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Magnetic resonance (MR) tagging magnetically labels specified regions of the my-

ocardium, which appear in the MR images with a spatially encoded pattern of dark stripes

called tag lines. The deformation of these tag lines reflects the deformation of the underlying

tissue, making it possible to quantitatively evaluate the regional myocardium deformation

and strain. This is particularly valuable in the diagnosis of ischemia and infarction.

In this dissertation, three new algorithms are presented to track the tag lines and re-

construct the cardiac left ventricle (LV) motion from tagged cardiac MR images. In the

new statistical tag point classification algorithm, the candidate tag point positions are not

pre-smoothed during tracking, allowing smoothness constraints to be applied only as the de-

formation model is fitted to the tag points. Two new algorithms based on three-dimensional

(3-D) B-splines in prolate spheroidal coordinates are also presented in order to reconstruct

the cardiac LV motion. One of these algorithms is used for 3-D LV motion reconstruction

from tracked tag lines. The other combines tag tracking and motion reconstruction. These

methods model the left ventricle with prolate spheroidal B-spline models, which offer sev-

eral advantages. First, spatially localized B-spline basis functions offer better local control

v



than globally-defined spherical harmonics. Second, their domain more closely matches the

shape of the LV wall than Cartesian or cylindrical models. Third, the models can enforce

smoothing across the apex and compute the strain at that location.

Human and animal MR studies and simulations were used to validate the effectiveness

of the new methods. The experimental results verified the effectiveness of the new tag line

tracking and 3-D LV motion reconstruction algorithms.
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Chapter 1

Introduction

The estimation of three-dimensional (3-D) cardiac motion and deformation from two-

dimensional (2-D) images is currently receiving a great deal of attention in the field of

medical image analysis. One well-established technique for non-invasively imaging the car-

diac motion is magnetic resonance (MR) imaging. This approach has the advantages of

lack of radiation, adjustable soft tissue contrast, good spatial resolution and 3-D imag-

ing with highly reproducible measurements. Cardiac MR images can provide a series of

measurements that can be used to evaluate both global and local functions of the heart.

Tagged MR imaging and analysis has received considerable attention in recent years

due to its ability to track material points non-invasively. In tagged MR imaging, specified

regions of the heart muscle are magnetically labeled, which appear in the MR images with

a spatially encoded pattern of dark stripes called tag lines. Since the labeling temporarily

modifies the material properties of the tissue, the deformation of the tag lines reflects the

deformation of the underlying tissue. This allows quantitative evaluation of the regional

heart wall deformation and strain.

In this dissertation, we are concerned with tag line tracking and modeling the defor-

mation of the cardiac LV from tagged MR images. This chapter focuses primarily on the

background of cardiac imaging and tagged cardiac MR image analysis, and the contributions

of this research.

This chapter is organized as follows. Section 1.1 reviews cardiac anatomy and cardiac

imaging modalities and Section 1.2 discusses existing techniques for tagged cardiac MR
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image analysis. Then, in Section 1.3, the contributions of this dissertation are outlined.

Finally, an overview of the organization of this dissertation is provided in Section 1.4.

1.1 Cardiac Imaging

1.1.1 Cardiac Anatomy

The heart is an organ that pumps blood around the body and is located between

the lungs, and behind and to the left of the chest bone. As shown in Figure 1.1, it has

four chambers: the Right Atrium (RA), Left Atrium (LA), Right Ventricle (RV) and Left

Ventricle (LV). The RV and LV share a common wall, named the interventricular septum.

Between the chambers there are four one-way valves, which ensure the flow of blood in the

proper direction. The top portion of the heart containing the atria and valves is known as

the base, and the bottom portion containing the closed ends of the ventricles is called the

apex.

The heart muscle, or myocardium, contains three layers: the epicardium, midwall, and

endocardium. The epicardium is the outermost layer of the heart and consists of a loose

connective tissue of fibroblasts, collagen fibers and adipose tissue. The endocardium is the

innermost layer of the heart and is composed of a continuous smooth endothelial layer that

covers all the inner surfaces of the heart. Between the epicardium and the endocardium

lies the main muscle mass of the heart, which is composed primarily of striated muscle cells

and fibers forming a conduction system.

Figure 1.2 shows both the short-axis and long-axis views of the heart. The long-

axis views include 2-chamber, 4-chamber and radial slice prescriptions. In the short-axis

prescription, the image slices are perpendicular to the longitudinal direction of the heart.

Thus, the LV wall appears circular in the short-axis images. In long-axis prescriptions, the
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Figure 1.1: Cardiac anatomy
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image slices are in the longitudinal direction and the LV wall therefore appears elliptical,

with a closed end.

1.1.2 Cardiac Physiology

The heart works continuously throughout an organism’s entire life span. It performs

the central function of the circulatory system, pumping blood through an intricate system

of blood vessels to bring life-giving oxygen to every cell in the body.

The function of the right side of the heart (the RA and RV) is to receive the oxygen-

depleted blood from the superior and inferior vena cava, and to pump it to the lungs.

Arriving in the lungs, the blood receives oxygen and disposes of the carbon-dioxide that the

body has produced. Then, the oxygenated blood passes to the left side of the heart (the

LA and LV), where the LV pumps the oxygenated blood to the rest of the body.

As blood from the lungs and the rest of the body enters the atria, each atrium con-

tracts, forcing the blood into its respective ventricle. The RV and LV then contract nearly

simultaneously and force the blood into the lungs (the RV) and the rest of the body (the

LV). Thus, the heart undergoes two motion phases in a cardiac cycle, namely the systolic

and diastolic phases. During the systolic phase the oxygenated blood is pumped out; during

the diastolic phase, the ventricles fill with blood.

When the blood supply for the heart muscle is reduced for any reason, the heart fails

to receive enough of the energy it needs to function; thus ischemic heart diseases exhibit

reduced contractions of the myocardium. This restriction in blood supply is called ischemia.

Cardiac imaging of the heart under conditions of both stress and rest offers great potential

for assessment and diagnosis of the abnormal cardiac motion and/or underlying myocardial

viability of an infarcted heart [1].
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1.1.3 Cardiac Imaging Modalities

The main purpose of cardiac imaging is to provide both qualitative and quantitative

information about cardiac anatomy and function. There are various imaging modalities that

can be used to view the cardiac anatomical structures and measure the heart wall geome-

try. These imaging modalities can be split into four categories based on the type of imaging

physics involved: X-ray techniques (including angiocardiography and computed tomogra-

phy), nuclear imaging, ultrasound (echocardiography) and magnetic resonance imaging.

These cardiac imaging modalities will be briefly reviewed in the following sections.

Angiocardiography

Angiocardiography consists of X-ray radiography with contrast enhancement and can

be used to measure ventricular volume and mass. In this technique, a contrast medium is

injected before imaging. X-ray images are then generated by projecting a wide beam of

X-rays through the object onto a film. The injected substances in the tissue absorb and

scatter the incoming energy of the X-rays, resulting in an inverse mapping of tissue opacity.

Since X-ray images are composed of the superposition of the projections of different tissues

of the imaging volume in the X-ray projection path, the effective resolution of this method

depends on the relative opacity of the neighboring objects, the dispersion of the X-ray beam,

and the distance of objects from the X-ray tube focal spot and the film [2]. Although this

technique is basically a 2-D approach, projections of orthogonal views can be used to depict

the short-axis and long-axis dimensions of the heart.

The main drawbacks of angiocardiography are its use of the ionizing radiation, and its

invasive nature due to the need for a contrast injection. The advantage of angiocardiography

is that X-ray projection systems are relatively inexpensive, easy to use and can be used to

provide real-time feedback.
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Computed Tomography

Computed tomography(CT) is another imaging modality that utilizes X-rays. It is the

first non-invasive radiological method that allows the generation of tomographic images.

A single-slice CT image is formed by projecting many X-ray beams through the object

using a fan-beam geometry. The X-ray source is moved in a circle around the object. At

fixed angles of the circle, an X-ray fan-beam is emitted, and detectors positioned around the

circumference of the scanner and at the opposite side of the object collect the attenuated

signals. Then, different views of the projections are combined to enable the tomographic

image to be reconstructed by using a backprojection algorithm.

The latest CT techniques include helical CT and multi-slice CT scans. In helical CT,

the X-ray source and the detectors continuously rotate around a circle while the object is

moved continuously through the circle’s center. In multi-slice CT, several rows of detectors

are used to rapidly gather a cone of X-ray data, which is the 2-D projection of the 3-D

object. These CT techniques are both important due to their ability to rapidly acquire 3-D

data.

Nuclear Imaging

Nuclear imaging is used to selectively measure functional parameters of different or-

gans such as myocardial perfusion (blood flow into the cardiac muscle). It usually uses a

gamma-ray emitting tracer bound to a chemical with known physiological properties. The

concentration of the tracer in the body is measured as a function of position and time by

detecting the emitted gamma-rays.

Nuclear imaging modalities include conventional radionuclide imaging, single photon

emission computed tomography (SPECT) and positron emission tomography (PET). Dif-

ferent radio-active tracers are used in those modalities. Conventional radionuclide imaging

7



and SPECT use single photon tracers. In these scanners, a 2-D Anger scintillation camera

is used to detect the gamma rays. PET utilizes the tracers that generate photon pairs

after their radionuclide atoms decay. Conventional radionuclide imaging is comparable to

conventional X-ray imaging. It produces planar projection images with all the depth in-

formation lost. SPECT and PET produce images of slices within the body. In SPECT

scanners, the Anger camera is rotated around the body. Since the Anger camera is a 2-D

imager, SPECT is fundamentally 3-D. In PET scanners, opposing detectors in the detec-

tion ring are combined to detect the pairs of photons that travel in opposite directions.

Computed tomography techniques such as filtered projection are applied to reconstruct the

tomographic images[3, 4].

Nuclear imaging is invasive since it may involve the injection of radio-active tracers

before imaging. The advantage of nuclear imaging, however, is that it can provide functional

measurements with a higher signal to noise ratio than is possible by using CT, MRI or

ultrasound imaging [3].

Echocardiography(Cardiac Ultrasound)

Echocardiography, which is often referred to as cardiac ultrasound, is an imaging tech-

nique based on the partial reflection of acoustic waves at tissue boundaries. The difference

in acoustic properties between adjacent tissues governs the image contrast.

The commonly used cardiac ultrasound techniques include M-mode, B-Mode and Doppler

scan. An M-mode scan consists of a pulse-echo scan in which the beam points in a single

direction and a B-mode scan is a pulse-echo scan in which the beam sweeps across a tissue

plane. Both M-scans and B-scans use the amplitude of the reflected echo and the elapsed

time from the pulse emission to the reflected echo to reconstruct the image. In color Doppler

imaging, the Doppler shift is measured to create a 2-D velocity image, which is color-coded
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and displayed on the background of a 2-D B-mode tissue image. Transthoracic imaging

allows short-axis, long-axis and oblique-image views, but it is limited due to the presence

of attenuating tissues in the interface between the ultrasound transducer and the organ

of interest. The use of transesophageal imaging overcomes these windowing constraints

at the cost of being highly invasive as it places the transducer in close proximity to the

heart [5, 6, 2].

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is based on nuclear magnetic resonance phenomenon.

Standard clinical MRI looks at the protons in the nuclei of the hydrogen atoms in water

molecules. Each proton has a spin, so the nucleus has a magnetic moment. Under normal

circumstances, these spins align randomly in a macroscopic sample and their magnetic

moments cancel each other out. If an external static magnetic field is applied, however,

these spins precess about the field at an angular frequency known as the Larmor frequency

and their magnetic moments line up, which results in a net magnetization of the object.

In order to obtain an MR image, circularly polarized magnetic fields are applied to

make the frequency of precession spatially dependent. Then, selected regions within the

object are excited by applying radio-frequency (RF) pulses. The RF pulses interact with

the spins to tip them away from their original orientations. After an RF pulse is turned off,

the spin-spin and spin-lattice interactions cause the magnetic moments to return to their

equilibrium state. The precession of the magnetic moments generates a RF electromagnetic

signal that can be sensed with an antenna [4]. The MR images are then reconstructed from

the signal samples with Fourier reconstruction techniques.

Compared with other imaging modalities such as conventional X-rays and CT, MRI has

many advantages. First, it does not utilize ionizing radiation and thus avoids any negative
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effects on the human body. Second, excellent contrast between soft tissues can be achieved

by MRI and this contrast can be adjusted by applying different pulse sequences. Third,

by appropriately steering the magnetic fields, slices can be arbitrarily oriented. Thus, MR

images can be obtained over a wide range of orientations without the need to change the

position of the patient.

1.1.4 Cardiac MR Tagging

MRI can also be used to image objects that are in motion. However, since motion

can only be measured perpendicular to the image intensity gradient, and not along it, an

aperture problem exists with standard MRI. Other image modalities, for example CT and

ultrasound, also suffer from this problem. Tagged MRI is a major advance in this respect.

It can be used to measure myocardial motion non-invasively by labeling specified regions of

the myocardium which serve as markers during the cardiac cycle.

Tagged cardiac MR images are acquired by magnetically labeling planar slices of the

heart (called tag planes) near end-diastole and acquiring a series of images in slices perpen-

dicular to the tag planes (see [8] for details of the imaging protocol). Figure 1.3 illustrates

this process, in which the intersections of tag planes with image planes are tag lines, which

appear as dark stripes in the images. Since the labeling temporarily modifies the material

properties of the tissue, the deformation of the tag lines reflects the deformation of the

underlying tissue.

In tagged MR images, only motions perpendicular to the tag planes can be measured.

As shown in Figure 1.4, a point identified on a deformed tag line, s, originates from some-

where on the reference tag plane, but only the displacement component in the tag plane

normal direction is known. Therefore, a 1-D measurement of myocardial motion can be
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obtained from each point identified on a tag line. 3-D deformation is measured by acquiring

images with tag planes in different orientations and imaging multiple slices of the heart.

1.2 Tagged Cardiac MR Image Analysis

In tagged MR images, the deformed tag lines can be analyzed in order to reconstruct

the 3-D LV deformation and to compute the 3-D LV strain, which is an important measure

of regional myocardial contractile performance.

The 3-D deformation of the LV wall is typically reconstructed by first tracking the tag

lines in each image in the data set and then fitting a deformation model to the tag line

positions. It can also be reconstructed by fitting a deformation model directly to the image

data, thus combining tag tracking and motion reconstruction.

Several tag tracking algorithms have been proposed over the years. The approach

typically used is to initialize an active contour [11, 12, 13] or a 3-D deformation model [14, 15]

close to the tag lines in the image and then evolve the active contour or deformation model

until it matches the tag lines in the image. However, there are some potential problems with

this approach. Active contour algorithms use smoothness constraints in order to reduce the

effects of noise and improve tracking accuracy, but ideally this smoothness should be applied

in the deformation model that is fit to the tag line positions. Deformation-model algorithms

do not suffer from this problem since they fit a deformation model directly to the image

data, but these approaches are sensitive to the registration errors that occur between slices

acquired during different breath-holds.

Once tag lines have been tracked, a deformation model is fit to the tag line points

[16, 13, 17, 14, 18, 15, 19, 20, 21] to reconstruct the LV motion. Model-free methods such

as HARP [24] can also be used to measure strain, but these methods are currently only

capable of measuring 2-D strains. Many 3-D LV deformation models have been proposed,
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Figure 1.5: Domains of 3-D LV deformation reconstruction models. (a): Cartesian domain;
(b): cylindrical domain; (c): prolate spheroidal domain. The gray object inside each domain
represents the LV wall.

including methods based on prolate spheroidal basis functions [16], finite elements [13], finite

differences [17], free-form deformations [22, 23], and B-spline functions [14, 18, 15, 19, 20, 21].

B-spline methods, in particular, have received considerable attention because B-splines

are spatially localized and B-spline models can be used to represent complex deformations

with relatively few parameters. In the work of Chen and Amini [14], Huang et al [19],

Öztürk and McVeigh [20], and Radeva et al [21], the LV deformation is modeled with either

3-D or 4-D (3-D+t) B-spline tensor products in Cartesian coordinates . The 4-D models

employ a 1-D B-spline interpolation over time. The LV, however, is roughly elliptical in

shape, and the domain of these Cartesian models is rectangular. This shape mismatch can

potentially cause instabilities in the model fit because it is possible for a B-spline span to

contain few or no data points [15]. This problem has been addressed by either explicit

regularization [21] or adding derived measurements to the periphery of the LV [20]. In
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an attempt to avoid this shape mismatch problem, Deng and Denney [18] used a 3-D B-

spline deformation model defined in cylindrical coordinates. However, although cylindrical

models match the LV’s shape near mid-ventricle, they do not match near the apex (see

Figure 1.5(a)(b)).

Several methods that combine tag tracking and motion reconstruction into a single

step have been proposed recently for tagged cardiac MR image analysis. These techniques

use either B-spline models [14, 15] or finite elements [25]. The 4-D B-spline model (3-D

B-solid + time) [14] and the finite elements method [25] require user-defined myocardial

contours in order to limit the computation of image forces to points inside the myocardium

or to define the initial model geometry. However, identifying the myocardial contours is

both labor intensive and time consuming. UNTETHER [26] is an unsupervised 3-D tagged

MR image analysis technique that does not require user defined myocardial contours. In

the UNTETHER algorithm, however, tags are tracked in each slice independently, and it

is possible that tag line positions could be inconsistent from slice to slice. The COTTER

algorithm [15] offers another method that does not require user-defined myocardial contours.

It fits a 3-D cylindrical cardiac deformation model directly to the image data, which ensures

that the tag line positions are consistent from slice to slice. However, since this model is

defined in cylindrical coordinates, it incorporates a singularity at the apex because the

radial coordinate is zero there, and thus it cannot compute the strain at the apex.

1.3 Contributions of This Research

As discussed in Section 1.2, there are several problems with the existing cardiac LV

motion reconstruction techniques. First, the existing tag tracking methods either require

application of smoothness constraints or are sensitive to the registration errors between slices

acquired during different breath-holds. Second, the existing B-spline motion reconstruction
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models are all defined by using either Cartesian or cylindrical coordinates. Their domains

therefore fail to match the shape of the LV, which can lead to inaccuracies in the model

fit. Third, the existing combined tag tracking and motion reconstruction approaches either

require user-defined contours or include a singularity at the apex.

In this dissertation, the objective is the quantitative estimation of the regional my-

ocardium deformation, including tag line tracking and cardiac motion modeling. The con-

tributions of our work include the development of new tag line tracking and 3-D cardiac

motion reconstruction algorithms to address the problems in existing techniques.

First, a tag point classification algorithm [47] is presented that is suitable for use in a

new technique for tracking tag lines in tagged cardiac MR images. Instead of tracking tag

lines from frame to frame in an image sequence with active contours or similar techniques,

a set of candidate tag points are detected in each image which are then classified as either

a false positive or belonging to a particular tag line. The advantages of this approach are

that the tag point positions are not pre-smoothed during tracking, allowing the smoothness

constraint to be applied only in the deformation model fit to the tag points, and it is not

sensitive to the misregistered slices that are due to a patient breath-hold shift since it is a

2-D method.

Second, a new 3-D myocardial displacement and strain reconstruction algorithm has

been developed based on B-spline basis functions in prolate spheroidal coordinates. This

method can be applied to the tag line points tracked by any tag tracking algorithm. We

developed two deformation models – one is based on the prolate spheroidal B-splines alone,

named PSB, the other also incorporates a model for global affine deformation, called APSB.

The APSB model has been published in [55, 56]. These models more closely match the shape

of the LV wall than either of existing Cartesian or cylindrical coordinate models (see Figure

1.5(c)). The PSB and APSB deformation models also enforce smoothness across the apex
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and can compute strain at that location. Validation experiments have shown that this

method can be used to accurately reconstruct deformation and strain in the LV wall from

tagged MR images.

Third, a new combined tag tracking and strain reconstruction method called PS-

COTTER is presented. In this algorithm, the PSB deformation model described above

is fit directly to the detected tag points, raw or filtered image data. The tag points can be

detected by using peak detection [48, 27], template matching [11], or other techniques. The

myocardium motion field and strains are computed based on the results of the tag tracking

procedure without the need for intermediate steps. In contrast to the existing techniques

in [14, 25], this algorithm does not require user-defined myocardial contours. In contrast

to COTTER [15], the domain of PS-COTTER matches the shape of the left ventricle more

closely, which makes it perform better than COTTER. Validation experiments have shown

that PS-COTTER can accurately reconstruct the deformation field for studies acquired

with different imaging protocols.

1.4 Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 presents the statistical tag point

classification algorithm for tag line tracking and Chapter 3 presents a 3-D myocardial dis-

placement and strain reconstruction method based on affine deformation and a prolate

spheroidal B-spline model. Chapter 4 describes the new combined tag tracking and strain

reconstruction method PS-COTTER based on both open-apex and closed-apex PSB mod-

els. Finally, conclusions and future work are discussed in Chapter 5.
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Chapter 2

Tag Point Classification in Tagged Cardiac MR Images

2.1 Introduction

In this chapter, a new method is proposed for tracking tag lines in a sequence of tagged

cardiac MR images. First, a set of candidate tag line points are identified in an image using

peak detection [48, 27], template matching [11], or other techniques. A statistical classifica-

tion technique is then used to group the tag points into tag lines, establish correspondence

between tag lines at different time frames and remove false positives. This approach allows

tag points to be tracked without any smoothness constraints applied in the tracking process.

In addition, this approach is robust to large frame-to-frame tag line displacements, which

can cause active contour and model-based algorithms to lose tag line correspondence.

This chapter is organized as follows. In Section 2.2, we derive the statistical tag point

classification algorithm, which is based on a non-rigid feature registration method used

in brain mapping [29]. We conduct validation experiments on human tagged cardiac MR

image data in Section 2.3, and discuss the results in Section 2.4.

2.2 Algorithm Development

In this section, we develop the tag point classification algorithm. We assume that a set

of candidate tag line points (yellow-colored points in Figure 2.1(a)) have been identified in

the image data using peak detection [48], template matching [11], or other techniques. The

classification algorithm will then determine if a tag point belongs to a tag line or not, and,

if it does belong to a tag line, which tag line it belongs to. The algorithm begins with a
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set of “synthetic” tag lines (magenta-colored lines in Figure 2.1(a)), which are estimates of

the positions of the true tag lines. Each candidate tag point in the image is then assigned a

set of membership probabilities that specify the probability that the point belongs to each

tag line in the image. The positions of the synthetic tag lines are then updated based on

the candidate tag points and their membership probabilities. Tag points with a relatively

high probability of belonging to a tag line have greater influence over the updated position

of the corresponding synthetic tag line. Note that the synthetic tag lines are not intended

to exactly match the detected tag points. Rather, their purpose is to act as cluster centers

for tag point classification. The two steps described above are iterated with a deterministic

annealing schedule for a fixed number of steps. Tag points are then either classified as

not belonging to a tag line or assigned to a tag line depending on the final membership

probabilities. For simplicity, in the following development, we only present an algorithm for

classifying tag points in a parallel-line tag pattern. In grid-tagged images, the classification

algorithm would be applied twice – once for tag points identified in one tag line direction

and again to tag points identified in the other direction.

The statistical classification algorithm requires two models: a model for updating the

synthetic tag line positions based on tag points and membership probabilities, and a model

for assigning membership probabilities between tag points and tag lines.

To update the positions of the synthetic tag lines, we assume that deformed tag line

positions can be described by displacements from a known, straight reference position. The

reference position is the position of the tag line when it was first applied to the tissue,

and this position is known from the imaging protocol. While tag lines can deform in 2-

D in an image, tag lines only provide information about deformation in the undeformed

tag line normal direction [58], so we only model deformation of the synthetic tag lines in

this direction. We describe the tag line normal displacement with a scalar-valued, 2-D,
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Figure 2.1: Tag tracking results from a human heart. (a) Result of deterministic annealing
algorithm. Synthetic tag lines are shown in magenta. Detected tag points are shown in
yellow. (b) Final classification result. Each detected tag line is displayed with a color
indicating the tag line to which it belongs. Tag points classified as not belonging to a tag
line are shown in blue.
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tensor-product B-spline model in Cartesian coordinates:

u⊥(r) =
Nx∑
i=1

Ny∑
j=1

Bi(x̃)Bj(ỹ)Cij ,

where r is a point on a reference position tag line, Nx and Ny are the numbers of control

points in x (undeformed tag line normal) and y (undeformed tag line parallel) directions,

respectively, Bi(·) are B-spline functions, Cij are the control points, and (x̃, ỹ) are the x

and y-components of r in the B-spline parametric space. The deformed position of the i-th

point on the j-th synthetic tag line (rij) is given by

f(rij) = rij + u⊥(rij)n, (2.1)

where n is a unit vector normal to the undeformed tag lines. To ensure a well-conditioned

problem when fitting the B-spline model to tag points, we impose a Laplacian smoothness

constraint on the B-spline model, which can be expressed probabilistically as

p(f) =
1

Zf
exp

(
−λ ‖Lf‖2

)
. (2.2)

To assign membership probabilities, we assume that the distance between a tag point

and a tag line is specified by a Gaussian mixture model where each tag line is a cluster center.

We assume that each cluster has the same variance (σ2) and that the cluster occupancy

probabilities are uniform, i.e., p(j) = 1
Nt

, where j is the index of the j-th tag line and Nt is

the number of tag lines in the region of interest. Given that a tag point belongs to the j-th

tag line, it position, vi, has the probability density

p(vi|f, j, σ) =
1√
2πσ

exp

(
−‖vi − f(rij)‖2

2σ2

)
, (2.3)
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where f(rij) is the position of the point closest to vi on the j-th synthetic tag line. Assuming

each tag point is independent, the joint distribution of the detected tag points is

p(V |f, σ) =
Np∏
i=1

⎡
⎣ Nt∑

j=1

p(vi|f, j, σ)p(j)

⎤
⎦ , (2.4)

where Np is the number of detected points, and V is a vector containing all the vi.

With the models described above, the MAP estimate of f is to minimize the objective

function

E(f) = −
Np∑
i=1

log
Nt∑
j=1

1√
2πσ

exp
(
−‖vi−f(rij)‖2

2σ2

)
+ λ ‖Lf‖2 . (2.5)

It has been shown in [46, 29] that the minimum of the objective function over f is equivalent

to the minimum of

E(f,M) =
Np∑
i=1

Nt∑
j=1

mij ‖vi − f(rij)‖2 + T

Np∑
i=1

Nt∑
j=1

mij log mij + λ ‖Lf‖2 (2.6)

over f and M subject to the constraint that mij > 0 and
∑Nt

j=1 mij = 1, where T = 2σ2, M

is a matrix containing all the mij . Note that the variance of the tag point distance model, σ2

has been replaced by the temperature, T , which will be varied in the deterministic annealing

algorithm described below. This is a half-quadratic problem.

The first term in Equation (2.6) is a data matching term, which forces the synthetic

tag line deformation function, f , to match the detected tag points, vi. The influence of

each detected tag point on f is weighted by the corresponding membership probability,

mij, which is the probability that the i-th detected tag point belongs to the j-th tag line.

The second term is an entropy barrier. The third term regularizes the synthetic tag line

deformation function.
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The objective function E(f,M) is non-convex, so we minimize this function by alter-

nately fixing one variable and optimizing with respect to the other and embedding this

alternate minimization in a deterministic annealing algorithm similar to the one used in

[29]. In a given annealing step, we first update the membership variables with f fixed.

We then fix the mij and update the synthetic tag deformation function with a weighted

least-squares fit. These steps are described below:

1. Initialize the temperature, T = Tinit, and the control points of the B-spline deforma-

tion model, C.

2. While T > Tfinal

(a) Update the membership variables

mij = exp

(
−‖vi − f(rij)‖2

T

)
, (2.7)

and normalize the membership variables first on all the detected points then on

all the tag lines:

mij =
mij∑Np

i=1 mij

, then mij =
mij∑Nt

j=1 mij

. (2.8)

(b) Update the synthetic tag line deformation function by fitting the control points,

C, of the B-spline model

f = arg min
C

Np∑
i=1

Nt∑
j=1

mij ‖vi − f(rij)‖2 + λ ‖Lf‖2 (2.9)

(c) Update the temperature and regularization parameter: T = T × γ, λ = λ × γ.
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where γ is the annealing rate. Note that the temperature controls the variance of the

membership probability density in (2.3). Initially, this variance is relatively large, which

allows many detected tag points to affect the position of a given synthetic tag line. As the

annealing temperature cools, the variance gets smaller, and only detected tag points close

to a synthetic tag line affect its position. A similar schedule is used with the regularization

parameter, λ. Initially, when many detected tag points affect the position of a synthetic

tag line, the deformation function is heavily smoothed to reduce the effect of detected tag

points distal to the tag line. As the annealing temperature cools, the need for smoothing

is reduced since the synthetic tag lines are only affected by detected points close to the tag

line.

After the deterministic annealing algorithm completes, the detected tag points are

assigned a tag line index based on their maximum membership values. Since tag points

are only detected in the neighborhood of pixel locations in the image, it is possible that a

point on a tag line could have multiple detected tag points assigned to it. In this case, the

detected tag point with the highest membership value is retained, and the remaining tag

points are classified as false positives.

The tag point classification algorithm can be applied to multiple slices in an imaging

study. To ensure consistent tag line indices across multiple slices, the deformation function

control points can be initialized to the control points from the previous slice, and a smaller

initial temperature can be applied to those subsequent slices to make the classification and

tracking process faster. If slices are misregistered due to a patient breath-hold shift, this

shift will not cause a problem since the tag lines are applied in the same position relative to

the slice prescription, which is typically consistent from slice to slice. If there is a breath-

hold shift, the heart may shift relative to the slice, but the tags will be in the same position

relative to the slice.
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In many clinical studies, only the end-systolic strain in the LV wall is of interest, so

only the end-diastolic (ED) and end-systolic (ES) time frames need to be analyzed. In

short-axis slices, the classification algorithm is robust enough to inter-frame changes in tag

line positions that it can classify detected tag points at ED and ES without tracking tags

through intermediate time frames. The deformation control points at ED and ES are both

initialized to zeros. In long-axis images, larger deformations can occur between ED and ES,

and the increased size of the blood pool makes false positives more likely in the detected

tag points. For these reasons, long-axis images are tracked in each time frame from ED to

ES using the final control points from the previous time frame as the initial control points

for the current frame, and a smaller initial temperature can be applied for the subsequent

time frames.

2.3 Experiments and Results

To perform a validation of the classification algorithm, 20 humans subjects were imaged

with a grid-tagged imaging protocol with tag spacing of 7 pixels. The studies are identified

in Section 2.5. Each study contained around 10 short-axis slices, one 2-chamber slice and one

4-chamber slice and 20 time frames were imaged during the entire cardiac cycle. Candidate

tag points were detected in each image by pre-filtering the image with a composite Gabor

filter and performing peak detection [48]. Tag points were detected and classified separately

in each tag line direction in the grid. The 20 studies were randomly split into two groups

of ten. One group, called development studies, were used to test and set parameters for the

classification algorithm. The other group, called evaluation studies, were used to evaluate

the performance of the algorithm.
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2.3.1 Parameter Sensitivity

The parameters of the classification algorithm were determined using the development

studies. Considering the regions that the left ventricle occupies in long-axis images are

usually wider than those in short-axis images, we tested the sensitivities to some parameters

separately for short-axis and long-axis slices. The set of parameters includes the annealing

rate γ, the initial temperatures Tinit, TSAinit2 (for subsequent short-axis slices) and TLAinit2

(for subsequent long-axis slices), the final temperature Tfinal, the regularization weight λ,

and the numbers of the B-spline control points NxSA, NySA, NxLA and NyLA. For the

grid tag pattern, since the initial tag lines are oriented perpendicularly, the numbers of

the B-spline control points were assumed the same in the two orthogonal directions, i.e.,

NxSA = NySA = nCPSA and NxLA = NyLA = nCPLA. Different parameter values were

applied for the parameter sensitivity test. The tracked tag lines were compared to tag

lines tracked and edited by expert users. Only tag points inside the LV wall were used for

classification accuracy analysis, where the classification accuracy was defined as the ratio

of the number of correctly tracked tag lines / the total number of tag lines.

The parameters were optimized one by one. The value that results in the maximum tag

classification accuracy was chosen as the optimal value for a parameter. As the sensitivity of

one parameter was tested with various values, the other parameters were set to empirically

chosen values or the optimal values if they had already been obtained. The order of the

parameters to be tested was γ, λ, Tinit, Tfinal, TSAinit2, TLAinit2, and the numbers of

control points. Tables 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8 show that the set of parameters

γ = 0.75, λ = 103, Tinit = 10, Tfinal = 0.001, TSAinit2 = 4, TLAinit2 = 4, nCPSA = 6 and

nCPLA = 9 maximized the classification accuracy over the ten development studies.
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Table 2.1: End-systolic tag point classification accuracies with various annealing rates (γ)
and empirical parameter values λ = 10, Tinit = 10, Tfinal = 0.5, TSAinit2 = 3, TLAinit2 = 2,
nCPSA = 6 and nCPLA = 8 over the 10 human development imaging studies.

γ classification accuracy
0.50 83.3%
0.55 82.4%
0.60 84.9%
0.65 88.8%
0.70 89.1%
0.75 91.1%
0.80 90.1%
0.85 88.4%
0.90 84.1%
0.95 77.0%

Table 2.2: End-systolic tag point classification accuracies with various initial regularization
weights (λ), optimal annealing rate γ = 0.75, and empirical parameter values Tinit = 10,
Tfinal = 0.5, TSAinit2 = 3, TLAinit2 = 2, nCPSA = 6 and nCPLA = 8 over the 10 human
development imaging studies.

λ classification accuracy
10−2 91.0%
10−1 91.0%

1 91.0%
10 91.1%
102 90.9%
103 91.9%
104 88.2%
105 86.2%
106 78.0%

27



Table 2.3: End-systolic tag point classification accuracies with various initial temperatures
(Tinit), optimal parameters γ = 0.75 and λ = 103, and empirical parameter values Tfinal =
0.5, TSAinit2 = 3, TLAinit2 = 2, nCPSA = 6 and nCPLA = 8 over the 10 human development
imaging studies.

Tinit classification accuracy
1 86.6%
5 89.1%
10 91.9%
102 42.9%
103 27.3%

Table 2.4: End-systolic tag point classification accuracies with various final temperatures
(Tfinal), optimal parameters γ = 0.75, λ = 103 and Tinit = 10, and empirical parameter val-
ues TSAinit2 = 3, TLAinit2 = 2, nCPSA = 6 and nCPLA = 8 over the 10 human development
imaging studies.

Tfinal classification accuracy
0.001 93.2%
0.005 90.9%
0.01 89.9%
0.05 89.8%
0.1 89.9%
0.5 91.9%
1 87.6%
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Table 2.5: End-systolic tag point classification accuracies with various initial temperatures
(TSAinit2) for the subsequent short-axis slices, optimal parameters γ = 0.75, λ = 103,
Tinit = 10 and Tfinal = 0.001, and empirical parameter values nCPSA = 6 over the short-
axis slices of the 10 human development imaging studies.

TSAinit2 classification accuracy
1 93.8%
2 93.7%
3 93.0%
4 95.9%
5 92.2%
6 89.8%
7 83.2%
8 80.3%
9 77.6%
10 67.5%

Table 2.6: End-systolic tag point classification accuracies with various initial temperatures
(TLAinit2) for the subsequent long-axis slices, optimal parameters γ = 0.75, λ = 103, Tinit =
10 and Tfinal = 0.001, and empirical parameter values nCPLA = 8 over the long-axis slices
of the 10 human development imaging studies.

TLAinit2 classification accuracy
1 92.6%
2 93.8%
3 94.4%
4 94.7%
5 93.5%
6 94.1%
7 91.7%
8 93.2%
9 88.2%
10 87.9%
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Table 2.7: End-systolic tag point classification accuracies with various numbers of control
points (nCPSA) for short-axis slices, optimal parameters γ = 0.75, λ = 103, Tinit = 10,
Tfinal = 0.001, and TSAinit2 = 4 over the short-axis slices of the 10 human development
imaging studies.

nCPSA classification accuracy
3 92.9%
4 92.8%
5 88.6%
6 95.9%
7 86.4%
8 85.6%
9 83.9%

Table 2.8: End-systolic tag point classification accuracies with various numbers of control
points (nCPLA) for 2-chamber and 4-chamber slices, optimal parameters γ = 0.75, λ = 103,
Tinit = 10, Tfinal = 0.001, and TLAinit2 = 4 over the 2-chamber and 4-chamber slices of the
10 human development imaging studies.

nCPLA classification accuracy
3 82.3%
4 87.0%
5 84.3%
6 92.3%
7 89.9%
8 94.7%
9 95.6%
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2.3.2 Validation

The optimal parameters obtained from the parameter sensitivity test were used in

processing the evaluation studies. The synthetic tag line deformation model used quadratic

B-splines with NxSA = NySA = 6 for short-axis slices and NxLA = NyLA = 9 for long-axis

slices. In the first processed slice and time frame, an initial temperature of Tinit = 10 was

used. Since T determines the variance in the tag point position membership function in

Equation (2.3), this value of Tinit is proportional to the tag spacing. In subsequent slices

and time frames, a lower initial temperature, TSAinit2 = 4 and TLAinit2 = 4 for short and

long-axis slices, was used since the control points were initialized to the result of the previous

slice or time frame. In all slices and time frames, Tfinal = 0.001, λ = 103 and γ = 0.75.

Table 2.9: End-systolic tag point classification accuracies over the 10 human development
and 10 human evaluation imaging studies.

Development Evaluation
classification accuracy 95.8% 98.2%

Figure 2.1 shows the results of the deterministic annealing for a human study near end-

diastole and near end-systole. The detected tag points are shown in yellow in Figure 2.1(a)

and in blue in Figure 2.1(b), and the synthetic tag lines are shown in magenta. Contours of

the left ventricle were displayed in each plot with white for reference purposes, but contours

were not used at all in the detection or classification algorithms. Note that the synthetic

tag lines are not intended to exactly match the detected tag points. Rather, their purpose is

to act as cluster centers for tag point classification. Figure 2.2 shows the result of tag point

classification in different slices. Each detected tag point is displayed with a color indicating

the tag line to which it belongs. Tag points classified as false positives are shown in blue.

Note that tag points are classified according to their proximity to a given synthetic tag line.
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Points between two synthetic tag lines have low maximum membership probabilities and

are classified as false positives. In some cases, a connected set of detected points will change

index in the middle of the line, but this primarily occurs in the blood pool, lung, or other

regions of the image that are not tagged.

The classification algorithm was implemented in MATLAB and took approximately 10

seconds for a short-axis slice, 50 seconds for a long-axis image, and 12 minutes of processing

time for a single study on a 3.2GHz PC.

To quantify the performance of the classification algorithm, the ten evaluation studies,

which were not used for development or setting parameters, were processed. The results

were compared to tag lines tracked and edited by an expert user. A tag point was considered

classified correctly if its tag line index matched the index of the closest expert-edited tag line

point. Only tag points inside the LV wall were included in the analysis. The classification

accuracy (number of correctly classified tag lines/total number of tag lines) was 98.2%.

The processing time for each study can be improved by applying different annealing

schedules. With the deformation model fixed, the computation time is determined by the

initial and final temperatures and the cooling speed. An experiment with Tinit = 10,

Tfinal = 0.5, TSAinit2 = 3, TLAinit2 = 2, λ = 103 and γ = 0.75 over the ten evaluation

studies showed the processing time was about 5 seconds for a short-axis image, 12 seconds

for a long-axis image, and 4 minutes for a single imaging study on a 3.2GHz PC with a

classification accuracy of 94.3%. In [56], we used Tinit = 10, Tfinal = 1, TSAinit2 = 3,

TLAinit2 = 2, λ = 104 and γ = 0.9 in the experimental validation, which resulted in a

classification accuracy of 97.86%.

For comparison purposes, we also implemented tag point classification by using the

simulated annealing algorithm. Instead of optimizing the energy E(f,M) in Equation (2.6)

with a deterministic schedule, we employed a stochastic process to update the control points

32



End-diastole End-systole

Base

Mid-ventricle

Apex

Figure 2.2: Tag line registration across multiple short-axis slices. Each detected tag line is
displayed with a color indicating the tag line to which it belongs. Tag points classified as
false positives are shown in blue.
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of the B-spline deformation model. The same annealing schedule as in the deterministic

annealing was used in the simulated annealing algorithm. Experiments on the 10 human

evaluation imaging studies showed the classification accuracy was 69.0% and it took about

40 minutes to process a single study on a 3.8GHz PC. By using slower cooling rate, simulated

annealing has the potential to get better classification accuracy. However, this will take a

much longer time. Since the classification accuracy of the deterministic annealing algorithm

is already 98.2%, there is not much room for improvement. It is more practical to keep the

computation speed of deterministic annealing than sacrificing the speed for a less than 1.8%

improvement.

2.4 Discussion

In this chapter, we presented an algorithm for classifying a set of tag points detected

in a tagged cardiac MR image into a set of tag lines. This algorithm allows tag lines to be

tracked without smoothness constraints, which should be imposed when a 3-D deformation

model is fitted to the tag data and not during tracking. A validation experiment on data

not used for algorithm development resulted in a high classification rate when compared to

expert-edited tag lines.

The classification algorithm is robust enough to inter-frame changes in tag line position

that, in short-axis images, end-systolic time frames can be processed without tracking tag

lines through intermediate time frames, which can save the processing time.

We explicitly tested the robustness of the parameter choices we made in the classifi-

cation algorithm. A measure of robustness was demonstrated in our experimental results

where high classification rates were obtained on both the development and evaluation data

sets.
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We also implemented the simulated annealing algorithm for comparison purposes. With

the same annealing schedule used in the deterministic annealing, the simulated annealing

resulted in a lower tag point classification accuracy. Additionally, it took a longer time

to classify tag points with the simulated annealing schedule. We chose the deterministic

annealing schedule in our algorithm because it is a controllable process and is faster.
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2.5 Appendix

Table 2.10: The 20 grid-tagged human imaging studies for validating the tag classification
algorithm.

Development Evaluation
Study ID Visit Study ID Visit
05DAC041 BAS 05DAC005 M03
05DAC053 BAS 05DAC047 BAS
05DAC057 BAS 05DAC050 BAS
05P1MRR009 BAS 05P1VOL507 BAS
05P1MRR012 BAS 05P1VOL514 BAS
05P1VOL507 BAS 05P1VOL516 BAS
05P1VOL514 BAS 05P1VOL521 BAS
05P3CLN004 BAS 05P3CLN001 BAS
05P3CLN007 BAS 05P3CLN008 BAS
05P3CLN011 BAS 05P3CLN009 BAS
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Chapter 3

Left Ventricular Motion Reconstruction

3.1 Introduction

This chapter presents a new 3-D myocardial displacement and strain reconstruction

method based on affine deformation and PSB deformation models. The domain more

closely matches the LV’s shape than those of both Cartesian and cylindrical coordinate

models. In this new deformation model, the spline basis functions are oriented radially,

circumferentially, and longitudinally. This arrangement is consistent with the muscle fiber

orientations in the LV wall, where the muscle fibers are oriented nominally in the circum-

ferential direction with collagen struts [49] connecting the fibers in the cross-fiber direction.

Also the deformation model includes the LV apex, which is difficult to model in cylindrical

coordinates.

3-D deformation and strain is computed independently for each imaged time frame

using a three-step procedure. First, a backward fit is performed by fitting the deforma-

tion model to measurements derived from tag lines identified in the tagged images. This

deformation field maps each point in the deformed myocardium back to its reference po-

sition, which we define as end-diastole. Next, a forward deformation field is computed by

inverting the backward deformation field. This deformation maps each material point in

the myocardium to its deformed position. In each of the first two steps, there is a two-stage

fit where an affine deformation model is fit to the data, and a prolate spheroidal B-spline

model is fit to the residuals. We call this deformation model the APSB model. Finally,

Lagrangian strain is computed by analytically differentiating the forward deformation field.

37



This chapter is organized as follows. In Section 3.2, we briefly review the prolate

spheroical coordinate system and continuum mechanics used in our algorithm. In Section

3.3, the closed-apex APSB deformation model is presented. In Sections 3.4 and 3.5, the

closed-apex APSB model is validated and its performance is compared with those of a sim-

plified model without the affine deformation called the PSB model and cylindrical models.

The validation experiments were performed with an analytically defined LV deformation

model and the tag displacement field tests presented in [10]. Finally, the results are dis-

cussed in Section 3.6.

3.2 Background

3.2.1 The Prolate Spheroidal Coordinate System

The prolate spheroidal coordinate system has been used in the cardiac LV motion

modelling [16]. See Figure 3.1. The relationship between a point in Cartesian coordinates

(x, y, z) and its corresponding prolate spheroidal coordinates (λ, φ, θ) is:

x = f sinh λ sinφ cos θ

y = f sinh λ sinφ sin θ

z = f cosh λ cos φ, (3.1)

where λ ∈ [0,∞), φ ∈ [0, π], θ ∈ [0, 2π) and f is the focal radius. The relationship between

a vector (ux, uy, uz) in Cartesian coordinates and its counterpart (uλ, uφ, uθ) in prolate

spheroidal coordinates is given by:

ux =
cosh λ sin φ cos θ√
sinh2 λ + sin2 φ

uλ +
sinhλ cos φ cos θ√
sinh2 λ + sin2 φ

uφ − sin θ · uθ
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Figure 3.1: The prolate spheroidal coordinate system and Cartesian coordinate system. nλ,
nφ, nθ are the orthogonal unit vectors in λ (radial), φ (longitudinal), θ (circumferential)
directions respectively.
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uy =
cosh λ sin φ sin θ√
sinh2 λ + sin2φ

uλ +
sinhλ cos φ sin θ√
sinh2 λ + sin2 φ

uφ + cos θ · uθ

uz =
sinhλ cos φ√

sinh2 λ + sin2 φ
uλ − cosh λ sin φ√

sinh2 λ + sin2 φ
uφ, (3.2)

where λ, φ, and θ are the coordinates of the vector origin.

Then the 3-D Laplacian of a function u(λ, φ, θ) in prolate spheroidal coordinates is

given by

�2u =
1

sinh2 λ + sin2 φ
[(csch2λ + csc2 φ)

∂2u

∂θ2
+ cot φ

∂u

∂φ

+
∂2u

∂φ2
+ coth λ

∂u

∂λ
+

∂2u

∂λ2
]. (3.3)

3.2.2 Continuum Mechanics

The motion of a material point, which is fixed on the object, is described by a smooth,

reversible function

s = s(p, t) (3.4)

that maps a material point p = [X,Y,Z]T to a spatial point s = [x, y, z]T , which is fixed in

space. The inverse of this function is called a reference map. Material and spatial points

are equal in the reference configuration, which we define as end-diastole.

Let up(p) denote the displacement of the material point p and us(s) denote the dis-

placement of the corresponding spatial point s. Then,

s = p + up(p)

p = s + us(s) (3.5)

40



and

ds = Fdp = (I + �up)dp (3.6)

where F is the material coordinate deformation gradient tensor,

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.7)

�up is the material coordinate displacement gradient tensor and I is the identity matrix.

The Lagrangian strain tensor, E, is defined as

E =
1
2

(
FTF − I

)
, (3.8)

where T denotes transpose.

3.3 Algorithm Development

In this section, we develop the APSB algorithm for reconstructing 3-D deformation

and strain from a set of deformed tag line points at a single phase in the cardiac cycle. This

process can be repeated for each imaged cardiac phase to obtain a sequence of deformations

and strains. We assume that the tag lines have been identified in each image in the study

by one of the several published techniques [51, 12, 13, 48, 56].

The deformation reconstruction algorithm reconstructs 3-D displacement and strain

from the 1-D displacement measurements obtained from the tag tracking procedure (see

Figure 1.4). The algorithm is implemented in three steps. First, a 3-D spatial coordinate

displacement field is computed to map points in the deformed myocardium back to their

undeformed positions. Second, this spatial coordinate displacement field is converted to
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a material displacement field, which maps material points in the undeformed myocardium

to their deformed positions. Finally, strain is computed by analytically differentiating the

material coordinate B-spline displacement field with respect to space and using Equation

(3.8).

Since cardiac motion includes not only contraction and relaxation but also bulk shear,

bulk rotation and bulk displacement, the deformation reconstruction algorithm uses a two-

stage fit similar to that used in [16] where an affine deformation model is first fit to the

data, and a prolate spheroidal B-spline model is fit to the residuals.

In each prolate spheroidal B-spline model fitting, the origin and focal radius of prolate

spheroidal coordinate system are determined as follows. The z-axis of a Cartesian coordinate

system is defined along the LV longitudinal direction from the apex to the base with the

x-y plane parallel to the short-axis image planes. The origin is defined to be one-third of

the distance from the base to the apex at the (x, y) centroid of the tag points [50]. The

focal radius is chosen to make the λ-coordinate of the LV wall as close as possible to one

[50] in the mean square sense, i.e.,

f = arg minf

∑
k

||1 − λk||2 , (3.9)

where λk is the λ-coordinate of the kth tag point and the sum is over all tag points.

3.3.1 Spatial Displacement Field Fitting

In this step, a spatial displacement field is computed that maps points in the deformed

myocardium back to their undeformed positions. At a spatial point s, we define its motion

as

p = (As + I)s + ds + R(s)urs(s) (3.10)
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where s is a point in Cartesian coordinates, and As is a 3 × 3 affine deformation matrix,

which includes bulk rotation, linear shears, and linear contraction/expansion. ds is a 3× 1

bulk displacement vector. urs(s) is a non-affine displacement described by the PSB model.

R(s) is the rotation matrix defined by Equation (3.2) that transforms a vector in prolate

spheroidal coordinates into Cartesian coordinates. The 3-D displacement of a spatial point

s, is then given by

us(s) = p − s

= As · s + ds + R(s)urs(s). (3.11)

The 1-D displacement measurement, d(s), obtained from a single deformed tag line point

is (see Figure 1.4)

d(s) = n(s) · us(s)

= n(s) · [Ass + ds + R(s)urs(s)] , (3.12)

where n(s) is a vector normal to the undeformed tag plane from which the spatial point s

originated.

To fit the affine deformation model, we set the non-affine deformation to zero, in which

case Equation (3.12) becomes

d(s) = n(s) · [As · s + ds] . (3.13)
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The displacement measurements for all tag line points in all slices and all tag line orienta-

tions in a single time frame can be stacked into the matrix equation

D = NSAds, (3.14)

where D is a Q × 1 vector of 1-D displacement measurements, N is a Q × 3Q matrix of

normal vectors, S is a 3Q×12 sparse matrix of the spatial point positions, and Ads is a 12×1

vector containing the components of affine deformation matrix As and bulk displacement

vector ds. Equation (3.13) is solved for As and ds via linear least squares. Note that both

the affine and non-affine displacement fields could be fit at the same time. In experiments

using mathematical models and in vivo MR image data, however, the two-stage fit was

slightly faster and more accurate.

In the second stage of spatial fitting, the prolate spheroidal B-spline model is fit to the

displacement residuals, which are defined as

dr(s) = n(s) [R(s)us(s) − (Ass + ds)]

= n(s) · [R(s)urs(s)]

= [RT (s)n(s)] · urs(s)

= nλ(s)uλ(s) + nφ(s)uφ(s) + nθ(s)uθ(s), (3.15)

or, in matrix form,

Dr = D− NSAds

= NUrs, (3.16)
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where Dr is a Q×1 vector of 1-D displacement measurement residuals, and Urs is a 3Q×1

vector of 3-D spatial coordinate displacement residuals.

We model the 3-D non-affine displacements with a 3-D B-spline, which is the tensor

product of three 1-D B-splines. Let urs = [uλ(l, p, t), uφ(l, p, t), uθ(l, p, t)]T denote the non-

affine displacement vector, where

uλ(l, p, t) =
L−1∑
i=0

P−1∑
j=0

T−1∑
k=0

Bo
i (l)B

o
j (p)Bc

k(t)c
λ
ijk

uφ(l, p, t) =
L−1∑
i=0

P−1∑
j=0

T−1∑
k=0

Bo
i (l)B

o
j (p)Bc

k(t)c
φ
ijk

uθ(l, p, t) =
L−1∑
i=0

P−1∑
j=0

T−1∑
k=0

Bo
i (l)B

o
j (p)Bc

k(t)c
θ
ijk. (3.17)

Bo
i (·) is an open B-spline, Bc

k(·) is an closed B-spline, cijk is a control point, and L,P ,T

are the number of control points in the radial (λ), longitudinal (φ), and circumferential (θ)

directions respectively.

Note that we use open B-splines in the radial and longitudinal directions and closed

B-splines in the circumferential direction. In the radial direction, the knots are uniformly

spaced between the minimum and maximum radial coordinates (λmin and λmax) of all de-

formed tag points. In the longitudinal direction, the knots are uniformly spaced between

the most basal tag line points and the apex (φmin and φmax = π). In the circumferen-

tial direction, the knots are uniformly spaced between 0 and 2π. The prolate spheroidal

coordinates λ, φ and θ are related to the B-spline parametric coordinates l, p and t by

l =
λ − λmin

λmax − λmin
× (L − O + 1)

p =
φ − φmin

φmax − φmin
× (P − O + 1)

t =
θ

2π
× T (3.18)
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where O is the spline order.

To relate the control points to the 1-D displacement measurements, we evaluate the

B-spline displacement field at the same positions as the deformed tag line points and stack

them in matrix form to get

Urs = BsCs (3.19)

where Urs is the vector of 3-D spatial coordinate displacement residuals in (3.16), Cs is a

3LPT × 1 vector containing the control points for all three displacement components, and

Bs is a 3Q × 3LPT matrix of B-spline basis functions evaluated at the tag point positions

using (3.18). Substituting (3.19) into (3.16) yields

Dr = NBsCs. (3.20)

To ensure that the non-affine deformation is smooth, we impose Laplacian regulariza-

tion on each of Cartesian displacement components ux(λ, φ, θ), uy(λ, φ, θ) and uz(λ, φ, θ),

which are obtained via rotating the prolate spheroidal displacements by (3.2). This regular-

ization is imposed at the knot positions in the B-spline model with the exception of those

at the apex. Regularization is not imposed at the apex because the Laplacian in prolate

spheroidal coordinates (Equation (3.3)) has a singularity there.

Since there are typically more tag line points than control points, (3.20) is over-

determined. We solve it using least squares (3.21) while penalizing the Laplacian of each

displacement component. We also enforce three equality constraints at the apex to ensure

a smooth deformation across each point where the circumferential closed splines shrink to

one dot and the longitudinal open splines meet. We constrain the circumferential control

points to be equal at the apex, and we constrain the first and second order derivatives of

each pair of antiparallel longitudinal displacement components to be equal at the apex.
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These constraints can be written in matrix form as EsCs = 0, where 0 is a vector of zeros.

The optimal control points are therefore given by

Cs = arg min

Cs

EsCs = 0

‖Dr − NBsCs‖2 + γ‖LsCs‖2 (3.21)

where γ is a weighting parameter and LsCs is the Laplacian at each knot location (except

the apex) in matrix form. To solve this constrained linear least squares fitting problem, we

used the MATLAB command lsqlin, which uses an an active set quadratic programming

method [52].

3.3.2 Material Displacement Field Fitting

While the spatial coordinate field can provide useful information about cardiac function,

Lagrangian strain is usually desired for cardiac motion analysis. To compute Lagrangian

strain, the spatial coordinate displacement field computed above must be converted to a

material coordinate displacement field. To perform this conversion, we use the spatial

displacement field to compute measurements of the material coordinate displacement field,

up(p). For a given spatial point, s, its corresponding material point is given by p = s+us(s).

So for a given set of spatial points, s, we compute a set of material coordinate displacement

field measurements using Equation (3.5), i.e.

up(p) = s− p. (3.22)
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Any set of spatial points could be used, but we used the deformed tag line points that were

used to compute the spatial coordinate displacement field because we expect the B-spline

deformation field to be most accurate at these points.

The material coordinate affine and prolate spheroidal B-spline displacement fields are

computed from these measurements in a manner similar to that used for the corresponding

spatial displacement fields. The only difference is that the material displacement field

measurements are 3-D, so the tag plane normals are not required.

3.3.3 Lagrangian Strain Computation

Lagrangian strain is computed by analytically differentiating the material coordinate

displacement field with respect to space to obtain the deformation gradient, F. Since none

of the independent coordinates λ, φ and θ is a distance, it is easier to compute spatial

derivatives in Cartesian coordinates. In Cartesian coordinates, a material point (X,Y,Z)T

translating and deforming to a spatial position (x, y, z)T maintains the relationship

⎛
⎜⎜⎜⎜⎜⎜⎝

x

y

z

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

X

Y

Z

⎞
⎟⎟⎟⎟⎟⎟⎠

+ Ap

⎛
⎜⎜⎜⎜⎜⎜⎝

X

Y

Z

⎞
⎟⎟⎟⎟⎟⎟⎠

+ dp +

⎛
⎜⎜⎜⎜⎜⎜⎝

uX(X,Y,Z)

uY (X,Y,Z)

uZ(X,Y,Z)

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.23)

where u. denotes the material displacement field computed with the prolate spheroidal B-

spline model (3.17) in Cartesian coordinates. The conversion between prolate spheroidal

displacements and Cartesian displacements is given in (3.2). The Cartesian coordinate
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deformation gradient tensor is then

F = I + A +

⎛
⎜⎜⎜⎜⎜⎜⎝

∂uX(Λ,Φ,Θ)
∂X

∂uX(Λ,Φ,Θ)
∂Y

∂uX(Λ,Φ,Θ)
∂Z

∂uY (Λ,Φ,Θ)
∂X

∂uY (Λ,Φ,Θ)
∂Y

∂uY (Λ,Φ,Θ)
∂Z

∂uZ (Λ,Φ,Θ)
∂X

∂uZ(Λ,Φ,Θ)
∂Y

∂uZ(Λ,Φ,Θ)
∂Z

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.24)

The partial derivatives with respect to material coordinates X,Y ,Z in (3.24) are computed

by chain rule

∂

∂X
=

∂Λ
∂X

∂

∂Λ
+

∂Φ
∂X

∂

∂Φ
+

∂Θ
∂X

∂

∂Θ
∂

∂Y
=

∂Λ
∂Y

∂

∂Λ
+

∂Φ
∂Y

∂

∂Φ
+

∂Θ
∂Y

∂

∂Θ
(3.25)

∂

∂Z
=

∂Λ
∂Z

∂

∂Λ
+

∂Φ
∂Z

∂

∂Φ
+

∂Θ
∂Z

∂

∂Θ
,

where

∂Λ
∂X

=
1√

(r1 + r2)2 − 4f2

(
X

r1
+

X

r2

)
∂Λ
∂Y

=
1√

(r1 + r2)2 − 4f2

(
Y

r1
+

Y

r2

)
∂Λ
∂Z

=
1√

(r1 + r2)2 − 4f2

(
Z + f

r1
+

Z − f

r2

)
∂Φ
∂X

=
1√

4f2 − (r1 − r2)2

(
X

r2
− X

r1

)
∂Φ
∂Y

=
1√

4f2 − (r1 − r2)2

(
Y

r2
− Y

r1

)
∂Φ
∂Z

=
1√

4f2 − (r1 − r2)2

(
Z − f

r2
− Z + f

r1

)
∂Θ
∂X

= − Y

X2 + Y 2

∂Θ
∂Y

= − X

X2 + Y 2

∂Θ
∂Z

= 0,
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and

r1 =
√

X2 + Y 2 + (Z + f)2 ,

r2 =
√

X2 + Y 2 + (Z − f)2 ,

Λ = cosh−1 r1+r2
2f Λ > 0,

Φ = cos−1 r1−r2
2f 0 ≤ Φ ≤ π,

Θ = tan−1 Y
X 0 ≤ Θ < 2π.

The strain tensor is then computed using Equation (3.8) and rotated to a prolate

spheroidal coordinate system. This procedure results in three normal strains — radial

thickening (Err), circumferential shortening (Ecc), and longitudinal shorting (Ell) — and

three shear strains (Erc, Erl and Ecl).

At the apex, the radial direction is uniquely defined in prolate spheroidal coordinates,

but the circumferential and longitudinal directions are not. Typically strains are computed

on an Nr × Nc × Nl mesh of material points, so at the apex, for each radial point, Nc

prolate-spheroidal strain tensors can be computed. These tensors are averaged to obtain a

single strain tensor for each radial point at the apex.

3.3.4 Parameters

The user-defined parameters of the prolate spheroidal B-spline deformation model are

the orders of the B-splines, numbers of control points in the three directions (L, P , and T in

the radial, longitudinal, and circumferential directions, respectively), and the regularization

weighting parameter γ. The same parameters are used for both the spatial and material

coordinate displacement fields. The parameters L, P , T , and γ as well as the orders of the

B-spline used in the APSB model were chosen to minimize the reconstructed strain errors
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when the APSB model was fit to simulated tag line data from the analytically-defined LV

deformation model in [16].

In this chapter, quadratic B-splines in all three directions were used in all reconstruc-

tions. For comparison purposes, we implemented a closed-apex PSB reconstruction where

the prolate spheroidal B-spline deformation model directly fits to the data in each of the

spatial and material estimations. The cylindrical B-spline deformation reconstruction [18]

and its regularized version were also implemented. In the regularized cylindrical B-spline

model, Laplacian regularization is imposed on each component of the 3-D displacement as

in Section 3.3.1 to smooth the reconstructed displacement field. Table 3.1 shows the optimal

parameters for each method.

Table 3.1: Parameters for the quadratic B-spline reconstructions.
regularization weight γ nCPλ nCPφ nCPθ

APSB 0.019 3 5 8
PSB 0.010 3 5 8

regularization weight γ nCPr nCPz nCPθ

Reg.Cyl.B. 0.008 3 4 10
Cyl.B. – 3 4 10

3.4 Experimental Methods

Two sets of experiments were performed to validate the APSB model. The first set of

experiments studied the sensitivity of the model to perturbations of the coordinate system

center. Details of this experiment are given below. The second set of experiments compared

the APSB, PSB and cylindrical B-spline models using the validation framework described

in [10]. This framework consists of a sequence of tests on in vivo human and canine data.
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Center Sensitivity Test

The centers of the prolate spheroidal coordinate systems used in the APSB and PSB

algorithms are automatically computed from the data. We studied the sensitivity of the

reconstructed strains to this center point with Monte Carlo simulations. First, a set of tag

line data was simulated using the analytical LV deformation model of [16] with the following

parameters: 7mm tag spacing; 6 short-axis imaging planes with 10-mm slice thickness; and

6 long-axis imaging planes with 30o angular spacing. About 4000 tag points are generated

with these parameters. The noise-free coordinate system origin was computed from this tag

line data on a 3 radial × 12 circumferential × 20 longitudinal cylindrical mesh of material

points using the procedure described in Section 3.3. In each trial, 1-D, zero-mean Gaussian

noise was then added to each of the x, y and z coordinates of the noise-free origin and strain

was reconstructed from the simulated data using the perturbed origin. The focal point of

the prolate spheroidal coordinate systems was computed from the perturbed origin and

tag line data for each trial. The strain error was defined as the root-mean-square (RMS)

difference between the noise-free strain and noisy strain computed over all points in the

material point mesh.

3.5 Results

3.5.1 Center Sensitivity Test

Figure 3.2 shows the normal strain error standard deviation (SD) versus the center per-

turbation SD for the APSB, PSB and cylindrical B-spline models. Statistics were computed

over 400 trials. The difference between statistics computed over 300 trials and 400 trials

was negligible. The noise-free RMS values of the Err, Ecc and Ell were 0.381, 0.131 and

0.295 respectively. The circumferential (Ecc) and longitudinal (Ell) strains were relatively
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Figure 3.2: Strain error standard deviation (SD) versus center point perturbation SD with
the quadratic B-spline reconstructions on the analytically defined mathematical LV defor-
mation model.

robust to the perturbation of origin. The radial (Err) strain, however, was more sensitive.

The APSB and PSB reconstructions were more sensitive to the center position than those

from the cylindrical models. This increase in sensitivity is primarily because the APSB and

PSB models must compute a focal point from the origin and tag line data, whereas this

parameter is not required in the cylindrical model.

3.5.2 Validation on In Vivo Human and Canine Data

The APSB, PSB and cylindrical B-spline models were validated and compared using

the framework in [10]. First, strains were reconstructed from a high resolution tagged

cardiac imaging study of a normal human volunteer. Next, the sensitivity of each algorithm

to perturbations of the tag line data was studied using Monte Carlo simulation. Then, the

spatial resolution of each algorithm was computed. Finally, all four deformation models

were fit to tag line data from a pathology database. Details for each of these experiments

can be found in [10]. The round robin test in [10] was not performed since, as mentioned

in [10], this test is not very discriminating.
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3.5.3 Strain Maps on a Normal Heart

In this experiment, Lagrangian strain was reconstructed from a high-resolution normal

human data set on an 18 circumferential × 11 longitudinal cylindrical mesh located at

the midwall. The computation time of APSB was about 12 seconds per time frame on a

Pentium(R)4 3.2GHz PC. Figures 3.3, 3.4 and 3.5 show the strain maps computed with the

APSB, PSB and cylindrical methods. For clarity, only one point out of two is displayed

in both the circumferential and longitudinal directions. Each plot represents the evolution

over time of the strain, starting at end-diastole, covering the systole and ending after the

rapid filling of diastole. The arrangement of the plots represents a map of the myocardial

mid-wall, from base to apex and around the septal, anterior, lateral and then posterior

walls.

The time evolution of strains computed with all B-spline algorithms were generally con-

sistent with the results reported in [10]. The strains increase in magnitude through systole

and then decrease in magnitude during diastole. The temporal evolution of circumferen-

tial shortening (Ecc) and longitudinal shortening (Ell) was smoother than radial thickening

(Err). The higher variability in Err was caused by the relatively sparse sampling of my-

ocardial motion in the radial direction. In all of the APSB, PSB and cylindrical models,

strain is reconstructed independently for each time frame, so the temporal strain evolution

was not as smooth as the four-dimensional models in [10], which use temporal smoothing.

Of the four models compared in [10], the temporal strain evolution with the APSB and

PSB models was closest to the TEA method, which also uses a prolate spheroidal coordi-

nate system. The strains computed from the APSB, PSB and cylindrical B-spline models

were similar except near the apex, where the prolate spheroidal and cylindrical coordinate

systems are most dissimilar. The spatial strain evolution from the APSB and PSB models,
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Figure 3.3: Circumferential shortening (Ecc) strain map at the mid-wall for the high reso-
lution normal human study over t = [41, 481] ms.
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Figure 3.4: Longitudinal shortening (Ell) strain map at the mid-wall for the high resolution
normal human study over t = [41, 481] ms.
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Figure 3.5: Radial thickening (Err) strain map at the mid-wall for the high resolution
normal human study over t = [41, 481] ms.
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which used explicit regularization, was relatively smooth. However, although explicit regu-

larization was also used in the regularized version of the cylindrical model, there was trivial

difference in the strainmaps of the both cylindrical models. The strains in the cylindrical

B-spline models had more artifacts.

The 3-D end-systolic strains of the high resolution normal volunteer study are also

shown in Figures 3.6 and 3.7 on the 3 radial × 12 circumferential × 11 longitudinal cylin-

drical mesh. The normal volunteer exhibits fairly uniform radial thickening (yellow) and

circumferential and longitudinal shortening (blue) in the 3-D strain maps reconstructed

with the APSB and PSB. The cylindrical B-spline reconstructions of the normal volun-

teer show nonphysiological radial thickening reduction in the normal sub-endocardium and

sub-epicardium, expressed as negative artifacts in the radial thickening strain map. In the

circumferential and longitudinal strain maps, the cylindrical B-spline reconstruction has

inconsistently distributed strains close to the apex. These strain map artifacts are due to

the mismatch between the cylindrical domain and the shape of the left ventricle.

In contrast to the cylindrical B-spline models, the APSB and PSB models can compute

strains at the apex. Figure 3.8 shows end-systolic strains on a 3 radial × 24 circumferential

× 19 longitudinal mesh that includes the apex. The circumferential strain increases near

the apex, whereas the radial and longitudinal strain stay relatively constant.

3.5.4 Noise Immunity

Tag line detection and tracking algorithms have been shown to be accurate [53] with

a precision inversely proportional to the tag line contrast-to-noise ratio (CNR) [54]. The

purpose of this experiment was to access the effect of tag detection uncertainty on the

reconstructed strains. We studied the sensitivity of spatial noise of each reconstruction

with a Monte Carlo simulation as described in [17, 10].
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Figure 3.6: End-systolic strain maps of radial thickening (Err, left), circumferential short-
ening (Ecc, middle) and longitudinal shortening (Ell, right) computed with the APSB (top)
and PSB (bottom) models on an open-apex mesh. The red balls in the plots denote the LV
mid-septum.
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Figure 3.7: End-systolic strain maps of radial thickening (Err, left), circumferential short-
ening (Ecc, middle) and longitudinal shortening (Ell, right) computed with the cylindrical
B-spline model (bottom) and its regularized version (top) on an open-apex mesh. The red
balls in the plots denote the LV mid-septum.
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Figure 3.8: End-systolic strain maps of radial thickening (Err, left), circumferential short-
ening (Ecc, middle) and longitudinal shortening (Ell, right) computed with the APSB (top)
and PSB (bottom) models on a closed-apex mesh. The red balls in the plots denote the LV
mid-septum.
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The end-diastole and end-systole time frames were used in the test. The tag points

at end-diastole and end-systole were perturbed with 1-D Gaussian noise with a chosen

standard deviation σ perpendicular to the direction of the tag plane normal. 200 trials

were generated for each noise σ of 0.1, 0.2, 0.3 and 0.4mm. Then, the displacement field

was reconstructed for the 200 trials and the strain tensors were computed on the midwall

mesh. The mean and standard deviation of the difference, which is the noisy strain tensor

subtracted to the noise-free strain tensor, were computed over all the mesh points for all the

trials to evaluate the sensitivity to spatial noise in the displacement field reconstruction.
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Figure 3.9: The mean and standard deviation on error on Lagrangian strain E in a local
coordinate system (radial, circumferential or longitudinal). The center of each errorbar is
on the mean value and the bar extends to one standard deviation above and below the
mean.
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Figure 3.9 shows the RMS error on the Lagrangian strain in local coordinates at dif-

ferent noise levels. Except the error in Err, the typical strain errors are below 0.02 at

end-systole for these data. Cylindrical B-spline reconstructions show an Erl error of about

0.025. Only Err shows a significant bias and a high sensitivity, which can be due to the tag

data are more sparsely distributed in radial direction and the Lagrangian strain tensor is

intrinsically biased when some noise is added to the data [17].

In this test, except for Err, the biases for the other strains are subtle, and the errors

are similar to these reported in [10]. The APSB and PSB reconstructions have smaller

RMS strain errors for each noise level, so they are less sensitive to noise than the cylindrical

B-spline reconstructions. The APSB reconstruction is the least sensitive.

3.5.5 Spatial Resolution

A displacement cloud experiment [17, 10] was performed to measure the spatial resolu-

tion of the 3-D motion reconstruction algorithms. A displacement cloud is a displacement

field that is zero except for a localized, cloud-shaped motion abnormality. The smallest

cloud that can be reconstructed with a certain accuracy is a measure of spatial resolution.

A series of 3-D clouds were generated. Each cloud consisted of displacement vectors

oriented in a particular direction and centered at a mesh point. The displacement vectors

of the neighboring points of the cloud center were defined with a Gaussian roll-off from the

central point.

One cloud experiment was generated for each point of the mid-wall mesh described in

the previous section for each of the radial, circumferential and longitudinal directions and

for a sequence of cloud widths from 4 to 20mm in increments of 1 or 2mm. For each cloud

deformation, a displacement field was reconstructed and the displacement response of the

cloud center was computed. The displacement response was defined as the magnitude of
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the reconstructed cloud center displacement divided by the magnitude of the original center

displacement and multiplying by 100%.
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Figure 3.10: Spatial resolution for each displacement direction (radial, circumferential or
longitudinal). Top: for different cloud widths, the per cent of displacement response for
each method; bottom, the corresponding values in mm for a response of 50%.

Figure 3.10 shows the percentage displacement responses for different cloud widths in

the radial, circumferential and longitudinal directions, where the cloud width is the diameter

of the cloud at one-half of its maximum magnitude. The displacement response becomes

greater as the cloud width increases. If the spatial resolution is defined as the cloud width

for which the response is 50%, it is ∼ 9mm for the APSB and PSB reconstruction, and is

∼ 10mm for the cylindrical B-spline reconstructions.
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3.5.6 Pathology Database

In this experiment, the performance of the four models was studied on different types of

cardiac motions. Each model was used to reconstruct a displacement field for six groups of

subjects, including five normal humans volunteers, five patients with infarcted myocardium,

four patients with dilated cardiomyopathy, five canines under debutamine infusion (10 ug

Kg−1 min−1), five canines with right atrial pacing, and five canines with right ventricular

pacing.

For each method and each subject, the displacement field was reconstructed. The

accuracy of the fit was evaluated by computing the signed distance error between actual

tag line points and end-systolic simulated tag line points [10]. Simulated tag points were

generated by deforming simulated tag planes by the reconstructed displacement field and

computing points along the intersection between the deformed simulated tag planes and the

image planes.

Figure 3.11 shows the distance errors for different types of cardiac motions. Each set

of error bar represents one patient which is numbered from 1 to 5. As in the previous plots,

the center of the error bar is on the mean value and the extension of the error bar is ±1

SD.

The experimental results indicate that all methods can reconstruct the cardiac motion

with similar tag distance errors. The mean error is generally around zero, showing the

estimation of the motion is unbiased. The magnitude of the distance error for the normal

human data is generally higher than those for the other human data and canine data. The

reason is that the normal human heart has greater strains. The tagged distance errors are

mostly in the 0.3mm to 0.6mm range, which is similar to those reported in [10]. In two

of the human normal and two of the human infarct studies, however, the PSB model had
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Figure 3.11: RMS error on tag distances for different types of motion: human normal,
infarcted or dilated cardiomyopathy, canine debutamine, RA or RV paced. Each set of
error bars represents one patient which is numbered from 1 to 5.
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larger errors (0.7mm to 1.0mm). The cylindrical models both had a higher than normal

error (1.1mm) for a single normal study.

3.6 Discussion

In this chapter, we presented a new method for reconstructing 3-D myocardial defor-

mation and strain from planar tagged MR images based on a prolate spheroidal B-spline

model and affine deformation. In each of spatial and material estimation, the algorithm

uses a two-stage fit where the affine deformation model is fit to the data, and the prolate

spheroidal B-spline model is fit to the residuals (APSB). The strains are then computed

analytically from the reconstructed material displacement field for any material point in the

myocardium including the apex. The PSB model we implemented for comparison purpose

is a simplified version of the APSB model. It fits to the data directly with the 3-D prolate

spheroidal B-splines. The APSB model, however, could be extended to 4-D by adding a

B-spline in the time direction in the tensor-product model (3.17). An open B-spline would

be used if tag line data is only available from end-diastole to end-systole, whereas a closed

B-spline could be used if tag line data is available throughout the cardiac cycle.

Compared to previously published methods for reconstructing myocardial deformation

from tagged MR images, our APSB and PSB models construct 3-D myocardial deformation

at each imaged cardiac phase similar to the finite element method of Young et al [13], the

prolate spheroidal model of O’Dell et al [16], the discrete model of Denney and McVeigh

[17], and the cylindrical B-spline model of Deng and Denney [18]. Unlike the 4-D (3-D+t)

models of Huang et al [19] and Öztürk and McVeigh [20], the prolate spheroidal B-spline

model can not reconstruct myocardial strain between imaged cardiac phases, but it can

reconstruct the deformation at a single time frame without having to process the entire

data set. This is particularly useful in studies where only end-systolic strain is measured.
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We validated the APSB and PSB methods using the same data and tests used in [10],

so comparisons can be made with the four techniques in that paper. The APSB model had

less noise sensitivity and accurately reconstructed all the end-systolic deformations in the

pathology database. It performed better than PSB. When comparing the time-evolution of

strains in a normal human LV, the APSB and PSB methods are closest to the TEA technique

[16], which also uses a deformation model defined in prolate-spheroidal coordinates. The

noise immunities of the APSB and PSB algorithms are similar to the TTT method [20], but

the APSB and PSB reconstructed radial strains with better accuracy and precision. This

improvement in radial strain sensitivity is probably due to the use of a prolate-spheroidal

coordinates in the APSB and PSB versus the Cartesian coordinate system used in the TTT.

The APSB and PSB methods were also more immune to noise than the TEA method. This

difference is probably due to the use of B-spline basis functions in the APSB and PSB

models, which are spatially localized, versus the globally-defined spherical harmonics used

in TEA. Spatially localized basis functions limit the effect of reconstruction artifacts whereas

globally-defined basis functions can spread this effect over the entire model. The spatial

resolution of the APSB method was similar to that of the TEA and TTT methods, except

in the longitudinal direction where the prolate spheroidal methods (APSB, PSB and TEA)

have a significantly higher spatial resolution. When reconstructing deformation from the

pathology database, the tag distance errors in APSB model were closest to the TEA method

and demonstrated the same general variation in performance with pathology as observed in

[10].

The APSB method was also compared with the cylindrical B-spline method and its

regularized version using the data and tests from [10]. The difference between the two

cylindrical models were subtle in each test. In the time-evolution of strains in a normal hu-

man LV, the APSB, PSB and cylindrical strains showed the same overall temporal trends,
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but the APSB and PSB strains were spatially smooth compared to the cylindrical method,

which showed more temporal and spatial variation. All of the APSB, PSB and cylindrical

methods had a noise sensitivity with acceptable limits (below 10% of the average end-

systolic strain [10], but the APSB and PSB methods were noticeably less sensitive to tag

line noise than the cylindrical methods. The APSB and PSB methods had a higher spatial

resolution in the radial and circumferential dimensions than the cylindrical methods. The

cylindrical methods, however, had a higher spatial resolution in the longitudinal direction.

There are two primary reasons for this increased resolution. First, in the cylindrical model,

the longitudinal deformation is reconstructed almost entirely from the long-axis tag line

points, whereas, in the APSB and PSB models, each deformation component is a function

of the tag lines in all three directions. Second, in the cloud experiment data set, there are

only six, radially-prescribed long-axis image planes [10], so the long-axis data is relatively

sparse (∼2000 tag points out of a total of ∼10,000 in all three directions). Consequently,

a longitudinally-displaced cloud of tag points will have more effect on the longitudinal

displacement reconstructed using the cylindrical model because there will be a larger per-

centage of the total number of points. If, for example, a longitudinal displacement cloud

contains 250 points (typical for an 8mm cloud), this would comprise 12.5% of the points

used to compute the longitudinal displacement in the cylindrical models but only 2.5% of

the points in the APSB and PSB models. As a result, the cylindrical model is slightly more

responsive to displacement clouds in the longitudinal direction than the APSB and PSB

models. When reconstructing deformation from the pathology database data, the cylin-

drical methods had slightly lower tag distance errors than the APSB and PSB methods

in most cases. We performed the tests described above on a regularized version of the

cylindrical method and the difference between the results with and without regularization

was negligible. From this we conclude that the improved performance of the APSB relative

69



to the cylindrical models is primarily due to the prolate-spheroidal coordinate system and

other differences such as removal of affine deformation modes before B-spline model fitting,

and enforcing spatial smoothness across the apex.

Another advantage of the APSB and PSB models over the cylindrical models is that

the APSB and PSB models can enforce smoothing across and compute strain at the apex.

The cylindrical B-spline models have a singularity at the apex because the radial coordi-

nate is zero there. The Cartesian-coordinate models (DMF [17] and TTT) do not have this

problem, but they do not enforce deformation smoothness in physiologically-relevant direc-

tions. The APSB and PSB methods, however, use equality constraints to stitch together

the deformation model at the apex. While the smoothness directions do not correspond to

the exact fiber directions in the apical myocardium, they are significantly closer than the

smoothness directions in Cartesian-coordinate models.

One disadvantage of the APSB and PSB models over cylindrical and Cartesian models is

that, in addition to a central axis, the focal point of the prolate spheroidal coordinate system

must be computed for each fit. However, our center sensitivity test demonstrated that while

the APSB and PSB methods were more sensitive to perturbations in the center than the

cylindrical methods, the APSB and PSB sensitivities were still acceptable for circumferential

and longitudinal strains. Radial strains were quite sensitive to center perturbations at

relatively high noise levels, but radial strains are difficult to measure with any method from

parallel or grid-tagged data [10].

In conclusion, the APSB method can accurately reconstruct deformation and strain in

the LV wall from tagged MR images and has several advantages relative to existing tech-

niques. Relative to Cartesian methods such as the DMF and TTT, the APSB enforces

smoothness in directions that are nominally aligned with the fiber and cross-fiber directions
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in the myocardium. Relative to cylindrical coordinate techniques, the APSB method re-

constructed strain with fewer artifacts, was less sensitive to tag line noise, and had higher

radial and circumferential spatial resolution. Relative to prolate spheroidal methods with

global basis functions such as TEA, the locally-supported basis functions used by the APSB

offer improved sensitivity to tag line noise while preserving spatial resolution.
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Chapter 4

Combined Tag Tracking and Strain Reconstruction

4.1 Introduction

Three-dimensional tagged cardiac MR image analysis typically consists of two steps.

First, tag lines are tracked in each image in the data set. Then, a deformation model is fitted

to the tag line positions. Methods that combine tag tracking and motion reconstruction

into a single step have been proposed recently. However, as discussed in Section 1.2, there

are some limitations in existing techniques.

This chapter presents a new combined tag tracking and motion reconstruction method

for computing 3-D myocardial strain from tagged cardiac MR images. We call this al-

gorithm the Prolate Spheroidal COmbined Tag Tracking and Strain (E) Reconstruction

(PS-COTTER) algorithm. In PS-COTTER, a 3-D prolate spheroidal B-spline (PSB) de-

formation model presented in Chapter 3 is fitted to detected tag points, raw or filtered image

data, thus combining tag tracking and motion reconstruction. The set of candidate tag line

points can be identified in the images using peak detection [48, 27], template matching [11],

or other techniques. The deformation model ensures that tag line positions are consistent

from slice to slice. In contrast to some existing techniques in [14, 25], this algorithm does

not rely on user-defined myocardial contours. In contrast to the COTTER algorithm [15],

PS-COTTER uses a prolate spheroidal domain. This domain matches the shape of the

LV better than the cylindrical domain of COTTER, and with PS-COTTER strain can be

computed at the apex.
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The initial geometry of the deformation model is determined from user-selected end-

diastolic circular (for short-axis images) and elliptical (for long-axis images) regions of inter-

est (ROIs). The algorithm then optimizes the control points of a prolate spheroidal B-spline

model so that tag planes deformed by the model match the tag lines in the images. The

myocardium motion field and strain can be reconstructed directly from the results of the

combined tag tracking procedure without intermediate steps such as backward and forward

displacement field reconstructions.

The PS-COTTER algorithm was validated on the imaging studies from both normal

human volunteers and patients with myocardial infarction, hypertension, diabetics, or mi-

tral regurgitation. The displacement reconstruction accuracy was evaluated by computing

the root-mean-square (RMS) tag location difference between user-defined tag points and

simulated tag points with our algorithm.

This chapter is organized as follows. In Section 4.2, the PS-COTTER algorithm is

developed based on the PSB model. In Section 4.3, we conduct a parameter sensitivity

test for PS-COTTER. Section 4.4 presents the methods used for the algorithm validation.

Then, the algorithm is validated on parallel-tagged human MRI data in Section 4.5 and on

grid-tagged human MRI studies in Section 4.6. Finally, Section 4.7 contains a discussion of

results and conclusion.

4.2 Algorithm Development

4.2.1 Coordinate System and Initialization

A prolate spheroidal B-spline deformable model as shown in Figure 4.1(a) is used to

describe the deformation of the LV. The initial shape of the model is determined by user-

selected ROIs defined in the end-diastolic images. The LV apex and base positions are
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Figure 4.1: (a): Initial shape of the prolate spheroidal B-spline model. (b): Undeformed tag
planes defined within the prolate spheroidal B-spline model as uniformly spaced material
planes.

approximated from the elliptical ROIs for the long-axis images. Simulated tag planes in

orthogonal orientations are then defined within the model as uniformly spaced material

planes as shown in Figure 4.1(b). The positions of the undeformed planes are specified by

the user.

The prolate spheroidal (PS) coordinate system is tied to the image prescription. For

parallel-tagged MRI, the short-axis and radial image prescriptions were used to construct

the PS coordinate system. For grid-tagged MRI, the short-axis, 2-chamber and 4-chamber

image prescriptions were used to construct the PS coordinate system. The x and y axes

of the prolate spheroidal model are parallel to the row and column directions of short-axis

images, and the z−axis is perpendicular to the short-axis image planes. The origin is set

to be one-third of the distance from the base to the apex on the common intersection line
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of the long-axis image planes for the parallel-tagged group, and on the line across the (x, y)

mass center of the ROI circles for the grid-tagged group; the focal radius is set to make the

radial (λ) coordinate of the LV apex equal to 1.

4.2.2 Image Pre-processing

PS-COTTER can be applied to raw or filtered image data. In either case, the 3-D PSB

deformation model is fit to parallel tag lines. For parallel-tagged MRI, the 3-D PSB model is

applied directly to the raw images. However, to effectively track tag lines in grid-tagged MR

images, filtering is used to eliminate the tag lines in one direction. Gaussian filters as shown

in Figure 4.2 are applied to obtain the estimated parallel-tagged images from the grid-tagged

ones. We choose Gaussian filters because they have optimal localization properties in both

spatial and frequency domain. Figure 4.3 shows an example of the grid-tagged image and

the corresponding filtered images with tag lines oriented in a single direction.

PS-COTTER can also be applied to tag points detected in a set of images. In this case,

the peak detection algorithm [48] is implemented to detect tag points. In [48], a banana-

shaped composite Gabor filter is first applied to enhance the tag lines in one direction and

to eliminate the tag lines in the other direction. Then tag points are detected by detecting

local negatives or ”valleys” in the filtered image. This algorithm has high detection rate.

However, it can also introduce false positives. Figure 4.4 shows some tag detection results

of this algorithm. Detected points of the tag lines in different directions are displayed in

white.

4.2.3 Deformation Model

The deformation of a tag plane is described by specifying the spatial position, s, of a

uniformly spaced mesh of material points, p, where p = [Λ,Φ,Θ]T . As in Section 3.2.2, the
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Figure 4.2: A grid-tagged MR image and its spectrum (top), and the spectrums of Gaussian
filters (bottom) for obtaining the parallel-tagged images.
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Figure 4.3: Grid-tagged MR images (left) and the corresponding filtered images (middle,
right) near end-diastole (top) and near end-systole (bottom).

Figure 4.4: Tag points detected by using the peak detection algorithm [48].
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spatial and material points are related by

s = p + u, (4.1)

where u is the 3-D displacement vector at p.

We model the 3-D displacements with a 3-D B-spline, which is the tensor product

of three 1-D B-splines. Let u = [uΛ(l, p, t), uΦ(l, p, t), uΘ(l, p, t)]T denote the displacement

vector, then

uΛ(l, p, t) =
L−1∑
i=0

P−1∑
j=0

T−1∑
k=0

Bo
i (l)B

o
j (p)Bc

k(t)c
Λ
ijk

uΦ(l, p, t) =
L−1∑
i=0

P−1∑
j=0

T−1∑
k=0

Bo
i (l)B

o
j (p)Bc

k(t)c
Φ
ijk (4.2)

uΘ(l, p, t) =
L−1∑
i=0

P−1∑
j=0

T−1∑
k=0

Bo
i (l)B

o
j (p)Bc

k(t)c
Θ
ijk,

where Bo
i (·) is an open B-spline, Bc

k(·) is a closed B-spline and cijk is a control point in

the dimension denoted by its superscript, and L, P , T are the numbers of control points in

radial (Λ), longitudinal (Φ), and circumferential (Θ) directions, respectively.

We use open B-splines in the radial and longitudinal directions and closed B-splines

in the circumferential direction. In the radial direction, the knots are uniformly spaced

between the minimum and maximum radial coordinates (Λmin and Λmax) of the uniformly

spaced mesh of material points. In the longitudinal direction, the knots are uniformly

spaced between the most basal points (Φmin) and the most apical points (Φmax) for the

open-apex model or the apex (Φmax = π) for the closed-apex model. In the circumferential

direction, the knots are uniformly spaced between 0 and 360 degrees. The prolate spheroidal
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coordinates Λ, Φ and Θ are related to the B-spline parametric coordinates l, p and t by

l =
Λ − Λmin

Λmax − Λmin
× (L − O + 1)

p =
Φ − Φmin

Φmax − Φmin
× (P − O + 1)

t =
Θ
2π

× T,

where O is the spline order.

The PSB model can be either closed-apex or open-apex. For closed apex, we penalize

the difference between the circumferential control points at the apex, and the difference

between the first and that between the second order derivatives of each pair of antiparallel

longitudinal displacement components at the apex. This is to ensure a smooth deformation

across each point where the circumferential closed splines shrink to one point and the lon-

gitudinal open splines meet. Details of the apex penalty function are given in Section 4.2.4

(Equation (4.9)). For open apex, no penalty is imposed at the apex.

4.2.4 Model Fitting

To track the tag features in the image, we define a set of simulated tag line points on

the intersections of the tag planes and image planes, as shown in Figure 4.5. Given an image

plane and a deformed tag plane, the locations of the simulated deformed tag line points

are computed by linearly interpolating the spatial positions s similar to the technique in

[14, 15].

The control points in Equation (4.2) are optimized such that the simulated tag lines

move towards the real tag lines in the tagged MR images. The control points of the first

time frames are initialized to zeros. The initial control points of a later time frame are

based on those of its neighboring previous time frames as in [15]. The optimal control
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Figure 4.5: Simulated tag points on the intersection lines of the imaging planes and tag
planes.

points are computed by minimizing a weighted sum of the external and internal energy for

the open-apex PS-COTTER:

[C∗
Λ, C∗

Φ, C∗
Θ] = arg min Eexternal + αEinternal.

C∗
Λ,C∗

Φ,C∗
Θ

(4.3)

For the closed-apex PS-COTTER, an additional apical penalty is included in the energy

equation:

[C∗
Λ, C∗

Φ, C∗
Θ] = arg min Eexternal + αEinternal + Eapex.

C∗
Λ,C∗

Φ,C∗
Θ

(4.4)

The MATLAB command lsqnonlin was used for the optimization.

The external energy Eexternal measures the degree of match between simulated de-

formed tag line points and the real tag lines in the images.
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For PS-COTTER on detected tag points, the closeness of a deformed simulated tag

point to a real tag point is computed by its distance to the nearest candidate tag line point.

The external energy Eexternal is defined as the sum of the squared distance over all simulated

tag points t̃k(i, j):

Eexternal =
∑

i

∑
j

∑
k

dist2(t̃k(i, j)), (4.5)

where i is the index of an image plane, j is the index of a tag plane, and k is the index of

a simulated tag point on the tag line where image plane i and tag plane j intersect.

For PS-COTTER on raw or filtered image data, the formula used in [26, 15] is applied

to compute the external energy. For a deformed simulated tag point t̃k(i, j), its closeness to

a real tag point is computed by the squared difference between an ideal tag profile centered

at t̃k(i, j) and the local image data [26], which is

L(t̃k(i, j)) = [
→
tag (t̃k(i, j))− →

w]T [
→
tag (t̃k(i, j))− →

w] (4.6)

where
→
w is a 1 × (2Ns + 1) neighborhood of image pixels along a line perpendicular to the

tag plane and centered at the pixel nearest to t̃k(i, j). Ns is the next integer greater than

the FWHM (Full Width at Half Maximum) of the tag line in pixels.
→
tag is a 1× (2Ns + 1)

ideal local tag profile centered at t̃k(i, j). The ideal tag profile is defined as the element-wise

multiplication of the inverted Gaussian tag profile [11] centered at t̃k(i, j) and an estimate

of the untagged magnitude image data in the same neighborhood as
→
w. Then the external

energy is defined as

Eexternal =
∑

i

∑
j

∑
k

L(t̃k(i, j)), (4.7)

where the notations of i, j and k are the same as in (4.5).
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The internal energy Einternal measures the degree of bending of the 3-D displacement

field. It smoothes the reconstructed displacement field. We define Einternal as

Einternal =
∑

i

∑
j

∑
k

(
�2uΛ(ζijk)

)2
+
(
�2uΦ(ζijk)

)2
+
(
�2uΘ(ζijk)

)2
, (4.8)

where ζijk is a knot located in the B-spline model except the apex, uΛ, uΦ, uΘ denote

the displacement field defined in (4.2), and �2 denotes the Laplacian operator in prolate

spheroidal coordinates. Because Laplacian operator has a singularity at Φ = π, we do not

impose the regularization at the apex.

The apical energy Eapex measures the consistency of the apical displacement field.

Eapex is computed only at the apex, and is given by

Eapex =
L−1∑
i=0

T−1∑
k=1

[(
cΛ
iA0 − cΛ

iAk

)2
+
(
cΦ
iA0 − cΦ

iAk

)2
+
(
cΘ
iA0 − cΘ

iAk

)2
]

+
L−1∑
i=0

T
2
−1∑

k=0

⎛
⎝ ∂uΦ

∂Φ

∣∣∣∣
ζiAk

− ∂uΦ

∂Φ

∣∣∣∣
ζ
iA(k+ T

2 )

⎞
⎠

2

+
L−1∑
i=0

T
2
−1∑

k=0

⎛
⎜⎝ ∂2uΦ

∂Φ2

∣∣∣∣∣
ζiAk

− ∂2uΦ

∂Φ2

∣∣∣∣∣
ζ
iA(k+ T

2 )

⎞
⎟⎠

2

, (4.9)

where ciAk is an apical control point, ζiAk is a B-spline knot located at the apex and

the number of circumferential control points T is an even integer. The first term is the

summation of the squared differences between the circumferential control points. The second

term is the summation of the squared differences between the first order derivatives of

each pair of opposing longitudinal displacement components. And the third term is the

summation of the squared differences between the second order derivatives of each pair of

opposing longitudinal displacement components. The apical penalty helps make a consistent

deformation field across the apex.
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Lagrangian strain can be computed in Cartesian coordinates directly from the recon-

structed displacement field as in Section 3.3.3. For consistency with previously published

results [10, 18, 15, 17, 26, 8, 16, 20], the Lagrangian strain tensor is rotated to the prolate

spheroidal coordinate system used in these papers. This results in three normal strains

(Err: radial thickening, Ecc: circumferential shortening and Ell: longitudinal shorting) and

three shear strains (Erc, Erl and Ecl).

4.3 Parameter Sensitivity

For parallel-tagged MR data, the parameters of the PS-COTTER algorithm were op-

timized on a set of 10 human imaging studies, composed of six normal volunteers and four

patients with myocardial infarction. Another 8 human imaging studies were used for evalua-

tion. Each study had 6 short-axis image planes with no interslice gap, 6 radially prescribed

long-axis image planes with 30o angular spacing. In each study, the slice thickness was

10mm, the tag spacing was 7mm, the tag line FWHM was about 1 pixel, and the temporal

resolution was 32.5msec.

For grid-tagged MR data, the parameters of PS-COTTER were optimized on a set of

12 human imaging studies, composed of 3 normal human and 3 groups of patients, each

group consisting of 3 patients of hypertension, diabetics or mitral regurgitation. Another

41 human imaging studies, 12 from each of the normal, hypertensive and diabetic groups,

and 5 from the mitral regurgitation group, were used for evaluation. Each imaging study

had around 10 short-axis image planes with no interslice gap, one 2-chamber slice and

one 4-chamber slice. Some studies had an additional long-axis slice. In each study, the

slice thickness was around 6.36mm, the tag spacing was around 7 pixels with pixel spacing

1.5625mm×1.5625mm, and the temporal resolution was around 56msec.
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The user-defined parameters of PS-COTTER are the numbers of control points in the

three dimensions (radial, longitudinal, and circumferential), and the regularization weight α.

Quadratic B-splines were used in the reconstructions for good local control and smoothness

of the reconstructed displacement field.

First, we determined the regularization weight α in (4.3) and (4.4). We empirically

set the numbers of control points for the PSB model and compute the RMS tag distance

error over a range of α values over the development studies. The α values were chosen on

a logarithmic scale from a number greater than or equal to 1 down to 10−7. The difference

between the effect of a regularization weight less than 10−7 and that of 10−7 was not

expected to be significant. The RMS tag distance error was defined as

RMS tag error =

√∑
(taguser − tagsim)2

N
, (4.10)

where N is the total number of tag points, taguser are the tag points tracked with a user-

supervised process, and tagsim are the simulated tag points with the PS-COTTER algo-

rithm. Tables 4.1 and 4.7 show the RMS tag distance errors in pixels of the quadratic

B-spline reconstructions with 3 radial × 4 longitudinal × 6 circumferential control points

and various α over the 10 parallel-tagged development studies (Table 4.1) and over the

12 grid-tagged development studies (Table 4.7). For each reconstruction, the α value that

resulted in the minimum RMS tag tracking error was selected for the remaining experiments.

Then, we studied the effect of the numbers of B-spline control points on the tag tracking

accuracy at end-systole over the development studies for each of closed-apex/open-apex

PS-COTTER reconstructions on detected tag points, raw or filtered image data, as shown

in Tables 4.2, 4.3, 4.4 and 4.5 for the parallel-tagged image data and in Tables 4.8, 4.9,

4.10 and 4.11 for the grid-tagged image data. For quadratic B-spline reconstructions, the
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number of control points in each dimension should be at least 3. For the closed-apex

B-spline model, however, due to the apical penalty, the number of control points in the

circumferential direction should be an even number and thus it is at least 4. The set of

control point numbers that resulted in minimum RMS tag distance error was used in the

following validations. Table 4.6 shows the optimal parameters and the corresponding RMS

tag errors for each of the quadratic PS-COTTER reconstructions on the 10 parallel-tagged

human development imaging studies. Table 4.12 shows the optimal parameters and the

corresponding RMS tag errors over the 12 grid-tagged development studies.

Table 4.1: RMS tag distance error in pixels of the quadratic B-spline reconstructions with
3 radial × 4 longitudinal × 6 circumferential control points and various α over the 10
parallel-tagged human development imaging studies.

On raw image data On detected tag points
α Closed-apex Open-apex Closed-apex Open-apex
10−7 0.6667 0.65 0.84 0.78
10−6 0.6663 0.68 0.85 0.80
10−5 0.6657 0.68 0.79 0.82
10−4 0.67 0.72 0.76 0.85
10−3 0.6664 0.73 0.86 1.30
10−2 0.68 0.82 0.87 1.59
10−1 0.73 1.24 1.36 1.74
1 0.80 1.51 1.69 2.13
10 1.22 1.82 2.11 2.25
102 1.57 2.20 2.44 2.32

The PS-COTTER algorithm was implemented in MATLAB. It took about 10 minutes

to process a single time frame of a human MR imaging study on a 3.0GHz PC.

4.4 Validation Methods

PS-COTTER was validated on a set of 8 parallel-tagged human imaging studies and

another set of 41 grid-tagged human imaging studies that were not used in optimizing
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Table 4.2: RMS tag distance error in pixels of the quadratic closed-apex PS-COTTER
reconstruction on raw image data with various numbers of control points and regularization
weight α = 10−5 over the 10 parallel-tagged human development imaging studies.

L
P T 3 4 5

4 0.88 0.80 0.80
3 6 0.72 0.68 0.71

8 0.68 0.69 0.69
4 0.78 0.72 0.75

4 6 0.67 0.656 0.70
8 0.68 0.68 0.662
4 0.75 0.79 0.78

5 6 0.664 0.71 0.69
8 0.69 0.74 0.71

Table 4.3: RMS tag distance error in pixels of the quadratic open-apex PS-COTTER re-
construction on raw image data with various numbers of control points and regularization
weight α = 10−7 over the 10 parallel-tagged human development imaging studies.

L
P T 3 4

3 0.94 0.94
4 0.81 0.82

3 5 0.71 0.73
6 0.73 0.69
7 0.71 0.69
8 0.74 0.69
3 0.94 0.93
4 0.79 0.80

4 5 0.68 0.68
6 0.65 0.68
7 0.66 0.69
8 0.66 0.66
3 1.03 0.97
4 0.81 0.89

5 5 0.84 0.77
6 0.75 0.76
7 0.76 0.77
8 0.77 0.79
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Table 4.4: RMS tag distance error in pixels of the quadratic closed-apex PS-COTTER
reconstruction on detetced tag points with various numbers of control points and regular-
ization weight α = 10−4 over the 10 parallel-tagged human development imaging studies.

L
P T 3 4 5 6

4 0.82 0.79 0.80 0.84
3 6 0.86 0.76 0.79 0.89

8 0.91 0.78 0.86 0.93
4 0.91 0.86 0.79 0.78

4 6 0.76 0.75 0.72 0.78
8 0.85 0.79 0.83 0.75
4 0.91 0.88 0.82 0.75

5 6 0.88 0.80 0.80 0.76
8 0.88 0.82 0.77 0.76

Table 4.5: RMS tag distance error in pixels of the quadratic open-apex PS-COTTER recon-
struction on detetced tag points with various numbers of control points and regularization
weight α = 10−7 over the 10 parallel-tagged human development imaging studies.

L
P T 3 4 5

3 0.88 0.84 0.84
4 0.83 0.81 0.80

3 5 0.75 0.74 0.76
6 0.78 0.80 0.76
7 0.77 0.80 0.81
8 0.83 0.82 0.78
3 0.90 0.88 0.84
4 0.79 0.83 0.77

4 5 0.77 0.74 0.74
6 0.78 0.69 0.73
7 0.81 0.76 0.73
8 0.81 0.77 0.78
3 0.99 0.94 0.93
4 0.98 0.87 0.86

5 5 0.87 0.87 0.90
6 0.97 0.94 0.84
7 1.03 0.93 0.86
8 1.02 0.95 0.91
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Table 4.6: Optimal parameters and the corresponding RMS tag distance errors in pixels of
the quadratic PS-COTTER reconstructions over the 10 parallel-tagged human development
imaging studies.

On raw image data On detected tag points
Closed-apex Open-apex Closed-apex Open-apex

L 4 3 5 4
P 4 4 4 4
T 6 6 6 6
α 10−5 10−7 10−4 10−7

RMS tag difference 0.66 0.65 0.72 0.69

Table 4.7: RMS tag distance error in pixels of the quadratic B-spline reconstructions with
3 radial × 4 longitudinal × 6 circumferential control points and various α over the 12
grid-tagged human development imaging studies.

On filtered image data On detected tag points
α Closed-apex Open-apex Closed-apex Open-apex
10−7 1.069 1.09 1.11 1.090
10−6 1.067 1.07 1.13 1.16
10−5 1.11 1.12 1.08 1.087
10−4 1.12 1.15 1.04 1.17
10−3 1.15 1.14 1.08 1.16
10−2 1.28 1.19 1.16 1.15
10−1 1.32 1.24 1.38 1.35
1 1.45 1.34 1.58 1.67

Table 4.8: RMS tag distance error in pixels of the quadratic closed-apex PS-COTTER
reconstruction on filtered image data with various numbers of control points and regular-
ization weight α = 10−6 over the 12 grid-tagged human development imaging studies.

L
P T 3 4 5

4 1.09 1.08 1.06
3 6 1.07 1.04 1.13

8 1.11 1.12 1.10
4 1.08 1.05 1.05

4 6 1.07 1.08 1.10
8 1.10 1.14 1.12
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Table 4.9: RMS tag distance error in pixels of the quadratic open-apex PS-COTTER recon-
struction on filtered image data with various numbers of control points and regularization
weight α = 10−6 over the 12 grid-tagged human development imaging studies.

L
P T 3 4 5

3 1.15 1.10 1.09
4 1.11 1.07 1.10

3 5 1.14 1.08 1.06
6 1.10 1.06 1.06
7 1.16 1.09 1.10
8 1.22 1.09 1.18
3 1.13 1.11 1.09
4 1.09 1.05 1.09

4 5 1.06 1.04 1.03
6 1.07 1.11 1.10
7 1.09 1.10 1.14
8 1.10 1.11 1.15
3 1.07 1.03 1.05
4 1.04 1.00 1.01

5 5 1.02 0.98 1.01
6 1.04 1.02 1.04
7 1.10 1.07 1.08
8 1.12 1.10 1.12
3 1.10 1.06 1.06
4 1.03 1.01 1.07

6 5 1.04 1.05 1.05
6 1.06 1.07 1.06
7 1.05 1.08 1.11
8 1.15 1.11 1.20
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Table 4.10: RMS tag distance error in pixels of the quadratic closed-apex PS-COTTER
reconstruction on detected tag points with various numbers of control points and regular-
ization weight α = 10−4 over the 12 grid-tagged human development imaging studies.

L
P T 3 4 5

4 0.89 0.87 0.94
3 6 0.96 0.91 0.90

8 1.00 0.89 0.98
4 0.95 0.95 0.92

4 6 1.04 0.91 0.93
8 1.21 1.01 0.93

Table 4.11: RMS tag distance error in pixels of the quadratic open-apex PS-COTTER
reconstruction on detetced tag points with various numbers of control points and regular-
ization weight α = 10−5 over the 12 grid-tagged human development imaging studies.

L
P T 3 4 5 6

3 1.01 1.00 0.99 0.99
4 0.95 0.92 0.901 0.91

3 5 0.93 0.904 0.93 0.97
6 0.99 1.15 0.99 1.03
7 1.03 1.03 1.04 1.01
8 1.12 1.02 1.05 1.21
3 1.03 0.98 0.94 0.94
4 0.93 1.01 0.92 0.93

4 5 0.99 0.97 1.02 1.05
6 1.09 1.08 1.21 1.18
7 1.15 1.15 1.18 1.26
8 1.24 1.25 1.12 1.22
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Table 4.12: Optimal parameters and the corresponding RMS tag distance errors in pixels
of the quadratic PS-COTTER reconstructions over the 12 grid-tagged human development
imaging studies.

On filtered image data On detected tag points
Closed-apex Open-apex Closed-apex Open-apex

L 4 4 4 5
P 3 5 3 3
T 6 5 4 4
α 10−6 10−6 10−4 10−5

RMS tag difference 1.04 0.98 0.87 0.90

parameters. The studies are identified in the appendix in Section 4.8. These imaging

studies, composed of normal volunteers and patients, were used to evaluate the tag tracking

accuracy and compare strains reconstructed with PS-COTTER to those reconstructed with

user-defined analysis.

4.4.1 Analysis of Tag Tracking Errors

The tag tracking error was analyzed by computing the RMS tag position difference

between the simulated tags generated with PS-COTTER and the tag lines tracked with

user-supervised processing [12]. For the parallel-tagged group, the tag tracking error was

analyzed for each time frame in the sequence for comparing the performance of PS-COTTER

and COTTER [15]. In many clinical studies, only the end-systolic strain in the LV wall

is of interest, so only the end-systolic tag tracking error needs to be analyzed. Thus, for

the grid-tagged group, only the end-systolic tag errors were studied. The RMS tag position

difference was computed with Equation (4.10).
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4.4.2 3-D Strain Reconstruction

The myocardium strain was computed directly from the reconstructed displacement

field of the combined tag tracking procedure as in Section 3.3.3 without intermediate steps,

such as backward and forward deformation model fittings. For consistency with previously

published results [10, 18, 15, 17, 26, 8, 16, 20], the Lagrangian strain tensor was rotated to

the prolate spheroidal coordinate system used in these papers.

4.4.3 Statistical Methods

The end-systolic strains measured by PS-COTTER were compared with those com-

puted with other methods for each of the human evaluation imaging studies by correlation

analysis and Bland-Altman plots. For the parallel-tagged MRI data, we compared the

end-systolic average midwall strains measured by PS-COTTER to those computed by user-

supervised methods TEA [16] and DMF [17]. For the grid-tagged MRI data, we compared

the end-systolic average midwall strains computed with PS-COTTER and the closed-apex

APSB model presented in Chapter 3.

4.5 Validation Results on parallel-tagged MRI data

4.5.1 Analysis of Tag Tracking Errors

The final tag tracking results are shown on short-axis and long-axis images from a

parallel-tagged human imaging study in Figure 4.6. A mid-ventricular short-axis slice with

a tag plane angle of 0o and 90o, and a long-axis slice are displayed. Only the images within

ROI are shown. The simulated tag lines are consistent with the dark stripes in the images.

92



Table 4.13: RMS tag distance errors in pixels of the quadratic PS-COTTER reconstructions
over the 8 parallel-tagged human evaluation imaging studies.

On raw image data On detected tag points
Closed-apex Open-apex Closed-apex Open-apex

RMS tag difference 0.55 0.64 0.65 0.69

The end-systolic RMS tag position differences over the eight evaluation studies are

shown in Table 4.13. The closed-apex PS-COTTER on raw image data resulted in the

minimum tag distance error over the eight human evaluation studies, which was 0.55 pixels.

The RMS difference between tags simulated by closed-apex PS-COTTER on raw image

data and tags tracked with a user-supervised procedure over the eight human evaluation

imaging studies is plotted vs. time after detection of the electrocardiograph QRS complex

in Figure 4.7. The RMS tag difference increases with time because the algorithm uses the

tags of previous time frame as the initial condition of the current time frame, thus, there is

an accumulation of error. However, all the RMS tag errors are less than 0.8 pixels.

4.5.2 3-D Strain Reconstruction

Three-dimensional end-systolic strains of a normal volunteer and a patient with a

myocardial infarction reconstructed with PS-COTTER are shown in Figure 4.8. The normal

volunteer exhibits fairly uniform radial thickening (positive strain) and circumferential and

longitudinal shortening (negative strains). In contrast, the patient shows negative radial

thickening or radial thinning in the anterior wall, which was infarcted, as well as positive

circumferential and longitudinal shortening.
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Figure 4.6: Simulated tag lines of PS-COTTER for a mid-ventricular short-axis slice with
a tag plane angle of 0o (left) and 90o(middle), and one long-axis slice (right). The top,
middle and bottom rows correspond to early, mid- and late systole.
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Figure 4.7: RMS tag difference in pixels between the simulated tags generated with closed-
apex PS-COTTER on raw image data and a set of tag lines tracked with user-supervised
processing for the 8 parallel-tagged human evaluation imaging studies.
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Figure 4.8: Maps of 3-D radial thickening (Err), circumferential shortening (Ecc), and
longitudinal shortening (Ell) reconstructed with closed-apex PS-COTTER on raw image
data for a normal human (left) and a patient with an anterior myocardial infarction (right).
The red balls denote the septum and the green ball denotes the apex. Each image is
color-coded, with yellow indicating thickening and blue indicating shortening.
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4.5.3 Statistics

Table 4.14 shows the correlation coefficients between end-systolic radial thickening

Err, circumferential shortening Ecc, longitudinal shortening Ell and the minimum principle

strain Emin computed with closed-apex PS-COTTER on raw image data and the user-

supervised reconstruction methods TEA and DMF in the midwall. A P-value of 0.05 or less

is considered statistically significant. The average midwall strain data of the eight human

evaluation imaging studies show that PS-COTTER showed good correlation with TEA and

DMF in Ecc, Ell and Emin. There was no statistically significant correlation between the

Err strains. Err correlated weaker because the parallel tag pattern more sparsely samples

the radial motion.

Comparisons between the three sets of strains are also shown with scatter plots and

Bland-Altman plots in Figures 4.9 and 4.10. Most of the points are between the mean ±

2SD lines, indicating good agreement between PS-COTTER and TEA/DMF strains.
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Figure 4.9: Correlation(left) and Bland-Altman (right) plots for comparing the average
midwall strains computed using closed-apex PS-COTTER on raw image data and those
computed using TEA over the 8 parallel-tagged human evaluation studies. In the correlation
plots, the dashed line represents perfect correlation. In the Bland-Altman plots, the dashed
line represents the mean difference. The lines above and below the mean difference line
represent the mean ± 2SD of the difference.
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Figure 4.10: Correlation(left) and Bland-Altman (right) plots for comparing the average
midwall strains computed using closed-apex PS-COTTER on raw image data and those
computed using DMF over the 8 parallel-tagged human evaluation studies. In the correla-
tion plots, the dashed line represents perfect correlation. In the Bland-Altman plots, the
dashed line represents the mean difference. The lines above and below the mean difference
line represent the mean ± 2SD of the difference.
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Table 4.14: Correlation Coefficients (ρ), Difference (Mean ± SD) between the average
midwall strains over the 8 parallel-tagged human evaluation imaging studies computed using
closed-apex PS-COTTER on raw image data and those computed with user-supervised
analysis (TEA and DMF).

TEA
ρ P Mean ± SD

Mid-wall
Err 0.6460 0.0835 −0.0231 ± 0.0568
Ecc 0.9935 < 0.0001 −0.0000 ± 0.0048
Ell 0.8244 0.0118 0.0071 ± 0.0258

Emin 0.9816 < 0.0001 −0.0068 ± 0.0061
DMF

ρ P Mean ± SD
Mid-wall

Err 0.5496 0.1582 0.0471 ± 0.0778
Ecc 0.9927 < 0.0001 −0.0046 ± 0.0047
Ell 0.9158 0.0014 0.0028 ± 0.0192

Emin 0.9594 0.0002 −0.0051 ± 0.0090

4.6 Validation Results on Grid-tagged Human Imaging Studies

4.6.1 Analysis of Tag Tracking Errors

The final tracking result for a grid-tagged human imaging study is shown in Figure 4.11.

A mid-ventricular short-axis slice, a 2-chamber and a 4-chamber slice are displayed. Only

the images within ROI are shown. For clarity, tag lines oriented in a single direction are

displayed in each image. The simulated tag lines are consistent with the true tag lines in

the images.

The end-systolic RMS differences between tags simulated with PS-COTTER and tags

tracked with a user-supervised procedure over the 41 grid-tagged human evaluation imaging

studies are shown in Table 4.15. The closed-apex PS-COTTER on detected tag points had

the minimum tag distance error, which was 0.71 pixels.
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Figure 4.11: Simulated tag lines of PS-COTTER for a mid-ventricular short-axis slice (left),
a 2-chamber slice (middle), and a 4-chamber slice (right). The top two and bottom two
rows correspond to early and late systole.
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Table 4.15: RMS tag distance errors in pixels of the quadratic PS-COTTER reconstructions
with the optimal parameters over the 41 grid-tagged human evaluation imaging studies.

On filtered image data On detected tag points
Closed-apex Open-apex Closed-apex Open-apex

RMS tag difference 0.77 0.73 0.71 0.77

4.6.2 3-D Strain Reconstruction

Three-dimensional end-systolic strains of a normal volunteer and three patients recon-

structed with PS-COTTER are shown in Figure 4.8. One patient had hypertension and

was resistant to medical therapy. One patient had diabetics and a myocardial infarction.

One patient had mitral regurgitation. The normal volunteer exhibited fairly uniform radial

thickening and circumferential and longitudinal shortening. In contrast, the hypertensive

patient showed reduced circumferential shortening and longitudinal shortening and the di-

abetic patient showed reduced strains in all of Err, Ecc and Ell. The patient with mitral

regurgitation showed slightly reduced circumferential shortening.

4.6.3 Statistics

Table 4.16 shows the correlation coefficients between end-systolic Err, Ecc, Ell and Emin

strains computed with closed-apex PS-COTTER on detected tag points and the strains

computed with expert-edited tag points and the closed-apex APSB model in the midwall.

The average midwall strain data from the 41 human evaluation imaging studies show that

PS-COTTER showed good correlation with APSB in Ecc and Emin. Ell showed reasonable

correlation, but not as strong as Ecc and Emin. The Err correlation was not statistically

significant. The basal and mid-ventricular strains correlated stronger than the apex strains.
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Figure 4.12: Maps of 3-D radial thickening (Err, left), circumferential shortening (Ecc, mid-
dle), and longitudinal shortening (Ell, right) reconstructed with closed-apex PS-COTTER
on detected tag points from grid-tagged MR data for a normal human, a hypertensive pa-
tient, a diabetic patient, and a patient with mitral regurgitation. The red ball denotes
the anterior intersection, the green ball denotes mid-wall and the blue ball denotes the in-
ferior intersection. Each image is color-coded, with yellow indicating thickening and blue
indicating shortening.
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Table 4.16: Correlation Coefficients (ρ), Difference (Mean ± SD) between the mid-wall
average strains for the 41 grid-tagged human evaluation imaging studies computed using
closed-apex PS-COTTER on detected tag points and those computed with the APSB model.

ρ P Mean ± SD
Base
Err 0.0017 0.9916 0.0201 ± 0.1040
Ecc 0.8159 < 0.0001 −0.0201 ± 0.0227
Ell 0.5772 0.0001 −0.0203 ± 0.0400

Emin 0.8252 < 0.0001 −0.0273 ± 0.0180
Mid-Ventricle

Err 0.3125 0.0466 −0.0578 ± 0.0896
Ecc 0.8326 < 0.0001 −0.0265 ± 0.0198
Ell 0.7796 < 0.0001 −0.0125 ± 0.0240

Emin 0.8211 < 0.0001 −0.0217 ± 0.0212
Apex
Err -0.0366 0.8248 −0.0075 ± 0.1899
Ecc 0.4835 0.0018 −0.0237 ± 0.0407
Ell 0.5016 0.0011 0.0058 ± 0.0525

Emin 0.6794 < 0.0001 −0.0588 ± 0.0345

Comparisons between the three sets of strains are also shown with scatter plots and

Bland-Altman plots in Figures 4.13, 4.14 and 4.15. Most of the points are between the

mean ± 2SD lines, indicating good agreement between PS-COTTER and APSB.

104



−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.5

0

0.5

APSB

PS
−

C
O

TT
ER

Err ( ρ=0.00)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.2

0

0.2

0.4

0.6

(PS−COTTER+APSB)/2

PS
−

C
O

TT
ER

−
A

PS
B

Err

−0.2 −0.15 −0.1 −0.05 0
−0.4

−0.3

−0.2

−0.1

0

APSB

PS
−

C
O

TT
ER

Ecc ( ρ=0.82)

−0.25 −0.2 −0.15 −0.1 −0.05
−0.1

−0.05

0

0.05

0.1

(PS−COTTER+APSB)/2

PS
−

C
O

TT
ER

−
A

PS
B

Ecc

−0.2 −0.15 −0.1 −0.05 0
−0.4

−0.3

−0.2

−0.1

0

APSB

PS
−

C
O

TT
ER

Ell ( ρ=0.58)

−0.2 −0.15 −0.1 −0.05 0
−0.2

−0.1

0

0.1

(PS−COTTER+APSB)/2

PS
−

C
O

TT
ER

−
A

PS
B

Ell

−0.25 −0.2 −0.15 −0.1 −0.05
−0.3

−0.25

−0.2

−0.15

−0.1

APSB

PS
−

C
O

TT
ER

Emin ( ρ=0.83)

−0.25 −0.2 −0.15 −0.1 −0.05
−0.1

−0.05

0

0.05

0.1

(PS−COTTER+APSB)/2

PS
−

C
O

TT
ER

−
A

PS
B

Emin

Figure 4.13: Correlation(left) and Bland-Altman (right) plots over the 41 grid-tagged human
evaluation imaging studies for comparing average basal midwall strains computed using
closed-apex PS-COTTER on detected tag points and those computed using the APSB
algorithm. In the correlation plots, the dashed line represents perfect correlation. In the
Bland-Altman plots, the dashed line represents the mean difference. The lines above and
below the mean difference line represent mean ± 2SD of the difference.
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Figure 4.14: Correlation(left) and Bland-Altman (right) plots over the 41 grid-tagged human
evaluation imaging studies for comparing average mid-ventricle midwall strains computed
using closed-apex PS-COTTER on detected tag points and those computed using the APSB
algorithm. In the correlation plots, the dashed line represents perfect correlation. In the
Bland-Altman plots, the dashed line represents the mean difference. The lines above and
below the mean difference line represent mean ± 2SD of the difference.
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Figure 4.15: Correlation(left) and Bland-Altman (right) plots over the 41 grid-tagged human
evaluation imaging studies for comparing average apical midwall strains computed using
closed-apex PS-COTTER on detected tag points and those computed using the APSB
algorithm. In the correlation plots, the dashed line represents perfect correlation. In the
Bland-Altman plots, the dashed line represents the mean difference. The lines above and
below the mean difference line represent mean ± 2SD of the difference.
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4.7 Discussion

This chapter presented the PS-COTTER algorithm for combined tag tracking and

motion reconstruction without user-defined myocardial contours. The algorithm fits the

3-D PSB deformation model as in Chapter 3 directly to the detected candidate tag line

points, raw or filtered image data to track tags. PS-COTTER optimizes the control points

of the PSB model so that tag planes deformed by the model match the real tag lines. The

myocardium motion field and strain are computed from the results of tag tracking procedure

without the need of intermediate steps.

The PS-COTTER algorithm is implemented in a prolate spheroidal domain enclosed by

the ROIs, which are user-selected end-diastolic circular and elliptical regions. This prolate

spheroidal domain matches the actual shape of the LV more closely than the cylindrical

domain in [15]. At end-systole, the tag lines in the myocardium have significant deformation,

while the tags around the LV are relatively static. Those static tags can prevent the PSB

model from deforming. By using the prolate spheroidal domain, the effect of those static

tags on motion reconstruction is reduced.

Another advantage of the PS-COTTER relative to COTTER [15] is that strain can

be computed anywhere in the myocardium. In COTTER, the radial coordinate is zero at

the apex and strain cannot be computed there. However, in the closed-apex PS-COTTER,

strain at the apex can be computed as described in Chapter 3.

The same parallel-tagged MR data set as used in COTTER [15] was employed in the

experiments for PS-COTTER. Compared with COTTER (end-systolic RMS tag distance

error of 0.66 pixels), open-apex PS-COTTER on raw image data (0.64 pixels) and closed-

apex PS-COTTER on detected points (0.65 pixels) had marginal increase in tag tracking

accuracy. Closed-apex PS-COTTER on raw image data had a smaller end-systolic RMS
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tag distance error (0.55 pixels) on the 8 human evaluation imaging studies, resulting in a

17% increase in tag tracking accuracy.

On detected tag points, the closed-apex PS-COTTER outperformed the open-apex

PS-COTTER in tag tracking accuracy. The closed-apex PS-COTTER uses apical penalty

to stitch together the deformation model at the apex. At end-systole, the apex twists more

significantly and experiences larger displacement than the other part of the left ventricle.

The apical penalty helps make the reconstructed displacement field consistent across the

apex, and thus the tag tracking was more accurate.

On raw or filtered image data, PS-COTTER had smaller RMS tag distance errors

for the parallel-tagged MR images than for the grid-tagged MR data. There are several

reasons. First, the tag lines in the parallel-tagged images were much thinner than those in

the grid-tagged images. The wider the tag lines, the more significant the difference between

the automatic tracked results and those with a user-supervised process. Second, different

temporal resolutions were used to acquire the two groups of images. The parallel-tagged

image data were acquired with a smaller temporal interval (32.5msec) than the grid-tagged

image data (56msec). Thus the algorithm is more likely to lose track of the tag lines in

the grid-tagged studies than in the parallel-tagged studies. PS-COTTER on detected tag

points has the advantage in this aspect since the algorithm is less affected by the fading

of the tag lines during the tag tracking procedure compared to PS-COTTER on raw or

filtered image data. Third, different imaging protocols were applied for image acquisition.

For the parallel-tagged group, six long-axis slices were acquired at each time slot. However,

usually a 2-chamber slice and a 4-chamber slice were obtained for each grid-tagged MR

study. Some of the grid-tagged studies had an additional long-axis slice. This means the

parallel-tagged studies had more longitudinal constraints on the tag tracking procedure than

the grid-tagged studies. Therefore, PS-COTTER on raw or filtered image data had better
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tag tracking accuracy over the parallel-tagged studies than over the grid-tagged studies in

the validation experiments.

For both parallel-tagged and grid-tagged MRI data, the Ecc and Emin strains com-

puted with PS-COTTER and the user-supervised reconstruction methods TEA/DMF or

APSB showed better correlation than Err and Ell in the midwall. Ell showed reasonable

correlation, but not as strong as Ecc and Emin. Err correlated weaker because the parallel

or grid tag pattern more sparsely samples the radial motion. Due to the large deformation

of the apex, the strains correlated stronger at the base and mid-ventricle than at the apex.

Based on the experimental results, for parallel-tagged data, closed-apex PS-COTTER

on raw image data is recommended. For grid-tagged data, closed-apex PS-COTTER on

detected tag points is recommended.

In conclusion, the PS-COTTER method can accurately reconstruct deformation and

strain in the LV wall from tagged MR images and has several advantages relative to existing

techniques. Relative to APSB and the cylindrical B-spline model, the PS-COTTER com-

bines tag tracking and motion reconstruction into a single step and strains can be computed

directly from the reconstructed displacement field. Relative to COTTER, the PS-COTTER

method reconstructed the deformation with less RMS tag distance error.
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4.8 Appendix

The grid-tagged development and evaluation human imaging studies used in this chap-

ter:

Table 4.17: Development Studies

Study ID Visit Study ID Visit Study ID Visit Study ID Visit
05DAC011 BAS 05P3CLN001 BAS 05P1VOL503 BAS 05P1MRR001 BAS
05DAC016 BAS 05P3CLN004 BAS 05P1VOL507 BAS 05P1MRR002 BAS
05DAC017 BAS 05P3CLN010 BAS 05P1VOL510 BAS 05P1MRR006 BAS

Table 4.18: Evaluation Studies

Study ID Visit Study ID Visit Study ID Visit Study ID Visit
05DAC005 BAS 05P1VOL504 BAS 05P3CLN002 BAS 05P1MRR003 BAS
05DAC022 BAS 05P1VOL506 BAS 05P3CLN005 BAS 05P1MRR007 BAS
05DAC023 BAS 05P1VOL511 BAS 05P3CLN007 BAS 05P1MRR008 BAS
05DAC030 BAS 05P1VOL514 BAS 05P3CLN008 BAS 05P1MRR009 BAS
05DAC031 BAS 05P1VOL516 BAS 05P3CLN009 BAS 05P1MRR002 M06
05DAC033 BAS 05P1VOL517 BAS 05P3CLN011 BAS
05DAC037 BAS 05P1VOL518 BAS 05P3CLN012 BAS
05DAC038 BAS 05P1VOL521 BAS 05P3CLN014 BAS
05DAC039 BAS 05P1VOL524 BAS 05P3CLN015 BAS
05DAC052 BAS 05P1VOL526 BAS 05P3CLN501 BAS
05DAC057 BAS 05P1VOL002 BAS 05P3CLN502 BAS
05DAC060 BAS 05P1VOL002 M06 05P3CLN504 BAS
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Chapter 5

Conclusion and future work

In this dissertation, three new algorithms for tag line tracking and 3-D cardiac LV

motion reconstruction were proposed to quantitatively estimate regional myocardium defor-

mation from tagged MR images. They are the statistical tag point classification algorithm,

the 3-D deformation reconstruction algorithm and the PS-COTTER algorithm.

In the tag point classification algorithm, rather than tracking tag lines from frame to

frame in an image sequence with active contours or similar techniques, a set of candidate

tag points are detected in each image which are then classified as either false positives

or belonging to a particular tag line. The advantage of this approach is that the tag

point positions are not pre-smoothed during tracking, allowing smoothness constraints to

be applied only to the deformation model fitted to the tag points.

The 3-D deformation reconstruction algorithm described in Chapter 3 is based on B-

spline basis functions in prolate spheroidal coordinates. Two prolate spheroidal B-spline

models, PSB and APSB, were developed for this method. This algorithm offers several

advantages. First, the use of spatially localized B-spline basis functions limits the effects

of reconstruction artifacts. Second, their domain more closely matches the actual shape of

the LV wall. This increases the accuracy of the displacement field reconstruction. Third,

the PSB and APSB models can enforce smoothing across and compute strain at the apex.

The PS-COTTER algorithm employs the PSB deformation model for combined tag

tracking and motion reconstruction. PS-COTTER uses a prolate spheroidal domain en-

closed by the ROIs, which are user-selected end-diastolic circular and elliptical regions.
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The PS-COTTER algorithm conserves the advantages of B-spline basis functions and the

prolate spheroidal domain. In PS-COTTER, the myocardium motion model is fit directly

to the detected tag points, raw or filtered image data without an intermediate tag tracking

step and backward and forward motion field fitting.

Future work on the tag point classification algorithm can include post-processing the

tracking results to ensure that connected sets of tag line points have the same tag line index.

Future work on the 3-D deformation reconstruction algorithm could extend the APSB

model to 4-D by adding a B-spline in the time direction in the tensor-product model (Equa-

tion (3.17)). An open B-spline can be used if tag line data is only available from end-diastole

to end-systole, whereas a closed B-spline can be used if tag line data is available throughout

the cardiac cycle.

Future work on PS-COTTER could employ different tag point detection or image

filtering so as to improve the tag tracking performance. The image registration technique

can also be incorporated in PS-COTTER to make the image slices consistent.
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