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Abstract 

 

 

 It is reported that about one third of the primary energy is consumed by friction all over 

the world [1], and about 55% of the machine parts failed due to wear and tear [2]. For example, 

about one third of the fuel energy is used to overcome the various frictions in a passenger car [3]. 

In general, friction is undesirable, such as in gears, bearings and cylinder and piston systems. 

However, sometimes it is desirable, such as in belt drives, brakes, clutches, and even small 

compartments like electrical connectors and screws. Therefore, it is important to understand the 

process involved in friction and to obtain accurate models that predict the friction. Unfortunately, 

due to the complexity of friction mechanisms, it has been extremely difficult to obtain universal 

friction models. Modeling friction contacts becomes a challenge due to the complicated multiple 

scales of features on surfaces.  Many researchers have developed different kinds of models to solve 

this problem. If researchers are successful, engineers could use the results predicted by the models, 

to increase or decrease the desirable friction in a controlled manner.  

There are many methods describing the contact of rough surfaces, such as statistical models, 

multi-scale models and deterministic models. Statistical models use the solution of the contact of 

an elastic or elastic-plastic asperity to stochastically model an entire contacting surface of 

asperities with a postulated height distribution. The multi-scale model considers that a rough 

surface profile can be decomposed into smaller asperities stacked on top of larger asperities. A 

profile can consist of the superposition of sinusoidal waves with different amplitudes and 
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wavelengths. Therefore, in this work, the sinusoidal shaped asperity is considered instead of 

considering the spherical shaped asperity considered in most of the existing statistical models. 

A study of the sinusoidal surface contact is investigated comprehensively. First, the contact 

behaviors of a single three-dimensional sinusoidal asperity under normal loading were investigated 

for elastic contact. The complete contact pressure, general stress distribution, maximum von Mises 

and critical amplitude under the full stick condition are derived analytically. The results show that 

these values have the same trend as the corresponding values in the perfect slip condition. It is 

shown that the complete contact pressure in the full stick condition increases as Poisson’s ratio 

increases, and it is lower than the corresponding valued under the perfect slip condition. It is also 

found that the maximum von Mises stress can locate either on the surface or below it, depending 

on the Poisson’s ratio. When the Poisson’s ratio is less than 
1

8
, the maximum von Mises stress 

locates on the surface; otherwise, the maximum von Mises stress locates beneath the surface. The 

dimensionless critical amplitude is also derived, and it is larger than the corresponding value under 

the perfect slip condition. It increases as the Poisson’s ratio increases, and approaches to the perfect 

slip value. 

For the elastic-plastic contact under normal loading, the average contact pressure required 

to cause complete contact between the deformable sinusoidal surface and a rigid flat under the full 

stick condition is examined. Complete contact is defined as when there are no gaps between the 

contacting surfaces. the effect of contact conditions (perfect slip, full stick) on the complete contact 

pressure was investigated by using the finite element method (FEM). This study confirms the 

previous studies about sinusoidal contact. From the results, the effect of contact conditions on 

complete contact pressure does not apparent to be significant for this case. The dimensionless 

complete contact pressure is independent of material properties, except for Poisson’s ratio.  
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Then, the contact behavior of a single elastic-plastic sinusoidal asperity under combined 

normal and tangential loading was investigated. The effects of the following parameters on the 

effective static friction coefficient and junction growth of a single sinusoidal asperity were 

investigated: material properties (elastic modulus, Poison’s ratio, yield strength), geometric 

parameter (amplitude/wavelength), contact pressure and the critical interfacial shear strength. It 

was found that the effective static friction coefficient of a single sinusoidal asperity decreases with 

increasing contact pressure, elastic modulus, Poisson’s ratio, and the ratio of amplitude to 

wavelength, and increases with increasing yield strength and critical shear strength. Empirical 

equations of the effective static friction coefficient and junction growth due to tangential load were 

provided. These equations then can be used in spectral and fast Fourier transform (FFT) based 

methods for modeling the contact and friction between rough surfaces. 

Most of the existing models use the measured surface data directly and consider the shape 

between the measured surface data to be straight lines. This might not be realistic, because the 

surface is more continuous. The sharp peaks generated by neighboring lines may cause stress 

concentrations, which should be influence the accuracy of the results in simulations. Then 

questions then arise: what is the real shape between the measured surface data, and what is the 

appropriate resolution to represents the real rough surfaces? 

Therefore, the effect of sampling resolution on the contact behaviors is investigated in this 

study. The spectral interpolation method is proposed to smooth the surface and reduce the 

resolution in the FE model. This method is based on the FFT interpolation, and assumes that the 

original surfaces and interpolation surfaces have the same spectrum. The elastic-plastic contact 

between deformable rough surfaces and a rigid flat under combined normal and tangential loading 

is the studied. The first loading step, in which a normal load is applied on the rigid flat is initially 
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studied. During this normal load step, the effects of sampling resolution on the contact area ratio, 

dimensionless displacement, dimensionless average gap, and maximum von Mises stress were 

investigated. It was found that: as the resolution decreases, the contact area ratio and dimensionless 

displacement decreases, while the dimensionless average gap and dimensionless contact pressure 

both increase under normal preload and at sliding inception. During the second step, in which the 

normal load remains constant and a tangential load is applied and increases gradually, the static 

friction coefficient is investigated. The effect of tangential load on the contact behaviors are 

studied as well. It was found that the tangential force can increase the contact area ratio, 

dimensionless displacement and dimensionless maximum von Mises stress, and decrease the 

dimensionless average gap and dimensionless contact pressure. 

Next, the contact and friction behavior between rough surfaces and a rigid flat is studied 

using FEM. Three kinds of rough surfaces (generated fractal rough surfaces, generated gaussian 

distribution rough surfaces, and real measured rough surfaces) are used in the FE model. The 

effects of the following parameters on contact area ratio and static friction coefficient of rough 

surfaces were investigated: plasticity index, normal force and tangent modulus. It is observed that 

the static friction coefficient decreases as the dimensionless normal load and plasticity index 

increases. The FEM results are then compared to the existing statistical models. The overall trends 

of both the FEM results and statistical models are the same. However, the FEM friction results are 

always greater than the values predicted by the statistical models. This might be because of either 

the assumptions of the statistical models or the insufficient surface data. It was also found that the 

tangent modulus can decrease the static friction coefficient by hardening the surface. 

The results of contact area predicted by the multi-scale model is confirmed initially. The 

FEM results of single asperity sinusoidal is used within the multi-scale frame work in for the 
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normal loading step to predict real contact area. The FEM simulations with different real rough 

surfaces are conducted. The results show that the multi-scale contact model and the FEM data 

show a reasonable agreement. Since the existing friction models have some limits, such as did not 

consider heavy loads, and the surfaces with very large plasticity indices. A friction model 

considering these conditions (heavy loads and the surfaces with very large plasticity indices) is 

still needed. Hence, a new stacked multi-scale friction model is developed to predict the static 

friction for the rough surfaces in this work. The multi-scale contact model then is extended to a 

friction model. The predictions are compared with FEM results and a statistical model. They show 

the same trend, however, they show some differences, the friction coefficient predicted by the 

multi-scale friction model is greater than the statistical model predictions and lower than the FEM 

results. This is probably because one or more of the following reasons: the rough surface is not so 

istropic, the asperity summits have different radii, there is a uncertain interaction between 

asperities and bulk deformation, the distribution of the asperity are not Gaussian, and the measured 

nominal contact area is anistropic and not large enough. This still needs further investigating. 
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CHAPTER 1. INTRODUCTION 

 

 

1.1. Background 

Friction plays an important role in everyday life, especially for engineering components. 

Friction is the force resisting the relative motion of solid surfaces in contact sliding against each 

other. There are several types of friction, one of the most common type is dry friction. Dry friction 

arises from a combination of interface adhesion, surface roughness, surface deformation, and so 

on. It is subdivided into static friction between non-moving surfaces, and kinetic friction between 

moving surfaces. 

The so-called “Laws of friction” were provided by Amonton, although Davinci may have also 

been responsible. 

• Amonton’s first law: the friction force, 𝐹𝑓, is directly proportional to the applied normal 

force, 𝐹𝑛.  

• Amonton’s second law: the friction force, 𝐹𝑓, is independent of the apparent area, 𝐴0. 

• Coulomb’s law: Kinetic friction is independent of sliding velocity. 

Then, Euler summarized these laws, and provided an equation: 

𝐹𝑓 = 𝜇𝐹𝑛 (1.1) 

where, 𝜇 is the coefficient of friction. 

However, none of these ‘Laws’ hold universally. The friction force required to start sliding 

is usually greater than the force require maintaining sliding, and this has given rise to the notion 
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that there are two coefficients of friction: static friction coefficient (for the surfaces at rest) and 

kinetic (for surfaces in motion).  Euler is also the first person to present that friction behaves 

different for two surfaces initially at rest then two surfaces in relative sliding motion. That is, the 

dry friction is subdivided into static friction between non-moving surfaces, and kinetic 

friction between moving surfaces.  

From the second of Amonton’s friction laws, friction is independent of apparent area of 

contact. While these laws provide a general guideline of the sensitivity of the coefficient of friction 

to the materials in contact, they may not necessarily be representative of friction that results 

between actual contact pairs [4]. Although some surfaces look very smooth, they are rough to some 

degree at the microscale or nanoscale. When two rough surfaces are pressed together, a contact is 

made by the asperities or peaks on either surface. These small values contacts make up the real 

contact area.  For rough surfaces, the friction force becomes independent of the load, but 

proportional merely to the real contact area. Bowden and Tabor [5] later made a critical insight 

into the cause of friction and the physical reason behind the laws. Bowden and Tabor were perhaps 

the first to theorize about friction and the real area of contact between surfaces. They presented a 

different approach, which considered the sliding inception and static friction as failure mechanism 

related to the material properties. Therefore, when two rough surfaces are pressed together only 

isolated asperities on the surface are in contact. They then assumed that when the sliding occurs 

the average shear stress over the real contact area of contact has the value of, 𝜏𝐴𝑣. The expression 

for the total friction force, 𝐹𝑓, then can be given as: 

𝐹𝑓 = 𝜏𝐴𝑣 ∙ 𝐴𝑟 (1.2) 

To understand the friction, it is important to understand the effect of surface morphology 

and load on the tribological performance of different rough surfaces. Hence, numerous models that 
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predict at the asperity-scale (10 nm-100 micros) static friction were developed by many researchers 

[6]. This includes asperity contact under combined normal and tangential loads.  

The three main criteria that have been used to theoretically determining the sliding inception are: 

1.) Local yield criterion 

Based on Bowden and Tabor’s work, Chang et al. [7] treated the sliding inception as a 

plastic yield failure mechanism using the von Mises yield strength. They found that the maximum 

tangential load that can be supported by a single sphere asperity before plastic yield first occurs 

either below or at the asperity contact interface. They employed the stress field to calculate the 

allowable maximum tangential load of a single spherical asperity contact. Later, similar to the CEB 

friction model [7], Kogut and Etsion [8] investigated the contact between a deformable sphere in 

contact with a rigid flat under combined normal and tangential loading, and presented a semi-

analytical approximate solution that treated sliding inception as a plastic yield failure mechanism 

using the von Mises yield criterion. They found the yield can occur either on the contact area or 

below it, depending on the plastic status of normal loading. A plastic volume was found to evolve 

and expand to the sphere surface prior to full sliding inception. 

2.) Contact stiffness criterion 

Brizmer et al. [9] analyzed an elastic-plastic contact between a deformable sphere and a 

rigid flat under combined normal and tangential loading under the full stick condition, and 

proposed a stiffness criterion to find the initiation of full sliding. They assume that when the 

instantaneous tangential stiffness become zero, the surface starts sliding. For convenience, they 

treated the sliding inception as when the instantaneous tangential stiffness becomes less than a 

small defined function of the initial tangential stiffness. It is given as:  
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(𝐾𝑇)𝑖
(𝐾𝑇)1

≤ 𝛼 
(1.3) 

where (𝐾𝑇)𝑖 is the instantaneous tangential stiffness, and given by: 

(𝐾𝑇)𝑖 = (
𝜕𝐹𝑡
𝜕𝑢𝑥

)
𝑖

≈
(𝐹𝑡)𝑖 − (𝐹𝑡)𝑖−1
(𝑢𝑥)𝑖 − (𝑢𝑥)𝑖−1

 
(1.4) 

and 𝑖 is loading step number, the (𝐾𝑇)1 is the initial tangential stiffness corresponding to the first 

tangential loading step, α is the predefined number, and it is set to 0.1. 

3.) Maximum friction shear stress criterion 

This criterion assumes that the sliding initiates at the interface. When the computed shear 

stresses reach the upper local shear stress limit, local sliding takes place at this point. Once all the 

points in the contact area slide, the entire surface starts sliding. There are two methods to set the 

upper local shear stress limit, the first one is using the “Local Coulomb Friction law”. Mindlin [10] 

implemented the “Local Coulomb Friction Law” by imposing an upper limit on the local shear 

stress equal to the local contact pressure times an assumed local static friction coefficient. Eriten 

et al. [11] developed a physics-based friction model for the spherical contact by applying the 

“Local Coulomb Friction law” on the contact interface. The other method [12] is to set a maximum 

shear strength as the upper local shear stress limit, then the maximum shear stress was set to 𝑆𝑦/√3 

based on von Mises theory, where 𝑆𝑦 is the yield strength of the soft material in contact. 

Based on these criteria, numerous studies are carried out on the presiding static friction by 

many researchers. Most commonly the roughness is considered using a statistical model: This 

model incorporates the results of the finite element method and sliding inception of a single 

asperity in a statistical representation of the surface roughness. In this kind of model, the surfaces 

are assumed to consist of a certain number of spherical asperities, whose heights above the mean 

level are modeled with a probability function, such as an exponential or Gaussian distribution. 
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Chang, Etsion, and Bogy [2] developed a statistical model, in which the von Mises yield criterion 

is used to calculate the tangential force that causes failure of contacting asperities. They found that 

the static friction coefficient is affected by material properties, surface topography and normal 

contact load. Kogut et al. [4] developed a model that shows the strong effect of the external force 

and nominal contact area and found that the main parameters affecting the static friction coefficient 

are the plasticity index and the adhesion parameter.  Cohen et al. [13] found the static friction is 

strongly affected by normal load, nominal contact area, mechanical properties, and surface 

roughness. Cohen et al. [14] investigated the effect of surface roughness on the static friction of 

an elastic-plastic spherical contact with a low plasticity index. Li et al. [15] extended the 

consideration of the plasticity index to a higher range. It should be noted however that in all of 

these papers the asperities were modeled as spheres.  

Due to the multi-scale nature of rough surfaces, there are many other methods to model the 

contact of rough surfaces. Archard [16] developed the first multi-scale contact model between 

rough surfaces. The rough surfaces used in Archard's model are described as "protuberances on 

protuberances". By using a concept of multiple scales of the asperities, the model considers smaller 

spheres layered upon larger spheres. Ciavarella et al. [17] solved the contact problem of a 2D 

Weierstrass–Mandelbrot fractal surface in contact with a rigid flat using the same stacked asperity 

assumption. They modeled the surface deformation using the two-dimensional elastic sinusoidal 

solution given by Westergaard [18]. Jackson and Streator [19] developed a multi-scale rough 

surface contact model which considers smaller asperities located on top of larger asperities. In 

addition to their work, Gao and Bower [20] also extended the multi-scale stacked contact model 

by including plastic deformation for 2-D sinusoidal asperities. Based upon the model in [19], 

Wilson et al. [21] used stacked 3D elastic-plastic sinusoids to model the multiple scales of 



 6 

roughness. However, a multi-scale stacked model predicting the static friction between rough 

surfaces is still missing. 

 

1.2. Organization 

The key research objectives of this work are to: 1) investigate the contact and friction 

behaviors for a single sinusoidal asperity for both the elastic and elastic-plastic case; 2) investigate 

static friction for rough surfaces. This work is focused on the further development of the sinusoidal 

based multi-scale modeling contact technique. Most of the previous models of contact between 

rough surfaces assume a sphere or elliptical shape for the geometry of the asperities on the surfaces. 

Hence, both single sinusoidal asperities and rough surfaces are analyzed.  

Chapter 1 gives a general introduction of the background and outlines the objectives of 

this dissertation.  

The first section, covered in Chapter 2, 3 and 4, formulates the details of contact and 

friction for a single asperity. In Chapter 2, the contact behaviors under full stick contact 

considering sinusoidal geometry were analyzed. In this chapter, an elastic contact between a 

deformable sinusoidal surface and rigid flat is studied. In Chapter 3, a finite element analysis, for 

an elastic-plastic sinusoidal surface normally loaded by a rigid flat is analyzed, and the effect of 

contact conditions and interfacial strength on the contact area and complete contact pressure is 

investigated. In Chapter 4, the behavior of an elastic-plastic contact between a deformable 

sinusoidal surface and a rigid flat under combined normal and tangential loading is investigated.  

In the second section, covered in Chapter 5, 6 and 7, an elastic-plastic contact and friction 

between a rough surface and a rigid flat are investigated. In Chapter 5, the effect of resolution on 

the behaviors of contact and friction. In Chapter 6, the static friction coefficient is studied, and the 
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FEM results are compared with the existing theoretical models. Three kinds of rough surface 

models (generated fractal rough surfaces, generated Gaussian distribution rough surfaces, and real 

measured rough surfaces) are used in the FE model. The effects of roughness, normal load and 

plasticity on static friction coefficient are investigated. In Chapter 7, the generated and real 

measured surface data are used to characterize the rough surface. A multi-scale friction model is 

developed to predict the static friction coefficient.  

In Chapter 8, all the conclusions of these topics in this dissertation are summarized, and 

the future work is recommended. 
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CHAPTER 2. ELASTIC SINUSOIDAL CONTACT UNDER NORMAL LOADING IN 

FULL STICK 

 

 

2.1. Introduction 

The normal contact of linear, isotropic, homogeneous linear elastic bodies is a fundamental 

problem in contact mechanics. For this kind of problem, the solutions (e.g., the contact and 

interfacial shear stress) strongly rely on the types of boundary conditions at the interface which 

can be generally divided into two categories: normal and tangential ones. This work will consider 

a non-adhesive contact case. The normal boundary condition for the non-adhesive contact is 

characterized by the Kuhn-Tucker inequality [22]. Different cohesive models might be applied 

together with the Kuhn-Tucker inequality to the interface when adhesion is introduced. The three 

main commonly used tangential boundary conditions in the analytical and numerical models are: 

1.) Perfect slip condition: Interfacial shear stress is not considered, i.e. there is no friction existing 

between the two surfaces in contact. 2.) Full stick condition: The interfacial shear stress is 

sufficient to prevent any slip between the contact interfaces of the elastic bodies. 3.) Partial slip 

condition: The contact area is divided into two regions: the stick region and the slip region. In the 

stick region, the friction at the interface is sufficient to prevent any slip; in the slip region, the 

relative displacement can take place. 

The full stick condition is considered in the current work. When contact interfaces are 

under the full stick condition, the mating points from both interfaces have zero relative 

displacement along their tangent direction. This type of boundary condition occurs in many 

situations. Experimental results of a glass lens in torsional [23, 24] and sliding contact [25] 
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confirmed the existence of the stick region before the onset of the global rotation and sliding. 

Recently, a delicate experiment done by Svetlizky and Fineberg [26] showed that the stick and slip 

result in pre-sliding can be modeled as the propagation of the interfacial crack. This clearly 

indicates that the contact region is under the full stick condition right before being penetrated by 

the slip region. Due to the complex nature of the contact problem under the full stick condition, 

very little work was done on analytically solving the interfacial states for plane (2D) and spatial 

(3D) contact problems. 

For the elastic contact under the plane stress/strain condition, several researchers have 

focused on the indenter with simple geometries and some of the results are summarized in 

Johnson's classic book [27]. Johnson [27] gave the interfacial normal and shear stress between the 

rigid flat end punch and an elastic half-space under the full-stick condition. The solutions were 

solved based on the integral governing equation developed by Galin [28]. Since all the points on 

the flat end come into contact simultaneously, the punch results do not rely on the loading history. 

Johnson [27] also gave a solution for the sliding contact of the cylindrical punch under full stick 

assuming that the interaction between the interfacial normal and shear stresses are decoupled. 

Adhesive plane contact between a cylinder and a stretched flat of similar materials where the 

substrate was stretched was studied by Chen and Gao [29]  and later they solved the similar contact 

problem between dissimilar materials [30]. A similar contact between a rigid cylinder and an 

elastic half-space was studied by Zhupanska [31]. In Zhupanska’s model, the half-space is not pre-

stretched. Block and Keer [32] applied Galin's formulation [28] for the non-periodic contact 

problem to the periodic contact problem based on the periodic Green's function. The solution [32] 

to the rigid periodic flat end punches in contact with an elastic half-space was given by analytically 

solving the coupled integral equations. The Goodman's approximation [33] was applied to the 
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problem where the punch profile is a periodically sinusoidal profile and closed-form solutions 

were obtained for the interfacial normal and shear stresses.  

Most works on the analytical modeling of three dimensional full-stick contact belong to 

the axisymmetric case. Mossakovskii [34, 35]  was the first to solve the axisymmetric normal 

contact problem under the full stick condition. Mossakovskii [35] presented the solutions for an 

elastic half space in contact with a rigid indenter of different shapes: a flat-end cylinder, a parabolic 

shaped punch and a power law shaped punch. Because the interfacial normal and shear stresses 

are dependent on the loading history, Mossakovskii [34, 35] modeled the interfacial state of 

stresses incrementally. Goodman [33] gave an approximate solution of the Hertzian contact 

between dissimilar materials under the full stick condition. The interfacial normal stress is found 

by Hertzian contact based on Goodman's approximation. Goodman [33] also used the incremental 

formulation to solve the interfacial shear stress. A more efficient analysis to the axisymmetric 

contact under the full-stick condition was given by Spence [36]. He found similar interfacial states 

of stresses are yielded at each step during the progressive loading and this behavior is usually 

referred to as self-similarity. He pointed out that the solution to the self-similar problem can be 

obtained directly without the application of the incremental technique. Solving the governing dual 

integral equations by the Wiener-Hopf technique [37] yields the interfacial normal and shear 

stresses. Based on the self-similarity technique, Borodich [38] solved the Hertzian contact between 

two nonlinear elastic anisotropic bodies under the full stick condition. Based on Mossakovskii's 

analysis, Borodich and Keer [39] considered a contact between a rigid, axisymmetric punch and 

an isotropic elastic half space under the adhesive (full stick) condition, and found a relation 

between the contact stiffness, the contact area and the elastic modulus. 
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Numerical simulation is an effective approach for investigating the situation for both elastic 

and elastic plastic contact. This method was used to find the stress distribution and displacement 

for elastic contact by Conway [40]. He considered that an elastic strip was compressed by a punch 

with the shapes of cylindrical and circular rollers in the full stick condition. Kosior et al. [41] used 

a numerical method to analysis the contact problem with friction between two elastic bodies. They 

used a domain decomposition method coupled with the boundary element method (BEM) to solve 

the contact problem of two elastic bodies. In an additional paper [42], they solved the same 

problem numerically by the finite element method (FEM) considering the contact between both a 

deformable spherical indenter and a deformable support. Chen and Wang [43] developed a three 

dimensional numerical model for the contact of elastic dissimilar materials. A simulation was 

performed for a ball against a half space contact under normal loading and tangential loading. The 

effects of shear tractions on the contact area, the stick zone, pressure and so on were considered. 

An incremental algorithm which assumed that the loading history are considered was used to 

analyze the coupled elastic contact by Gallego et al. [44]. They used this algorithm to solve the 

stick-slip contact problem under both normal and tangential loading.  

All the previous work assumed a spherical shaped asperity. Recently, Greenwood [45] at 

the 2015 Leeds-Lyon tribology Symposium suggested that more realistic asperity models similar 

to wavy surfaces should be considered. Several researchers have also investigated the elastic 

contact between a rigid flat and a sinusoidal or wavy geometry. Sinusoidal contact has been studied 

since the works of Westergaard [18]  and Johnson, Greenwood, Higginson (1985) [46]. The two 

dimensional elastic sinusoidal contact was first solved by Westergaard [18]. Johnson, Greenwood 

and Higginson (JGH) [46] developed asymptotic solutions for the elastic contact of a three 

dimensional sinusoidal profile. In their work, they presented the average contact pressure that 
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causes complete contact, 𝑝∗.  It implies that if the average pressure is equal to or greater than the 

value of 𝑝∗, then the contact is complete, i.e. there are no gaps remaining between the surfaces. 

They also provided a relationship between pressure and contact area for two limiting regimes: at 

the early stages of contact and near complete contact. Jackson and Streator [19] provided an 

empirical equation based on the experimental and numerical data, linking the two regimes. 

Recently, a two-dimensional symmetric sinusoidal contact model was developed by Saha et al. 

[47]. In their work, an empirical expression for the average contact pressure that causes complete 

contact was provided. All the literatures introduced above only consider the sinusoidal contact 

under the perfect slip condition. 

As can be seen from the above literature review, most of the existing literature are about 

either spherical contact under full stick condition or sinusoidal contact under the perfect slip 

condition. Very little work was done so far on the sinusoidal contact under the full stick condition, 

and an analytical solution for complete contact pressure is still missing for elastic contact under 

the full stick condition.  The main goal of this chapter is to analyze the behavior of sinusoidal 

contact under the full stick condition. Therefore, the effects of contact conditions (perfect slip or 

full stick) is investigated in the present study for an elastic sinusoidal contact. 

 

2.2. Methodology 

2.2.1. Problem Statement 
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Fig. 2.1. Schematic representation of a half-space with bi-sinusoidal waviness in contact with a 

rigid flat surface. Only the xz cross-section is shown. 

 

 

Fig. 2.2.  Three-dimensional plot of bi-sinusoidal waviness surface. 
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Fig. 2.3.  Schematic representation bi-sinusoidal waviness. Points A, B, C, D and E are the 

peaks. Points B’, C’, D’ and E’ are the valleys. 

 

A half-space with a bi-sinusoidal waviness contour is in purely normal contact with a rigid 

flat. The half-space is homogeneous, isotropic and linear elastic. The periodic bi-sinusoidal surface 

has the following expression: 

ℎ = ∆ cos(αx) cos (βy) (2.1) 

where only one period is considered: {(𝑥, 𝑦)|𝑥 ∈ [0, 𝜆𝑥), 𝑦 ∈ [0, 𝜆𝑦)}. The wavelengths are 𝜆𝑥 =

2𝜋/𝛼 and 𝜆𝑦 = 2𝜋/β. The 3-dimensional view and the contour of the surface are shown in Fig. 

2.2 and Fig. 2.3, respectively. In order to compare the results with the Equations in [46] and [48], 

in which the geometry are described as: 

ℎ = ∆ (1 − cos(αx) cos (βy))  (2.2) 

a special case 𝛼 = 𝛽 will be considered in the section 2.3. The only difference is a constant term, 

the amplitude, Δ. It should be much less than the wavelengths, i.e. Δ ≪ 𝜆𝑥(𝜆𝑦), in order to exclude 
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large deflections. The small ratio of amplitude to wavelength was also observed experimentally by 

Jackson [49] and Zhang and Jackson [50]. The contacting interface is under the full-stick condition. 

Since the interfacial normal and shear stresses depend on the loading stage [33, 35], generally, the 

contact problem should be formulated incrementally [33, 35]. In some special cases, (e.g., 

spherical contact), self-similarity can be used to simplify the formulation [37]. In order to avoid 

the complexity brought by the load-dependency, the contacting points are assumed to be achieved 

simultaneously, i.e., 𝑢𝑥(𝑥, 𝑦, 0) = 𝑢𝑦(𝑥, 𝑦, 0) = 0. 

Tangential loading and adhesion are not considered. Consider the special stage where the 

bi-sinusoidal waviness is initially in contact with the rigid flat everywhere. This stage is referred 

to as complete contact. At complete contact and under full stick, the contact problem belongs to 

the second type boundary value problem where the surface displacement components in [27] at 

the boundary are prescribed by: 

𝑢𝑥(𝑥, 𝑦, 0) = 0 

𝑢𝑦(𝑥, 𝑦, 0) = 0 

𝑢𝑧(𝑥, 𝑦, 0) = −ℎ(𝑥, 𝑦) (2.3) 

 

2.2.2. Displacements for Plane Contact (2D) 

The periodic semi-infinite elastic body can be treated as a plane strain problem, and the 

stress field can be calculated by using the Airy stress function [51]. The general form is given as: 

𝜎𝑥(𝑥, 𝑧) =
𝜕2Φ(𝑥, 𝑧)

𝜕𝑧2
 

(2.4a) 

𝜎𝑧(𝑥, 𝑧) =
𝜕2Φ(𝑥, 𝑧)

𝜕𝑥2
 

(2.4b) 
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𝜏𝑥𝑧(𝑥, 𝑦) =
𝜕2Φ(𝑥, 𝑦)

𝜕𝑥𝜕𝑧
 

(2.4c) 

To calculate the strain and displacement in generalized plane stress, we employ Hooke’s 

law. The components of strain are given by: 

𝜀𝑥 =
1

𝐸
[(1 − 𝑣2)𝜎𝑥 − 𝑣(1 + 𝑣)𝜎𝑧] (2.5a) 

𝜀𝑧 =
1

𝐸
[(1 − 𝑣2)𝜎𝑧 − 𝑣(1 + 𝑣)𝜎𝑥] (2.5b) 

From the strain-displacement relations 

𝑢𝑥(𝑥, 𝑧) = ∫ 𝜀𝑥(𝑥, 𝑧)
𝑥

0

dx 
(2.6a) 

𝑢𝑧(𝑥, 𝑧) = ∫ 𝜀𝑧(𝑥, 𝑧)
𝑧

∞

dx 
(2.6b) 

The two traction conditions at the surface 𝑧 = 0 are each discussed separately. 

 

2.2.2.1.  Normal Stress Condition 

The body is subject to the periodic normal stress and free of shear stress. The periodic 

normal stress imposed on the semi-infinite elastic body used in [52] is 

𝜎𝑧(𝑥, 0) = 𝑝0𝑐𝑜𝑠(𝛼𝑥) (2.7) 

Tripp et al. [52] provided the Airy Stress function 

Φ(𝑥, 𝑧) = −(
𝑝0
𝛼2
) (1 + 𝛼𝑧)𝑒−𝛼𝑧𝑐𝑜𝑠(𝛼𝑥) 

(2.8) 

Substitute equation (2.6) and (2.8) into (2.4),  

𝜖𝑥 = 𝑝0  
1 + 𝑣

𝐸
(1 − 2𝑣 − 𝛼𝑧) 𝑒−𝛼𝑧 𝑐𝑜𝑠(𝛼𝑥) 

(2.9a) 

𝜖𝑧 = 𝑝0
1 + 𝑣

𝐸
 (1 − 2𝑣 + 𝛼𝑧) 𝑒−𝛼𝑧𝑐𝑜𝑠(𝛼𝑥) 

(2.9b) 
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The components of strain are from the Eqs.  (2.5a) and (2.9b), then substituting Eqs. 

(2.9a) and (2.9b) into Eqs. (2.6a) and (2.6b) respectively, we can calculate the displacement 

tangent and normal to the boundary respectively from: 

𝑢𝑥(𝑥, 𝑧) = 𝑝0
(1 + 𝑣)

𝛼𝐸
(1 − 2𝑣 − 𝛼𝑧)𝑒−𝛼𝑧 𝑠𝑖𝑛(𝛼𝑥) 

(2.10a) 

𝑢𝑧(𝑥, 𝑧) = 𝑝0
(1 + 𝑣)

𝛼𝐸
(𝛼𝑧 − 2𝑣 + 2)𝑒−𝛼𝑧 𝑐𝑜𝑠(𝛼𝑥) 

(2.10b) 

Next, letting 𝑧 = 0, the interfacial displacement components under the plane strain 

condition at the surface are given as: 

𝑢𝑥(𝑥, 𝑧 = 0) = 𝑝0
(1 + 𝑣)(1 − 2𝑣)

𝛼𝐸
𝑠𝑖𝑛(𝛼𝑥) 

(2.11a) 

𝑢𝑧(𝑥, 𝑧 = 0) = −𝑝0
2(1 − 𝑣2)

𝛼𝐸
𝑐𝑜𝑠(𝛼𝑥) 

(2.11b) 

2.2.2.2 Shear Stress Condition 

On the contrary, the body is subject to the periodic shear stress and free of normal stress. 

Similarly, Tripp et al. [52] provided the stress distribution for a stress applying at the interference: 

𝜏𝑥𝑧(𝑥, 0) = 𝑞0𝑐𝑜𝑠(𝛼𝑥) (2.12) 

and the Airy stress function: 

𝛷(𝑥, 𝑦) = −(
𝑞0
𝛼
) 𝑧 𝑒−𝛼𝑧𝑠𝑖𝑛(𝛼𝑥) 

(2.13) 

Substituting Eq. (2.6) and (2.13) into Eq. (2.4), the components of strain are obtained: 

𝜖𝑥 = 𝑞0  
1 + 𝑣

𝐸
(2 − 2𝑣 − 𝛼𝑧) 𝑒−𝛼𝑧 𝑠𝑖𝑛(𝛼𝑥) 

(2.14a) 

𝜖𝑧 = 𝑞0
1 + 𝑣

𝐸
 (−2𝑣 + 𝛼𝑧) 𝑒−𝛼𝑧𝑠𝑖𝑛(𝛼𝑥) 

(2.14b) 

Substituting Eq. (2.14) into Eq. (2.5), the components of displacement are obtained: 
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𝑢𝑥(𝑥, 𝑧) = 𝑞0
(1 + 𝑣)

𝛼𝐸
(2 − 2𝑣 − 𝛼𝑧)𝑒−𝛼𝑧 [1 − 𝑐𝑜𝑠(𝛼𝑥)] 

(2.15a) 

𝑢𝑧(𝑥, 𝑧) = −𝑞0
(1 + 𝑣)

𝛼𝐸
(𝛼𝑧 − 2𝑣 + 1)𝑒−𝛼𝑧 𝑠𝑖𝑛(𝛼𝑥) 

(2.15b) 

Letting 𝑧 = 0, the interfacial displacement components under the plane strain condition are given 

as: 

𝑢𝑥(𝑥, 𝑧 = 0) = 𝑞0
2(1 − 𝑣2)

𝐸𝛼
 [1 − 𝑐𝑜𝑠(𝛼𝑥)] 

(2.16a) 

𝑢𝑧(𝑥, 𝑧 = 0) = −𝑞0
(1 + 𝑣)(1 − 2𝑣)

𝐸𝛼
𝑠𝑖𝑛(𝛼𝑥) 

(2.16b) 

The sign of the normal stress follows the convention common in contact mechanics, i.e., 

compressive stress is positive and tensile stress is negative. 

 

2.2.3. Displacements for Spatial Contact (3D) 

Similarly, we calculate the displacement components for the normal stress and shear 

stress condition, respectively. 

2.2.3.1.  Normal Stress Condition 

The elastic displacements due to a bi-sinusoidal distribution of surface pressure,  𝑝11, is 

used instead of 𝑝0, because the amplitude of contact pressure might be different. The pressure is 

given as: 

𝑝 = 𝜎𝑧(𝑥, 𝑦, 0) = 𝑝11 cos(𝛼𝑥) cos (𝛽𝑦) (2.17) 

The normal elastic displacements of the surface for Eq. (2.17) is given by Johnson [46]: 

𝑢𝑧(𝑥, 𝑦) = [2𝑝11  
(1 − 𝑣2)

𝜁𝐸
] cos(𝛼𝑥) cos (𝛽𝑦)   

(2.18) 

Eq. (2.17) can be extended to three different cases: 
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𝑝 = 𝜎𝑧(𝑥, 𝑦, 0) = 𝑝12𝑐𝑜𝑠(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) (2.19a) 

𝑝 = 𝜎𝑧(𝑥, 𝑦, 0) = 𝑝21𝑠𝑖𝑛(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) (2.19b) 

𝑝 = 𝜎𝑧(𝑥, 𝑦, 0) = 𝑝22𝑠𝑖𝑛(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) (2.19c) 

Since the amplitudes may be different, 𝑝12, 𝑝21 and 𝑝22  was used here. 

Following the method in [52], the displacements caused by the pressure in equations 

(2.19a) to (2.19c) are obtained: 

From Eq. (2.19a) 

𝑢𝑥(𝑥, 𝑦) = − [𝑝12  
(1 + 𝑣)(1 − 2𝑣)

𝜁𝐸
]  𝑐𝑜𝑠(𝛾) 𝑠𝑖𝑛(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) 

(2.20a) 

𝑢𝑦(𝑥, 𝑦) = [𝑝12  
(1 + 𝑣)(1 − 2𝑣)

𝜁𝐸
]  𝑐𝑜𝑠(𝛾) [1 − 𝑐𝑜𝑠(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦)] 

(2.20b) 

𝑢𝑧(𝑥, 𝑦) = [2𝑝12  
(1 − 𝑣2)

𝜁𝐸
] cos(𝛼𝑥) sin(𝛽𝑦)   

(2.20c) 

From Eq. (2.19b) 

 

𝑢𝑥(𝑥, 𝑦) = [𝑝21  
(1 + 𝑣)(1 − 2𝑣)

𝜁𝐸
]  𝑐𝑜𝑠(𝛾) [1 − 𝑐𝑜𝑠(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦)] 

(2.21a) 

𝑢𝑦(𝑥, 𝑦) = [𝑝21  
(1 + 𝑣)(1 − 2𝑣)

𝜁𝐸
]  𝑠𝑖𝑛(𝛾) 𝑠𝑖𝑛(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) 

(2.21b) 

𝑢𝑧(𝑥, 𝑦) = [2𝑝21  
(1 − 𝑣2)

𝜁𝐸
] sin(𝛼𝑥) cos (𝛽𝑦)   

(2.21c) 

From Eq. (2.19c) 

𝑢𝑥(𝑥, 𝑦) = [𝑝22  
(1 + 𝑣)(1 − 2𝑣)

𝜁𝐸
]  𝑐𝑜𝑠(𝛾) 𝑠𝑖𝑛(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) 

(2.22a) 

𝑢𝑦(𝑥, 𝑦) = − [𝑝22  
(1 + 𝑣)(1 − 2𝑣)

𝜁𝐸
]  𝑠𝑖𝑛(𝛾) 𝑐𝑜𝑠(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) 

(2.22b) 
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𝑢𝑧(𝑥, 𝑦) = [2𝑝22  
(1 − 𝑣2)

𝜁𝐸
] sin(𝛼𝑥) sin (𝛽𝑦)   

(2.22c) 

 

2.3.2.2 Shear Stress Condition 

For the shear stress on the surface or the traction distributions in the x direction, the 

corresponding Airy potential function and displacement components were found by Tripp et al. 

[52]: 

𝜏𝑥𝑧(𝑥, 𝑦, 0) = 𝜏𝑥11 𝑐𝑜𝑠(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) (2.23) 

and 

𝜙(𝑥, 𝑦, 𝑧) = −(
2𝜋𝜏𝑥
𝜁3

) 𝑒−𝜁𝑧 𝑐𝑜𝑠(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) 
(2.24) 

and 

𝑢𝑥 =
1

4𝜋𝐺
(2Φ𝑧𝑧 + 2𝑣Φ𝑥𝑥 − 𝑧Φ𝑥𝑥𝑧) (2.25a) 

𝑢𝑦 =
1

4𝜋𝐺
(2𝑣Φ𝑥𝑦 − 𝑧Φ𝑥𝑦𝑧) (2.25b) 

𝑢𝑧 =
1

4𝜋𝐺
[(1 − 2𝑣)Φ𝑥𝑧 − 𝑧Φ𝑥𝑧𝑧] (2.25c) 

Substituting Eq. (2.24) into Eq. (2.25), the displacement components are obtained: 

𝑢𝑥 = −
1

2𝐺

1

𝜁
[2 − 2𝑣 (

𝛼

𝜁
)
2

− (
𝛼

𝜁
)𝛼𝑧] 𝑒−𝜁𝑧𝜏𝑥11 𝑐𝑜𝑠(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) (2.26a) 

𝑢𝑦 = −
1

2𝐺

𝛼𝛽

𝜁3
[2𝑣 + 𝜁𝑧]𝑒−𝜁𝑧 𝜏𝑥11  𝑠𝑖𝑛(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) (2.26b) 

𝑢𝑧 =
1

2𝐺

𝛼

𝜁2
[1 − 2𝑣 + 𝜁𝑧]𝑒−𝜁𝑧 𝜏𝑥11 𝑐𝑜𝑠(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) (2.26c) 

Following Tripp’s formulation, Eq. (2.23) can be extended to: 



 21 

𝜏𝑥𝑧(𝑥, 𝑦, 0) = 𝜏𝑥12 𝑐𝑜𝑠(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) (2.27a) 

𝜏𝑥𝑧(𝑥, 𝑦, 0) = 𝜏𝑥21 𝑠𝑖𝑛(𝛼𝑥) 𝑐𝑜𝑠(𝛽𝑦) (2.27b) 

𝜏𝑥𝑧(𝑥, 𝑦, 0) = 𝜏𝑥22 𝑠𝑖𝑛(𝛼𝑥)𝑠𝑖𝑛 (𝛽𝑦) (2.27c) 

and the corresponding Airy stress function: 

𝜙(𝑥, 𝑦, 𝑧) = −(
2𝜋𝜏𝑥
𝜁3

) 𝑒−𝜁𝑧 𝑐𝑜𝑠(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) 
(2.28a) 

𝜙(𝑥, 𝑦, 𝑧) = −(
2𝜋𝜏𝑥
𝜁3

) 𝑒−𝜁𝑧 𝑠𝑖𝑛(𝛼𝑥) 𝑐𝑜𝑠(𝛽𝑦) 
(2.28b) 

𝜙(𝑥, 𝑦, 𝑧) = −(
2𝜋𝜏𝑥
𝜁3

) 𝑒−𝜁𝑧 𝑠𝑖𝑛(𝛼𝑥)𝑠𝑖𝑛 (𝛽𝑦) 
(2.28c) 

The displacement components for the 3 cases given by the distributions in Eq. (2.27) are 

derived: 

𝑢𝑥 = −
1

2𝐺

1

𝜁
[2 − 2𝑣 (

𝛼

𝜁
)
2

− (
𝛼

𝜁
)𝛼𝑧] 𝑒−𝜁𝑧𝜏𝑥12 𝑐𝑜𝑠(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) (2.29a) 

𝑢𝑦 =
1

2𝐺

𝛼𝛽

𝜁3
[2𝑣 + 𝜁𝑧]𝑒−𝜁𝑧 𝜏𝑥12  𝑠𝑖𝑛(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) (2.29b) 

𝑢𝑧 = −
1

2𝐺

𝛼

𝜁2
[1 − 2𝑣 + 𝜁𝑧]𝑒−𝜁𝑧 𝜏𝑥12 𝑠𝑖𝑛(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) (2.29c) 

 

𝑢𝑥 = −
1

2𝐺

1

𝜁
[2 − 2𝑣 (

𝛼

𝜁
)
2

− (
𝛼

𝜁
)𝛼𝑧] 𝑒−𝜁𝑧𝜏𝑥21 𝑠 𝑖𝑛(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) (2.30a) 

𝑢𝑦 =
1

2𝐺

𝛼𝛽

𝜁3
[2𝑣 + 𝜁𝑧]𝑒−𝜁𝑧 𝜏𝑥21  𝑐𝑜𝑠(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) (2.30b) 

𝑢𝑧 =
1

2𝐺

𝛼

𝜁2
[1 − 2𝑣 + 𝜁𝑧]𝑒−𝜁𝑧 𝜏𝑥21 𝑐𝑜𝑠(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) (2.30c) 
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𝑢𝑥 = −
1

2𝐺

1

𝜁
[2 − 2𝑣 (

𝛼

𝜁
)
2

− (
𝛼

𝜁
)𝛼𝑧] 𝑒−𝜁𝑧𝜏𝑥22 𝑠𝑖𝑛(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) (2.31a) 

𝑢𝑦 = −
1

2𝐺

𝛼𝛽

𝜁3
[2𝑣 + 𝜁𝑧]𝑒−𝜁𝑧 𝜏𝑥22  𝑠𝑖𝑛(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) (2.31b) 

𝑢𝑧 =
1

2𝐺

𝛼

𝜁2
[1 − 2𝑣 + 𝜁𝑧]𝑒−𝜁𝑧 𝜏𝑥22 𝑐𝑜𝑠(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) (2.31c) 

Likewise, the displacement components are given by the traction of the surface stress 

distributions 𝜏𝑦11 𝑐𝑜𝑠
(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦), 𝜏𝑦12 𝑐𝑜𝑠

(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦), 𝜏𝑦21 𝑐𝑜𝑠
(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦), and 

𝜏𝑦22 𝑐𝑜𝑠
(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦). This displacement components are then derived as: 

𝑢𝑥 = −
1

2𝐺

𝛼𝛽

𝜁3
[2𝑣 + 𝛼𝑧] 𝑒−𝜁𝑧𝜏𝑦11 𝑠𝑖𝑛

(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) 
(2.32a) 

𝑢𝑦 = −
1

2𝐺

1

𝜁
[2 − 2𝑣 (

𝛽

𝜁
)
2

− (
𝛼

𝜁
)𝛼𝑧] 𝑒−𝜁𝑧 𝜏𝑦11  𝑐𝑜𝑠

(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) 
(2.32b) 

𝑢𝑧 = −
1

2𝐺

𝛽

𝜁2
[1 − 2𝑣 + 𝜁𝑧]𝑒−𝜁𝑧 𝜏𝑦11 𝑐𝑜𝑠

(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) 
(2.32c) 

 

𝑢𝑥 =
1

2𝐺

𝛼𝛽

𝜁3
[2𝑣 + 𝛼𝑧] 𝑒−𝜁𝑧𝜏𝑦12 𝑠𝑖𝑛

(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) 
(2.33a) 

𝑢𝑦 = −
1

2𝐺

1

𝜁
[2 − 2𝑣 (

𝛽

𝜁
)
2

− (
𝛼

𝜁
)𝛼𝑧] 𝑒−𝜁𝑧 𝜏𝑦12  𝑐𝑜𝑠

(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) 
(2.33b) 

𝑢𝑧 =
1

2𝐺

𝛽

𝜁2
[1 − 2𝑣 + 𝜁𝑧]𝑒−𝜁𝑧 𝜏𝑦12 𝑐𝑜𝑠

(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) 
(2.33c) 

 

𝑢𝑥 =
1

2𝐺

𝛼𝛽

𝜁3
[2𝑣 + 𝛼𝑧] 𝑒−𝜁𝑧𝜏𝑦21 𝑐𝑜𝑠

(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) 
(2.34a) 

𝑢𝑦 = −
1

2𝐺

1

𝜁
[2 − 2𝑣 (

𝛽

𝜁
)
2

− (
𝛼

𝜁
)𝛼𝑧] 𝑒−𝜁𝑧 𝜏𝑦21  𝑠𝑖𝑛

(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) 
(2.34b) 
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𝑢𝑧 = −
1

2𝐺

𝛽

𝜁2
[1 − 2𝑣 + 𝜁𝑧]𝑒−𝜁𝑧 𝜏𝑦21 𝑠𝑖𝑛

(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) 
(2.34c) 

 

𝑢𝑥 = −
1

2𝐺

𝛼𝛽

𝜁3
[2𝑣 + 𝛼𝑧] 𝑒−𝜁𝑧𝜏𝑦22 𝑐𝑜𝑠

(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) 
(2.34a) 

𝑢𝑦 = −
1

2𝐺

1

𝜁
[2 − 2𝑣 (

𝛽

𝜁
)
2

− (
𝛼

𝜁
)𝛼𝑧] 𝑒−𝜁𝑧 𝜏𝑦22  𝑠𝑖𝑛

(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) 
(2.34b) 

𝑢𝑧 = −
1

2𝐺

𝛽

𝜁2
[1 − 2𝑣 + 𝜁𝑧]𝑒−𝜁𝑧 𝜏𝑦22 𝑠𝑖𝑛

(𝛼𝑥)𝑐𝑜𝑠(𝛽𝑦) 
(2.34c) 

 

2.3. Results and Discussion 

2.3.1. Interfacial State of Stress 

Generally, the unknown contact pressure, 𝑝(𝑥, 𝑦) , and the interfacial shear stresses, 

𝑞𝑥(𝑥, 𝑦), and 𝑞𝑦(𝑥, 𝑦), can be expressed by the Fourier series with an infinite number of terms. 

Since the normal displacement, 𝑢𝑧(𝑥, 𝑦, 0) , only contains a single sinusoidal term, a simplified 

form of the boundary stresses may be written as: 

𝑝(𝑥, 𝑦) = 𝑝11 𝑐𝑜𝑠(𝛼𝑥) 𝑐𝑜𝑠(𝛽𝑦) + 𝑝12 𝑐𝑜𝑠(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦) 

                 + 𝑝21 𝑠𝑖𝑛(𝛼𝑥) 𝑐𝑜𝑠(𝛽𝑦) + 𝑝22 𝑠𝑖𝑛(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦) (2.35a) 

𝑞𝑥(x, y) = 𝜏𝑥11 cos(𝛼𝑥) cos(𝛽𝑦) + 𝜏𝑥12 cos(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦) 

                    + 𝜏𝑥21 𝑠𝑖𝑛(𝛼𝑥) 𝑐𝑜𝑠(𝛽𝑦) + 𝜏𝑥22 𝑠𝑖𝑛(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦) (2.35b) 

𝑞𝑦(x, y) = 𝜏𝑦11 cos(𝛼𝑥) cos(𝛽𝑦) + 𝜏𝑦12 cos(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) 

                    + 𝜏𝑦21 𝑠𝑖𝑛(𝛼𝑥) 𝑐𝑜𝑠(𝛽𝑦) + 𝜏𝑦22 𝑠𝑖𝑛(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦) (2.35c) 

where the normal stress constants 𝑝11, 𝑝12, 𝑝21, 𝑝22 and shear stress constants 𝜏𝑥11, 𝜏𝑥12, 𝜏𝑥21, 

𝜏𝑥22 , 𝜏𝑦11 , 𝜏𝑦12 , 𝜏𝑦21 , 𝜏𝑦22 , are initially unknown. Note that the mean value of 𝑞𝑥 (𝑥, 𝑦) and 

𝑞𝑦 (𝑥, 𝑦) over each period are zero. The average value of 𝑝 (𝑥, 𝑦) is 𝑝̅ and is the minimum of the 
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value which can exclude all the negative values in 𝑝 (𝑥, 𝑦). The addition of 𝑝̅ would be achieved 

by the application of a sufficient normal load. 

Similarly to the calculation of displacement components on the sinusoidal surface of the 

plane contact in Appendix A, the elementary solutions of the interfacial displacement components 

due to different bi-sinusoidal/cosinusoidal stress boundaries are listed in subsection 2.2.3. The 

resultant interfacial displacement components, 𝑢𝑥 (𝑥, 𝑦, 0), 𝑢𝑦 (𝑥, 𝑦, 0), and 𝑢𝑧 (𝑥, 𝑦, 0), due to the 

stress boundaries in Eq. (2.3) are the superposition of the corresponding elementary solutions. 

Substituting the interfacial displacement components into the boundary conditions for complete 

contact under full stick (see Eq. (2.3)) and combining the same bi-sinuosidal/cosinusoidal terms, 

then the above boundary conditions can be decomposed into 12 linear equations. After solving this 

linear system, only three out of the twelve unknowns are non-zero: 

𝑝11 = 𝑝
∗ =

2∆𝐸𝜁(1 − 𝑣)

(1 + 𝑣)(8𝑣2 − 12𝑣 + 5)
 

(2.36a) 

𝜏𝑥21 = 𝑞𝑥
∗ =

∆𝐸𝛼(1 − 2𝑣)

(1 + 𝑣)(8𝑣2 − 12𝑣 + 5)
 

(2.36b) 

𝜏𝑦12 = 𝑞𝑦
∗ =

∆𝐸𝛽(1 − 2𝑣)

(1 + 𝑣)(8𝑣2 − 12𝑣 + 5)
 

(2.36c) 

where ζ = √𝛼2 + 𝛽2 

Note the complete contact pressure is reached when the average contact pressure is equal 

to  𝑝∗ in the full stick condition. It is now denoted 𝑝𝑠𝑡𝑖𝑐𝑘
∗ , Eq. (2.36a) becomes for 𝛼 = 𝛽 =

2𝜋/𝜆: 

𝑝𝑠𝑡𝑖𝑐𝑘
∗ =

4√2𝜋𝐸∆𝑓(1 − 𝑣)

(1 + 𝑣)(8𝑣2 − 12𝑣 + 5)
 

(2.37) 

In contrast, the complete contact pressure for a special case (𝛼 = 𝛽 = 2𝜋/𝜆) in the 

perfect slip condition is given by Johnson et al. [46]: 
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𝑝𝑠𝑙𝑖𝑝
∗ = √2π𝐸′∆f (2.38) 

where 𝐸′ =
𝐸

1−𝜐2
 

 

Fig. 2.4. Dimensionless complete contact pressure in full stick and prefect slip condition. 

 

Since both Eqs. (2.37) and (2.38) have a 𝐸∆𝑓 term, the complete contact pressure in the 

perfect slip condition, 𝑝𝑠𝑙𝑖𝑝
∗ , and in the full stick condition,  𝑝𝑠𝑡𝑖𝑐𝑘

∗  are normalized using 𝐸∆𝑓. Then 

the normalized complete contact pressure is plotted versus Poisson’s ratio (see Fig. 2.4.). It can be 

seen from Fig. 2.4. that as the Poisson’s ratio increases, the dimensionless complete contact 

pressure also increases in both stick and slip. The complete contact pressure is also much lower in 

stick than it is in slip. This is because the addition of traction in the stick case increases the overall 

stress in the contact and therefore lowers the pressure needed to cause strain to compress the 

surface. The difference between the two curves decreases as 𝜈 increases, and they converge to the 

same value at 𝜈 = 0.5. This is because the influence of tangential traction on the normal pressure 
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is small for high values of Poisson’s ratio, and the tangential stress under the full stick condition 

are low enough to make the complete contact pressure in stick and in slip similar. This observation 

was also found for the rigid flat punch indentation case as found in  Johnson’s book [27]. For the 

compressible material (𝜈 < 0.5), the complete contact pressures in stick are lower than their 

corresponding value in slip; For the incompressible material (𝜈 = 0.5), the complete contact 

pressure in stick is exactly equal to the value in slip.  

Dividing Eq. (2.37) by Eq. (2.38), then the ratio is given by the following function of 𝜈 : 

𝑝𝑠𝑡𝑖𝑐𝑘
∗

𝑝𝑠𝑙𝑖𝑝
∗ =

4(1 − 𝑣)2

(8𝑣2 − 12𝑣 + 5)
 

(2.39) 

 

Fig. 2.5. The ratio of complete contact pressure in full stick over perfect slip. 

 

Fig. 2.5. presents the ratio of the complete contact pressure in full stick over that in 

perfect slip. The ratio was found to be independent of the geometry and material properties 

except for Poisson’s ratio. From Eq. 2.39,  𝑝𝑠𝑡𝑖𝑐𝑘
∗ /𝑝𝑠𝑙𝑖𝑝

∗ = 0.8 when ν = 0, and  𝑝𝑠𝑡𝑖𝑐𝑘
∗ /𝑝𝑠𝑙𝑖𝑝

∗ = 1 
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when 𝜈 = 0.5. Therefore the ratio increases as Poisson’s ratio increases. That is because the 

tangential traction does not affect the ratio or Eq. (2.39) so much at the high values of Poisson’s 

ratio. 

Consequently, the final forms of the contact pressure and the interfacial shear stresses 

under the full stick condition are: 

𝑝(x, y) = 𝑝𝑠𝑡𝑖𝑐𝑘
∗ cos(𝛼𝑥) cos(𝛽𝑦) + 𝑝̅ (2.40a) 

𝑞𝑥(x, y) = 𝑞𝑥
∗ 𝑠𝑖𝑛(𝛼𝑥)cos(𝛽𝑦) (2.40b) 

𝑞𝑦(x, y) = 𝑞𝑦
∗ 𝑐𝑜𝑠(𝛼𝑥)sin(𝛽𝑦) (2.40c) 

Note that the complete contact is initially reached when 𝑝̅ = 𝑝𝑠𝑡𝑖𝑐𝑘
∗ . 

 

2.3.2. General State of Stresses at Complete Contact 

In order to determine the state of stresses of the half-space under the action of the boundary 

stresses, Eq. (2.37) can be decomposed into three sub-states for each surface traction 𝑝(x, y), 

𝑞𝑥(x, y) and 𝑞𝑦(x, y) individually. Then they can be superposed to find the complete solution. First, 

we will neglect the final 𝑝̅ in Eq. (2.40a). Tripp et al. [52] provided the state of stresses of the half-

space due to the application of a bi-cosinusoidal normal stress distribution,  p(x, y) =

𝑝𝑠𝑡𝑖𝑐𝑘
∗ cos(𝛼𝑥) cos(𝛽𝑦) on the boundary of a half-space: 

𝜎𝑥 = 𝑝𝑠𝑡𝑖𝑐𝑘
∗ [

𝛼2

𝜁2
−
𝛼2𝑧

𝜁
+ 2𝜈(𝛽/𝜁)2] 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) 

(2.41a) 

𝜎𝑦 = 𝑝𝑠𝑡𝑖𝑐𝑘
∗ [

𝛽2

𝜁2
−
𝛽2𝑧

𝜁
+ 2𝜈(𝛼/𝜁)2] 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) 

(2.41b) 

𝜎𝑧 = 𝑝𝑠𝑡𝑖𝑐𝑘
∗ (1 + 𝜁𝑧) 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) (2.41c) 
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𝜏𝑥𝑦 = −𝑝𝑠𝑡𝑖𝑐𝑘
∗ (

𝛼𝛽

𝜁2
) (1 − 2𝜈 − ζz)𝑒−𝜁𝑧sin(𝛼𝑥) sin(𝛽𝑦) 

(2.41d) 

𝜏𝑦𝑧 = 𝑝𝑠𝑡𝑖𝑐𝑘
∗ βz 𝑒−𝜁𝑧cos(𝛼𝑥) sin(𝛽𝑦) (2.41e) 

𝜏𝑥𝑧 = 𝑝𝑠𝑡𝑖𝑐𝑘
∗ αz 𝑒−𝜁𝑧cos(𝛼𝑥) sin(𝛽𝑦) (2.41f) 

In addition, Tripp et al. [52] also gave the closed-form solution of the state of stress of the 

half-space due to the action of a bi-cosinusoidal shear stress distribution, 𝑞𝑥(x, y) =

𝑞𝑥
∗ sin(𝛼𝑥) cos(𝛽𝑦), on the boundary. This boundary problem is solved by a known potential 

function. Following the same methodology, the state of stresses due to the boundary stress 

𝑞𝑥(x, y) = q𝑥
∗ 𝑠𝑖𝑛(𝛼𝑥) cos(𝛽𝑦) are 

𝜎𝑥 = −𝑞𝑥
∗𝛼/𝜁[2 + 2𝜐(𝛽/𝜁)2 − (𝛼/𝜁)(𝛼𝑧)] 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) (2.42a) 

𝜎𝑦 = −𝑞𝑥
∗𝛼 [

𝛽2

𝜁2
−
𝛽2𝑧

𝜁
+ 2𝜐(𝛼/𝜁)2] 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) 

(2.42b) 

𝜎𝑧 = −𝑞𝑥
∗𝛼𝑧 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) (2.42c) 

𝜏𝑥𝑦 = 𝑞𝑥
∗𝛽/𝜁 (1 −

2v𝛼2

𝜁2
−
𝛼2z

ζ
) 𝑒−𝜁𝑧 sin(𝛼𝑥) sin(𝛽𝑦) 

(2.42d) 

𝜏𝑦𝑧 = −𝑞𝑥
∗
αβ

ζ
z 𝑒−𝜁𝑧cos(𝛼𝑥) sin(𝛽𝑦) 

(2.42e) 

𝜏𝑥𝑧 = 𝑞𝑥
∗(1 − 𝛼2𝑧/𝜁) 𝑒−𝜁𝑧sin(𝛼𝑥) cos(𝛽𝑦) (2.42f) 

Similarly, a boundary stress distribution, 𝑞𝑦(x, y) = 𝑞𝑦
∗𝑠𝑖𝑛(𝛼𝑥) cos(𝛽𝑦) will result in the 

following state of stress: 

𝜎𝑥 = −𝑞𝑦
∗𝛽/𝜁 (2𝜈

𝛽2

𝜁2
−
𝛼2𝑧

𝜁
)  𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) 

(2.43a) 

𝜎𝑦 = 𝑞𝑦
∗  𝛽/𝜁[2 + 2𝜐(𝛼/𝜁)2 − (𝛽/𝜁)(𝛽𝑧)] 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) (2.43b) 

𝜎𝑧 = −𝑞𝑦
∗𝛽𝑧 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) (2.43c) 
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𝜏𝑥𝑦 = 𝑞𝑦
∗𝛼/𝜁 (1 −

2v𝛽2

𝜁2
−
𝛽2z

ζ
) 𝑒−𝜁𝑧 sin(𝛼𝑥) sin(𝛽𝑦) 

(2.43d) 

𝜏𝑦𝑧 = 𝑞𝑦
∗(1 − 𝛽2𝑧/𝜁) 𝑒−𝜁𝑧cos(𝛼𝑥) sin(𝛽𝑦) (2.43e) 

𝜏𝑥𝑧 = − 𝑞𝑦
∗ (
αβ

ζ
) z 𝑒−𝜁𝑧sin(𝛼𝑥) cos(𝛽𝑦) 

(2.43f) 

Then the state of stress due to the mutual action of the boundary tractions, 𝑝(𝑥, 𝑦), 

𝑞𝑥(𝑥, 𝑦), and 𝑞𝑦(𝑥, 𝑦) in Eq. (2.40), are the superposition of the contributions listed above: 

𝜎𝑥 = {𝑝𝑠𝑡𝑖𝑐𝑘
∗ [

𝛼2

𝜁2
−
𝛼2𝑧

𝜁
+ 2𝜐(𝛽/𝜁)2] − 𝑞𝑥

∗𝛼/𝜁 [2 + 2𝜐 (
𝛽

𝜁
)
2

− (𝛼/𝜁)(𝛼𝑧)]

− 𝑞𝑦
∗𝛽/𝜁 (2𝜈

𝛽2

𝜁2
−
𝛼2𝑧

𝜁
)} 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) 

(2.44a) 

𝜎𝑦 = {𝑝𝑠𝑡𝑖𝑐𝑘
∗ [

𝛽2

𝜁2
−
𝛽2𝑧

𝜁
+ 2𝜐(𝛼/𝜁)2] − 𝑞𝑥

∗𝛼 [
𝛽2

𝜁2
−
𝛽2𝑧

𝜁
+ 2𝜐 (

𝛼

𝜁
)
2

]

+ 𝑞𝑦
∗  𝛽/𝜁[2 + 2𝜐(𝛼/𝜁)2 − (𝛽/𝜁)(𝛽𝑧)]} 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) 

(2.44b) 

𝜎𝑧 = {𝑝𝑠𝑡𝑖𝑐𝑘
∗ (1 + 𝜁𝑧) − 𝑞𝑥

∗𝛼𝑧 − 𝑞𝑦
∗𝛽𝑧} 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) (2.44c) 

𝜏𝑥𝑦 = [−𝑝𝑠𝑡𝑖𝑐𝑘
∗ (

𝛼𝛽

𝜁2
) (1 − 2v − ζz) +  𝑞𝑥

∗
𝛽

𝜁
(1 −

2ν𝛼2

𝜁2
−
𝛼2z

ζ
)

+  𝑞𝑦
∗
𝛼

𝜁
(1 −

2ν𝛽2

𝜁2
−
𝛽2z

ζ
)] 𝑒−𝜁𝑧sin(𝛼𝑥) sin(𝛽𝑦) 

(2.44d) 

𝜏𝑦𝑧 =  [𝑝𝑠𝑡𝑖𝑐𝑘
∗  βz − 𝑞𝑥

∗
𝛽

𝜁
(𝛼𝑧) + 𝑞𝑦

∗ (1 −
𝛽2𝑧

𝜁
)]  𝑒−𝜁𝑧cos(𝛼𝑥) sin(𝛽𝑦) 

(2.44e) 

𝜏𝑦𝑧 =  {𝑝𝑠𝑡𝑖𝑐𝑘
∗  αz + 𝑞𝑥

∗(1 − 𝛼2𝑧/𝜁)− 𝑞𝑦
∗ (
αβ

ζ
) z } 𝑒−𝜁𝑧sin(𝛼𝑥) cos(𝛽𝑦) 

(2.44f) 

After algebraic manipulation by instituting of 𝑝𝑠𝑡𝑖𝑐𝑘
∗ , Eq. (2.44) yields the following simplified 

forms of the state of stress: 
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𝜎𝑥 =
Δ 𝐸 (−𝛼2 + 2𝜈𝜁)

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) 

(2.45a) 

𝜎𝑦 =
Δ 𝐸 (−𝛽2 + 2𝜈𝜁)

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) 

(2.45b) 

𝜎𝑧 =
Δ 𝐸 (𝜁2𝑧 + 2𝑧 − 2𝜐𝜁)

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) 

(2.45c) 

𝜏𝑥𝑦 =
Δ 𝐸𝛼𝛽𝑧 (𝜁2𝑧 + 2𝑧 − 2𝜐𝜁)

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
𝑒−𝜁𝑧 sin(𝛼𝑥) sin(𝛽𝑦) 

(2.45d) 

𝜏𝑦𝑧 =
Δ 𝐸 𝛽(𝜁𝑧 + 1 − 2𝜐)

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
𝑒−𝜁𝑧cos(𝛼𝑥) sin(𝛽𝑦) 

(2.45e) 

𝜏𝑥𝑧 =
Δ 𝐸 𝛽(𝜁𝑧 + 1 − 2𝜐)

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
 𝑒−𝜁𝑧sin(𝛼𝑥) cos(𝛽𝑦) 

(2.45f) 

In addition to the sinusoidal stresses, there is an average uniform pressure given in the 

last term in Eq. (2.40). Due to this uniform pressure,  𝑝̅ = 𝑝𝑠𝑡𝑖𝑐𝑘
∗ , and by employing Hooke’s law, 

the stress on the half space is derived by: 

𝜎𝑥 = 𝑝𝑠𝑡𝑖𝑐𝑘
∗ (

𝜐

1 − 𝜐
) 

(2.46a) 

𝜎𝑦 = 𝑝𝑠𝑡𝑖𝑐𝑘
∗ (

𝜐

1 − 𝜐
) 

(2.46b) 

𝜎𝑧 = 𝑝𝑠𝑡𝑖𝑐𝑘
∗  (2.46c) 

Note that the sign of the stresses in Eq. (2.46) follows the convention in contact mechanics, 

i.e. compressive stress is positive and tensile stress is negative. Carrying out the superposition, the 

stress field can be recombined from the Eqs. (2.45) and (2.46) with the following results: 

𝜎𝑥 = 
Δ 𝐸 

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
[ (−𝛼2 + 2𝜈𝜁) 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) + 2𝜐] 

(2.47a) 

𝜎𝑦 = 
Δ 𝐸  

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
[ (−𝛽2 + 2𝜈𝜁) 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) + 2𝜐] 

(2.47b) 
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𝜎𝑧 = 
Δ 𝐸 

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
[ (𝜁2𝑧 + 2𝜁 − 2𝑣𝜁) 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛽𝑦) +  2 − 2𝜐] 

(2.47c) 

𝜏𝑥𝑦 =
Δ 𝐸𝛼𝛽𝑧 

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
𝑒−𝜁𝑧sin(𝛼𝑥) sin(𝛽𝑦) 

(2.47d) 

𝜏𝑦𝑧 =
Δ 𝐸 𝛽(𝜁𝑧 + 1 − 2𝜐)

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
𝑒−𝜁𝑧cos(𝛼𝑥) sin(𝛽𝑦) 

(2.47e) 

𝜏𝑥𝑧 =
Δ 𝐸 𝛼(𝜁𝑧 + 1 − 2𝜐)

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
 𝑒−𝜁𝑧sin(𝛼𝑥) cos(𝛽𝑦) 

(2.47f) 

 

2.3.3. The Maximum von Mises Stress  

When considering the initiation of the plastic deformation, the von Mises (or distortion 

energy) criteria is considered to be a very effective method. It is given by: 

𝜎𝑣𝑚 = √
1

2
[(𝜎𝑥 − 𝜎𝑦)2 + (𝜎𝑦 − 𝜎𝑧)2 + (𝜎𝑥 − 𝜎𝑧)2 + 6(𝜏𝑥𝑦2 + 𝜏𝑦𝑧2 + 𝜏𝑥𝑧2 )] 

(2.48) 

By substituting 𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑦𝑧, and 𝜏𝑥𝑧 from Eq. (2.47) into Eq.  (2.48). Since for the 

current case, wavelengths in the x and y directions are equal (𝛼 = 𝛽), the equation becomes 

𝜎𝑣𝑚 =
Δ 𝐸 𝜁

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
{[(
3

2
𝜁𝑧 − 4𝜐 + 2) 𝑒−𝜁𝑧cos(𝛼𝑥) cos(𝛼𝑦) − 4𝜐 + 2]

2

+
3

4
𝜁2𝑧2𝑒−2𝜁𝑧 𝑠𝑖𝑛2(𝛼𝑥)𝑠𝑖𝑛2(𝛼𝑦)

+
3

2
(𝜁𝑧 + 1 − 2𝜐)2𝑒−2𝜁𝑧[𝑐𝑜𝑠2(𝛼𝑥)𝑠𝑖𝑛2(𝛼𝑦) + 𝑠𝑖𝑛2(𝛼𝑥)𝑐𝑜𝑠2(𝛼𝑦)]}

1
2

 
(2.49) 

In order to find the location of the maximum von Mises stress in the xy plane, the maximum 

of Eq. (2.49) will occur at the inflection point or where the gradient is nil. Therefore, carrying out 

the second order derivation, and letting 
∂𝜎𝑣𝑚

2

∂x∂y
= 0, the location of the peak points, i.e.  (0,0), 
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(0, 𝜆), (𝜆, 0), (𝜆, 𝜆), and (
𝜆

2
,
𝜆

2
). of 𝜎𝑣𝑚 are determined. Substituting the 5 points results in the same 

equation: 

𝜎𝑣𝑚0 =
Δ 𝐸 𝜁

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
 |[(

3

2
𝜁𝑧 − 4𝜐 + 2) 𝑒−𝜁𝑧 − 4𝜐 + 2]| 

(2.50) 

The differential of Eq. (2.50) is then 

𝑑𝜎𝑣𝑚0
𝑑𝑧

=
Δ 𝐸 𝜁2

(1 + 𝜈)(8𝜐2 − 12𝜐 + 5)
 |−

3

2
𝜁𝑧 + 4𝜐 −

1

2
| 

(2.51) 

The maximum von Mises stress is obtained by solving for the location z where 

𝑑𝜎𝑣𝑚0/𝑑𝑧 = 0.  Hence, we can find the value of z where the von Mises reaches the maximum 

value. It is: 

𝑧0 =
8𝜈 − 1

3𝜁
 

(2.52) 

since ζ = √2𝛼 ,  𝑧0 =
8𝜈−1

6√2𝜋
 𝜆 

The location 𝑧0 is dependent only on the geometry parameter of wavelength,  𝜆, and the 

material parameter Poisson’s ratio,  ν. Most of the Poisson's ratios of typical engineering materials 

are in the range of 0 ≤ ν ≤ 0.5. Considering this range,  𝑧0 < 0, when 0 ≤ ν <
1

8
 and  𝑧0 ≥ 0 

when 
1

8
≤ ν ≤ 0.5. By definition, 𝑧0 should be always greater than zero, and therefore we need to 

discuss these two cases: When 0 ≤ ν ≤
1

8
, there is no solution for the Eq. (2.52) on [0, +∞) . 

Considering that Eq. (2.51) is a decreasing function, when 𝑧0 < 0,  it should be set to 𝑧0 = 0. This 

physically means that the maximum stress is on the surface. When 
1

8
≤ ν ≤ 0.5, 𝑧0 is at [0, +∞) 

and then found to be: 𝑧0 =
8𝜈−1

6√2𝜋
 𝜆. The values of 𝑧0 =

8𝜈−1

6√2𝜋
 𝜆 and  𝑧0 = 0 are then substituted 

back into Eq. (2.50) to find the maximum value of the von Mises stress: 
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𝑊ℎ𝑒𝑛 ν <
1

8
, (𝜎𝑣𝑚)𝑚𝑎𝑥 =

8√2𝜋 (1 − 2𝜐)

(1 + 𝜐)(8𝑣2 − 12𝜈 + 5)

Δ

𝜆
 𝐸 

𝑊ℎ𝑒𝑛 ν ≥
1

8
, (𝜎𝑣𝑚)𝑚𝑎𝑥 =

3√2𝜋 𝑒(1−8𝜐)/3 − 8√2𝑣 + 4√2

(1 + 𝜐)(8𝑣2 − 12𝜈 + 5)

Δ

𝜆
 𝐸 

 

(2.53) 

In contrast, the corrected maximum von Mises stress expression for the slip condition in [48] is 

given as: 

(𝜎𝑣𝑚)𝑚𝑎𝑥 = √2𝜋𝐸
′Δ𝑓 [

3

2
𝑒−2 3⁄ (𝑣+1) + (

1 − 2𝑣

1 − 𝑣
)] 

(2.54) 

The dimensionless maximum von Mises stress is plotted in Fig. 2.6. It is shown that the 

ratio will decrease as the Poisson's ratio increases for both in stick and slip. The maximum von 

Mises stress under the full stick condition is lower than or equal to the corresponding value in slip. 

From the previous discussion, the maximum von Mises stress can occur either on the surface, (𝑧0 

= 0), or somewhere under the surface, (𝑧0 =
8𝜈−1

6√2𝜋
 𝜆), depending on the value of Poisson's ratio. 

This is similar to that found in cylindrical contact. The transition is at 𝜈 =
1

8
 , while the transition 

found in [53] was at 𝜈 =  0.1938, for the cylindrical contact. 
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Fig. 2.6. Dimensionless maximum von Mises stress as a function of Poisson’s ratio. 

 

2.3.4.  Critical Value of Amplitude 

The value of 𝜎𝑣𝑚 is valid in the elastic deformation range, and is used to calculate the 

critical amplitude during complete contact denoted as Δ𝑐 , defined by Jackson et al. [48]. The 

definition of the critical amplitude is: when 𝛥 ≤ 𝛥𝑐 the sinusoidal contact will deform purely 

elastically for all loads, even until the sinusoidal surface geometry has completely flattened out. 

However, when 𝛥 > 𝛥𝑐,  plastic deformation may occur before complete contact is reached. By 

setting the von Mises stress 𝜎𝑣𝑚 equal to the yield strength, 𝑆𝑦, and solving for ∆, the critical 

amplitude during complete contact, Δ𝑐, is given as [54]: 

𝑊ℎ𝑒𝑛 ν <
1

8
, Δ𝑐 =

(1 + 𝜐)(8𝑣2 − 12𝜈 + 5)

8√2𝜋 (1 − 2𝜐)

Sy

𝐸
 𝜆 

(2.55) 
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𝑊ℎ𝑒𝑛 ν ≥
1

8
, Δ𝑐 =

(1 + 𝜐)(8𝑣2 − 12𝜈 + 5)

3√2𝜋 𝑒(1−8𝜐)/3 − 8√2𝑣 + 4√2

Sy

𝐸
 𝜆 

In addition, the critical amplitude during complete contact for the perfect slip given in 

[48] is incorrect and the corrected equation is given as [55]: 

Δ𝑐 =
√2𝑆𝑦λ

𝜋𝐸′ [3 𝑒−2(𝑣+1)/3 + 2(
1 − 2ν
1 − ν )]

 

(2.56) 

 

Fig. 2.7. Dimensionless critical amplitude as a function of Poisson’s ratio 

 

The critical value of amplitude, Δ𝑐, for the perfect slip and full stick conditions are plotted 

in Fig. 2.7. It is noted that the value of the critical amplitude under the full stick is greater than the 

one in the perfect slip condition. This is because the tangential stresses in the contact interface 

under the full stick condition are nonexistent in the perfect slip condition. The additional tangential 

stresses result in higher von Mises stresses in the material below a non-slip (i.e. full stick) surface 

compared to the slip case. 
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2.4. Conclusion 

An analytical, closed-form solution was provided to make predictions of the average 

pressure required to obtain complete contact between elastic wavy or sinusoidal surfaces in full 

stick. The value of the complete contact pressure in stick is lower than the value in slip. The ratio 

of the average complete contact pressure between perfect slip and full stick conditions are mostly 

affected by Poisson's ratio. 

This work also determines the location of the maximum von Mises stress in sinusoidal 

contact based upon the distortion energy theory as well. Similar to the cylindrical contact, the 

maximum von Mises stress occurs on the axis of symmetry, and it can occur either on the surface 

or under the surface, depending on Poisson's ratio. For 0 ≤ 𝜈 <
1

8
, the maximum von Mises stress 

occurs on the surface; for 
1

8
≤ 𝜈 < 0.5, the maximum von Mises stress occurs beneath the surface. 

A critical amplitude of the sinusoidal surface is also derived. When the amplitude of the 

sinusoidal surface is less than the critical value, the deformation is always in the elastic range up 

to the initiation of complete contact; when the amplitude is greater than the critical value, the 

deformation will be able to enter the elastic-plastic range prior to complete contact. The critical 

value of amplitude is higher in stick than in slip. 
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CHAPTER 3. ELASTIC-PLASTIC SINUSOIDAL CONTACT UNDER NORMAL 

LOADING IN FULL STICK 

 

 

3.1. Introduction 

The behavior of an elastic-plastic contact between a deformable single asperity and a rigid 

flat under normal loading in full stick have been investigated by many researchers. As we discussed 

in Chapter 2, the three main commonly used tangential boundary conditions are perfect slip, full 

stick and partial slip condition. The slip condition assumes that there is no friction on the surface 

in the contact area. Since this ideal assumption of perfect slip may not be realistic, several 

researchers have considered the full stick condition, in which the surfaces and the flat are bonded 

together and there is no relative displacement. Brizmer et al. [56] analyzed the effect of contact 

conditions and material properties on the yield inception of a spherical contact. They found that 

the normalized yield inception is independent of the geometric parameters and material properties 

except for Poisson’s ratio. The yield inception always occurs on the circle of the sphere surface 

for brittle materials, while it occurs at the single point on the axis of symmetry for ductile materials. 

For the ductile materials, the critical interference, critical load and yield inception depth in full 

stick are lower than the corresponding values in slip with lower values of Poisson’s ratio. The 

unloading process of an elastic–plastic spherical contact under the stick contact condition was 

analyzed for various material properties using the FE method by Zait et al. [57]. There is no 

difference was between the two contact conditions for the interference load behavior, however a 

substantial difference was noticed for the area load curves.  



 38 

The asperities of rough surfaces are typically described by spherical or parabolic 

geometries in most rough surface contact models. However, the geometry of actual asperities is 

much different than this, especially at the base of the asperity. This is especially important when 

an asperity is under a heavy load. Therefore, wavy or sinusoidal surface models are important for 

the consideration of rough surface contact. The elastic-plastic contact problem between sinusoidal 

surfaces has been investigated by many researchers. Gao et al. [20] used the finite element method 

(FEM) to investigated the two-dimensional elastic plastic solid body with a sinusoidal surface. 

Krithivasan and Jackson [58] provided empirical equations for the contact area as a function of 

contact pressure considering elastic-plastic contact. Later, Jackson et al. [48] confirmed their work 

in [58] by using an analytical solution, and provided an expression for the critical interference 

during complete contact. Rostami et al. [59] provided a model to predict the average surface 

separation between a sinusoidal surface and a rigid flat as well as the contact stiffness. Some fast 

Fourier transforms (FFT) based models [19, 49] were presented using the relationships from 

sinusoidal asperity contact. These models can be used to predict electrical and thermal contact 

resistance [21, 60, 61]. 

It can be seen from the above introduction, very little work was done on the sinusoidal 

contact in the full stick condition. The main goal of this chapter is to find the difference in 

behaviors of sinusoidal contact between the perfect slip and the full stick condition. We analyze 

the elastic-plastic contact under the full stick condition with different material properties, and to 

compare the results with the results of an existing semi-analytical model of perfect slip [48]. 

 

3.2 Modeling Approach 

3.2.1 Theoretical Model 
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The schematic of the deformable sinusoidal surface with a rigid plat under normal loading 

is shown in Fig. 3.1. In Fig. 3.1, Δ is the amplitude of the sinusoidal surface,  λ is the wavelength 

of the sinusoidal surface contact, and ℎ𝑏 is the substrate depth for the sinusoidal surfaces. 

 

Fig. 3.1. The schematic of the deformable sinusoidal surface with a rigid flat under normal 

loading. 
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Fig. 3.2. The sinusoidal surface geometry considered in the FE model. 

 

Three-dimensional elastic-plastic contact between sinusoidal surfaces has been  

investigated by Krithivasan and Jackson [58] and Jackson et al. [62].  The geometry is given by: 

ℎ = 𝛥 (1 − 𝑐𝑜𝑠 (
2𝜋𝑥

𝜆
) 𝑐𝑜𝑠 (

2𝜋𝑦

𝜆
)) 

(3.1) 

where ℎ is the height of the sinusoidal surface, 𝛥 is the amplitude of the sinusoidal surface, and 𝜆 

is the wavelength of the sinusoidal surface, and the contour of the sinusoidal surface is shown in 

Fig. 3.2. 

Johnson et al. [46] provided two asymptotic solutions to the elastic contact of a sinusoidal 

shaped surface 
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𝑊ℎ𝑒𝑛 𝑝̅ ≪ 𝑝∗:                    (𝐴𝐽𝐺𝐻)1 =
𝜋

𝑓2
(
3

8𝜋

𝑝̅

𝑝∗
)
2/3

 
(3.2) 

𝑊ℎ𝑒𝑛 𝑝̅ → 𝑝∗:                    (𝐴𝐽𝐺𝐻)2 =
1

𝑓2
[1 −

3

2𝜋
(1 −

𝑝̅

𝑝∗
)] 

(3.3) 

Jackson and Streator [19] developed an empirical equation linking Eqs. (3.2) and (3.3) 

based on the experimental data provided by Johnson et al. [46]: 

𝐹𝑜𝑟  𝑝̅ < 0.8 ∶                     𝐴 = (𝐴𝐽𝐺𝐻)1 [1 − (
𝑝̅

𝑝∗
)
1.51

] + (𝐴𝐽𝐺𝐻)2 (
𝑝̅

𝑝∗
)
1.04

 
(3.4) 

𝐹𝑜𝑟  𝑝̅ ≥ 0.8 ∶                     𝐴 = (𝐴𝐽𝐺𝐻)2 (3.5) 

The critical values for sinusoidal contact under normal load in the perfect slip condition are 

given by [58]: 

𝜔𝑐 = (
𝐶𝑆𝑦

4𝐸′𝑓
)
2 1

Δ
 

(3.6) 

𝐹𝑐 =
1

6𝜋
(

1

Δ𝑓2𝐸′
)
2

(
𝐶

2
𝑆𝑦)

3

 
(3.7) 

A𝑐 =
2

𝜋
(
𝐶𝑆𝑦

8Δ𝑓2𝐸′
)
2

 
(3.8) 

where the constant 𝐶 is related to the Poisson's ratio by: 

𝐶 = 1.295𝑒𝑥𝑝 (0.736𝜈) (3.9) 

and 𝜔𝑐  is the critical interference, 𝐹𝑐  is the critical force, and 𝐴𝑐  is the critical area under the 

perfect slip condition. Note that the above equations are based on spherical contact, but adapted to 

a sinusoidal shaped surface. In these equations, the critical values for the sinusoidal contact are 

based on spherical contact. The effect of contact conditions  and material properties on the 

termination of elasticity in spherical contact was investigated by Brizmer et al. [56]. They found 

that the ratios of critical interference and load in the full stick condition over that in the perfect slip 



 42 

condition are independent of material properties except for the Poisson’s ratio. The relationship 

between the critical values for spherical contact with ductile materials in full stick and slip 

conditions is given by [56] 

(𝜔𝑐𝑠)𝑠𝑡𝑖𝑐𝑘
𝜔𝑐

= 6.82𝜈 − 7.83(𝜈2 + 0.0586) 
(3.10) 

(𝐹𝑐)𝑠𝑡𝑖𝑐𝑘
𝐹𝑐

= 8.88𝜈 − 10.13(𝜈2 + 0.089) 
(3.11) 

where (𝜔𝑐𝑠)𝑠𝑡𝑖𝑐𝑘 and (𝐹𝑐)𝑠𝑡𝑖𝑐𝑘 are the critical interference and force under the full stick condition 

respectively. 

Since the sinusoidal contact in the initial contact is similar to the spherical contact, Eqs. 

(3.10) and (3.11) can be used to calculate the critical values of sinusoidal contact in the full stick. 

By substituting Eq. (3.6) and (3.7) into Eq. (3.10) and (3.11), the expressions for the critical 

interference and force under the full stick condition are obtained: 

(𝜔𝑐𝑠)𝑠𝑡𝑖𝑐𝑘 = [6.82𝜈 − 7.83(𝜈2 + 0.0586)] (
𝐶𝑆𝑦

4𝐸′𝑓
)

2 1

Δ
 

(3.12) 

(𝐹𝑐)𝑠𝑡𝑖𝑐𝑘 = [8.88𝜈 − 10.13(𝜈
2 + 0.089)] 

1

6𝜋
(

1

Δ𝑓2𝐸′
)
2

(
𝐶

2
𝑆𝑦)

3

 
(3.13) 

Ghaednia et al. [55] present an empirical equation for the average pressure that causes complete 

contact for the elastic-plastic case. The equation is given as: 

𝑝𝑒𝑝
∗

𝑝∗
= 0.992

{(
Δ
Δ𝑐
)
[
10
3
(
Δ
Δ𝑐
)
−0.39

+
9
4
𝜈4+0.64]

−1}

 
(3.14) 

where 𝛥𝑐 is the analytically derived critical amplitude. When the amplitude is less than this value, 

the sinusoidal surface deforms elastically. When the amplitude is greater than this value, it deforms 

plastically. 𝛥𝑐 is given by: 
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𝛥𝑐 =
√2𝑆𝑦

𝜋𝐸′𝑓 [3𝑒−2/3(𝜈+1) + 2(
1 − 2𝜈
1 − 𝜈 )]

 

(3.15) 

And 𝐶𝑣 is a function of Poisson’s ratio, and given by 

𝐶𝑣 = 0.0017 exp(8.09𝜈) − 0.0567 (3.16) 

Note that when Δ = Δ𝑐, 𝑝𝑒𝑝
∗ = 𝑝∗. Eq. (3.14) results is the same overall prediction as given in [48].  

Ghaednia et al. [55] also provide an correct version of critical ratio of amplitude to wavelength, 

𝐵𝑐, which was original presented in [48].  

𝐵𝑐 =
√2𝑆𝑦

𝜋𝐸′ [3𝑒−2/3(𝜈+1) + 2(
1 − 2𝜈
1 − 𝜈 )]

 

(3.17) 

If the ratio of amplitude to wavelength of sinusoidal surface, 𝐵, is less than 𝐵𝑐, it will deform 

elastically. Likewise, when 𝐵is greater than 𝐵𝑐, the surfaces deforms elastic-plasticly.  

Using Eq. 3.6, an equation to the finite element results to predict contact area as a function of 

average contact pressure [58] 

𝐴 = 𝐴𝑝 [1 − (
𝑝̅

𝑝𝑒𝑝∗
)

1.51

] + (𝐴𝐽𝐺𝐻)2 (
𝑝̅

𝑝𝑒𝑝∗
)

1.04

 
(3.18) 

Where 

𝐴𝑝 = 2(
𝐴𝑐
2
)

1
1+𝑑

(
3𝑝̅

4𝐶𝑆𝑦
𝜆2)

𝑑
1+𝑑

 
(3.19) 

d = 3.8 (
𝐸′

𝑆𝑦

Δ

𝜆
)

0.11

 
(3.20) 

However, for many applications it is also important to be able to predict the separation. 

Asymptotic solutions of the surface separation for elastic contact was given by [46] 
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𝑤ℎ𝑒𝑛 𝑝̅/𝑝∗ → 0:                    𝐺1 = 1 −
1

2
(3𝜋2

𝑝̅

𝑝∗
)

2
3
+ [4𝑙𝑛(√2 + 1)] (

𝑝̅

𝑝∗
) 

(3.21) 

𝑤ℎ𝑒𝑛 𝑝̅/𝑝∗ → 1:                    𝐺2 =
16

15𝜋2
(
3

2
)
3/2

[(1 −
𝑝̅

𝑝∗
)
5/2

] 
(3.22) 

An equation was fitted at the total range by Rostami and Jackson. [59] 

𝐺 = Δ(1 −
𝑝̅

𝑝∗
)
5/2

 
(3.23) 

Rostami and Jackson [59] also provides an equation of the surface separation for elastic-plastic 

contact 

𝐺 = Δ [1 − (
𝑝̅

𝑝𝑒𝑝∗
)

𝐴1𝑝𝑒𝑝
∗ +𝐴2

]

5/2

 
(3.24) 

Where 𝐴1 and 𝐴2 are given by: 

𝐴1 = −0.08 ln (𝐵/𝐵𝑐) (3.25) 

𝐴2 =
1

15
(𝐵/𝐵𝑐 − 1)

0.44 + 0.990.41(𝐵/𝐵𝑐 −1) −
1

2
 

(3.26) 

Note that, The Eqs. (3.2) - (3.9) and Eqs. (3.14) - (3.26) are all for the perfect slip condition. 

 

3.2.2 Finite Element Model 
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Fig. 3.3. The element plot and boundary conditions used for the FE model under normal loading. 

 

A three-dimensional model was developed in commercial ANSYSTM 17.0 Since the 

sinusoidal surface is symmetric, it is sufficient to consider only a quarter section of the whole 

problem. The twenty-node brick element (solid 186) is used to mesh the solid body. Conta 174 

and Targe 170 elements are used to form the contact pair. A single element Targe 170 was used to 

model the rigid surface, and a pilot node, which governs the motion of rigid flat, was created to 

associate with the rigid target surface. The sinusoidal surface consisted of a 60 × 60 array of 

elements. The uniform mesh on the rigid surface is used to predict the ratio of real contact area. In 

all, there are 57,600 elements in the model. The force method was employed to simulate the contact 
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problem. The force was applied on the pilot node in the z direction, by determining the contact 

force of each element in each substep. The normalized contact area, which is the ratio of the real 

contact area over apparent area, was obtained by the ratio of the number of the element in contact 

to the total number. In order to compare the results in this paper to other works, the current analysis 

uses the same geometry used in Johnson et al. [46] and Krithivasan and Jackson [58]. 

 

3.2.3 Verification of Model Accuracy 

In order to verify the accuracy of the FE model, comparisons were performed for both 

elastic and elastic-plastic contact considering the contact area. 

 

Fig. 3.4. Comparison of the elastic FEM contact area results with JGH data and JS equation. 

 

For the elastic case, the comparison is achieved by comparing the FEM results with the 

Johnson et al. data [46] and the Jackson et al. fit [19]. For this case, the material properties of a 



 47 

typical steel are used, 𝐸 = 200 𝐺𝑃𝑎 and 𝜈 = 0.3 and the geometrical ratio Δ/𝜆 = 0.02 are used 

in the FE model. As shown in Fig. 3.4, the FEM results and the equations have the same trend. 

Although the FEM data differ from the empirical equation slightly, they are in overall good 

agreement. An average error of only 5% was found between the FEM data and the empirical Eqs. 

(3.4) and (3.5), but it appears that the FEM results are closer to the JGH data. Note that the variation 

may change with Δ/𝜆. 

 

Fig. 3.5. Comparison of the elastic-plastic FEM contact area results with KJ equation. 

 

For the elastic-plastic contact, the results are compared to the empirical equation provided 

by Krithivasan and Jackson (KJ). The material of the sinusoidal surface is assumed to be bilinear 

isotropic solid body. The material used is as following: elastic modulus, 𝐸 = 200 𝐺𝑃𝑎 , the 

Poisson’s ratio, 𝜈 = 0.3, the yield strength, 𝑆𝑦 = 1𝐺𝑃𝑎 and the tangential modulus, 𝐸𝑡 = 2% 𝐸, 

which has an effect on the results. The geometry is described by the ratio of the amplitude to 

wavelength and assigned,  Δ/𝜆 = 0.02. Again, this comparison considers the real contact area. As 
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shown, the FEM data and the empirical equation have the same trend, and the average error 

between them is less than 4%. 

 

3.3. Results and Discussion 

3.3.1. Real Contact Area under The Full Stick Condition 

 

Table 3.1. Overview of the parameter ranges used for the FE simulation for normal loading  

Parameter Name Symbol Range 

Elastic Modulus E 150 − 450 𝐺𝑃𝑎 

Poisson’s Ratio 𝜈 0.10 − 0.45 

Yield Strength 𝑆𝑦 0.10 − 2.25 𝐺𝑃𝑎 

Geometric Ratio Δ 𝜆⁄  0.001 − 0.05 

 

In order to investigate the behaviors of elastic-plastic sinusoidal contact under the full stick 

condition, a parametric analysis of contact area that is similar to the work in [58] is conducted. The 

material properties and geometric parameters are varied, and the overall ranges for each parameter 

are list in the Table 3.1. For convenience, a benchmark case was set to analyze the contact problem. 

The material properties used for the benchmark case are 𝐸 = 200 𝐺𝑃𝑎, ν = 0.3, 𝑆𝑦 = 1𝐺𝑃𝑎, and 

𝐸𝑡 = 4 𝐺𝑃𝑎 . The dimensionless geometric ratio Δ 𝜆⁄  is set to 0.02. When conducting the 

simulations, only the parameter being analyzed and is varied, all other parameters are fixed to the 

benchmark values.  

First, a range of elastic moduli are considered in the model (see Fig. 3.6). The elastic 

modulus, 𝐸, was varied from 100 𝐺𝑃𝑎 to 450 GPa. The average contact pressure, 𝑝̅, resulting 
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from the elastic-plastic model is normalized using 𝑝∗(elastic case). Then the normalized contact 

area A/𝜆2 versus 𝑝̅/𝑝∗ for different elastic modulus values is plotted in Fig. 3.6.  

 

Fig. 3.6. Contact area ratio, A/𝜆2 versus 𝑝̅/𝑝∗ for different values of elastic modulus. 

 

Eq. 2.37 is used to normalize 𝑝̅  by 𝑝∗ . It can be seen from Fig. 3.6, under the same 

dimensionless contact pressure,  𝑝̅/𝑝∗, as the elastic modulus increases, the contact area, A/𝜆2, 

increases, (i.e. the contact becomes more complete).  For each case, when the normalized contact 

area ratio is equal to 1 (the contact is complete),  𝑝̅/𝑝∗ is less than one. Thus, for the elastic-plastic 

cases, complete contact occurs much earlier than when it occurs in elastic contact. This behavior 

is very similar to the sinusoidal contact under the slip condition [58]. 
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Fig. 3.7. Contact area ratio, A/𝜆2 versus 𝑝̅/𝑝∗ for different values of Poisson’s ratio. 

 

Similarly, the normalized contact area A/𝜆2  versus 𝑝̅/𝑝∗  for different Poisson’s ratio 

values is plotted in Fig. 3.7. As can be seen from Fig. 3.7, a very little difference between each 

case is founded. Under the same dimensionless contact pressure,  𝑝̅/𝑝∗, as the Poisson’s ratio 

increases, the contact area, A/𝜆2, increases (and the contact becomes more complete).   
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Fig. 3.8. Contact area ratio, A/𝜆2 versus 𝑝̅/𝑝∗ for different values of yield strength. 

 

Then the normalized contact area A/𝜆2 versus 𝑝̅/𝑝∗ for different yield strength values are 

plotted in Fig. 3.8. It can be seen from Fig. 3.8, under the same dimensionless contact pressure,  

𝑝̅/𝑝∗, as the yield strength increases, the contact area, A/𝜆2, decreases (i.e. the contact becomes 

less complete).  This agrees with our intuition, since increasing the strength will lower the amount 

of yielding and cause the contact to be more elastic. 
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Fig. 3.9. Contact area ratio, A/𝜆2 versus 𝑝̅/𝑝∗ for different values of Δ/𝜆. 

 

Finally, the normalized contact area A/𝜆2  versus 𝑝̅/𝑝∗  for different values of the 

dimensionless geometric parameter, Δ/𝜆 , are plotted in Fig. 3.9. It can be seen from Fig. 3.9, 

under the same dimensionless contact pressure,  𝑝̅/𝑝∗, as the geometric ratio increases, the contact 

area, A/𝜆2, increases, (i.e. the contact becomes more complete).  It should be mentioned that the 

contact behavior in full stick is very similar to the one under the perfect slip condition. Therefore, 

this work in affect also confirms the model for the perfect slip condition. 

 

3.3.2.  The Effects of Contact Conditions and Parameters on Complete Contact Pressure 

In this subsection, the average contact pressure required to cause complete contact is 

examined. The average pressure, 𝑝𝑒𝑝
∗ , that causes complete contact is extracted from the finite 

element model data for each case. This value corresponds to the average pressure when the area 
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ratio, A/𝜆2 reaches one. When the complete contact occurs, there is no space between the rigid 

flat and the sinusoidal surface. Thus, the average pressure to cause complete under the full stick 

condition can be found. In order to compare the complete contact pressure between under the full 

stick condition and perfect slip condition, FEM data for the full stick condition and Eq. (3.14) for 

the contact model under the perfect slip are plotted in Figs. 3.10 - 3.13.  

 

Fig. 3.10. The dimensionless complete contact pressure versus elastic modulus under different 

contact conditions. 
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Fig. 3.11. The dimensionless complete contact pressure versus Poisson’s ratio under different 

contact conditions. 

 

Fig. 3.12. The dimensionless complete contact pressure versus yield strength under different 

contact conditions. 
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Fig. 3.13. The dimensionless complete contact pressure versus the ratio of amplitude to 

wavelength under different contact conditions. 

 

First, the material properties are considered. For different values of elastic modulus, 𝐸, 

Poisson’s ratio, ν, and the yield strength, 𝑆𝑦, the dimensionless complete contact pressure under 

different contact conditions are plotted in Figs. 3.10, 3.11, and 3.12. As it is shown in Fig. 3.10, as 

the elastic modulus increases, the dimensionless complete contact pressure decreases. Fig. 3.11. 

shows the complete contact pressure versus the dimensionless contact pressure with different 

Poisson’s ratios. As shown in Fig. 3.11, as Poisson’s ratio increases, the dimensionless complete 

contact pressure increases first, and then decreases, as does the model under the slip contact 

condition in [58]. For the materials with lower Poison’s ratios, the values of  𝑝𝑒𝑝
∗ /𝑝∗  under the full 

stick condition are greater than the responding values under the slip condition; For the materials 

with higher Poison’s ratios, the values of  𝑝𝑒𝑝
∗ /𝑝∗ under the full stick condition are less than the 

responding values under the slip condition. Fig. 3.12. shows the complete contact pressure versus 
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the dimensionless contact pressure with different yield strengths. As shown in Fig. 3.12, as yield 

strength increases, the dimensionless complete contact pressure increases.  

Next, the effect of the geometric ratio, Δ/λ , on the complete contact pressure is studied. 

The dimensionless complete contact pressure under different contact conditions with different 

geometric ratios is plotted (see Fig. 3.13). As shown in Fig. 3.13, As the geometric ratio increases, 

the dimensionless complete contact pressure increases. Again, there is no significant difference of 

the complete contact pressure between the slip, full stick and partial slip conditions, the results 

also agree with the existing the model under slip contact condition in [58]. 

Overall, from all the cases, one thing is observed, the dimensionless complete contact 

pressures under the full stick and perfect slip conditions show the same trend, and there is not too 

much difference between these two contact conditions (full stick and perfect slip). Hence, the 

equations for the perfect slip condition can be used for the full stick condition as well. 

 

3.4.  Conclusion 

In this chapter, the elastic-plastic contact between a deformable sinusoidal surface and a 

rigid flat under the full stick condition was studied. First, the critical interference and critical force 

under the full stick condition were derived. Then, a comparison between the FEM results for full 

stick, and the model under perfect slip in [58] was performed. The effects of material properties, 

geometrical parameter and contact conditions on complete contact pressure are analyzed. We also 

found the differences for complete contact pressure among these contact conditions (full stick, 

perfect slip) were independent of the geometric parameter and material properties except for the 

Poisson’s ratio, 𝜈. For the sinusoidal contact, it is found that found the ratio of complete contact 

pressure in full stick condition over that in perfect slip is independent of geometry and it is only 
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slightly affected by the material properties. especially the Poisson’s ratio, the average difference 

is less than 4%. Hence, the contact pressure that causes complete contact can be considered to be 

approximately equal to 𝑝𝑒𝑝
∗  for the slip case. That is, the Eq. (3.14) also can be used in the full stick 

condition. 
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CHAPTER 4. ELASTIC-PLASTIC SINUSOIDAL CONTACT UNDER NORMAL 

LOADING IN FULL STICK 

 

 

4.1. Introduction 

The contact of spheres under combined normal and tangential loading has been studied 

quite extensively, from the classical works of Mindlin in 1949 [10] and Mindlin and Deresiewicz 

in 1953 [63]. Mindlin used a predefined friction coefficient to consider slip and stick between two 

surfaces. He set an upper limit on the local shear stress, which is equal to the local normal pressure 

multiplied by the coefficient of friction. Whenever the computed shear stress exceeds the upper 

limit, local slip takes place. This is known as the local Coulomb friction law. The sliding of the 

entire surface occurs when the shear stresses over the entire contact area reach the upper limit, 

satisfying the Coulomb friction law. Mindlin also obtained the surface shear stress distribution in 

the full stick and partial slip conditions. Keer et al. [64]  followed Mindlin’s approach, finding the 

criterion for complete sliding of elastic bodies in contact. Hamilton [65] found the yield inception 

of spherical sliding contact by using Hertz contact pressure and the Mindlin shear stress 

distribution. Hills et al. [66] modified the stress distribution by considering the effect of the shear 

stress on surface displacements for two dissimilar elastic cylinders.  

Bowden and Tabor [67] presented a different approach, which considered the start of 

surface slip in relation to the mechanical properties rather than a local friction law as in [10]. They 

used a failure mechanism related to the material properties to determine the sliding inception.  They 

suggested that the tangential load at sliding inception was equal to the real contact area times the 

material shear strength. Courtney-Pratt and Eisner [68] measured the contact area of a metallic 
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sphere pressed normally and tangentially again a smooth flat. They observed an increase of the 

contact area when the tangential load was increased. Tabor [69] defined this phenomenon as 

“junction growth”, explaining that a contact area that has already yielded plastically under a given 

preload must grow when it is subjected to an additional tangential loading. Junction growth occurs 

because the tangential loading can reduce the mean contact pressure in order to accommodate the 

additional shear stresses.  

Chang et al. [7] treats sliding inception as a failure mechanism based on the failure of small 

junctions between contact surfaces. They gave an explicit formula to calculate the maximum 

tangential loads that a single spherical asperity can support for a given preload against a rigid flat 

before sliding inception. Then the total tangential load for the rough surface contact was obtained 

by using a statistical method. Improving Change et al. [7], Kogut and Etsion [8] presented a semi-

analytical approximate solution for the sliding inception for both elastic and plastic cases. They 

treated the sliding inception as a failure mechanism, and failure occurs either on the contact area 

or below it, depending on the status of normal loading. 

Brizmer et al. [9] presented a new approach using FEM to determine the sliding inception 

for the full stick condition, which is known as the stiffness criterion. They considered that the 

sphere starts sliding when the instantaneous tangential stiffness is equal to a small predefined value. 

By using this criterion. Brizmer et al. [9] investigated several parameters such as junction stiffness, 

static friction force and static friction coefficient. The evolution of the contact area was also 

investigated in [70] and an empirical relation between the contact area and the normal preload was 

found by fitting to the FEM results. The contact of a deformable sphere under combined normal 

and tangential loading by a rigid flat in the pre-sliding regime was also investigated by 
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Zolotarevskiy et al. [71], and they developed a model for the evolution of static friction force and 

stiffness in the pre-sliding regime. 

Some researchers also considered the partial slip condition, which means there is some 

local slip even though gross slip does not happen. Eriten et al. [11] developed a physics based 

model considering this. In their FE based model, the local Coulomb’s law was used to govern the 

interfacial strength. They set the product of the friction coefficient and normal stress to a critical 

friction shear stress. Following this approach, Patil and Eriten  [72] showed that the static friction 

coefficient strongly depends on the interfacial strength, a material property. Mulvihill et al. [73] 

set the interfacial adhesional shear strength equal to a few different values related to the bulk yield 

strength. Based on the von Mises theory, Wu et al. [12] fixed the strength equal to a constant value, 

and proposed a frictional model that transitioned from the KE model [8] to the BKE  model [9] for 

the partial slip condition.  

All of the previous works assumed a spherical asperity. However, real asperities on 

surfaces are not shaped like spheres, especially at their base. At lower loads where the asperity 

base does not influence the result, the sphere works well. However, at higher loads, the effect of 

the complete asperity geometry and interaction with adjacent asperities becomes important. Even 

though statistical models use the assumption that only the peaks of the asperities are in contact, 

the taller asperities can still be heavily loaded and deformed (practically crushed in some cases) 

[74].  

Recently, Greenwood [45] at the 2015 Leeds-Lyon tribology Symposium suggested that 

more realistic asperity models similar to wavy surfaces should be considered. The current work 

uses a sinusoidal or wavy geometry. In addition, for spectral based and multiscale rough surface 

contact models it is logical to use sinusoidal shapes for the asperities because the surface is often 
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treated as a series of superposed harmonic waves (i.e. Fourier Series or for fractals, the Mandelbrot 

Function). For either statistical or multiscale models, when the sinusoidal asperities are under 

heavy loads they behave much differently than spheres, due to the difference in geometry and also 

their periodic nature. Theoretically, a portion of the asperities will always be under higher 

pressures, no matter the load applied. This is because the pressure is magnified with decreasing 

scales, as predicted by the multi-scale models [49, 75, 76]. The periodicity may also capture the 

effect of adjacent asperities better than spheres. With the development of more multi-scale models 

between rough surfaces [20, 49], which could be applied to electrical [77] and thermal contact [60, 

61], the contact problem of an elastic-plastic deformable sinusoidal surface and rigid flat was 

investigated by several researchers [48, 58, 59, 78] . Gao et al. [78] found a relationship between 

contact pressure, contact size, effective indentation depth and residual stress for the 2-D sinusoidal 

contact. Krithvasion and Jackson [58] provided an approximate solution for the elastic-plastic 

regimes and an empirical expression for predicting the contact area as a function of contact 

pressure. Jackson et al. [48] provided an analytical expression for critical amplitude that causes 

yield and the average pressure that causes complete contact. Rostami and Jackson [59] provided 

close form equations that predict surface separation and stiffness for both elastic and elastic-plastic 

cases. 

As seen from the literature review above, most existing models considering the sinusoidal 

geometry are only under normal loading. Several researchers have investigated the case of 

deformable sinusoidal surface in contact with a flat. However, very little work was done on the 

sinusoidal contact under combined normal and tangential loading. The main goal of this Chapter 

is to use the FEM to investigate the contact performance parameters based on junction growth and 

the static friction coefficient for a deformable sinusoidal surface contacting a rigid flat. These 
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relationships then might be used in spectral and fast Fourier transform (FFT) based methods for 

modeling the contact and friction between rough surfaces (along with other rough surface contact 

models).  

4.2. Modeling Approach 

4.2.1. Theoretical Model  

The current analysis uses the same geometry used by Johnson et al [46], Krithivasan and 

Jackson [58] and Jackson et al.[48] , as shown in Fig. 4.1. The equation defining this sinusoidal 

surface was already given by Eq. (3.2). 

 

Fig. 4.1. Topographical depiction of the three-dimensional sinusoidal surface geometry. 
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Fig. 4.2.  The contact of a deformable sinusoidal surface and a rigid flat under combined normal 

and tangential loading. 

 

The cross-section of a deformable sinusoidal asperity in contact with a rigid flat under 

combined normal and tangential loading is schematically shown in Fig. 4.2. The tangential load, 

𝐹𝑡, is applied gradually, while the normal preload, 𝐹𝑛, remains constant. The thick and thin dashed 

lines show the contours of the sinusoidal asperity before and after applying the normal preload, 

respectively, while the solid line shows the final contour of sinusoidal asperity after the application 

of the tangential load. The normal load produces an initial interference, 𝜔0, while the additional 

tangential load combined with the normal preload produces the final interference, 𝜔𝑠.  

 

4.2.1.1    Normal Loading 

Complete contact is defined as when there are no gaps remaining between the two surfaces. 

The average contact pressure that causes complete contact for the elastic case is given by Johnson 

et al. [48], the equation was introduced in Eq. (2.38), and they provided two asymptotic solutions 

to the real contact area as well. They are given in the Eqs. (3.2) and (3.3). Based on the 
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experimental and numerical data, Jackson and Streator [19] provided an empirical fit in Eqs. (3.4) 

and (3.5). 

For the elastic plastic case, Jackson et al. [48] defined a critical amplitude of a sinusoidal 

surface. When the amplitude is less than this value, the sinusoidal surface deforms elastically. 

When the amplitude is greater than this value, it deforms plastically. The critical amplitude is given 

in [48]  and the equation was given in Eq. (3.13). The resulting fit equation for contact pressure to 

cause complete contact was given in Eq. (3.12). An empirical expression for the contact area in 

elastic-plastic sinusoidal contact is obtained by fitting the FEM results by Krithivasan and Jackson 

[58], and is given in Eq. (3.15). These previous results are all for perfect slip and without tangential 

load. 

Three main contact conditions are generally considered: the perfect slip condition, the full 

stick condition, and the partial slip condition. The full stick condition implies that the contact 

points of the surface and the flat are prevented from further relative displacement once touching. 

While the perfect slip condition assumes no tangential stresses in the contact area. The effect of 

contact conditions  and material properties on the termination of elasticity in spherical contact was 

investigated by Brizmer et al. [56]. They found that the ratios of critical interference and load in 

the full stick condition over that in the perfect slip condition are independent of material properties, 

except for Poisson’s ratio. Eriten et al. [79] investigated he influence of friction on the onset of 

plastic yielding in these three contact conditions for spherical contact. 

As we discussed in Chapter 3, for the sinusoidal contact, we found the ratio of complete 

contact pressure in the full stick condition over that in perfect slip is independent of geometry and 

it is only slightly affected by the material properties, especially the Poisson’s ratio. Hence, the 

contact pressure that causes complete contact can be considered to be equal to  𝑝𝑒𝑝
∗  [80]. 
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4.2.2.1 Combined Normal and Tangential Loading 

The behavior of a contact between a deformable elastic-plastic sphere and a rigid flat under 

normal and tangential loading was investigated by several researchers [8, 9, 70, 71] . The sliding 

inception is treated as a failure mechanism based on plastic yield in [8], and sliding might actually 

initiate in the yielded material below the surface in some cases. The static friction coefficient 

equation found by fitting to FEM results in [8] is given as: 

𝜇𝑠 =

{
 
 

 
 0.516 (

𝐹𝑛
𝐹𝑐
)
−0.345

, 0 ≤
𝜔

𝜔𝑐
≤ 1

−0.007 (
𝐹𝑛
𝐹𝑐
)
2.104

+ 0.083 (
𝐹𝑛
𝐹𝑐
)
1.405

− 0.380 (
𝐹𝑛
𝐹𝑐
)
0.701

+ 0.822,  1 ≤
𝜔

𝜔𝑐
≤ 6.2

 

(4.1) 

 Considering the full stick contact condition, the contact stiffness criterion was used to 

determine the sliding inception in [9, 70, 71] such that   

(𝐾𝑇)𝑖
(𝐾𝑇)1

≤ 𝛼 
(4.2) 

where (𝐾𝑇)𝑖 is the corresponding instantaneous tangential stiffness of the i𝑡ℎ tangential loading 

step, and the (𝐾𝑇)1 is the initial tangential stiffness of the joint corresponding to the first tangential 

loading step. And α is a predefined number that was chosen to determine the sliding inception by 

the criterion, i.e. the spherical asperity initiated sliding when the tangential stiffness drops by a 

factor α, which is typically 0.1. The corresponding tangential force at the moment of initial sliding 

is the maximum static friction force, (𝐹𝑡)𝑚𝑎𝑥.  

From [9], the empirical equation of the static friction coefficient is given as a function of 𝐹𝑛/𝐹𝑐 

or 

𝜇𝑠 = 0.27𝑐𝑜𝑡ℎ (0.27 (
𝐹𝑛
𝐹𝑐
)
0.35

) 
(4.3) 

And as a function of  
𝜔

𝜔𝑐
 given by 
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𝜇𝑠 = 0.26𝑐𝑜𝑡ℎ (0.27 (
𝜔

𝜔𝑐
)
0.46

) 

-

(4.4) 

Another method for determining slip between surfaces is the maximum shear stress 

criterion. There is some local slip even though the gross slip does not happen (i.e. partial slip). For 

partial slip, Patil and Eriten [72] used Coulomb friction to determine the contact interfacial strength, 

and proposed the phenomenological equation 

𝜇𝑠 = min (𝜇𝑙𝑜𝑐𝑎𝑙, max (0.167, α (
𝐹𝑛
𝐹𝑐
)
𝜆

) 
(4.5) 

where α = 0.0931𝜇𝑙𝑜𝑐𝑎𝑙
0.7153, and λ = −0.223𝜇𝑙𝑜𝑐𝑎𝑙 + (−0.00002

𝐸

𝑆𝑦
+ 0.0261), 𝜇𝑙𝑜𝑐𝑎𝑙 is 

the assumed local static friction coefficient. 

Another model was proposed by Wu et al. [12], in which the critical friction shear 

stress, 𝜏𝑐, was set by the shear strength of the weaker material. i.e. once the frictional 

shear stress in the contact area reaches the shear strength, the local sliding occurs at this 

element. Once all the elements in the contact slides, the whole surface start sliding. 

Considering the partial slip, the static friction coefficient is given by: 

𝜇𝑠 = 0.3𝑐𝑜𝑡ℎ (0.57 (
𝜔

𝜔𝑐
)
0.41

) 
(4.6) 

Note that Eqs. (4.1) - (4.6) are for spherical contact, but these equations can still be used for 

formulating empirical equations for the sinusoidal contact. Eq. (4.1) and Eq. (4.3) are also used 

to compare with the results in the current work. Once the static friction coefficient is given, the 

maximum tangential load can be easily obtained by: 

(𝐹𝑡)𝑚𝑎𝑥 = 𝜇𝑠F𝑛 (4.7) 
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Note that the static friction coefficient predicted in Eq. (4.1) and Eqs. (4.3) - (4.6) and the 

static friction predicted by Eq. (4.7) are not the static friction coefficient or static friction measured 

between real surfaces but theoretical values for single point contact. 

Brizmer et al. [70] developed a model for junction growth of a spherical contact under the 

full stick condition  and gave an empirical expression that approximates the dimensionless contact 

area at sliding inception 

𝐴𝑠
𝐴0
= 0.5 (

𝐹𝑛
𝐹𝑐
)
0.166

coth [0.3 (
𝐹𝑛
𝐹𝑐
)
0.318

] 
(4.8) 

 

4.2.2. Finite Element Model 

 

Fig. 4.3. The finite element model and boundary conditions. 
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In the current work, a three-dimensional model was developed and the commercial FEM 

software ANSYSTM 17.0 was used to further analyze the combined normal and tangential loading 

of an elastic-plastic sinusoidal contact problem. Due to the symmetry about the xz plane, it is 

sufficient to consider only one half of the sinusoidal volume, (see Fig 4.3). The three-dimensional 

mesh consisted of more than 121,000 twenty-node brick elements (Solid 186). The sweep mesh 

option is selected. Conta 174 and Targe 170 elements formed the contact pair to model interaction 

between the surfaces.  In order to make the simulation more efficient, the contacting surface of the 

rigid flat was modeled by a single element (Targe 170) with the size that can cover the largest 

contact area. The contact surface comprised of 174 elements arranged in a uniform mesh of 

60×120 elements. The rigid target surface was associated with a "pilot node" which is an element 

with one node, whose motion governs the motion of the entire target surface. Forces and 

displacements for the entire target surface can be prescribed on just the pilot node. Note that this 

is still double the size needed for normal contact because the problem is no longer symmetrical in 

the sliding direction. 

For the volume below the sinusoidal surface, the nodes on the bottom surface were 

constrained in all directions. All the nodes with the same y, z location on the outer yz plane were 

coupled to enforce periodicity, and the nodes on the out xz plane were constrained to the zero 

displacement in the y direction to apply the symmetric boundary condition (See Fig. 4.3).  

The states of contact elements on the sinusoidal surface is used to predict the real contact 

area. An uniform mesh on the surface is used, and therefore the contact area is just the ratio of 

elements in contact to the total number of the elements. By checking the contact status of each 

element during post-processing. The sticking contact area ratio is the sticking contact area 

normalized by apparent contact area, and it is given by the number of sticking elements over the 
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total number of elements in contact. Similarly, the sliding contact area ratio is defined as well. The 

total contact area ratio is equal to the sum of the contact area ratios of sticking and sliding.  In other 

words, the real contact area normalized by the apparent area of contact was given by the ratio of 

the number of elements in contact to the total number of elements over the surface. 

 

Verify the Three-dimensional FE Model 

 

Fig. 4.4. Comparison of the elastic FEM contact area results with JGH for meshing in Fig. 4.3 

data and JS equation. 
 

In order to verify the accuracy of the three-dimensional FE model. The normal loading case 

is compared to existing data in [46]. As shown in Fig. 4.4, the FEM data differs from the empirical 

equation slightly, but is in overall good agreement. The FEM results and the equations have the 

same trend. An average error of only 5% was found between the FEM data and the empirical Eqs. 

(3.4) and (3.5), but it appears that the FEM results are closer to the JGH data [46]. Note that this 

is the case for the tangential load mesh in Fig. 4.3. 
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In order to verify the methodology of loading the surfaces, the complete contact case (𝐴𝑟 =

𝐴𝑛) was used. A critical interfacial shear strength, 𝜏𝑐, was defined as 𝑆𝑦/√3, the static friction is 

calculated by: (𝐹𝑡)𝑚𝑎𝑥 = 𝜏𝑐𝐴0. As expected, the maximum tangential force extracted from the 

FEM results is exactly equal to the theoretical value when in complete contact. 

A constant normal load, 𝐹𝑛, was applied as a single force at the pilot node, and then a step 

wide increase of the tangential displacement, 𝑢𝑥, of the flat was added to simulate the gradually 

increasing tangential load. The instantaneous tangential force, 𝐹𝑡 , was obtained from the x-

component of the reaction at the pilot node. The sliding inception occurs when all the contact 

elements are sliding. When this occurs, the static friction coefficient is 𝜇𝑠 = (𝐹𝑡)𝑚𝑎𝑥/𝐹𝑛. 

 

4.3. Results and Discussion 

Before tangential loading, the sinusoidal surface and the rigid flat are assumed to be in the 

full stick condition. Once the tangential loading is applied, the maximum frictional shear stress 

criterion is used for governing the local sliding initiation. The local sliding occurs when the 

frictional shear stress at one element on the contact area reaches the critical interfacial shear 

strength value, 𝜏𝑐. The sliding of the asperity occurs when all the elements on the contact area 

slide. At that moment, the average shear stress over the real area of contact is equal to the critical 

shear strength, i.e.  𝜏𝑎𝑣𝑒 = 𝜏𝑐. 

The elastic plastic sinusoidal behavior was investigated over a wide range of material 

properties, geometry properties, dimensionless average contact pressures and dimensionless 

critical shear stresses. In order to formulate a fit for the FEM data, a bench mark case was set to 

analyze the problem between the deformable sinusoidal surface and a rigid flat. The material 

properties used for the benchmark case are: 𝐸 = 200 GPa, 𝑆𝑦 = 1 GPa, and 𝜈 = 0.3. The material 
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of the sinusoidal surface was assumed as elastic-plastic bilinear isotropic material with a tangent 

modulus 𝐸𝑡 = 2% 𝐸. The dimensionless geometry ratio Δ/𝜆 was set to 0.02. The dimensionless 

average contact pressure 𝑝̅/𝑝𝑒𝑝
∗  was set as 0.05. Based on the distortion energy (von Mises) theory, 

the critical shear strength, 𝜏𝑐, should satisfy the expression: 𝜏𝑐 ≤ 𝑆𝑦/√3 ≈ 0.577𝑆𝑦. Therefore, 

the dimensionless critical shear strength 𝜏𝑐/𝑆𝑦was set as 0.577 for the benchmark case. When we 

are analyzing one specific parameter, all the other parameters are fixed, and only that one is varied 

in a certain range. The overall parameter ranges are listed in Table 4.1.  

Table 4.1. Overview of the parameter ranges used for the FE simulation for under normal and 

tangential loading case 

 

Parameter Name Symbol Range 

Elastic Modulus E 150 − 450 GPa 

Poisson’s Ratio ν 0.10 − 0.45 

Yield Strength 𝑆𝑦 0.05 − 2.25 GPa 

Geometric Ratio Δ 𝜆⁄  0.001 − 0.1 

Dimensionless Contact Pressure 𝑝̅/𝑝𝑒𝑝
∗  0.001 − 0.1 

Dimensionless Critical Interfacial Shear Strength 𝜏𝑐/𝑆𝑦 0.1 − 0.577 

 

 

4.3.1. Junction Growth (Contact Area Increase Caused by Tangential Loading)  

The contact status can be subdivided into three types: sticking state, sliding state and non-

contact in ANSYS. When two separate elements first touch each other, they are in the sticking 

state, and they can carry some shear stress. While when the tangential shear stress exceeds the 
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critical shear strength, the two elements slide relative to each other, and they are in sliding state. 

Both sticking and sliding belong to contact. 

   

    

Fig. 4.5. Evolution of the contact area of the sinusoidal contact:  (a) contact area under a small 

normal load only, (b) contact area under larger normal preload, (c) contact area under combined 

normal and a small tangential load and (d) contact area at sliding inception. 

 

A typical contact area growth as predicted by FEM results for the benchmark case are 

presented in Fig. 4.5. The sliding direction is from left to right. Fig. 4.5 (a) presents the sinusoidal 

surface conduct when it is under a small normal load, and Fig. 4.5 (b) presents the sinusoidal 

surface when it is under the normal preload that is a heavier normal load than in Fig. 4.5 (a). From 

Fig. 4.5 (a) and Fig. 4.5 (b), the larger normal load results in a larger contact area. Fig. 4.5 (c) 

presents the sinusoidal surface is under a small normal tangential load, and Fig. 4.5 (d) presents 

the sinusoidal surface is at sliding inception, which is under the maximum tangetial load. Fig. 4.5 

(c) shows that the loacal sliding occurs on the sinusoidal surface. The contact area of sinusoidal 

surface under normal preload only and at sliding inception are shown in Fig. 4.5 (b) and Fig. 4.5 

(d). It should be clear that the contact area at sliding inception is greater than the contact area under 

(a) (b) 

(c) (d) 
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normal load alone. Under the same normal preload, the tangential load can cause contact area 

growth. This is because the new points of the surface, which original outside of the initial contact 

area coming into the new contact area during the tangential loading. This penomennon was studied 

theoritically and experimentally in [14]. 

A range of 0.0001 ≤ 𝑝̅/𝑝𝑒𝑝
∗ ≤ 1  is considered by the model while keeping all other 

properties the same as the benchmark case (see Fig. 4.6). Therefore, only the dimensionless contact 

pressure 𝑝̅/𝑝𝑒𝑝
∗  is varied parametrically. 

 

Fig. 4.6.  The portion of surface that is in slip or stick 

 

An example of the typical growth of the contact area is present in Fig. 4.6. Fig. 4.6 presents 

the numerical results for the evolving of both the sticking and sliding states of the contact area. 

The lines with no mark are the contact area ratio of the sticking contact area, while the lines with 

different marks are the contact area ratio of the sliding contact area. When 𝑢𝑥/𝜔0 = 0, the sticking 

contact area ratio is the sticking contact area before applying the tangential load. Then the sliding 

contact area ratio is very low but not zero. For different average contact pressures, the 
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dimensionless contact area ratio for sliding increases with increasing normal tangential 

displacement. As the dimensionless tangential displacement further increases, the sliding contact 

area ratio reaches a constant value. At that moment, all the elements are sliding. The dimensionless 

contact area for sticking shows a different decreasing trend. As the dimensionless tangential 

displacement increases, the sliding contact area ratio increases slightly and then decreases until it 

reaches to a constant value at last. The increase is caused by junction growth. As seen from Fig. 

4.6, at the same dimensionless tangential displacement, both the sticking and sliding contact area 

ratios of the higher contact pressures are higher than the values at the lower pressures. Another 

point that should be noted, is that the total contact area ratio at the sliding inception is much higher 

than the one before applying tangential loading. For example: when the 𝑝̅/𝑝𝑒𝑝
∗ = 0.7 (but the 

tangential loading is 𝑢𝑥/𝜔0  = 0), the total contact area ratio is approximate 0.858 (obtained by 

adding both contact areas marked in Fig. 4.6, or 0.8553+0.002685), while the contact area ratio at 

the sliding inception (𝑢𝑥/𝜔0  = 0.48)  is approximately 0.9932 (almost complete contact). The 

increase is around 16%. This implies that an additional tangential load can cause the junction 

growth. That probably is because of the formation of the additional contact area by the normal 

contact pressure can support the additional loading.  

 

4.3.2. Effect of Contact Pressure on Effective Static Friction Coefficient 

The cases with changing dimensionless contact pressure cover the deformation range from 

elastic to deeply elastic-plastic.  Fig. 4.7 presents typical results for the instantaneous 

dimensionless tangential load as a function of the normal dimensionless tangential displacement, 

as can be seen from Fig. 4.7. As the tangential loading progresses the slopes of the curves decrease 

and gradually diminish. The tangential stiffness (the slope) decreases as the dimensionless 
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tangential load increases. When the tangential load no longer increases, the slope and the stiffness 

become nil, and gross slip occurs.  

 

Fig. 4.7.  The dimensionless tangential load 𝐹𝑡/𝐹𝑛, versus the dimensionless tangential 

displacement 𝑢𝑥/𝜔0, for different dimensionless contact pressures 𝑝̅/𝑝𝑒𝑝
∗ . 

 

Fig. 4.8. Static friction coefficient 𝜇𝑠versus the dimensionless contact pressure. 
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Adding a tangential load to a given normal preload leads to an increase in the contact area, 

and as result, it can affect the coefficient of friction. The tangential load (𝐹𝑡)𝑚𝑎𝑥 at the sliding 

inception is the static friction force for a single asperity. It is extracted from the finite element data 

for each case in Fig. 4.8. The static friction coefficient is obtained by (𝐹𝑡)𝑚𝑎𝑥/𝐹𝑛 , however, again 

note that this is only for a single asperity. To predict the friction coefficient for an actual rough 

surface contact, the asperity model needs to be included in a rough surface contact model, which 

will be done in Chapter 8. It can be seen from Fig. 4.8, that the static friction coefficient is 

dependent on the average contact pressure. Hence the static friction coefficient is plotted versus 

the dimensionless contact pressure. 

As seen from Fig. 4.8, at the low dimensionless contact pressure (0.0001 ≤ 𝑝̅/𝑝𝑒𝑝
∗ ≤ 0.05), 

the static friction coefficient decreases sharply with increasing contact pressure. At the medium 

contact pressure (0.05 ≤ 𝑝̅/𝑝𝑒𝑝
∗ ≤ 0.3), the static friction coefficient nearly approaches a constant 

value (around 0.23). As the contact pressure further increases, the static friction coefficient 

continues to reduce, and the relationship is nearly linear. One point should be noted; at the very 

low dimensionless contact pressures, such as 𝑝̅/𝑝𝑒𝑝
∗ = 0.0001   or 𝑝̅/𝑝𝑒𝑝

∗ = 0.0002  , the 

coefficient is higher than one. This is because the deformation is in the elastic range, and the 

surface can support more shear stress. An interesting finding observed in Fig. 4.8 is that the static 

friction coefficient still follows a nearly linear relationship even as the compete contact is reached. 

 

4.3.3. Effects of Material Properties on Effective Static Friction Coefficient 
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Fig. 4.9. The dimensionless tangential load 𝐹𝑡/𝐹𝑛, versus the dimensionless tangential 

displacement 𝑢𝑥/𝜔0, for different elastic moduli E.  

 

Fig. 4.10. Static friction coefficient versus elastic modulus. 

 



 78 

A parametric analysis of the material properties is also considered. First, the elastic 

modulus, E, is varied from 100 GPa to 400 GPa, while the Poisson’s ratio (v = 0.3), yield strength 

(𝑆𝑦 = 1 GPa), dimensionless contact pressure (𝑝̅/𝑝𝑒𝑝
∗ = 0.05), the critical interfacial strength ratio 

(𝜏𝑐/𝑆𝑦 = 0.577) are all held constant. As shown in the Fig. 4.9, as the elastic modulus increases, 

the value of the curve decreases. At higher values of E, the curves seem to converge. The static 

friction is then plotted versus elastic modulus, as shown in Fig. 4.10. The static friction coefficient 

decreases with increasing elastic modulus. This is probably because as the elastic modulus 

decreases the amount of deformation increases and the contact becomes smaller. Under the same 

contact pressure, the contact area with the larger elastic modulus has a smaller value, and therefore 

the corresponding static friction coefficient is smaller. 

 

 

Fig. 4.11. The dimensionless tangential load 𝐹𝑡/𝐹𝑛, versus the dimensionless tangential 

displacement 𝑢𝑥/𝜔0, for different Poisson’s ratio ν. 
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Fig. 4.12. Static friction coefficient versus Poisson’s ratio. 

 

Next, the Poisson’s ratio, 𝜈, is now varied from 0.1 to 0.49, while the elastic modulus (𝐸 =

200 GPa ), yield strength (𝑆𝑦 = 1 GPa ), dimensionless contact pressure ( 𝑝̅/𝑝𝑒𝑝
∗ = 0.05 ), the 

critical interfacial strength ratio (𝜏𝑐/𝑆𝑦 = 0.577) are held constant. As shown in the Fig. 4.11 that 

as the Poisson’s ratio increases, the curve decreases. It can be seen from Fig. 4.11, at each loading 

step, the dimensionless tangential load with a higher Poisson’s ratio has a higher value. The static 

friction is then plotted versus Poisson’s ratio, as can be seen in Fig. 4.12. The static friction 

coefficient decreases nearly linearly with increasing Poisson’s ratio. When 𝜈 is small, it causes 

less expansion in the x and y direction, the surface separation is small, and the contact area 

therefore becomes smaller than when 𝜈 is large. Thus, the static friction coefficient increases with 

𝜈 increasing.  
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Fig. 4.13. The dimensionless tangential load 𝐹𝑡/F𝑛, versus the dimensionless tangential 

displacement 𝑢𝑥/𝜔0, for different yield strength 𝑆𝑦. 

 

Fig. 4.14. Static friction coefficient versus yield strength. 

 



 81 

Finally, the yield strength, 𝑆𝑦, is now varied from 0.1 GPa to 2.5 GPa, while the elastic 

modulus, (𝐸 = 200 GPa), the Poisson’s ratio (ν = 0.3), yield strength (𝑆𝑦 = 1 GPa), geometric 

parameter (Δ/λ = 0.02), dimensionless contact pressure ( 𝑝̅/𝑝𝑒𝑝
∗ = 0.05), and the critical shear 

stress ratio (𝜏𝑐/𝑆𝑦 = 0.577) are held constant. The results are shown in the Fig. 4.12. As the yield 

strength increases, the magnitude of the curve also increases. This is because the increase in yield 

strength causes the asperity to resist more tangential load before slipping. The static friction is then 

plotted versus yield strength. It can be seen from Fig. 4.13, that the static friction coefficient 

increases with increasing yield strength. 

 

4.3.4. Effect of Geometric Ratio  𝚫/𝛌 on Effective Static Friction Coefficient 

 

Fig. 4.15. The dimensionless tangential load 𝐹𝑡/𝐹𝑛, versus the dimensionless tangential 

displacement 𝑢𝑥/𝜔0, for different ∆/𝜆. 
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Fig. 4.16. Static friction coefficient versus geometric ratio. 

 

Next, a range of  𝛥/𝜆 were considered. The geometry property 𝛥/𝜆 is now varied from 

0.001 to 0.05, as shown in Fig. 4.14. All other properties are held to the benchmark case value. As 

shown in the Fig. 4.15, as  𝛥/𝜆 increases, the curve also decreases. This is because the contact area 

decreases by having a larger value of 𝛥/𝜆 (i.e. taller asperities). 

The effect of  Δ/𝜆 on the static friction coefficient is shown by the plot in Fig. 4.15. It can 

be seen that the static friction coefficient decreases when the ∆/𝜆 increases. Another point should 

be noted, that lower values of the ratio ∆/λ can cause vary large static friction coefficients. For 

example 𝜇𝑠 ≈ 1.6 when 𝛥/𝜆 = 0.001  and 𝑝̅/𝑝𝑒𝑝
∗ = 0.05 , this is because the smooth surface 

results in a larger contact area and needs a large force to overcome the shear strength of the material. 

This also correlates to the observation that adhesive friction is larger for smoother surfaces [81].  

The shear strength plays an important role in the contact problems. 

 



 83 

4.3.5. Effect of Interfacial Shear Strength on Effective Static Friction Coefficient 

Finally, a range of interfacial shear strength ratios were considered. The sliding is also 

governed by the critical interfacial shear strength 𝜏𝑐. When the shear stress exceeds the critical 

interfacial shear strength, local slipping occurs.  In [12], the critical interfacial shear strength was 

set as  𝑆𝑦/√3. However, the interfacial shear strength is not always equals to  𝑆𝑦/√3 , because of 

contaminants, lubrication and changes in temperature. Hence, a wide range of the critical shear 

stress ratios,  𝜏𝑐/𝑆𝑦, are considered in the model (see Fig. 4.17). The interfacial shear strength ratio 

𝜏𝑐/𝑆𝑦 was varied from 0.1 to 0.577.  The elastic modulus, (E= 200 GPa), Poisson’s ratio, (ν =

0.3 ), yield strength (𝑆𝑦 = 1  GPa), geometry ratio (𝛥/𝜆 = 0.02 ), and dimensionless contact 

pressure (𝑝̅/𝑝𝑒𝑝
∗ = 0.05) are held constant. 

 

Fig. 4.17. The dimensionless tangential load 𝐹𝑡/𝐹𝑛, versus the dimensionless tangential 

displacement 𝑢𝑥/𝜔0, for different 𝜏𝑐/𝑆𝑦. 
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As can be seen from Fig. 4.17, as the interfacial shear strength ratio increases, the curve 

levels off at a higher dimensionless tangential load. The initial stiffness increases with 𝜏𝑐/𝑆𝑦 as 

well.  

 

Fig. 4.18. Static friction coefficient versus interfacial shear strength ratio. 

 

Fig. 4.18 presents the effect of critical interfacial shear strength on the static coefficient of 

friction. In this case, the dimensionless contact pressure, 𝑝̅/𝑝𝑒𝑝
∗ , is chosen as 0.05. As can be seen 

from Fig. 4.18, the static friction coefficient increases with increasing dimensionless critical 

interfacial shear strength. Not surprisingly, the relationship is nearly linear. This occurs because 

the asperity needs a larger force to overcome the local strength when the material has a large 

critical shear strength. 

 

4.3.6. Empirical Equations and Comparison 
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Since the material properties, geometry properties, dimensionless contact pressure, and 

dimensionless critical tangential stress, are each varied independently from the benchmark case,  

an equation can be fit for each trend. It is very convenient to use an additional parameter, 𝜑 , 

proposed by Gao et al. [20] to combine several of these parameters in one parameter. It can be 

expressed in the form:  

𝜑 =
𝐸′

𝑆𝑦
 
Δ

𝜆
 

=

(4.8) 

Effective Static Friction Coefficient 

The static friction coefficient as a function of the parameter, 𝜑 , dimensionless normal 

contact pressure, 𝑝̅/𝑝𝑒𝑝
∗ , and the dimensionless critical shear strength, 𝜏𝑐/𝑆𝑦, was fitted to all 

of the FEM data. And it is given by 

𝜇𝑠 = [1.848 𝑐𝑜𝑡ℎ (6.5 𝜑2/3 (
𝑝̅

𝑝𝑒𝑝∗
)

1/3

) − 0.184 𝜑
1
4 (

𝑝̅

𝑝𝑒𝑝∗
)

1
8

− 1.482] [(
𝜏𝑐
𝑆𝑦
)

2

+ 2
𝜏𝑐
𝑆𝑦
] 

(4.9) 

Again, note that Eq. (4.9) does not predict macro scale friction, but the local asperity friction, as 

is the case analyzed in this work. 
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Fig. 4.19. Comparison of static friction coefficient between the FEM results and the proposed 

model for various values of  𝜑. 

 

Fig. 4.20. Comparison of static friction coefficient between the FEM results and the proposed 

model for various values of  𝑝̅/𝑝𝑒𝑝
∗ . 
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Fig. 4.21. Comparison of static friction coefficient between the FEM results and the proposed 

model for various values of 𝜏𝑐/𝑆𝑦. 

 

A comparison between Eq. (4.9) and the FEM results of different case are shown in Figs 

4.18 - 4.20. In Fig. 4.18 we can see the model for the static friction coefficient (Eq. 4.9) agrees 

fairly well with the FEM data based on the parameter 𝜑. The average error between the new model 

given by Eq. (4.9), and the FEM results when the 𝜑 is varied independent is less than 2%. Likewise, 

the plots in Fig. 4.19 and Fig. 4.20 show that the model also compares well for the cases where the 

dimensionless contact pressure, 𝑝̅/𝑝𝑒𝑝
∗  and the dimensionless critical shear strength, 𝜏𝑐/𝑆𝑦, are 

also varied (the errors in these cases are less than 4%).  

In order to compare the proposed model to the spherical contact models in [8, 9], it is 

necessary to present the expression of Eq. (4.9) in terms of 𝐹𝑛/𝐹𝑐 instead of 𝑝̅/𝑝𝑒𝑝
∗ . The term 

𝑝̅/𝑝𝑒𝑝
∗  in Eq. (4.9) can be exprssed as 

𝑝̅

𝑝𝑒𝑝∗
=

𝑝̅ 𝐴𝑛
𝑝𝑒𝑝∗  𝐴𝑛

=
𝐹𝑛

(𝑝𝑒𝑝∗  𝐴𝑛/𝐹𝑐) 𝐹𝑐
= (

 𝐹𝑐
𝑝𝑒𝑝∗  𝐴𝑛

)
𝐹𝑛
𝐹𝑐

 
(4.10) 
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And the new equation is given by: 

𝜇𝑠 = [1.848 𝑐𝑜𝑡ℎ (6.5 𝜑
2/3 ((

𝐹𝑐
𝑝𝑒𝑝
∗  𝐴𝑛

)
𝐹𝑛
 𝐹𝑐
)

1/3

) − 0.184 𝜑
1
4 ((

𝐹𝑐
𝑝𝑒𝑝
∗  𝐴𝑛

)
𝐹𝑛
 𝐹𝑐
)

1
8

− 1.482] [(
𝜏𝑐
𝑆𝑦
)

2

+ 2
𝜏𝑐
𝑆𝑦
] 

(4.11) 

where 𝑝𝑒𝑝
∗  can be calculated from Eq. (3.12). 

 

Fig. 4.22. Comparison of static friction coefficient between the KE,  BKE model and the 

proposed model with different Δ/𝜆. 

 

Since the geometry and contact condition assumption of the proposed model are different 

from the sphere used in [8, 9], the same material properties in these papers are used now to make 

a comparison. Reference [9] by Brizmer et al. is now referred to as the BKE model, while reference 

[8] by Kogut and Etsion is refered to as the KE model.  First, typical amplitudes to wave length 

ratios (Δ 𝜆⁄ ) are considered while keeping the critical shear stress ratio (𝜏𝑐 𝑆𝑦⁄ ) constant at 0.577. 

The effective static friction coefficient as a function of the dimensionless tangential load with 

different values of  Δ 𝜆⁄  are plotted in Fig. 4.21. As seen from Fig. 4.21, the proposed model has 

the same trend as the BKE model and the difference depends on the values of Δ 𝜆⁄ . Both the 
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proposed model and the BKE model have higher values of the effective static friction coefficient 

than the KE model.  

 

Fig. 4.23. Comparison of static friction coefficient between the KE, BKE model and the 

proposed model with different 𝜏𝑐 𝑆𝑦⁄ . 

 

Next, several interfacial shear strengths ( 𝜏𝑐 𝑆𝑦⁄ ) are considered, while keeping the 

amplitude to wave length ratio (Δ 𝜆⁄ ) constant at a value of 0.02 . The effective static friction 

coefficient is plotted as a function of the dimensionless tangential load with different 𝜏𝑐 𝑆𝑦⁄  values 

in Fig. 4.22. As seen from Fig. 4.22, the proposed sinusoidal model again has the same trend as 

the BKE model. As is introduced in [56], the BKE model is independent of contact radius of the 

sphere. The sinusoidal model is always close or lower than the BKE model, and differs 

quantitatively depending on the value of 𝜏𝑐 𝑆𝑦⁄ . One observation is that when 𝜏𝑐 𝑆𝑦⁄ = 0.2, the 

value of the static friction coefficient is close to the value predicted by the KE model at low normal 

preloads. 
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Junction Growth 

By using the same method, the dimensionless contact area at sliding inception as a 

function of the parameter,  𝜑  , dimensionless normal contact pressure, 𝑝̅/𝑝𝑒𝑝
∗ , and the 

dimensionless critical shear strength, 𝜏𝑐/𝑆𝑦, was fitted to all of the FEM data. The FEM results 

are presented alongside the proposed model and are plotted in Figs. 4.24 - 4.26. The plots in 

Figs. 4.24 - 4.26 show that the contact area at sliding inception of the proposed model agree 

fairly well with FEM results (the average error in these cases is also than 6%). 

𝐴𝑠
𝐴0
= 2.6 {𝑐𝑜𝑡ℎ [15.2(

𝑝̅

𝑝𝑒𝑝∗
)

1/2

] exp(−0.017 𝜑 − 3) − 0.03 𝜑
1
4 (

𝑝̅

𝑝𝑒𝑝∗
)

4

+ 0.1364} [(
𝜏𝑐
𝑆𝑦
)

2

+ 2.13] 
(4.12) 

 

 

Fig. 4.24. Comparison of junction growth between the FEM results and the proposed model for 

various values of 𝜑. 
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Fig. 4.25. Comparison of junction growth between the FEM results and the proposed model for 

various values of  𝑝̅/𝑝𝑒𝑝
∗ . 

 

 

Fig. 4.26. Comparison of junction growth between the FEM results and the proposed model for 

various values of 𝜏𝑐/𝑆𝑦. 
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4.3.7. The Yield Inception Due to Tangential Loading 

Since these previous works of Etsion’s group showed that yielding can effectively separate 

the surface from the initial stick to sliding inception below the surface, this is investigated for 

sinusoidal contact. The plastic deformation is related to the normal preload or interference [8, 9, 

12] for spherical contact, the same situation is also found for this study. For the sinusoidal contact, 

it is also related to the wave length ratio (∆ 𝜆⁄ ). A typical metal is chosen with material properties 

𝐸 = 200 𝐺𝑃𝑎, 𝜈 = 0.3, 𝑆𝑦 = 1 𝐺𝑃, dimensionless contact pressure, 𝑝̅/𝑝𝑒𝑝
∗ = 0.05, and the critical 

interfacial shear strength ratio is chosen as 𝜏𝑐/𝑆𝑦 = 0.577. 

 

 Fig. 4.27. Equivalent Plastic strain during tangential loading (∆ 𝜆⁄ = 0.001). 

 

 

Fig. 4.28. Equivalent Plastic strain during tangential loading (∆ 𝜆⁄ = 0.005). 
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Fig. 4.27. presents the equivalent plastic strain during tangential loading. As shown in Fig. 

4.27 (a), when the sinusoidal surface is only under the normal loading, there is no yield strain 

anywhere. As tangential load is increased, the yield occurs on the surface and underneath of the 

surface on the annulus of the contact area, as shown in Fig. 4.27 (b). Further tangential loading 

results in a larger yield area. The yield area extends from the plastically deformaed volume held 

to the surface to the edge of contact. At the sliding inception, an elastic area exist in the middle of 

the contact aea. As shown in Fig. 4.27 (c), for the case of ∆ 𝜆⁄ = 0.005, the yield first occurs at 

the solid body below the surface. There is no yield on the surace, and the plastic area on the surface 

becomes larger as the tangential load increases. At the sliding inception, the plastic area is extended 

to the whole contact area, and there is no elastic area in it, see Fig. 4.28. 

Considering the sliding inception as a failure mechanism, both an FEM [8, 9] and 

experimental study [82] were carried out. They suggested that when the normal preload is less than 

the critical load, the failure occurs on the contact area. If the normal load exceeds the critical value, 

the failure occurs below the contact area. Etsion [83] revisited the Cattaneo-Mindlin concept of 

interfacial slip in tangentially loaded compliant bodies. He pointed out that sliding occurs under 

the surface for typical metallic materials, and interfacial slip can only occur in some special cases, 

such as when the interface is much weaker than any of the contacting bodies, or lubricated contact. 

Different from the full stick model, the sliding inception defined in the current work is when the 

gross relative displacement between the two surfaces in contact takes place. This may be different 

than the other definitions based on the plastic failure. However, the results show they have a 

reasonable agreement. For our cases the slipping always occurs on the surface. At high pressures, 

an elastic island of hydrostatic stress can form, but it appears to be restrained by the surrounding 

material, and slip still occurs on the surface. It might be possible that slip can occur below the 
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surface for higher amplitude to wave length ratios (∆ λ⁄ ) not considered in this work. However, we 

choose a range that seems to be typical for rough surface asperities [60, 77, 84, 85].   

4.4. Conclusion 

Finite element simulations are carried out for a rigid flat on a deformable sinusoidal surface 

under combined normal and tangential loading at the asperity scale. This work used a finite element 

model to characterize the three-dimensional sinusoidal contact. A maximum shear stress criterion 

was used to determine the sliding inception.  The static friction coefficient shows strong 

dependency on material properties, contact pressure and interfacial shear strength. The static 

friction coefficient of a single sinusoidal asperity decreases with increasing contact pressure, 

elastic modulus, Poisson’s ratio, and the ratio of amplitude over wavelength. The static friction 

coefficient of a single sinusoidal asperity, increases with increasing yield strength and critical shear 

strength. An empirical expression of the static friction coefficient was given considering these 

effects. This equation could be used in a multi-scale or statistical model to predict the static friction 

coefficient for the rough surface. The phenomenon of junction growth of the interference and 

contact area are described briefly, and an empirical expression was given. How the plastic 

deformation of the sinusoidal surface caused by tangential loads relates to friction is also studied. 

For the cases considered in this work, slip initiates on the surface and not below it.  
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CHAPTER 5. THE EFFECT OF SAMPLING RESOLUTION ON CONTACT 

BEHAVIOR 

 

 

 Finite element models of contacting bodies are sensitive to the mesh resolution. Therefore, 

the effect of the sampling resolution on the FEM predicted contact behaviors has been studied by 

a few researchers. Demiric et al.  [86] analyzed the contact behaviors for different scale levels by 

decomposing from the real measured rough surface. They also analyzed the effect of the scale of 

roughness on kinetic friction coefficient and found the fine scale of roughness has a strong 

influence on the full-film lubrication and mixed lubrication. Yastrebov et al. [87] analyzed the 

contact of rough surfaces with by decreasing the sampling points from the measured real surface 

data, and introduced a corrective function to compensate for errors in the contact area computations 

caused by mesh, i.e. this technique can be used to evaluate the true contact area using a coarse 

mesh. Both of them used an approach that filtered the measured surface data. We use an opposite 

approach by using Fourier interpolation to increase the sampling points between the measured 

points.  

Most of the researchers use the measured surface data directly, and assume that the shape 

between two measured points is a straight line. If the data points are connected using straight lines, 

the surface will become discontinuous, and the sharp peaks will cause stress concentrations. It is 

possible to develop some techniques to create a continuous, smooth surface model. Kown et al. 

investigated the effect of surface smoothing and mesh density for real surfaces [88] and single 

asperities [89]. In their work, they also investigated several contact parameters by smoothing 

surfaces and changing the mesh density. The spline interpolation method was used to smooth the 
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surfaces. Thompson [90] found that the spline smoothing surface method has a relatively small 

effect on the contact parameters of a rough surface contact, while it has a significant effect for a 

single asperity contact. In this study, we proposed another possible description for the shape 

between the measured points. We considered that the surfaces follow a harmonic structure between 

measured points based on the surface spectrum. Essentially, the surface resolution increased while 

the surface spectrum is preserved which may not be the cases for other methods.  

 

5.1. Topography Measurements 

Surface roughness is defined as the deviation of the actual surface topography. The rough 

surfaces embody a complex shape made of a series of peaks and troughs of varying heights, depths, 

and spacing. Surface roughness is greatly affected by the microscopic structure of the surface of 

each part. In this study, a standard micro-finish comparator was used for surface data (see Fig. 5.1). 

the micro-finish comparator contains machined surface finish specimens from different machining 

processes.  

 

Fig. 5.1. S-22 Micro-finish comparator surface finish scale. 
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Surface measurement is a process used for obtaining the quantitative information about the 

individual or average surface heights. The two most commonly used techniques for roughness 

measurement are the stylus technique and the optical technique. The machines that make these 

measurements are usually known as profilometers or profilers. For the stylus profilometer, a sharp 

stylus with a very light load is drawn at a constant speed over the surface to be examined. The 

quantity of height is measured by the vertical position of the diamond stylus tip at a certain lateral 

position. The optical measurement technique uses an optical measurement principle called Axial 

Chromatism, and they use a white light source where light passes through an objective lens with a 

high degree of chromatic aberration. The objective lens’ refractive index will vary with the 

wavelength of the light, and each separate wavelength of the incident white light will refocus at a 

different height. In this study, the NANOVEA ST400 white light optical profilometer (see Fig. 5.2) 

is used. The 63M surface (milled 63 𝜇 𝑖𝑛𝑐ℎ) is measured for use in this chapter. The lapped 

surfaces 2L, 8L and 32G are also measured and used in Chapter 5, 6 and 7. 

 
Fig. 5.2. NANOVEA ST400 optical profilometer. 
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5.2. Methodology  

5.2.1 Spectral Interpolation Method 

 

Fig. 5.3.  A schematic of the effect of the sampling interval on the surface profile. 

 

The choice of lateral resolution will determine whether the data is enough to represent the 

surface accurately or not. This becomes a challenge for surface characterization.  Due to the 

precision of the measuring equipment, the surface may not be sampled often enough to describe 

the real rough surface. However, real surfaces are continuous, at least they can be considered that 

at scales above the atomic scales. Therefore, they have no lower sample interval. If the sampling 

intervals are not small enough, then it could not represent the same profile as the original data. 

Since surfaces are multi-scale in nature, reducing scale might introduce more roughness. As shown 
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in Fig. 5.3, the blue line presents the real surface, the interval is 1.0 μm, and the amplitude is 2.0 

μm and the location of the lowest valley is -2.0 𝜇𝑚. If the sampling resolution or sampling interval 

is set to 2 𝜇𝑚, the amplitude becomes 2.0 𝜇𝑚, and the location of the lowest valley is -2.0 𝜇𝑚.  If 

the sampling resolution or sampling interval is set to 4 𝜇𝑚, the amplitude becomes 1.0 𝜇𝑚, and 

the location of the lowest valley is -1.0 𝜇𝑚.  If the sampling resolution or sampling interval is set 

to 8 𝜇𝑚, the amplitude remains at 1.0 𝜇𝑚, and the location of the lowest valley is -1.0 𝜇𝑚.  

Therefore, the profiles changed significantly for different sampling intervals. This was studied and 

confirmed by Majumdar and Tien [91] and Kogut and Jackson [92] who made similar observations 

and how properties change with sampling length. Most of the researchers conducting FEM just 

use the measured data, and they inadvertently assume that the relation between two neighboring 

sampling points are linearly distributed. In this study, we present another possibility of the point 

distribution between two sampling points.  

The discrete Fourier transform (DFT) can convert a signal from its original domain to the 

frequency domain. The equation is given by 

𝐹(𝑘𝑥, 𝑘𝑦) =
1

𝑁𝑥𝑁𝑦
 ∑ ∑ 𝑧(𝑛𝑥, 𝑛𝑦)𝑒

−𝑖2𝜋(
𝐾𝑥𝑛𝑥
𝐿𝑥

+
𝐾𝑥𝑛𝑥
𝐿𝑥

)

𝑁𝑦−1

𝑛𝑦=0

𝑁𝑥−1

𝑛𝑥=0

 

(5.1) 

and the inverse discrete Fourier transform (IDFT) is given by 

𝑧(𝑛𝑥, 𝑛𝑦) =  ∑ ∑ 𝐹(𝑘𝑥, 𝑘𝑦)𝑒
𝑖2𝜋(

𝐾𝑥𝑛𝑥
𝐿𝑥

+
𝐾𝑥𝑛𝑥
𝐿𝑥

)

𝑁𝑦−1

𝑛𝑦=0

𝑁𝑥−1

𝑛𝑥=0

 

(5.2) 

The Fast Fourier transform (FFT) algorithm, a fast way to perform a DFT, is widely used 

for many applications in engineering. In this study, we use the FFT command in MATLAB to 

transform the measured surface data (real numbers) into a sequence of complex numbers. After 

interpolation, the data was converted back by using an inverse Fast Fourier transform (IFFT). By 
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changing the resolution of the surface by zero padding, intermediate points may be introduced. 

This is effectively a spectral interpolation. 

 

          a. Original surface (32*32)                                b. one-interpolation (64*64) 

 

            c. two-interpolation (128*128)                      d. three-interpolation (256*256) 

Fig. 5.4. The 3-D surface plots before and after interpolation. 

 

First, a 32 × 32 points data was extracted from an entire measured data set (1024 × 1024) 

of M64 (64 𝜇 inch milled). The profile shown in Fig. 5.4. a, is the original measured surface profile, 

and the data size is 32 × 32 data points. Then, we interpolate one point between each two adjacent 

points by using the FFT interpolation method. The size then repeating becomes 64 × 64, and by 

repeating the same procedure, the data size is increased to 128 × 128 and 256 × 256, whose 
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profiles are shown in Fig. 5.4 c. and Fig. 5.4 d. The original surface resolution is 2 μm, but is 

reduced to 1 μm, 0.5 μm and 0.25 μm, respectively, after the spectral interpolations. It should be 

noted that the surfaces still all have exactly the same spectrum. The comparisons of an example 

profile between the interpolated surfaces and the original rough surface are presented in Figs. 

5.5−5.7. Fig. 5.8 shows the detail of the interpolations for one interval. As can be seen, the shape 

between two measured points is a smooth harmonic curve after three interpolations, rather than the 

traditional assumed a straight line. This reduces the artificial sharp asperity points often seem as 

measured data. 

 

Fig. 5.5. Comparison of the original surface profile (32*32) and the one interpolation surface 

profile (64*64). 
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Fig. 5.6. Comparison of the original surface profile (32*32) and the two-interpolation surface 

profile (128*128). 

 

Fig. 5.7. Comparison of the original surface profile (32*32) and the three-interpolation surface 

profile (256*256). 
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Fig. 5.8. The original surface profile for one interval and the interpolations surface profile. 

 

Fig. 5.9. The maximum and minimum value of the rough surface height versus resolution. 
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Fig. 5.9. presents the evolution of the value of the maximum height and the absolute value 

of the minimum height of the rough surface. As shown in Fig. 5.9, as the resolution increases, the 

value of maximum height of the rough surface increases until it reaches a nearly constant value. 

The absolute value of the minimum height increases, and then does not change significantly any 

more as well. When these two values reach the constant values, the surface topography will not 

change any more. For this case, the surface topography converges when the resolution equals to 

0.125. Over the resolution considered, the maximum and minimum height changes by 23.9% and 

32.8%, respectively, but the average value of surface heights does not change at all. 

One of the most important parameters that describes rough surfaces is the root mean 

square (RMS) height, which is calculated by the following equation:  

𝑅𝑞 = √
1

𝑁
∑(𝑧𝑖 − 𝑧̅)2
𝑁

𝑖=1

 

(5.3) 

where N is the total number of the measured points,  𝑧𝑖 is the measured height at the 𝑖𝑡ℎ point, 

and 𝑧̅ is the average height of all the measured points.  
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Fig. 5.10. The RMS roughness versus resolution. 

 

The resolution is getting smaller and smaller as the number of interpolations increases. 

First, we analyze the effect of the resolution on the RMS roughness of the surfaces. As can be seen 

from Fig. 5.10, the roughness decrease becomes lower after the first interpolation, this means that 

the surface becomes slightly smoother, and then keeps a nearly constant roughness no matter what 

the resolution is. The roughness changes a relative small amount (7.26%). Note that in Figs. 5.9 

and 5.10 that the values of the x-axis are reversed so that they decrease from left to right. 

 

5.2.2. Finite Element Model 

The commercial finite element ANSYSTM package is used for the analysis. Finite element 

simulations are carried out for the three-dimensional elastic-plastic contact between a rigid flat and 

rough surface with the different resolutions produced from spectral interpolation. The same 
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criterion for the initiation of slip in Chapter 4, which is characterized by loss of tangential stiffness, 

is used. 

      

a. FEM model with Original surface                    b. FEM model with three interpolation surface 

Fig. 5.11. The FEM mesh for the model with surfaces before and after interpolations. 

 

Fig. 5.11 presents the mesh in FE model before and after interpolations. Fig. 5.11 (a) shows 

the mesh with original surface, some sharp peaks in the model can be seen. Fig. 5.11 (b) shows the 

mesh with the spectrally interpolated surface. The rough surface becomes smoother with spectral 

interpolation, which can reduce stress concentrations and single node contacts. 
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Fig. 5.12. Finite element model and boundary conditions for rough surface contact. 

 

A three-dimensional FEM model and the boundary conditions are shown in Fig. 5.12. The 

contact elements use the augmented LaGrange method for enforcing contact and limiting 

penetration between the surfaces. The augmented LaGrange method is very similar to the pure 

penalty method, but it adjusts the contact force with a constant that is independent of the 

penetration stiffness. Conta 173 and Targe 170 are used to form the contact pair to model the 

interaction between the rigid flat and rough surface. In order to make the surface periodic, two 

lines are added to the last row and column respectively, so that the heights of coordinates of points 

at z(i, 1) and z(i, n+1), z(1, j) and z(n+1, j) have the same values, and they have the same 

displacements in the y direction. Hence, the contact surface is comprised with 33 × 33, 65 × 65, 

129 × 129 and 257 × 257 nodes respectively, that results in 32 × 32, 64 × 64,128 × 128 and 
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256 × 256 elements. The moving node method is adapted to model the rough surface. In order to 

avoid producing badly distorted elements and negative Jacobians, several steps used to move the 

whole surface height from flat to rough, i.e. there are a few layers to model the rough surface 

heights, and it is meshed uniformly. Hexahedron elements are used to model these layers, and 

tetrahedra elements are used to model the base. How many layers are used depends on the 

resolution. The surfaces with higher resolutions and smaller sampling lengths have more layers. 

The Solid 185 element, which is an 8-nodes brick element, is used to model the solid substrate. 

The total number of elements is varied from 11,514 to 868,806 for different interpolations. Similar 

to the FEM model of the single sinusoidal rough surface contact (see Chapter 4), the bottom surface 

is fixed in all directions. The xz surfaces are restrained in the direction perpendicular to the plane 

(y direction), and the yz surfaces are coupled to enforce the periodicity. The rigid flat can displace 

in the x and z directions. 

Computational time is an important factor that should be considered. As introduced in [90] , 

the largest number of elements in the FE models of rough surface contact using Ansys is 377,556, 

and the computation time is 105 hours in the literatures before 2010. For that case, it was only 

under normal loading. When the resolution is 0.25, the elements in the model is already 868,806, 

and we have two loading steps in the simulation, and so the computation time exceeds 20 days. If 

we interpolate one more time, the total elements would be around four billion, and the estimated 

running time would be around 3 months. Hence, the resolutions are only varied from 2.0 𝜇𝑚 to 

0.25 𝜇𝑚 in this study. Note that 20 processor high performance cluster computer is used for the 

simulations. As noted above, the surface topography may converge at the resolution 0.125 𝜇𝑚, but 

this simulation is still running. However, the results have not been obtained. Only the results of 
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these cases with the resolution 2.0 𝜇𝑚 to 0.25 𝜇𝑚 are used to show the trend and the effects of the 

resolution on the contact behavior before convergence. 

 

5.3. Results and discussion 

 

Fig. 5.13. Stress-strain diagram for material having bilinear isotropic and perfect plastic 

properties. 

 

For all of the simulations, a typical steel was considered. The employed material properties 

are for elastic modulus, 𝐸 = 200 GPa, Poisson’s ratio, ν = 0.3, and yield strength, 𝑆𝑦 = 1𝐺𝑃𝑎. 

The material of the solid body with the rough surface are considered as elastic-plastic with linear 

isotropic hardening with a tangent modulus, 𝐸𝑡 . The stress stain relationship for this material 

model is shown in Fig. 5.13. If the tangent modulus is equal to zero, which is without strain 

hardening, the material behavior is called perfect plastic. The bilinear strain hardening tangent 

modulus is set to 2% of the elastic modulus. Again, in the simulation, the normal load is applied 

firstly, and then the normal preload is held constant. The tangential displacement is next applied 

and increased gradually. In this study, the normal preload is 20 N, and the resulting nominal contact 

pressure is 4.883 MPa. 
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5.3.1.  The Effect of Resolution under Normal Preload 

 

Fig. 5.14. The contact area ratio versus dimensionless normal load with different resolutions. 

 

The resulting evolution of the FEM predicted contact area ratio for different resolutions are 

plotted in Fig. 5.14. Before reaching the normal preload, the contact area ratio increases as the 

dimensionless normal force increases. As the resolution decreases, the contact area ratio, 𝐴𝑟/𝐴𝑛, 

decreases under the same load. This is probably because the spectral interpolation smooths the 

surfaces and reduces the stresses.  
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                           a. N𝑒 = 1024                                                     b. N𝑒 = 4096 

        

                            c. N𝑒 = 16384                                                   d. N𝑒 = 65536 

Fig. 5.15. The contact area for the surfaces with different resolution under a normal preload of 

20N (contact pressure = 4.883 MPa). 

 

The contact area under the normal preload (20N) for different resolutions are plotted in Fig. 

5.15. In Fig. 5.15, the black color represents contact area, and the white color indicates the 

uncontacted area. It can be seen clearly from Fig. 5.15 (a-d) that as the resolution decreases, the 

contact area decreases. The contact area ratio as a function of resolution is plotted in Fig. 5.16. Fig. 

5.16. shows the effect of resolution on the contact area ratio. It shows that as the resolution 
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decreases, the contact area ratio decreases. This is mainly because that the Fourier interpolation 

can make the surface much smoother and lower the stresses (see Figs. 5.5 - 5.7). 

 

Fig. 5.16. Number of contact elements versus contact area ratio under a normal preload of 20N 

(contact pressure = 4.883 MPa). 

 

The distance between the surface and rigid flat at each point is known as local surface 

separation, 𝑔. The average surface separation, 𝑔̅, is given by averaging all the values of the local 

separation over the entire surface. In the following part, a parameter, 𝑧𝑝𝑣 , which presents the 

distance between the maximum peak to minimum valley is used for normalizing the displacement 

and average gap. The dimensionless displacement of the rigid flat, 𝑢𝑧/𝑧𝑝𝑣 , the dimensionless 

average gap, 𝑔̅/𝑅𝑞 , the dimensionless average contact pressure, 𝑝/𝑆𝑦 , and the dimensionless 

maximum von Mises stress, 𝜎𝑣𝑚/𝑆𝑦 are also investigated. Note that the value of 𝑢𝑧, 𝑔, and 𝜎𝑣𝑚 

are extracted from the FEM results. 
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Fig. 5.17. Number of contact elements versus dimensionless displacement of the rigid flat under 

a normal preload of 20N (contact pressure = 4.883 MPa). 

 

 

Fig. 5.18. Number of contact elements versus dimensionless average gap under a normal preload 

of 20N (contact pressure = 4.883 MPa). 
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Fig. 5.19. Number of contact elements versus dimensionless average contact pressure a normal 

preload of 20N (contact pressure = 4.883 MPa). 

 

 

Fig. 5.20. Number of contact elements versus dimensionless maximum von Mises stress under a 

normal preload of 20N (contact pressure 4.883 MPa). 
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As can be seen from Fig. 5.17 and Fig. 5.18, that as the number of contact elements 

increases, the displacement of the rigid flat decreases, while the average gap increases. In Fig. 5.19, 

the dimensionless contact pressure increases with the increasing number of contact elements. It is 

also interesting that this pressure is well above the material hardness. Fig. 17 does not show a 

clearly trend for the maximum von Mises stress variation for the decreasing resolution, but we can 

see that all the interpolated surfaces have lower maximum von Mises stresses compared to the 

original surface. This may be because the asperities peaks are effectively smoothed by the spectral 

interpolation. 

 

Table 5.1. Difference compare to the original surface with different resolutions under normal 

preload 

Resolution(𝛍𝐦) 𝑵𝒆 𝑨𝒓/𝑨𝒏 𝒖𝒛/𝒛𝒑𝒗 𝒈̅/𝑹𝒒 𝒑/𝑺𝒚 𝝈𝒗𝒎/𝑺𝒚 

1 4096 9.57% 3.92% 198.5% 10.61% 6.83% 

0.5 16384 20.48% 6.91% 304.5% 25.76% 7.39% 

0.25 65536 26.34% 7.19% 343% 35.76% 5.17% 

 

The differences of parameters between the interpolated surfaces with the original surface 

are listed in Table 5.1. From Table 5.1, the effects of resolution on the dimensionless displacement 

of the rigid flat and the dimensionless maximum von Mises stress turn out to be small (the 

differences are all under 7.39%). However, the resolution influences the dimensionless average 

gap significantly. This is probable because that the applied normal preload is so high that complete 

contact is almost reached. That results in the average gap being so small for the original surface. 

Then, even though the dimensionless gap changed a little, the differences would be very large in 
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percent. Hence, the most significant effects of the resolution are on the dimensionless contact area 

ratio and dimensionless average contact pressure. For both of them, the difference increases as the 

number of contact elements increases (resolution decreases), and the decline becomes very slow. 

They are supposed to converge at more number of times of interpolation. 

 

5.3.2.  The Effect of Resolution at Sliding Inception 

 

 
                         a. N𝑒 = 1024                                                       b. N𝑒 = 4096 

     
                            c. N𝑒 = 16384                                                    d. N𝑒 = 65536 

Fig. 5.21. The contact area of original and interpolation surfaces at sliding inception. 
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Fig. 5.21 presents the contact area with the different numbers of contact elements at the 

sliding inception. Similar to the case under normal preload (see Fig. 5.15), as the number of contact 

elements decreases, the contact area at the sliding inception decreases. 

 

Fig. 5.22. Number of contact elements versus contact area ratio at sliding inception. 
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Fig. 5.23. Number of contact elements versus dimensionless displacement at sliding inception. 

 

Fig. 5.24. Number of contact elements versus dimensionless average gap at sliding inception. 
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Fig. 5.25. Number of contact elements versus average contact pressure at sliding inception. 

 

Fig. 5.26. Number of contact elements versus dimensionless maximum von Mises stress at 

sliding inception. 
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The effects of resolution on different parameters are plotted from Fig. 5.22 - 5.26.  the 

behaviors are similar to the ones under only normal preload. Fig. 5. 22. shows the contact area 

ratio at sliding inception, 𝐴𝑠/𝐴𝑛 , versus resolution. The contact area ratio increases as the 

resolution decreases. As seen from Figs. 5.23 and 5.24, as the resolution decreases (i.e. the number 

of contact elements increases), the dimensionless displacement at sliding inception decreases, and 

the dimensionless average gap increases. Fig. 5.25. shows that the dimensionless contact pressure 

at sliding inception increases with decreasing resolution (i.e. increasing the number of contact 

elements). Fig. 5.26. shows that the dimensionless maximum von Mises stress at sliding inception 

becomes lower compared to the original surface. The differences of the parameters between 

interpolated surfaces and the original surface are listed in Table 5.2. 

 

Table 5.2. Difference compare to the original surface with different resolutions at sliding 

inception 

 

Resolution(𝛍𝐦) 𝑵𝒆 𝑨𝒔/𝑨𝒏 𝒖𝒛/𝒛𝒑𝒗 𝒈̅/𝑹𝒒 𝒑/𝑺𝒚 𝝈𝒗𝒎/𝑺𝒚 

1 4096 9.62% 4.58% 310% 10.72% 7.77% 

0.5 16384 18.26% 7.92% 500% 24.75% 5.33% 

0.25 65536 24.44% 8.44% 575% 32.42% 2.12% 
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Fig. 5.27. Dimensionless tangential load versus dimensionless tangential displacement for the 

surfaces with various numbers of contact elements. 

 

 

Fig. 5.28. Number of contact elements versus static friction coefficient. 
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Fig. 5.27 shows the dimensionless tangential force versus the dimensionless tangential 

displacement. At lower dimensionless tangential loads, (around 0.16), there is not too much 

difference between the cases with different resolutions (number of contact elements). As the 

tangential displacement continues to increase, the dimensionless tangential force increases a 

asymptotically to a constant value, and the tangential stiffness eventually approaches zero last. At 

that moment, the dimensionless tangential load is the static friction coefficient, 𝜇𝑠  . The static 

friction coefficients are extracted from the figure and plotted in Fig. 5.28. As can be seen from Fig. 

5.28, as the resolution decreases (i.e. number of contact elements increases), the static friction 

coefficient decreases. Therefore, spectral interpolation and smoothing of the surfaces trends to 

decrease the friction. 

 

5.3.3. The effect of tangential loading 

 

Fig. 5.29. The comparison of contact area ratio between under normal preload and at sliding 

inception with various numbers of contact elements. 
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Fig. 5.30. The comparison of dimensionless displacement between under normal preload and at 

sliding inception with various numbers of contact elements. 

 

 

Fig. 5.31. The comparison of dimensionless average gap between under normal preload and at 

sliding inception with various numbers of contact elements. 
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Fig. 5.32. The comparison of dimensionless contact pressure between under normal preload and 

at sliding inception with various numbers of contact elements. 

 

5.33. The comparison of dimensionless maximum von Mises stress between under normal 

preload and at sliding inception with various numbers of contact elements. 
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The contact parameters for both the normal preload and at sliding inception cases for 

different resolutions are presented in Figs. 5.29 - 5.33. As can be seen from Fig. 5.29, the contact 

area ratio at sliding inception are greater than its corresponding value under normal preload only 

for all the resolutions (Number of contact element). It can be said that the tangential load can 

increase the contact area. This increase is called junction growth, as we mentioned in Chapter 4. 

From Figs. 5.30 and 5.31, the dimensionless displacement of the rigid flat at sliding inception is 

greater than the value under the normal preload only, while the dimensionless average gap at 

sliding inception is less than the value under normal preload for each case. Therefore, the tangential 

load can increase the displacement and reduce the average gap. From Fig. 5.32, the dimensionless 

average contact pressure at the sliding inception is less than the value under normal preload only, 

but the difference is relatively small. The tangential force can decrease the average contact pressure, 

because the normal preload is fixed, and the tangential force can increase the contact area. This 

results in the average contact pressure decreasing. From Fig. 5.33, the maximum von Mises stress 

becomes larger due to the tangential force for all the cases regardless of the resolution. 

 

5.4. Conclusion 

In this chapter, the deterministic elastic-plastic contact between rough surfaces and a rigid 

flat under normal and tangential loading was studied by using FEM. The effect of resolution and 

tangential load on several contact parameters are analyzed. From the analysis, we found that: as 

the resolution decreases, the contact area ratio and dimensionless displacement decreases, while 

the dimensionless average gap and dimensionless contact pressure increases for both the normal 

preload and at sliding inception cases. We also found the tangential force can increase the contact 
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area ratio, dimensionless displacement and dimensionless maximum von Mises stress, and 

decrease the dimensionless average gap and dimensionless contact pressure. 
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CHAPTER 6. ELASTIC-PLASTIC ROUGH SURFACE CONTACT UNDER 

COMBINED NORMAL AND TANGENTIAL LOADING 

 

 

6.1. Introduction 

6.1.1. Normal Loading 

A number of models that attempt to solve the normal contact between rough surfaces have 

been developed. One of the most widely used are statistical models. In this approach, the rough 

surfaces are assumed to consist of N asperities, whose heights, z, above a mean level follow 

probability density function, such as the Gaussian distribution or exponential distribution. In 1966, 

Greenwood and Williamson [93] developed a statistical rough surface contact model, in which the 

surface is considered isotropic. The asperity scale contacts are assumed to have no lateral 

interaction between them, and only the asperities deform during the loading processing. Then, 

Greenwood and Tripp [94] suggested that two rough surfaces in contact can be simplified as one 

equivalent rough surface contacting a rigid flat. Based on their work, Chang, Etsion and Bogy [7] 

presented an elastic-plastic asperity model for analyzing the contact of rough surfaces, which is 

based on the volume conservation of an asperity during plastic deformation. After that, many 

researchers model elastic-plastic contact by using more advanced models, Kogut and Etsion (KE) 

[95] developed an elastic-plastic contact model for the rough surface based on the FEM results of 

a single asperity in [96]. They provided an empirical equation for the real contact area as a function 

of plasticity index and normal load. However, the plasticity index is limited to 8. Jackson and 

Green [74] extend the KE model to higher indices by considering full plastic deformation based 

on their single elastic-plastic asperity model [97]. In these rough surface contact models, the finite 
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element results of a single asperity are incorporated into a statistical representation of surface 

roughness to analyze the elastic-plastic contact between two rough surfaces.  

Archard [16] developed the first multi-scale elastic rough surfaces contact model that 

considered multi-scale features. The structure of the rough surfaces used in Archard's model is 

described as "protuberances on protuberances”. He used the concept of stacking smaller and 

smaller asperities in order to capture the multiscale nature of surface roughness. After Archard’s 

work, truncation and fractal surface characterization were used to model contact between rough 

surfaces by Majumdar and Bhushan [98]. Majumdar and Bhushan used the asperity wavelength 

and amplitude to calculate the radius of curvature of the asperities, and concluded that the real 

contact area has a power law relationship with the applied normal load. Later, using the same 

stacked asperity assumption proposed by Archard, Ciavarella et al. [17] analyzed the elastic 

contact between a rigid flat and a Weierstrass-Mandelbrot (W-M) fractal surfaces. Wu [99] 

proposed a method based on the Fast Fourier Transform (FFT) to generate three-dimensional rough 

surfaces. Much later, Jackson and Streator [19] proposed a contact model between rough surfaces 

that considered asperities using a sinusoidal geometry, and proposed a rough surface multi-scale 

model based on an FFT for elastic, elastic-plastic and full plastic contact. They used stacked 

sinusoids to model the multiple scales of roughness. Gao and Bower [20] presented a 2D multi-

scale stacked contact model by including plastic deformation based on their single asperity contact 

model [78]. Then, considering the stacked rough surface contact model in [19] , Wilson et al. [21] 

analyzed the surface separation and contact resistance for elastic-plastic multi-scale contact. 

However, both statistical summation and multi-scale models provide a technique to bridge 

length scales between asperity level and macroscale level. A more direct way is to model actual 

rough surfaces in a finite element framework. This is known as a deterministic model. Hence, lots 
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of deterministic models have been developed. Most of the surfaces that were mainly considered 

are the following three types: a.) Gaussian random surfaces, b.) fractal surfaces and c.) real 

measured surfaces. 

Considering generated random rough surfaces with Gaussian distributions, different 

aspects of contact were studied by many researchers. Peng and Bhushan [100] developed a model 

for the layered elastic-plastic half space in contact with another rough surface. In their work, the 

effects of stiffness, and thickness of the substrate and layer are studied, and optimum parameters 

are provided. Considering the rough surfaces with both isotropic and anisotropic Gaussian 

distributions, the thermomechanical contact homogenization was studied by Temizer [101].  

Megalingam and Mayuram [102] analyzed the contact model between a rigid flat and a 

deformable rough surface, which is with a Gaussian distribution. In addition, they also compared 

the results between deterministic, simplified multi-asperity and modified statistical contact models. 

They show that these models are in good agreement. Recently, Song et al. [103] analyzed elastic-

plastic contact between a rigid flat and a solid body with a rough surface by using conventional 

mechanism-based strain gradient plasticity (CMSGP) theory, they found that the contact pressure 

in the CMSGP is higher than its corresponding value according to the 𝐽2 plasticity. They found 

that the highest contact pressure locates at the edge of the contact in the GMSGP model, while the 

highest contact pressure shifts from the edge to the center with increasing load in the 𝐽2 model.  

Fractal geometry can be used to characterize the multi-scale nature of rough surfaces. 

Considering elastic contact, in 2005 Ciavarella et al. [104] developed a “discrete” GW model, and 

took the generated fractal rough surface data into the simulation. Then, this method was used to 

calculate electrical contact resistance by Ciavarella et al. [105]. 
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Some probabilistic self-affine fractal surfaces, which exhibit different scaling normal to 

the interface than along it, were considered by many researchers. The elastic contact between a 

rigid flat and a generated self-affine fractal rough surface was analyzed by Hyun et al. [106] using 

finite element. In their work, the real contact area, contact pressure distribution and contact 

morphology were analyzed. Later, Hyun et al. [107] analyzed the effect of cutoffs in the surface 

roughness at small and large length-scales. They found that a small-scale cutoff lowers the 

probability of both low and high pressures while a large-scale cutoff has little effect on the pressure 

distribution. Considering elastic-plastic contact, Pei et al. [108] analyzed the contact area, local 

contact pressure, and the subsurface deformation. Both elastic and elastic-plastic contacts with 

different fractal dimensions and fractal roughness parameters were studied by Sahoo and Ghosh 

[109] again using finite element. The effect of strain hardening on the contact behaviors was also 

studied by Sahoo and Ghosh.  

Some researchers used input data for simulations directly from the real measured rough 

surfaces into the FE model. Kwon et al. [89] examined the effect of surface smoothing and mesh 

density for real surfaces, which were measured from a standard micro comparator. They found that 

the mesh density has a significant effect on the maximum contact pressure and maximum 

equivalent stress under low loads, and that the smoothing has no significant for all the parameters.  

Considering a CrN coating surface, the effect of surface roughness on the indentation 

results on the nanoindentation was studied by Walter and Mitterer [110]. They found that the 

roughness evaluated elastic modulus is underestimated due to roughness. Thompson [90] 

discussed some techniques and considerations associated with the incorporation of measured 

surfaces in FE models. Yastrebov et al. [111] analyzed elastic-plastic contact between deformable 

rough surfaces and a rigid flat by using a reduced model and an FE model. Poulios and Klit [112] 
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carried out a few simulations of rough surfaces in contact, in which both generated Gaussian 

distribution and real rough surfaces were considered. They analyzed the contact pressure and real 

contact area and compared the results with GW contact model. 

 

6.1.2. Combined Normal and Tangential Loading 

The contact between rough surfaces under combined normal and tangential loading has 

been investigated by many researchers. In 1988, based on the principles of Tabor and Bowden[5], 

Chang, Etsion, and Bogy (CEB) [7] created one of the first elastic-plastic asperity contact models 

and included it in a statistical model of rough surface contact (Greenwood and Williamson [93]). 

They found the effect of adhesion on the maximum tangential load is significant. They used a 

statistical representation of surface roughness. The surfaces are modeled by a collection of 

spherical asperities with a Gaussian height distribution, for which the asperity height probability 

density, 𝜙(𝑧), is given by: 

𝜙(𝑧) =
1

√2𝜋𝜎𝑠
𝑒𝑥𝑝 [−0.5 (

𝑧

𝜎𝑠
)
2

] 
(6.1) 

where 𝜎𝑠 is the standard derivation on the asperity heights.   

In their model, the inception of slip occurred at the first yielding (also yield inception) of 

the surface in the contact (considering shear and normal load). Hence, the maximum tangential 

force that all the contacting asperities can support was assumed to be the static friction of the 

contacting rough surfaces, and it can be calculated by the von Mises criterion. The static friction 

coefficient is given in the form: 

𝜇𝑠 =
(𝐹𝑡)𝑚𝑎𝑥
𝐹𝑒𝑥𝑡

=
(𝐹𝑡)𝑚𝑎𝑥
𝐹𝑛 − 𝐹𝑠

 
(6.2) 
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where (𝐹𝑡)𝑚𝑎𝑥 is the tangential force needed to shear the junctions, 𝐹𝑛 is the normal force, and 𝐹𝑠 

is the adhesion force. 

Based on the analysis of metallic surfaces, they found that the smooth surfaces and the 

harder material can support more shear force, while in contrast the static friction coefficient 

decreases as both the plasticity index and the dimensionless external force increase. The effect of 

small normal loads on the static friction coefficient was experimentally investigated, and then 

found that the static friction coefficient decreases as the normal load increases [81]. 

The FEM results of a single asperity contact can be incorporated into a statistical model to 

represent the rough surfaces in the elastic-plastic or fully plastic regimes. Several models to predict 

the static friction for rough surfaces in contact were developed. Kogut and Etsion (KE) [95] 

presents a model that incorporates the results of finite element results in [8] into a statistical 

representation of surface roughness. They suggested that the CEB failure criterion used in [7] 

underestimated the tangential force needed to shear the junctions, because the elastic region 

surrounded the single plastic spot can support additional tangential load. They analyzed the effects 

of the tangential force, nominal contact area, plasticity index,𝛹, and adhesion parameter, 𝜃, on the 

static friction coefficient. Much later, Cohen et al. analyzed the static friction coefficient [13] and 

junction growth [14] under the full stick condition. They incorporated the finite element results [9]  

in a statistical representation of surface roughness to predict the statistic friction between rough 

surfaces. The dimensionless real contact area in Cohen et al. [13] is given by: 

𝐴0
∗ =

𝐴0
𝐴𝑛

= (0.36 +
0.41

𝜓
) (𝐹𝑛

∗)[0.97−0.1 exp (−𝜓
1.5)] 

(6.3) 

where 𝐹𝑛
∗ is the dimensionless normal load, and given by: 

𝐹𝑛
∗ =

𝐹𝑛
𝐴𝑛𝑆𝑦

 
(6.4) 
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By using two of the same governing equations in the GW model, the normal load 𝐹𝑛 and 

maximum friction force, (𝐹𝑡)𝑚𝑎𝑥, can be expressed as: 

 

𝐹𝑛 = 𝜂𝐴𝑛∫ 𝐹̅(𝜔∗)
∞

𝑑∗
𝜙∗(𝑧∗)𝑑𝑧∗ 

(6.5) 

(𝐹𝑡)𝑚𝑎𝑥 = 𝜂𝐴𝑛∫ (𝐹𝑡̅)𝑚𝑎𝑥(𝜔
∗)

∞

𝑑∗
𝜙∗(𝑧∗)𝑑𝑧∗ 

(6.6) 

By solving Eq. (6.6) and finding a best fit curve to the results, the dimensionless static friction 

(𝐹𝑡)𝑚𝑎𝑥
∗  is given by: 

(𝐹𝑡)𝑚𝑎𝑥
∗ = (0.26 +

0.43

𝜓
) (𝐹𝑛

∗)(0.0095𝜓+0.91) 
(6.7) 

Hence, the static friction coefficient is given by: 

𝜇𝑠 =
(𝐹𝑡)𝑚𝑎𝑥

∗

𝐹𝑛∗
= (0.26 +

0.43

𝜓
) (𝐹𝑛

∗)(0.0095𝜓−0.09) 
(6.8) 

where the plasticity index, 𝜓, is given by: 

ψ =
2𝐸′

𝜋𝐶𝑆𝑦
√
𝜎𝑠
𝑅

 
(6.9) 

where 𝜎𝑠 is the standard deviation of the asperity heights, and given by McCool as 

𝜎𝑠 = (1 −
0.8968

𝛼
)
0.5

𝑚0
0.5 

(6.10) 

where α is the bandwidth parameter: 

α =
𝑚0𝑚4

𝑚2
2  

(6.11) 

The spectral moments 𝑚0, 𝑚2, and 𝑚4 are the variance of heights, mean square slope, and the 

mean square curvature, respectively. They are all given by McCool [113] as 
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𝑚0 =
1

𝑁
∑[𝑧(𝑥)]𝑛

2

𝑁

𝑛=1

 
(6.12) 

The asperity height standard deviation then can be given as 

However, the plasticity index is also dependent on multi-scales of roughness [92]. Jackson and 

Green [114] proposed an alternative formulation based on the multiscale rough surface contact 

method: 

However, the theoretical equation for static friction in Cohen et al. [13] is not valid for 

plasticity indices above 8. Li, Etsion, and Talke [15] extended the model to higher plasticity 

indices by incorporating the FEM results that considering the large (full plasticity) deformation 

of Jackson and Green [97].  The empirical expressions of plasticity values in the range of 0 <

𝜓 ≤ 32, were derived [15]. 

The dimensionless contact area under normal preload only is given by the curve fit equation [15] 

𝐴0
∗ =

𝐴0
𝐴𝑛

= [0.47 + 0.57exp (−1.2𝜓0.93)](𝐹𝑛
∗)[1−0.27exp (−1.43𝜓

0.41)] 
(6.17) 

 and the dimensionless static friction (𝐹𝑡)𝑚𝑎𝑥
∗  is given by [15]: 

(𝐹𝑡)𝑚𝑎𝑥
∗ = [0.26 + 0.32exp (−0.34𝜓1.19)](𝐹𝑛

∗)[1−exp (−1.9𝜓
0.4)] (6.18) 

𝑚2 =
1

𝑁
∑(

𝑑𝑧

𝑑𝑥
)
𝑛

2𝑁

𝑛=1

 
(6.13) 

𝑚4 =
1

𝑁
∑(

𝑑2𝑧

𝑑𝑥2
)
𝑛

2𝑁

𝑛=1

 
(6.14) 

𝑅 = 0.375 (
𝜋

𝑚4
)
0.5

 
(6.15) 

𝜓 =
𝐵𝑚𝑎𝑥
𝐵𝑐

 
(6.16) 
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Hence, the static friction coefficient is given by [15]: 

𝜇𝑠 =
(𝐹𝑡)𝑚𝑎𝑥

∗

𝐹𝑛∗
= [0.26 + 0.32exp (−0.34𝜓1.19)](𝐹𝑛

∗)[−exp (−1.9𝜓
0.4)] 

(6.19) 

Several experimental studies were performed by many researchers. The effects of skewness 

and kurtosis on the original CEB statistical static friction model [7]was investigated by Tayebi and 

Polycarpou [115]. In 2007, Lee and Polycarpou [116] sought to verify the statistical based static 

friction models by using a precision experimental apparatus. They made comparisons to the 

measurements using the static friction model derived by Kogut and Etsion [4], which also includes 

the effects of adhesion. Recently, Lee et al. [117] also examined the effect of non-Gaussian or 

asymmetric asperity height distributions on the statistical static friction models and compared the 

predictions to experimental measurements. They found that the model developed by Cohen et al. 

[13] predicts higher friction coefficients, and the model provided by Kogut and Etsion [4] with the 

Pearson distribution has a good agreement with the experimental results. Later, Ibrahim-Dickey et 

al. [118] used an experimental method to measure the static friction between tin surfaces. The 

experimental results have a reasonable agreement with the theoretical model given by Li et al. [15]. 

 

6.2. Surface Modeling Approach   

6.2.1. Real measured surfaces  

As shown in Fig. 5.2, the surfaces of 2L, 8L, and 32G are adopted for the simulations. In 

this study, we used a 128 by 128 grid of measured surface data to model the rough surfaces.  The 

RMS and plasticity index values for these surfaces are listed in Table 6.1. 𝑚2𝑥, 𝑚4𝑥, 𝑅𝑥, 𝜎𝑠𝑥, 𝜓𝑥 

are the parameters for each line profile in the x direction, and 𝑚2𝑦 , 𝑚4𝑦 , 𝑅𝑦 , 𝜎𝑠𝑦 , 𝜓𝑦  are the 

parameters for each line profile in the y direction. Smoother surfaces have smaller plasticity indices, 

and the rougher surfaces have large plasticity indices. However, the plasticity index of existing 
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models is limited to 32, and the only surface available in that range in the comparator is the 2L 

surface. The surface 2L data is used in this chapter, and the other 2 surfaces (8L, 32G) are 

investigated in the next chapter. The parameters of surface 2L are listed in Table 6.1. The three-

dimensional rendering and contour are plotted in Figs. 6.1- 6.2, respectively. 

 

Table 6.1. Numerical values of parameters for Eqs. (6.9) - (6.15) 

Parameters Unit 2L 8L 32G 

𝑅𝑞  𝑚 2.04e-7 5.58e-7 1.126e-6 

𝑅𝑞𝑥  𝑚 2.027e-7 5.493e-7 8.901e-7 

𝑅𝑞𝑦 𝑚 1.654e-7 5.22e-7 1.117e-6 

𝑚0 𝑚2 4.161e-14 3.115e-13 1.268e-12 

𝑚2 1 0.055 0.435 1.6 

𝑚4 𝑚−2 1.639e11 1.205e12 5.271e12 

𝑅 m 1.642e-06 6.055e-7 2.895e-7 

𝜎𝑠 m 1.580e-07 4.132e-7 9.12e-7 

𝜓𝑥 1 25.174 71.563 146.245 

𝜓𝑦 1 28.05 65.998 152.347 

𝜓 1 26.612 68.781 149.296 
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Fig. 6.1. The three-dimensional plot of the surface 2L. 

 

Fig. 6.2. Topographical contour plot of the surface 2L. 

 



 138 

6.2.2. Generated Surfaces  

Since the roughness of the surfaces measured is in the range of 0.204 to 1.126 𝜇𝑚, some 

smoother surfaces are needed to investigate the rough surface contact over a wide range. Hence, 

two kinds of smooth surfaces are generated:  self-affine generated rough surface and random 

Gaussian rough surface. 

a.) Self-affine generated rough surface 

First, a self-affine generated fractal rough surface is considered. Commonly, a fractal 

geometry should be continuous, non-differentiable and statistically self-affine. A 3D fractal 

surface topography using a modified two-variable Weierstrass -Mandelbrot function can be written 

as [119] 

ℎ(𝑥, 𝑦) = 𝐿 (
𝐺

𝐿
)
𝐷−2

(
ln 𝛾

𝑀
)
1/2

∑ ∑ 𝛾(𝐷−2)𝑛

𝑛𝑚𝑎𝑥
′

𝑛=1

{cos(𝜙𝑚,𝑛)

𝑀

𝑚=1

− cos [
2𝜋𝛾𝑛(𝑥2 + 𝑦2)1/2

𝐿
cos (tan−1 (

𝑦

𝑥
) −

𝜋𝑚

𝑀
) +𝜙𝑚,𝑛]} , 2 ≤ 𝐷 ≤ 3 

(6.20) 

where D is the fractal dimension.  𝜙𝑚,𝑛 is a random phase, n is the frequency level,  𝑛𝑚𝑎𝑥
′  is the 

maximum frequency level, given by 𝑛𝑚𝑎𝑥
′ = 𝑖𝑛𝑡(log (𝐿/𝐿𝑠)/log (𝛾)), L is sampling length, 𝐿𝑠 is 

the sampling resolution, 𝛾 is the scaling parameter that controls the density of frequency. M is the 

number used to construct the surfaces. The same rough surface data in Xu’s thesis [120] is used. 

In the following part, we call this generated surface F1, and the parameters are listed in the table 

6.2. The roughness calculated is equal to 0.006 μm. The three-dimensional plot and contour are 

plotted in Figs. 6.3 - 6.4, respectively. 
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Table 6.2. The parameters used for surface G1 

Parameter 𝐺(𝜇𝑚) 𝐷 𝐿𝑥 (𝜇𝑚) 𝐿𝑦 (𝜇𝑚) 𝐿𝑠𝑥 (𝜇𝑚) 𝐿𝑠𝑦 (𝜇𝑚) 

Value 9.46 × 10−8 2.44 16 16 0.125 0.125 

 

 

 

Fig. 6.3. The three-dimensional plot of the generated surface in ref. [120]. 
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Fig. 6.4. Topographical contour plot of the surface F1. 

 

b.) Random Gaussian Rough Surface 

In statistical contact models, the asperity heights of a rough surface are described by a 

Gaussian distribution for the rough surfaces, although some engineering surfaces follow a non-

Gaussian distribution. Note that surface height and asperity heights are different. The surface 

heights are the data collected from a profilometer.  Whereas asperity heights are calculated 

from the definition of the asperity, which is the surface points taller than their surrounding 

points. As suggested in [117, 121, 122], it is reasonable that the surface height and asperity 

height have similar behaviors. 

In order to compare the FEM results with the statistical models, 9 rough surfaces with 

nominally Gaussian distributions are generated by using MATLAB. The average value of the 

surface heights is set to zero, and the standard deviation of surface heights is varied from 0.01 
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to 0.2 𝜇𝑚, which are call G1 to G9. The RMS height and plasticity index are listed in Table 

6.3. In this chapter, Firstly, the generated Gaussian surface G5, is used to investigate the effect 

of the normal force on the static friction coefficient. The rough surface plot and contour are 

shown in Fig. 6.5 and Fig. 6.6, respectively. Then, all the rest of the generated random surfaces 

are considered to investigate the effect of the plasticity index on the static friction coefficient 

in the following parts.  

 

Table 6.3. The RMS height and plasticity index of generated Gaussian surfaces 

Surface name RMS height (𝝁 𝒎) 𝝍𝒙 𝝍𝒚 𝝍 

Gaussian G1 0.01 1.32 1.32 1.32 

Gaussian G2 0.025 3.33 3.33 3.33 

Gaussian G3 0.05 6.63 6.61 6.62 

Gaussian G4 0.075 10.03 10.05 10.04 

Gaussian G5 0.1 13.21 13.18 13.20 

Gaussian G6 0.125 16.63 16.55 16.59 

Gaussian G7 0.15 19.75 19.77 19.76 

Gaussian G8 0.175 23.19 23.04 23.11 

Gaussian G9 0.2 26.27 26.07 26.17 
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Fig. 6.5. The three-dimensional plot of Gaussian surface G5. 

 

Fig. 6.6. Topographical contour plot of Gaussian surface G5. 
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6.2.3. Rough Surface Height Distribution   

It is necessary to consider the rough surface distribution for the chosen rough surfaces. In 

Fig. 6.7, the surface distribution is plotted, and a symmetric Gaussian distribution is fitted to the 

data for comparison. Note that the points with positive values are on the contact side. 

 

Fig. 6.7. The surface height distribution of Gaussian surface G5. 

 

 

The MATLAB command “Histogram” is used to plot Fig. 6.7. This command creates a 

histogram plot of surface heights. The histogram function uses an automatic binning algorithm that 

returns bins with a uniform width, chosen to cover the range of elements in X and reveal the 

underlying shape of the distribution. Histogram displays the bins as rectangles such that the height 

of each rectangle indicates the number of elements in the bin. The width of the bines are used the 

default values. 
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Fig. 6.8. Normal probability plot of Gaussian surface G5. 

 

The normal probability plot is used to check whether the surface height conforms to a 

normal distribution. The cumulative distribution of generated surface data for surface G5 and the 

theoretical cumulative Gaussian distribution are plotted in Fig. 6.8. The MATLAB command 

“normplot” is used to plot Fig. 6.8. This command displays a normal probability plot of the surface 

heights. Use a normal probability plot to assess visually whether the sample data in x comes from 

a population with a normal distribution. If the sample data has a normal distribution, then the data 

appears along the reference line. Distributions other than normal can introduce curvature in the 

plot. As seen from Fig. 6.8, most of the surface data are located on the line of the Gaussian 

distribution, and it could be represented by a Gaussian distribution. The surface height roughness 

histogram and probability for the surface 2L are plotted in Fig. 6.9 - 6.10, respectively. Similarly, 

the surface height roughness histogram and probability for the surface 2L are plotted in Fig. 6.11 
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- 6.12, respectively. As can be seen from Figs. 6.10 and 6.12, the height distributions of surface 2L 

and surface F1 are not Gaussian.  

 

 

Fig. 6.9. The surface height distribution of the surface 2L. 
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Fig. 6.10. Normal probability plot of surface 2L. 

 

Fig. 6.11. The surface height distribution of the surface F1. 
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Fig. 6.12. Normal probability plot of surface F1. 

 

6.3. Finite Element Model 

The finite element model and boundary conditions in Chapter 5 are used, (see Fig. 5.10). 

Again, the 8-node brick element solid 185 is used to model the solid substrate. Targe 170 and 

Conta 173 are used to form the contact pair. Considering computing time, 129 × 129 array surface 

points are considered. One line is added in the x and y directions to guarantee the two side surfaces 

of solid body have the same deformation. The rough surface was a uniform mesh formed by a 

128 × 128 array of element. The bottom surfaces are fixed in all directions, and the xz surfaces 

are restrained in the y direction, and the yz surfaces are coupled to enforce periodicity. The normal 

force is applied on the rigid flat, and then the normal preload is held constant while a tangential 

displacement is applied on the rigid flat. The critical interfacial shear strength is set to 𝑆𝑦/√3. The 
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sliding occurs when the shear stress of all the elements reach that value. Then gross sliding occurs, 

and the stiffness vanishes at that moment. 

 

6.4. Results and Conclusion 

 

Fig. 6.13. Comparison of formula of plasticity index in Eqs. (6.9) and (6.16). 

 

The plastic index can be calculated either from Eq. (6.9) or Eq. (6.16). A comparison of 

these two formulas is plotted in Fig. 6.12. From Fig. 6.12, the values predicted by the Eq. (6.9) 

and (6.16) do not always have a good agreement. Eq. (6.16) might be better than Eq. (6.9). In order 

to compare the results with the models in [13] and [15], the Eq. (6.9) is used to calculate plastic 

index, since it is more common in the literature.  The FEM simulations are employed by using the 

fractal rough surface F1, Gaussian surfaces G1, G2, G6, G9 and real measured rough surface 2L, 

in order of increasing roughness.  The plasticity indices are 2.39, 1.32, 3.33, 16.59, 26.17, and 

26.61 respectively. 
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6.4.1. Effects on Contact Area under Normal Preload 

The material parameters of a typical steel are chosen: 𝐸 = 200 GPa, ν = 0.3, 𝑆𝑦 = 1 GPa, 

and 𝐸𝑡 = 4 GPa. In order to be consistent with the models in [13] and [15], the upper limit of the 

normalized contact normal load, 𝐹𝑛/(𝐴𝑛 𝑆𝑦), is set to 0.3. The contact condition is the full stick 

condition under normal loading and the critical shear strength criterion is used to determine the 

sliding inception under combined normal and tangential loading. In the subsection 6.4.1.1, the 

results of the first loading step (under only normal loading) are analyzed. In the subsection 6.4.1.2, 

the results of the first loading step (under combined normal and tangential loading) are analyzed. 

 

6.4.1.1. The Effect of Normal Load on The Contact Area 

First, the fractal rough surface F1 is used in the simulation. Fig. 6.14. presents the 

comparison of the contact area under the normal preload only as predicted by the FEM, CKE 

model and LET model. From Fig. 6.14, they all show the same trend. As the dimensionless normal 

load increases, the contact area increases. The values of the FEM contact areas are higher than the 

values predicted by the CKE model and LET model. 
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Fig. 6.14. Comparison of contact area between the FEM data and statistical models on for 

surface F1. 

 

Fig. 6.15. Comparison of contact area between the FEM data and statistical models for the 

surface G1. 
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Fig. 6.16. Comparison of contact area between the FEM data and statistical models for the 

surface G2. 

 

Fig. 6.17. Comparison of contact area between the FEM data and statistical models for the 

surface G3. 
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Similar to the fractal rough surface, from Fig. 6.15 - 6.17, Surfaces G1, G2 and G3 show 

the same trend, as the dimensionless normal load increases, the contact area increases for the 

generated Gaussian rough surfaces. The values of contact area of the FEM results are higher than 

the values predicted by the CKE model and LET model. The values of the contact area predicted 

by the LET model are lower than the values predicted by CKE model except for the case of surface 

G3. 

 

Fig. 6.18. Comparison of contact area between the FEM data and statistical models for the 

surface G5. 
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Fig. 6.19. Comparison of contact area between the FEM data and statistical models for surface 

2L. 

 

Then, a generated Gaussian rough surface with a higher plasticity index and a real 

measured rough surface 2L are used in the simulation. The plasticity index for these two surfaces 

are 13.2 and 26.61 respectively. Since the CKE model is not valid when the plasticity index is 

larger than 8, only the LET model is compared with the FEM results. As expected, they show the 

same trend, as the dimensionless normal load increases, the contact area increases. It is also shown 

that, as the dimensionless normal load increases, that the difference of contact area between the 

FEM results and the LET model become larger.  

 

6.4.1.2. The Effect of Plasticity Index on the Contact Area 

Sometimes, sharp asperities would deform plastically even under relatively low loads, 

while blunt asperities would deform elastically even under heavier loads. the parameter most used 
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to evaluate this behavior is the plasticity index, ψ, whose equation is given in Eq. (6.9). The 9 

generated Gaussian distribution rough surfaces are used in the FEM model to investigate the effect 

of plasticity index on the contact area. The roughness, 𝑅𝑞, of these surfaces are varied from 0.01 

to 0.2 𝜇 m, and the plasticity index, ψ, are varied from 1.32 to 26.2.  

 

Fig. 6.20. Comparison of contact area between the FEM data and statistical models for generated 

surfaces with different plasticity index indices. 

 

Fig. 6.20 presents a comparison of the FEM predicted contact area with the statistical 

model predictions for generated Gaussian surfaces (G1 to G9). Both of the FEM results and the 

statistical models show the same trend: as the plastic index increases, the contact area increases, 

and the FEM results approach to the LET model. This suggests that additional plasticity tends to 

lessen differences in the theories. 

6.4.2. Effects on Static Friction Coefficient 
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The effects of normal load and plasticity index on the static friction coefficient are 

investigated in this subsection. The results are extracted from FEM model in the second loading 

step (combined normal and tangential loading) in the same simulation of Section 6.4.1. 

 

6.4.2.1. The Effect of Normal Load on the Static Friction Coefficient 

In this section, the surface F1 is used in the simulation. The dimensionless tangential load 

versus dimensionless tangential displacement with different normal preloads are plotted in Fig. 

6.21. The maximum tangential force is obtained when the stiffness reaches zero for each case, and 

the static friction coefficient is calculated by dividing the maximum tangential load by the normal 

force. As can be seen from Fig. 6.21, the higher dimensionless normal load can support less 

maximum dimensionless tangential load. This is because less yielding has already occurred due to 

normal loading. 

 

Fig. 6.21. The dimensionless tangential load versus dimensionless tangential displacement under 

different normal load for surface F1. 
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Again, the static friction coefficients are obtained by choosing the dimensionless tangential 

load when the stiffness becomes zero. The static friction coefficient for different normal preloads 

are extracted from Fig. 6.21. and plotted in Fig. 6.22. The static friction coefficients predicted by 

the CKE model (Eq. (6.7)) and LET model (Eq. (6.16)) are also plotted for comparison.  As can 

be seen from Fig. 6.22, both the CKE model and the LET model predict the same trend as the FEM 

results. As the dimensionless normal load increases, the static friction coefficient decreases. 

However, both the CKE model and the LET model predict a lower value than the FEM data.  

 

Fig. 6.22. Comparison of static friction coefficient between the FEM data and statistical models 

for surface F1. 

 

Second, the generated Gaussian surfaces (G1, G2, G3) with different plasticity indices are 

analyzed. The static friction coefficient of the surfaces with Ψ = 1.32,Ψ = 3.33,Ψ = 6.62 are 

plotted in Figs. 6.23 - 6.25. Again, the FEM results are compared with the static friction models. 
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In Figs. 6.23 - 6.25, the FEM results show the same trend as the CKE model and LET model. 

However, the FEM static friction results are higher than what the statistical models predicted. 

 

Fig. 6.23. Comparison of static friction coefficient between the FEM data and the statistical 

models for the surface G1. 
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Fig. 6.24. Comparison of static friction coefficient between the FEM data and the statistical 

models for the surface G2. 

 

 

Fig. 6.25. Comparison of static friction coefficient between the FEM data and the statistical 

models for the surface G3. 
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Then, the static friction coefficient of rough surfaces with high plasticity indices are 

analyzed. Again, since the plasticity indices, ψ, are larger than 8, the CKE model is not considered 

here. Fig. 6.26 presents the comparison of the CKE model for the FEM results for generated rough 

surface G5 and Fig. 6.27 presents the comparison of the CKE model to the FEM results surface 

2L. 

 

Fig. 6.26. Comparison of static friction coefficient between the FEM data and the statistical 

models for the surface G5. 
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Fig. 6.27. Comparison of static friction coefficient between the FEM data and the statistical 

models for surface 2L. 

 

The static friction coefficient predicted by the LET is a nearly constant value, 0.26, when 

ψ > 8. As can be seen in Fig. 6.26 and 6.27, the FEM results are greater than what is predicted by 

the LET model (Eq. (6.17)). As the dimensionless normal preload increases, the static friction 

coefficient of the FEM results decreases and approach but do not reach the value predicted by LET 

model, which is approximately 0.26.  

 

6.4.2.2. The Effect of Plasticity Index on Static Friction Coefficient 

 

Just as in subsection 6.4.1.2, the results of the 9 rough surfaces extracted from the FE model 

are analyzed here.  The dimensionless tangential load versus dimensionless tangential 

displacement is plotted in Fig. 6.28, and the static friction coefficient as a function of plasticity 

index is plotted in Fig. 6.29. As shown in Fig. 6.29, as the plasticity index increases, the static 
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friction coefficient decreases. Both the CKE model and the LET model show the same trend as the 

FEM results, and the static friction coefficients predicted by these two models are lower than the 

FEM data. 

 

Fig. 6.28. The dimensionless tangential load versus dimensionless tangential displacement for 

the surfaces with different plasticity indices. 
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Fig. 6.29. Comparison of static friction coefficient between the FEM data and statistical models 

for generated surfaces with different plasticity index indices. 

 

 

6.4.3. The Effect of Strain Hardening on Static Friction Coefficient 

The material of the solid body with rough surfaces are considered as elastic-plastic linear 

isotropic hardening with a tangent modulus, 𝐸𝑡. The results considered so far are for the case of 

bilinear hardening with 𝐸𝑡 = 2% 𝐸. The schematic of the material model was shown in Fig. 5.13 

in Chapter 5. The simulations are now carried out by using the same material properties except for 

the tangent modulus. The tangent modulus is set now to 𝐸𝑡 = 0. By removing the influence of 

hardening, its effect can be observed. 
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Fig. 6.30. The effect of strain hardening on the contact area considering different normal loads 

for Surface F1. 

 

Fig. 6.31. The effect of strain hardening on the static friction coefficient considering different 

normal loads for Surface F1. 
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First, the fractal rough fractal surface F1 is used in the simulation. The results of contact 

area and static friction coefficient with a 2% tangent modulus and without any tangent modulus 

are plotted in Figs. 6.30 and 6.31, respectively. Both contact area and static friction coefficient 

without strain hardening are greater than the corresponding values with strain hardening. For this 

fractal rough surface, the impact of the strain hardening on contact area is not obvious. This is 

mainly because fractal surface F1 is so smooth, the roughness is only 0.006 μm and the plasticity 

index is 2.38. Interestingly, as can be seen from Fig. 6.31, the bilinear stain hardening clearly has 

an influence on the static friction coefficient, and this effect increases as the dimensionless normal 

load increases. 

Then, the effect of strain hardening on the contact area of surfaces with different roughness 

are analyzed. As can be seen from Fig. 6.32, the effect of strain hardening on contact area becomes 

more significant for the rougher surfaces. 

 

Fig. 6.32. The effect of strain hardening on the static friction coefficient considering different 

normal loads for surfaces G1, G2, G3, G6 and G9. 
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Fig. 6.33. The effect of strain hardening on the static friction coefficient for various values of 

plasticity index. 

 

The static friction coefficient versus platicity index for the cases with and without strain 

hardening are plotted in Fig. 6.33. As can be seen from Fig. 6.33, the effect of strain hardening on 

static friction coefficient is significant for the surfaces with larger plasticity indices. 

 

6.4.4. Elastic Perfect Plastic Rough Surface Contact with High Plasticity Index 

As can be seen from the literature review and previous study in the above sections, the 

statistical models and FEM results mentioned previously only considered bilinear strain hardening 

materials. Nevertheless, the dimensionless normal load is limited to 0.3 and the plastic index is 

limited to 32. Very little work has been done considering the elastic-perfectly plastic contact of 

rough surfaces with very high plasticity indices under higher normal loads.   

In this subsection, the strain hardening is not considered, the elastic perfect plastic contact 

is analyzed. The same material properties were used except for the tangent modulus, 𝐸𝑡, and it is 
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set to zero. The static friction coefficient is investigated over a wide range of dimensionless normal 

loads 0.98 ≤ 𝐹𝑛/(𝐴𝑛𝑆𝑦) ≤ 2.93, which are much larger than the dimensionless normal load in 

[13, 15], 0.3. The plasticity index is varied from 26.6 to 134.2.  

 

Fig. 6.34. Contact area as a function of dimensionless normal load for the different rough 

surfaces with no strain hardening. 
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Fig. 6.35. Contact area as a function of plasticity index for the different rough surfaces with no 

strain hardening. 
 

Fig. 6.34 presents the contact area versus dimensionless normal load. The three surfaces 

show the same trend: as the dimensionless normal load increases, the contact area increases for all 

the three surfaces. The same result set are plotted as a function as the plasticity index in Fig. 6.35. 

From Fig. 6.35, as the plastic index increases, the contact area decreases. This is similar to the 

behavior for the cases with strain hardening under lower loads. 
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Fig. 6.36. Static friction coefficient versus dimensionless normal load for Surface 2L, 8L and 

32G with no strain hardening. 
 

 

Fig. 6.37. Static friction coefficient versus plasticity index for Surface 2L, 8L and 32G with no 

strain hardening. 
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Then, the static friction coefficient versus normal load is plotted in Fig. 6.36. As expected, 

these surfaces show the same trend: the static friction coefficient decreases as the dimensionless 

normal load increases. From Fig. 6.36, under very high loads, these curves become very close.  

The same data set is plotted in Fig. 6.37. Fig. 6.37 shows that the static friction coefficient as a 

function of the plasticity index under different normal loads. As we found in the section 6.4.2, for 

the low plasticity indices with bilinear strain hardening material, the static friction coefficient 

decreases with increasing plasticity index (see Fig. 6.29). As can be seen from Fig. 6.37, which is 

very different from those cases, for very high loads, the static friction decreases very slowly and 

is nearly a constant. This trend agrees with the LET model. But for lower loads, the static friction 

coefficient for the surface with higher plasticity indices can be less than, equal to or greater than 

the static friction coefficient of the surface with lower plasticity indices.  

 

6.5. Conclusion 

A finite element model was used to simulate the sliding inception of a rigid flat loaded 

against a deformable solid with different rough surfaces under combined normal and tangential 

loading. The effects of different parameters on the contact area and static friction coefficient were 

studied. It is observed that the static friction coefficient decreases as the dimensionless normal load 

and plasticity index increases. The FEM results were compared with several statistical static 

friction models, and confirm their trends on the prediction of static friction coefficient. However, 

the quantitative predictions are rather poor for some cases. In most cases, the statistical model 

predictions of contact area and static friction are lower than the FEM predictions. In this study, we 

also found that the strain hardening considered by the tangent modulus, 𝐸𝑡, can increase the contact 

area and decrease the static friction coefficient. Considering the material without strain hardening, 
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the contact area and static friction of rough surfaces with higher plasticity indexes under high loads 

were investigated. The static friction coefficient for the surface with higher plasticity indices can 

be greater or less than the static friction coefficient with lower plasticity indices for some cases, it 

depends on the normal load. However, the difference is not significant. 
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CHAPTER 7.  A MULTI-SCALE ROUGH SURFACE STATIC FRICTION MODEL 

 

 

7.1. Introduction 

Considering the influence of multi-scale structure, Archard [16] suggested that the 

asperities of rough surfaces can be modeled as “protuberance up on protuberance”. By using a 

similar idea as Archard’s, Ciavarella modeled rough surface contact using the two-dimensional 

elastic sinusoidal solution given by Westergaard [18]. Also based on Archard’s work, Jackson and 

Streator (JS) [19] developed a non-statistical multi-scale model of normal contact between rough 

surfaces. They used a stacked 3D sinusoidal geometry to represent the asperities in contact at each 

level of the surface, and predicted the real contact area as a function of the normal contact load.  

The central idea of the JS model is that a surface can be decomposed into stacks of sinusoidal 

waves with different amplitudes and wavelengths, as shown in Fig. 7.1. Each frequency is 

considered a scale or layer of asperities which are stacked iteratively upon each other. The Fourier 

transform was used to convert the data into a series of stacked sine and cosine waves. The 

amplitudes at each frequency are calculated from the complex terms and their conjugates from the 

Fourier transform.  
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Fig. 7.1. A schematic depicting the decomposition of a surface into superimposed sine waves. 

 

The basic assumptions of the JS multi-scale model are: 

(1.)  Smaller asperities are located on top of the larger asperities. 

(2.)  Each scale level of asperities carries the same total normal load 

(3.)  At each scale level, all the asperities at this level shares equally the normal load equally. 

(4.) The contact area at a given scale level cannot be greater than the contact area at a larger 

scale. 

Based on the assumptions, each frequency level of asperities carries the same total load, 

and the load at each scale level is sheared equally among all the asperities at that level.  Following 

this, the contact area is then calculated iteratively using the factorial equation: 

𝐴𝑟 = (∏ 𝐴̅𝑖𝜂𝑖

𝑖𝑚𝑎𝑥

𝑖=1

)𝐴𝑛 

(7.1) 
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where 𝐴𝑟 is the real area of contact, 𝐴̅ is the contact area of a single asperity on a certain scale of 

roughness,  is the real asperity density, 𝐴𝑛 is the nominal contact area, and the subscript  𝑖 

denotes a specific asperity scale level, with 𝑖𝑚𝑎𝑥 denoting the smallest scale level considered.  

Since each scale shares the same the total load, 𝐹𝑛, the single asperity load at the 𝑖𝑡ℎ scale can be 

related to the total load by 

𝐹𝑛 = 𝐹𝑛̅𝑖𝜂𝑖𝐴𝑖−1 (7.2) 

The parameters in Eq. (7.2) can be obtained after performing the fast Fourier transform, where 𝜂 

is the asperity areal density and given by 

𝜂𝑖 = 2/𝜆𝑖
2 (7.3) 

Each frequency level is modeled using a sinusoidal contact model, for elastic contact, the JGH 

model (Eqs. (3.2) and (3.3)) and the fitted equations (Eqs. (3.4) and (3.5))) are used. For elastic-

plastic contact, the FEM based equations in [48, 58] can be used. 

 Since the JS model needs solving numerically by multiple interactions, Jackson simplified 

it to a closed form equation for the rough surface contact [49]. He assumed that the real contact 

pressure is equal to the maximum complete contact pressure of the surface. If the contact pressure 

is less than the complete contact pressure, (𝑝∗𝑜𝑟 𝑝𝑒𝑝
∗ ), at a particular scale, this scale will reduce 

the contact area. As the scales are included, the contact pressure will keep on increasing until it 

overcomes the complete contact pressure at the remaining smaller scales. He found the real contact 

area is related to the ratio of the maximum amplitude to the wavelength ratio found for the 

spectrum of the surface, which is derived from Eq. (3.13)  

𝐵𝑐 =
√2𝑆𝑦

𝜋𝐸′ [3𝑒−2(𝜈+1)/3 + 2(
1 − 2𝜈
1 − 𝜈 )]

 

(7.4) 
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and when 𝐵 < 𝐵𝑐  the contact is in the elastic range, the contact area can be obtained by the 

equation 

(𝐴𝑟)𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
𝐹𝑛

√2𝜋𝐸′𝐵𝑚𝑎𝑥
 

(7.5) 

where 𝐵𝑚𝑎𝑥 is the maximum value of the ratio of amplitude over wavelength, ∆/𝜆. 

when 𝐵 > 𝐵𝑐 the contact is in the elastic-plastic range, and the contact area can be obtained by the 

equation 

Ar =
𝐹𝑛

(𝑝𝑒𝑝
∗ )

𝐵𝑚𝑎𝑥

=
𝐹𝑛

√2𝜋𝐸′𝐵𝑚𝑎𝑥 ∙ 0.992

{(
𝐵𝑚𝑎𝑥
𝐵𝑐

)
[
10
3 (
𝐵𝑚𝑎𝑥
𝐵𝑐

)
−0.39

+
9
4𝜈
4+0.64]

−1}

 

(7.6) 

with 𝐵𝑐 being given by Eq. (7.4). Here, 𝐵𝑚𝑎𝑥is the maximum ratio of amplitude to wavelength. 

 

7.2.  Multi-scale Contact Model 

7.2.1 Methodology  

As discussed previously, the rough surface data set used for this model is converted into a 

serious of stacked sine waves using the Fourious Transfrom. All calculations for the model are 

then made based on the amplitude and wavelength of these sinusoidal waves.  

The MATLAB command “fft2 (z, N𝑥, N𝑦)” is used to perform the Fourier transform. This 

command is the two-dimensional Fourier transform of a matrix using a fast Fourier transform 

algorithm. 𝑁𝑥 and 𝑁𝑦 are the number of the points in the x or y directions. The FFT converts the 

surface height matrix into a complex-valued matrix. i.e. 𝑧𝑓 = fft2 (z, N𝑥, N𝑦)/(4N
2) . The 

amplitude of the matrix can be obtained from Δ =  𝑎𝑏𝑠(𝑧𝑓) or Δ =  𝑧𝑓 ∙ conj(𝑧𝑓). However, the 

method to obtain the amplitudes discussed in the section 7.1 is just for a 2D profile. A single 

amplitude for each scale level is required while multiple amplitudes will result for a 3D surface. 

https://www.mathworks.com/help/matlab/ref/fft2.html#bvhcnas
https://en.wikipedia.org/wiki/Complex_number
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An equivalent 2D equivalent amplitude was calculated by using a two-sided amplitude spectrum 

method developed by Rostami and Streator [123]. A single-side spectral method is found more 

convenient to calculate amplitude. The equivalent amplitude can be obtained by the expression: 

Δ𝑘 =
1

2

[
 
 
 
√∑ |𝑧𝑓(𝐾𝑥, 𝐾)|

2

𝑁𝑥/2

𝑘𝑥=1

+√∑ |𝑧𝑓(𝐾, 𝐾𝑦)|
2

𝑁𝑦/2

𝑘𝑦=1

 

]
 
 
 

 

(7.7) 

The wavelength can be obtained by: λ𝑘 = 𝐿/𝑘, where L is the scan length. For example, 

the wavelengths of  the first and second scale level are L and 𝐿/2, respectively. The surface 2L is 

used to develop the friction model. The scan lengths in the x and y directions are both 127 𝜇𝑚, 

and the total number of the points in the area is 16384 (128 points in each direction) The resulting 

amplitude versus wavelength curve is plotted in Fig. 7.2. and the resulting amplitude to wavelength 

ratio versus wavelenth is plot in Fig. 7.3. From Fig. 7.3, the effective amplitude is normalized by 

the wavelength. The amplitude to wavelength ratio has a decreasing trend with the increasing 

wavelength. This trend is what is expected for a self-affine multi-scale surface structure, as 

discussed in Jackson [49]. 

 



 176 

 

Fig. 7.2. Resulting amplitude versus wavelength for the surface 2L. 

 

 

Fig. 7.3. Resulting amplitude/wavelength versus wavelength for the surface 2L. 
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7.2.2. Results and Discussion 

Again, there are two loading steps: first, a normal preload was applied on the rigid flat; 

Then normal load is held constant, and a lateral displacement is applied and increased gradually. 

In the first normal loading step, the same assumptions in [19] are used and noted. Based previously 

on the frame work [19] discussed in the section 7.1, the real contact area of the rough surface can 

be obtained as a function of the normal load. While initially neglect frictional load, for the elastic 

contact, the JGH model (Eq. (3.2) and (3.3)) and fitted equation equations (Eq. (3.4) and (3.5)) are 

used to predict the contact area on each frequency level. For the elastic-plastic contact, the multi-

scale framework incorporates the KJ model [58], Jackson et al. [48]  and Ghaednia et al. [55] 

analysis to consider the asperity contact on each scale level.  

 

Fig. 7.4. Predicted contact area as a function of considered scale levels under different contact 

normal loads for surface 2L. 
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In order to verify the multi-scale model, the contact area predicted by the model as a 

function of scale level interation under different normal loads is plotted in Fig. 7.5. Fig. 7.5 shows 

that the scale levels cause contact area to decrease. At the same scale level, contact area increaes 

as the dimensionless normal load increases. For the surface 2L, the contact scale is at the smallest 

scale.  

 

Fig. 7.5. Comparison of contact area between FEM results and the multiscale contact model for 

surface 2L. 

 

The prediction of contact area are then compared with FEM results for under only normal 

preload, the multi-scale model is compared with the FEM results of rough surface 2L that was 

obtianed in Chapter 6 for elastic-plastic contacts. As discussed in Chapter 6, the employed material 

properties are an elastic modulus, E,  of 200 𝐺𝑃𝑎, Poisson’s ratio, 𝜈, of 0.3, yield strengh, 𝑆𝑦, of 

1 𝐺𝑃𝑎 and a tanget modulus, 𝐸𝑡, of 2% of the elastic modulus. The comparison between the multi-

scale model and FEM results are plotted in Fig. 7.6. They show a similar trend, and are in 
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reasonable agreement. However, the multi-scale model predicts a more linear relationship between 

contact area and pressure than the FEM results. 

 

 

Fig. 7.6. Predicted contact area as a function of considered scale levels under different normal 

loads for Surface G5. 
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Fig. 7.7. Comparison of contact area between FEM results and the multiscale contact model for 

surface G5. 

 

Fig. 7.8. Predicted contact area as a function of considered scale levels under different contact 

normal loads for surface 8L. 
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Fig. 7.9. Comparison of contact area between FEM results and the multiscale contact model for 

surface 8L. 

 

Surface G5 and 8L are also used to compare the predicted results for only a normal load as 

well. The contact area decreases as the iteration increases, and converges to a constant value (see 

Fig. 7.6 and Fig. 7.8). As expected, the comparison between the multi-scale model and FEM results 

show that the FEM results and multi-scale models show a similar trend, and are in a reasonable 

agreement (see Fig. 7.7 and Fig. 7.9). However, they still have some differences. The FEM results 

are higher than the predictions of the multi-scale model except lower loads.  
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Fig. 7.10. Comparison of contact area between FEM results and the multiscale contact model for 

surface 63M and interpolated surfaces. 

 

The elastic-plastic contact of both the original surface and interpolated surfaces from 

surface 63M are investigated. The applied load varied over a wide range. The the multi-scale model 

are compared to FEM results, and are plotted in Fig. 7.10. As can be seen from Fig. 7.10, as the 

number of contact elements increases, the results approaches the multi-scale model at loads 

𝐹𝑛/(𝐴𝑛𝑆𝑦) ≤ 2.2. The multi-scale matches the FEM results for 𝑁𝑒 = 65536 the best.  

 

7.3. Multi-scale Stactic Friction Model 

The following will describe how the JS multi-scale model is modified to predict the effect 

of tangential load and friction. The maximum shear stress criterion is used to determine the sliding 

inception. As discussed in Chapter 4, when the frictional shear stress on one asperity in contact 

reaches the critical interfacial shear strength, local sliding occurs. Once all the asperities in contact 
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slide, the entire surface starts sliding. Considering junction growth, the contact area at sliding 

inception at each scale are analyzed, and the sliding contact area at sliding inception of the rough 

surface can be obtained. 

 

7.3.1. Methodology  

In the second loading step, based on the assumptions of the normal stacked friction model, 

two assumptions are added: 

(5.)  Each scale level of asperities carries the same tangential total load. 

(6.)  At each scale level, all the asperities at this level shared the load equally. 

      (7.)       The shear stress at a given scale level cannot be less than the shear stress at a 

larger scale. 

To illustrate in more detail how the multi-scale driction model is used to model static 

friction, a flow chart is given in Fig. 7.11.   
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Fig. 7.11. Flow chart of the proposed multi-scale friction model. 
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The main procedure is listed below: 

1.) Praparation. Select and scan the rough surface data, and perform an FFT. 

2.) Find the parameters required at each scale level. Find the scan length for the x and y 

directions, L, calculate equivalent amplitude, ∆, using Eq. (7.8). Calculate asperity density, 

𝜂, using Eq. (7.3). 

3.)  Apply a normal force, 𝐹𝑛 and tangential shear stress, 𝜏. 

4.) Set the initial values: nominal contact area, 𝐴𝑛 and critical shear strength, 𝜏𝑐. 

5.) Iterates to find the contact area at sliding inception 

• Start interation from 𝑗 = 1. 

• Start interation from 𝑖 = 1. 

• Compute the number of asperities at scale level 1.  

• Compute the normal force applied on each asperity at scale level 1. The total normal load 

is divided evenly among all the asperities of this level.  

• Compute contact area of each individual asperity at level 1 by using Eqs. (3.12) - (3.17) 

for elastic-plastic contact. The single contact area is determined by a given load, geometric 

parameter and set of material properties. 

• Compute shear stress at level 1, keeping with assumption #7, the shear stress at scale level 

1 can be obtained by  𝜏1 = max ((𝐹𝑡)0/𝐴1, (𝐹𝑡)0/𝐴𝑛 ).  

• Compute the contact area, (𝐴𝑠)1, at the sliding inception of each individual asperity at 

level 1 using Eq. (4.12). This step considers junction growth.  

• Updata contact area at level 1, keeping with assumption #4, make guarantee that the contact 

area at a given scale level could not be greater than the values of the larger scales below it. 

i.e. choose the small values.   𝐴1 = min ((𝐴𝑠)1, 𝐴0). 



 186 

• End current iteration and start the next interation for 𝑖 = 2, calculate contact area at scale 

level 2.  

• Repeat iteration untile the scale number reaches 𝑖𝑚𝑎𝑥. 

• keeping with assumption #5 and assumption #6, tangential load at each scale level are the 

same, so it is enough to calculate the tangetial force at the contacting scale, by using 

contact area times critical shear strength.  

• Start next iteration for 𝑗 = 2.  

• Repeat these procedures iteratively until the ((𝐹𝑡)𝑗 − (𝐹𝑡)𝑗−1)/(𝐹𝑡)𝑗 is below a small 

constant value 𝐸𝑐. At that moment, the tangential load is the maximum tagnential load. 

6.) Compute the static friction coefficient of the rough surface, 𝜇𝑠 = (𝐹𝑡)𝑗/𝐹𝑛. 

 

7.3.2. Results and Discussion 

Based on the procedure introduced in Section 7.3.1, the contact area is investigated firstly. 

Again, the surface 2L under dimensionless normal load 𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.5  is considered. The 

predicted contact areas at each scale under only normal load and at sliding inception are plotted in 

Fig. 7.12. As can be seen from Fig. 7.12, the contact area for both cases, the contact area decreases 

as the scale becomes samaller, and  the differences are the junction growth for each scale. 

Considering the assumption 5, each scale level of asperities carries the same tangential total 

load. The larger scales have smaller contact areas, and lower shear stresses. The predicted shear 

stress is plotted in Fig. 7.13. The pridicted shear stress increases until it reaches the critical shear 

strength. The lower scales have smaller shear stress, because the tangetial force is certain, the lower 

scales have larger contact areas and the resulting lowers stresses. The tangential load causes the 
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junction growth. The increased contact area need more tangential force to overcome the friction. 

after a few iterations, the tangential force will converge to a constant value (see figure 7.14).    

 

Fig. 7.12. Predicted static friction coefficient as a function of considered scale levels under only 

normal load and at sliding inception for surface 8L. 
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Fig. 7.13. Predicted shear stress as a function of considered scale levels under a dimensionless 

normal load 𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.5 for surface 2L. 

 
Fig. 7.14. Predicted dimensionless tangential load under a dimensionless normal load, 

𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.5 for surface 2L. 
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Fig. 7.15. FEM data of contact area evolution under combiend normal and tangential loading for 

surface 2L. 

 

From the FEM results, the junction growth phenomenon for this case can be observed. As 

can be seen from Fig. 7.15, as dimensionless tangential displacement increases, the contact area 

ratio increases, and converge to a constant value at the sliding inception. For this case the increased 

contact area ratio is 18.75%.  

The results produced by the proposed model using the KJ model at the asperity level are 

compared.  A comparison of the predicted static friction coefficient as a function of  dimensionless 

normal load, 𝐹𝑛/(𝐴𝑛𝑆𝑦), is made between the proposed multi-scale friction model, the CKE model, 

LET model and FEM results. As can be seen from Fig. 7.16, the FEM results show a decreasing 

trend, while the proposed model and the LET model predicts a nearly constant relasionship. The 

LET model is only valid for lower loads. As the dimensionless normal load increases, the FEM 

data approaches the proposed model. 
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Fig. 7.16. Comparison of static friction coefficient between FEM results, LET model and the 

proposed multiscale friction model for surface 2L. 

 

 

The comparison between proposed model FEM results and the LET model for surface G5 

and 8L are plotted in Fig. 7.17 and Fig. 7.18, respectively. Intresting, both the proposed model and 

statistical model predict a constant friction coefficient for the surface G5 and surface 8L. The static 

friction coefficients predicted by the proposed model fall below the FEM results the LET model. 

They do not  always show the same trend or have a good agreement. This is mainly because the 

spectrum method decreases the contact area with load. However the FEM results and proposed 

model predictions are fairly close under heavy normal loads. 
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Fig. 7.17. Comparison of static friction coefficient between FEM results, LET model and 

proposed multiscale friction model for surface G5. 
 

 

Fig. 7.18. Comparison of static friction coefficient between FEM results, LET model and the 

proposed multiscale friction model for surface 8L. 
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In order to investigate the effect of plasticity index on static friction coefficient, the 

generated Gaussian surfaces G1 to G9 are used in the simulations. The contact area under only 

normal loading are plotted in Fig. 7.19. As can be seen from Fig. 7.19, under the same normal load, 

the surfaces with larger plasticity have lower contact area ratios in most of cases. Under the 

dimensionless nornal load 𝐹𝑛/(𝐴𝑛𝑆𝑦) = 1.86, the smoothest one (surface G1) has reached the 

complete contact (𝐴𝑟/𝐴𝑛 = 1).  

 

Fig. 7.19. Contact area ratio versus dimensionless normal load for the various surfaces with 

different plasticity indices. 

 

Fig. 7.20 shows the comparison of static friction coefficient, 𝜇𝑠, as a function of  plasticity 

index, Ψ, between the proposed model, the CKE model, LET model and FEM results. This case is 

under low load (𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.155). All of them show the same trend, that the static friction 

coefficient decreases as plasticity index increases. Note that the static friction coefficient of the 

surface with Ψ = 16.59 is higher than the static friction coefficient of the surface with Ψ = 16.59. 



 193 

Recall that the contact area of the surface with Ψ = 16.59 is higher than the contact area of the 

surface with  Ψ = 13.20 under dimensionless contact pressure (𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.155) in Fig. 7.19. 

This confirms that the static friction coeffcient is related to the contact area. The proposed static 

friction model predictions are lower than the FEM results and higher than or close to the CKE 

model and LET model for the surfaces with lower plasticity indices (roughly Ψ ≤ 11). Under high 

loads, the static friction coefficient becomes below the LET model slightly, and it is still lower 

than the FEM predictions. Howerver, the proposed multi-scale friction model predictions are less 

than the FEM results especially under low normal loads.  

 

 

Fig. 7.20. Comparison of static friction coefficient for surfaces with various plasticity indices 

under a dimensionless normal load 𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.155. 

 

Next, the effect of static friction coefficient under heavy loads 𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.62  is 

investigated. Fig. 7.21 shows the comparison of static friction coefficient, 𝜇𝑠, as a function of  

plasticity index, Ψ, between the proposed model and FEM results under various normal loads for 
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the surfaces G1 to G9. Under the normal preload 𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.62, the multi-scale friction model 

predicts lower values than the FEM data.  

 

Fig. 7.21. Comparison of static friction coefficient between FEM data and the proposed model 

for surfaces with various plasticity indices under a dimensionless normal load 𝐹𝑛/(𝐴𝑛𝑆𝑦) =

0.62. 
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Fig. 7.22. Comparison of static friction coefficient between FEM data and the proposed model 

for surfaces with various plasticity indices under a dimensionless normal load 𝐹𝑛/(𝐴𝑛𝑆𝑦) =

0.93. 

 

Fig. 7.23. Comparison of static friction coefficient between FEM data and the proposed model 

for surfaces with various plasticity indices under a dimensionless normal load 𝐹𝑛/(𝐴𝑛𝑆𝑦) =

1.86. 
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Much higher loads than in Fig. 7.21 are also applied. The dimensionless normal preload 

𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.93 is applied firstly. As cen be seen from Fig. 7.22, the multi-scale friction model 

predicts lower values of the static friction coefficient than the FEM data except for the first point. 

That is because the contact area of the G1 surface under normal loading is greater than 90%, due 

to junction growth, the complete contact might be reached. Under the normal preload 

𝐹𝑛/(𝐴𝑛𝑆𝑦) = 1.86, as can be seen from Fig. 7.23, excluding the complete contact cases (the 

surface G1, G2 and G3 are flattened), the proposed static friction model predicts lower values than 

the FEM data. It also can be seen that, as the dimensionless normal preload increses, the difference 

between FEM results and proposed model becomes smaller. The multi-scale model can predict the 

complete contact accurately, and matches fairly well with the FEM data. 

The proposed model has the same trend as the FEM model and theoretical models. There 

are also still some differences between them. The proposed multi-scale friction model predicts 

lower values than the FEM data. However, as discussed previously the proposed model is not in a 

good quantititive agreement with FEM results at lower loads (see Figs. 7.15- 7.17). Fig. 7.24 shows 

the contact area for surface 8L under the normal loads 𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.06 and 𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.12, 

respectively. The red color presents the local contact areas. The numbers of local contact areas and 

contact nodes are plotted in Fig. 7.25. As the dimensionless normal load increases, the numbers of 

contact nodes increase while the number of local contact area increases until it becomes a nealy 

constant.  Note that the results in Figs 7.25 are not normalized so that the differentces between 

them can be seen more easily. The ratio of numbers of contact nodes to thelocal contact area is 

plotted in Fig. 7.26. From Fig. 7.26, as the dimensionless normal load increases, the ratio nealy 

increases. The ratio is below 4 under the dimensionless lower normal loads  0.06 and 0.12, i.e. 
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there are only less than 4 contact nodes for each contact area.  This probably cause accuracy 

problem in ANSYS.   

 

(a) 𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.06                                          (b) 𝐹𝑛/(𝐴𝑛𝑆𝑦) = 0.12 

Fig. 7.24. Contact area under dimensionless normal loads for surface 8L. 

 

Fig. 7.25. Number of local contact areas and nodes versus dimensionless normal load for surface 

8L. 
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Fig. 7.26. Average local contact area density versus dimensionless normal force for surface 8L. 

 

7.4. Conclusion 

Since most existing friction models [13, 15] have limitations on the range of normal load 

and plasticity: 𝐹𝑛/(𝐴𝑛𝑆𝑦) ≤ 0.3 and Ψ ≤ 32, a model for the static friction of rough surfaces for 

a wide range of normal loads and plasticity indices was developed, which an attempt to capture 

the multi-scale features, and elastic-plastic deformations.  

First, the contact area of FEM results, under normal load only are compared with the JS 

multi-scale contact model. They have the same trend and reasonable agreement. However, they 

also show some differences. The JS multiscale model predicts lower values than the FEM data. 

Next, this study formulates an iterative multi-scale friction model framework for modeling 

friction between rough surfaces, which uses the Fourier series based representation of the rough 

surface. Second, the comparison of the predicted static friction coefficient between the proposed 

model, statistical models and FEM results are made. Firstly, the effect of normal load on the static 
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friction coefficient is analyzed. In this step, the surface 2L, surface G5 and surface 8L were used 

in the FE models. The FEM results show a decreasing trend, while the proposed friction model 

and statistical models predict constant values. The proposed model predictions are lower than the 

FEM results and theoretical models.  Then, the effect of plasticity index on the static friction 

coefficient is analyzed. In this step, 9 generated Gaussian surfaces with various plasticity indices 

under a wide range of normal loads are used in the simulations. The proposed model shows the 

same trend as the theoretical models and FEM results: as the plasticity index increases, the static 

friction coefficient decreases. The proposed model predicts lower static friction coefficients than 

the FEM results, while the predictions are close to the theoretical models under normal loads. The 

difference of static friction coefficients between the proposed model and FEM results becomes 

smaller with increasing normal load.  

Overall, the proposed model, theoretical models and FEM results are in a good qualitative 

agreement, especially for higher loads and higher plasticity indices. The proposed friction model 

also can predict the complete contact accurately. However, the proposed model and FEM results 

show a big difference for the cases with lower loads and lower plasticity indices. This might be 

because of the elaborate problem in the ANSYS.  
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

 

 

8.1. Summary and Conclusion                                                                                

Friction is an important and complex physical phenomenon, and modeling friction contacts 

is a challenge due to the complicated multiple scales of features on surfaces. Many researchers 

have developed different kinds of models to solve this problem. Most existing friction models are 

based on a statistical treatment that incorporates the results of a single asperity into a statistical 

representation of surface roughness. These models can be applied to macroscale rough surfaces 

after a statistical summation procedure. However, this technique requires the statistical 

characterization of a surface’s roughness and asperity height distribution. Recently, multi-scale 

models and deterministic models have been developed to analyze the behaviors of elastic-plastic 

normal contact between rough surfaces. However, very little work has been done by using multi-

scale models or deterministic models to predict friction. In this study, the contact between a three-

dimensional deformable rough surface and a rigid flat were investigated by using both a multi-

scale model and a deterministic model, and the results were compared. However, some 

intermediate steps are required before reaching this goal. 

Firstly, the contact behavior of a single three-dimensional sinusoidal asperity under normal 

loading were investigated for both elastic and elastic-plastic cases. For the elastic case, the 

complete contact pressure, general stress distribution, maximum von Mises stress and critical 

amplitude under the full stick condition were investigated analytically. The analytical equations 

for complete contact pressure and critical amplitude were provided. For the elastic-plastic case, 
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the effect of contact conditions (perfect slip, full stick) on the complete contact pressure was 

investigated by using the FEM method. From the results, the effect of contact conditions on contact 

area does not appear to be significant. 

Secondly, the contact behavior of a single elastic-plastic sinusoidal asperity under 

combined normal and tangential loading was investigated. The effects of the following parameters 

on the effective static friction coefficient of a single sinusoidal asperity were investigated: material 

properties (elastic modulus, Poison’s ratio, yield strength), geometry parameters 

(amplitude/wavelength), contact pressure and the critical interfacial shear strength. We found that 

the effective static friction coefficient of a single sinusoidal asperity decreases with increasing 

contact pressure, elastic modulus, Poisson’s ratio, and the ratio of amplitude to wavelength, and 

increases with increasing yield strength and critical shear strength. Empirical equations of the 

effective static friction coefficient and junction growth due to tangential load were provided.  

Then, this work considers the elastic-plastic contact between deformable rough surfaces 

and a rigid flat under combined normal and tangential loading. The effect of sampling resolution 

as controlled by a spectral interpolation method on the contact behaviors was investigated. The 

first loading step, in which a normal load is applied on the rigid flat, the effects of sampling 

resolution on the contact area ratio, dimensionless displacement, dimensionless average gap, and 

maximum von Mises stress were investigated. It was found that: as the resolution decreases, the 

contact area ratio and dimensionless displacement decreases, while the dimensionless average gap 

and dimensionless contact pressure increases both under normal preload and at sliding inception. 

The second step, in which the normal load remains constant and a tangential load is applied and 

increases gradually, the static friction coefficient was investigated. The effect of tangential load 

on the contact behaviors were studied as well. We found the tangential force can increase the 
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contact area ratio, dimensionless displacement and dimensionless maximum von Mises stress, and 

decrease the dimensionless average gap and dimensionless contact pressure. 

Next, the effects of the following parameters on the static friction coefficient of rough 

surfaces were investigated: plasticity index, normal force and tangent modulus. It is observed that 

the static friction coefficient decreases as the dimensionless normal load and plasticity index 

increases. The FEM results were compared to the existing statistical models. For some cases, the 

overall trends of both the FEM results and statistical models are the same; but for a few cases, 

especially for the rougher surfaces, they are qualitatively different. In most cases the FEM predicts 

higher friction than the statistical models. We also found that the tangent modulus can decrease 

the static friction coefficient by hardening the surface. 

Finally, a new stacked multi-scale friction model was developed to predict the static 

friction coefficient of the rough surfaces in contact. The single asperity sinusoidal results in [58] 

are used within the multi-scale frame work in [19] for the normal loading step to predict real 

contact area. The multi-scale contact model then was extended to a friction model. The predictions 

are compared with FEM results and a statistical model. They show the same trend, but they are not 

in a good qualitative agreement, and this is probably because one or more of the following reasons: 

the rough surface is not isotropic, the asperity summits have different radii, there is a uncertain 

interaction between asperities and bulk deformation, the distribution of the asperities are not 

Gaussian, and the measured nominal contact area is anisotropic and not large enough and not 

enough nodes in individual asperities in contact in the FE model. This still needs further 

investigating. 

 

8.2. Recommendation for Future Work 
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The long-term impact of this research will be to assistant the optimization in the design of 

surfaces and materials in order to reduce or increase friction. It may be evaluated to increase 

friction, decrease friction or decrease wear. The developed model can be further incorporated into 

dynamical system applications, such as cylinder piston systems, and brake systems. 

The stacked multi-scale friction model was developed to predict the static friction 

coefficient, but further effort is still needed to verify the accuracy of this model experimentally. 

The developed model in this work is only for dry conditions. However, the modeling approach 

could be applied on the friction with lubrication. The scanning length of the rough surfaces we 

used in the FE model was limited to just a few hundreds of microns. When developed a microscale 

model for macroscale contacts, the real rough surfaces that have large nominal areas may contain 

millions of asperities to model. Hence, one of the major drawbacks is that it needs great 

computational sources. With the technology developed nowadays, this shortcoming can be 

overcome later. However, the proposed multi-scale model and existing statistical models can be 

used without such restrictions. 

There are several other aspects of this work that can be extended. The multi-scale friction 

model for the material without strain hardening still needs to be explored. The stacked multi-scale 

friction model based on the FFT method could be further extended to analyze the electrical and 

thermal contact considering tangential load.  
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APPENDIX A 

 

 

!****An Elastic-plastic Sinusoidal Model Under Combined Normal Loading ****! 

 

! Length unit: mm 

/FILNAME,SD0.02,1          ! Name the current job 

!***************************Preprocessor****************************! 

/prep7                                  ! Preprocessor 

/NUMBER,-1  

/PNUM,ELEM,0 

!-------------------------Choose element type ---------------------------! 

ET, 1, SOLID186         ! Solid 186 (20-node brick element) 

ET, 2, TARGE170       ! Type 2 = 4-node target element 

ET, 3, CONTA174       ! Type 3 = 8-node contact element 

!-------------------------Set the element keyoptions ---------------------------! 

KEYOPT,2,2,1            ! Boundary conditions for rigid target nodes: Specified by user. 

KEYOPT,3,1,0            ! Degree of Freedom: UX,UY,UZ (default) 

KEYOPT,3,2,0            ! Contact algorithm: Augmented LaGrangian (default) 

KEYOPT,3,4,0            ! Location of contact detection point: normal to target surface 

KEYOPT,3,5,1            ! CONF/ICONT automated adjustment: close gap with auto CNOF 

KEYOPT,3,6,1            ! Contact stiffness variation: make a normal refinement 

KEYOPT,3,7,0            ! Element level time incrementation control: no control (default) 

KEYOPT,3,8,0            ! Asymmetric contact selection: No action (default) 

KEYOPT,3,9,1            ! Effect of initial penetration or gap: Exclude both 

KEYOPT,3,10,2          ! Contact stiffness update: Each iteration 
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KEYOPT,3,11,0          ! Shell thickness effect: Exclude 

KEYOPT,3,12,3          ! Behavior of contact surface: Bonded (stick condition) 

KEYOPT,3,14,0          ! Behavior of fluid penetration load: various during iterations (default) 

!-------------------------Set real constant ---------------------------! 

R,1,0,0,10, 0.1,0,0    ! Set normal penalty stiffness factor and penalty stiffness 0.01  

RMORE,,,, ,, 

RMORE,,,, ,, 

RMORE,,,, ,, 

RMORE,,,,,,  

!-------------------------set the material property ---------------------------! 

MP, EX, 1, 200E3        ! Elastic modulus [N/mm^2] 

MP, NUXY, 1, 0.3        ! Poisson's ratio 

TB, BISO                      ! Bilinear isotropic material model 

TBDATA, 1, 1e3          ! Yield stress [N/mm^2] 

TBDATA, 2, 4e3          ! Tangent modulus [N/mm^2] 

!-----------------------Set the number of the Kpts and geometric parameters -------------------------! 

*SET, N, 65                                 ! Number of nodes in a and y direction 

*DIM, XX, ARRAY, 2*N-1       ! Array of nodes in x direction 

*DIM, YY, ARRAY, N              ! Array of nodes in y direction 

*SET, DELTA, 0.02                   ! Amplitude [mm] 

*SET, LAMBDA, 1                   ! Wavelength in x and y direction 

*SET, DEPTH, 30*DELTA               ! Depth of the substrate [mm] 

*SET, DELXY, LAMBDA/(2*N-2)  ! The mesh interval in x and y directions [mm] 

*SET, PI, 3.14159265D0 

!-------------------------Create the Keypoints---------------------------! 

*DO, I, 1, 2*N-1                                  ! Nodal coordinate in the x direction 

*SET, XX(I), LAMBDA/(2*N-2)*(I-1) 

*ENDDO                 
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*DO, I, 1, N                                          ! Nodal coordinate in the y direction 

*SET,YY(I), LAMBDA/2/(N-1)*(I-1) 

*ENDDO 

*DIM, ZZ, ARRAY, 2*N-1, N        ! Sinusoidal surface height matrix 

*DO, I, 1, 2*N-1                               ! Calculate the sinusoidal surface height 

*DO, J, 1, N 

*SET, ZZ(I,J) , DELTA*( 1 - COS(2*PI*XX(I))*COS(2*PI*YY(J)) ) + DEPTH 

*ENDDO 

*ENDDO 

*DO, I, 1, 2*N-1         

*DO, J, 1, N 

K, (I-1)*N + J, XX(I), YY(J), ZZ(I,J) 

*ENDDO 

*ENDDO 

!-------------------------Create the lines---------------------------! 

*DO, J, 1, 2*N-1                                     ! Connecting the neighboring key points along y axis  

*DO, I, 1, N-1 

L, (J-1)*N + I, (J-1)*N + I + 1 

*ENDDO 

*ENDDO 

*DO, I, 1, 2*N -2                                     ! Connecting the neighboring key points along x axis  

*DO, J, 1, N 

L, (I-1)*N + J, (I-1)*N + J + N 

*ENDDO 

*ENDDO 

!-------------------------Create the sinusoidal surface---------------------------! 

*DO, I, 1, 2*N-2                                       ! Creating area element through the neighboring lines  

*DO, J, 1, N-1 
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LSEL, S, LOC, X, XX(I) - 1/8*DELXY, XX(I+1) + 1/8*DELXY 

LSEL, R, LOC, Y, YY(J) - 1/8*DELXY, YY(J+1) + 1/8*DELXY 

AL, ALL 

ALLSEL 

*ENDDO 

*ENDDO 

CM, SINUSOIDAL, AREA           ! Creating the sinusoidal surface by combining the small area 

!-------------------------Create the volume---------------------------! 

K,N*(2*N-1)+1,0,0,0 

K,N*(2*N-1)+2,0,LAMBDA/2,0 

K,N*(2*N-1)+3,LAMBDA,0,0 

K,N*(2*N-1)+4,LAMBDA,LAMBDA/2,0            ! Creating keypoints  

L,N*(2*N-1)+1,N*(2*N-1)+2 

L,N*(2*N-1)+3,N*(2*N-1)+4 

L,N*(2*N-1)+1,N*(2*N-1)+3 

L,N*(2*N-1)+2,N*(2*N-1)+4 

L,1,N*(2*N-1)+1 

L,N,N*(2*N-1)+2 

L,N*(2*N-2)+1,N*(2*N-1)+3 

L,N*(2*N-1),N*(2*N-1)+4                                    ! Creating lines for the solid body! 

AL,N*(2*N-2)+(N-1)*(2*N-1)+1,N*(2*N-2)+(N-1)*(2*N-1)+3,N*(2*N-2)+(N-1)*(2*N-

1)+2,N*(2*N-2)+(N-1)*(2*N-1)+4 

ASEL, S, AREA, ,(N-1)*(2*N-2)+1 

CM, Bottom_surface, AREA                                ! Creating the bottom surface 

ALLSEL 

LSEL, S, LOC, X, 0*LAMBDA - 1/8*DELXY, 0*LAMBDA + 1/8*DELXY 

AL,ALL 

ASEL, S, AREA, ,(N-1)*(2*N-2)+2 

CM, Left_surface, AREA                                      ! Creating the left-side surface 
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ALLSEL 

LSEL, S, LOC, X, 1*LAMBDA - 1/8*DELXY, 1*LAMBDA + 1/8*DELXY 

AL,ALL 

ASEL, S, AREA, ,(N-1)*(2*N-2)+3 

CM, Right_surface, AREA                    ! Creating the right-side surface 

ALLSEL 

LSEL, S, LOC, Y, 0*LAMBDA - 1/8*DELXY, 0*LAMBDA + 1/8*DELXY 

AL,ALL 

ASEL, S, AREA, ,(N-1)*(2*N-2)+4 

CM, Front_surface, AREA                    ! Creating the front surface 

ALLSEL 

LSEL, S, LOC, Y, (1/2)*LAMBDA - 1/8*DELXY, (1/2)*LAMBDA + 1/8*DELXY 

AL,ALL 

ASEL, S, AREA, ,(N-1)*(2*N-2)+5 

CM, Back_surface, AREA                     ! Creating the back surface 

ALLSEL 

ASEL, S, AREA, ,SINUSOIDAL 

ASEL, A, AREA, ,Bottom_surface 

ASEL, A, AREA, ,Left_surface  

ASEL, A, AREA, ,Right_surface 

ASEL, A, AREA, ,Front_surface 

ASEL, A, AREA, ,Back_surface               

VA,ALL                                             ! Creating the volume by the six surfaces 

WPOFFs,,,DEPTH + 2*DELTA       ! Working coordinate system with the peak of the sinusoidal     

RECTING, -LAMBDA/32, LAMBDA+LAMBDA/8, -LAMBDA/32, 

LAMBDA/2+LAMBDA/32              ! Rectangular surface (X1, X2, Y1, Y2) 

!-------------------------Mesh the volume---------------------------! 

! mesh the target surface 

LESIZE, N*(2*N-2)+(N-1)*(2*N-1)+8+1,,, 1       ! Meshing target surface  
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LESIZE, N*(2*N-2)+(N-1)*(2*N-1)+8+2,,, 1 

LESIZE, N*(2*N-2)+(N-1)*(2*N-1)+8+3,,, 1 

LESIZE, N*(2*N-2)+(N-1)*(2*N-1)+8+4,,, 1 

ASEL, S,,, (N-1)*(2*N-2)+5+1 

TYPE, 2                                         ! Select target 170 

AMESH, ALL                               ! Meshing area 

ESURF, ALL, REVERSE             ! Reverse normal direction of element target 170 

ALLSEL 

LESIZE, N*(2*N-2)+(N-1)*(2*N-1)+4+1 ,,, 16, 14   

! Divided four vertical lines element into 16 sections, ratio 14 

LESIZE, N*(2*N-2)+(N-1)*(2*N-1)+4+2 ,,, 16, 14 

LESIZE, N*(2*N-2)+(N-1)*(2*N-1)+4+3 ,,, 16, 14 

LESIZE, N*(2*N-2)+(N-1)*(2*N-1)+4+4 ,,, 16, 14 

ASEL,S,AREA, ,SINUSOIDAL  ! Select all areas           

LSLA, S                                             ! Select lines contained in the current area set 

LESIZE, ALL, , , 1                            ! Divided the line elements on the sinusoidal surface 

ALLSEL 

VSWEEP, 1                                       ! Meshing the only volume through sweep method 

!-------------------------CONTACT PAIR CREATION---------------------------! 

ASEL, S, AREA, , SINUSOIDAL    ! Select all the area elements on the sinusoidal surface 

NSLA, S, 1                                        ! Select all the nodes attached to the area 

TYPE, 3                                            ! Select contact 174 

ESLN, S, 0                                        ! Select all the area elements on the areas 

ESURF                                             ! Laying element contac 174 on the meshed top surface 

ALLSEL 

REAL, 1                                          ! Creating a pilot node on the rigid flat 

TYPE, 2 

TSHAP, PILO 
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N, 1E8 ,-LAMBDA/32, -LAMBDA/32, DEPTH+2*DELTA                      

E, 1E8 

NSEL, S , , , 1E8                             ! Select the newly created node  

CM, PILOT, NODE 

ALLSEL 

!-------------------------Redefine element number for postprocessing---------------------------! 

*SET,I1 , 0  

*SET,II1 , 0 

*DIM, CONTNOD, ARRAY, (2*N-1)*N                       ! Create and store contact nodes 

ESEL, S, TYPE,,3 

NSLE, S, ALL 

*DO, I, 1, 2*N-1 

   *DO, J, 1, N 

      I1 = NODE( XX(I), YY(J), ZZ(I,J) ) 

     II1 = (I-1)*N + J 

     CONTNOD(II1) = I1 

   *ENDDO 

*ENDDO 

 

*DIM, CONTELE, ARRAY, (2*N-2)*(N-1)                        ! Create and store contact elements     

*DO, I, 1, 2*N-2  

   *DO, J, 1, N-1  

      ESEL, S, TYPE, , 3                                    

      NSLE, S, ALL                                          

      NSEL, R, LOC, X, XX(I) - DELXY/8, XX(I+1) + DELXY/8    

      NSEL, R, LOC, Y, YY(J) - DELXY/8, YY(J+1) + DELXY/8   

      ESLN, S, 1                                         

      *GET, II1, ELEM, 0, NUM, MAX                          
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      *SET, I1 , (I-1)*(N-1) + J   

      *SET, CONTELE(I1), II1   

      ALLSEL   

   *ENDDO   

*ENDDO  

!********************************Solution*********************************! 

!-------------------------Boundary Conditions--------------------------! 

/SOL                                                       ! Solution processor 

ASEL, S, AREA, , Bottom_surface       ! Select the bottom surface 

NSLA, S, 1                                             ! Select the nodes associated with the bottom surface  

D, ALL, ALL, 0  

ALLSEL 

ESEL, S, TYPE,,1 

ESEL, A, TYPE,,3 

NSLE, S, ALL 

CPCYC, ALL,,,LAMBDA,0,0   

ALLSEL 

ASEL, S, AREA,  , Front_surface          ! Select the front surfaces 

ASEL, A, AREA,  , Back_surface          ! Select the back surfaces 

NSLA, S, 1                                              ! Select the nodes associated with the areas  

D, ALL, UY, 0                                        ! Define the DOF in Y direction 

ALLSEL  

SAVE, 'Boundary_D', 'db' 

! ------------------------------* Apply the normal force on the rigid flat *-------------------------------! 

/SOLU 

! 1ST LOADING STEP 

ANTYPE, 0                                             ! Static 

LUMPM, 0                                              ! No lump mass 
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NLGEOM, 1                                           ! NON-LINEAR ANALYSIS   

KBC, 0                                                    ! RAMP LOADING 

AUTOTS, 1                                            ! Do not Use automatic loading steps 

NSUBST,100,10000,25 

Time, 100                                                 ! Time at the end of the first loading step 

NEQIT, 30                                               ! Number of maximum equilibrium iteration  

RESCONTROL, ,ALL,LAST,200          ! Write the restart file .RNNN at every substep 

OUTRES, ALL, ALL                              ! Output results of each substep  

D, PILOT, UX, 0                                     ! X displacement of the Pilot node 

D, PILOT, ROTX, 0                                ! X rotation of the Pilot node 

D, PILOT, UY, 0                                     ! Y displacement of the Pilot node 

D, PILOT, ROTY, 0                                ! Y rotation of the Pilot node 

F, PILOT, FZ, -101.5                               ! Z load of the Pilot node 

D, PILOT, ROTZ, 0                                ! Z rotation of the Pilot node 

 

CNCHECK, AUTO 

 

SOLVE 

SAVE 
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APPENDIX B 

 

 

! *********************Elastic-plastic Rough Surface Contact**********************! 

! Length unit: mm 

! Meshing of rough surfaces is achieved by moving the nodes belong to the top surface of cubic  

! by the amount of surface height by three steps 

 

/FILNAME,2L_NP128,1          ! Name the current job 

!****************************** Preprocessor ******************************! 

/PREP7                                     ! Enter preprocessor 

!-------------------------Choose element type ---------------------------! 

ET, 1, SOLID185                    ! Solid 185 (8-node brick element) 

ET, 2, TARGE170                  ! Type 2 = 4-node target element 

ET, 3, CONTA173                 ! Type 3 = 8-node contact element 

!-------------------------Set the element keyoptions ---------------------------! 

KEYOPT,2,2,0            ! Boundary conditions for rigid target nodes: Specified by user. 

KEYOPT,3,1,0            ! Degree of Freedom: UX,UY,UZ (default) 

KEYOPT,3,2,0            ! Contact algorithm: Augmented Lagrangian (default) 

KEYOPT,3,4,0            ! Location of contact detection point: normal to target surface 

KEYOPT,3,5,1            ! CONF/ICONT automated adjustment: close gap with auto CNOF 

KEYOPT,3,6,1            ! Contact stiffness variation: make a normal refinement 

KEYOPT,3,7,0            ! Element level time incrementation control: no control (default) 

KEYOPT,3,8,0            ! Asymmetric contact selection: No action (default) 

KEYOPT,3,9,1            ! Effect of initial penetration or gap: Exclude both 

KEYOPT,3,10,2          ! Contact stiffness update: Each iteration 
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KEYOPT,3,11,0          ! Shell thickness effect: Exclude 

KEYOPT,3,12,3          ! Behavior of contact surface: Bonded (stick condition) 

KEYOPT,3,14,0          ! Behavior of fluid penetration load: various during iterations (default) 

!-------------------------Set real constant ---------------------------! 

R,1,0,0,10, 1,0,0    ! Set normal penalty stiffness factor 10 and penalty stiffness 0.1  

RMORE,,,, ,, 

RMORE,,,, ,, 

RMORE,,,, ,, 

RMORE,,,,,,  

!-------------------------Set the material property ---------------------------! 

MP, EX, 1, 200E3        ! Elastic modulus [N/mm^2] 

MP, NUXY, 1, 0.3       ! Poisson's ratio 

TB, BISO                     ! Bilinear isotropic material model 

TBDATA, 1, 1e3         ! Yield stress [N/mm^2] 

TBDATA, 2, 4e3         ! Tangential modulus [N/mm^2] 

! --------------------------* READ ROUGH SURFACE DATA *-------------------------! 

/INPUT, READ_SURFACE_DATA, TXT              ! Read external file 

DEL_X = L/(NP-1) 

DEL_Y = L/(NP-1) 

*SET, N_END, 5                                          ! Number of node on the lines of bottom surface 

*SET, NLAYERO, 5                                    ! Original planned layer number 

*SET, H_BOTTOM, DEL_X*2**(NLAYERO)      ! The length of the lines on bottom surface  

*DIM, H_BSAE, ARRAY, NLAYERO      ! Height of each layer (in z direction)  

*DO, I, 1,NLAYERO 

  H_BSAE(I) = DEL_X*2**(NLAYERO-I) 

*ENDDO 

!--------------------------------------Base set---------------------------------------- 

NLAYER_B=2*NLAYERO                        ! TOTAL NUMBER OF BASE LAYER       
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*DIM, LDEPTH, ARRAY, NLAYER_B                                     

LDEPTH(1)=H_BOTTOM                         ! DEPTH IN Z AXIS 

*DO, I, 2,NLAYER_B                                    

  LDEPTH(I) = LDEPTH(I-1)+H_BSAE(NINT((I-1)/2)) 

*ENDDO 

!--------------------------------------Surface set----------------------------------------! 

*SET, NLAYER_S, 3                                      ! Three layers for the rough surface  

R_S=4                                                   

*IF, DEL, GE, DELL, THEN 

DEL_S=DEL                  

*ELSE 

DEL_S=DELL   

*ENDIF 

*SET, H_SURFACE, 1.5*DEL+DEL_S/R_S                        

*SET, H_INCREASE, (1.5*DEL_S)/(NLAYER_S-1)  

*DIM, LDEPTH_T, ARRAY, NLAYER_S   

*DO, I, 1,NLAYER_S 

*IF, I, EQ, 1, THEN   

 LDEPTH_T(I) = LDEPTH(NLAYER_B)+DEL_S/R_S     

*ELSE 

 LDEPTH_T(I) = LDEPTH(NLAYER_B)+DEL_S/R_S+(I-1)*H_INCREASE     

*ENDIF 

*ENDDO                                                  

LDEPTH_TOP=LDEPTH_T(NLAYER_S)                           

!------------------------------------Create volume ---------------------------------------! 

*DO, I, 1, NLAYER_B                                    

   *IF, I, EQ, 1, THEN 

      BLC5, L/2, L/2, L, L, LDEPTH(I)                  
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      WPOFFS, 0, 0, LDEPTH(I) 

   *ELSE 

      BLC5, L/2, L/2, L, L, LDEPTH(I) - LDEPTH(I-1)   

      WPOFFS, 0, 0, LDEPTH(I) - LDEPTH(I-1) 

   *ENDIF 

*ENDDO  

 

*DO, I, 1, NLAYER_S 

   *IF, I, EQ, 1, THEN 

      BLC5, L/2, L/2, L, L, DEL_S/R_S           

      WPOFFS, 0, 0, DEL_S/R_S                     

   *ELSE 

      BLC5, L/2, L/2, L, L, LDEPTH_T(I) - LDEPTH_T(I-1) 

      WPOFFS, 0, 0, LDEPTH_T(I) - LDEPTH_T(I-1) 

   *ENDIF 

*ENDDO  

VGLUE, ALL                                              ! Glue volumes  

NUMCMP, VOLU                                      ! Renumber the volume entities  

! ---------------------------------- Mesh substrate ------------------------------- 

! DIVIDING LINE ELEMENTS ON BOTTOM SURFACE 

ASEL, S, LOC, Z, -DEL_X/10, DEL_X/10                     

LSLA, S 

LESIZE, ALL,,,(N_END-1)  

ALLSEL 

! DIVIDING LINE ELEMENTS ON EACH LAYERS OF BASE 

*DO, I, 1, NLAYER_B                                   

   ASEL, S, LOC, Z, LDEPTH(I) - DEL_X/10, LDEPTH(I) + DEL_X/10 

   LSLA, S 
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   LESIZE, ALL,,, 2**(NINT((I-1)/2))*(N_END-1)              

   ALLSEL 

*ENDDO 

*DO, I, 1, NLAYER_S                                  

   ASEL, S, LOC, Z, LDEPTH_T(I) - DEL_X/10, LDEPTH_T(I) + DEL_X/10 

   LSLA, S 

   LESIZE, ALL,,, (NP-1)           

   ALLSEL 

*ENDDO 

!------------------------------Premesh lines on side surfaces-------------------------------! 

*DO, I, 2, NLAYER_B  

   KSEL, S, LOC, Z, LDEPTH(I-1)-DEL_X/10, LDEPTH(I) + DEL_X/10 

   LSLK, S, 1 

   LESIZE, ALL,,,1                   ! Dividing line element on side surface (base)                                                                 

   ALLSEL 

*ENDDO 

ALLSEL 

*DO, I, 2, NLAYER_S  

   KSEL, S, LOC, Z, LDEPTH_T(I-1)-DEL_X/10, LDEPTH_T(I) + DEL_X/10 

   LSLK, S, 1 

   LESIZE, ALL,,,1                   ! Dividing line element on side surface (surface layers)                                                                                                            

   ALLSEL 

*ENDDO 

ALLSEL 

KSEL, S, LOC, Z, LDEPTH(NLAYER_B)-DEL_X/10, LDEPTH(NLAYER_B+1)+ DEL_X/10 

KSEL, A, LOC, Z, -DEL_X/10, LDEPTH(1) + DEL_X/10 

LSLK, S, 1 

LESIZE, ALL,,,1            ! Dividing line element on side surface (top surface and bottom surface)                                                                    
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ALLSEL 

!--------------------------------------MESH------------------------------------! 

TYPE, 1                                                 ! Solid 174 

MAT, 1                                                  ! Material 

MSHAPE, 0, 3D                                    ! Element shape: 3D brick 

MSHKEY,1                                           ! Mapped meshing 

VSEL,S,VOLU, ,NLAYER_B+1,NLAYER_B + NLAYER_S         ! Mesh surface 

MOPT, PYRA, ON                                 ! Turn on pyramid element 

MSHAPE, 1, 3D                                     ! Element shape: 3D tetrahedral 

MSHKEY,0                                            ! Free meshing 

VSEL,S,VOLU, ,1,NLAYER_B            ! Mesh base 

VMESH, ALL                                         ! Mesh the volume 

! ------------------------------------- Model rigid flat---------------------------------------- 

ASEL, U, AREA, , ALL 

ESEL, U, ELEM, , ALL  

NSEL, U, NODE, , ALL 

*SET,DEL_L , 0 

K, 1001, -L/32, -L/32, LDEPTH_TOP+ DEL-DEL_L             ! Target surface 

K, 1002, -L/32, L+L/32, LDEPTH_TOP + DEL-DEL_L 

K, 1003, L+L/8, L+L/32, LDEPTH_TOP + DEL-DEL_L 

K, 1004, L+L/8, -L/32, LDEPTH_TOP + DEL-DEL_L 

A, 1001, 1004, 1003, 1002 

CM, RIGID_FLAT, AREA                                                      ! Create rigid flat area 

WPOFFS, 0, 0, DEL-DEL_L 

ALLSEL 

! ------------------------------Identify contact pair --------------------------------------   

ASEL,S,AREA, ,RIGID_FLAT 

LSLA 
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LESIZE, ALL,,, 1                                          ! Meshing target surface with one target 170 

ASEL,S,AREA, ,RIGID_FLAT 

TYPE, 2                                                         ! Select target 170 

AMESH, ALL                                              ! Mesh area 

ESURF, ALL, REVERSE                            ! Reverse normal direction of element target 170  

! ----------------------------- Define Pilot node --------------------------------! 

TSHAP, PILO 

N, 1E8 ,-L/32, -L/32, LDEPTH_TOP+ DEL-DEL_L                       

E, 1E8 

NSEL, S , , , 1E8                                        ! Select the newly created node  

CM, PILOT, NODE 

ALLSEL 

! -------------------------------* Meshing contact *--------------------------------! 

NSEL, S, LOC, Z, LDEPTH_TOP - DEL_X/10, LDEPTH_TOP + DEL_X/10              

TYPE, 3                                             ! Select Conta174 

MAT, 1 

ESLN, S, 0                                        ! Select element on the select set 

ESURF                                             ! Laying element Conta 174 on the meshed top surface  

ALLSEL 

! ---------------------------------- Moving nodes-------------------------------------! 

/NUMBER,-1  

/PNUM,ELEM,0 

!--------------------------------------Define components --------------------------------! 

NSEL, S, LOC, Z, LDEPTH_T(1) - DEL_X/10, LDEPTH_T(1) + DEL_X/10 

CM, SURFACE_TOP1, NODE   

ALLSEL 

NSEL, S, LOC, Z, LDEPTH_T(2) - DEL_X/10, LDEPTH_T(2) + DEL_X/10 

CM, SURFACE_TOP2, NODE   
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ALLSEL 

NSEL, S, LOC, Z, LDEPTH_T(3) - DEL_X/10, LDEPTH_T(3) + DEL_X/10 

CM, SURFACE_TOP3, NODE   

ALLSEL 

*SET,NUM_NODE,NP*NP  

*DIM, NODE_LIST_A1,ARRAY,NUM_NODE     ! Node number vector (surface 1)                

*DIM, NODE_LIST_A2,ARRAY,NUM_NODE     ! Node number vector (surface 2)                              

*DIM, NODE_LIST_A3,ARRAY,NUM_NODE     ! Node number vector (surface 3)                             

*DIM, NODE_LOCX_A1,ARRAY,NUM_NODE  ! Initialize nodal x location vector (surface 1) 

*DIM, NODE_LOCX_A2,ARRAY,NUM_NODE  ! Initialize nodal x location vector (surface 2)             

*DIM, NODE_LOCX_A3,ARRAY,NUM_NODE  ! Initialize nodal x location vector (surface 3) 

*DIM, NODE_LOCY_A1,ARRAY,NUM_NODE  ! Initialize nodal y location vector (surface 1)                 

*DIM, NODE_LOCY_A2,ARRAY,NUM_NODE  ! Initialize nodal y location vector (surface 2)                            

*DIM, NODE_LOCY_A3,ARRAY,NUM_NODE  ! Initialize nodal y location vector (surface 3)                                         

*DIM, NODE_LOCZ_A1,ARRAY,NUM_NODE  ! Initialize nodal z location vector (surface 1)                

*DIM, NODE_LOCZ_A2,ARRAY,NUM_NODE  ! Initialize nodal z location vector (surface 2)                 

*DIM, NODE_LOCZ_A3,ARRAY,NUM_NODE  ! Initialize nodal z location vector (surface 3)                 

*DIM, NODE_ROUGHNESS_A1,ARRAY,NUM_NODE     ! Surface height vector (surface 1)                        

*DIM, NODE_ROUGHNESS_A2,ARRAY,NUM_NODE     ! Surface height vector (surface 2)                                

 *DIM, NODE_ROUGHNESS_A3,ARRAY,NUM_NODE    ! Surface height vector (surface 3)                                 

!----------------------------- Moving nodes on the surfaces ------------------------                                            

MODMSH, DETACH                ! Deattach the elements and nodes with solid  

SHPP,OFF                                  ! Terminate element checking 

!---------------------------- Moving nodes on the surfaces 3------------------------ 

ALLSEL 

NSEL, S, NODE,  , SURFACE_TOP3                          ! Select the front surfaces 

*VGET,NODE_LIST_A3,NODE, ,NLIST                   ! Get the node number on the surface 3 

*DO, I, 1, NUM_NODE 
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    *GET, NODE_LOCX_A3(I), NODE, NODE_LIST_A3(I), LOC, X 

    *GET, NODE_LOCY_A3(I), NODE, NODE_LIST_A3(I), LOC, Y 

    *GET, NODE_LOCZ_A3(I), NODE, NODE_LIST_A3(I), LOC, Z 

    *SET,X3,NODE_LOCX_A3(I) 

    *SET,Y3,NODE_LOCY_A3(I) 

    *SET,Z3,NODE_LOCZ_A3(I) 

    INDEX_X3 = X3/DEL_X+1 

    INDEX_Y3 = Y3/DEL_Y+1 

    *SET, NODE_ROUGHNESS_A3(I),ZZ(INDEX_X3, INDEX_Y3) 

    NMODIF,NODE_LIST_A3(I),X3,Y3,Z3+(3/3)*NODE_ROUGHNESS_A3(I) 

*ENDDO 

!----------------------------- Moving nodes on the surfaces 2------------------------ 

ALLSEL 

NSEL, S, NODE,  , SURFACE_TOP2                          ! Select the front surfaces 

*VGET,NODE_LIST_A2,NODE, ,NLIST     ! Get the node number on the surface 2 

*DO, I, 1, NUM_NODE 

    *GET, NODE_LOCX_A2(I), NODE, NODE_LIST_A2(I), LOC, X 

    *GET, NODE_LOCY_A2(I), NODE, NODE_LIST_A2(I), LOC, Y 

    *GET, NODE_LOCZ_A2(I), NODE, NODE_LIST_A2(I), LOC, Z 

    *SET,X2,NODE_LOCX_A2(I) 

    *SET,Y2,NODE_LOCY_A2(I) 

    *SET,Z2,NODE_LOCZ_A2(I) 

    INDEX_X2 = X2/DEL_X+1 

    INDEX_Y2 = Y2/DEL_Y+1 

    *SET, NODE_ROUGHNESS_A2(I),ZZ(INDEX_X2, INDEX_Y2) 

    ! OR NODE_ROUGHNESS_A2(I) = ZZ(INDEX_X2, INDEX_Y2) 

    NMODIF,NODE_LIST_A2(I),X2,Y2,Z2+(2/3)*NODE_ROUGHNESS_A2(I) 

*ENDDO 
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!------------------- MOVINGN NODES ON THE SURFACE 1------------------------ 

ALLSEL 

NSEL, S, NODE,  , SURFACE_TOP1                          ! Select the front surfaces 

*VGET,NODE_LIST_A1,NODE, ,NLIST 

*DO, I, 1, NUM_NODE 

    *GET, NODE_LOCX_A1(I), NODE, NODE_LIST_A1(I), LOC, X 

    *GET, NODE_LOCY_A1(I), NODE, NODE_LIST_A1(I), LOC, Y 

    *GET, NODE_LOCZ_A1(I), NODE, NODE_LIST_A1(I), LOC, Z 

    *SET,X1,NODE_LOCX_A1(I) 

    *SET,Y1,NODE_LOCY_A1(I) 

    *SET,Z1,NODE_LOCZ_A1(I) 

    INDEX_X1 = X1/DEL_X+1 

    INDEX_Y1 = Y1/DEL_Y+1   

    *SET, NODE_ROUGHNESS_A1(I),ZZ(INDEX_X1, INDEX_Y1) 

    NMODIF,NODE_LIST_A1(I),X1,Y1,Z1+(1/3)*NODE_ROUGHNESS_A1(I) 

*ENDDO 

! -------------------------------* Create components *--------------------------------! 

ALLSEL 

ESEL, S, TYPE, , 3                                       

CM, ROUGH_SURFAEC_ELEM, ELEM                       ! Rough surface element  

ALLSEL 

ESEL, S, TYPE, , 2                                       

NSLE, S, ALL                                             

CM, TARGE_SURFACE, NODE                                    ! Target surface nodes 

ALLSEL 

NSEL, S, LOC, Z, -DEL_X/10, DEL_X/10                     ! Bottom surface nodes 

CM, BOTTOM_SURFACE, NODE                                ! Nodes on surface of the substrate  

ALLSEL 
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NSEL, S, LOC, Y, -DEL_X/10, DEL_X/10                   ! Front surface nodes 

CM, FRONT_SURFACE, NODE                                

ALLSEL 

NSEL, S, LOC, Y, L-DEL_X/10, L+DEL_X/10           ! Back surface nodes 

CM, BACK_SURFACE, NODE                                   

ALLSEL 

NSEL, S, LOC, X, -DEL_X/10, +DEL_X/10                ! Left surface nodes 

CM, LEFT_SURFACE, NODE                                   

ALLSEL 

NSEL, S, LOC, X, L-DEL_X/10, L+DEL_X/10          ! Right surface nodes          

CM, RIGHT_SURFACE, NODE                                 

ALLSEL 

! ------------------------------- Redefine element number type two --------------------------------! 

*SET, NCONTN, NP*NP 

*SET, NCONTE, (NP-1)*(NP-1) 

*DIM, NODE_LIST,ARRAY,NCONTN 

*DIM, ELEM_LIST,ARRAY,NCONTE   

*DIM, NODE_LOCX,ARRAY,NCONTN                 

*DIM, NODE_LOCY,ARRAY,NCONTN 

*DIM, NODE_LOCZ,ARRAY,NCONTN 

ESEL, S, TYPE, , 3                    

NSLE, S, ALL                                                                               

*VGET,NODE_LIST,NODE, ,NLIST 

*DO, I, 1, NCONTN 

    *GET, NODE_LOCX(I), NODE, NODE_LIST(I), LOC, X 

    *GET, NODE_LOCY(I), NODE, NODE_LIST(I), LOC, Y 

    *GET, NODE_LOCZ(I), NODE, NODE_LIST(I), LOC, Z 

*ENDDO 
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ALLSEL 

ESEL, S, TYPE, , 3                                    

*VGET,ELEM_LIST,ELEM, ,ELIST 

ALLSEL 

! ----------------------------- X, Z and node number at front Section -----------------------------! 

   ESEL, S, TYPE,,1 

   NSLE, S, ALL 

   NSEL, R, LOC, Y, -DEL_X/10, DEL_X/10      

   *VGET, LIST_FRONT, NODE, , NLIST                                 

   *GET, NUM_FRONT,NODE,  , COUNT 

   *DIM, X_FRONT, ARRAY, NUM_FRONT                            

   *DIM, Z_FRONT, ARRAY, NUM_FRONT                     

   *DO, J, 1, NUM_FRONT 

    *GET, CX1, NODE, LIST_FRONT(J), LOC, X 

    *SET, X_FRONT(J), CX1 

    *GET, CZ1, NODE, LIST_FRONT(J), LOC, Z 

    *SET, Z_FRONT(J), CZ1 

   *ENDDO 

ALLSEL 

! ------------------------------- Boundary conditions --------------------------------! 

/SOL                                                               ! Solution processor 

!Step 1. Bottom surface 

NSEL, S, NODE, , BOTTOM_SURFACE                             

D, ALL, ALL, 0                                             ! Displacement in all directions are zero 

ALLSEL 

! Step 2. Two side surfaces 

NSEL, S, NODE, , LEFT_SURFACE          ! Select the nodes associated with the left surface 

NSEL, A, NODE, , RIGHT_SURFACE       ! Select the nodes associated with the right surface 
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CPCYC, ALL,1.0E-6,,XX(NP)-XX(1),0,0   ! Couple all the nodes on the side surfaces  

ALLSEL 

 

NSEL, S, NODE,  , FRONT_SURFACE         ! Select the nodes on front surface 

NSEL, A, NODE,  , BACK_SURFACE          ! Select the nodes on back surface 

D, ALL, UY, 0                                                 ! Define the DOF in Y direction  

ALLSEL 

SAVE, 'Boundary', 'db' 

! ------------------------------ Apply the normal force on the rigid flat -------------------------------! 

/SOLU 

ANTYPE, 0                                                    ! Static 

LUMPM, 0                                                     ! No lump mass  

NLGEOM, 1                                                  ! Non-linear analysis 

KBC, 0                                                           ! Ramp loading  

AUTOTS, 1                                                   ! Use automatic loading steps 

NSUBST,100,10000,50                                ! Initial 100, maximum 10000, minimum 50 

Time, 100                                                      ! Time at the end of the first loading step 

NEQIT, 100                                                   ! Maximum number of iteration   

RESCONTROL, ,ALL,1,200                        ! Write the restart file .RNNN at every substep 

OUTRES, ALL, ALL                                    ! Output all results of each substep 

D, PILOT, UX, 0                                           ! X displacement of the Pilot 

D, PILOT, ROTX, 0                                      ! X rotation of the Pilot 

D, PILOT, UY, 0                                           ! Y displacement of the Pilot 

D, PILOT, ROTY, 0                                      ! Y rotation of the Pilot 

F, PILOT, FZ, -20                                          ! Z load of the Pilot 

D, PILOT, ROTZ, 0                                      ! Z rotation of the Pilot 

CUTCONTROL,PLSLIMIT,0.3 

CNVTOL, F, , 0.025, 2, 1e-4                        ! Set convergence value based on force 
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CNVTOL, U, , 0.025, 0, 1e-4                       ! Set convergence value based on displacement  

CNCHECK,AUTO 

SOLVE 

!************************Post Processor***************************! 

/POST1  

SET, 1                                                    

*GET, NSUBSTEP1, ACTIVE, 0, SOLU, NCMSS                   

*DIM, CONPRESS, ARRAY, NSUBSTEP1*NCONTE                       

*DIM, ESTATUS, ARRAY, NSUBSTEP1*NCONTE                       

*DIM, REACT_FZ_ARRAY, ARRAY, NSUBSTEP1 

*DIM, UZP_ARRAY, ARRAY, NSUBSTEP1 

*DIM, UZN_ARRAY, ARRAY, NSUBSTEP1*NCONTN 

*DIM, VM_FRONT, ARRAY, NUM_CROSS*NSUBSTEP1                             

*DIM, PSN_FRONT, ARRAY, NUM_CROSS*NSUBSTEP1                             

*SET, REACT_FZ, 0      

*SET, CONSTATUS, 0                                      

*SET, U_ZP, 0 

*SET, U_ZN, 0    

*SET, PRESSURE, 0  

*SET, VM1, 0 

*SET, PSN1, 0  

!---------------------------------------------------Target--------------------------------------------------------- 

ALLSEL 

*DO, I, 1, NSUBSTEP1                                      

    SUBSET, 1, I 

    *GET, U_ZP, NODE, 1E8, U, Z 

    *SET, UZP_ARRAY(I), U_ZP   

*ENDDO 
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!---------------------------------------------------Contact------------------------------------------------------- 

ALLSEL 

ESEL, S, TYPE, , 3 

NSLE, S, ALL  

*DO, I, 1, NSUBSTEP1  

    SUBSET, 1, I 

    ETABLE, CONPRES, CONT, PRES                          ! CONTACT PRESSURE  

    ETABLE, CONSTAT, CONT, STAT                          ! CONTACT STATUS 

*ENDDO     

   *DO, II, 1, NCONTE   

    *GET, PRESSURE, ETAB, 1, ELEM, ELEM_LIST(II)  

    *SET, CONPRESS((I-1)*NCONTE + II) , PRESSURE         

    *GET, CONSTATUS, ETAB, 2, ELEM, ELEM_LIST(II)  

    *SET,ESTATUS((I-1)*NCONTE + II) , CONSTATUS     

   *ENDDO   

     FSUM, RSYS, CONT 

    *GET, REACT_FZ, FSUM, 0, ITEM, FZ                 ! REACTION FORCE IN Z DIRECTION 

     REACT_FZ = -REACT_FZ 

    *SET, REACT_FZ_ARRAY(I), REACT_FZ 

*ENDDO   

*DO, I, 1, NSUBSTEP1  

    SUBSET, 1, I   

   *DO, II, 1, NCONTN   

    *GET, U_ZN, NODE, NODE_LIST(II), U, Z  

    *SET,UZN_ARRAY((I-1)*NCONTN + II) , U_ZN     !DISPLACEMTN IN Z DIRECTION     

   *ENDDO   

*ENDDO   

!---------------------------------------------------Solid--------------------------------------------------------- 
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ALLSEL 

ESEL, S, TYPE, , 1 

NSLE, S, ALL  

 

*DO, I, 1, NSUBSTEP1 

    SUBSET, 1, I    

   *DO, J, 1, NUM_FRONT 

    *SET, III, (I-1)*NUM_FRONT + J  

    *GET, VM1, NODE, LIST_FRONT(J), S, EQV              ! VON MISES STRESS AT THE 

CREOSS SECTION 

    *SET, VM_FRONT(III), VM1 

   *ENDDO 

*ENDDO 

*DO, I, 1, NSUBSTEP1 

    SUBSET, 1, I    

   *DO, J, 1, NUM_FRONT 

    *SET, III, (I-1)*NUM_FRONT + J  

    *GET, PSN1, NODE, LIST_FRONT(J), EPPL, EQV         ! PLASTIC STRAIN AT THE 

CREOSS SECTION 

    *SET, PSN_FRONT(III), PSN1 

   *ENDDO 

*ENDDO 

/INPUT, WRITE_RESULTS, txt 
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APPENDIX C 

 

 

% Fourier Interpolation Method MATLAB Code 

 

clc; clear; close all 

  

load X_63M_N32.txt;  

load Y_63M_N32.txt;  

load Z_63M_N32.txt;  

  

X0=X_63M_N32; 

Y0=Y_63M_N32; 

Z0=Z_63M_N32;. 

  

Interval_x=X0(2)-X0(1);  % interval between two adjacent pints in x direction 

Interval_y=Y0(2)-Y0(1);  % interval between two adjacent pints in y direction 

  

NP0=32;                            % Number of points for the original data 

NP1=64;                            % Number of points on each line after first interpolation 

NP2=128;                          % Number of points on each line after second interpolation 

 

R1=2;                                % Amplitude ratio for the original data 

R2=4;                                % Amplitude ratio after first interpolation 

R3=8;                                % Amplitude ratio after second interpolation 

 

 

X1=(0:NP1-1)*(Interval_x/2^1); 

Y1=(0:NP1-1)*(Interval_y/2^1); 

  

X2=(0:NP2-1)*(Interval_x/2^2); 

Y2=(0:NP2-1)*(Interval_y/2^2); 

  

% ______________________First interpolation (64*64)________________________ 

  

ZZ1=fftshift(fft2(ifftshift(Z0)));           % complex  

ZZ2=zeros(NP1,NP1); 

ZZ2((NP1/2)-NP0/2+1:(NP1/2)+NP0/2,(NP1/2)-NP0/2+1:(NP1/2)+NP0/2)=ZZ1;  

% complex after adding zero 

Z1=fftshift(ifft2(ifftshift(ZZ2)));         % IFFT transform 
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Z1_1=R1^2*real(Z1); 

  

figure (1) 

plot(X0,Z0(:,1)) 

hold on 

plot(X1,Z1_1(:,1)); 

grid on 

title('First interpolation of one line in x direction'); 

xlabel('x [\mu m]'); 

ylabel('z [\mu m]'); 

legend('Original surface','Surface after second interpolation' 

% __________________Second interpolation (128*128)____________________ 

 

ZZ3=fftshift(fft2(ifftshift(Z1_1)));           % first fourier transform 

ZZ4=zeros(NP2,NP2); 

ZZ4((NP2/2)-NP1/2+1:(NP2/2)+NP1/2,(NP2/2)-NP1/2+1:(NP2/2)+NP1/2)=ZZ3; 

Z2=fftshift(ifft2(ifftshift(ZZ4))); 

Z2_1=2^2*real(Z2); 

  

Z2_0=reshape(Z2_1,1,NP2^2); 

sigma2=sqrt(1/(NP2)^2*sum((Z2_0-mean(Z2_0)).^2)); 

  

  

figure (2) 

plot(X0,Z0(:,1)) 

hold on 

plot(X2,Z2_1(:,1)); 

grid on 

title('Second interpolation of one line in x direction'); 

xlabel('x [\mu m]'); 

ylabel('z [\mu m]'); 

legend('Original surface','Surface after second interpolation') 
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APPENDIX D 

 

 

Finite Element Method Results  

 

 
(a) 𝑁𝑒 = 1024                                                      (b) 𝑁𝑒 = 4096 

 

(c) 𝑁𝑒 = 16384                                                     (d) 𝑁𝑒 = 65536 

Fig. B1. Contact pressure for original surface 63M and interpolated surfaces under normal 

loading only 
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(a) 𝑁𝑒 = 1024                                                         (b)𝑁𝑒 = 4096 

 

 

(c)𝑁𝑒 = 16384                                                               (d)𝑁𝑒 = 65536 

Fig. B2. Contact pressure for original surface 63M and interpolated surfaces at sliding inception 
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(a) 𝑁𝑒 = 1024                                                         (b)𝑁𝑒 = 4096 

 

 

(c)𝑁𝑒 = 16384                                                               (d)𝑁𝑒 = 65536 

Fig. B3. Contact pressure for original surface 63M and interpolated surfaces under normal 

loading only 
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(a) 𝑁𝑒 = 1024                                                         (b) 𝑁𝑒 = 4096 

 

 

(c) 𝑁𝑒 = 16384                                                     (d) 𝑁𝑒 = 65536 

Fig. B4. Von Mises stress for original surface 63M and interpolated surfaces at sliding inception 
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(a) 𝑁𝑒 = 1024                                                         (b)𝑁𝑒 = 4096 

 

 

(c)𝑁𝑒 = 16384                                                               (d)𝑁𝑒 = 65536 

Fig. B5. Equivalent plastic strain for original surface 63M and interpolated surfaces under 

normal loading only 
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(a) 𝑁𝑒 = 1024                                                         (b)𝑁𝑒 = 4096 

 
(c)𝑁𝑒 = 16384                                                               (d)𝑁𝑒 = 65536 

Fig. B6. Equivalent plastic strain for original surface 63M and interpolated surfaces at sliding 

inception 

 


