 

applying sensitivity analysis to the data analytical models, the most important predictors and their 

associated contribution for the 1-, 5-, and 9-year graft survival of heart transplant patients are 

identified. By doing so, variables, whose importance changes over time, are differentiated. Not 

only this proposed hybrid approach gives superior results over the literature but also the models 
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and identification of the variables present important retrospective findings, which can be the basis 

for a prospective medical study. 

2.2 Introduction 

Heart failure is a serious medical condition, where the heart is weakened and cannot pump   enough 

blood to meet the body's needs [1].  It affects an estimated 2-3% of the world's adult population, 

i.e. over 26 million adults worldwide [2]. In the U.S., there are an estimated 5.8 million people 

living with heart failure, with an annual estimated incidence rate of over 550,000  [1, 3]. The most 

acute stage of heart failure is called end-stage heart failure since all possible treatments (with the 

exception of a transplant) have failed [1]. 

The demand for heart transplantations has been dramatically increasing for several reasons 

that include: an aging population, increased rates of obesity/diabetes, etc.  [4, 5]. Currently, in the 

U.S. there are about 3,000 people waiting for a heart transplant on waiting lists at any one time, 

while there are only about 2,000 donor hearts available [6]. This ever-increasing gap between 

supply and demand of donated healthy hearts leads to longer waiting times and thereby leaves 

many to die while on the waiting lists [5]. 

The large data pools recorded during the transplantation procedures include valuable 

information about donors, recipients and the procedure itself. Effective utilization of this critical 

information can help to improve the prediction of transplantation outcomes, which, in turn, may 

help medical decision makers to better allocate donated hearts. Therefore, there is a growing body 

of literature on predicting organ transplantation outcomes. In our estimation, this literature can be 

divided into three main streams: A) statistical-based approaches (e.g., [7-12]), B) data mining 

methods (e.g., [13-17] ), and C) studies accounting for the time-dependent effect of covariates on 
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transplantation outcome (e.g., [14, 18-20]). We present more details on these three streams in the 

paragraphs below. 

Stream A focuses on one of three specific research questions.  First, what is the effect of a 

certain variable on survival? For example, Gupta et al. [9] used the Cox Proportional Hazard 

Model (CPHM) to examine if an older donor age (>50 years) increases the risk of mortality after 

a heart transplant. In the second sub-area, the combined effect of several variables on a 

transplantation outcome is examined [7, 8, 10]. Studies in the third sub-area have mainly focused 

on identifying risk levels/scores for patients after a transplant (e.g., [10]). In this stream, the 

examined predictors are primarily based on domain knowledge. This may be somewhat limiting 

since it assumes that: a) there is a well-defined hypothesis that needs to be investigated (e.g. [7] 

examined the effect of donor age and organ ischemic time on patient survival post transplantation); 

and b) a parametric model can be used (i.e., a functional relationship between the predictors and 

the outcome is assumed). 

Stream B attempts to address the aforementioned limitations through the use of data 

analytic/mining methods, which allows one to extract hidden, novel patterns and non-trivial 

information from large datasets, without requiring prior knowledge about the data. Based on our 

review, methods in Stream B attempts to determine: a) what is the best predictive model among a 

subset of competing models to accurately predict a transplantation outcome at an arbitrary follow-

up time (i.e., what is the outcome after x years?); and b) what are the significant predictors based 

on the best model?  For example, Oztekin et al. [15] compared the predictive performance of 

artificial neural networks (ANNs), logistic regression (LR), and decision trees (DT) for 

determining the survival outcome at 9-years post a thoracic transplant. Their study showed that 

the ANN and logistic regression models performed similarly, with accuracy rates of 82.4% and 
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81.9% respectively, and outperformed the decision tree (accuracy rate of 74.9 %). Similar studies 

are highlighted in Dag et al.  [13]. While the results are typically impressive (with the highest 

reported in [15]), there are several opportunities for improvement: 

These method typically focus on the outcome prediction for one time-period only [13, 15-

17, 21, 22]. Thus, there is no understanding whether the identified predictors are important in 

different survival intervals; e.g., is the donor age an important predictor for short-term outcomes 

only or it also affects long-term survival. 

The benchmark approach of [15] used data imputation methods (based on the entire 

dataset) to handle missing data. While this can improve the model's prediction, its limits the 

benefits from using data-driven models in health-care. As eloquently stated in [21]: “Survival 

analysis using standard statistical tools ... can be considered as population-based models. 

Predictions are derived on probability or distance from the population estimates. Data mining 

offers tools for decision-making for an individual patient rather than a population of patients." 

To our knowledge, none of the studies in the literature [13, 14, 21] have considered re-

sampling as an approach to handle the class imbalance problem, i.e. the # of survivals and deaths 

are significantly different, in transplantation datasets. Accordingly, there exists an opportunity to 

improve the sensitivity of the classifier to the minority class. 

Stream C investigates the dynamic effect of significant variables on the transplantation 

outcome. Most of the work within this stream is based on statistical techniques, with the exception 

[14] who determined the effect of the predictors on the 1- to 7-year kidney transplantation 

outcomes by using logistic regression, CPHM, and multiple-output ANNs. It should be noted that 

the statistical approaches within this stream consider time as a continuous variable instead of 
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investigating multiple time-points (e.g. [14, 18-20]). Note that there are no methods for examining 

changes in a predictor's importance over time, for heart transplants, when data mining methods are 

used. 

The main objectives of this study are to develop a data-driven approach to predict the short- 

term, medium-term, and long-term outcomes for heart transplantation patients, and understand 

how the importance of a predictor change over time. Based on the literature, we define 1- ([7, 10, 

23, 24]), 5- ([20, 22, 23, 25]), and 9-years ([13, 15]) as the time-frame for short-term, medium-

term and long-term prediction intervals. To address these objectives, we compare the performance 

of ANN, DT, SVM (support vector machines), and logistic regression in modeling the relationship 

between the set of pre-operative predictors and the binary outcome (at each time-point).  To 

overcome the class imbalance problem, two common data balancing techniques for each follow-

up time are employed to generate balanced training sets. Note that we compare these two 

techniques with random sampling (i.e., the classical approach used for balanced datasets) to 

quantify the improvements gained by applying the two re-sampling techniques. Thus, this paper 

attempts to: i) address the three opportunities for improvement highlighted in Stream B, and ii) 

bridge the gap between Streams B & C. The remainder of this paper is organized as follows. In 

Section 2.3, the overall data analytics methodology used in this study as well as the data source 

and preparation are described. The results obtained from the actual data analysis are provided and 

discussed in Section 2.4. In Section 2.5, conclusions are presented and some thoughts on the 

direction of future research are offered.  
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2.3 Methodology 

In this paper, a hybrid data analytic methodology (as depicted in Figure 2.1) that consists of five 

sequential phases is proposed. The first phase of data preparation consists of three steps: a) data 

cleaning, where missing or invalid values for the predictor variables were systematically checked 

for; b) data inclusion, where three datasets were extracted from the original data to address how 

the effect of predictor variables change with different survival horizons (1-, 5- and 9-years); and 

c) application of balancing techniques to prepare the datasets to be processed by the prediction 

algorithms.  Phase 2 represents the process in which data mining prediction algorithms are applied 

to these balanced datasets, with a 10-fold cross validation procedure.  The goal of Phase 2 is to 

obtain the classification performance of the prediction models and the ranking of the predictor 

variables based on their importance level., i.e., each model provides its own set of important 

variables for each of the three time-points.  Models with unsatisfactory performance are then 

discarded in Phase 3. The decision to discard a model is carried out by evaluating the performance 

of the model to the results from the best deployed model.  Models with best performance are then 

kept to be used in the subsequent phase.  In Phase 4, the important-variable sets (obtained from 

each satisfactory model) are combined with an information fusion method to collect information 

(ranked variables) from multiple models.  This process is repeated for each time point.  This 

enables us to have three different important-variable sets representing the three different time 

points (1-, 5- and 9-years).  In the last phase, the comparison of these three important variable sets 

allows us to distinguish the variables whose importance change over time (from 1-year to 5- and 

9-years).  Additional information on each of these phases is provided in the following subsections. 
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Figure 2.1: An Overview of the Proposed Hybrid Data Analytic Approach 

2.3.1 Data Preparation 

The dataset used in this study has been provided by the United Network for Organ Sharing, UNOS, 

which is a “private, non-profit organization that manages the [United States]’s organ transplant 

system under contract with the federal government” [26].  This heart transplantation data contains 

information on all waiting list registrations and heart transplants that have been listed or performed 

in the U.S. and reported starting from October 1, 1987 until December 31, 2012.  The variables in 

UNOS heart transplantation datasets include clinical and demographic factors related to donors, 

recipients and the transplant procedure.  The variables can be classified into three major groups: 

a) preoperative factors that include donor/recipient demographics (age, gender, race, etc.), 

donor/recipient medical history, funding sources, and other factors that are considered prior to an 

operation; b) intra-operative factors, which describe several medical conditions during the 
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transplant such as: if there is a chronic steroid use at transplant, or if the recipient is on life support 

at the time of transplant; and c) post-operative factors that include whether the patient died or lived, 

length of hospitalization after transplant, and information on any other complications.  It should 

be noted that the data has been de-identified by UNOS prior to being received by the research 

team.   

As noted earlier, one of the primary objectives of this study is to develop a data-driven 

model to predict survival through 1, 5 and 9 years.  Therefore, four post-operative variables can 

be used as candidate outcome variables for this study.  These variables are pstatus (binary variable, 

denotes whether the person is dead or alive at the last follow-up time), gstatus (a similar binary 

variable, denoting if whether the graft has failed or succeeded at the last follow-up time), ptime 

(referring the time frame from the day of transplant to the recipient’s death/last follow-up time, in 

days) and gtime (a similar continuous variable referring to time frame from transplant to graft’s 

failure/last follow-up time).  For purposes of this study, the gstatus represents the most suitable 

outcome variable when combined with the gtime.  It is more informative than the pstatus variable 

since it allows us to distinguish between patients who died solely due to graft compatibility versus 

those who may have died due to other reasons (e.g. a traffic accident or a medical condition that 

is not related to the heart transplant).  By combining it with gtime, we can determine if the graft 

failed prior to the 1, 5, and/or 9 year thresholds. 
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2.3.1.1 Data Cleaning 

In this paper, we followed the five-step data cleaning process of [13].  In the first step, we 

eliminated all the intra- and post-operative factors since our research questions are related to 

outcome prediction prior to transplant.  We cleaned all erroneous and duplicated records using 

outlier detection algorithms in STATISTICA 11 (www.statsoft.com).  In the third and fourth steps, 

we eliminated variables that will not have any predictive power (e.g., patient ID number), and 

invariant variables. In the final step, we eliminated missing records from the data since data 

imputation methods are not suitable for our end-goal as explained in Section 2.2. At the end of this 

stage, we had 15,580 patient records and 122 variables in the dataset (i.e., same as in [13]). 

2.3.1.2 Data Inclusion Criteria 

For each of the three discrete time-points, the data is excluded when the gtime is less than the 

number of days required for the time-point analysis and the gstatus indicates that the patient is still 

alive. The decision ( ) can be represented mathematically as: 

  

                                         
    if     *365 &  = 0,

No     otherwise
i

Yes gtime i gstatus
C


 


                                 (2.1) 

 

where i =1, 5, or 9 years.  Based on Eq. (2.1), the following outcomes can be expected: a) if an 

observation is excluded at a lower value of i (e.g. i=1), it will be excluded for any higher value of 

i; b) the total number of records will monotonically decrease as the time-point for analysis 

increases; and c) the expected gap between survivors (i.e.gstatus=0) and graft failures will 

decrease since transplantation mortality increases over time. After we applied the inclusion criteria 

to the data, we updated the gstatus to be equal to 0 for those patients whose gtime > i *365 since 

iC
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this means that they expired after our time-horizon. A summary is provided for the distribution of 

fatalities, survivals, and excluded data over the three time periods in Table 2.1.   

 

Table 2.1: Number of survivals, failures, and excluded observations over the 3 time-points 

Time Point Survivals Failures Excluded  

1 - Year 12,103 1,617 1,860  

5 – Years 5,519 3,081 6,980  

9 - Years 1,663 3,837 10,080  

2.3.1.3 Sampling Methods 

Based on Table 2.1, the number of survivals and failures are significantly different for each time- 

period.  In the data mining literature, there are several sampling methods [27-30] that can be used 

to improve the prediction outcomes based on imbalanced datasets.  The machine learning 

community has addressed the class imbalance problem in two ways [27].  One way is to assign 

distinct costs to training examples (e.g., [31]), while more recent approaches attempt to re-sample 

the original dataset.  Re-sampling is typically applied by either over-sampling the minority class 

and/or under-sampling the majority class [27, 30].  Due to their popularity and excellent results, 

we have only considered re-sampling approaches in this paper.  Note that the literature reports 

conflicting results on the superiority of over-sampling methods (e.g., [27-32]) vs. under-sampling 

methods [33]. Therefore, in this paper, we have applied both synthetic minority oversampling 

technique (SMOTE) and random under-sampling (RUS), which are among the most 

popular/powerful over-sampling and under-sampling approaches, respectively. 

RUS is a systematic process where some of the cases from the majority class are randomly 

removed from the original training datasets until the remaining number of cases in the two 
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classification categories becomes approximately equal. On the other hand, SMOTE over-samples 

the minority class by “taking each minority class data point and introducing synthetic examples 

along the line segments joining any or all of the k-minority class nearest neighbors"  [34]. The 

process repeats until the number of cases from both classes becomes approximately equal. Note 

that both approaches are implemented in several open-source software (e.g., R Programming 

Language and Weka). For more details on SMOTE, the reader is referred to [27]. 

 

2.3.2 Data Analytics Models 

In this study, we apply three popular data analytic models (support vector machines, artificial 

neural networks, and decision trees) and a conventional statistical method (logistic regression). 

We selected these four models due to: a) superior performance in several transplantation papers 

(see e.g., [7, 8, 10, 12, 14, 15, 21, 22, 35]), and b) their superior performance in our preliminary 

analysis. Since these models are very popular in classification problems, we only provide a brief 

description for each of them in the subsections below. 

2.3.2.1 Support Vector Machines 

Support vector machines are a set of supervised learning methods that are used for classification 

(as in this study, where a known value of the gstatus was used to develop a predictive model for 

future graft survival or failure), regression and outlier detection [36, 37]. When used for 

classification purposes, SVMs are extremely powerful since they can be used for linearly and non-

linearly separable datasets [38]. For nonlinear cases, the data is typically mapped into a higher-

dimensional space so that the new dataset in higher-dimension becomes linearly separable [38]. 

This mapping procedure can increase the computational complexity. This problem can be handled 
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efficiently by using one of several Kernel functions (see [38] for more details). In this paper, we 

use the radial basis kernel function (RBF) since it provided the best results in our preliminary 

analysis. 

2.3.2.2 Artificial Neural Networks 

ANNs are widely used in a variety of data mining problems that include classification, pattern 

recognition, and optimization. An ANN is a computational system that consists of “a highly 

interconnected set of processing elements, called neurons, which process information as a 

response to external stimuli. An artificial neuron is a simplistic representation that emulates the 

signal integration and threshold firing behavior of biological neurons by means of mathematical 

equations" [39]. The information flow between artificial neurons, thereafter referred to as neurons, 

is determined via connections between peer neurons. The flow of information through each neuron 

occurs in an input-out manner. In this paper, a multilayer perceptron-based ANN (MLP-ANN) is 

used as it outperformed other ANN formulations in our preliminary analysis. For more details on 

the mathematical formulation of the ANN used in this study, the reader is referred to [38, 39]. 

2.3.2.3 Decision Trees 

Decision trees are one of the most understandable and easy to interpret prediction methods.  This 

is one of the main reasons why decision trees are widely used in several data mining and 

transplantation applications.  The procedure starts with splitting the entire dataset into several 

subsets, which contain more or fewer homogeneous states of dependent variable [40].  At each 

split in the tree, the impacts of all predictor variables on the dependent variable are evaluated.  This 

procedure takes place successively, until a decision tree is in a stable state.  Popular decision tree 
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algorithms include Quinlan's ID3, C4.5, C5 [41, 42] and C&RT (Classification and Regression 

Trees) [40]. The C&RT algorithm has been employed in this study due to its favorable 

performance compared to the other decision tree algorithms obtained in the preliminary analysis. 

2.3.2.4 Logistic Regression 

Different than the three models explained above, logistic regression is a standard regression 

technique, used when the dependent variable (i.e. in our case, the gstatus) is dichotomous. In 

such model, the log odds of the outcome are modeled as a linear combination of the predictor 

variables (i.e., the preoperative variables that are included in the model) [43].  In our study, we 

applied stepwise logistic regression to select the most relevant predictors. 

2.3.3 Sensitivity Analysis of Predictor Variables 

After determining the performance of the different predictive models, the relative importance of 

each of the independent variables is measured using the sensitivity analysis (SA).  This phase is 

indispensable to the analyses for several reasons.  First, it can suggest the underlying casual factors 

for any of the prediction models. This is particularly important in understanding and 

communicating the results of ANNs [44] which are still considered by many to be black box 

models [for a recent e.g. see 45].  A second major reason for the importance of sensitivity analysis 

is it provides us with a framework to capture the importance of independent variables across 

different models. 

The sensitivity of a specific predictor variable is calculated by taking the proportion of the 

error of the model that includes this variable to the error of the model when it does not include this 

specific variable [46].  The importance of a variable is in direct proportion to variance of predictive 
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error of the classification model in the absence of that specific variable.  The same method is 

followed for all classification models, and is used in ranking the relative importance of the 

variables of each classification model according to the sensitivity measure defined by Saltelli [47].  

Their measure is defined as 

 

   (2.2) 

 

 

where y is the dichotomous output variable (gstatus), and the unconditional output variance is 

denoted by V(y).  The expectation operator is denoted by E, which calls for an integral over all 

predictor variables except xi.  A further integral operator is implied over xi by the operator Vi.  The 

importance of a specific variable is then computed as the normalized sensitivity as described by 

Saltelli et al. [48]. 

2.3.4 Information Fusion 

Information fusion (IF) techniques combine information obtained from multiple forecasts (from 

prediction models) in an attempt to decrease model uncertainty and increase the knowledge gained.  

The motivation for such techniques also stem from observations in the literature about combining 

multiple forecasts.  Specifically, it has been shown that robustness and accuracy of information 

can be increased [49], while the uncertainty and bias of individual models can be decreased by 

combining multiple forecasts [50].  Therefore, there is an increasing deployment of IF techniques 

in data-mining problems as opposed to the application of a single method [e.g. see  51].  It should 

be noted, however, that there is no best way of combining predictions in explanatory data analysis 

situations, as in the case of this heart transplant analysis.  This is similar to the application of data 

( ( | ))i i
i

V V E y x
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mining techniques, where the best model is problem-specific and often cannot be determined prior 

to investigation.  In such situations, the determination can only be done via trial and error 

experimentation [52].  In this study, the information fusion model which is presented by Sevim et 

al. [53] is adopted since it allows decision makers to rank the variables in terms of importance 

order. In other words, it would be more intuitive to explain the findings to the medical practitioners. 

The mathematical formulation of the IF model is presented in the paragraphs below. 

For any of the prediction models (logistic regression, SVM, ANN, and DT), the formulation 

for the prediction model can be generalized as follows: 

 

   (2.3) 

 

where g represents a prediction function for the model, y is the dichotomous response variable, x 

is the value for a specific preoperative variable, and m denotes the number of preoperative variables 

in the model.  Given r predictor models to be combined, the information fusion model can be 

represented as 

   (2.4) 

 

 

In the above equation,  denotes the vector of predictor variables.  In this study,  is defined as 

a linear function, which reduces the IF model to 
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The values for the s are the updated classification AUC measures of a single classification model.  

That is, the higher the AUC metric of an individual predictor model, the more impact of it on the 

fused model [53].  The final sensitivity measure of a specific variable (denoted by) that is fused 

by r individual models can be obtained by combining Eqs. (2.4) and (2.5).  The result is shown in 

the Eq. below; 

   (2.6) 

 

where  is the normalized sensitivity measure of the th variable in the ith model. 

After deriving the importance of each predictor variable dictated from each folds within each 

classification model, as shown by Eq. (2.6), a union set of important predictors can now be 

obtained for each method. Finally, by again applying the information fusion method across these 

four models, the final importance of each variable for each time point is calculated. Therefore, 

three different sets of important variables and their rankings are constructed for the 1-, 5- and 9-

year analyses.  This allows us to differentiate the variables whose impact on the outcome changes 

over time. 

 

2.4 Results and Discussion 

Based on the discussion in Section 2.3, four data analytic models (C&RT, ANN, SVM, and 

Logistic regression) were applied to predict the effect of the preoperative variables on the 

response/outcome variable gstatus. Since the transplantation dataset is imbalanced for all 3 time-

periods as illustrated in Table 2.1, two different re-sampling strategies (and a random sampling 

approach, which we include  to show the improvements obtained by re-sampling) on these four 
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models were used, resulting in 12 different models (for each time frame) that are listed and 

described in Table 2.2. Note that these results in a total of 36 different models, since there are 3 

time-periods where each of the models listed in Table 2.2 was applied. The remainder of this 

section is organized as follows. In Section 2.4.1, the classification results are presented based on 

the four performance metrics. In essence, this subsection contains the results from Phases 1-3 of 

the proposed hybrid method. The results from Phases 4-5 (sensitivity analysis and information 

fusion phases) are discussed in Section 2.4.2. 

 

Table 2.2: The list of the data analytic models used for each time-period 

Model Name Description 

CRT.NO Classification and regression trees with random sampling  

LR.NO Logistic regression with random sampling  

ANN.NO Artificial neural networks with random sampling  

SVM.NO Support vector machines with random sampling  

CRT.S Classification and regression trees with SMOTE 

LR.S Logistic regression with SMOTE 

ANN.S Artificial neural networks with SMOTE 

SVM.S Support vector machines with SMOTE 

CRT.RUS Classification and regression trees with random under-sampling 

LR.RUS Logistic regression with random under-sampling 

ANN.RUS Artificial neural networks with random under-sampling 

SVM.RUS Support vector machines with random under-sampling 

 

2.4.1 Data Analytical Model Results 

Table 2.3 provides the mean and the standard deviation values for the AUC, accuracy, recall, and 

specificity metrics for all classification models, with the 10-fold cross validation sample. It should 

be noted that the evaluation criteria (in prediction problems) can be problem-specific (e.g. rare 

event prediction). In our current study, the AUC criteria is selected as the main evaluation criterion 



 

22 

 

since there exist imbalances (between survivals and failures) for all of the three time-points. 

Having said that, recall and specificity values are also considered for a more objective comparison 

of the models.  

As presented in Table 2.3, those models, where re-sampling was not considered (i.e., the 

NO models), can be considered as poor (with respect to the un-reasonably high difference between 

recall and specificity) when compared to SMOTE and RUS models even though reasonable AUC 

values were obtained through no-sampling. For example, the recall for the 1-Yr models and 5-Yr 

models has not exceeded 13%, and 41%, respectively. This means that the models generated by 

this data are somewhat naive. As an illustration, consider the 1-YR CRT.NO model. This model 

essentially forecasts that any patient will survive, as shown in specificity=0.999 and recall=0.024. 

Note that this trend is reversed for the 9-year data (unsurprisingly, due to Table 2.1), where the 

NO models do an excellent job in predicting deaths, but a substandard job in predicting survivals. 

These results justify the need for applying re-sampling techniques for transplantation datasets. 

Hereafter, we discuss the SMOTE and RUS results. 

Second, the AUC metrics for a given model always increase with an increase in the time 

horizon. The practical implication of this observation is significant since it means that the ability 

of these classification models in correctly predicting the survival outcome with larger time 

horizons. This effect has been observed in kidney transplants [14]. One possible explanation is that 

the time-horizon gets larger, the discrepancies between the operations' start dates decrease.  
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Table 2.3: Classification results of the eight models for 1-, 5-, and 9-year time-points  

Time Frame  Model AUC Accuracy Recall Specificity 

1-Yr Survival 

CRT.NO 0.455(0.043) 0.893(0.032) 0.024(0.002) 0.999(0.001) 

CRT.S 0.583(0.021) 0.615(0.027) 0.490(0.056) 0.631(0.033) 

CRT.RUS 0.583(0.015) 0.584(0.029) 0.561(0.039) 0.584(0.030) 

NN.NO 0.595(0.034) 0.865(0.011) 0.118(0.057) 0.965(0.011) 

NN.S 0.569(0.016) 0.691(0.015) 0.412(0.037) 0.728(0.020) 

NN.RUS 0.583(0.021) 0.571(0.033) 0.540(0.053) 0.580(0.044) 

LR.NO 0.630(0.027) 0.881(0.012) 0.128(0.083) 0.988(0.016) 

LR.S 0.624(0.023) 0.626(0.101) 0.543(0.046) 0.636(0.129) 

LR.RUS 0.624(0.031) 0.613(0.191) 0.566(.035) 0.619(0.194) 

SVM.NO 0.614(0.021) 0.847(0.048) 0.119(0.080) 0.988(0.013) 

SVM.S 0.609(0.011) 0.666(0.020) 0.463(0.055) 0.693(0.011) 

SVM.RUS 0.596(0.018) 0.550(0.026) 0.592(0.033) 0.544(0.029) 

5-Yr Survival 

CRT.NO 0.630(0.019) 0.664(0.020) 0.352(0.024) 0.837(0.036) 

CRT.S 0.641(0.017) 0.609(0.011) 0.479(0.037) 0.682(0.036) 

CRT.RUS 0.634(0.014) 0.609(0.017) 0.600(0.024) 0.615(0.022) 

NN.NO 0.663(0.025) 0.632(0.019) 0.410(0.037) 0.757(0.026) 

NN.S 0.621(0.029) 0.618(0.024) 0.488(0.033) 0.696(0.019) 

NN.RUS 0.628(0.023) 0.594(0.024) 0.581(0.033) 0.600(0.033) 

LR.NO 0.677(0.024) 0.679(0.010) 0.354(0.018) 0.861(0.019) 

LR.S 0.676(0.011) 0.634(0.018) 0.510(0.023) 0.737(0.024) 

LR.RUS 0.671(0.020) 0.632(0.019) 0.616(0.044) 0.641(0.031) 

SVM.NO 0.664(0.013) 0.674(0.010) 0.342(0.016) 0.860(0.015) 

SVM.S 0.673(0.014) 0.654(0.012) 0.541(0.023) 0.702(0.028) 

SVM.RUS 0.669(0.017) 0.616(0.013) 0.640(0.023) 0.602(0.019) 

9-Yr Survival 

CRT.NO 0.820(0.025) 0.748(0.032) 0.820(0.032) 0.581(0.081) 

CRT.S 0.823(0.014) 0.746(0.017) 0.787(0.021) 0.651(0.043) 

CRT.RUS 0.791(0.019) 0.718(0.020) 0.657(0.030) 0.863(0.021) 

NN.NO 0.825(0.028) 0.747(0.027) 0.837(0.030) 0.538(0.054) 

NN.S 0.814(0.025) 0.742(0.025) 0.808(0.024) 0.583(0.062) 

NN.RUS 0.781(0.017) 0.697(0.014) 0.682(0.018) 0.734(0.021) 

LR.NO 0.840(0.027) 0.748(0.027) 0.820(0.024) 0.593(0.052) 

LR.S 0.838(0.025) 0.754(0.022) 0.777(0.024) 0.712(0.056) 

LR.RUS 0.815(0.012) 0.712(0.014) 0.615(0.019) 0.936(0.027) 

SVM.NO 0.833(0.032) 0.746(0.028) 0.911(0.020) 0.363(0.065) 

SVM.S 0.831(0.027) 0.750(0.022) 0.883(0.021) 0.450(0.070) 

SVM.RUS 0.816(0.011) 0.722(0.013) 0.699(0.019) 0.776(0.021) 
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A third noteworthy observation is that SMOTE generally outperforms RUS for the AUC 

metric for all three time-periods (except 4 out of the 24 (S + RUS) models). This result suggests 

that the use of more computationally intensive sampling methods for heart transplantation datasets 

may be justified since they result in better performance. The fourth, and potentially the most 

interesting observation, is that LR provides the best results for the AUC metric for all of the three 

time periods. As it has been previously discussed, the performances of these analytical models 

depend on the characteristics of the dataset such as noise, non-linearity, dimension (i.e. feature 

space and number of samples) etc. One possible conclusion that can be made is that the potential 

high-level of non-linearity among some features might have been solved via transformation these 

features in the Logistic Regression. 

 

It is clear that the classification models with SMOTE generally outperform those with RUS 

(20 out of 24 models) for all three time-periods based on our primary AUC metric. In addition, for 

those two cases (i.e. NN.RUS for 1- and 5-years), where the RUS models outperform the S models, 

the AUC difference between the models is 0.014 and 0.007 for 1-year and 5-years, respectively. 

Having said that, the main goal of this study is not to compare the prediction capabilities of 

classification models that have been re-sampled by using different sampling algorithms. But it is 

rather to determine the important variables for survival after different time horizons, which in turn 

enables us differentiate the ones whose important change over time. Therefore, for the sake of 

consistency, CRT.S, NN.S, LR.S, and SVM.S classification models are selected to be combined 

via the IF model explained in Section 2.3.4. This process is repeated for each of the three time-

periods. These results are provided and explained in the following subsection. 
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2.4.2 Information Fusion-based Sensitivity Analysis Results 

Using the predictive models as explained earlier, sensitivity analysis (SA) is performed on each 

model to compute the importance of each variable. A predictive variable is added to the model if 

its addition results in improving the model's AUC prediction performance. Therefore, for each 

three time-points, four sets of important variables are identified based on the CRT.S, NN.S, LR.S, 

and SVM.S models. After obtaining the important variables for each time point, the results are 

combined via IF analysis (within each time point) as discussed in Section 2.3.4.  This procedure 

provided us with three sets of (combined) variables, each of which represents a different time 

point.  It should be noted that these variable lists are not the important variables of individual 

predictive models. Rather, they are the important variables obtained by combining the four best 

prediction models (in terms of AUC measures) for each different follow-up time. 

The agreement of the four predictive models (within each time point) is presented in Table 

2.4. There are 28, 29 and 26 variables that were found to be important for 1-, 5- and 9-year survival 

after heart transplants, respectively. Of the 28 variables, 13 were commonly found to be important 

by all of the four models (i.e. CRT.S, NN.S, LR.S and SVM.S) employed for 1-year survival 

analysis. These numbers are 14 out of 29 and 7 out of 26 variables for 5- and 9-year survival 

analysis, respectively. It can be summarized that around 60 % (13+5 = 18 out of 28) of the variables 

were found to be important for at least 3 of the 4 models employed for 1-year analysis, while 

around 83 % (14+10=24 out of 29) and 46 % (7 +5= 12 out of 26) of the variables were commonly 

found to be important by at least 3 of these 4 models, for 5- and 9-year analysis, respectively.  
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Table 2.4: The agreement of four models on the important variables for each time point 

  4-Models 3-Models 2-Models 1-Model Total 

1-Year 13 5 7 3 28 

5-Year 14 10 4 1 29 

9-Year 7 5 11 3 26 

 

There are forty three (43) variables (in total) that were found to be important for the 1-, 5- 

and/or 9- year time horizons, as presented in detail in Figure 2.2. Recall that the main advantage 

of using data mining algorithms is to uncover the hidden, unexpected information in large/complex 

datasets. Therefore, the findings that are in conflict with the existing literature or have not been 

yet investigated by the existing studies should be considered for future prospective medical 

research because of a high potential for new discoveries. The comparison with the existing 

literature and our findings is limited in that the existing studies have not compared the predictors’ 

level of significance and/or importance throughout different time periods. Rather, they investigated 

if a particular variable has any significance at a certain time period or not. Having said that, many 

of the variables selected by the data analytic models can be justified by recent results published in 

the literature [8, 10-13, 15]. Specifically, it is crucial to emphasize that the medical history of the 

donor, and recipient play a larger role than the demographic-related information (e.g. age, gender). 

This is similar to the results obtained by Dag et al. [13] for heart transplantations. For example, 

FUNC STAT TRR (recipient functional status at transplant) has been found to be the most important 

variable in both studies. One of the main contributions of this paper, however, is identifying how 

the importance (as measured by the sensitivity measure of Sec. 2.5) of each variable changes over 

varying time periods of analyses. This has not been examined by any data mining study for 

transplantation datasets. The changes in the relative importance of a variable can be easily 

determined from Figure 2.2 by examining the different symbols used for each variable, and their 
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corresponding value on the y-axis. Note that the absence of a symbol indicates that this specific 

variable has no importance (i.e. not selected by the IF model) for that specific time-point. The data 

was also sorted in ascending order with respect to their importance for the 1-, 5-, and 9-year 

analyses, respectively. This representation allows readers to visualize how the important variables 

are grouped and uncover interesting patterns (which we detail in the paragraphs below). It should 

be noted that,  hereafter the discussion on these results are mostly about the ones that are found to 

be important for at least three of the four predictive models (within each time frame).This allows 

us to better focus on the variables that are identified as “important” by the consensus of models, 

whose classification analogies are different. 

The 43 predictors can be divided into 7 groups (see Figure 2.2). Group 1 contains variables 

that have some importance for the 1-year prediction, but have no importance for the 5- and 9- year 

survival. The variables within this group are primarily related to either related with the donor (i.e. 

DEATH_MECH_DON, GENDER_MATCH), or the functional status of cardiovascular physiology 

or the priority/urgency needed for a transplant (LIFE_SUP_TCR, DAYS_STAT1). Within this 

group, GENDER_MATCH is associated with increased risk perhaps due to effects of both under-

sizing (female donor/male recipient) and immune mechanisms (male donor/female recipient) [54]. 

Singhal et al. [55] has investigated the effect of three most common donor mechanism (cause) of 

death (DEATH_MECH_DON) on survival after heart, kidney, liver and lung transplants. Based on 

the results obtained, it has been found that donors who die from stroke-related reasons have the 

greatest number of comorbid conditions.  Recipient age (AGE) have also been studied and found 

to be associated for 1-month, 1-year and 5-year in different studies [7, 9].  
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Figure 2.2. The importance of the variables through the three time-periods 

 

Group 2 contains four variables that have some importance for only midterm survival after 

heart transplant. Regarding with AGE_MATCH_LEVEL, It has been observed that a greater 

negative donor–recipient age difference conferred improved survival [56].  A study, which 

compared the effect of procedure types of  heart transplant, of a meta-analysis on 41 studies that 

compares bicaval to biatrial anastomoses identified significant benefits for the bicaval technique 

in terms of early atrial pressure, tricuspid valve regurgitation, return to sinus rhythm, frequency of 

permanent pacemaker implantation, and perioperative survival [57]. With being slightly different 

from the existing literature, our study showed that PROC_TY_HR (procedure type for heart) has 

an influence on 5 year survival only but not on short-, and long-term survival after transplant. On 
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the other hand, in two different independent studies, performed by Shapire et al. [58] and Geller 

et al. [59], educational level (EDUCATION) of the recipients has been found to be associated with 

the coronary artery disease of the transplanted heart and noncompliance.  

Group 3 contains 6 variables, which have importance only for the 9-year prediction, but 

have no effect on the prediction for the 1- and 5- year time-points. There are 3 out of 6 variables 

in this group that were identified to be important by at least three out of four prediction models 

employed in 9-year analysis. These variables have either direct or indirect association with the 

deceased donor. To exemplify, the association of the existence of infection on deceased donor’s 

body with survival, has been studied by Montoya et al. [60]. In their analysis, infectious 

complications was found to be a major cause of morbidity and mortality for the most common 

cause of late deaths as well as some of the early deaths. In our analysis, PULM_INF_DON 

(pulmonary related infection on donor’s body) was found to be associated with the late death after 

transplantation. Similarly, the impact of whether the deceased donor had tattoos (TATTOO) his/her 

before death have been discussed by several scientific articles. The consensus of these studies is 

that tattooed (deceased) donors carry potential risk for skin related (tissue cells) infectious diseases 

[61-63]. Another important variables in this group; ETHCAT_MATCH was created and added to 

the original UNOS dataset by our research team. It refers to the matching level of recipient and the 

donor (0 if the donor and recipient belong same race, 1 if not). In this sense, it has direct relation 

with both recipient- and donor-race. 

Regarding the impact of ethnical category of the patients, a recent prospective study by 

Kilic et al. [23] identified the predictive factors for 10-year survival after orthotropic heart 

transplant on 22,385 adult patients. The study showed that white race have improved the likelihood 
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of 10-year survival after OHT. Another study [64] that have investigated the impact of race to post 

kidney and heart transplant, also found indirect effect of race on survival after transplant. 

Group 4 represents the variables that only contribute to short and medium-term predictions 

of transplantation outcomes. One could see that there is some similarities between these variables 

and those included in Group 1. Based on our results, LIFE SUP TRR is important in predicting 

both 1- and 5-year heart transplant survival outcomes. This is consistent with previous studies, 

which showed that the use of mechanical assist devices do contribute to 1 and 5 year survival 

prediction [22]. According to [54], increasing donor age (AGE_DON) is associated with 

progressively worse survival, particularly with donors aged 60 years and older. The effect of donor 

age is most pronounced in the short-term (1-year post-transplant survival). Medical condition of 

the recipient before the transplant (MED_COND_TRR) is also one of the variables that were found 

to be important for survival after thoracic transplants [65]. In our study it has found to be important 

for both short- and mid-term survival.  DAYS_STAT1, DAYS_STAT1A, DAYS_STAT2 are 

continuous variables that refer to the number of days that the recipient have spent on a certain level 

of need (urgency) for heart transplant. Therefore, these variables are related with the positive or 

(usually) negative progress for the urgency of transplant. In this sense, it would be unsurprising to 

find such variables important, where there are other types of medical condition-related (e.g. 

LIFE_SUPPORT_TRR, MED_COND_TRR) variables were included in this group. 

Group 5 contains 2 variables that are important for 1- and 9-year outcomes, but not for the 

5-year outcome. It should be further investigated why predictors may only be important for short- 

and long-term survival prediction, but not for the time-period in the middle. We believe that the 

predictors in this group should be investigated further since this can be an indication of: a) over-

fitting of our model, and/or b) the existence of multicollinearity in our predictors. Having said that 
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recipient on ventilator at time of transplantation (VENT_SUPPORT_AFTER_LIST) conferred 

increased risk for 1, 5, and 15 years (short-, mid- and long-term) based on a related study that was 

conducted by Stehlik et al. [66]. 

Variables that are only important to medium and long-term outcomes are contained in 

Group 6. These include; whether the recipient is diabetic or not (DIAB), whether the deceased 

donor body received synthetic anti-diuretic hormone prior to transplant or not (DDAVP_DON), 

donor to recipient blood-type match level (ABO_MAT)  and the health status of the recipient 

during the waiting list (INIT_STAT). 3 out of these variables were found to be important for long 

term survival after heart transplant, based on the analysis conducted by Dag et al. It should be 

noted that their study only identified the variables that have long-term effect post heart transplant. 

In a similar study that was conducted by Klingenberg et al. [67], DIAB was found to be important 

for both short- and long-term survival. 

 

Finally, the predictors in Group 7 are important for all of the three follow-up time points. 

The reader should note that the majority of the variables in Group 11 are highly important (i.e. 

have the highest fused sensitivity scores) among our predictors.  Unsurprisingly, these variables 

are well studied in the literature and are typically observed in data mining studies involving heart 

transplantation patients (see e.g. [13, 15]). For example, as it was confirmed by current study as 

well, recipients who are capable of normal activity by having a high quality functional status 

(FUNC_STAT_TRR and/or FUNC_STAT_TCR) are more likely to survive longer when 

compared to others [56]. As can be seen from Figure 2.2, the variables related with the diagnosis 

for heart transplant at the candidacy stage (i.e. DIAG, TCR_DGN and THORACIC_DGN) play 

an important role in predicting the survival time after heart transplantations. There are many 
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reasons for a candidate to be put in the waiting lists such as refractory heart failure requiring 

continuous inotropic support, cardiogenic shock requiring mechanical assistance (e.g., ventilator, 

intra-aortic balloon pump, and ventricular assist device), Congestive heart failure with objective 

evidence of impaired functional capacity, congenital heart disease with progressive ventricular 

failure and cardiac tumors confined to the myocardium. Such indications have been extensively 

studied in several published studies [68-77].  It can be summarized that different types of diagnosis 

(i.e. refractory heart failure, congestive heart failure, congenital heart disease etc.) have different 

association with survival outcomes of heart transplants. The primary payment sources of the 

patient (PRI_PAYMENT_TCR and PRI_PAYMENT_TRR) was found to be an interestingly 

prominent factor that has an association with the survival. It should be noted that such variables 

might have a direct relation with the patient’s financial standing, education level, social class etc.  

In the related literature, there are many researches that have investigated the effect of such factors 

not only on survivability after heart related problems but also on other medical problems [58, 59, 

78-81]. Among these, to specifically exemplify the studies that are related with heart 

transplantation, Allen et al. [81] had investigated the effect of the payment type and education 

level of the recipient on long term survival after orthotopic hear transplantation (OHT) in the US. 

The results obtained showed that both payment (and/or insurance) type and education level of the 

recipients are associated with the long term survival after OHT. Similarly, Shapiro et al. [58] and, 

Geller and Connolly [59] conducted studies that investigated the effect of psychosocial factors on 

survival outcomes after heart transplant. These factors includes variables such as education, social 

support, living arrangement, etc. It has been found out that psychosocial factors can identify 

patients with increased risk of postoperative morbidity. In another related study, Gerber et al. [78] 

investigated the effects of neighborhood income and individual education level on survival after 
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Myocardial Infarction. Their study showed that both poor neighborhood income and low 

individual education had association with a worse clinical presentation. In addition, poor 

neighborhood income was a powerful predictor of mortality even after controlling for a variety of 

confounding factors. Another predictor that fell into group 7 is REGION. The intuitive rationale 

behind this could be the difference between the quality and success level of the transplant centers 

that are located in different regions of the U.S.  

A numeric comparison is provided with respect to the agreement of the three IF models on 

the number of important predictors in Table 2.5. The information is based on data from Figure 2.2. 

Table 2.5 has only 3 cells since there are only three pairwise comparisons (and therefore, the 5 

year IF model versus itself is noted with a not applicable, N/A). 

 

Table 2.5: A numeric comparison of the number of important vs. unimportant variables for 

each of the three IF models   

    5-YEAR 9-YEAR 

    Important Not Important Important Not Important 

1-YEAR 
Important 19 9 14 14 

Not Important 10 6 12 4 

5-YEAR 
Important 

N/A 
18 11 

Not Important 8 7 
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2.5 Conclusion and Future Recommendations 

The main objectives of this paper were to develop an assumption-free data-driven approach to 

predict the 1- (short-term), 5- (medium-term), and 9-years (long-term) survival for heart 

transplantation patients, and understand how the effect of important predictor variables change 

with these three time-points. To achieve these objectives, a five-step data analytic methodology 

(framework) have been proposed. The proposed approach was used to investigate a large, feature-

rich dataset obtained from UNOS, containing all recorded information on heart transplant 

operations that were performed in the U.S. between October 1, 1987 and December 31, 2012.  In 

this current analysis of the UNOS dataset, the following research questions regarding heart-

transplantation have been addressed: 

 

 

1) Can we develop an individualized patient model, with high AUC performance, for 

predicting heart transplantation outcomes?  

2) What predictive factors contribute to the outcome of a heart transplant for a given follow-

up time-point? 

3) How does the contribution/importance of each of these factors change over time (based on  

1-, 5-, and 9-year time-points for analysis)?  

4) Is it possible to group these variables whose effect change over time? If so, how can this 

be done to potentially provide insights to medical practitioners and/or different 

stakeholders? 
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It is important to note that Questions 2-4 have not been addressed previously in the heart 

transplantation literature.  The following medically-relevant results were obtained: A) our 

proposed approach can predict the 1-, 5-, and 9- year survival outcomes with a mean AUC score 

of 0.624, 0.676, and 0.838, respectively. Thus, our methodology can potentially assist medical-

decision makers in evaluating the suitability of a donor heart for a given patient; and B) we have 

identified 43 pre-operative variables that contribute to outcome prediction for at least one of the 

three time-points. We have also grouped these predictors into 7 groups, which reflect how the 

importance of these predictors change over time. 

Based on this work, we believe that are some more general takeaways that can be shared 

with the business and data analytics communities. First, the importance of \asking the right 

questions". Most of the previous studies, where data mining methods were applied to 

transplantation problems, addressed the following question: “What is the best model to predict the 

outcome at x years post-transplant?"  In our opinion, the innovation in these methods is based on 

using somewhat sophisticated modeling approaches. Second, we believe that any data analytics 

study/application should address a set of sequential questions. After all, the goal is to uncover 

hidden patterns and generate insights that are interesting and transforming. As an illustration, in 

the context of transplantation research, after determining the best model for x years, there are 

several opportunities for asking some additional questions:  

With respect to the best model, are there other models that present somewhat similar 

results, but can be more advantageous in practice?  For example, these models may require less 

predictors, and/or can be easier to implement. We refer the reader to [13] for an example in the 

context of heart transplants. 
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What happens to the model if we change the number of years?  This question has two 

dimensions: a) what happens in terms of the predictive performance?  And b) Do the selected 

/significant predictor variables remain unchanged? 

How can we communicate these results (or alternatively, how do uncover patterns from 

our results)? For example, in this paper, we resorted to a simple graph (i.e., Figure 2.2) to 

communicate the change in the importance of the variables over time. 

If the analysis is implemented in practice, does the model perform as expected. If not, is 

due to a technology change (e.g., a major breakthrough in transplantation research) or does it 

reflect some potential issues with the model? 

The reader should note that these type of questions are inherent in the data analytic process. 

For example, the CRISP-DM (CRoss Industry Standard Process for Data Mining) framework 

emphasizes the sequential nature of data mining applications [82]. However, in our estimation, the 

literature does not necessarily reflect that.  

In summary, this paper demonstrates how data analytic approaches can be used to generate 

new knowledge (in the context of heart transplantation research). Our approach can be used for 

applications where the classification problem is temporal (i.e., we want to predict a binary outcome 

over time). Obvious examples of this include other organ transplantation problems especially 46 

since UNOS provides information on other organ transplants. Other examples can include: 

reliability/maintenance applications (predicting whether a system will fail at different time-points), 

customer relationship management (i.e. attrition of customers over time), and other health-

analytics applications (e.g., detecting cancer in individuals). Finally, it should be noted that the 

analysis presented in this paper may inform new prospective studies that can test hypotheses based 
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on the groupings of the variables from the hybrid model. 
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3 A Preoperative Recipient-Donor Heart Transplant Survival Score 

3.1 Abstract 

Recent research has shown that data mining models can accurately predict the outcome of a heart 

transplant based on predictors that include patient and donor’s health/demographics. These models 

have not been adopted in practice, however, since they did not: a) consider the interactions between 

the explanatory variables; b) provide a patient’s specific risk of survival (reported results have 

been primarily deterministic); and c) offer an automated decision tool that can provide some data-

driven insights to practitioners. In this study, we attempt to overcome these three limitations 

through the use of Bayesian Belief Networks (BBN). The proposed BBN framework is comprised 

of four phases. In the first two phases, the data is preprocessed, and a candidate set of predictors 

is generated based on employing several variable selection methods. The third phase involves the 

addition of medically relevant variables to the list. In phase four, the BBN model is applied. The 

results show that the proposed BBN method provides similar predictive performance to the best 

approaches in the literature. More importantly, our method provides novel information on the 

interactions among the predictors and the conditional probability of survival for a given set of 

relevant donor-recipient characteristics. We offer U.S. practitioners a decision support tool that 

presents an individualized survival score based on our BBN model (and the UNOS dataset). 
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3.2 Introduction 

Heart failure is a serious medical condition, where a patient’s heart is weakened and cannot pump 

enough blood to meet the body’s demands [1]. This condition affects an estimated 2-3 % of the 

world’s adult population [2]. In the U.S., there are over 5.8 million patients living with heart 

failure, with an estimated annual incidence rate of 550,000 [1, 3]. The majority of these patients 

can enjoy a full life by managing the condition with medication. However, a certain class of heart 

failure (end-stage heart failure) cannot be managed with these interventions and can only be 

overcome by a heart transplant. If a patient is deemed eligible for a transplant, then she/he is placed 

on a waiting list until a suitable donor heart is found [4]. Currently, in the U.S. there are about 

3,000 people on waiting lists for a heart transplant at any one time, while there are only about 

2,000 donor hearts available each year [4]. This gap between supply and demand of donated 

healthy hearts leads to longer waiting times and thus leaves many to die while waiting for a 

transplant [5]. 

The current matching process is determined based on a printed out list from the United 

Network for Organ Sharing (UNOS) computers, which is based on “blood type, body size, UNOS 

status, and length of time on the waiting list” [6]. There has been a significant amount of research 

being done to determine the subset of variables that should be included for matching. Much of this 

work involve data mining techniques since they do not require prior knowledge about the data, nor 

do they make assumptions about the statistical distribution or properties of the data [7]. In 

particular, data mining methods have shown great accuracy in determining which subset of 

variables influence a patient’s survival over a pre-specified time period [8-11]. 



 

47 

 

There is extensive research on using data-driven models to predict post transplantation 

survival time. For any type of transplant, we can classify these models into two streams. The first 

stream addresses the question of how to accurately predict post transplantation survival for a given 

time period (i.e. will the patient survive for X amount of years?). In our analysis of the literature, 

this represents the majority of the work. This question has been addressed for virtually all organ 

transplants; for example, see the following papers in heart [12-21], kidney [9, 10, 22], and liver 

[23]. It is important to note that these models are deterministic, i.e., they provide an expected value 

that is typically a binary survival (after X-years) post-transplantation outcome. On the other hand, 

the second stream attempts to understand the uncertainty in the prediction as well as identify the 

conditional dependencies among the predictive factors. Bayesian Belief Networks (BBN) have 

been used as a framework for reasoning under uncertainty for kidney [24] and liver [25] 

transplants. Note that none of the papers in the second stream have examined outcomes post a 

heart transplant. Perhaps more importantly, they have not used the Bayesian framework to provide 

an individualized survival probability based on the pre-operative variables. 

In this paper, we focus on predicting the long-term survival after a heart transplant. The 

specific research questions that are addressed in this paper are: a) are there interaction effects 

among the explanatory variables and if so, can they be understood; and b) how can an 

individualized risk score be developed so that it can reflect the long-term survival probability based 

on the characteristics of both the recipient and the donor. These questions have not been examined 

in the heart transplantation literature, yet they provide an important depiction of the mechanics 

behind heart transplantation’s success/failure. We apply BBN to address these two question. The 

use of BBN requires a discrete dependent variable [26]. We chose to focus on long-term survival 

since: a) patients would ideally want to live as long as possible; b) the long-term success rate is 
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close to 50% [3]; and c) the ability to predict long-term survival can provide a platform to explore 

ethical and socio-economic questions regarding the matching process (an important consideration 

even though it is not a focus of this paper). We use 9-years as the cut-off for long-term survival so 

we can compare our results to existing methods in the literature [12, 21] that used the same dataset 

(but only focused on whether a patient will survive or not). 

The remainder of this paper is organized as follows. In Section 3.3, we describe the data 

analytics methodology, from data gathering to processing and modeling/validation. The results are 

presented and discussed in Section 3.4. In Section 3.6, we summarize our conclusions and offer 

some thoughts on future research directions. To facilitate the translation of our model to practice, 

we provide the description/link for our desktop app that allows practitioners to determine the pre-

operative risk score in the Appendix I.  

3.3 Proposed Method 

In this paper, we propose a hybrid data analytics approach that consists of four main phases, as 

shown in Figure 3.1. We start with a data preparation phase, where the data is extracted from the 

UNOS dataset, and pre-processed according to the approach in Dag et al. [12]. In Phase 2, we 

examine several variable selection approaches to generate candidate sets of predictors for the BBN 

application. Specifically, in Phase 2a, data mining methods (i.e. C&RT and ANNs) are used to 

identify a set of important variables through three sequential steps.  The first step uses 10-fold 

cross validation to prepare 10 training samples to ensure that the analysis is robust and to minimize 

the bias that can be associated with data splitting (training vs. testing). In Step 2, the two data 

mining models on the data samples from Step 1 are used. The third, and final step in Phase 2a, is 

where information fusion procedure is used to obtain a first set of predictors based on the sets of 
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important variables obtained from Steps 1-2 via sensitivity analysis (SA), by which the 

contribution level of each predictor from the C&RT and ANN models is obtained. The second set 

of predictors is obtained by using Genetic Algorithms (GA) (Phase 2b), while the third set of 

predictors is obtained by employing Ridge Regression (RR). In phase 3, a fixed set of predictors 

is obtained by using Cox regression and reviewing the relevant literature. We denote the candidate 

sets by LR, Cox, DM, GA, and RR based on the outputs from Phases 2a-c and Phase 3, in Figure 

3.1. In Phase 4, combinations of these five predictor sets are constructed to present different 

scenarios that will be examined by the BBN model. Note that we have a total of seven scenarios 

that represent all combinations of these five sets when LR and Cox are always included. We 

evaluate the predictive performance of these scenarios by using the BBN framework (i.e. we apply 

BBN seven times). Using the best scenario and the associated BBN, we can model the interactions 

between the extracted predictors and provide a patient-specific risk of survival.  

3.3.1 Data Acquisition and Preparation 

The dataset used in this study has been provided by the United Network for Organ Sharing, UNOS, 

which is a “private, non-profit organization that manages the [United States]’s organ transplant 

system under contract with the federal government” [27]. Our heart transplantation data contains 

information on all waiting list registrations and heart transplants that have been listed or performed 

in the U.S. and reported starting from October 1, 1987 until December 31, 2012. The variables in 

UNOS heart transplantation datasets include clinical and demographic factors related to donors, 

recipients and the transplant procedure. The variables can be classified into three major groups: a) 

preoperative factors that include donor/recipient demographics (age, gender, race, etc.), 

donor/recipient medical history, funding sources, and other factors that are considered prior to an 

operation; b) intra-operative factors, which describe several medical conditions during the 
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transplant such as: if there is a chronic steroid use at transplant, or if the recipient is on life support 

at the time of transplant; and c) post-operative factors that include whether the patient died or lived, 

length of hospitalization after transplant, and information on any other complications. It should be 

noted that the data has been de-identified by UNOS prior to being received by the research team. 

 
Figure 3.1: An overview of the proposed methodology 

Since one of our goals is to predict survival, the dataset contains four candidate dependent 

variables representing the 9-year survival outcome. These variables are pstatus (binary variable, 

denotes whether the person is dead or alive at the last follow-up time), gstatus (a similar binary 

variable, denoting if the graft has failed or succeeded at the last follow-up time), ptime (referring 

the time frame from the day of transplant to the recipient’s death/last follow-up time, in days) and 

gtime (a similar continuous variable referring to time frame from transplant to graft’s failure/last 

follow-up time). The BBN model requires a binary dependent variable, and therefore, for this 

study, the list of response variables is limited to either pstatus or gstatus. We use gstatus since it 

allows us to focus on the patients who died solely based on transplant-related reasons versus those 

who may have died due to other reasons (e.g. traffic accidents or cancer).  
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The data preparation consists of two steps: data cleaning and data inclusion. For the data 

cleaning step, we first filtered the data using the variable TX-TYPE (type of transplant) to 

eliminate the patients who underwent other transplant types. Then we eliminated five sets of 

variables/records similar to Dag et al [12]. The first set of variables included all the intra- and post-

operative factors, with the exception of the two outcomes gstatus and gtime, since they do not 

contribute to the decision-making process prior to a transplant. The second group included 

erroneous values and duplicated records, which were detected using outlier detections methods in 

STATISTICA 11 (www.statsoft.com). Variables that do not contribute to the prediction capability 

of the models such as identification type variables (e.g. patient ID number) and invariant variables 

are the third and fourth group of excluded variables. The fifth group included records with missing 

data. Accordingly, the dataset size was reduced to 15, 580 cases and 122 preoperative factors. 

For the data inclusion step, we excluded all the records with a gtime less than 3,285 (9 

years) and a gstatus that indicates that the patient is still alive. This inclusion is intuitive since it is 

impossible to know whether the patient would be alive or dead at our time of analysis of 9 years. 

Based on this step, the final number of cases included in our analysis has been reduced to 13,720, 

i.e. 1,860 were excluded. Among the 13,720 observations, the number of survivals and deaths is 

12,103 and 1,617, respectively. 

 

3.3.2 Variable Selection Methods 

Since our final dataset consisted of 122 preoperative factors, it is necessary to select the subset of 

these factors that are most relevant. We use five different approaches to determine candidate sets 

of predictors for our model. Sections 3.3.2.1 to 3.3.2.4 present how these variable selection 

http://www.statsoft.com/
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approaches were used in this paper. In Section 3.3.2.5, we discuss how combinations of these sets 

are generated for our analysis. 

3.3.2.1 Data Mining –based Variable Selection Models 

C&RTs and ANNs have been shown to be suitable for feature selection in the machine 

learning literature [28-31], with excellent performance in transplantation procedures [8, 10, 32]. 

We provide a brief description of these two methods and the procedures used to combine the 

knowledge gained from them in the paragraphs below. For a more detailed introduction to these 

methods, the reader is referred to [33, 34]. 

10-fold cross validation: 

The k-fold cross-validation approach is used to minimize the bias associated with the 

random sampling of the training and test data samples [35]. The entire dataset is randomly split 

into k mutually exclusive subsets of approximately equal size. The prediction model is tested k 

times by using the test sets. The estimation of the k-fold cross validation for the overall 

performance criteria is calculated as the average of the k individual performances as follows [36]: 

  
1

1 k

i

i

CV PM
k 

  , (3.1) 

where CV stands for cross validation, k is the number of mutually exclusive subsets (folds) used, 

and PM is the performance measure used in the analysis. In our analysis, we use the stratified 10-

fold cross validation approach to estimate the performance of the different classification models. 
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Our choice for k=10 is based on literature results [35, 36] that show that 10-folds provide an ideal 

balance between performance and the time required to run the folds. 

Decision trees: 

Decision trees are widely used in several data mining and organ transplantation 

applications since they are easy to interpret algorithms. The modeling procedure starts with 

splitting the dataset into several subsets each of which consists of more or fewer homogeneous 

states of the target variable [37]. Then the impacts of each independent variable on the target 

variable are measured. This procedure takes place successively until the decision tree reaches a 

stable state. Popular decision tree algorithms include Quinlan's ID3, C4.5, C5 [38, 39] and C&RT 

(Classification and Regression Trees) [37]. In our data analysis, the C&RT algorithm has been 

used to select the most important predictor variables due to its superior performance compared to 

the other decision tree algorithms in the preliminary data analysis. 

Artificial neural networks: 

ANNs are widely employed in a wide variety of computational data analytics problems 

that include classification, regression and pattern recognition. In this discussion, we assume that 

the reader is familiar with ANNs and their construction (otherwise, refer to Sordo [40]). For our 

analysis, we use the sigmoid function as the activation function for our ANN. We have also used 

the Multi-layer Perceptron (MLP) learning model with a back-propagation algorithm due to its 

superior performance to the radial basis function (RBF) in our preliminary analysis. This result 

has also been reported by Dag et al. [12] in their investigation of short, mid and long-term survival 

of heart transplant patients based on the same dataset. 
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Performance Evaluation Metrics: 

To evaluate the performance of the data mining procedures, we used six different 

evaluation metrics: a) accuracy, b) area under the receiver operating characteristic curve (AUC), 

c) F-measure, d) G-mean, e) recall, and f) specificity. These six are selected since they are suitable 

for binary classification. A detailed description of these measures can be found in [12, 41]. It 

should be noted that AUC is our primary criterion in comparing the data mining models used in 

this study; since our dataset is imbalanced (the number of survivals is much larger than deaths). 

We use AUC in the information fusion (IF) step to combine the variables selected from both data 

mining models. In the results section, for the sake of completion, we provide the values for the 

other metrics when evaluating the performance of the BBN model. 

Determining the importance of predictor variables through sensitivity analysis: 

After determining the performance of the different predictive models, we measure the 

relative importance of each of the independent variables using sensitivity analysis (SA). This phase 

is needed for several reasons. First, it can help understand the casual factors for our two data 

mining models. This is particularly important in understanding and communicating the results of 

ANNs which are still considered by many to be black box models [e.g. see 42]. A second major 

reason for the importance of sensitivity analysis is it provides us with a framework to capture the 

importance of independent variables across different models.  

The sensitivity of a specific predictor variable is calculated by taking the proportion of the 

error of the model that includes this variable to the error of the model when it does not include this 

specific variable [43]. The importance of a variable is in direct proportion to variance of predictive 

error of the classification model in the absence of that specific variable. The same method is 
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followed for all classification models, and is used in ranking the relative importance of the 

variables of each classification model according to the sensitivity measure defined by Saltelli et 

al. [43]. Their measure is defined as: 

  
( ( | ))i i

i
V V E y x

S
V(y) V(y)

  , (3.2) 

where y is the binary output variable (gstatus), and the unconditional output variance is denoted 

by V(y). The expectation operator is denoted by E, which calls for an integral over all predictor 

variables except xi. A further integral operator is implied over xi by the operator Vi. The importance 

of a specific variable is then computed as the normalized sensitivity as described by Saltelli et al. 

[44]. 

Information Fusion: 

Information fusion (IF) techniques combine information obtained from multiple forecasts 

(from prediction models) in an attempt to decrease model uncertainty and increase the knowledge 

gained. Studies has shown that robustness and accuracy of information can be increased, while the 

uncertainty and bias of individual models can be decreased by combining multiple forecasts [45]. 

Therefore, there is an increasing deployment of IF techniques in data-mining problems as opposed 

to the application of a single method [12, 46]. In our study, we adopt the information fusion model 

presented by Delen et al. [47] since it has provided us with good performance in the pilot analysis 

and it can be easily explained to medical practitioner 
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3.3.2.2 Genetic Algorithms (GA) 

Genetic algorithms are adaptive heuristic search algorithms which are utilized in the situations 

where exhaustive optimization approaches are not favorable due to high computational time. They 

initialize by generating a random set of individuals which will represent the domain under 

consideration. These individuals, limited in set size throughout the optimization process are 

represented by unique identifiers (genome). The genomes are tested at each iteration based on the 

specific criterions (fitness functions). The genomes for next iterations are chosen based on their 

fitness function criteria. Then, new individuals are generated to obtain the result independent of 

initial solutions formed. The new individuals are generated by two operations: crossover and 

mutation. Genetic algorithms have also been utilized for attribute selection purposes in medical 

literature [48, 49]. In our current study, a GA with 150 generations (tournament size of 2 with 2-

point crossover and a mutation probability of 0.2) was deployed into the k-Nearest Neighbor 

algorithm (k-NN) (k=3) [50]. We have used 150 generations in the GA and k=3 in k-NN models 

since they provided us with the best AUC and time of execution performance when compared to 

the other variants that we examined. The reader is referred to [48, 50] for a detailed description of 

GA and k-NN methods. 

 

3.3.2.3 Ridge Regression 

Ridge regression is a linear regularization approach that aims to produce precise estimates of regression 

coefficients. To do so, a penalty is added on the sum of the squared regression parameters, which reduces 

the overfitting of data due to the multicollinearity of the covariates [51]. Applying ridge regression (RR) 

results in small non-zero regression coefficients. The general formula for RR is: 
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  𝑅𝑆𝑆𝐿2 = ∑ (𝑦𝑖 − 𝑦𝑖̂)
2 + 𝜆 ((∑ 𝛽𝑗

2𝑝
𝑗=1 ) − 𝐶2)𝑛

𝑖=1 . (3.3) 

where  𝑦𝑖 is the outcome and, 𝑦𝑖̂ is its associated predicted value. The number of predictors and cases are 

represented by p and n, respectively. RSSL2 corresponds to the second order penalty being used on the 

parameter estimates and, λ is the penalty parameter that can optimally be determined via trial-and-error 

based experiments, and C is the upper limit of the sum of squares of the s. In this paper, we generated a 

set of candidate variables based on those factors whose coefficient values (s) are higher than 0.25. Note 

that we use an arbitrary value of 0.25; however, this was a logical value based on the observed coefficients. 

3.3.2.4 Variable Selection through Cox Survival Analysis Regression Model and Literature 

Review 

Survival analysis is a subarea of statistics that focuses on the estimation of the time needed until an 

event occurs (graft failure in our case). Cox proportional hazard model (CPHM) is widely used in survival 

analysis to determine the predictors’ effects on a dependent variable [52] since it can handle censored data. 

In such a model, the effect of a unit increase in a predictor on the outcome variable is proportional with the 

hazard rate [53]. In this sense, the model is similar to multiple regression analysis, where the outcome is 

the hazard function at a given time. In our study, the survival time of each heart-recipient is assumed to 

have the following exponential hazard function hi; 

  
0.exp( . )ih h ix β ,  (3.4) 

where ho represents the baseline hazard function (denoting the probability of failure when all predictors are 

zero) and x
i denotes the vector of predictor attributes for the ith recipient. The regression coefficients for the 

predictors are represented by a vector β that is assumed to be the same for all recipients. Thus, the effects 

of covariates on the outcome are determined by measuring the proportional effect in the hazard function. 
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For a more in-depth coverage of the Cox proportional hazard model, we refer the reader to [2]. In addition 

to the variables obtained by the Cox model, a list of candidate variables that were found to be important for 

long-term survival is obtained by reviewing the heart transplantation literature review (LR) [16-18, 54-58]. 

3.3.2.5 Creating Possible Predictor Sets 

   Seven possible predictor sets were constructed by using the variable selection methods in 

Sections 3.3.2.1- 4. In these scenarios, we maintained all variables selected in the LR stage [16-18, 54-58] 

and those identified by the Cox Model. The rationale behind this decision is: a) the LR variables account 

for medically relevant information and knowledge gained in previous studies; and b) Cox model is the only 

approach considered here where survival is analyzed as a continuous variable (thus, it can be the most 

informative). The seven scenarios were then developed using a simple union operator; LR + Cox Variables 

with different combinations of the methods explained in Sections 3.3.2.1-4. These seven possible final 

predictor sets and the methods used in the construction process are shown in Appendix. 

3.3.3 Use of Bayesian Belief Networks 

A Bayesian Belief Network (BBN) is a directed acyclic graph that represents a probabilistic 

dependency model. It consists of a set of interconnected variables, where the nodes in the network 

correspond to the variables (predictors) and the arcs express the conditional dependencies and causal 

relations between these variables [59]. It is a powerful data mining technique that can be used to help 

reasoning under uncertainty as well as for modeling complex nonlinear interactions among the attributes 

[60]. They have been widely utilized in medical domain [61-69] and have become increasingly popular 

since they are able to handle uncertain knowledge involved in detection of diseases, predicting the outcome 

of diseases as well as making medical decisions on optimal treatment alternatives in various different areas 

[70]. 
ixPa
 
is the set of parents for each ix , the Bayesian Network chain rule can be expressed as [71]:  
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The Naive Bayes (NB) classification is a simple model that can help to learn the structure. It 

assumes conditional independence between all predictor variables with the given class/ target. The 

classification is based on Bayes rule where the probability of class/target value computed for each given 

attribute variables and then the highest prediction is chosen for the structure [72]. Tree Augmented Naïve 

Bayes (TAN) method is a relaxation of the NB classifiers where the class variable has no parents, but it is 

one of the parents of each predictor along with at most one other attribute (Figure 3.2). In such networks, 

the inferences can be made by looking at arcs and nodes in the presented graph. An arc between two nodes 

is a sign of dependency between those nodes. As illustrated in Figure 3.2, an arc from the class variable to 

each predictor means that the class variable is a parent for each predictor and each predictor has at most 

one more parent along with the class variable: 

  ( ),
ix iPa C x , (3.6) 

where ( )i  is the tree function over 1,..., xnx , and 
ixPa
 
is the set of parents for each ix . Class variable 

(C) has no parents and is defined as: 

 CPa  . (3.7) 

The arc between two predictors implies that the contribution of the child node in predicting the outcome 

(class node C) is dependent on the parent node value. For example, in predicting the class variable C, the 

contribution of X3 is dependent on the value of X1, and the contribution of X2 is dependent on X1’s value. 
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Figure 3.2: Tree Augmented Naïve Bayes Structure 

Finding the best tree is an optimization problem where the objectives are to maximize log likelihood 

of ( )i , and to construct a maximum likelihood tree to find a maximal weighted spanning tree in a graph 

[73]. Then, the TAN construction steps can be defined below as shown in [73]: 

1. Compute conditional mutual information function for each (i, j) pairs; 

              

,,

( , )
( : ) ( , , ) log ,

( ) ( )
i j C

i j

P i j i j

x x i j

P x x C
I x x C P x x C i j

P x C P x C
  .  

This function tells how much information jx  provides about ix  when the class variable is known. 

2. Build a complete undirected graph and use conditional mutual information function to annotate the 

weight of an edge connecting ix  to jx . 

3. Build a maximum weighted spanning tree. 

4. Convert the undirected graph to a directed one by choosing a root variable and setting the direction 

of all edges to be outward from it. 

5. Construct a TAN model by adding a vertex labeled by C and adding an arc from C to each ix .   

The other critical stage of a BN’s construction is to identify the variables that should be 

incorporated in the model. The selection of the most relevant variables depends on the modeler and the 

dataset. Constructing a Bayesian network manually may turn out to be quite time consuming in that it 

requires access to expert knowledge. There are many healthcare related applications in the literature that 

have been manually constructed by domain experts [74-78]. On the other hand, the network can be learnt 
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and constructed from the data itself without any explicit knowledge of domain experts as long as the 

comprehensive dataset is available (as in our case). Therefore, learning from the data has been attracting 

considerable interest within the research community [79, 80]. Our proposal in the current study is to learn 

a TAN network, where 1,..., xnx can be defined as set of attributes/predictors that represent the union set 

of predictors which was obtained through merging three different sets of variables (see Section 3.4.2) , and 

C is the target/class variable. 

3.4  Results and Discussion 

In this section, we only discuss the results from Scenario 1 (LR + Cox + DM) since it provided a competitive 

AUC performance (≤ 0.01 of the best solution) with ~ half the number of variables. Thus,, we consider this 

scenario to be the most likely to be adopted by practitioners (see Ockham's razor). For the sake of 

completion, we provide the comparison among these seven different scenarios in the Appendix.  

3.4.1  Variable Selection Results 

3.4.1.1 Data Mining-based variable selection results 

 

Table 3.1 provides the accuracy, recall, specificity, G-mean, F-measure and AUC values for each 

of the 10-fold cross validated samples of the ANN and C&RT models. Based on the AUC values 

(bolded and underlined), both models have similar performances in predicting the 9-year survival. 

Additionally, the C&RT model outperforms the ANN model based on the specificity and G-mean 

values, while the ANN model is better based on the recall and F-measures. This means that the 

C&RT model is more powerful in detecting the patients whose grafts will likely to fail within the 

9-year evaluation period, while the ANN is better in predicting those patients who will survive at 

least 9-years post-transplant. We use the sensitivity analysis (SA) technique of [43, 44] to 
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understand the relative contribution of the predictor variables selected by C&RT and ANN. The 

SA method results are shown in Figure 3.3 

 
Figure 3.3: Sensitivity Analysis for ML-based Variable Selection Models  
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Table 3.1: Results of the six evaluation metrics for the C&RT and ANN 10-fold samples 

  Decision Trees (C&RT) Artificial Neural Networks (ANN) 

 TP   FN        TP   FN       

Fold No FP   TN Accuracy Recall  Specificity  G-mean F-measure AUC Fold No FP   TN Accuracy Recall  Specificity  G-mean F-measure AUC 

1 
317 67 

0.756 0.826 0.596 0.702 0.826 0.842 1 
316 65 

0.731 0.829 0.506 0.648 0.811 0.798 
67 99 82 84 

2 
290 94 

0.735 0.755 0.687 0.720 0.799 0.814 2 
328 56 

0.751 0.854 0.512 0.661 0.827 0.825 
52 114 81 85 

3 
304 80 

0.736 0.792 0.608 0.694 0.807 0.804 3 
329 55 

0.749 0.857 0.500 0.655 0.827 0.849 
65 101 83 83 

4 
314 70 

0.724 0.818 0.506 0.643 0.805 0.798 4 
314 70 

0.724 0.818 0.506 0.643 0.805 0.809 
82 84 82 84 

5 
320 64 

0.793 0.833 0.699 0.763 0.849 0.817 5 
317 67 

0.775 0.826 0.657 0.736 0.836 0.829 
50 116 57 109 

6 
318 66 

0.735 0.828 0.518 0.655 0.813 0.809 6 
326 58 

0.733 0.849 0.464 0.628 0.816 0.808 
80 86 89 77 

7 
312 72 

0.700 0.813 0.440 0.598 0.791 0.838 7 
316 68 

0.735 0.823 0.530 0.660 0.812 0.812 
93 73 78 88 

8 
308 75 

0.716 0.804 0.515 0.644 0.798 0.791 8 
302 82 

0.700 0.786 0.500 0.627 0.785 0.779 
81 86 83 83 

9 
327 56 

0.795 0.854 0.659 0.750 0.853 0.848 9 
326 57 

0.778 0.851 0.611 0.721 0.842 0.849 
57 110 65 102 

10 
338 46 

0.791 0.880 0.584 0.717 0.855 0.854 10 
346 38 

0.802 0.901 0.572 0.718 0.864 0.888 
69 97 71 95 

Mean     0.748 0.820 0.581 0.689 0.820 0.822 Mean      0.748 0.839 0.536 0.670 0.823 0.825 

Std Dev     0.034 0.034 0.086 0.052 0.024 0.022 Std Dev      0.030 0.031 0.059 0.040 0.022 0.031 

*TP, FP, FN, and TN denote true positives, false positives, false negatives, and true negatives, respectively.
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Using the information fusion model of Sec. 2.2.1, we constructed a union set of important 

predictors and their ranking (see Figure 3.4). Note that the variables are sorted according to their 

percent contribution, where func_stat_trr (recipient functional status at registration) and 

func_stat_tcr (recipient functional status at transplant) had the highest contributions of 26.58 % 

and 22.62 %, respectively. These variables are typically the most significant in predicting a heart 

transplant’s success as in Dag et al. [12]. Based on Figure 3.4, we selected the ordered variables 

that resulted in a cumulative percent contribution of greater than 90%. These 11 variables, defined 

in Table 3.2, are our fused set of important predictors from the data mining step. The selection of 

these variables is also justified by an examination of Figure 3.3. Specifically, these are the only 

variables whose % contribution was ≥ 1 by both the ANN and C&RT models.  

 

Figure 3.4: The (fused) importance of the union set of predictors based on the IF model 
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Table 3.2: Data Mining models Variable Set (DMVS) 

Variable Definition 

FUNC_STAT_TRR recipient functional status at registration 
FUNC_STAT_TCR recipient functional status at transplant 
PRI_PAYMENT_TCR recipient primary projected payment type at registration 
PRI_PAYMENT_TRR recipient primary payment source at transplant 
DIAB recipient diabetes at registration 
IMPL DEFIBRIL implantable defibrillator at registration 
REGION UNOS region where transplanted/listed 
ETHCAT recipient ethnicity category 
END_STAT candidate status at transplant offer/removal 
ETHCAT_MATCH donor-recipient ethnicity match level 
DDAVP_DON deceased donor-synthetic anti diuretic hormone 

 

3.4.1.2 Variable Selection Results based on the Cox Model 

 

The second set of predictors was captured based on the Cox survival model. The survivor function 

was obtained by using a combined stepwise (forward and backward) variable selection in 

predicting the event (gstatus) via the graft time-span that was denoted gtime. After running the 

stepwise variable selection procedure, four variables were found to be significant (with a p value 

of ≤0.01), see Table 3.3. 

Table 3.3:  Cox model variables set 

Variable Sig. Exp(B) Definition 

AGE_GROUP 0.0000 2.0255 recipient age group 

FUNC_STAT_TRR 0.0000 1.0002 recipient functional status at transplant 

IMPL_DEFIBRIL 0.0000 0.8127 implantable defibrillator at registration 

DDAVP_DON 0.0001 1.1526 deceased donor-synthetic anti diuretic hormone 

The effects of individual predictors can be interpreted by using the value of Exp(B); it represents 

the “change in the predicted value” in the hazard function when there is a unit increase in the 

corresponding predictor variable. For categorical predictors, it represents the estimation of the ratio 

of the “hazard rate in one category” to “the hazard rate in another category”. For example, if a 



 

66 

 

recipient belongs to an older age group, the risk of graft failure increases 2.0255 times (if 

everything else is held constant). For continuous predictors, it reflects the “change of graft failure 

risk” for an increase of one unit of that specific predictor. 

3.4.1.3 Variable selection based on the literature 

 

The third set of predictors was identified based on the literature (see Section 3.3.2.4). This resulted 

in 13 additional variables that were not in Tables 3.2 - 3.3.  We denote these variables with an 

asterisk in Table 3.4. 

3.4.2 The Union Set of Data Mining, Cox Regression and Domain-Experts Predictors 

After obtaining three sets of important/significant variables, we merged them into a final set of 

variables. Twenty-five unique predictors were selected through using a simple union operator. 

These variables are defined and presented in Table 3.4. We can broadly categorize these variables 

into two groups: a) directly biomedically-relevant and; 2) indirectly biomedically-relevant. Since 

these variables are the inputs to the BBN model, we refer to them as the BBN variables. Only the 

BBN variables were stored in our database, i.e. the number of predictors was reduced from 122 

(initial) to 25 (BBN inputs).  
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Table 3.4: BBN variables. *Denotes additional variables identified from the literature search 

No. Variable Name Definition 

1 ABO* recipient blood group at registration 

2 ABO_DON* donor blood type 

3 ABO_MAT* donor-recipient abo match level 

4 AGE* recipient age (years) 

5 AGE_DON* donor age (years) 

6 AGE_GROUP recipient age group 

7 DAYS_WAIT_CHRON* total days on waiting list 

8 DDAVP_DON deceased donor-synthetic anti diuretic hormone 

9 DIAB recipient diabetes at registration 

10 DIAG* recipient primary diagnosis 

11 END_STAT candidate status at transplant offer/removal 

12 ETHCAT recipient ethnicity category 

13 ETHCAT_DON* donor ethnicity category 

14 ETHCAT_MATCH donor-recipient ethnicity match level 

15 FUNC_STAT_TCR recipient functional status at registration 

16 FUNC_STAT_TRR recipient functional status at transplant 

17 GENDER* recipient gender 

18 GENDER_DON* donor gender 

19 IMPL_DEFIBRIL implantable defibrillator at registration 

20 MED_COND_TRR* recipient medical condition pre-transplant at transplant 

21 PRI_PAYMENT_TCR recipient primary projected payment type at registration 

22 PRI_PAYMENT_TRR recipient primary payment source at transplant 

23 REGION UNOS region where transplanted/listed 

24 WGT_KG_DON* calculated donor’s weight in kilograms 

25 WGT_KG_TCR* recipient weight (kilograms) at registration 

 

The predictors in the first group include all the LR variables [12-21]. In addition, they include 

other medically relevant variables; for example, DIAB which represents whether the patient is 

diabetic or not and has been shown to be medically relevant in non-data mining-based 

transplantation papers [81, 82].  It should be noted that several of the LR variables were also 

identified by the data mining and/or the Cox survival model (as discussed earlier in this section). 

The variables in the second group may not seem to be directly medically relevant; however, they 

reflect a patient’s financial situation, education level and other socio-economic factors that are 

often predictive of post-surgical outcomes [83-88].  For example, in the context of heart 
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transplants, Allen et al. [83] had investigated the effect of payment type, education level and the 

patient’s insurance status on long-term survival after an orthotopic hear transplantation (OHT) in 

the US. Their results showed that payment/insurance type and education level of the recipients are 

predictors of long-term survival. Moreover, Shapiro et al. [88] and Geller and Connolly [87] 

investigated the effect of psychosocial factors on survival outcomes after a heart transplant. These 

factors include variables such as education, social support, living arrangement, etc.  Their work 

revealed that psychosocial factors can identify patients with increased risk of postoperative 

morbidity. Gerber et al. [85] showed that a poor neighborhood income was a powerful predictor 

of mortality after a myocardial infraction. Therefore, the inclusion of predictors in the second 

group provides insights into socio-economic predictors of heart transplantation outcomes. These 

variables were found to be consistent with the literature that investigated the impact of socio-

economic factors on surgical and transplantation outcomes. We did not include them in our LR 

predictor set, however, since we focused on variables that were agreed upon in all examined 

papers. 

3.4.3 BBN Model Results 

By employing the BBN model with 10-fold cross validation, we obtained an average AUC score 

of 0.840. The detailed results of each of the 10-folds for each of our six metrics are presented in 

Table 3.5. We should note that the main goal of this study is not to compare the performance of 

BN model with other models, but rather to uncover the conditional relations between the predictors 

and understand/calculate the individual survival risks for patients who underwent a heart 

transplant. With that being said, it is interesting to see that the BBN model outperformed the C&RT 

and ANN models based on the AUC metric (our main evaluation criterion) as well as the G-means. 

The BBN had a lower F-measure, when compared to the two data mining models. We have only 
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discussed these three metrics here since they are the most suitable for unbalanced datasets [41]. 

With that being said, the overall results (based on the AUC, F-measure, and G-means) show that 

the BBN model is a good predictor for both 9-year survivals and failures of the graft transplant. 

As explained in Section 3.3.3, the TAN provides an understanding of the inter-relations 

between each predictor and the outcome (gstatus), and the contribution of inter-variable relations 

to the probability of each outcome. Since we have employed 10-fold cross validation to develop 

10 BBN models, it would not be practical to present and interpret 10 different individual networks 

in this manuscript. Accordingly, we use the 7th fold to be a representative model since its AUC 

value, G-mean, and F-measure are closest to our average values for the 10-folds. The acyclic graph 

obtained through using seventh fold is provided in Figure 3.5. The numbering of the BBN 

predictors is based on Table 3. 5. Recall that an arrow from a predictor (parent) to another (child) 

implies that the impact of the child predictor on the gstatus is dependent on the value of the parent. 

From Figure 3.5, there is only one predictor (ABO) who has only one parent, which is the class 

variable gstatus. This means that the contribution of ABO (recipient blood group at registration) 

on predicting the gstatus does not change with the change in values of any of the other 24 

predictors. This result is interesting since the two other blood type variables (ABO_DON, and 

ABO_Match) are children of ABO, i.e. their contribution to prediction differs with a change of 

ABO. However, they do not affect ABO’s contribution to the model.  
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Table 3.5: BBN classification results 

Fold No 
TP FN 

Accuracy Recall  Specificity  G-means F-measure AUC 
FP TN 

1 
271 113 

0.749 0.706 0.849 0.774 0.797 0.843 
25 141 

2 
269 115 

0.736 0.701 0.819 0.758 0.788 0.831 
30 136 

3 
259 125 

0.755 0.674 0.940 0.796 0.793 0.838 
10 156 

4 
262 122 

0.731 0.682 0.843 0.759 0.780 0.831 
26 140 

5 
266 118 

0.744 0.693 0.861 0.772 0.790 0.854 
23 143 

6 
263 121 

0.727 0.685 0.825 0.752 0.778 0.826 
29 137 

7 
259 125 

0.738 0.674 0.886 0.773 0.782 0.841 
19 147 

8 
257 126 

0.711 0.671 0.802 0.734 0.764 0.800 
33 134 

9 
273 110 

0.760 0.713 0.868 0.787 0.805 0.848 
22 145 

10 
275 109 

0.778 0.716 0.922 0.812 0.818 0.885 
13 153 

Mean     0.743 0.692 0.862 0.772 0.790 0.840 

Std. Dev.     0.019 0.017 0.044 0.023 0.015 0.022 
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Figure 3.5: TAN structure for the Proposed Method 

From Figure 3.5, we can identify 10 nodes that have no influence on the contributions of 

any other predictors, yet their contribution to predicting the outcome variable is dependent on 

another predictor. These nodes correspond to: ABO_MAT, AGE, AGE_DON, 

DAYS_WAIT_CHRON, DDAVP_DON, DIAB, DIAG, ETH_CAT, GENDER_DON, 

PRI_PAYMENT_TRR. By closely examining the parent-child relationships in Figure 3.5, we can 

identify several relationships that are intuitive. For example, the contribution of predictor 18 

(GENDER_DON) in predicting the outcome variable depends on predictor 17 (GENDER). This 

means that the interaction between the recipient and donor genders might in some cases have an 

effect on the survival after the heart transplant. Similarly, the variable 9 (DIAB)’s contribution on 

predicting the gstatus, is dependent on predictor 16 (FUNC_STAT_TRR). The effect of a 
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recipient’s diabetes on graft survival is dependent on the state of the recipient’s functional status 

(ability to carry out daily activities). Predictor 16 (FUNC_STAT_TRR) also influences the 

contribution of AGE_GROUP (Node 6). The information extracted from the BBN can be analyzed 

in a more detailed manner by domain experts. More specifically, Figure 3.5 (and similar networks) 

can provide medical practitioners with significant insights on the factors that affect survival and 

their interactions. 

Based on the TAN depicted in Figure 3.5, we can calculate the patient-specific survival 

risks which we define as how likely (posterior-probability) the transplant will result in a graft 

failure, within our 9-year horizon, given the values for our 25 predictors. Note that this can be seen 

as the continuous predictor for the binary outcome predicted variable, gstatus. For convenience, 

we denote the continuous predictor score with cscore. When the cscore is greater than 0.5, the 

model predicts that the patient will survive, and when the cscore is less than 0.5 the model predicts 

that the patient will die. Predictions further away from 0.5 (in either direction) are more likely to 

be realized. We demonstrate this concept in by stratifying and analyzing multiple cscores based 

on the 7th fold of our BBN model. Based on this representation, one could see that the cscore 

improves the prediction of the outcome based on all 6 metrics when the percentage of extreme 

values in the sample increases (i.e. as one goes down the table).  

 

 

 

 



 

73 

 

 

Table 3.6: Performance of BBN with different cutoffs for the cscores, where cscore ≠ 0.5 is the 

model used throughout this paper ( first row is identical to 7th fold in Table 3.5) 

cscore 

# 

dropped 

cases 

# 

cases 

left 

# 

survivals 

# 

failures 

TP FN 
Accuracy Recall  Specificity  

G-

mean 

F-

measure 
AUC 

FP TN 

≠ 0.5 0 550 166 384 
259 125 

0.738 0.674 0.886 0.773 0.782 0.841 
19 147 

 [0.4, 

0.6] 
32 518 156 362 

251 111 
0.761 0.693 0.917 0.797 0.802 0.847 

13 143 

 [0.3, 

0.7] 
78 472 136 336 

239 97 
0.786 0.711 0.971 0.831 0.826 0.861 

4 132 

 [0.2, 

0.8] 
154 396 97 299 

233 67 
0.823 0.777 0.969 0.867 0.869 0.895 

3 93 

 [0.1, 

0.9] 
264 286 40 246 

223 23 
0.916 0.907 0.975 0.940 0.949 0.959 

1 39 

 [0.05, 

0.95] 
300 250 22 228 

220 8 

0.964 0.965 0.955 0.960 0.980 0.981 1 21 

0 0 

 

3.5  A Decision Support Tool for Providing Insights to Medical Practitioners 

One of the goals of this paper is to provide medical practitioners with insights from data-driven 

models. These type of insights are expected to play an important role in the future of health-care 

(see e.g., IBM Watson Health at http://www.ibm.com/smarterplanet/us/en/ibmwatson/health/ ). 

The tool is based on the BBN results in Section 3.4. A practitioner can insert the values for the 25 

preoperative predictors and obtain a cscore for a recipient’s survival as shown in Figure 3.6. Note 

that the user has the option to train the BBN (e.g. by adding records post 2012) or use our training 

dataset (from 1987-2012).  

http://www.ibm.com/smarterplanet/us/en/ibmwatson/health/
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Figure 3.6: The interface of the decision support tool 

The tool has been developed in JAVA using Swing components. Since JAVA is a platform-

independent programming environment, our tool can be easily installed on any computer having Windows, 

Linux or MacOS operating systems. On the background, a sophisticated Bayesian Network Classifier JAVA 

library (see code at: http://jbnc.sourceforge.net/#jBNC_Toolkit), which provides a stable and robust version 

of the TAN algorithm used in this paper. The link for our tool can be found at this temporary location: 

https://www.dropbox.com/sh/dv2waunpjw9jpik/AADwRMHTn8c9siCUh7uvZXD6a?dl=0 (a permanent 

location will be constructed after the review process). 

http://jbnc.sourceforge.net/#jBNC_Toolkit
https://www.dropbox.com/sh/dv2waunpjw9jpik/AADwRMHTn8c9siCUh7uvZXD6a?dl=0
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3.6 Conclusions and Future Research Recommendations 

The main objectives of this paper were to develop a mathematical model to identify patient-specific 

survival risk scores and the interactions between the explanatory variables. To achieve these goals, 

we have proposed a BBN framework that is based on variables selected from data-mining models, 

statistical models, and the literature. Our approach is used to investigate a large, feature-rich 

dataset obtained from UNOS, containing all recorded information on heart transplant operations 

that were performed in the U.S. between October 1, 1987 and December 31, 2012. In our analysis, 

we have addressed the following questions: 

a) What predictive factors contribute to the outcome of a heart transplant for 9-year survival? 

b)  Can the interactions between these predictors be quantified and visualized?  

c)  How can data-driven methods be used to construct a probabilistic patient-specific failure 

risk score based on the values of the relevant preoperative predictors?  

The innovation in our framework is based on our ability to address the latter two questions, 

which were not previously examined within the heart transplantation research community. In 

addition, we provide a decision support tool that can be used by practitioners to obtain a 9-year 

survival probability for a patient given attributes extracted from the dead donor. 

The results obtained through using the proposed framework indicates that employing a 

comprehensive variable selection procedure leads to an excellent predictive model as illustrated 

by our examination of 6 metrics. More importantly, the information obtained using a probabilistic 

(graphical) approach in the final step has provided the relations among the important predictors as 

well as the patient-specific failure probabilities. These significant outcomes can be insightful to 
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medical practitioners and policy-makers since they may provide with the ability to conduct 

prospective studies. 

A number of limitations in our analysis needs to be mentioned. First, there are several 

variables in the UNOS dataset whose collection has started after October, 1987. For instance, the 

UNOS team started to collect the information about the variable called “Alchohol_heavy_don” on 

June 30th, 2004. In our data cleaning procedure, most of these variables had to be deleted since 

these variables have excessive number of missing records regarding to the dates in which they 

were not considered. A potential remedy was to solve such a problem would be using only the last 

10 years of the dataset; however, this would have prevented us from having a large enough dataset 

to study the factors predicting the long-term survival. A second limitation is that we have only 

compared two data mining approaches in our variable selection procedure approaches (ANN and 

DT) for analyses. The results could have been different if other approaches are investigated. Since 

it is computationally infeasible to apply every possible variable selection model, we chose to use 

these common approaches. Similarly, the use of a different information fusion method may have 

resulted in different findings and combinations of important variables. With that being said, we 

believe that our results are satisfactory when compared to commonly reported values in the data 

mining literature. 

In summary, this paper proposed a novel framework to predict the long-term survival 

outcomes after heart transplantation. We have shown that extracting the predictive factors from 

multiple source helps to increase the performance of the prediction model used in this study. Our 

approach can be easily extended to other organs, especially since UNOS provides information on 

other organ transplants. Finally, it should be noted that the analysis presented in this paper may 

inform new prospective studies if the findings are interpreted in detail by medical practitioners. 



 

77 

 

 Acknowledgements 

The authors acknowledge the feedback from Dr. Hussam Farhoud, cardiologist at Kansas Medical 

Center and the Mercy Hospital in Independence KS. We appreciate the help of Mr. Semih Dinc, 

PhD Student in Computer Science at University of Alabama in Huntsville, for his assistance with 

the DSS tool. We are also very grateful for the feedback and comments from three anonymous 

reviewers and the editor that greatly improved our paper. This work was supported in part by 

Health Resources and Services Administration contract 234-2005-370011C. The content is the 

responsibility of the authors alone and does not necessarily reflect the views or policies of the 

Department of Health and Human Services, nor does mention of trade names, commercial 

products, or organizations imply endorsement by the U.S. Government. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

78 

 

3.7 References 

1. What is Heart Failure? 2012 [cited 2014 01/26]; Available from: 

http://www.nhlbi.nih.gov/health/health-topics/topics/hf/. 

2. López-Sendón, J., The heart failure epidemic. Medicographia, 2011. 33(4): p. 363-369. 

3. What Is Heart Transplant? 2012 01/03/2012 01/31/2014]; Available from: 

http://www.nhlbi.nih.gov/health/health-topics/topics/ht/. 

4. What to Expect Before a Heart Transplant? 2012 [cited 2014 01/26]; Available from: 

http://www.nhlbi.nih.gov/health/health-topics/topics/ht/before.html. 

5. Cruz-Ramı´rez, M., C. Hervás-Martı´nez, J.C. Fernández, J. Briceño, and M. de la Mata, Multi-

objective evolutionary algorithm for donor–recipient decision system in liver transplants. 

European Journal of Operational Research, 2012. 222(2): p. 317-327. 

6. Heart Transplant. 2015 01/26/2015]; Available from: 

http://my.clevelandclinic.org/services/hic_Surgical_Treatments_for_Heart_Failure/transp

lant. 

7. Levy, A., A decision-rule for transplanting non-cadaveric organs. European Journal of 

Operational Research, 2005. 164(2): p. 548-554. 

8. Greco, R., T. Papalia, D. Lofaro, S. Maestripieri, D. Mancuso, and R. Bonofiglio, Decisional 

trees in renal transplant follow-up. Transplant Proceedings, 2010. 42(4): p. 1134-6. 

9. Kusiak, A., B. Dixon, and S. Shah, Predicting survival time for kidney dialysis patients: a data 

mining approach. Computers in Biology and Medicine, 2005. 35(4): p. 311-27. 

10. Lin, R.S., S.D. Horn, J.F. Hurdle, and A.S. Goldfarb-Rumyantzev, Single and multiple time-

point prediction models in kidney transplant outcomes. Journal of Biomedical Informatics, 

2008. 41(6): p. 944-52. 

11. Taati, B., J. Snoek, D. Aleman, and A. Ghavamzadeh, Data mining in bone marrow transplant 

records to identify patients with high odds of survival. IEEE Journal of Biomedical Health 

Informatics, 2014. 18(1): p. 21-7. 

12. Dag, A., F.M. Megahed, A. Oztekin, and A. Yucel, A data analytics approach to predict heart 

transplant success. Decision Support Systems (Under Review), 2016. 

13. Del Rizzo, D.F., A.H. Menkis, P.W. Pflugfelder, R.J. Novick, F.N. McKenzie, W.D. Boyd, 

and W.J. Kostuk, The role of donor age and ischemic time on survival following orthotopic 



 

79 

 

heart transplantation. Journal of Heart and Lung Transplantation, 1999. 18(4): p. 310-9. 

14. Drakos, S.G., A.G. Kfoury, E.M. Gilbert, J.W. Long, J.C. Stringham, E.H. Hammond, K.W. 

Jones, D.A. Bull, M.E. Hagan, J.W. Folsom, B.D. Horne, and D.G. Renlund, Multivariate 

predictors of heart transplantation outcomes in the era of chronic mechanical circulatory 

support. The Annals of Thoracic Surgery, 2007. 83(1): p. 62-7. 

15. Gupta, D., V. Piacentino, 3rd, M. Macha, A.K. Singhal, J.P. Gaughan, J.B. McClurken, B.I. 

Goldman, C.A. Fisher, D. Beltramo, J. Monacchio, H.J. Eisen, and S. Furukawa, Effect of 

older donor age on risk for mortality after heart transplantation. The Annals of Thoracic 

Surgery, 2004. 78(3): p. 890-9. 

16. Al-Khaldi, A., P.E. Oyer, and R.C. Robbins, Outcome analysis of donor gender in heart 

transplantation. Journal of Heart and Lung Transplantation, 2006. 25(4): p. 461-8. 

17. Tjang, Y.S., G.J. van der Heijden, G. Tenderich, D.E. Grobbee, and R. Korfer, Survival 

analysis in heart transplantation: results from an analysis of 1290 cases in a single center. 

European Journal of Cardiothorac Surgery, 2008. 33(5): p. 856-61. 

18. Kilic, A., E.S. Weiss, T.J. George, G.J. Arnaoutakis, D.D. Yuh, A.S. Shah, and J.V. Conte, 

What predicts long-term survival after heart transplantation? An analysis of 9,400 ten-

year survivors. The Annals of Thoracic Surgery, 2012. 93(3): p. 699-704. 

19. Hong, K.N., A. Iribarne, B. Worku, H. Takayama, A.C. Gelijns, Y. Naka, V. Jeevanandam, 

and M.J. Russo, Who is the high-risk recipient? Predicting mortality after heart transplant 

using pretransplant donor and recipient risk factors. The Annals of Thoracic Surgery, 

2011. 92(2): p. 520-7; discussion 527. 

20. Zuckermann, A.O., P. Ofner, C. Holzinger, M. Grimm, R. Mallinger, G. Laufer, and E. 

Wolner, Pre- and early postoperative risk factors for death after cardiac transplantation: 

a single center analysis. Transplant International, 2000. 13(1): p. 28-34. 

21. Oztekin, A., D. Delen, and Z. Kong, Predicting the graft survival for heart–lung 

transplantation patients: An integrated data mining methodology. International Journal of 

Medical Informatics, 2009. 78(12): p. e84-e96. 

22. Kaplan, B. and J. Schold, Transplantation: neural networks for predicting graft survival. 

Nature Reviews Nephrology, 2009. 5(4): p. 190-2. 

23. Nakayama, N., M. Oketani, Y. Kawamura, M. Inao, S. Nagoshi, K. Fujiwara, H. Tsubouchi, 

and S. Mochida, Algorithm to determine the outcome of patients with acute liver failure: a 



 

80 

 

data-mining analysis using decision trees. Journal of Gastroenterology, 2012. 47(6): p. 

664-77. 

24. Brown, T.S., E.A. Elster, K. Stevens, J.C. Graybill, S. Gillern, S. Phinney, M.O. Salifu, and 

R.M. Jindal, Bayesian modeling of pretransplant variables accurately predicts kidney graft 

survival. American Journal of Nephrology, 2012. 36(6): p. 561-9. 

25. Hoot, N. and D. Aronsky. Using Bayesian networks to predict survival of liver transplant 

patients. in AMIA annual symposium proceedings. 2005. American Medical Informatics 

Association. 

26. Heckerman, D., A tutorial on learning with Bayesian networks, in Innovations in Bayesian 

Networks. 2008, Springer. p. 33-82. 

27. UNOS | About Us. 2014 2014/6/2]; Available from: http://www.unos.org/contact/index.php. 

28. Kohavi, R. and G.H. John, Wrappers for feature subset selection. Artificial intelligence, 1997. 

97(1): p. 273-324. 

29. Leray, P. and P. Gallinari, Feature selection with neural networks. Behaviormetrika, 1999. 26: 

p. 145-166. 

30. Setiono, R. and H. Liu, Neural-network feature selector. Neural Networks, IEEE Transactions 

on, 1997. 8(3): p. 654-662. 

31. Sugumaran, V., V. Muralidharan, and K.I. Ramachandran, Feature selection using decision 

tree and classification through proximal support vector machine for fault diagnostics of 

roller bearing. Mechanical Systems and Signal Processing, 2007. 21(2): p. 930-942. 

32. Sheppard, D., D. McPhee, C. Darke, B. Shrethra, R. Moore, A. Jurewitz, and A. Gray, 

Predicting cytomegalovirus disease after renal transplantation: an artificial neural 

network approach. The International Journal of Medical Informatics, 1999. 54(1): p. 55-

76. 

33. Han, J. and M. Kamber, Data mining: concepts and techniques. 3rd ed. 2011, Burlington, MA: 

Elsevier. 703. 

34. Hastie, T., R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and R. Tibshirani, The elements 

of statistical learning: Data Mining, Inference, and Prediction. Vol. 2. 2009, New York, 

USA: Springer. 745. 

35. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model 

selection. in Ijcai. 1995. 



 

81 

 

36. Olson, D.L. and D. Delen, Advanced data mining techniques. 2008: Springer Publishing 

Company, Incorporated. 

37. Olshen, L.B.J.H.F.R.A. and C.J. Stone, Classification and regression trees. Wadsworth 

International Group, 1984. 

38. Quinlan, J.R., Induction of decision trees. Machine learning, 1986. 1(1): p. 81-106. 

39. Quinlan, J.R., C4. 5: programs for machine learning. Vol. 1. 1993: Morgan kaufmann. 

40. Sordo, M., Introduction to neural networks in healthcare. Open Clinical: Knowledge 

Management for Medical Care, Harvard University [Online], 2002. 

41. Mollineda, V.G.J.S.R. and R.A.J. Sotoca, The class imbalance problem in pattern 

classification and learning. 2007. 

42. Molaie, M., R. Falahian, S. Gharibzadeh, S. Jafari, and J.C. Sprott, Artificial neural networks: 

powerful tools for modeling chaotic behavior in the nervous system. Frontiers in Computer 

Neuroscience, 2014. 8: p. 40. 

43. Saltelli, A., Making best use of model evaluations to compute sensitivity indices. Computer 

Physics Communications, 2002. 145(2): p. 280-297. 

44. Saltelli, A., S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in practice: a 

guide to assessing scientific models. 2004: John Wiley & Sons. 

45. Clemen, R.T., Combining forecasts: A review and annotated bibliography. International 

Journal of Forecasting, 1989. 5(4): p. 559-583. 

46. Graefe, A., J.S. Armstrong, R.J. Jones, and A.G. Cuzan, Combining forecasts: An application 

to elections. International Journal of Forecasting, 2014. 30(1): p. 43-54. 

47. Delen, D., R. Sharda, and P. Kumar, Movie forecast Guru: A Web-based DSS for Hollywood 

managers. Decision Support Systems, 2007. 43(4): p. 1151-1170. 

48. Vinterbo, S. and L. Ohno-Machado, A genetic algorithm to select variables in logistic 

regression: example in the domain of myocardial infarction. Proceedings of the AMIA 

Symposium, 1999: p. 984-988. 

49. Sahiner, B., H.P. Chan, D. Wei, N. Petrick, M.A. Helvie, D.D. Adler, and M.M. Goodsitt, 

Image feature selection by a genetic algorithm: Application to classification of mass and 

normal breast tissue. Medical Physics,  1996. 23(10): p. 1671-1684. 

50. Lavrač, N., Selected techniques for data mining in medicine. Artificial intelligence in medicine, 

1999. 16(1): p. 3-23. 



 

82 

 

51. Hoerl, A.E. and R.W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal 

Problems. Technometrics, 2000. 42(1): p. 80-86. 

52. Cox, D.R. and D. Oakes, Analysis of survival data. Vol. 21. 1984: CRC Press. 

53. Ohno-Machado, L., Modeling medical prognosis: Survival analysis techniques. Journal of 

Biomedical Informatics, 2001. 34(6): p. 428-439. 

54. Gupta, D., V. Piacentino, 3rd, M. Macha, A.K. Singhal, J.P. Gaughan, J.B. McClurken, B.I. 

Goldman, C.A. Fisher, D. Beltramo, J. Monacchio, H.J. Eisen, and S. Furukawa, Effect of 

older donor age on risk for mortality after heart transplantation. The Annals of Thoracic 

Surgery, 2004. 78(3): p. 890-9. 

55. Bardage, C. and D.G. Isacson, Hypertension and health-related quality of life. an 

epidemiological study in Sweden. Journal of Clinical Epidemiology, 2001. 54(2): p. 172-

81. 

56. Bourge, R.C., D.C. Naftel, M.R. Costanzo-Nordin, J.K. Kirklin, J.B. Young, S.H. Kubo, M.T. 

Olivari, and E.K. Kasper, Pretransplantation risk factors for death after heart 

transplantation: a multiinstitutional study. The Transplant Cardiologists Research 

Database Group. Journal of Heart and Lung Transplantation, 1993. 12(4): p. 549-62. 

57. Stehlik, J., L.B. Edwards, A.Y. Kucheryavaya, C. Benden, J.D. Christie, F. Dobbels, R. Kirk, 

A.O. Rahmel, and M.I. Hertz, The Registry of the International Society for Heart and Lung 

Transplantation: Twenty-eighth Adult Heart Transplant Report--2011. Journal of Heart 

and Lung Transplantation, 2011. 30(10): p. 1078-94. 

58. Kauffman, H.M., M.A. McBride, and F.L. Delmonico, First report of the United Network for 

Organ Sharing Transplant Tumor Registry: donors with a history of cancer. 

Transplantation, 2000. 70(12): p. 1747-51. 

59. Pearl, J., Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning. 

1985. http://ftp.cs.ucla.edu/tech-report/198_-reports/850017.pdf  

60. Anderson, J.R., R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, Machine learning: An 

artificial intelligence approach. Vol. 2. 1986: Morgan Kaufmann. 

61. Aronsky, D. and P.J. Haug. Automatic identification of patients eligible for a pneumonia 

guideline. in Proceedings of the AMIA Symposium. 2000. American Medical Informatics 

Association. 

62. Bunn, C.C., M. Du, K. Niu, T.R. Johnson, W.S.C. Poston, and J.P. Foreyt. Predicting the risk 



 

83 

 

of obesity using a Bayesian network. in Proceedings of the AMIA Symposium. 1999. 

American Medical Informatics Association. 

63. Burnside, E., D. Rubin, and R. Shachter. A Bayesian network for mammography. in 

Proceedings of the AMIA Symposium. 2000. American Medical Informatics Association. 

64. Burnside, E.S., D.L. Rubin, J.P. Fine, R.D. Shachter, G.A. Sisney, and W.K. Leung, Bayesian 

network to predict breast cancer risk of mammographic microcalcifications and reduce 

number of benign biopsy results: initial experience. Radiology, 2006. 240(3): p. 666-73. 

65. Hamilton, P.W., R. Montironi, W. Abmayr, M. Bibbo, N. Anderson, D. Thompson, and P.H. 

Bartels, Clinical applications of Bayesian belief networks in pathology. Pathologica, 1995. 

87(3): p. 237-245. 

66. Montironi, R., P.H. Bartels, D. Thompson, M. Scarpelli, and P.W. Hamilton, Prostatic 

intraepithelial neoplasia (PIN). Performance of Bayesian belief network for diagnosis and 

grading. The Journal of pathology, 1995. 177(2): p. 153-162. 

67. Sakellaropoulos, G.C. and G.C. Nikiforidis, Development of a Bayesian network for the 

prognosis of head injuries using graphical model selection techniques. Methods of 

Information in Medicine, 1999. 38: p. 37-42. 

68. Friedman, N., Inferring cellular networks using probabilistic graphical models. Science, 2004. 

303(5659): p. 799-805. 

69. Jiang, X., D. Xue, A. Brufsky, S. Khan, and R. Neapolitan, A new method for predicting patient 

survivorship using efficient bayesian network learning. Cancer Informatics, 2014. 13: p. 

47-57. 

70. Lee, S.-M. and P.A. Abbott, Bayesian networks for knowledge discovery in large datasets: 

basics for nurse researchers. Journal of Biomedical Informatics, 2003. 36(4): p. 389-399. 

71. Koller, D. and N. Friedman, Probabilistic graphical models: principles and techniques. 2009: 

MIT press. 

72. Friedman, N., D. Geiger, and M. Goldszmidt, Bayesian network classifiers. Machine learning, 

1997. 29(2-3): p. 131-163. 

73. Chow, C.K. and C.N. Liu, Approximating Discrete Probability Distributions with Dependence 

Trees. IEEE Transactions on Information Theory, 1968. 14(3): p. 462-+. 

74. Andreassen, S., C. Riekehr, B. Kristensen, H.C. Schønheyder, and L. Leibovici, Using 

probabilistic and decision–theoretic methods in treatment and prognosis modeling. 



 

84 

 

Artificial Intelligence in medicine, 1999. 15(2): p. 121-134. 

75. Heckerman, D.E., E.J. Horvitz, and B.N. Nathwani, Toward Normative Expert Systems .1. The 

Pathfinder Project. Methods of Information in Medicine, 1992. 31(2): p. 90-105. 

76. Lucas, P., H. Boot, and B. Taal, Computer-based decision support in the management of 

primary gastric non-Hodgkin lymphoma. change, 1998. 1: p. 4. 

77. Lucas, P.J.F., N.C. de Bruijn, K. Schurink, and A. Hoepelman, A probabilistic and decision-

theoretic approach to the management of infectious disease at the ICU. Artificial 

Intelligence in Medicine, 2000. 19(3): p. 251-279. 

78. van der Gaag, L.C., S. Renooij, C.L.M. Witteman, B.M.P. Aleman, and B.G. Taal, 

Probabilities for a probabilistic network: a case study in oesophageal cancer. Artificial 

Intelligence in Medicine, 2002. 25(2): p. 123-148. 

79. Lucas, P.J., L.C. van der Gaag, and A. Abu-Hanna, Bayesian networks in biomedicine and 

health-care. Artificial Intelligence in Medicine, 2004. 30(3): p. 201-14. 

80. Yet, B., K. Bastani, H. Raharjo, S. Lifvergren, W. Marsh, and B. Bergman, Decision support 

system for Warfarin therapy management using Bayesian networks. Decision Support 

Systems, 2013. 55(2): p. 488-498. 

81. Mehra, M.R., J. Kobashigawa, R. Starling, S. Russell, P.A. Uber, J. Parameshwar, P. Mohacsi, 

S. Augustine, K. Aaronson, and M. Barr, Listing criteria for heart transplantation: 

International Society for Heart and Lung Transplantation guidelines for the care of 

cardiac transplant candidates—2006. The Journal of heart and lung transplantation, 2006. 

25(9): p. 1024-1042. 

82. Davidson, J., A. Wilkinson, J. Dantal, F. Dotta, H. Haller, D. Hernandez, B.L. Kasiske, B. 

Kiberd, A. Krentz, C. Legendre, P. Marchetti, M. Markell, F.J. van der Woude, and D.C. 

Wheeler, New-Onset Diabetes After Transplantation: 2003 International Consensus 

Guidelines. Transplantation, 2003. 75(10): p. SS3-SS24. 

83. Allen, J.G., E.S. Weiss, G.J. Arnaoutakis, S.D. Russell, W.A. Baumgartner, A.S. Shah, and 

J.V. Conte, Insurance and education predict long-term survival after orthotopic heart 

transplantation in the United States. The Journal of Heart and Lung Transplantation, 2012. 

31(1): p. 52-60. 

84. Hussain, S., P. Lenner, J. Sundquist, and K. Hemminki, Influence of education level on cancer 

survival in Sweden. Annals of Oncology, 2008. 19(1): p. 156-162. 



 

85 

 

85. Gerber, Y., S.A. Weston, J.M. Killian, T.M. Therneau, S.J. Jacobsen, and V.L. Roger. 

Neighborhood income and individual education: effect on survival after myocardial 

infarction. in Mayo Clinic Proceedings. 2008. Elsevier. 

86. Rosso, S., F. Faggiano, R. Zanetti, and G. Costa, Social class and cancer survival in Turin, 

Italy. Journal of Epidemiology and Community Health, 1997. 51(1): p. 30-34. 

87. Geller, S. and T. Connolly, The influence of psychosocial factors on heart transplantation 

decisions and outcomes. Journal of Transplant Coordination, 1997. 7(4): p. 173-179. 

88. Shapiro, P., D. Williams, A. Foray, I. Gelman, N. Wukich, and R. Sciacca, Psychosocial 

evaluation and prediction of compliance problems and morbidity after heart 

transplantation. Transplantation, 1995. 60(12): p. 1462. 

 



 

86 

 

4 An Exploratory Study to Evaluate the Effect of Newly Added Variables to 

Predictability of the Heart Transplant Outcomes 

4.1 Abstract 

Predicting the survival outcomes of heart transplant patients is a challenging task since there are 

many factors associated with the outcome. Yet, it is rewarding in that it plays a crucial role in 

understanding the mechanics of matching procedure. Including additional factors (variables) to the 

existing datasets might be favorable since it enables to gain more information about the data. On 

the other hand, it might bring some disadvantages to the predictability of the outcome in that it 

increases the complexity of the prediction models. The objective of the current study is to 

investigate the effect of the recently added variables on the predictability of the graft survival after 

1-month (acute rejection), 1-year and 5-years. To do so, a powerful probabilistic data mining 

method (i.e. Tree-augmented Naïve Bayes, TAN) and Logistic Regression have been employed 

after selecting the features through a comprehensive feature selection procedure, which involves 

an Information-gain based Fast Feature Selection algorithm, a wrapper method (Random Forests) 

and review of the existing literature. To overcome the data-imbalance problems, which was caused 

by the difference between the number of survivals and failures, random under sampling (RUS) is 

employed for 1-month and 1-year predictions. The results indicate that Logistic Regression models 

have achieved the best performance for all three different time points, when compared the TAN. 

When the newly added features are excluded from the analysis, the area-under-the-curve (AUC) 

values of Logistic regression are 0.68, 0.641 and 0.663 for 1-month, 1-year and 5-year predictions, 
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respectively. On the other hand, when the newly added features are included in the analysis, the 

area-under-the-curve (AUC) values of TAN are 0.639, 0.619 and 0.656 for 1-month, 1-year and 

5-year predictions, respectively. More importantly, the predictability of the outcome of the 1-

month survival has increased with the inclusion of the new variables for all of the three data 

analytical models employed in the study, with an happened an insignificant increase in the 5-year 

survival prediction. The findings obtained through data analytical models have been compared 

with the results obtained through Sensitivity analysis, which is employed in the final phase. The 

current study presents important retrospective findings, which can be the basis for a prospective 

medical study. 

 

4.2 Introduction 

Heart failure is a very common medical condition in which the heart is weakened and cannot pump 

enough blood to meet the body’s needs [1].  The reader should note that the term heart failure does 

not indicate that the heart has stopped working (or is about to stop working).  With that being said, 

heart failure is a serious medical condition that affects an estimated 2-3% of the world’s adult 

population, which corresponds to over 26 million people worldwide [2].  In the U.S. the incidence 

rate is approximately 550,000 [1, 3].  Among these patients, those who have severe end-stage heart 

failure (meaning all possible treatments except transplant have failed) are selected through a 

careful process to be placed on the heart transplant waiting list. If a patient is eligible, then she/he 

is placed on a waiting list for a transplant until a suitable donor heart is found [4].  Reasons such 

as aging of the population, increasing obesity, diabetes. [5] as well as increasing life expectancy 

[6] have caused a dramatic increase in the demand for heart transplantation. Currently, there are 

approximately 3,000 patients waiting for a heart transplant while the annual supply is around only 
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2,000 [4]. Therefore, there has been a huge gap between supply (donated and healthy grafts) and 

demand, which brings longer waiting times and thereby leaves many to die on the waiting lists [6]. 

United Network for Organ Sharing (UNOS) is a “private, non-profit organization that 

manages the [United States]’s organ transplant system under contract with the federal government” 

[7].  The system contains datasets regarding heart, lung, liver, kidney, pancreas and intestine organ 

donations as well as the transplant events occurring in the U.S. since 0ctober 1, 1987. These 

datasets include clinical and demographical information about both donors and recipients as well 

as the transplant procedures itself. Therefore, it has become a common source that can potentially 

serve the interests of researchers and the public. In certain years, UNOS has made significant 

changes in the number of variables by adding some to its Organ Transplantation Databases, which 

potentially can bring more information to the existing body of knowledge. For instance, there exist 

165, 85 and 105 variables that were added to the thoracic transplant database in 1994, 1998 and 

2004, respectively.  

 Effective utilization of the valuable information contained in UNOS datasets carry a great 

potential in saving many lives. More specifically, improving the prediction of survival is a critical 

task, since it is an essential tool in donor/recipient matching procedure. Such improvement could 

in turn lead to a decrease in the gap between supply and demand. Recent research has shown that 

the information that exist in these large/complex UNOS datasets can be analyzed effectively in 

extracting  hidden, novel patterns by employing data mining methods [8-13].  Compared to 

traditional statistical techniques, data mining approaches provide a relatively faster means of 

finding complex and nonlinear patterns from a large amount of data containing many predictors.  

In addition, these methods do not require prior knowledge about the data, nor do they make 

assumptions about the statistical distribution or properties of the data [11].   
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The existing literature on survival prediction includes a large body of research that uses 

data-driven approaches in organ transplantations. This work can be divided into three main 

streams.  The first consists of studies that performed conventional statistical methods (e.g. survival 

analysis and regression models) to predict a patient’s survival after a transplant and to identify the 

most important predictors for survival. This group can also be divided into three subcategories 

such as; 1) studies examining the effect of a single variable on survival after a transplant [14, 15]  

, 2) studies investigating the effect of more than one variable by employing conventional statistical 

approaches [16-19]  and, finally 3) studies that aims at creating risk scores/levels by using the 

effect of multiple variables on the outcome after transplants .   

Studies in the second stream utilize data mining (analytics) methods to predict survival.  

The main difference between these two streams can be seen as a philosophical difference between 

both streams [20].  Statistical methods focus on the efficient collection of data for the purpose of 

answering specific questions.  On the other hand, the data analytic approaches aim at finding 

unsuspected relationships and patterns from collected data.  To exemplify, Kusiak et al. [9] 

compared the results of two rule-based data mining techniques, decision trees and rough sets, for 

predicting the survival time of kidney dialysis patients. Decision trees (DT) were also used by 

Nakayama et al. [21] to predict the prognosis of acute liver failure in an effort to improve the 

indication criteria for liver transplants.  Kaplan and Schold [22] compared the power of an artificial 

neural network (ANN) and a statistically derived nomogram in predicting the 5-year graft survival 

after kidney transplants based on demographic, clinical and pharmaceutical data.  Oztekin et al. 

[11] compared the predictive performance of ANN, logistic regression, support vector machines 

(SVM) and decision tree for long-term survival after a thoracic transplantation. Recently, Dag et 

al. [8] has employed a probabilistic data mining approach (i.e. Tree –augmented Naïve Bayes 
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(TAN) algorithm) to; 1) obtain patient-specific survival risk score for the patients who underwent 

heart transplant, and 2) to investigate the conditional interdependencies between the predictors. In 

general, it can be concluded that all the aforementioned data-driven studies have uncovered useful 

hidden patterns and information embedded in the large transplantation datasets.  

The third, and the final, research stream investigated the dynamic effect of significant 

variables on the survival outcome.  Most of the work within this stream is based on statistical 

techniques [23] [24] [25], with the exception of the study performed by Lin et al. [10] who 

determined the effect of the predictors on the 1- to 7-year survival by using logistic regression, 

CPHM, and multiple-output ANNS.  

As can be inferred from the brief discussion on the literature, existing studies have 

employed data analytical approaches (both machine learning and conventional statistical methods) 

to predict the survival outcome, with including all of the variables (that exist in the dataset) in their 

analysis.  A potential improvement area would be to investigate the effect of the newly added 

variables within the predictive analytics frame. Therefore, the main goal of this study is to evaluate 

the contribution of these newly added variables (that are added to the system in 2004) in predicting 

the survival outcome after heart transplants. Particularly, a data analytical methodology is 

employed that aims at investigating; 1) which of these new variables are selected by powerful 

variable selection algorithms, 2) whether there is any significant and consistent improvement in 

the predictability of the outcomes, when these variables are included in the prediction analysis, 

and 3) the contribution of these variables in predicting the outcome by applying sensitivity 

analysis. The remainder of this paper is organized as follows.  In Section 4.3, the overall data 

analytics methodology used in this study as well as the data source and preparation are described. 

The results obtained from the actual data analysis are provided and discussed in Section 4.4. In 
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Section 4.5, conclusions are summarized and some thoughts on the direction of future research are 

offered.  

4.3 Methodology 

In this study, a comprehensive data analytical methodology that consists of four sequential phases 

is offered. The first phase includes 3 steps, where in the first step, the transplants that happened 

before 2004 are discarded from the dataset. The rationale behind that is; the overall goal of the 

proposed study is to measure the effect of the variables that were added to the UNOS dataset in 

2004. This leads us to perform two separate analysis; 1) with including, and 2) excluding the 

variables that were added in 2004. (Throughout the paper, we call these group of variables 

“combined” variables and “old” variables, respectively, for simplicity). After obtaining the dataset, 

the dataset was cleaned in a systematic way in step 1. In step 2, the entire set of variables are 

differentiated as; 1) old and 2) combined variables. In step 3, three different datasets were extracted 

from each dataset to evaluate the effect of the new variables in different time horizons (1- month, 

1- and 5-years) via inclusion criteria. In Phase 2, well-known and suitable feature selection 

algorithms were applied to select the most important variables to both datasets. Phase 3 represents 

the process in which different data mining classification algorithms were applied by deploying the 

most important features that were selected in the previous phase. In addition, the performance of 

these models were assessed and the unsatisfactory ones were discarded in the same phase. In the 

final phase (Phase 4), the contribution of the new variables were measured via sensitivity analysis. 

This process is repeated for both 1-month, 1- and 5-year analysis. More detailed explanation about 

the procedure is provided in the following related sections. 
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Figure 4.1: An Overview of the Proposed Methodology 

 

4.3.1 Data Acquisition and Preparation 

The UNOS dataset contains information about the heart transplantation cases that have been 

performed between 0ctober 1, 1987 and December 31, 2012. It includes clinical and 

demographical variables about both donors and recipients as well as the transplant procedure itself. 

These variables can be grouped into three main categories such as; 1) pre-operative variables which 

includes age, gender, blood type etc., 2) the surgical procedural variables which includes if there 

is a chronic steroid use at transplant, or if the recipient is on any type of life support at the time of 

transplant and, 3) post-operative variables such as if the patient has acute rejection or length of 

hospital stay after the operation etc. The dataset was de-identified by UNOS prior to being received 

by our research team. 
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4.3.1.1 Data Cleaning and differentiating the newly added variables 

UNOS has made vital changes in the number of variables in its Organ Transplantation Databases 

since October 1, 1987, in order to store more information that might in turn can be used by medical 

research community. For instance, there are 165, 85 and 105 variables, which have been added to 

the Thoracic Transplant database in 1994, 1998 and 2004, respectively. As discussed earlier, our 

end goal in this proposed study is to evaluate the effect of these changes (in the number of 

variables) in predicting the survival outcome after heart transplants. In order to meet such research 

goal, 2004 has been selected by the research team in order to focus one of these three different 

time points (i.e. 1994, 1998 and 2004). The rationale behind that is that the surgical technology 

that are being used for heart transplant procedures, and thus the post-transplant survival time have 

changed in the recent years [4]. Under such circumstances, it would be naïve to compare the 

prediction performances of the classification models on the survival outcomes of the transplant 

cases that were performed in 1994 with the ones performed in 2012. That would be more objective 

to compare them on the cases that were performed in a narrower time frame.  Therefore, the 

transplants that were performed before June 30, 2004 have been eliminated from the dataset.  

In this study, these datasets were cleaned in a systematic way in which the invariant 

variables, outliers and the variables that have no effect on the survival outcome such as patient ID, 

transplant ID, transplant date have been checked for and eliminated. It should be noted that the 

UNOS dataset has excessive number of missing records. In addition, the dataset includes excessive 

number of cells that are filled with “U” meaning “Undefined”, which also can be considered as a 

missing record from the data analytic point of view. Therefore, these (U) values have been 

converted to missing values. One should be very careful in dealing with the situation where there 

are a lot of missing records, which in turn might lead the classification models to suffer. In addition, 
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the two common data cleaning approach namely Case-wise deletion and Column-wise deletion 

have their own disadvantages for such situations. The former one would cause  a significant 

decrease in the number of samples, which would in turn cause the data mining models to not to be 

trained well enough. While the latter one would leave us with few variables, which would cause a 

significant information loss. Therefore, we have built a data cleaning algorithm that can be adapted 

for the current situation. More specifically, the algorithm checks the columns first (for the number 

of missing values for each variable in the dataset) and deletes the variable with the maximum 

number of missing records. Similarly, in the second step, the rows are checked to find and delete 

the case that has the maximum number of missing records. This procedure is repeated until there 

is no missing record left in both datasets.  

 As noted earlier, the primary objective of this study is to evaluate/measure the effect of 

the newly added variables in predicting the survival outcome after the heart transplants. Therefore, 

four post-operative variables can be employed as candidate survival outcomes of the proposed 

study. These variables are gstatus (a binary variable denoting if the graft has survived or failed at 

the last follow-up time), pstatus (a binary variable denoting if the patient has survived or failed at 

the last follow-up time), gtime (a continuous variable denoting the time range between the 

transplant date and graft’s last follow-up/failure time, in days) and ptime (a continuous variable 

denoting the time range between the transplant date and person’s last follow-up/death time, in 

days). Since our purpose to focus on the patients who solely died due to heart-transplantation 

related reasons, the gstatus variable along with gtime are the suitable outcomes for our study. The 

gstatus is selected as our main target, however gtime will also be incorporated throughout the study 

in that it enables is to apply the data inclusion criteria, which is described in the subsequent section 

in detail. Therefore, the pstatus and ptime variables are also eliminated from the datasets. Having 
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applied such cleaning process have left us with 15,263 cases and 155 variables of which 12 are 

new and 143 are old variables. 

Table 4.1: 12 variables added to UNOS heart transplant databases after 2004 (after cleaning) 

Variable Name Description 

ARGININE_DON Deceased donor-was donor given arginine vasopressin  

BMI_TCR Bmi at listing 

CDC_RISK_HIV_DON Does the deceased donor meet cdc guidelines for high risk for an organ donor 

HEMATOCRIT_DON Hematocrit: 

INHALED_NO_TCR Tcr patient on life support://inhaled no 

INSULIN_DON Deceased donor-was donor given insulin? 

PCO2_DON Pco2 

PH_DON Blood ph 

PROSTACYCLIN_TRR Candidate prostacyclin inhalation 

TRANSFUS_TERM_DON Number of transfusions during this (terminal) hospitalization: 

VAD_DEVICE_TY_TCR Candidate type of vad device at listing 

VAD_DEVICE_TY_TRR Vad_device type 

 

4.3.1.2 Data Inclusion criteria 

In this study, three different time points are determined (i.e. 1-month, 1- and 5-years), in order to 

model the classification algorithms. There are several reasons for us to choose these three specific 

time points. One of the primary reasons is that these time points are commonly studied in the 

existing heart transplant literature [18, 23, 26-29]. In addition, the reason that we have not included 

larger time horizons such as 6-, 7-, 8-, 9- or 10-years analysis is due to the limitation on the sample 

size, since we only include the transplants performed after 2004.  Another important reason to 

study especially 1- and 5-year time points is that they are considered as the reference time points 

in providing the common survival rate statistics after the cardiac transplant [4]. 

For each time point that is used in this study (1-month, 1- and 5-year), some of the cases 

in the dataset are excluded with the following procedure. For a case to be excluded, the patient 
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should be alive on the last follow-up date and the last follow-up date should be less than the number 

of days required (1* 365 = 365 days for 1 year analysis) for the analysis. The reason for those 

patients to be eliminated from the analysis is that it is not known whether they will still be alive or 

not, after the required day. In addition, the gtatus values of the patients who have died after the 

number of days required should be changed from “1” to “0”. The reason behind that is, the patient 

have died sometime after the threshold value. However, from a classification point of view, she/he 

has succeeded by expiring the predetermined time point. This inclusion procedure can be 

represented by the following pseudo code; 

 
 

  0    #    Exclude the case

  1    #    gstatus  0

 gstatus and gtime of days required

gstatus and gtime of days required

 

  

If th

Elseif

n

t en

e

h  

 

After applying the inclusion procedure, a summary of distribution of survivals, failures 

and excluded cases are represented in Table 4.2. It should be noted that the sum of survivals, 

failures and excluded observations for each row is 15,263, as it was discussed in Section 4.3.1.1. 

 Table 4.2: Number of survivals, failures, and excluded observations over the time-points 

Time 

Point 

Included 
Excluded 

Survivals Failures 

1-month 14,160 683 420 

1-year 11,054 1,601 2,608 

5-year 3,148 2,761 9,354 
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4.3.2 Variable Selection 

As discussed in Section 4.3.1.1, after the cleaning procedure, the dataset includes 155 in total (i.e. 

143 existing and 12 new variables).  Deploying hundreds of variables (as in this case) into any 

prediction model would both computationally be expensive and carry a high risk of overfitting. In 

such situations, feature selection methods can be employed in selecting the suitable subset of the 

existing variables. Existing feature selection methods can broadly be categorized into two groups 

i.e. filters and wrappers [30, 31]. Wrapper methods are specifically dedicated to a specific type of 

prediction method. They rely on the performance of one type of classifier to evaluate the quality 

of a set of features. On the other hand, the filter methods can be considered as agnostic models in 

that they rely on general characteristics of the training data to select some features without 

involving any learning algorithm. The filter methods rank features according to their individual 

predictive power, which can be estimated by various means such as Fisher score, Kolmogorov-

Smirnov test, Pearson correlation or mutual information [32]. Both approaches have their own 

advantages, which depend on the number of features, samples and the existence of complex 

nonlinear relations among the variables. In our analysis, we applied a hybrid variable selection 

approach which consists of both a wrapper and filter-based feature selection method to extract the 

most important features. In addition to the selected variables (by feature selection algorithms), the 

variables, which have been found important in the existing literature, have also been added to the 

final set of predictors.  It should be noted that the selected variables will be employed in the 

classification algorithms in Phase 3.  What follows is a brief description of the variable selection 

algorithms. 
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4.3.2.1 Fast Feature Selection (FFS) via Information Gain Analysis 

In prediction models, a feature can generally be considered as “good” if it is relevant to the target 

but is not redundant to any of the other predictors in the dataset. If the correlation between two 

variables is adopted as a “goodness” measure, it can be concluded that a feature can be selected if 

it has high enough correlation with the target (which makes it “predictive of” the class) and a low 

enough correlation with any other variables (which is not above a certain threshold level). In this 

sense, a suitable measure of correlation between features needs to be employed. The existing 

correlation measures can be mainly classified into two groups as; 1) based on classical linear 

correlation and, 2) based on information theory [33]. However, in the situations where there are 

hundreds of variables (as in our case), it would be very naïve to assume linear correlation between 

features. Therefore in this study, a correlation measure that is based on the information-theoretical 

concept of entropy is adopted.  The entropy of a variable x is defined as  

                                                   2( ) ( ).log ( ( ))i i

i

H x P x P x                                                   (4.1) 

and the entropy of  a variable (x) can be defined as  

                                                   2( ) ( ).log ( ( ))i i

i

H x P x P x                                                        (4.2) 

Where the prior probabilities of variables are defined as P(x), and posterior probabilities are 

defined as P(xi |yi) for given values of  y . The additional information gained through y is reflected 

by the amount of decrease in the entropy value of x , which in turn is called; information gain 

(Quinlan, 1993), given by 

                                                    ( | ) ( ) ( | )IG X Y H X H X Y                                                          (4.3) 
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It can be concluded from such measure that, a feature y is regarded more correlated to 

feature x than to feature z, if ( | ) ( | )IG x y IG z y . In other words, the features are selected based 

on the increase in the amount of information (gained) by knowing the value of the attribute. The 

reader is referred to [33] for a more detailed explanation of the fast feature selection algorithm that 

is employed in this study. 

4.3.2.2 Random Forests 

Random Forests method is a data mining algorithm that have been commonly used for both 

classification and regression problems [34] in many different fields as well as for variable selection 

purposes in the recent literature. 

The prediction decision for the random forests is made based on either the mode (for 

classification) or the mean (regression) of the aggregated votes that are obtained by a collection of 

decision trees. Each tree in the forest is trained via a bootstrap sample of individuals. The 

construction procedure of each tree can be summarized through the following steps [34]; 

Suppose there are I individuals and M explanatory attributes in the dataset, 

1.) A random sample whose size is equal to the training set is selected from the entire data. 

2.) At each node in the tree, m random attributes out of M (entire set of attributes in the data) 

is selected, where M/m is relatively much greater than 1. 

3.) The best split is then chosen from the subset of m attributes selected in the previous step. 

4.) Second and third steps are iterated until there is fully grown tree is built (no pruning). 
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4.3.3 Prediction Models 

In this study, two popular machine learning-based classification algorithms (i.e. SVM and TAN) 

along with LR have been employed to predict the binary outcomes. These classification algorithms 

have been selected due to their superior performance in our preliminary analysis as well as their 

superior performance in the recently published transplantation literature. 

4.3.3.1 Tree Augmented Naïve (TAN) Bayesian Belief Network 

A Bayesian Belief Network is a directed acyclic graph by which a stochastic dependency model is 

represented. In such graph, the nodes represent the predictors while the conditional dependencies 

among the predictors are represented by the arcs [35].  It is commonly used for the situations where 

there might be complex nonlinear interactions among the predictors [36]. Tree Augmented Naïve 

Bayes (TAN) is a branch of Bayesian family where the target does not have any parents, while it 

is one of the parents of each predictor along with another variable. More specifically, a predictor 

variable might have at most two parents of which one of them is the target/outcome [37]. In TAN 

model, an arc from X1 to X2 means that, the contribution of X2 in predicting the target outcome 

is dependent on the value that X1 gets. The classification decision is made via Bayes rule where, 

for each predictor, the outcome probabilities are calculated. In the final phase, among these 

probabilities, the highest one is chosen for the structure [38]. For a more detailed description on 

TAN, we refer to reader to Dag et al. [8]. 

4.3.3.2 Logistic Regression 

Logistic regression is a standard regression method that are employed for either binary or 

multinomial classification problems. In such setting, the log odds of the dependent variable are 

modeled by linear combination of the independent predictors [39].  Logistics regression has been 
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very commonly used for classification problems in the relevant medical literature [10, 40, 41] due 

to its “easy to interpret” structure.  

4.4 Results and Discussion 

4.4.1 Variable Selection Results  

Based on the discussion in Section 4.3.2, two feature selection models (i.e. IG-FFS and RF) were 

applied to select a suitable subset of both existing and newly added preoperative variables, 

separately. Therefore, the first and second set of predictors were selected via an Information gain-

based fast feature selection algorithm and random forest algorithm, respectively.  Also, variables 

that are selected through literature review analysis have been added to this subset.  In essence, this 

subsection contains the results from Phase 2 of the proposed hybrid method. It should be noted 

that three different time points (i.e. 1-month, 1-year and 5-years) have been investigated to see 

whether the newly added variables have any significant contribution in predicting the gstatus in 

different time horizons. The number of the features that were found to be “good” via the feature 

selection algorithms as well as the variables that were found to be (potentially) important in the 

existing literature are presented in Table 4.3. 

Table 4.3: The number of the features selected through variable selection methods and 

literature review 

 IG-FFS RF Lit. Rev Total 

  Old  New Old  New Old  New Old  New 

1- month 4 2 60 6 10 6 65 11 

1-year 3 2 58 6 38 7 70 12 

5-year 9 2 38 5 30 8 55 9 
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Based on Table 4.3, it can be seen that there are 2,6 and 6 variables (14 in total) selected 

through IG-FFS, RF and literature review analysis, respectively. Because of the commonality 

among these variable set there are only 11 variables (in total) to be deployed to prediction 

algorithms. Similar pattern can be recognized for 1- and 5-year analysis as well. It should be noted 

that, there are 76 (65 + 11), 82 ((70+12) and 64 (55+9) variables to be deployed in the final 1-

month, 1-year and 5-year prediction models, respectively.  

 

Table 4.4: Variables that are selected through different time points  

 1- month 1- year 5- year 

  
IG-

FFS 
RF 

Lit. 

Rev 
Inclusion 

IG-

FFS 
RF 

Lit. 

Rev 
Inclusion 

IG-

FFS 
RF 

Lit. 

Rev 
Inclusion 

ARGININE_DON × × √ √ × × √ √ × × √ √ 

BMI_TCR × × × × × × √ √ × √ √ √ 

CDC_RISK_HIV_DON × × √ √ × × √ √ × × √ √ 

HEMATOCRIT_DON × √ × √ × √ × √ × √ × √ 

INHALED_NO_TCR × × √ √ × × √ √ × × √ √ 

INSULIN_DON √ × × √ √ × × √ × × × × 

PCO2_DON × √ × √ × √ × √ × × × × 

PH_DON × √ × √ × √ × √ × × × × 

PROSTACYCLIN_TRR × × √ √ × × √ √ × × √ √ 

TRANSFUS_TERM_DON × √ × √ × √ × √ √ √ √ √ 

VAD_DEVICE_TY_TCR × √ √ √ × √ √ √ × √ √ √ 

VAD_DEVICE_TY_TRR √ √ √ √ √ √ √ √ √ √ √ √ 

 

  In Table 4.4, the new variables, which were selected through the comprehensive selection 

procedure, are presented for each time point in detail.  The rationale behind presenting only the 

new variables (but not the old ones) in Table 4.4 is that the main goal of this study is to specifically 

focus on the newly added variables. In this table × and √ denote whether the variable is selected 

through the associated variable selection model or not (with × representing “No” and √ 

representing “Yes”). It should be noted that as long as a feature is selected through any of the 
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selection methods, it should be included in the prediction models (in the next phase). Therefore, 

column “Inclusion” denotes whether the variables will be included in the prediction models or not. 

As it also can be confirmed by Table 4.3, there are 11, 12, and 9 variables that will be included 

(selected through at least one of the feature selection methods) in the 1-month, 1-year and 5-year 

time predictions, respectively. In the next subsection, the prediction (classification) results 

obtained through employing the selected (old + new) variables for three different time points. 

4.4.2 Prediction Results 

Based on the discussion in Section 4.3.3, TAN and Logistic R. were employed to predict the 

gstatus (outcome) for three different time points (i.e. 1-month, 1-year and 5-years) by both 

excluding and including the newly added variables in the prediction models by also employing 5-

fold cross validation concept. The rationale behind employing cross validation concept is to 

decrease the bias in the outcomes as well as to increase the robustness of the classification models 

[45]. Therefore, 2 (classification models) X 2 (for old and combined set of variables) = 4 different 

models that will be employed for three different time points. The description of each models are 

provided by Table 4.5. 

Table 4.5: The list of the prediction models used for each time-period 

Model Name Description 

Old.LR Logistic regression by including only the old variables 

Combined.LR Logistic regression by including both new and old variables 

Old.TAN TAN by including only the old variables 

Combined. TAN TAN by including both new and old variables 

 

. 
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The prediction results that were obtained through using these models for each time period 

are presented in Table 4.6. AUC (area under the, accuracy, recall, and specificity metrics were 

presented for all models as the evaluation criteria. For a more detailed description of these criteria, 

the reader is referred to Genc et al. [37]. AUC will be used as the main evaluation criterion among 

these metrics since it is considered to be an objective criterion specifically in evaluating the 

classification performances for imbalanced datasets [46, 47] (as in our case). 

The highest mean for a given metric is underlined in Table 4.6..One of the several 

interesting observations that can be made is that Logistic Regression models have outperformed 

the TAN models for both inclusive (combined) and exclusive (old) models, in almost all of the 

three different time points (e.g. Old_LR > Old_TAN, and Combined_LR > Combined_TAN).  

Another interesting pattern is that the AUC metrics for both 1-month and 5-years have increased 

with the inclusion of the newly added variables (e.g. Combined_TAN > Old_TAN and 

Combined_LR > Old_LR). Same pattern does not exist in the 1-year survival prediction.  

 

Table 4.6: Prediction results obtained through including and excluding the newly added 

variables 

    # of variables AUC Accuracy Recall Specificity 

1
_M

o
n

th
 Old_LR 65 0.662 0.643 0.590 0.645 

Combined_LR 76(65+11) 0.680 0.650 0.619 0.651 

Old_TAN 65 0.621 0.632 0.529 0.637 

Combined_TAN 76(65+11) 0.639 0.629 0.551 0.633 

1
_Y

ea
r 

Old_LR 70 0.645 0.646 0.544 0.661 

Combined_LR 82(70+12) 0.641 0.644 0.542 0.659 

Old_TAN 70 0.622 0.618 0.550 0.628 

Combined_TAN 82(70+12) 0.619 0.616 0.536 0.627 

5
_y

ea
rs

 Old_LR 55 0.658 0.612 0.595 0.627 

Combined_LR 64 (55+9) 0.663 0.623 0.520 0.713 

Old_TAN 55 0.647 0.606 0.594 0.616 

Combined_TAN 64 (55+9) 0.656 0.618 0.540 0.686 
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As discussed in the previous section, one of the main goals of this study investigate whether 

the newly added variables increase the prediction power of the algorithms or not. Therefore, the 

prediction powers of the models (in terms of AUC) can be compared in order to come up with a 

reasonable answer for such question. As can be seen from Table 4.6, both 1-month and 5-year 

survival prediction capability (AUC) of the both models have increased. In 1-month survival 

prediction, the amount of increase in the AUC values for Logistic Regression and TAN models 

are both 0.018., while the difference between the prediction capabilities are less in the 5-year 

survival prediction. On the other hand, a slight decrease exists in the performances of both LR 

(0.645 to 0.641) and TAN models (0.622 to 0.619) in 1-year survival prediction. 

Hereafter, Logistic Regression will be used as a reference model for further analysis in the 

next subsection (sensitivity analysis) since it has outperformed not only the TAN model (in our 

analysis) but also other classification algorithms employed in the preliminary analysis of tour 

study. 

4.4.3 Sensitivity Analysis Results 

In this subsection, sensitivity analysis is performed on the Logistic regression model (only) since 

it has been selected as the reference model due to its superior performance over TAN, in Section 

4.4.2. Sensitivity analysis is an alternative common measure (in data mining community) [48] that 

enables to discover the relative contribution of each variable towards predicting the outcome 

variable (gstatus). In such setting, a predictive variable is found to be important if its addition 

results in improving the model’s prediction performance, as measured by the AUC metric. 

According to the sensitivity measure defined by Saltelli  [48], the sensitivity measure is defined as 
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( ( / ))

( )

i i
i

y

V V E y x
S

V V y
                                                               (4) 

where y is the dichotomous output variable (gstatus), and the unconditional output variance 

is denoted by V(y).  The expectation operator is denoted by E, which calls for an integral over all 

predictor variables except xi.  A further integral operator is implied over xi by the operator Vi.  The 

importance of a specific variable is then computed as the normalized sensitivity. 

 

Figure 4.2. Top 20 most contributory predictors for 1-month survival prediction 

 

Figure 4.2 represents the 20 variables that are found to be the most contributory ones in 

predicting the 1- month survival after cardiac transplant. The variables that are highlighted with 

black (in the chart below) refers to the variables that have been added to the UNOS dataset after 

2004(new variables).  As can be seen from Figure 4.2, 3 out of 20 and 1 out of 5 variables are the 

newly added ones. In addition VAD_DEVICE_TY_TRR, which is among the most important 5 

variables were selected by the agreement of all of the three variables selection methods employed 
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(Section 4.4.1.) in our study (i.e. IG-based FFS, RF and Literature Review), while INSULIN_DON 

and ARGININE_DON were selected by only one variable selection method. 

Figure 4.3 represents the 20 variables that are found to be the most contributory ones in 

predicting the 1-year survival. As can be inferred from Figure 4.3, VAD_DEVICE_TY_TRR and 

INSULIN_DON were selected identified to be among top 10 and top 20 variables, respectively. It 

should also be noted that, VAD_DEVICE_TY_TRR were selected by the consensus of all of the 

three variables selection mechanisms while INSULIN_DON was selected by only IG-FFS. 

 

Figure 4.3. Top 20 most contributory predictors for 1-year survival prediction 

 

Similarly, Figure 4.4 represents the 20 variables that are found to be the most contributory 

ones in predicting the 5-year survival. As can be inferred, VAD_DEVICE_TY_TRR and 

INHALED_NO_TCR were selected to be among top 10 and top 20 variables, respectively. It should 

also be noted that, VAD_DEVICE_TY_TRR were selected commonly by all of the three variables 

selection methods while INHALED_NO_TCR was selected through reviewing the literature. 
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Based on the sensitivity analysis employed for 1- month, 1- and 5-year analysis, it can be 

concluded that, the newly added variables have more contribution in predicting the 1-month than 

the 5-year survival. The rationale behind that may be VAD_DEVICE_TY_TRR was found to be the 

fourth most important variable in predicting the outcome. Therefore, including such important 

variable in the prediction procedure might have boosted the AUC rate for 1-month prediction, 

while same importance level have not been witnessed in 1- and 5-year survival prediction. This 

finding somewhat matches with the results presented in Table 4.6, in Section 4.4.2. Recall that, 1-

month time frame is the only one among three different time points, where the AUC values of 

Logistic regression of all of the four evaluation metrics increase when the newly added variables 

are included in the prediction algorithm.  

 

 

Figure 4.4. Top 20 most contributory predictors for 5-year survival prediction 
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4.5 Conclusion and Future Recommendations 

The main objectives of this paper was to evaluate the effect of the variables to the UNOS heart 

transplant databases after June 30, 2004. Our methodology has 5 phases, which includes data 

preparation, feature selection procedure, prediction models and assessment, and evaluation phase. 

In essence, the ultimate goal of the current study can be reached via answering the following 

critical questions, which provide us with different perspectives to evaluate the effect of these new 

variables; 

a) Which of the newly added variables were found to be important by the feature selection 

methods? 

b)  Do the power of prediction models (prediction performance) improve by including the 

new variables that were selected through the variable selection mechanism? 

c) What is the contribution of each of these (new) variables in predicting the gstatus for 

different time horizons? 

Therefore, three main perspectives have been constructed to answer the above research 

questions as 1) Feature selection perspective, which employs both Information gain theory and 

data mining based wrapper method, 2) Prediction improvement perspective, which includes two 

data analytical approaches and 3) Predictor contribution perspective, which employs a sensitivity 

analysis approach. 

Based on the proposed framework, three sets of newly added variables (for three different 

time points) are selected through feature selection algorithms to be deployed into data analytical 

models. Then, a popular probabilistic data mining-based approach and a logistic regression have 

been employed to see whether there is any significant improvement in the prediction results. In the 
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final component, the selected features are also investigated through sensitivity analysis to measure 

their individual contribution to the prediction model. 

  In summary, a novel data analytical framework is proposed in this study to evaluate the 

effect of the variables that have been added to the UNOS heart transplant datasets after June 30, 

2004. In this framework, three different perspectives have been built; 1) Feature selection, 2) 

Prediction perspective and 3) Sensitivity analysis perspective. An important outcome of this 

comprehensive data analytical approach can be extended to other organ transplant dataset, which 

are provided by UNOS.  
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5 Conclusions and Summary of Dissertation Contributions 

The data analytic studies as well as the decision support tool that are provided in this dissertation 

fill critical gaps in the heart transplantation field. It makes several contributions to the 

transplantation literature which include: 1) Identifying the predictive factors for short-, mid- and 

long-term survival after the heart transplant, as well as their time-dependent effects on the given 

follow-up time point, which in turn allows us differentiate the factors whose effect change over 

time , 2) developing a decision support tool that provides the patient-specific failure risk score 

based on the values of the relevant preoperative predictors, as well as to investigate the conditional 

relations among the important predictors of long term survival after heart transplants and 3) 

investigating the effect of recently added variables (to the UNOS dataset) in predicting the survival 

outcome after heart transplant. 

Therefore, the overall goal of this dissertation is to fill a critical knowledge gap in heart 

transplantation field. It consists of two components. In the first component, which is introduced in 

Chapter 2, a hybrid data analytical framework has been developed to investigate the factors whose 

importance change over the time. In the second component (introduced in Chapter 3), a decision 

support tool is introduced. Such tool can be used by medical practitioners to calculate the patient 

specific survival risk score of transplant patient, without having any knowledge about the data 

mining field. In Chapter 4, the effect of the new variables in the predictability of the survival 

outcome after heart transplantations have been investigated. The procedure that are employed in 

all of the three components can also be applied for other type of organ transplants. 


