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Thesis Abstract

A Parallel Implementation of Fault Simulation on a Cluster of

Workstations

Kyunghwan Han

Master of Science, December 15, 2006
(B.S., Sungkyunkwan University, 2003)

81 Typed Pages

Directed by Soo-Young Lee

Parallel simulation on a cluster workstations is one method by which fault simu-

lation time for large circuits can be reduced significantly. To get near-linear speedups

from parallel processing, parallelization methods should result in an even computational

load distribution among processors in a cluster workstations. Fault simulation can be

parallelized by partitioning fault list, the test vector or both. In the thesis, parallel

fault simulation algorithm called PAUSIM has been developed. This algorithm consists

of logic simulation and two steps of fault simulation for sequential logic circuits. Com-

pared to the other algorithms, PAUSIM-CY avoids redundant work by a judicious task

decomposition. Also, it adopts a cyclic fault partitioning method based on the LOG

partitioning and local redistribution, resulting in a well-balanced load distribution. The

parallel implementations were done using the MPI library on a cluster of workstations.

The results show a significant speed-up by PAUSIM-CY over other existing parallel

algorithms.
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Chapter 1

Introduction

Once a digital circuit is designed and fabricated, the circuit needs to be tested for

the potential presence of physical defects or faults. The objective of a fault simulation

algorithm is to find the fraction of total faults (also referred to as the fault coverage)

that are detected by a given set of input vectors. Especially, fault simulation is essential

to designing a high fault coverage Built-in Self Test (BIST) becoming popular for VLSI

testing.

1.1 Background

In the simplest form of testing, a fault is injected into a logic circuit by setting a line

or a gate to a faulty value (1 or 0), and then the effects of the fault are simulated using

zero-delay logic simulation. Most fault simulation algorithms are typically of O(n2) time

complexity, where n is the number of lines in the circuit. Studies have shown that there

is little hope of finding a linear time fault simulation algorithm [3].

Figure 1.1 shows a typical fault simulator [1]. The block C() is the fault-free circuit

and blocks C(f1) through C(fn) are copies of the same circuit with faults f1 through

fn permanently inserted. The good circuit (fault-free circuit) and the faulty circuits are

simulated for each test vector. If the output responses of a faulty circuit differ from

those of the good circuit, then the corresponding fault is detected, and the fault can

be dropped from the fault list, speeding up simulation of subsequent test vectors. A

fault simulator can be run in a stand-alone mode to grade a given set of test vectors,
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Test
vectors C (  )

C (f1)

C (f2)

C (fn)

Comparator

…
Comparator

Comparator

Figure 1.1: Typical fault simulator.

or interfaced with a test vector generator to reduce the number of faults that must be

explicitly targeted by the test vector generator. In a random vector environment, the

fault simulator helps in evaluating the fault coverage of a set of random vectors. In either

environment, fault simulation can consume a significant amount of time, especially in

random vector testing in which millions of vectors may have to be simulated. While

many methods have been suggested for efficient fault simulation to evaluate the fault

coverage of an enormous amount of test patterns, parallel processing can be utilized to

reduce the fault simulation time greatly.
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1.2 Review of Previous Work

To parallelize simulation, one may exploit circuit parallelism, algorithm parallelism,

data parallelism, or a combination of them.

In a circuit-parallel approach [19], a circuit is partitioned into several parts. Each

part is assigned to a processor. When a processor needs the information on a circuit

node or line that is not in its own part, it must communicate with the processor that

has the information. Hence, a large amount of communication is required. Circuit

parallelism has the advantage that each processor needs to store the circuit description

and temporary structures only for a fraction of the circuit, hence requiring a smaller

space of memory.

In an algorithm-parallel approach [24][25], the simulation is carried out in a pipeline

mode. That is, all gates at each logic level form a stage of a pipeline. A processor

is assigned to each stage. The different test vectors are then pipelined through the

logic circuit. In the case of a sequential circuit, since test vectors have to be applied

in sequence, it is not possible to exploit pattern-parallel approach. Also, due to the

presence of feedback paths through memory elements like flip-flops, speedups may be

severely limited.

In a data-parallel approach [17][26][29], the simulation data are partitioned into

disjoint sets and each set assigned to a processor. Each processor executes the entire

algorithm and simulates the entire circuit. Fault parallelism is relatively simple to ex-

ploit. The fault list is partitioned among processors, and each processor performs fault

simulation on the entire circuit for its own fault list with the complete set of test vectors.

It is possible to obtain an almost linear speedup. The problem is that for each partition

3



of faults. Depending on the partitioning of the faults, the faults of each partition for a

test vector may not be uniform across all partitions. In pattern parallelism, the given

input test vectors are decomposed into subsets. Each processor gets a copy of the entire

circuit, the fault set and a subset of the test vectors. Each processor performs fault sim-

ulation with its subset of test vectors. For sequential circuits, the future behavior of the

circuit depends on the past input vectors, thus, limiting applicability of this approach.

1.3 Problem Definition

Parallel computing is becoming an increasingly cost-effective and affordable means

for providing high computing power and represents a challenge to costly conventional

supercomputers. For example, a cluster of workstations (COWs) can be easily configured

as a high performance computing platform. Therefore, it is worthwhile to investigate

efficient ways to utilize a COWs for time-consuming circuit testing.

1.4 Objective

The objective of this study is to develop parallel fault simulation algorithms that

can be efficiently executed on a COWs in order to maximize speedup. This is achieved

by judiciously partitioning the fault and test vector spaces, minimizing redundant com-

putation and better balancing the load distribution among workstations (processors).

4



Chapter 2

Circuit Testing

In this chapter, the general issues of VLSI testing are briefly described, introducing

the important concepts and terms.

2.1 Fault Modeling

Fan-out stem : A signal that branches to multiple places, each of which is called

a fan-out branch. The source of those branches is called stem or fan-in.

branch

a

b1
b2
b3
b4
b5

stem

Figure 2.1: Definition of fan-out stem.

Fault: A defect in electronic system is the unintended difference between the im-

plemented hardware and its intended design. A representation of a defect at the abstract

5



function level is called a fault. That is, a defect and a fault are the imperfections at the

hardware and function levels, respectively.

a
b c

Figure 2.2: Definition of fault.

A simple digital system in Figure 2.2 consists of an AND gate, two input terminals,

a and b, and an output terminal c. But, the connection between b and the gate is left

unconnected and the second input of the gate is grounded. The functional output of this

system, as implemented, is c = 0, instead of the correct intended output c = ab. For

this system, the defect is a short to ground, and the fault is single b stuck at logic 0.

Stuck-at Fault: The type of fault described above is modeled by assigning a fixed

(0 or 1) value to a signal line in the circuit. A signal line is an input or an output of a

logic gate or a flip-flop. The most popular forms are the single stuck-at faults, i.e., two

faults per line, stuck-at-1 (s-a-1 or sa1) and stuck-at-0 (s-a-0 or sa0).

Figure 2.3 illustrates a single stuck-at fault [1]. A stuck-at-1 fault as marked at the

output of the OR gate means that the faulty signal remains 1 irrespective of the input

state of the OR gate. It shows that the normal (faulty) value at the output is applied to

the AND2 gate as 0 (1). When the input vector (1100) is applied as a test vector for the

s-a-1 fault, it is easy to see that the normal and faulty outputs are different. The circuit

6



AND1

OR

1

stuck-a-1

AND2

Test vector

1
1

0
0

0(1)

0(1)

True Response

Faulty Response

Figure 2.3: An Example of a single stuck-at fault.

in Figure 2.3 has seven lines, each of which is the potential site for a single stuck-at fault.

Hence, the number of possible faults is 14.

Level and Output Cone of Circuit: Each gate in a circuit can be assigned a

level, which represents the maximum distance (in gates) from a primary input (PI) to

the gate. In Figure 2.4, the levels of gates are shown in circles. A level i gate is one for

which at least one of its inputs is from a level i-1 gate. For example, PIs G0, G1, and

G2 have the distance of 0 and therefore are assigned a level of 0. Accordingly, the top

two inputs of gate G5, the top input of gate G6, and the inputs to inverters G3 and G8

are labelled with a level of 0. When all of the inputs of a gate are labelled, the gate and

its outputs are labelled with the maximum of its input levels plus 1. That is, the gates

7



G3 and G8 are given a level of 1. Then, G4 is labeled with a level of 2, G5 and G6 with

a level of 3. Finally, G7 is assigned a level of 4.

G0

G4

G3

G8

G6

G2

G7

G1

G5

1

1
2

3

3

4

Figure 2.4: An example of an level order.

Each gate can be assigned a level by parsing the circuit once from the PI’s to the

primary outputs (PO’s). A path is an alternating sequence of wires and gates. Signals

are propagated from the inputs of a circuit to the outputs along one or more paths. A

gate g is in the output cone OC(Oi) of a circuit PO Oi if there is a path from the output

of g to the PO Oi. More formally, a gate g is in the output cone OC(Oi) of the PO Oi

if its output is the PO Oi or at least one of the gates on the fan-out of g is in OC(Oi).

Figure 2.5 shows the output cone of an output Oi [33]. The faults from the two gates,

G1 and G2, are propagated on the same path to the output. The cone to which a gate in

a circuit belongs is determined by a simple depth-first search from each PO. Both level

8



G2

G3

G1

Output
Cone Oi

OjG4

Figure 2.5: An example of an output cone.

and cone identifications can be carried out in time proportional to the number of gates

in the circuit.

2.2 Test Pattern Environment

Fault simulation algorithms may be used in two different environments. One is

a deterministic test generation environment and the other is a random pattern test

generation environment. In the former, a specific algorithm named Automatic Test-

Pattern Generation (ATPG) is used to generate a test vector for every fault in a circuit.

The ATPG selects a fault from the fault list and tries to generate a test vector for the

fault. If the ATPG is successful in generating a test vector, fault simulation is carried

9



out on the entire fault list and the fault simulator finds out the additional faults that are

detectable by the same test vector. But, the ATPG is an NP-complete problem and can

be computationally very expensive. In fact, in some complex circuits, the use of such

algorithms is no longer feasible or practical.

In the latter, a fault simulator determines if test vectors lead to the detection of a

target fault and evaluates the fault coverage of a set of random test vectors. The random

pattern environment uses a relatively inexpensive pseudo-random test pattern generator

to generate test vectors. The fault simulator randomly selects test vectors, runs fault

simulation and determines which faults are detected. Since the random pattern testing

may have to be simulated for a large number of vectors, fault simulation can be very time-

consuming. Thus, parallel processing can be employed to reduce the fault simulation time

significantly.

2.3 Sequential Methods

The task of fault simulation is to determine for each fault in a given list whether

the simulation of the faulty and fault-free circuits differ in any primary output. While

a fault simulator can be built in a straightforward manner from any logic simulator, the

resulting performance would be low due to significant duplicated computation. As a

result, various techniques to reduce duplicated computation have been developed. These

approaches may be classified by the manner in which they compute and store the good

and faulty circuit states. The most popular approaches are word-parallel, deductive,

concurrent, differential, and proofs fault simulation algorithms. In this section, these

and other single processor simulation algorithms are reviewed.
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2.3.1 Word-parallel Fault Simulation

Several algorithms have been proposed for sequential circuit fault simulation, most

of which are targeted at single stuck-at faults in synchronous sequential circuits. Three-

valued (0, 1, X) simulation is generally carried out, and no reset is assumed. Word-

parallel simulation [4] utilizes bit-oriented logic operations to perform many of gate

evaluations simultaneously. If one word consists of 32 bits on a computer, 32 gate

evaluations can be performed at a time, where one bit is used for good circuit. The word-

parallel simulation can be either fault-parallel or pattern-parallel. The former simulates

the good circuit and 31 fault classes with one input vector at a time by assigning a

bit to each fault case. The latter simulates 32 input patterns for one fault at a time by

assigning a bit to each test vector case. In the word-parallel fault simulation [4], 31 faulty

circuits are simulated in parallel with the good circuit. Faults are packed statically into

fault groups, and all test vectors are applied to the circuit for a given fault group. Then,

the process is repeated for each group of 31 faults. Fault detection is done by comparing

the good and faulty circuit values of the primary outputs. Fault dropping is not possible

in this algorithm; therefore, the bit space for a faulty circuit is wasted once the fault is

detected.

Figure 2.6 shows a circuit that is being simulated for three faults, c stuck-at-0, f

stuck-at-1 and g stuck-at-0, with a four-bit word. To simulate the fault-free and three

faulty circuits in parallel, the signal on each line is expressed as one word. The state of

each bit represents the signal value in the fault-free and faulty circuits. When a vector

(a, b) = (1, 1) is applied, the output of the circuit with c s-a-0 (the second bit) and g

s-a-0 (the fourth bit) differs from that of the fault-free circuit (the first bit). Hence, those

11



bit 0: Fault-free circuit
bit 1: Circuit with c s-a-0
bit 2: Circuit with f s-a-1
bit 3: Circuit with g s-a-0

a
b

1 1 1 1

1 0 1 1

1 1 1 1 1 0 1 1

0 0 0 0

1 0 1 0

0 0 1 0
d

c

e

f

g

s-a-0

s-a-1

s-a-0

Figure 2.6: An example of parallel fault simulation.

faults are detected. The other fault (the third bit), which produces the same output as

that by the fault-free circuit, is not detected by this vector.

2.3.2 Deductive Fault Simulation

In deductive fault simulation [5], an event-driven algorithm is used, and processing

an event involves simulating the good circuit and propagating lists of active faults for a

given test vector. Every node in the circuit may have a large list of active faulty circuits

associated with it, and fault propagation is done using set operations on the lists of

active faulty circuits at the inputs of a gate. However, since an event-driven algorithm
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is used, fault propagation is done only if one of the active fault lists at the inputs of a

gate has changed since the previous time frame.

a
b c

d

e

f

g

1
1

0

1

1

[b0 , d0 , f1]

Le = La U Lc U e0

= [a0 , b0 , c0 , e0]

Lg = (Le Lf ) U g0

= [a0 , c0 , e0 , g0]

U

[a0]

[b0] [b0 , c0]

[b0 , d0]

Figure 2.7: An example of deductive fault simulation.

An example of deductive fault simulation is shown in Figure 2.7 [1]. The vector (1,

1) is applied to the circuit. First, logic simulation is carried out to determine all signal

values. Next, the s-a-0 and s-a-1 faults on all lines a through g are simulated. The lists

of primary inputs just contain the respective s-a-0 faults that are active at the inputs.

Their fault lists are denoted as sets, La = [a0] and Lb = [b0]. Fault lists for fan-outs c and

d are obtained by adding their locally active faults to the fault list Lb of the stem. The

fault lists for e, f and g are obtained by fault propagation. When the fault propagation

is completed, four faults a s-a-0, c s-a-0, e s-a-0, and g s-a-0 are detected by the input

vector (1, 1).

2.3.3 Concurrent Fault Simulation

Concurrent fault simulation [6][7] is similar to the deductive fault simulation, but

fault lists are propagated by evaluating individual gates, and only active faulty circuits
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are simulated, which reduces the execution time. Timing information can easily be

incorporated, and function-level modules can be handled. However, more memory is

required to store the fault lists. Fault dropping is straightforward in both deductive and

concurrent fault simulations. The performance of a concurrent fault simulator can be

improved if it is restricted to synchronous sequential circuits [8]. Further improvements

in performance have been achieved with a parallel concurrent approach [9].
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Figure 2.8: Fault-lists in concurrent fault simulation.

Figure 2.8 shows that all stuck-at faults are concurrently simulated for an input

vector (1, 1) [1]. The subscript notation is used for faults. Thus, fault b0 means b s-a-0

fault. Faults are modeled on all gate inputs, primary inputs a and b, and primary output

g. To each good gate, a set of bad gates in grey shade with the corresponding fault name

is attached in a linked-list structure. Signal values at the input and output of each gate

are written inside the gate. At the primary output g, any bad gate whose output differs
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from that of the good gate indicates fault detection. Thus, faults a0, c0, e0, and g0 are

detected by the test vector (1, 1). In the deductive simulator the fault list is for a signal

and contains only the faults that affect that signal. In the concurrent simulator, the

fault lists are for a gate and faults that affect the inputs of that gate are included in the

list. Fault lists in a concurrent simulator are, therefore, comparatively longer.

2.3.4 Differential Fault Simulation

Differential fault simulation algorithm was proposed for synchronous sequential cir-

cuits [10], where only differences between the current and previous faulty circuits are

simulated. The memory requirement is low, since only a single copy of node values and

differences between the succesive faulty circuits in the flip-flops are stored. Fault drop-

ping is more difficult, however, since simulation of each faulty circuit depends on the

previous faulty circuit.

15



1
1

0

1

1
sa1 (2)

sa0 (1)
X

X

0

CK

Current fault list:
[empty]

Next fault list:
[empty]

(a) First vector (1, 1)

1
0

1

0

1
sa1 (2)

sa0 (1)
1

0

D(1)
1

D (1)

CK

Current fault list:
[empty]

Next fault list:
[D(1)]

D (2)
D (2)

(b) Second vector (1, 0)

0
1

0

0

0
sa1 (2)

sa0 (1)
1

0

0

CK

Current fault list:
[D(1)]

Next fault list:
[empty]

fault  (1) detected

D (1)

(c) Third vector (0, 1)

Figure 2.9: An example of differential fault simulation
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Figure 2.9 shows the simulation of two faults (1) and (2) [1]. The vector set contains

three vectors, the first of which is simulated in Figure 2.9(a). The initial state of the

flip-flop is assumed to be unknown and is denoted as X. After simulating the second

vector (1, 0) in Figure 2.9(b), both faults are activated. The effects of fault (1) are

denoted as D(1) and that of fault (2) as D(2). Only D(1) reaches the flip-flop input and

is added to the next fault list. Note that no fault has been detected so far. Figure 2.9(c)

shows the simulation of the third vector (0, 1). The current fault list is updated with

D(1), which propagates to the primary output. Thus, fault (1) is now detected and can

be dropped. Subsequent vectors will only simulate fault (2) until that is detected.

2.3.5 PROOFS

The PROOFS fault simulator combines the features of word-parallel, concurrent,

and differential fault simulation algorithms. For each test vector, the good circuit is

first simulated, and then only the differences between the good and faulty circuits are

simulated. Several faulty circuits are simulated together, with one bit of the computer

word used for each faulty circuit, and faults are grouped dynamically with each test

vector simulated, in order to fully utilize all bits in the computer word. To limit the

memory usage, faulty circuit values are stored at the flip-flops only. Faults are dropped

from the fault list once they are detected, and faults that are identified as inactive in a

given time frame are not simulated.

The overall algorithm of PROOFS [2] is shown in Figure 2.10. It consists of a main

loop which reads in the next input vector, evaluates a logic circuit, and then simulates

the faulty circuit for each fault group. To simulate a fault group, the group-id is first
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Figure 2.10: PROOFS algorithm.

incremented to identify each fault group. Next, the 32 faulty circuits to be included in

the fault group are selected. The faults are then injected into the circuit and the node

values for the state-nodes from the previous input vector are inserted into the faulty line

values. The faulty circuits in this fault group are simulated, and the state-node values

are stored for the next vector.
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Figure 2.11: An example of PROOFS fault simulation.
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Figures 2.11(a) and 2.11(b) show a simple example in which the PROOFS fault

simulator is performed for each fault group. An input vector (1, 1, 1) is applied and the

word length of four bits is assumed. The fault list groups a s-a-0, b s-a-0, c s-a-0, and n

s-a-0 are simulated as shown in Figure 2.11(a). All the propagation lines of these faults

have group-id of 1. After the first group is done, the following group g s-a-1, k s-a-1, p

s-a-0, and r s-a-0 are simulated as shown in Figure 2.11(b). The lines of circuit affected

by the second fault group are updated to a group-id of 2. As shown in Figure 2.11(b),

three faults are detected in group 1 and four faults in group 2. These detected faults are

dropped, and not simulated by the next test vector to avoid redundant simulation.

2.3.6 HOPE

HOPE is a PROOFS-based fault simulation [11]. It screens out faults with short

propagation paths through the single fault propagation. A systematic method of identi-

fying faults with short propagation paths reduces the number of faults simulated.

A significant speedup was achieved by finding representative stem faults for faults

in fan-out-free regions [11]; only the representative stem faults are placed into the fault

groups and simulated in word-parallel for faults whose effects do not propagate to flip-

flops in the previous time frame. Single fault propagation is used to determine whether

a fault in a fan-out-free region is active at the stem. Additional improvements in per-

formance were obtained by modifying the fault injection procedure, statically ordering

faults by fan-out-free region, and dynamically ordering faults to place potentially de-

tected faults in separate fault groups [12]. The resulting fault simulator, HOPE, is about

twice as fast as PROOFS, which is partially due to the improvements in implementation.
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2.3.7 PARIS and PSF

The parallel-pattern single-fault propagation algorithm [13] for combinational cir-

cuits has been extended to synchronous sequential circuits in the fault simulators PARIS

(PARallel Iterative Simulator) [14] and PSF (Parallel Sequence Fault simulation) [15].

For each group of 32 test vectors, the good circuit is simulated, followed by simulation of

a single fault for all 32 vectors. Several iterations may be required before circuit values

stabilize, due to the sequential nature of the circuits. Heuristics are used to minimize

the number of iterations performed. Minor differences between PARIS [14] and PSF [15]

exist. PARIS packs 32 consecutive vectors in each 32-bit computer word. PSF divides

the test sequence into 32 equal subsequences and packs the nth vector of each subse-

quence in a single 32-bit word, where n ranges from one to the number of vectors in

a subsequence. Both PARIS and PSF simulate one fault at a time, but the number of

iterations required to stabilize the circuit state differs between them considerably.

The various existing approaches to sequential fault simulation were reviewed. Fur-

ther improvements to these sequential algorithms have been made in the parallel algo-

rithms using a cluster of workstations.

2.4 Parallel Methods

A number of approaches have been proposed for parallelization of fault simulation

for both combinational and sequential circuits [18].
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2.4.1 Circuit Parallelism

The main alternative to fault partitioning is circuit partitioning, in which the cir-

cuit being simulated is partitioned among available processors. Circuit-partitioned fault

simulation is effectively a variant of parallel logic simulation [19].

Fault simulation based on circuit partitioning has been reported by Mueller-Thuns

et al. [20] and Nelson [21] for vector-synchronous implementations on message passing

machines. Ghosh [22] presents an implementation based on asynchronous logic simula-

tion techniques that, while novel, falls short of achieving high efficiency. In [23], Patil et

al. present a circuit-partitioned approach applicable to shared memory machines, that

incorporates techniques from parallel logic simulation. A circuit is partitioned among

the processors. Since the circuit is evaluated level-by-level with barrier synchronization

at each level, the gates at each level are evenly distributed among the processors to bal-

ance the workloads. On the encore Multimax shared-memory multiprocessor system, an

average speedup of 2.16 was obtained for 8 processors, and the speedup for the ISCAS89

circuit s5378 was 3.29.

2.4.2 Algorithmic Parallelism

Algorithm partitioning was proposed for concurrent fault simulation in [24][25]. A

pipelined algorithm was developed, and specific functions were assigned to each proces-

sor. On a Sun Sparc 2 workstation with a MIPS (Million Instruction Per Second) rating

of 28.5 million, an estimated speedup of 4 to 5 was reported for 14 processors, based

on software emulation of a message-passing multi-computer [25]. The limitation of this

approach is that it cannot take advantage of a larger number of processors.
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2.4.3 Fault Parallelism

Fault partitioning is a simpler method for parallelizing fault simulation than other

methods. In static fault partitioning, we have T test vectors that need to be simulated

against F faults. A fault list is divided among available processors. Each processor

simulated all faults in its partition independently. A fault parallel implementation has

a good potential to achieve high speedup. However, the fault activity of each partition

for a particular input vector may not be uniform across all partitions because the fault

activity depends on the partitioning of the faults. Thus, this static partitioning has

generally been considered ineffective in achieving high speedup especially for a large

number of processors.

Several implementations based on dynamic fault partitioning have been attempted

to even out the workloads of the processors at the expense of extra interprocess commu-

nication [17][26]. In [26], ProperPROOFS fault simulator use both static and dynamic

partitioning model in which static partitioning is performed by dividing the fault list

by the number of available processors at the start of processing and asynchronous fault

redistribution follows. When a processor completes simulation of its existing fault list, it

sends a request to another processor selected at random for more faults to be simulated.

The processor receiving a request splits its fault list to share with the requesting proces-

sor, or forwards the request to another processor at random if it has an empty fault list.

When all faults are simulated, each processor terminates simulation independently. In

[17][26], speedup in the range 2.4 - 3.8 was obtained for static fault partitioning over 8

processors for the larger ISCAS89 circuits having reasonably high fault coverage (s5378
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and s35932) on an INTEL iPSC/860 hypercube. Duba et al. [27] report a parallel im-

plementation of CHIEFS for which speedup between five to six on a network of 8 Sun

3/280 file server workstations connected by a 10 Mb/s ethernet was achieved. Markas

et al. [28] report a distributed algorithm for which speedups ranged from two to six

on eight workstations in a heterogeneous cluster consisting of a Sun-3/160, Sun-3/60, a

cluster of VAX 2000, and a cluster of VAX II/GPX. The performance of dynamic fault

partitioning was not much better than the static fault partitioning due to the overheads

of dynamic load balancing.

There is another drawback to both static and dynamic fault partitioning approaches

in which the shortest execution time will be bounded by the time to perform the good

circuit logic simulation (or simply logic simulation) on a single processor. Each processor

must simulate the good circuit and the faulty circuit in its partition. Logic simulation

on more than one processor is obviously redundant. Alternatively, if a shard-memory

multiprocessor is used, the good circuit may be simulated by one processor only, but the

remaining processors will be idle during the simulation, at least for the first time frame.

One observation that can be made about the fault partitioning experiments is that a

higher speedup is obtained for circuits having lower fault coverage [17][26]. The potential

speedup drops as the number of faults simulated drops. This is a reason for higher speed-

up unless the hard-to-detect faults are mostly assigned to a single or few processors.

The logic simulation is not parallelized in the fault partitioning approach, and therefore,

speedup is limited. Parallelizing logic simulation based on partitioning the circuit has

been suggested, but has not been successful due to the high level of communication

required between processors.
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2.4.4 Pattern Parallelism

For parallelizing logic simulation, some test vector partitioning approaches were

performed. The test vector partitioning provides a more scalable implementation, since

the logic simulation is also distributed over processors. In SPITFIRE-0 [29], the test

vectors are partitioned across the processors. This algorithm is presented as a base

of reference for the various test vector partitioning approaches to be described later.

As shown in Figure 2.12, the entire fault list is allocated on each processor. Thus,

each processor targets the entire list of faults using a subset of the test vectors. Each

processor proceeds independently and drops the faults that it can detect. This algorithm

is somewhat inefficient in that many faults are very testable and are detected by most, if

not all, of the subset of test vectors. Simulating these faults on all processors is a waste

of time.

Vec0 Vec1 Vec2 Vec3

Flt0

Flt1

Flt2

Flt3

P2 P3P1P0

Figure 2.12: Test sequence partitioning in SPITFIRE-0
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2.4.5 Fault and Pattern Parallelism

Some methods to combine fault and pattern parallelism were developed. SPITFIRE-

1 [29], the synchronous two step algorithm, can filter out the easy-to-detect faults in

an initial step in which both the fault set and the test set are partitioned among the

processors. In the first step, each processor targets a subset of the faults using a subset

of the test vectors, as illustrated in Figure 2.13 [29]. A large fraction of the faults is

detected in this initial step, the undetected fault lists from the first step are combined

and only the remaining undetected faults have to be simulated by all processors using

test vectors in its partition in the second step.

Vec0 Vec1 Vec2 Vec3

Flt0 P0

Flt1 P1

Flt2 P2

Flt3 P3

Vec0 Vec1 Vec2 Vec3

Udt0 P1 P2 P3

Udt1 P0 P2 P3

Udt2 P0 P1 P3

Udt3 P0 P1 P2

1st Step for Fault Simulation 2nd Step for Fault Simulation

Figure 2.13: Partitioning in SPITFIRE-1

Other synchronous algorithm, SPITFIRE-2 and SPITFIRE-3, which are extensions

of the SPITFIRE-1 algorithm, were presented in [31]. SPITFIRE-2, a hybrid approach,
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attempted to reduce the partition size used in SPITFIRE-1. The fault and pattern

partitioning for the two steps of fault simulation in SPITFIRE-2 is illustrated in Figure

2.14 [31]. As can be seen from the figure, processor i (Pi) uses V ec0 and Flti in the first

step of fault simulation. Since all faults are targeted in the first step using the input

vectors in V ec0, there is no need to re-simulate these vectors in the second step. In

the second step, Pi uses the set of test vector V eci+1 and any undetected faults left at

the end of the first step. The advantage of this algorithm is that the number of vectors

simulated in each step is now reduced by a factor 1
P+1 × 100percent as compared to

SPITFIRE-1. A small additional advantage is that the faulty circuit states available for

the undetected faults in the set Udti can be used for simulation with the test set V ecj

in the second step of fault simulation on Pj−1. However, it is possible that the second

step of this simulator may not drop as many faults as those by SPITFIRE-1 since less

test vectors are used in the first step..

SPITFIRE-3 is a multistep pipelined synchronous algorithm which helps in over-

coming any drawback in a single or two-step approach. The first step of fault simulation

is identical to that in SPITFIRE-1. Synchronization points are introduced in the second

step, in which processors exchange the information on the detected faults. This may

reduce the amount of work that a processor has to do subsequently, since each processor

does not need to target the faults that have been detected by other processors. However,

the synchronization points introduce barriers which may slow down parallel execution,

when the load is unbalanced among processors.
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Figure 2.14: Partitioning in SPITFIRE-2

2.5 AUSIM

AUSIM is a gate-level, sequential circuit fault simulation program developed at

Auburn University. AUSIM runs on the UNIX platform and targets single stuck-at

faults in synchronous sequential circuits represented in the ISCAS89 benchmark format.

2.5.1 Program Configuration

The AUSIM consists of six sub-commands which are three pre-processing and three

main commands. The command default checks the input file if the proper naming

convention is used. The command proc indicates that all file names have been specified

and processing is to begin. The processing of the files begins with syntax checks of the

library file and the ASL file as well as a check for subskt that makes statements to initiate
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flattening of the hierarchy. After hierarchical flattening is complete, the data structures

are loaded and a number of audits and circuit checks are performed for items such as

nets with multiple driving sources, nets with no driving sources, etc. The command

audit records the audits results. After pre-processing, AUSIM can begin simulation with

the three commands: simul8 for logic simulation, fltgen for fault generation, and fltsim

for fault simulation.

The command simul8 is needed to initiate the application of the vector file (cir-

cuit name.vec) to the circuit loaded into the data structures, producing the simulation

output result file (curcuit name.out). The command fltgen command generates gate-level

stuck-at fault lists and writes the list to the file circuit name.flt. Normally, the fltgen

command produces a collapsed gate-level stuck-at fault list. The command fltsim takes

input files (circuit name.out and circuit name.flt), performs simulation and produces the

detected fault list (circuit name.det), potentially detected fault list (circuit name.pdt)

and undetected fault list (circuit name.udt).

2.5.2 Algorithm Analysis

Figure 2.15 shows the algorithm structure of sequential AUSIM. All the bits in a

computer word are utilized to simulate 32 faulty circuits at once. Logic simulation is

performed before simulating faulty circuits. Fault simulation consists of a main loop

which reads in the next fault group. The faults are injected into the circuit and each test

vector is inserted into the faulty circuit. The faulty circuits are evaluated, and state-node

values are stored for the next vector. When each test vector detects all faults of the same

fault group, AUSIM moves onto the next fault group.
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Figure 2.15: Sequential structure of AUSIM

The data structure used in AUSIM is shown in Figure 2.16, where the shaded

memory blocks represent a linked list. There are three kinds of memory blocks which

are gate, input and net structures of a circuit. Each gate memory block consists of a

type, name, and input and output pointers. Each input memory block is used to control

the state of the nets, which show interconnection among gates, corresponding to the

state changed due to each single fault propagation. The fields in the input structure,

logval and umask, are used to store the state of every net in the circuit. The fields in the

net structure, flt and saf, store the fault information of each net in the faulty circuit.
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Figure 2.16: Data Structure of AUSIM

Each of logval, umask, flt and saf consists of two 32-bit words, where a pair of bits is

used to store a different faulty machine’s value. A three-valued logic (0, 1 and X) is

used. Two bits are used to code the three values, one in logval and the other in umask.

0 is coded as (0, 0), 1 as (1, 1) and X as (0, 1).
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Figure 2.17: An example of gate evaluation of AUSIM.
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Figure 2.17 shows an example of gate evaluation for the test vector (1, 1, 1) on the

fault list groups (a, b, c, d). A word length of four bits is assumed. Coded logics 0(0,

0), X(0, 1) and 1(1, 1) are used in a sequential circuit, but this example does not use

the X value because it is a combinational circuit. Figure 2.17(a) illustrates the logic

simulation for good circuit. The steady state value of each net in the circuit is kept in a

single array in logval and umask. The information of faulty machine value is stored in

another array flt and saf. Figure 2.17(b) represents the net state of circuit modified due

to fault injection. After every fault in the same fault group is injected and the net state

is updated with the faulty state, the gate evaluation is performed.
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Chapter 3

Parallelization

In this chapter, a parallel fault simulator PAUSIM (Parallel AUSIM) which has

developed based on AUSIM [32] is described. Three versions of PAUSIM have been im-

plemented, i.e., PAUSIM-BL (BLock partitioning), PAUSIM-CY0 (CYclic partitioning)

and PAUSIM-CY1.

3.1 PAUSIM-BL

3.1.1 Task Decomposition

PAUSIM-BL (Parallel AUSIM-BLock Partitioning) adopts the test vector and fault

set partitioning algorithm for parallel processing. It performs a logic and fault simula-

tions separately. Compared to SPITFIRE-1 consisting of the two steps of fault simulation

[31], PAUSIM-BL’s design focuses on eliminating a redundant work in logic simulation

and fault simulations.

In SPITFIRE-1, logic simulation of the fault-free circuit is carried out in both steps

of fault simulation, resulting in redundant computation. In order to avoid such redun-

dancy, in PAUSIM-BL, the logic simulation results are saved so that they can be referred

to during the fault simulation step.

In the second step of fault simulation of SPITFIRE-1, a fault may be detected by

more than one processor since the fault space is not partitioned. That is, it is possible

that a processor may simulate the faults which have been already detected by other
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Figure 3.1: Task decomposition in PAUSIM-BL

processors. PAUSIM-BL avoids such possibility by assigning a disjoint set of faults to

each processor in the second step as shown in Figure 3.1.

This also makes it unnecessary to filter out the multiply-detected faults when the

faults detected by processors are combined following the (second step of) fault simulation.

Fault simulation time on each processor is shorter on average for PAUSIM-BL than for

SPITFIRE-1. Let’s define a unit simulation as testing a circuit for a fault using a

test vector. The number of possible unit simulations in the fault simulations would

be the same regardless of partitioning faults or test vectors. However, the number of

unit simulations actually carried out is smaller for PAUSIM-BL than for SPITFIRE-1.

First, there is no redundant simulation in PAUSIM-BL. Second, since each processor in

PAUSIM-BL is assigned less faults with more test vectors than in SPITFIRE-1, it is more

likely in PAUSIM-BL than in SPITFIRE-1 that all of the assigned faults are detected
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even before all possible unit simulations are tried. A processor stops fault simulation

when all the faults in its assigned fault group are detected.

3.1.2 Fault Partitioning

In PAUSIM-BL, faults in a fault list are divided into n equal-size groups when there

are n processors. In a fault list of a circuit, faults are arranged in the alphanumeric

order of propagation gate and net names. Therefore, faults in a group tend to be from

the contiguous parts of the circuit. All faults related to a gate are assigned to the

corresponding processor.

Figure 3.2 shows the distribution of faults in an area of the s27 benchmark circuit.

Faults from inputs of a gate are propagated on the same path to the primary outputs.

Hence, the workloads for simulating the faults at different inputs of a gate are similar.

If a fault group contains more hard-to-detect faults than other groups, there can be a

significant load imbalance among processors.

3.1.3 Test Vector Partitioning

For combinational circuits, a test vector set may be partitioned into mutually exclu-

sive subsets, each of which is assigned to a processor. In a sequential circuit, the current

state depends on the previous state in general. Each processor initiates its fault simula-

tion, starting from an unknown state at some outputs. This may cause detection of some

faults to be missed. In order to eliminate or reduce unknown outputs, the test vector

set may be partitioned in an overlapped manner as shown in Figure 3.3 [29]. Those

test vectors in an overlapped portion are mainly used for updating the unknown states

of outputs to the known states, rather than fault detection, i.e., they act as initializing
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Figure 3.2: Fault partitioning in PAUSIM-BL for 4 processors where each fault group is
distinguished by a different grey-scale

vectors. The optimal number of initializing vectors depends on the circuit. Too many

initializing vectors would waste computation while few of them may lead to a low fault

coverage.

3.1.4 Procedure

The procedure of PAUSIM-BL, which consists of logic simulation and fault simula-

tion, is described in the flowchart in Figures 3.4 - 3.5. A master processor broadcasts
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Figure 3.3: Test vector set partitioning

the circuit information and the entire test vectors to all slave processors. All processors

including the master carry out the logic simulation with their respective partitions of test

vectors. Local logic simulation results are collected to the master which then broadcasts

the combined result to all slave processors. Then, the fault simulation starts. The master

processor partitions a list of faults into subsets and distributes them among processors.

The fault simulation is performed on all processors with faults disjointly distributed. At
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the end of the fault simulation, slave processors report their detected and undetected

faults to the master processor.
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Figure 3.4: Flowchart of the master processor in PAUSIM-BL
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3.2 PAUSIM-CY

3.2.1 Load Balancing

One problem in PAUSIM-BL is the potential load imbalance among processors. It

is due to the fact that all the faults on a gate are assigned to the same processor and the

faults assigned to a processor tend to be clustered in space. Computational requirements

for the faults close to each other are similar, especially those at the same gate. Therefore,

the load distribution among processors can be unbalanced significantly in PAUSIM-BL.

In order to achieve a more uniform load distribution, PAUSIM-CY0 (Parallel AUSIM-

CYclic) and PAUSIM-CY1 adopt the LOG (Level Output Gate) partitioning of faults

[33]. In the LOG partitioning scheme, faults on each gate and each circuit level are

assigned to processors in a cyclic fashion. In this way, for example, the hard-to-detect

faults on a gate would be distributed to multiple processors rather than a processor.

Figure 3.6 shows the difference between block partitioning and LOG partitioning

used in PAUSIM-BL and PAUSIM-CY0 and PAUSIM-CY1, respectively. The fault list

consists of four attributes which are gate name, net name connected to gate, input or

output, and a type of single stuck at fault. Faults are arranged in the alphanumeric

order of gate names. It is seen that faults in a PAUSIM-BL partition are mostly from

a contiguous part of circuit while those in a PAUSIM-CY0 and PAUSIM-CY1 partition

are scattered widely.

3.2.2 Procedures

PAUSIM-CY0 is identical with PAUSIM-BL except for the fault partitioning. Faults

are distributed among processors in a cyclic manner in PAUSIM-CY in an effort to spread
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Cyclic partitioning

Figure 3.6: Example of fault partitioning for s27 benchmark circuit for 5 processors

distribution of hard-to-detect faults over as many different processors as possible. This

cyclic partitioning of faults may not balance the load completely. Hence, PAUSIM-CY1

employs a two-step fault simulation for more effective load balancing as shown in Figure

3.7. In PAUSIM-CY1, after the first step of simulation, each slave processor reports its

undetected faults to the master which then redistribute the undetected faults such that

the load is well balanced over slave processors.
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Figure 3.7: Task decomposition in PAUSIM-CY1

3.3 Implementation

The parallel simulation programs are written in C, using MPI library functions for

communication. Figures 3.8-3.10 illustrate the logic simulation and two steps of fault

simulation for PAUSIM-CY1, where the cluster consists of one master processor, P0,

and three slave processors, P1, P2, and P3.

Communications among processors are required when (i) the master processor

broadcasts test vectors (Ti) to the slave processors during logic simulation, (ii) the

master processor distributes faults (Fi) to the slave processors in the first step of fault
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simulation, (iii) the slave processors report the detected (DAi), undetected (UAi) faults

and the results (Oi) of logic simulation to the master processor at the end of first step,

(iv) the master processor redistributes the undetected faults (UBi) and broadcasts the

the results collected (O) to the slave processors in the beginning of the second step, and

(v) the slave processors report the detected (DBi) and undetected (UCi) faults to the

master processor at the end of fault simulation. These communications are implemented

by MPI SEND MPI RECV, and MPI BCAST.
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tion result
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Chapter 4

Performance

4.1 Experimental Environment

The four parallel schemes, PAUSIM-SF, PAUSIM-BL, PAUSIM-CY0 and PAUSIM-

CY1, have been implemented, which were described in the previous section. The PAUSIM-

SF refers to the parallel implementation which uses the task partitioning scheme of

SPITFIRE-1 [31]. The PAUSIM-BL and PAUSIM-CY are the proposed parallel testing

schemes described in chapter 3.

Table 4.1: Fault coverage statistics using 1600 random vectors on a single processor

Circuit #Fault #Gate #FF #PI #PO #Det.fault Coverage
s1196 1250 388 18 14 14 1042 83.4%
s1423 1663 490 74 17 5 517 31.1%
s1512 1411 413 57 29 21 46 3.3%
s3271 3438 1035 116 26 14 3103 90.3%
s5378 4961 1004 179 35 49 2945 59.4%

Table 4.1 shows the characteristics of the benchmark circuits and the fault coverage

on a single processor. Note that s1196 and s3271 have a high fault coverage while s1423

and s1512 contain lots of hard-to-detect faults. The four schemes were implemented on

a cluster consisting of sixteen utra 5 Sun workstations. The workstations are intercon-

nected by a 100-Mbps Ethernet. Results are provided for the five circuits, s1196, s1512,

s1423, s3271, and s5378, taken from the ISCAS89 benchmark suite. Logic and fault
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Table 4.2: Execution time (seconds) and speedups using 1600 random vectors on multi-
processor

Circ. Sequ. Alg. Execution time Speedups
time 4 8 12 16 4 8 12 16

s1196 191.6 SF 131.4 58.6 52.9 50.2 1.5 3.3 3.6 3.8
BL 119.1 52.9 44.8 36.0 1.6 3.6 4.3 5.3
CY0 63.5 42.8 33.1 27.6 3.0 4.5 5.8 6.9
CY1 56.9 36.3 28.0 27.4 3.4 5.3 6.8 7.0

s1423 489.7 SF 180.5 92.3 92.0 78.1 2.7 5.3 5.3 3.8
BL 179.1 89.7 79.2 77.2 2.7 5.5 6.2 6.3
CY0 147.0 78.3 65.6 52.3 3.3 6.3 7.5 9.4
CY1 140.9 77.5 56.7 45.3 3.5 6.3 8.6 10.8

s1512 436.9 SF 135.3 87.6 71.7 61.7 3.2 5.0 6.1 7.1
BL 134.4 85.3 67.0 47.0 3.3 5.1 6.5 9.3
CY0 133.2 80.1 53.9 46.4 3.3 5.5 8.1 9.4
CY1 127.3 73.9 53.4 47.0 3.4 5.9 8.2 9.3

s3271 1077.1 SF 1056.1 696.1 383.3 293.3 1.1 1.5 2.8 3.7
BL 972.2 502.8 345.6 271.8 1.1 2.1 3.1 4.0
CY0 516.6 294.4 274.1 204.4 2.1 3.7 3.9 5.3
CY1 378.3 171.3 142.4 137.8 2.8 6.3 7.6 7.8

s5378 9898.4 SF 4701.3 2220.0 2089.3 1511.9 2.1 4.5 4.7 6.5
BL 4602.3 1951.2 1724.6 1333.2 2.1 5.1 5.7 7.4
CY0 3041.1 1471.6 1206.4 952.3 3.3 6.7 8.2 10.4
CY1 2486.9 1266.8 849.7 675.6 4.0 7.8 11.6 14.7

simulations were done with 1600 random test vectors. The overlap in the test vector

partitioning was 25 (test vectors).

4.2 Results

In Table 4.2, the execution time and speedup achieved by PAUSIM-SF, PAUSIM-

BL, PAUSIM-CY0 and PAUSIM-CY1 on the cluster are provided for the five circuits in

Table 4.1. The same fault coverage as in the sequential (uniprocessor) simulation was
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obtained except for s1423 where one less fault was detected compared to the sequential

result.

This minor difference between the sequential and parallel simulations is most prob-

ably due to the loss of state information in the beginning of parallel simulation (caused

by test vector partitioning). When the test vector overlap was increased, there was no

difference in the fault coverage between the sequential and parallel simulations.
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Figure 4.1: Execution time for 4 processors - small circuit
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Figure 4.2: Execution time for 4 processors - large circuit
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Figure 4.3: Execution time for 8 processors - small circuit
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Figure 4.4: Execution time for 8 processors - large circuit
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Figure 4.5: Execution time for 16 processors - small circuit
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It can be seen that the proposed approach to task decomposition achieves shorter

execution time (or higher speedup) than the existing approaches. As shown also in

Figures 4.1 - 4.6, PAUSIM-BL performs substantially better than PAUSIM-SF, and

PAUSIM-CY0 improves over PAUSIM-BL by the cyclic partitioning of faults instead

of the block partitioning. As expected, PAUSIM-CY1 outperforms all other algorithms

significantly mainly due to the two-step load balancing. It is also observed that the

reduction in execution time is larger for a lager circuit. Note that a large circuit must

have more room for improvement by a better load balancing scheme.

In Figures 4.7 - 4.18. execution time, speedup and efficiency are plotted as functions

of the number of processors employed in parallel simulation. As number of processors

increases, execution time monotonically decreases in all cases. One thing to note is that

the improvement by using more processors tends to saturate in some cases of PAUSIM-

SF as clearly seen in Figures. This is mainly due to the ineffective task partitioning.

In the proposed algorithms, such saturation is either not observed or much less than in

PAUSIM-SF.

It is to be mentioned that efficiency achieved by the proposed algorithms, especially

PAUSIM-CY1, is very high in almost all cases. In addition to the effective parallelization

in PAUSIM-CY1, the long simulation time (compared to the communication overhead)

is another factor contributing to such high efficiency.
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Figure 4.7: Execution times for PAUSIM-SF
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Figure 4.8: Execution times for PAUSIM-BL
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Figure 4.9: Execution times for PAUSIM-CY0
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Figure 4.10: Execution times for PAUSIM-CY1
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Figure 4.11: Speedup for PAUSIM-SF
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Figure 4.12: Speedup for PAUSIM-BL
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Figure 4.13: Speedup for PAUSIM-CY0

s1196 s1423 s1512 s3271 s5378
3.36731 3.4755 3.43205 2.8472 3.9802 4
5.27824 6.3187 5.91204 6.2878 7.8137 8
6.84286 8.6367 8.18165 7.5639 11.649 12
6.9927 10.81 9.29574 7.8164 14.651 16

Speedup for the PAUSIM-CY1

0

2

4

6

8

10

12

14

16

4 8 12 16

Number of processors

S
p
e
e
d
u
p

s1196

s1423

s1512

s3271

s5378

Figure 4.14: Speedup for PAUSIM-CY1
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s1196 s1423 s1512 s3271 s5378
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Figure 4.15: Efficiency for PAUSIM-SF
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Figure 4.16: Efficiency for PAUSIM-BL
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s1196 s1423 s1512 s3271 s5378
0.75433 0.8328 0.82001 0.5212 0.8137 4
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Figure 4.17: Efficiency for PAUSIM-CY0
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Figure 4.18: Efficiency for PAUSIM-CY1
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In Tables 4.3 - 4.4, the minimum, maximum, mean, standard deviation, and nor-

malized standard deviation of execution time over eight processors are provided in order

to compare the four algorithms in terms of load balancing. A larger standard deviation

of execution time among processors indicates a larger load imbalance among them. The

logic simulation is a small fraction of the entire simulation and is well balanced over

processors. What is to be noticed in the table is that the execution time significantly

varies with processor in the case of PAUSIM-SF and PAUSIM-BL, leading to the rela-

tively large standard deviation (also, the difference between the maximum and minimum

execution time) in most cases. That is, the load is not well balanced in PAUSIM-SF and

PAUSIM-BL. However, PAUSIM-CY1 greatly reduces the load imbalance and thereby

achieves a significant performance improvement.

In Figure 4.19 - 4.26, execution times including communication times on individ-

ual processors are plotted for more detailed examination of load distribution among

processors. It is confirmed that PAUSIM-CY1 balances the load over processors well

at the expense of extra communication such that the overall parallel execution time is

significantly reduced.
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Table 4.3: Mean and standard deviation execution times on eight processors for PAUSIM-
SF, PAUSIM-BL, PAUSIM-CY0 and PAUSIM-CY1. The unit for time is second. s1196,
s1423 and s1512

Circuit Algorithm Step Min.T. Max.T. Mean.T Stdv Norm.Stdv
s1196 PAUSIM LSIM 0.8 1.1 0.9 0.10 0.12

-SF FSIM 18.2 43.3 36.9 5.13 0.14
PAUSIM LSIM 0.8 1.1 0.9 0.10 0.12

-BL FSIM 15.1 36.1 32.5 7.07 0.22
PAUSIM LSIM 0.8 0.9 0.8 0.05 0.06

-CY0 FSIM 18.8 27.1 22.6 3.74 0.17
PAUSIM LSIM 0.8 0.9 0.83 0.05 0.06

-CY1 FSIM 16.1 17.4 16.6 0.51 0.03
s1423 PAUSIM LSIM 1.2 1.3 1.3 0.05 0.04

-SF FSIM 71.1 86.3 77.0 5.17 0.07
PAUSIM LSIM 1.2 1.3 1.3 0.05 0.04

-BL FSIM 73.5 84.0 77.3 4.36 0.06
PAUSIM LSIM 1.2 1.3 1.3 0.05 0.04

-CY0 FSIM 60.9 72.4 66.1 3.97 0.06
PAUSIM LSIM 1.2 1.3 1.3 0.05 0.04

-CY1 FSIM 60.5 69.9 66.0 3.06 0.05
s1512 PAUSIM LSIM 1.3 1.3 1.3 0.00 0.00

-BL FSIM 59.9 82.1 68.5 4.82 0.07
PAUSIM LSIM 1.3 1.3 1.3 0.00 0.00

-BL FSIM 63.0 77.9 66.5 4.89 0.07
PAUSIM LSIM 1.3 1.3 1.3 0.00 0.00

-CY0 FSIM 64.0 76.7 71.0 3.65 0.05
PAUSIM LSIM 1.3 1.4 1.4 0.1 0.10

-CY1 FSIM 65.7 68.0 66.3 1.25 0.02
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Table 4.4: Mean and standard deviation execution times on eight processors for PAUSIM-
SF, PAUSIM-BL, PAUSIM-CY0 and PAUSIM-CY1. The unit for time is second. s3271
and s5378

Circuit Algorithm Step Min.T. Max.T. Mean.T Stdv Norm.Stdv
s3271 PAUSIM LSIM 4.1 4.4 4.3 0.10 0.02

-SF FSIM 345.3 684.8 477.7 110.67 0.23
PAUSIM LSIM 4.1 4.4 4.3 0.10 0.02

-BL FSIM 205.4 490.8 377.2 102.51 0.27
PAUSIM LSIM 4.1 4.4 4.3 0.10 0.02

-CY0 FSIM 80.4 278.3 155.8 63.59 0.41
PAUSIM LSIM 4.1 4.4 4.3 0.09 0.02

-CY1 FSIM 141.4 158.7 152.2 5.17 0.03
s5378 PAUSIM LSIM 11.3 11.9 11.7 0.19 0.02

-BL FSIM 1711.4 2185.9.6 1923.3 132.92 0.07
PAUSIM LSIM 11.4 11.9 11.7 0.16 0.01

-SF FSIM 1586.9 1912.6 1827.0 122.00 0.07
PAUSIM LSIM 11.5 11.9 11.7 0.15 0.01

-CY0 FSIM 1103.0 1438.6 1246.0 110.49 0.09
PAUSIM LSIM 11.3 11.9 11.7 0.19 0.02

-CY1 FSIM 1197.9 1229.0 1219.8 13.36 0.01
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LSIM FSIM Communication
P0 4.1 345.3 7.2
P1 4.3 368.5 7.2
P2 4.4 466.7 7.2
P3 4.3 684.8 7.2
P4 4.4 515.5 7.2
P5 4.3 568.2 7.2
P6 4.2 425.4 7.2
P7 4.2 447.5 7.2

4.275 477.7375
0.10351 110.668242
0.02421 0.23165073
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Figure 4.19: Workload distribution: s3271 benchmark circuit, PAUSIM-SF
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P1 4.3 358 7.2
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Figure 4.20: Workload distribution: s3271 benchmark circuit, PAUSIM-BL
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LSIM FSIM Communication
P0 4.1 219.2 12 60.8 158.4
P1 4.3 278.3 12 62.6 215.7
P2 4.3 124.2 12 63.3 60.9
P3 4.3 123.5 12 61.1 62.4
P4 4.4 150.2 12 59.6 90.6
P5 4.3 153.7 12 61.6 92.1
P6 4.2 116.8 12 56.7 60.1
P7 4.3 80.4 12 50.3 30.1

4.275 155.7875
0.08864 63.5942369
0.02073 0.40821142
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Figure 4.21: Workload distribution: s3271 benchmark circuit, PAUSIM-CY0

LSIM FSIM Communication
P0 4.1 155.5 12 60.6 94.9
P1 4.4 158.7 12 63.3 95.4
P2 4.3 155.2 12 62.7 92.5
P3 4.3 151.9 12 61.1 90.8
P4 4.4 152.7 12 60.2 92.5
P5 4.3 152.4 12 60.9 91.5
P6 4.3 149.4 12 57.5 91.9
P7 4.3 141.4 12 50.4 91
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Figure 4.22: Workload distribution: s3271 benchmark circuit, PAUSIM-CY1
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LSIM FSIM Communication
P0 2.1 132.1 18.7 0 149.2
P1 2.1 200.2 18.7 0 132.1
P2 2.2 214.8 18.7 0 214.8
P3 2.2 200 18.7 0 165.1
P4 2.3 180.3 18.7 0 267.2
P5 2.2 254.8 18.7 0 254.8
P6 2.2 235.4 18.7 0 255.9
P7 2.2 193.2 18.7 0 193.2
P8 2.2 173.4 18.7 0 244.7
P9 2.3 220.9 18.7 0 150.9
P10 2.2 213.4 18.7 0 223.4
P11 2.2 149.2 18.7 0 217.6
P12 2.2 231.3 18.7 0 200.3
P13 2.2 187.3 18.7 0 90.3
P14 2.2 169.1 18.7 0 189.1
P15 2.3 264.2 18.7 0 140.4

2.20625 201.225
0.05737 36.1644485

0.026 0.17972145 149.2
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Figure 4.23: Workload distribution: s3271 benchmark cir-
cuit, PAUSIM-SF

LSIM FSIM Communication
P0 2.1 149.2 18.7 0 149.2
P1 2.1 132.1 18.7 0 132.1
P2 2.2 214.8 18.7 0 214.8
P3 2.2 165.1 18.7 0 165.1
P4 2.3 267.2 18.7 0 267.2
P5 2.2 254.8 18.7 0 254.8
P6 2.2 255.9 18.7 0 255.9
P7 2.2 193.2 18.7 0 193.2
P8 2.2 244.7 18.7 0 244.7
P9 2.3 150.9 18.7 0 150.9
P10 2.2 223.4 18.7 0 223.4
P11 2.2 217.6 18.7 0 217.6
P12 2.2 200.3 18.7 0 200.3
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Figure 4.24: Workload distribution: s3271 benchmark cir-
cuit, PAUSIM-BL
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LSIM FSIM Communication
P0 2.1 77.3 18.7 15.6 61.7
P1 2.1 185.2 18.7 15.6 169.6
P2 2.2 77 18.7 16.1 60.9
P3 2.2 113.3 18.7 15.5 97.8
P4 2.3 94.6 18.7 16.2 78.4
P5 2.2 83.6 18.7 15.9 67.7
P6 2.2 85.1 18.7 16 69.1
P7 2.1 60.5 18.7 15.8 44.7
P8 2.2 48.5 18.7 15.8 32.7
P9 2.3 119.6 18.7 16.5 103.1
P10 2.2 114.6 18.7 15.6 99
P11 2.2 116.3 18.7 16.2 100.1
P12 2.2 82.7 18.7 16.1 66.6
P13 2.2 80.7 18.7 15.5 65.2
P14 2.2 49.5 18.7 16 33.5
P15 2.3 39.2 18.7 18.2 21

2.2 89.23125
0.06325 35.7202784
0.02875 0.40031131
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Figure 4.25: Workload distribution: s3271 benchmark cir-
cuit, PAUSIM-CY0

LSIM FSIM Communication
P0 2.1 119.9 18.7 15.5 104.4
P1 2.1 118 18.7 15.7 102.3
P2 2.3 118.7 18.7 16.2 102.5
P3 2.2 116.1 18.7 15.7 100.4
P4 2.2 113.4 18.7 16 97.4
P5 2.2 97.6 18.7 15.9 81.7
P6 2.2 87.6 18.7 16.2 71.4
P7 2.1 99.5 18.7 15.9 83.6
P8 2.2 118.9 18.7 16.1 102.8
P9 2.3 103.7 18.7 16.1 87.6
P10 2.2 85.2 18.7 16.2 69
P11 2.2 117.6 18.7 16.4 101.2
P12 2.2 84.6 18.7 16.2 68.4
P13 2.2 102.9 18.7 15.5 87.4
P14 2.2 93.6 18.7 16 77.6
P15 2.4 109.8 18.7 18.2 91.6

2.20625 105.44375
0.07719 12.8487597
0.03499 0.12185416
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Figure 4.26: Workload distribution: s3271 benchmark cir-
cuit, PAUSIM-CY1
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Chapter 5

Conclusion

Digital circuit testing including fault simulation is computationally intensive and

therefore is a a good target application for parallel computing. In this thesis, efficient

parallel fault simulation algorithms have been designed and implemented on a cluster

of workstations. The proposed algorithms eliminates redundant simulation and reduces

the actual number of unit simulation by partitioning faults among processors while as-

signed the entire test vector set to all processors. They, PAUSIM-CY0 and PAUSIM-

CY1, achieve a better load distribution by adapting the cyclic partitioning of faults. In

particular, PAUSIM-CY1 further improves the load distribution by allowing a load re-

distribution during fault simulation. The experimental results obtained on the 16-node

cluster have demonstrated that the proposed parallel fault simulation algorithms can

achieve significantly a shorter execution time than the existing algorithms.
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