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THESIS ABSTRACT 
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TWO-ELEMENT PHASED ANTENNA ARRAY 
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78 Typed Pages 

Directed by Richard C. Jaeger 

 

Software Defined Radio (SDR) is a quickly emerging technology.  SDR removes 

the signal processing task from the analog hardware portion of a radio and places it into 

the Digital Signal Processing (DSP) domain.  Many algorithms exist for removing noise 

from a signal and recovering the small signals inside.  This thesis will explore the use of a 

two-element antenna array in conjunction with adaptive signal processing algorithms to 

not only recover small signals but reject strong interfering ones. 

This project is implemented using a standard desktop PC with a high performance 

Analog-to-Digital (A/D) card in conjunction with MATLAB software from The 

Mathworks, Inc.  This thesis will describe the hardware used to acquire the signals, the 

theory of a two-element antenna array, details of the mathematical theory of 

v 



the DSP process, details of the software code used to decode the signals and performance 

metrics of each component.  Finally, the performance of the entire system will be 

reported as well as any future improvements that are needed. 
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CHAPTER 1 

INTRODUCTION

Software Defined Radios (SDR) have been around for a long time in military 

applications.  It has only been in the last decade that a need for the SDR has been 

identified in the civilian market.  In today’s crowded spectrum, governments have been 

reducing the amount of spectrum available to individuals and broadcasters.  This has the 

effect of compressing the guard bands and allowing for multiple interfering signals to be 

combined with the user’s desired signal. 

Traditionally, in cellular systems, channel separation has been achieved by 

discrete filter banks and voltage controlled oscillators.  This approach is not completely 

accurate and requires a lot of hardware.  The end result is a very inefficient use of the 

spectrum.  In recent years the cellular industry has gone to digital transmission of voice 

signals.  Several new standards have emerged from this trend.  All of these standards 

have one thing in common; try to add more users to the same amount of available 

bandwidth.  The actual detail of these systems is not the topic of this thesis, rather the fact 

that some of the signal processing is done in software by specially designed Digital 

Signal Processing (DSP) microchips. 

This paper introduces a method for cancelling noise and interfering signals using 

DSP code in MATLAB.  MATLAB is a simulation and mathematical software suite from 

The Mathworks Inc.  The project described in this thesis does not operate at the cellular 
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frequencies, nor does it operate on cellular type frequencies.  The techniques and theories 

presented herein can easily be converted for use in cellular, radar, broadcast, or any other 

domain currently used in communications. 

The project uses a dual antenna array designed to receive signals from 0 to 30 

MHz.  The dual antennas provide two signals to the software that can then use statistical 

analysis to cancel the unwanted signals while simultaneously enhancing the desired ones.  

To keep costs down, an inexpensive Analog-to-Digital (A/D) card from Measurement 

Computing is used with two down-converters (SDR 1K) from Flex-Radio Systems.  The 

down-converter filters the antennas and down-converts the incoming signal to a 

frequency that the A/D card can easily acquire for use in MATLAB. 

The frequency band chosen for proof of concept is the AM Broadcast band, 540 

KHz to 1700 KHz.  The down-converter will take the signal from the antennas and 

reduce it to an Intermediate Frequency (IF) of 11025 Hz.  This is then digitized by the 

A/D card for processing in MATLAB.  Finally, the signal is output to the computer’s 

speaker via the soundcard. 

This project will make use of Quadrature signals from the down-converter as well 

as DSP algorithms to accomplish the assigned tasks.  DSP code will be written in 

MATLAB using functions designed by the author as well as pre-defined functions in the 

MATLAB toolboxes.  The signal enhancement/cancellation will be accomplished by a 

phase delay analog filter and the audio demodulation will be done by Quadrature 

Demodulation.  All of the system components can be seen in the block diagram of Fig. 1. 
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After the strongest signal is cancelled the remaining information is amplified and smaller 

signals can be recovered. 

 

 

Figure 1. System Block Diagram 

Finally the results of the project are measured by the system’s ability to either 

enhance or cancel the desired signal. Audio files of some of the final output can be 

obtained by e-mailing the author at victor@rundquistfamily.net. 

 
A/D 

SDR 1K-1  
MATLAB 

DSP 

 
Sound 
Card 

SDR 1K-2 
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CHAPTER 2 

HARDWARE 
 

This chapter will briefly detail the hardware used in the project.  The main 

purpose of the project is not to evaluate hardware, rather the software and DSP 

algorithms used in the radio.  This chapter is included for completeness.  The main 

hardware elements are the two-element antenna array, down-converters, and the A/D 

card.  The computer is a standard desktop 2.4 GHz Pentium machine with a standard 

soundcard and options from Dell Computer Corporation. 

 

2.1 Antennas with Active Matching Networks 

The antennas used are 102 inch whip style monopole antennas.  They are 

connected to an active matching network (DXE-ARAV-1P) by DX Engineering, 

http://www.dxengineering.com [1].  These antennas provide good reception from 100 

kHz to 30 MHz.  The matching network is fed from the receiver by 12V loaded onto the 

coax line.  The antennas have low spurious signal interference, which is ideal for small 

signal reception.  Fig. 2 is a photo of the active matching network of the antenna system.  

More information on this antenna can be found on DX Engineering’s website given 

earlier. 
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Figure 2.  Active Matching Network for Antenna System 

2.2  SDR 1000 Down-converter 

The signals coming from the antenna cannot be directly converted to digital 

signals for a number of reasons.  These reasons will be discussed in Chapter 4: DSP 

Algorithms.  The down-converter is from Flex Radio Systems, http://www.flex-

radio.com[2]. Flex radio uses this down-converter for their software defined radio, a 

general coverage receiver.  Fig. 3 shows the down-converter and a simplified block 

diagram.  The block diagram is for the original hardware which does not have a RF pre-

amp.  The SDR 1000 down-converter consists of band pass filters and an RF pre amp at 

the antenna input.  Then the signals are mixed with a local oscillator produced by an 

Analog Devices direct digital synthesis (DDS) microchip.  The local oscillator is 

comprised of a reference signal and a 90 degree shifted version.  By mixing the antenna 

signal with these two signals an in-phase (I) and quadrature (Q) component of the IF is 

produced.  The final signal is then filtered, scaled to +5 and -5 volts and sent to the 
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computer.  The IF used in this setup is 11025 Hz.  Since we are only dealing with signals 

that have a maximum bandwidth of 5 kHz, this choice of IF is appropriate. 

The ADS DDS chip is clocked using a 200 MHz precision crystal oscillator.  

Since two down-converters are used, it is essential that both chips produce the same local 

oscillator signal.  This is achieved in the SDR 1000 software.  A 20 MHz reference signal 

is supplied to the down-converters, and the resulting IF frequency is read.  The tuning 

command to the DDS chip is adjusted until the IF is exactly 11025 Hz on each unit.  The 

value for the clock offset is recorded and used to ensure both local oscillators are 

identical.  This procedure will set the frequency of the two local oscillators to be the 

same, but will have no effect on their phase.  In Chapter 4, it will be shown that the phase 

of the local oscillators does not matter because of the I (in-phase) and Q (Quadrature) 

output of the down-converter. 

 

Figure 3.  SDR 1000 Down-converter and Block Diagram [3] 
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2.3 Analog to Digital Card 

The I and Q channels coming from the two down-converters are fed into the 4 

channels of an analog-to-digital PCI card (PCI-DAS 4020/12) from Measurement 

Computing Corporation, http://www.measurementcomputing.com [4] as shown in Fig. 4.  

This card was selected because it has 4 input channels, a 20 MHz sampling rate, and 12 

bits of resolution.  The card works seamlessly with MATLAB and LabView 

programming environments.  The card has two programmable input ranges of +/- 1 volt 

and +/- 5 volts.  For this project the +/- 5 volts is used because of the auto scaling done by 

the SDR 1000 down-converter.  The card is installed into the aforementioned desktop 

computer and is configured to use direct memory addressing (DMA) and 50% of the 

computer’s physical RAM. 

 
Figure 4.  A/D Card 
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CHAPTER 3 

THE TWO-ELEMENT ANTENNA ARRAY 
 

The two-element antenna array is used throughout industry today.  This 

configuration provides both diversity in reception and with the right signal processing a 

reduction in noise and increase in directivity.  The antenna array consists of two antennas 

spaced some distance apart.  The antennas must be the same to use the simple form of the 

pattern multiplication and uniform linear array theories. 

 

3.1 Geometry 

The geometry of a two-element array is very simple.  The two antennas are placed 

at the same vertical height.  The line connecting the two antennas is referred to as the axis 

of the array.  Signals that are entering the array perpendicular to the side of the axis are 

considered to be broad side.  Signals coming from the end of the array are said to be 

entering axially.  The distance between the two antenna elements is d, and the angle 

which the signal is approaching is Φ.  This geometry is detailed in Fig. 5. 
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Figure 5.  Antenna Geometry 

 

This configuration can be extended to as many elements as are desired.  The only 

restrictions are that each element has equal spacing from the other elements to conform 

with the uniform linear array theory.  This makes the mathematics simple when 

implementing the DSP code.  It should be noted that in an array that has more than two 

elements, the elements do not have to be arranged in a straight line.  Any geometry may 

be used as long as it has sufficient symmetry. 

 

3.2 Theoretical Equations 

The mathematics for the antenna array will now be introduced.  The antennas 

must be considered to be far from the source of the signals so that the incoming waves 

are planar. 

 

 

d

Signa

Φ 

Antenna 

Antenna 
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First, the transmitted signal is defined as: 

 

tj cetstr ω)()( =  (3.2.1) 
ωc is the carrier frequency and s(t) is the envelope or the message signal. 

 
Figure 6.  Antenna/Signal Geometry 

The amount of time needed for the wave front to move from antenna 1 to antenna 2 is, 

 ⎟
⎠
⎞

⎜
⎝
⎛ Φ=Δ

c
dt cos

   (3.2.2) 

where c is the speed of light [4].  At time t the signal at antenna 1 will be, 

                                                ( ) tj
A

cetsts ω=)(1  (3.2.3) 
 
At the same time instant the signal at antenna 2 will be, 

 ( ) ( )ttj
B

cettsts Δ+Δ+= ω)(2  (3.2.4) 
 
Now assuming that the frequency of the message, ωm is much less than the frequency of 

the carrier ωc, 
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 cm ωω <<<  (3.2.5) 

the information will be the same at both antennas at every instant in time.  In the context 

of this thesis, the information is a voice signal that is modulated onto the carrier.  The 

envelope signal at antenna 2 is, 

 ( ) )(tstts AB ≈Δ+  (3.2.6) 

Plugging (3.2.2) into (3.2.4) the signal at antenna 2 becomes, 

 
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Φ+=
λω

πω

c

j
A

dtetsts c
cos2)(2   (3.2.7) 

Rearranging (3.2.7) yields the following, 

 ( ) Φ
=

cos2

2 )(
djj eetsts c λ

π
ω

 (3.2.8) 

where λ is the wavelength of the incoming signal. 

Equation (3.2.8) shows us that the signal at antenna 2 is simply the phase shifted 

version of the antenna at signal 1.  The value of the phase shift is a function of the 

wavelength of the carrier, the distance between the antennas and the angle at which the 

signal approaches the array.  This value is, 

 λ
πφ Φ= cos2 d

 (3.2.9) 
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Angle φ  is referred to as the electrical angle, and is expressed in radians from 0 to 

2π .  In the DSP domain, this is easily realized as a shift of the samples from antenna 2 

relative to antenna 1.  This will be discussed in more detail in Chapter 4.  The signals 

from the two antennas can be linearly combined to either cancel out unwanted signals or 

enhance desired ones. 

 

3.3 Project Specific Equations and Measurements 

The spacing of the antennas installed on Broun Hall is 55 meters.  This will be 

inserted into equation (3.2.9) along with the wavelength of the carrier of interest and the 

electrical angle derived by the software.  Then the angle Φ  at which the approaching 

signal is coming from can be determined by, 

 
⎟
⎠
⎞

⎜
⎝
⎛=Φ −

dπ
φλ
2

cos 1

   (3.3.1) 

This angle is then used for either cancelling or enhancing purposes as determined 

by the user.  This equation can also be used as a direction finding device.  All that has to 

be done is to convert the electrical angle computed by software into the actual angle and 

output it to the user using an angle offset correction factor for the orientation of the array. 

 The two-element phased array provides a theoretical Signal-to-Noise (SNR) 

improvement over a single element.  By applying the actual distance and optimal phase 

shift of the two signals the following is obtained from (4.2.2), which is introduced in 

Chapter 4. 
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( )( )
( ) ( ) θθφ

αφβ
αφβ π

θ

π

φ

dd
d
d

p ∫∫
== ⎟

⎠
⎞

⎜
⎝
⎛ +

+=Ω
2/

0

3
2

0 2

2

sin

2
cossin

cossin
4
1

 (3.3.2) 

(3.3.2) is referred to the Beam Solid Angle.  This expression is numerically evaluated 

using MATLAB for values of α  from 0 to π2 .  Fig. 7 is a graphical representation of 

the beam solid angle.  The directivity of the array is
pΩ

π4 .  The Gain of the antenna array 

is simply the efficiency of the antenna times its directivity.  For these calculations the 

antenna array elements are assumed to be 100% efficient.  Furthermore it is assumed that 

the incoming signal is aligned with the antenna array so that maximum gain is obtained. 

 
Figure 7. Beam Solid Angle Representation 

From MATLAB the optimum phase shift is 1800 and the array gain is 7.9 dB when the 

signal is entering the array along the array’s axis.  The program that calculates these 

values is included in the appendix. 
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CHAPTER 4 

DSP ALGORITHMS
 

Digital Signal Processing (DSP) is the heart of the radio.  The DSP must reduce 

the frequency of the signal from the 11025 Hz IF to the original baseband signal.  The 

original baseband signal is from 0 Hz to 5 kHz.  Also, the DSP must remove any 

unwanted signals as well as linearly combine the two separate signals from the antennas. 

 

4.1 Noise and Interfering Signal Cancellation with a Two-Element Antenna Array 

Given two measurements of the same signal, s1(t) and s2(t). These two 

measurements are correlated in time by the delay between the two antennas and 

uncorrelated in noise.  That is, the noise component of each signal, n1(t) and n2(t) are 

uncorrelated.  To remove this noise a correlation is performed between the two signals 

and the resulting filter is designed and run on one signal, then the two signals are 

combined.  The block diagram of this arrangement is detailed in Fig. 8. 

 
Figure 8.  DSP Noise Cancelling Block Diagram 
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Cross Correlation Definition [5]. 

 ][][s  [n] s(2)} )1({][ 2
0  m

1 msmnsnz
M

∑
=

+=ℵ=  (4.1.1) 

From this definition we can get the delay in samples from the subscript that gives the 

highest correlation.  Fig. 9 shows that the correlation of the two incoming signals follows 

a sinusoidal pattern as is to be expected. 

-100 -80 -60 -40 -20 0 20 40 60 80 10
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Correlation value vs. # of samples of shift

samples of shift

co
rre

la
tio

n 
va

lu
e

 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
-4

-3

-2

-1

0

1

2

3

4

 
Figure 9.  Correlation Value Plot and Time Domain Representation 

In practice this is done by taking both inputs and shifting one before multiplying both 

together.  This cross-correlation only needs to be done once during the initialization step 
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of the radio.  Once the program knows the delay from s1(t) to s2(t) it can use this 

information to construct the delay filter that filters s2(t).  To further remove any unwanted 

high frequency noise a 10th order low-pass filter is implemented with a 4 kHz cutoff.  The 

frequency-magnitude response is plotted in Fig. 10. 

 
Figure 10. Magnitude Response of 4 kHz Low Pass Filter 

After the two signals are filtered and appropriately delayed, they are added 

together.  Since the noise components of the signals from antenna 1 and antenna 2 are 

uncorrelated, the process of filtering and delaying one of the signals will cancel the noise 

component.  With the noise cancelled and the two signals now in phase, weak signals can 

be recovered from the noise floor. 
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4.2 Beam Steering via Phase Shift 

The fact that the delay filter in the previous section shifts one of the signals in the 

time domain effectively changes the antenna array’s radiation pattern.  It was shown in 

Chapter 3 that the signals generated by one antenna relative to the other are simply offset 

by a phase,φ : 

 λ
πφ Φ= cos2 d

 (4.2.1) 

From antenna theory it is helpful to introduce the array factor AF.  This is used to 

describe the radiation pattern of the antenna array.  All of the equations presented here 

are for the dual-element monopole array used in this project.  It is assumed that each 

individual element is isotropic in the horizontal plane, therefore only the radiation 

patterns in the horizontal plane will be discussed.  Furthermore this assumption is 

applicable due to the fact that all of the desired signals are approaching in the horizontal 

and not from the vertical direction. 

 

The array factor for the two-element array in this project is [6]; 

 
⎟
⎠
⎞

⎜
⎝
⎛ Ψ

⎟
⎠
⎞

⎜
⎝
⎛ Ψ

=

2
sin

2
2sin

2
1

2

2

2normalizedAF
, ( ) αθβ +=Ψ cosd  (4.2.2) 
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From this equation we can control the array factor by varyingα , the phase 

difference between the antennas.  The final radiation pattern of the array is obtained by 

multiplying the pattern of one of the elements (Fig. 9) by the array factor.  Since the 

pattern of one element, shown in Fig. 11, is unity in all directions, then the array factor is 

simply the radiation pattern of the entire array. 

 
Figure 11. Isotropic Radiation Pattern 

By making the array factor a function of the phase offset, and α  a function of the number 

of samples offset, the following results are obtained. 

For a 2 MHz sample rate, the sample period is: 

 .sec1051 7−== x
F

T
s

S  (4.2.3) 

Defining the IF period as, 

 
IF

IF F
T 1=  (4.2.4) 

Ts and TIF can be related as follows: 
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 ==
S

IF
s T

TN  Samples per IF cycle. (4.2.5) 

Converting the number of samples per cycle to radians, 

 
IF

S

s T
T

N
*22 ππ =  (4.2.6) 

With a 2 MHz sample rate and a 11025 Hz IF each shift of one sample will correspond to 

.0346 radians of shift. α  can therefore be written as; 

 
S

IF

F
FN *2* πα =  (4.2.7) 

and substituted into the following; 

   ( ) αθβ +=Ψ cosd      with     30055
2 λ
λ
πβ =d  (4.2.8) 

In Figs. 12 through 17, (4.2.2) has been plotted for various values of the phase 

shift N.  The sampling frequency is 2 MHz, the desired signal is 1MHz and the distance 

between the antennas is computed as a fraction of one wavelength of the carrier based on 

antenna spacing of 55 meters.  The axis of the array is along the horizontal center line of 

the polar plots. As can be seen from the radiation plots, the pattern will flip over and 

radiate in the opposite direction once the phase shift 180 degrees or more. 
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Figure 12. N = 0 

 
Figure 13.  N = 20 
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Figure 14.  N = 40 

 
Figure 15.  N = 60 
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Figure 16.  N = 80 

 
Figure 17.  N = 100 
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4.3 Quadrature Demodulation 

The theory of Quadrature Demodulation is used principally so that the receiver 

does not need to have knowledge of the phase of the incoming signal.  The process also 

has the effect of removing image frequencies that get past the IF and audio filters.  Fig. 

18 is the block diagram for the Quadrature Demodulation process. 

 

Figure 18.  Block Diagram of Quadrature Demodulation 

Define the incoming signal as: 

 )sin(* θω += tAMS c  (4.3.1) 

AM is the envelope or the message signal, cω  is the carrier frequency and θ  is the phase 

of the incoming signal.  This is set to an arbitrary value because it will be shown that the 

receiver does not need to know this value.  In the project this signal will be 

 )sin(* 111 LOCIFtAMS θθω ++=  (4.3.2) 

11 LOC θθ +  is the phase of the IF signal which is comprised of the linear combination of 

the phase of the carrier on antenna 1 with the phase of the local oscillator in down-

converter 1.  
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Likewise, 

 )sin(* 222 LOCIFtAMS θθω ++=  (4.3.3) 

is the signal coming from down-converter 2.  In reality the signals from the two down-

converters are already split into the I and Q components by the Tayloe detector, but for 

simplicity we will describe them as above. 

Next the signal is beat with a local oscillator at 0 degrees and another at 90 degrees. 

 )cos()sin( ttAMV IFIFI ωθω +=  (4.3.4) 

and 

 )sin()sin( ttAMV IFIFQ ωθω +=  (4.3.5) 

Using trigonometric identities 

 [ ])sin()2sin(
2

θθω ++= tAMV IFI  (4.3.6) 

and 

 [ ])2cos()cos(
2

θωθ +−= IFQ
AMV  (4.3.7) 

 

 

Passing VI and VQ through a low pass filter yields the following, by eliminating the IFω2  

term. 
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 )sin(
2

θAMI =  (4.3.8) 

and 

 )cos(
2

θAMQ =  (4.3.9) 

Next I and Q are squared, added and rearranged, 

 [ ])(cos)(sin
2

22
2

22 θθ +⎟
⎠
⎞

⎜
⎝
⎛=+ AMQI  (4.3.10) 

using a trigonometric identity, 

 1)(cos)(sin 22 =+ θθ  

and taking the square root. 

 
2

1*
2

2 AMAM =⎟
⎠
⎞

⎜
⎝
⎛  (4.3.11) 

Phase θ  has been removed from the signal, and just the message signal is left.  

Even if θ  is linearly comprised of phases of antenna 1 and 2 and LO 1 and 2, this method 

of demodulation removes the phase component.  Adding in the phase (time lag) of the 

signal from antenna 1 to antenna 2 the two resulting signals are 

 ∑
∞

=

Δ
=
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t
f

nAM
S  (4.3.12) 

and 
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nAM
S  (4.3.13) 

1tΔ  is set to 0 as the reference from antenna 1.  2tΔ  is the time lag for the signal to travel 

from antenna 1 to antenna 2.  It is easy to remove 1tΔ  and 2tΔ  from the two signals by 

shifting one signal in time and adding it to the other.  This will be discussed in detail in 

Chapter 5. 

 

4.4 Automatic Notch Filter 

An automatic notch filter is used to remove any unwanted interference from the 

audio signal.  The source of the interference is carriers near the desired signal.  The 

interference is typically heard as a loud tone superimposed onto the audio.  This filter is 

not intended to remove wide band noise.  In an FFT plot of an audio signal with 

interference tone, the interference can be seen as a sharp spike at the interference 

frequency. 
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Figure 19.  FFT Plot of Auburn’s Fight Song 

The plot in Fig. 19 reveals that most of the frequency magnitudes have a linear 

relationship from 0 Hz to 15 kHz.  This is true for most all high quality audio signals. 

 
Figure 20.  FFT Plot of Auburn’s Fight Song with 2 kHz Interference 
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In Fig. 20, a 2 kHz noise source has been added to the desired signal.  The desired 

response of the notch filter is in Fig. 21 and the resulting filtered signal is plotted in Fig. 

22. 

 
Figure 21.  Magnitude Response of a 200 Hz wide Notch Filter centered at  
2 kHz 

 
Figure 22.  FFT Plot of Auburn’s Fight Song After Notch Filter 
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To implement an Automatic Notch Filter, three design parameters must be 

considered.  First, is the threshold at which the highest frequency component needs to be 

at, to be considered interference.  This will be a level relative to the average level of the 

signal.  A reasonable value for the threshold parameter is 10 dB, or 10 times more power 

than the average value.  Second, is the range in which the notch filter is to operate. The 

notch filter will only consider data after the mean has been removed, i.e. the DC value of 

the data is removed.    The third parameter is the width of the notch filter.  A good value 

for this is 200 Hz since most of the interference will be at higher frequencies and losing 

200 Hz worth of data is not bad.  This notch filter can only notch one frequency, and thus 

the strongest signal will be deleted.  The data can be run through the notch filter to 

remove as many frequency spikes as desired. 

To implement the filter the following algorithm will be used: 

1. Take the FFT of the final audio signal. 

2. Average the FFT data to get the average signal level. 

3. Search for frequencies with amplitudes above this level. 

4. Choose the frequency with the highest amplitude above the threshold. 

5. Design the filter. 

6. Filter the data. 

7. Repeat if necessary. 
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This procedure will be performed on each sample of data.  In this way the filter 

will be an adaptive notch filter.  If the interference signal changes or a signal is 

intermittent, the Notch Filter can adapt to it quickly.  Finally, the notch filter will not 

have to act on each piece of data if none of the frequencies are 10 dB above the average 

value. 
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CHAPTER 5 

MATLAB IMPLEMENTATION 
 

In this chapter, the MATLAB [8] programming environment is introduced along 

with the code used to program the radio.  The MATLAB Data Acquisition (DAQ) 

Toolbox, Signal Processing Toolbox and general math functions will be introduced.  The 

programming method for the A/D hardware is also discussed.  Finally, in the last section, 

a MATLAB based signal analyzer was used during the development process and its detail 

is discussed.  Reference [8] and [9] are the sources of all the MATLAB code and 

functions used. 

MATLAB code will be used in this chapter and will be denoted in italics.  Only 

small samples of the code will be shown for reference.  The entire MATLAB code is 

included in the Appendix. 

 

5.1 MATLAB Introduction and Toolboxes Used 

MATLAB is a powerful programming and simulation environment.  It has 

command line, scripting, modular, and graphical programming modes.  In this project 

scripting/modular programming is employed.  To add functionality to the MATLAB 

environment, toolboxes are purchased from the Mathworks. The main toolboxes used in 

the development of this project are the DAQ Toolbox, Signal Processing Toolbox, Filter 

Design Toolbox, and the Communications Toolbox. 
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The DAQ toolbox is the primary interface to the analog-to-digital card.  This toolbox 

takes care of the communication with the A/D card’s software.  It also manages the 

memory of the DAQ session and the flow of data. 

The Signal Processing Toolbox is a collection of commonly used DSP functions.  

This toolbox provides the user with the ability to filter, correlate, and phase shift the 

signals in the program.  The main functions used in the project are the filtering and the 

phase shifting.  This toolbox also was used during the shift from a high to low sample 

rate.  Signal processing is the heart of this project and this toolbox proved to be 

invaluable. 

The Filter Design Toolbox is used to design filters for use in the Signal 

Processing functions.  This was used to design the infinite impulse response Butterworth 

filters used in the project.  The toolbox has command line functions so that filters can be 

designed by the software.  These allow you to adaptively change the response of the filter 

while the program is running.  This proved most useful for the operation of the Automatic 

Notch Filter.  Second, is the Filter Design and Analysis tool.  This is a Graphical User 

Interface (GUI) that allows the user to define all of the filter parameters like sample rate, 

cutoff frequency and format.  All the user has to do is then press the design button and 

the resulting filter is designed.  This filter is then exported into a file on the disk that the 

program accesses when needed.  The GUI also provides for analysis of filters that the 

user has designed elsewhere in MATLAB. 

The Communications Toolbox was not used in the final version of the radio.  The 

functions contained within it are too slow for real time operation.  During development 
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the toolbox was used to demodulate simple AM stations.  This proved most useful while 

trying to get the correct program structure.  In future versions this toolbox might be of 

use to demodulate digital signals.  This toolbox was used in the Signal Analyzer portion 

for displaying and interpreting the signals from the antennas and the down-converters. 

 

5.2 A/D Hardware Setup and Memory Management 

The A/D card needs very specific setup instructions to work properly.  It needs to 

know where to send its data once it is acquired, at what rate to acquire the data, and 

within what range to acquire the data. 

Before using any software with the A/D card, the computer must set aside 

contiguous memory in which the data will be placed in.  This is essential for high speed 

operation.  Having contiguous memory allocated allows the card to dump large amounts 

of data into memory without worrying about overwriting other important information.  

This allocation is performed during the boot up sequence of the computer and is 

controlled by the software provided by the A/D card manufacturer. 

In MATLAB the DAQ toolbox will control all of the functions of the A/D card.  

To invoke the toolbox and create a Data Acquisition object the following command is 

issued. 

AI = analoginput('mcc',2); 

This will create a Data Input object called AI that will communicate with the #2 

card from ‘mcc’.  ‘.mcc’ is the hardware vendor that MATLAB has assigned for this type 

of board.  Through this variable AI, all of the boards features can be accessed. 
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Next a channel has to be added to the object AI. 

addchannel(AI,0); 

This command will add the #0 channel on the board to the object AI.  From this point 

forward the #0 channel will be referred to as the #1 channel because it was the first 

channel added.  All subsequent channels will be added in this manner and numbered in 

order. 

The set command is used to program in the user options into the card. 

set(AI,'SampleRate',samplerate); 

set(AI,'TransferMode','DMA'); 

The two above commands will program the sample rate of the card and set the 

card to DMA transfer mode.  Direct Memory Access (DMA) transfer mode is very 

important in memory management.  This allows the A/D card to use the memory directly 

without using the system processor to transfer the information for it.  By using the DMA 

controller to handle data transfer from the card to the memory of the computer, allows the 

processor to focus on the signal processing tasks. 

Finally, the range of the A/D card needs to be set.  This is very hardware specific.  

The card used in this project has two programmable ranges.  It can use +/- 5V and +/- 1V.  

Due to the level coming from the down-converter the +/- 5V is used. 

set(AI.channel(1),'UnitsRange',[-5.0 5.0]); 

Each channel must be programmed alike.  There are many more parameters that 

must be set before the A/D session can be started, such as the trigger method and the 



 35

number of samples to acquire.  Once the card has been programmed it will retain this 

information in its memory and will not need to be programmed again. 

After all of the hardware is set up, the card can be started and triggered to start 

acquiring data and logging it to memory. 

start(AI); 

trigger(AI); 

The start command will allocate all of the memory needed for the operation and 

inform the card to get ready to acquire data.  This will start the card’s internal clock.  The 

trigger command will start the acquisition process of reading the data and logging it to 

memory. 

Once the data has been logged to memory the DAQ toolbox must retrieve it for 

processing.  This is accomplished as follows: 

[data_in t] = getdata(AI,buffer_size); 

This statement will retrieve the data from memory allowing it to be processed.  

Along with the data is the absolute time each sample was taken.  This is referenced to 

zero seconds, the time the first sample is read.  The data comes into MATLAB in a 

matrix format.  Each column is a channel and each row is a sample corresponding to the 

same row in t, the time vector.  By using this continuous time vector generated by the 

card a continuous phase can be achieved.  Without this continuous phase the audio output 

has a very loud hum in it. 
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5.3 Phase Shifter and Noise + Interferer Cancellation 

The Phase Shifter and resulting interference cancellation consists of two parts.  

The first is the adaptive method to find the desired phase shift and then the design of the 

filter to do the shift.  Included in the filtering process is a low-pass filter to remove any 

unwanted high frequency noise.  This is all done within a function called get_init_shift(), 

which has no input arguments and only an output argument. 

First, the A/D card is set up, and a series of 0.5 second long samples are taken.  

Since each 0.5 second piece of audio is statistically the same as the next, it is fine to say 

that each section is correlated in audio but not in phase or carrier.  Each 0.5 second piece 

of audio is created with a different amount of phase shift.  This is accomplished with the 

following statement. 

 

 

if(m<=0) 

            out_normal1 = downsample(out_normal1,21); 

            out_normal2 = downsample(out_normal2,21,abs(m)); 

        else 

            out_normal1 = downsample(out_normal1,21,m); 

            out_normal2 = downsample(out_normal2,21); 

        end 

The shift amount is denoted by the variable m while the if else statements take 

care of the shift either being positive or negative.  If the shift is positive then antenna 2 is 



 37

shifted relative to antenna 1.  If the shift is negative, then antenna 1 is shifted relative to 

antenna 2.  The actual shifting is done in conjunction with the downsampling of the 

signal.  When downsampling a sampled signal, the software does is to pick out every nth 

sample, with n corresponding to the ratio: 

 )(
)(

newratef
oldratef

s

s
 (5.3.1) 

The shifting is accomplished by starting the downsampling process with the mth 

sample, where m corresponds to the number of samples to shift.  The function, 

downsample(), is included with the MATLAB Signal Processing Toolbox. 

Once each 0.5 second of audio is shifted, it is low pass filtered and the signals 

from antenna 1 and 2 are correlated to each other using the following equation and 

MATLAB code. 

 ][][s  [n] s(2)} )1({][ 2
-  m

1 msmnsmz ∑
∞

∞=

+=ℵ=  (4.1.1) 

for n=1:length(out_normal1) 

           CORR_VEC(m+21) = CORR_VEC(m+21)+(out_normal1(n)*out_normal2(n)); 

       end 

The correlation code is contained within the loop that changes the shift by one 

sample for each 0.5 seconds worth of audio.  This statement will build a vector of 

correlation coefficients.  At the end of the program the shift with the highest correlation is 

chosen and returned to the main radio program. 
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It must be noted that the original sampling frequency must be chosen high enough 

to give good resolution in phase shift.  If Nyquist’s criterion for A/D sampling is adhered 

to then only 2 samples of shift would be available before the signals repeat in time.  

Nyquist says that a continuous time signal needs to be sampled at least twice its highest 

frequency component in order to be reconstructed.  If this is adhered to then only 2 points 

would be sampled for each period of the sampled signal.  Therefore a much higher 

sampling rate must be chosen.  Also the audio sampling rate has an effect on the amount 

of shift available to the user.  The amount of shift is given by the following equation. 

 10 −≤≤ NShift  (5.3.2) 

Where, 
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newratef
oldratef

N
s

s=  (5.3.3) 

rounded to the nearest integer. 

 

5.4 Demodulation and Output 

The demodulation step is relatively easy.  Once the signals from antenna 1 and 2 

are added together the demodulation takes place.  There are still two separate I & Q 

streams available.  The following statement will eliminate any images, reduce the noise, 

and recover the original audio. 

 

out1 = sqrt(i1_down_filt.^2+q1_down_filt.^2); 
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This step can be performed before or after the mixing and adding of the signals if 

needed.  If this step is done before the downsampling and shifting then it must be done on 

two antennas.  If this step is done after the downsampling and shifting then the 

downsampling and shifting is done on 4 data streams. 

The final output is normalized and built up into a sound buffer.  By normalizing 

the data, the sound will be played as loud as possible by the sound card. 

out = out./max(out); 

       sound_buffer = cat(1,sound_buffer,out); 

The preceding statements are in the while loop that records sound for the 

specified amount of time.  The data is then sent to the sound card using an analog output 

object.  This object is created with the DAQ toolbox similar to the analog input object. 

AO = analogoutput('winsound'); 

addchannel(AO,1); 

. 

. 

. 

putdata(AO,sound_buffer) 

start(AO); 

trigger(AO); 
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The ‘winsound’ object uses the windows interface to the soundcard.  This way all 

of the windows elements are available like volume control and mixing.  The data is 

placed into the sound card’s memory, then started and triggered just like the input 

devices. 

 

5.5 Signal Analyzer and Radiation Pattern Simulator Used in Development 

During the development of the project the need was realized for a signal analyzer.  

Rather than spend a lot of money on a high end analyzer from HP, a simple one was 

developed in MATLAB.  Essentially a signal analyzer consists of an A/D converter and 

some DSP code.  Wideband analyzers achieve results by down-converting the incoming 

signal and sweeping the local oscillator within the desired frequency band.  All of this 

can be done with MATLAB and the Flex-Radio down-converters.  MATLAB has built in 

FFT capabilities, as well as power and phase analysis functions. 

The program read data from channels 1 and 2, and then produced the time and 

frequency domain information graphically in plots, as seen in Fig. 23. 
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Figure 23.  Output of Signal Analyzer FFT Plot 
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The following statements were written into a function and performed the 

Frequency Domain translation of the data. 

xFFT = fft(data_in,samples_trigger); 

xfft = abs(xFFT); 

%% 

% Avoid taking the log of 0. 

index = find(xfft == 0); 

xfft(index) = 1e-17; 

 

mag = 20*log10(xfft); 

mag = mag(1:samples_trigger/2); 

 

f = (0:length(mag)-1)*samplerate/samples_trigger; 

f = f(:);  

 

The subsequent FFT data and frequency vector are plotted using MATLAB’s plot 

function.  The raw data is plotted versus time and is used in power and voltage level 

calculations.  This MATLAB signal analyzer aided in the determination of the IF and the 

settings of the A/D card, or more specifically the input voltage range. 

A program was written to simulate the antenna array radiation patterns.  This 

program relied on the antenna array theory presented in Chapter 3.  The results of the 

program are presented in Chapter 3.  The real importance of this program is its ability to 
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generate output for the user, while the radio is running, the direction in which the antenna 

array is receiving. 

beta_d = (2*pi/lamda)*(.1833*lamda); 

theta = 0:2*pi/360:2*pi; 

alpha = n*(2*pi*fif/fs); 

psi = beta_d*cos(theta+alpha); 

rho = (1/2^2)*((sin(psi)).^2)./((sin(psi./2)).^2); 

This code implements the Array Factor equation from Chapter 4. 
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5.6 Notch Filter 
 
 The notch filter is implemented in two different versions.  The first version runs 

only on the highest frequency component in the signal and then quits.  The second 

version automatically removes all of the frequency spikes above a user determined value.  

The first version is discussed here. 

 

[f mag] = vic_fft(data,length(data),fs); 

load HP_250; 

filtered = filter(HP_250,data); 
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This will compute the FFT data from the input and then high pass filter it to get rid of any 

frequency components near DC. 

 

Next the highest frequency is computed. 

 

[val i]=max(mag_filtered); 

max_freq = f(i); 

 

 A bandstop Butterworth filter is designed using the same toolbox that was used to 

design the radio’s IF filters. 

 

hs = fdesign.bandstop('N,Fc1,Fc2', 10, lower, upper,96000); 

H = butter(hs); 

 

The width of the notch filter is set at 200 hertz and lower and upper are computed from 

this.  Finally, the data is returned to the calling function.  The second version of the notch 

filter simply repeats this process in a “while” loop until all of the frequency spikes above 

a user selected level are removed. 
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CHAPTER 6 

PERFORMANCE, RESULTS, AND IMPROVEMENTS 
 

The results of the project will be presented in this chapter.  The conversion gain of 

the entire system is computed, the qualitative results from the trials are presented as well 

as a discussion of future improvements to the radio.  For a baseline reference on all 

measurements, a Ten-Tec RX340 DSP HF Receiver was used as a measurement device. 

 

6.1 Conversion Gain 

Conversion gain is the ratio of the output power to the input signal level.  For this 

project there is no way to measure the power level at the input to the down-converter, so 

the power indicator on the RX340 receiver will be used as the baseline value.  

Considering AM 1230 in Auburn, the input power level to the down-converter is -40 

dBm.  The system has the ability to raise this to 0 dBm with no signal processing.  This 

would suggest the conversion gain to be at least 40 dB.  In reality, the conversion gain is 

much higher.  The output power level of the system is dependent on the software as well 

as the computer’s sound hardware.  The sound hardware is ignored and just the values 

produced by the software are observed. 

 During night time data collection, the lowest signal recovered by the radio was -

90 dBm on the RX340’s display.  The radio was tuned to 710 KHz and a barely 

intelligible station could be heard.  The announcer was speaking in Spanish.  The 
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RX340’s output was just noise.  From this observation the overall conversion gain of the 

radio was 

determined to be approximately 90 dB.  Once again this does not take into account the 

sound card’s ability to amplify the audio to the speakers. 

 

6.2 Qualitative Results 

 The end result of the project is to reproduce audio signals from radio 

transmissions.  The best way to describe the results is to listen to them.  Included with the 

printed version of this work is a CD that contains the digital .wav recordings of the radio.  

The CD is organized by station.  Each station that was recorded has three files.  The first 

is the audio from the RX340, which is usually noisy.  The second is the processed signal 

from the SDR.  The third is the processed audio (notch filtered) from the SDR.  If you are 

reading the electronic version of this thesis, e-mail the author to receive the files.  Table 1 

summarizes the results of the testing.  All of the data in the table and the CD was 

acquired after the sun went down.    Following Table 1 there are radiation patterns of the 

stations that were received and miscellaneous station data.  The last column in the table 

makes note to whether the signal itself was enhanced or the background noise was 

cancelled. 
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Summary of Results from Testing on July 10, 2006 

Frequency 
(MHz) 

Signal Level 
from RX340 

RX 340 
Audio 

Description 

SDR Audio 
Description 

Station ID Cancelled or 
Enhanced. 

0.580 -60 dBm Noise Only Gospel 
Music, low 

quality 

WBIL, 
Tuskegee, 

AL 

Enhanced 

0.560 -72 dBm Noise + 
Small 

Garbled 
Audio 

Fuzzy News 
Radio 

WHBQ 
Memphis, 

TN 

Cancelled,  
When 

enhanced, 
got 

bleedthrough 
from 0.580 

0.710 -80 dBm Spanish and 
Background 
music + lots 

of noise 

Spanish 
only, 

background 
music gone 

? Enhanced 

0.780 -60 dBm Noise and 
Garbled 
Audio 

Sports talk 
radio 

WBBM 
Chicago, IL 

Enhanced 

0.820 -68 dBm 2 Stations + 
noise 

News Talk 
radio + 
Music 

WBAP 
Ft. Worth, 

TX 

Enhanced 

Table 1.  Results Summary 
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The following information is from http://www.radio-locator.com. 

WBIL AM 580 kHz 
Tuskegee, AL 
500 Watts in the day time 
139 Watts in the Night time 

 
Figure 24. WBIL Radiation Pattern
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WHBQ AM 560 kHz 
Memphis, TN 
5000 Watts Day time 
1000 Watts Night time 

 
Figure 25. WHBQ Night time Radiation Pattern 
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WBBM AM 780 kHz 
Chicago, IL 
50k Watts Unlimited 

 
Figure 26. WBBM Radiation Pattern 
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WBAP AM 820 kHz 
Fort Worth, TX 
50k Watts Unlimited 

 
Figure 27. WBAP Radiation Pattern 
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6.3 Future Improvements 

 In the future the project needs to take a different path.  Although this project 

works well, there is plenty of room for improvement.  In no way was this project 

designed to be a complete product at the end.  As an ongoing work in progress, the three 

main areas of improvement are the antenna array, the downconversion process, and the 

DSP implementation. 

 The antennas could be placed further apart.  If the antennas were placed 150 

meters apart the radiation pattern of the array would be the plot in Figure 28.  

 
Figure 28.  Radiation pattern for 150m antenna spacing vs. 55 Meter Spacing 
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As can be seen there is a very noticeable null along the axis of the array.  This 

pattern can be rotated just like Figure 10 through Figure 15.  To do this, one of the 

antennas would have to be placed on another building on Auburn’s campus.  The deep 

null will provide better noise and strong signal rejection. 

 The downconversion process currently uses two Flex SDR 1000 boxes.  Each of 

these is controlled from a separate laptop computer.  There are a total of 3 computers 

needed to run the project.  The two local oscillators are synchronized in frequency but not 

in phase.  This means that the DSP software must account for this phase difference.  To 

alleviate this problem one local oscillator needs to be connected to two I/Q mixers.  

Minicircuits, Inc. [10] manufactures modular RF components and would have the perfect 

components for this modification.  The Level 7 Family of mixers along with an Analog 

Devices Direct Digital Conversion chip acting as the LO would make a good 

combination.  This would also need to be augmented with a RF pre-amp and an IF filter, 

all of which are available from Minicircuits.  This would reduce the number of computers 

to only one and greatly increase the accuracy of the conversions. 

 MATLAB must parse the text file of the program every time it runs.  MATLAB 

also must interface to the ADC through another software layer. To better increase the 

speed of the DSP code, the software should be written in C or C++.  MATLAB allows for 

quick development, but is not fast enough to run this project in real time.  As it stands the 

data has to be collected, processed, and recorded to the disk before the user can listen to 

it.  MATLAB does allow for GUIs to be created, but this would slow the process down 

even more.  The real solution is to use a Microsoft Windows GUI library with C++ and 
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write the DSP code in C.  This will remove one software layer from the project, thus 

speeding up the data processing.  Also to improve the response of the filters and the delay 

filter some shaping of the incoming signal needs to be done.  DSP literature [11] 

recommends that this shaping be done to coincide with the data.  Experiments will need 

to be performed to determine the best shaping to use. 
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APPENDIX 

 
A.1 FULL MATLAB SOFTWARE CODE  
 
This file is the main file for the radio.  As input, the user needs to tell the program 
whether to use the antennas for constructive or destructive purposes on the 
strongest signal. 
 
function final_radio1(can_keep) 
clc; 
 
daqreset; 
seconds_to_record = 10; 
 
%used for program control 
stop_running = 1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
filling = 1; 
%calculate the needed values for setup% 
samplerate = 2e6; 
sound_samplerate = 96000; 
buffer_size = 65536; 
IF = 11025; 
sound_buffer_size = buffer_size; 
sound_buffer = zeros(1,1); 
 
%Run Initiatilization routine 
shift = get_init_shift(); 
 
first_time = 0; 
 
%setting up the input and output 
AI = analoginput('mcc',2); 
AO = analogoutput('winsound'); 
addchannel(AO,1); 
addchannel(AI,0); 
addchannel(AI,1); 
addchannel(AI,2); 
addchannel(AI,3); 
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set(AI,'SampleRate',samplerate); 
set(AO,'StandardSampleRates','off'); 
set(AO,'SampleRate',sound_samplerate);%setting the soundcard to 96000 out 
set(AI,'SamplesPerTrigger',inf); 
set([AI AO],'TriggerType','Manual'); 
set(AI,'ManualTriggerHwOn','Trigger') 
set(AI,'TransferMode','DMA'); 
set(AI.channel(1),'UnitsRange',[-5.0 5.0]); 
set(AI.channel(1),'SensorRange',[-5.0 5.0]); 
set(AI.channel(1),'InputRange',[-5.0 5.0]); 
set(AI.channel(2),'UnitsRange',[-5.0 5.0]); 
set(AI.channel(2),'SensorRange',[-5.0 5.0]); 
set(AI.channel(2),'InputRange',[-5.0 5.0]); 
set(AI.channel(3),'UnitsRange',[-5.0 5.0]); 
set(AI.channel(3),'SensorRange',[-5.0 5.0]); 
set(AI.channel(3),'InputRange',[-5.0 5.0]); 
set(AI.channel(4),'UnitsRange',[-5.0 5.0]); 
set(AI.channel(4),'SensorRange',[-5.0 5.0]); 
set(AI.channel(4),'InputRange',[-5.0 5.0]); 
 
 
%load the Low Pass Filter from the disk 
load LP_4KH; 
 
%initiate the data recording 
start(AI); 
trigger(AI); 
t = zeros(1,buffer_size); 
while(t(buffer_size) < seconds_to_record) 
     
    %retrieve data from memory 
    [data_in t] = getdata(AI,buffer_size); 
        LO = sin(2*pi*IF.*t); 
        I1 = data_in(1:buffer_size,1); 
        Q1 = data_in(1:buffer_size,2); 
        I2 = data_in(1:buffer_size,3); 
        Q2 = data_in(1:buffer_size,4); 
         
         
        %shift the data down in frequency 
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        i1_down = I1 .* LO; 
        q1_down = Q1 .* LO; 
        i2_down = I2 .* LO; 
        q2_down = Q2 .* LO; 
         
        %low pass filter the data 
        i1_down_filt = filter(LP_4KH,i1_down); 
        q1_down_filt = filter(LP_4KH,q1_down); 
        i2_down_filt = filter(LP_4KH,i2_down); 
        q2_down_filt = filter(LP_4KH,q2_down); 
         
        %demodulate each channel to remove noise etc. 
        out1 = sqrt(i1_down_filt.^2+q1_down_filt.^2); 
        out2 = sqrt(i2_down_filt.^2+q2_down_filt.^2); 
         
        
        %downsample and phase shift signal 
        if(shift<=0) 
            out_normal1 = downsample(out1,21); 
            out_normal2 = downsample(out2,21,abs(shift)); 
        else 
            out_normal1 = downsample(out1,21,shift); 
            out_normal2 = downsample(out2,21); 
        end 
        
       if(length(out_normal1) ~= length(out_normal2)) 
           sz1 = length(out_normal1); 
           sz2 = length(out_normal2); 
           if (sz1 < sz2) 
               out_normal1 = cat(1,out_normal1,out_normal1(sz1)); 
           else 
               out_normal2 = cat(1,out_normal2,out_normal2(sz2)); 
           end 
       end 
        
       %decide if the antennas are to add or subtract from on another 
       if(can_keep == 1) 
           out = out_normal1+out_normal2; 
       else 
           out = out_normal1-out_normal2; 
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       end 
        
       %normalize the output and add it to the sound buffer 
       out = out./max(out); 
       sound_buffer = cat(1,sound_buffer,out); 
       
      %clear the display and display the current time 
      clc; 
      disp(t(buffer_size)); 
     
     
end 
%output the data to the sound card 
putdata(AO,sound_buffer) 
start(AO); 
trigger(AO); 
 
 
 
 
This program will compute the offset needed for the desired signal.  It takes no 
input and outputs the desired shift value. 
 
function init_shift = get_init_shift() 
clear; 
daqreset; 
seconds_to_record = .1; 
 
 
 
%calculate the needed values for setup% 
 
samplerate = 2e6; 
sound_samplerate = 96000; 
buffer_size = 4096*2; 
IF = 11025; 
sound_buffer_size = buffer_size; 
sound_buffer = zeros(sound_buffer_size,1); 
 
%setting up the input and output 
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AI = analoginput('mcc',2); 
AO = analogoutput('winsound'); 
addchannel(AO,1); 
addchannel(AI,0); 
addchannel(AI,1); 
addchannel(AI,2); 
addchannel(AI,3); 
set(AI,'SampleRate',samplerate); 
set(AO,'StandardSampleRates','off'); 
set(AO,'SampleRate',sound_samplerate);%setting the soundcard to 96000 out 
set(AI,'SamplesPerTrigger',inf); 
set([AI AO],'TriggerType','Manual'); 
set(AI,'ManualTriggerHwOn','Trigger') 
set(AI,'TransferMode','DMA'); 
set(AI.channel(1),'UnitsRange',[-5.0 5.0]); 
set(AI.channel(1),'SensorRange',[-5.0 5.0]); 
set(AI.channel(1),'InputRange',[-5.0 5.0]); 
set(AI.channel(2),'UnitsRange',[-5.0 5.0]); 
set(AI.channel(2),'SensorRange',[-5.0 5.0]); 
set(AI.channel(2),'InputRange',[-5.0 5.0]); 
set(AI.channel(3),'UnitsRange',[-5.0 5.0]); 
set(AI.channel(3),'SensorRange',[-5.0 5.0]); 
set(AI.channel(3),'InputRange',[-5.0 5.0]); 
set(AI.channel(4),'UnitsRange',[-5.0 5.0]); 
set(AI.channel(4),'SensorRange',[-5.0 5.0]); 
set(AI.channel(4),'InputRange',[-5.0 5.0]); 
 
 
RMS = zeros(4,1); 
CORR_VEC = zeros(41,1); 
load LP_7KH; 
 
 
for m=-20:1:20 
    clc; 
    disp('acquiring initialization data'); 
    disp(m); 
    start(AI); 
    trigger(AI); 
    out_normal2_prev = zeros(ceil(buffer_size/23),1); 
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    while(AI.SamplesAcquired < seconds_to_record/(1/samplerate)) 
        [data_in t] = getdata(AI,buffer_size); 
        LO = sin(2*pi*IF.*t); 
        I1 = data_in(1:buffer_size,1); 
        Q1 = data_in(1:buffer_size,2); 
        I2 = data_in(1:buffer_size,3); 
        Q2 = data_in(1:buffer_size,4); 
        I1 = remove_mean(I1); 
        Q1 = remove_mean(Q1); 
        I2 = remove_mean(I2); 
        Q2 = remove_mean(Q2); 
        
        i1_down = I1 .* LO; 
        q1_down = Q1 .* LO; 
        i2_down = I2 .* LO; 
        q2_down = Q2 .* LO; 
         
        i1_down_filt = filter(LP_7KH,i1_down); 
        q1_down_filt = filter(LP_7KH,q1_down); 
        i2_down_filt = filter(LP_7KH,i2_down); 
        q2_down_filt = filter(LP_7KH,q2_down); 
         
        out1 = sqrt(i1_down_filt.^2+q1_down_filt.^2); 
        out2 = sqrt(i2_down_filt.^2+q2_down_filt.^2); 
        out1_no_mean = out1-mean(out1); 
        out2_no_mean = out2-mean(out2); 
         
        out_normal1 = out1_no_mean./(max(out1_no_mean)); 
        out_normal2 = out2_no_mean./(max(out2_no_mean)); 
        
        %downsample and phase shift signal 1 or two depending on sign of m 
        if(m<=0) 
            out_normal1 = downsample(out_normal1,21); 
            out_normal2 = downsample(out_normal2,21,abs(m)); 
        else 
            out_normal1 = downsample(out_normal1,21,m); 
            out_normal2 = downsample(out_normal2,21); 
        end 
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       if(length(out_normal1) ~= length(out_normal2)) 
           sz1 = length(out_normal1); 
           sz2 = length(out_normal2); 
           if (sz1 < sz2) 
               out_normal1 = cat(1,out_normal1,out_normal1(sz1)); 
           else 
               out_normal2 = cat(1,out_normal2,out_normal2(sz2)); 
           end 
       end 
       out = out_normal1+out_normal2; 
        
       %Compute the correlation of the vectors 
       for n=1:length(out_normal1) 
           CORR_VEC(m+21) = CORR_VEC(m+21)+(out_normal1(n)*out_normal2(n)); 
       end 
                
        sound_buffer = cat(1,sound_buffer,out); 
    end 
    stop(AI); 
    %Compute RMS of output 
    RMS(m+21) = norm(out)/sqrt(length(out)); 
 
end 
[y i] = max(CORR_VEC); 
disp('Done'); 
init_shift = i-21; 
disp(init_shift); 
daqreset; 
 
This Program will compute the FFT magnitude and the frequency vector for use by 
other programs. 
 
%This function computes the fft data and returns the frequency vector in 
%f and the magnatude vector in mag 
%[f mag] = vic_fft(data_in,number_of_samples,samplerate); 
function [f mag] = vic_fft(data_in,samples_trigger,samplerate) 
xFFT = fft(data_in,samples_trigger); 
xfft = abs(xFFT); 
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%% 
% Avoid taking the log of 0. 
index = find(xfft == 0); 
xfft(index) = 1e-17; 
 
mag = 20*log10(xfft); 
mag = mag(1:round(samples_trigger/2)); 
 
f = (0:length(mag)-1)*samplerate/samples_trigger; 
f = f(:); 
 
This program is used to automatically notch out frequency components above a user 
defined threshold. 
 
function output = notch2(data,fs,threshold) 
%w = input('Enter width of notch >>'); 
w=200; 
[f mag] = vic_fft(data,length(data),fs); 
load HP_250; 
filtered = filter(HP_250,data); 
 
[f mag_filtered] = vic_fft(filtered,length(data),fs); 
[val i]=max(mag_filtered); 
max_freq = f(i); 
mean_mag = mean(mag); 
output = filtered; 
 
while(mag(i) > mean_mag + threshold) 
     
    upper = max_freq+(w/2); 
    lower = max_freq-(w/2); 
    hs = fdesign.bandstop('N,Fc1,Fc2', 10, lower, upper,96000); 
    H = butter(hs); 
    %butter(hs); 
    disp('NOTCHING'); 
    output = filter(H,output); 
    %length = 2048; 
    [f mag] = vic_fft(output,round(length(output))/4,fs); 
    %mag(i) = 0; 
    [val i]=max(mag); 
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    max_freq = f(i); 
     
     
     
    mean_mag = mean(mag); 
 
end 
%[f2 mag_filtered] = vic_fft(filtered,length(filtered),fs); 
[f3 mag_output] = vic_fft(output,length(output),fs); 
 
 
%subplot(3,1,1),plot(f,mag); 
%subplot(3,1,2),plot(f2,mag_filtered); 
plot(f3,mag_output); 
 
This program is the signal analyzer main program. 
 
function sig_analyzer(); 
 
clear; 
daqreset; 
global T; 
global AI; 
AI = analoginput('mcc',2); 
addchannel(AI,0); 
 
global samples_trigger; 
samples_trigger = 4096; 
 
global samplerate; 
samplerate = 44100; 
 
period = 1/samplerate; 
sample_period = samples_trigger*period; 
 
set(AI,'SampleRate',samplerate); 
set(AI,'SamplesPerTrigger',samples_trigger); 
set(AI,'TriggerType','immediate'); 
set(AI.channel(1),'UnitsRange',[-5.0 5.0]); 
set(AI.channel(1),'SensorRange',[-5.0 5.0]); 
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set(AI.channel(1),'InputRange',[-5.0 5.0]); 
 
global hFig; 
hFig = figure(); 
htoggle = uicontrol(... 
   'Parent'          , hFig,... 
   'Style'           , 'pushbutton',... 
   'Units'           , 'normalized',... 
   'Position'        , [0.0150 0.0111 0.1 0.0556],... 
   'Value'           , 1,... 
   'String'          , 'Stop',... 
   'Callback'        , @stop_exec); 
 
T = timer('TimerFcn',@get_the_data,'Period',0.1,'ExecutionMode','FixedDelay'); 
 
start(T); 
 
function get_the_data(obj,event_time); 
global AI; 
global samplerate; 
global samples_trigger; 
start(AI); 
[input time] = getdata(AI); 
subplot(2,1,1),plot(time,input); 
 
xFFT = fft(input,samples_trigger); 
xfft = abs(xFFT); 
 
%% 
% Avoid taking the log of 0. 
index = find(xfft == 0); 
xfft(index) = 1e-17; 
%mag = xfft.* conj(xfft) / samples_trigger; 
 
mag = 10*log10(xfft); 
mag = mag(1:samples_trigger/2); 
 
f = (0:length(mag)-1)*samplerate/samples_trigger; 
f = f(:); 
subplot(2,1,2),plot(f,mag),axis([0 samplerate/4 -20 50]); 
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function stop_exec(obj,event_time) 
global T; 
stop(T); 
 
This program is used to plot the antenna radiation pattern for the desired sample 
shift amount. 
 
clear; 
clc; 
 
%this program generates a series of plots for the dual antenna array 
 
 
n = input('Enter # of samples to shift >> '); 
fs = input('Enter Sampling frequency in Hz >> '); 
fif = input('Enter IF Frequency in Hz >> '); 
 
lamda = 3e8/1e6; 
beta_d = (2*pi/lamda)*(.1833*lamda); 
theta = 0:2*pi/360:2*pi; 
alpha = n*(2*pi*fif/fs); 
psi = beta_d*cos(theta+alpha); 
rho = (1/2^2)*((sin(psi)).^2)./((sin(psi./2)).^2); 
 
figure; 
polar(theta,rho); 
str_for_title = strcat('Radiation Pattern for: ',num2str(n),' Samples of Shift'); 
title(str_for_title); 
text(1.25,0,'Array Axis'); 
line([-1.20 1.20],[0 0]); 
 
The following program calculates the directivity and Gain of the Two-Element 
Antenna Array. 
 
%This program will calculate the beam solid angle of the antenna array at 
%many values of alpha the phase offset.  The maximum directivity is then 
%found. 
clear; 
clc; 
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%We know the maximum directivity occurs at a 180 degree phase shift, or pi 
%in radians 
 
theta = 0:pi/180:(pi/2)-(pi/180); 
phi = 0:2*pi/360:2*pi-(2*pi/360); 
 
d_phi = 2*pi/360; 
d_theta = pi/180; 
 
betad = 2*pi/(300/55); 
psi = betad*cos(phi)+pi; 
 
%now we will compute the phi integral, first with the numerator, then the 
%denominator, create the fraction, and then integrate it. 
 
num = (sin(psi)).^2; 
den = (sin(psi./2)).^2; 
 
fraction =  num./den; 
 
polar(phi,.25*fraction); 
phi_integral = d_phi*sum(fraction); 
 
%now we calculate the theta integral 
 
theta_integral = d_theta*sum((sin(theta)).^3); 
 
%calculating the Beam Solid Angle 
omega_p = (1/4)*(phi_integral*theta_integral); 
 
%calculating directivity 
D = (4*pi)/omega_p; 
G = D*1; 
%converting to dB 
G_in_dB = 10*log10(G); 


