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ABSTRACT 
 

During the last decade, the transportation construction industry has seen an increase in the 

implementation of historical bid-based cost estimating practices by various state transportation 

agencies (STAs). The American Association of State Highway and Transportation Officials 

(AASHTO), provides basic guidelines on the preparation of construction cost estimates using bid 

data from previous transportation construction projects. The process presented in the AASHTO 

guidebook includes a number of assumptions whose validity does not seem to have been 

challenged in the existing literature. One of these assumptions, and the one addressed in this thesis, 

refers to the optimal number of year of historical data to be used for estimating purposes. 

The primary objective of this study is to develop a methodology to assist the Alabama 

Department of Transportation (ALDOT) with the definition of optimal look-back periods for data 

retrieval to maximize estimating accuracy in asphalt paving projects. According to AASHTO 

guidelines, a one- or two-year lookback period is commonly used for bid-based estimating 

purposes, and sometimes, it could be extended if the last two years do not provide sufficient data. 

However, no guidance is provided on how to determine whether to use one, two, or more years of 

data. How can a STA estimator know how many years of data would be required to maximize 

estimating accuracy? This is the main question to be answered in this thesis. 

Taking into consideration that the amount of data is irrelevant if it is not appropriately 

collected, clean, and processed, the proposed look-back determination process is presented along 

with a data-driven cost estimating methodology designed to maximize the effectiveness of bid-
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base estimates. The optimal look-back period is determined, and the application and 

effectiveness of the cost estimating methodology is demonstrated, using ALDOT’s historical bid 

data for all projects awarded between 2011 and 2016 (2122 contracts).  A moving-window analysis 

algorithm has been designed to measure the performance of the estimating model over 6 years and 

for different look-back periods ranging from 1 to 5 years. The moving-window algorithm includes 

a number of research techniques, including advance data cleaning procedures, non-linear 

regression, time series analysis, and various statistical significance testing approaches. 

The proposed bid-based estimating methodology has been designed to counteract the 

impact of inflation on estimates produced with data from previous projects. Thus, the author has 

also developed an innovative construction cost indexing system (CCIS) intended to adjust past 

construction prices based on observed fluctuations in the construction market. The thesis presents 

a comparative analysis conducted to select the most suitable cost indexing approach among 20 

alternatives, including twelve different versions of the CCIS (developed in this study) and eight 

existing construction cost indexes (CCIs) currently used in the construction industry. The twelve 

different versions of the CCIS were developed by taking into consideration three different index 

recalculation periods (i.e. quarterly, semi-annual, and annual) and four types of inputs for each 

recalculation period (i.e. all bids, median values on a project basis, average values on a project 

basis, and only awarded bids). 

The use of the look-back period determination process and the proposed data-driven cost 

estimating methodology are illustrated in this thesis as they are applied to the most relevant pay 

item used in ALDOT’s paving projects: “Superpave Bituminous Concrete Wearing Surface Layer, 

1/2" Maximum Aggregate Size Mix, ESAL Range C/D – Item ID 424A360.” It was found that unit 

prices for the case study item (item 424A360) are more accurately estimated using two years of 
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historical bid data and a quarterly CCIS calculated with all bids received by ALDOT for this item. 

Even though these findings are only applicable to the case study item, the thesis presents the 

process in a detailed manner, so that it could repeated for other cost items, on an as needed basis. 
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CHAPTER ONE: INTRODUCTION 
 

 

The U.S. transportation infrastructure system includes over four million miles of roads, from 

interstates to residential streets (ASCE, 2017). “In 2016 alone, U.S. roads carried people and goods 

over 3.2 trillion miles –or more than 300 round trips between Earth and Pluto” (ASCE, 2017), 

making it one of the most critical elements of the American infrastructure. State Transportation 

Agencies (STAs) play a key role in the planning, design, construction, operation, and maintenance 

of the highway network in the U.S. To fulfil these responsibilities, STAs are compelled to manage 

their budgets in a responsible and efficient manner. “A sound budgeting system is one which 

engenders trust among citizens that government, in the broad sense, is listening to their concerns, 

has a plan for achieving worthwhile objectives, and will use the available resources effectively, 

efficiently and in a sustainable manner in doing so” (OECD, 2014). STAs’ budgets are built with 

funds coming from various sources, including federal-aid programs and vehicle fuel taxes and 

registration fees collected at the state and federal level (IOWADOT, 2017). The American Society 

of Civil Engineers (ASCE) estimates that in 2014, federal and state governments spent over $160 

billion updating, operating, and maintaining the highway infrastructure (ASCE, 2017). Even 

though it looks like a massive investment in public infrastructure, the same study has revealed that 

such levels of investment are not sufficient to satisfy the current needs of the highway network. 

“The U.S. has been underfunding its highway system for years, resulting in an $836 billion backlog 

of highway and bridge capital needs” (ASCE, 2017).  
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This underfunding situation is one of the main causes of the rapidly deteriorating conditions 

of the U.S transportation infrastructure system, which is affecting taxpayers on several ways, 

including increased vehicle operating costs, longer commute times, higher crash and traffic fatality 

rates, and increased pollution due to the longer commutes (Miller and Gransberg, 2014; ASCE, 

2017). The increasing gap between available and needed funding is also affecting STAs ability to 

guarantee an optimal use of the limited available resources to offer the best value for taxpayer’s 

money. The ability of STAs to offer the best value-for-money depends, in part, on the effectiveness 

of their cost estimating systems. Having sound estimates of the expected costs of addressing 

current and foreseen infrastructure needs would facilitate an effective allocation of resources by 

allowing a better prioritization of candidate projects based on more reliable cost-benefit analyses. 

As a contingency measure to mitigate the impact of the unavoidable and increasing funding gap, 

STAs have been intensifying their efforts towards the improvement of cost estimating practices. 

This thesis is intended to contribute to those efforts by proposing a methodology to improve what 

has become the most commonly estimating approach used by STAs: historical bid-based cost 

estimating (AASHTO 2013) –a estimating method used to some extend by all STAs (Anderson et 

al. 2009; Schexnayder et al. 2003).   

Bid-based estimating refers to the use of bid data from previously awarded projects to 

estimate unit prices for current or future projects (AASHTO 2013). The Practical Guide to Cost 

Estimating, published by the American Association of State Highway and Transportation Officials 

(AASHTO) (2013), provides basic guidance on the preparation of construction cost estimates 

using bid data from previous transportation construction projects. However, this guidance relies 

on various assumptions whose validity does not seem to have been challenged in the existing 
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literature. One critical assumption, and the one addressed in this thesis, refers to the optimal 

number of years of past data to be used for estimating purposes. 

When defining a look-back period for data retrieval in bid-based estimating, STAs usually 

face two conflicting requirements: 1) the amount of historical bid data must be large enough to 

allow for a valid and reliable statistical analysis; and 2) the historical bid data must be recent 

enough to effectively reflect current market conditions in the construction industry. The conflict 

between these two requirements lays in the fact that larger datasets can be obtained with longer 

look-back periods, but it implies the use of older data that could not effectively reflect current 

pricing trends. In an effort to lessen the conflict between these two requirements, and in an attempt 

to maximize the estimating power of historical bid data, this study also used ALDOT’s data to 

develop a innovative construction cost indexing system (CCIS) used to mitigate the impact of 

inflation as increasing the length of the look-back period. A similar cost indexing system has been 

previously developed, and positively validated, for the Minnesota Department of Transportation 

(Rueda 2016). 

Twelve versions of the CCIS were developed in this study considering three different index 

recalculation frequencies (i.e. quarterly, semi-annual, and annual) and four types of inputs for each 

recalculation frequency (i.e. all bids, median values on a project basis, average values on a project 

basis, and only awarded bids). Likewise, the performance of the twelve CCIS’s presented in this 

thesis was compared against the performance of eight existing Construction Cost Indexes (CCIs) 

currently used by some practitioners in the construction industry. Thus, the CCIS ultimately 

proposed in this thesis is the one that showed the best performance among all 20 different indexing 

alternatives.            
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 The proposed look-back period determination process and the data-driven cost estimating 

methodology are illustrated and validated in this thesis by applying them to estimate unit prices 

for the most relevant pay item used in ALDOT’s asphalt paving contracts: “Superpave Bituminous 

Concrete Wearing Surface Layer, 1/2" Maximum Aggregate Size Mix, ESAL Range C/D – Item ID 

424A360.” An innovative moving-window analysis algorithm was developed and used as the main 

research instrument, as well as an advanced validation strategy. This algorithm integrates various 

research techniques, including advanced data cleaning procedures, non-linear regression 

modeling, time series analysis, and various statistical significance tests.  The optimal look-back 

period and the best CCIS were selected through comparative analysis by running the moving-

window algorithm several times to assess and compare the performance of all possible 

combinations of look-back periods and cost indexing alternatives (110 combinations –including 

combinations with no linear regression models and no indexing system)  

This study found that unit prices for the case study item (item 424A360) are more 

accurately estimated using two years of historical bid data and a quarterly CCIS calculated with 

all bids received by ALDOT for this item. It must be noted that these specific findings are only 

applicable to the case study item in projects to be awarded by ALDOT. However, the process to 

determine the optimal look-back period and to develop and select the most suitable CCIS, as well 

as the overall data-driven cost estimating methodology, are explained in sufficient detail, so that 

they could be adapted by ALDOT, or other STAs, to estimate unit prices for other items used on 

a regular basis in transportation construction contracts. 

 

 



5 

 

1.1 MOTIVATION AND BACKGROUND 

1.1.1. ALABAMA DEPARTMENT OF TRANSPORTATION - FACTS AND FUNDING 

 

Alabama has over 102,000 miles of public roads. This number includes all types of roads; 

freeways, arterials, collectors, local roads, and neighborhood streets (ASCE, 2017). The ASCE 

estimates that about 60% of all travel miles in Alabama occur on the 11,000 miles of federal and 

state highways operated and maintained by ALDOT (ASCE 2017; ASCE 2015). A study 

conducted by ALDOT in 2014 revealed that only 51% of these 11,000 miles can be considered to 

be in good condition, while 40% can be rated as fair, and the remaining 9% as poor or very poor 

(ASCE, 2015). A report published in 2016 by TRIP, a nonprofit national transportation research 

group, shows that the percentage of roads in poor and very poor condition increased to 11% during 

a 2-year period of time (TRIP, 2016). The TRIP’s study also estimates that deficient roads are 

costing Alabama motorists about $1.5 billion a year in extra vehicle operating costs and repairs. 

This number do not include the additional almost $2 billion a year due to motor vehicle crashes 

and congestion costs (ASCE, 2015). 

ALDOT’s current funding situation is not very different from the national funding situation 

described in the previous section. STAs across the country, including ALDOT, are currently 

looking for strategies that allow them to support the expanding highway network with a shrinking 

funding stream (Taylor and Maloney 2013). In view of the lack of sufficient funding, ALDOT has 

being modifying its resource allocation strategies to spend less to make needed improvements, and 

more to maintain existing roads and bridges open and in acceptable conditions (ASCE, 2015). 

“Without an increase in funding, Alabama will no longer be able to make needed improvements 

and is facing significant impacts to highway conditions and safety and risks losing economic 

development opportunities in the future” (ASCE, 2015). Unfortunately, there is little ALDOT can 
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do to increase its funding stream. ALDOT’s budget is built with funding from multiple federal, 

state, local sources (ALDOT, 2015). Federal and state gasoline and diesel taxes are the main source 

of transportation funding. These taxes are collected as a fixed-rate for every gallon of fuel 

purchased. Federal and Alabama state taxes have not been increased since 1993 and 1992, 

respectively (ASCE, 2015). It means that the government has been collecting exactly the same 

amount of cents on every gallon of fuel purchased for more than 15 years. This is probably the 

main cause of the increasing funding gap (Miller, 2015).       

Recognizing their funding constraints and their limited ability to increase their funding 

capacity, STAs like ALDOT have been investing efforts and resources in the optimization of their 

resource management systems to ensure that their shrinking budgets are invested in an effective 

manner and in an attempt to maintain the transportation infrastructure system in the best possible 

condition. Effective resource management systems require the implementation of reliable 

procedures to prioritize infrastructure needs based on thoughtful cost-benefit analyses, and these 

procedures, in turn, rely on the effectiveness of STA’s cost estimating practices. This is how the 

methodologies proposed in this thesis will contribute to the improvement ALDOT’s budget control 

and management capabilities –by facilitating a better and more effective use of ALDOT’s 

historical bid data to produce better construction cost estimates.      

 

1.1.2. FACTORS INFLUENCING UNIT PRICE ESTIMATING  

 

Effective bid-based cost estimating systems must allow for adjustments to the estimating process 

based on the specific conditions of each project (Anderson et al., 2007). The ASCE has identified 

the following five factors influencing the estimation of unit prices in construction contracts: 

 Scale – project size; quantities of work. 

 Time – fluctuations in construction prices over time. 



7 

 

 Geographic Conditions – project location; local labor and materials availability; urban, 

suburban, or rural setting; local traffic volumes. 

 Level of Competition – number of potential bidders qualified to do the work. 

 Uncertainty – lack of ability to accurately account for all project-specific conditions 

affecting cost estimating. 

The study presented in this thesis is just the first of a series of research efforts intended to enhance 

ALDOT’s construction cost estimating system. The data-driven cost estimating methodology 

proposed in this study only takes into consideration the first two factors listed above: scale and 

time. The other three factors will be addressed in future studies. The scale factor was incorporated 

through non-linear regression techniques, as usually done by ALDOT and as illustrated in Figure 

1. Non-linear regression is used with historical bid data to model the relationship between 

quantities of work and unit prices. For example, the non-linear regression equation in Figure 1 was 

created for the hot mix asphalt case study item (424A360) using two years of data, January 2013 

– December 2015. Thus, based on ALDOT’s current estimating practices, this equation would be 

used to estimate unit prices for this item around January 2016.  

 

Figure 1. Non-linear Regression Model for Case Study Item (424A360) 
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Based on a face-to-face meeting held with ALDOT staff involved in cost estimating 

procedures, it was found that they usually retrieve one or two years of data to create non-linear 

regression models for bid-based estimates. However, the ultimate decision on how much data to 

use is a subjective decision based on estimator’s judgement and experience. This is where the 

proposed look-back period determination methodology will play a critical role. It will allow 

ALDOT to objectively define look-back periods for data retrieval, maximizing the effectiveness 

of its bid-based estimates. Moreover, the proposed methodology includes the use of a cost indexing 

system as a means to incorporate the second of the five price influencing factors listed above: time. 

The adjustment of bid-based cost estimates for inflation and fluctuations in the construction market 

over time is something that, to the best knowledge of the author, has not been proposed in the 

existing literature, at least not for an immediate of short-term use of the estimates, as in this study. 

Time adjustments in bid-based estimates have been proposed only when the estimated values needs 

to be forecasted across long time horizons (Gardner et al., 2015). A possible reason to explain why 

no similar approaches have been proposed before for an immediate of short-term use could be that 

data from the past one to two years seem to be still considered as “recent” data, so no time 

adjustments are required. That can be inferred from the definition of bid-based cost estimating 

stated by AASHTO. “Historical bid-based estimating uses data from recently let contracts as the 

basis for determining estimated unit prices for a future project […] the data retrieval period is often 

limited to 1 to 2 years, unless there is not sufficient bid data for an item, in which case dated data 

must be used” (AASTHO, 2013). However, this study has proved that significant construction 

price changes may occur during those periods of time, affecting the accuracy bid-based estimates, 

as demonstrated in Chapter 5 of this thesis.     
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1.2 RESEARCH OBJECTIVES 

 

The research plan followed throughout this study, and described in Chapter 3, was thoughtfully 

crafted to achieve the following objective and sub-objectives:  

 The primary objective of this thesis is to develop a protocol to assist ALDOT with the 

definition of optimal look-back periods for data retrieval to maximize accuracy of historical 

bid-based cost estimates in asphalt paving projects. The protocol is to be applied at the pay 

item level, meaning that unit prices for different pay items in the same contract may be 

estimated with different look-back periods. To accomplish this primary objective, and 

maximize the contribution of this study, the following sub-objectives have been 

established: 

˗ Develop a methodology to facilitate and ensure an appropriate utilization of 

datasets retrieved with the proposed look-back determination protocol. This 

methodology must consider two main factors affecting unit price estimating 

processes project scale and fluctuations in construction prices over time. At this 

stage, these two factors are enough to develop and validate the proposed look-back 

period determination protocol. Future research efforts will be aimed to further 

refine ALDOT’s data-drive cost estimating practices by incorporating additional 

factors that may influence the pricing process. 

˗ Develop a construction cost indexing system (CCIS), or select an existing indexing 

approach (whichever works better), to adjust bid-based estimates according to 

inflationary trends and observed changes in the construction market. This indexing 

system is intended to maximize the length of look-back periods allowing the use of 
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larger amounts of historical data while counteracting the impact of time on 

construction prices. 

1.3 ORGANIZATION OF THESIS 

 

This thesis has been organized into seven chapters, as follows:  

Chapter 1: Introduction and Background, describes the research problem that motivated this study, 

summarizes the state-of-the-practice of bid-based cost estimating, and presents the main research 

objectives.  

Chapter 2: Literature Review, provides a summary of the existing literature on bid-based cost 

estimating, including various research reports, journal articles, and case studies from a number of 

authors. This chapter also discusses previous studies on the development and appropriate use of 

CCIs and describes the three algorithms most commonly used in the construction industry to 

calculate price indexes.  

Chapter 3: Methodology, describes the research plan designed and followed for the 

accomplishment of the research objectives and sub-objectives, including all the research 

instruments, mathematical procedures, and statistical tests involved in the development and 

implementation of the look-back period determination protocol, CCIS, and the overall data-driven 

cost estimating methodology that integrates all the procedures proposed in this thesis. This chapter 

also describes the techniques used to validate the research results and to demonstrate the 

effectiveness of the proposed bid-based cost estimating methodology.  

Chapter 4: Development of Construction Cost Indexing System (CCIS), presents the twelve 

different CCIS’s developed under this study, as well as the eight existing CCIs considered in this 

study as a way to adjust bid-based cost estimates to counteract the impact of inflation and 

fluctuations in the construction market over time.  
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Chapter 5: Moving-window Data Optimization Algorithm: Analysis of Results, summarizes the  

results obtained from moving-window optimization algorithm and presents the statistical analysis 

for the selection of the optimal look-back period and the most suitable CCIS for the case study 

item.  

Chapter 6: Conclusions and Future Research, deals with major results and findings of this 

extensive study and presents the main contributions to the body of knowledge made in this thesis. 

Lastly, this section presents some recommendations for future research as a follow-up to the results 

presented in this study. 

  



12 

 

CHAPTER TWO: LITERATURE REVIEW 
 

2.1 INTRODUCTION  

Chapter 2 summarizes the information gathered during the comprehensive literature review 

conducted for the development of this thesis. The chapter starts with an overview of the cost 

estimating challenges faced by STAs and the cost estimating approaches currently used in the 

transportation construction industry. Specifically, this chapter briefly describes the four main cost-

estimating approaches presented in the AASHTO Practical Guide to Cost Estimating (2013): 

parametric, historical bid-based, cost-based, and risk-based cost estimating. The chapter then 

focused on historical bid-based cost estimating, providing a more detailed discussion on this 

estimating approach, which is the main concern of this thesis. Finally, this chapter presents a brief 

discussion about the use and limitations of traditional cost indexing systems when used to 

counteract the impact of time on construction cost estimates.      

2.2 COST ESTIMATING IN THE TRANSPORTATION CONSTRUCTION INDUSTRY 

– OVERVIEW 

By definition, a project is “a temporary endeavor undertaken to create a unique product, service, 

or result” (PMI, 2013), and transportation construction projects are not the exception. Each 

transportation project is characterized by a unique combination of several factors, including project 

objectives, deliverables, location, environmental requirements, technical complexity, etc. This 

uniqueness, and the fact that it is virtually impossible to accurately quantify the impact of all these 
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factors on a project, makes construction cost estimating a particularly challenging process. The 

following four possible scenarios summarize the existing literature on the potential negative 

consequences of inaccurate cost estimating (AASHTO, 2013; Sanders et al., 1992).  

 Overrun Budgets: When more funds than those originally estimated are required to 

successfully complete a given project, a STA me be forced to relocate its annual budget, 

cancelling other approved projects scheduled in its construction program.  

 Underrun Budgets: Even though some may argue that finishing projects under budget is a 

sign of effective management and budget control, it may be actually a sing of poor cost 

estimating. Overestimating construction costs reduces the ability of STAs to maximize the 

value of their limited budgets since more funds than required are allocated to execute the 

approved projects, preventing STAs from developing more projects with the same 

available funding. 

 Unreasonably High Estimates: When construction cost estimates are unreasonably high, 

due to calculation errors or poor estimating, cost-benefit ratios are inflated, leading to the 

rejection of projects that should be accepted.    

 Unreasonably Low Estimates: When construction cost estimates are unreasonably low, due 

to calculation errors or poor estimating, cost-benefit ratios are understated, leading to the 

acceptance of projects that should be rejected.          

Cost overruns seem to be most common scenario in the transportation industry (Schexnayder, et 

al., 2003), and are usually attributed to estimating and design errors (AKinci & Fischer 1998, 

Molenaar et al., 2007). For example, a study conducted by Flyvbjerg et al. (2002) on 258 

transportation infrastructure projects led to the following observations:  

 The cost of about 90% transportation infrastructure projects is underestimated;  



14 

 

 Actual costs in highway construction projects are about 20% higher than estimated costs, 

and with a standard deviation of 30%; and 

 Flyvbjerg et al.’s study was conducted at the international level, finding that cost 

underestimation seems to be a global phenomenon. 

To avoid or mitigate the impact of cost overruns, or any of the other unfortunate estimating 

scenarios listed above, STAs are required to implement construction cost estimating systems that 

allow for the recalculation of expected costs at the different project development phases, from 

early planning to final design (Anderson et al., 2007; AASHTO 2013; ). It allows STAs to monitor 

and control estimates throughout project development, facilitating timely decision to ensure that 

projects stay within the approved budgets. As a project moves forward across development phases, 

more project information and details become available for cost estimating, allowing for a greater 

estimating accuracy (Jui-Sheng Chou, 2009).  

Different STAs may have adopted a different configuration of the project development 

process in terms of phases and activities performed under each phase. However, the AASHTO 

guidebook has identified and defined four generic project development phases, which are 

presented in Table 1. Likewise, Table 2 shows the level of project maturity, estimating 

methodology, and level of estimating accuracy for each phase. 
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Table 1. Project Development Phases and Typical Activities (AASHTO 2013) 

Project 

Development 

Phase 

Typical Activities 

Planning 

Purpose and need; improvement or requirement studies; environmental 

considerations; right-of-way considerations; schematic development; project 

benefit/cost feasibility; public involvement/participation; interagency 

conditions. 

Scoping 

Environmental analysis; alternative analysis; preferred alternative selection; 

public hearings; right-of-way impact; environmental clearance; design criteria 

and parameters; funding authorization (programming). 

Design 
Right-of-way development and acquisition; preliminary plans for geometric 

alignments; preliminary bridge layouts; surveys/utility locations/drainage. 

Final Design 

Plans, specifications, and estimate (PS&E) development—final right-of-way 

acquisition; final pavement and bridge design; traffic control plans; utility 

drawings; hydraulics studies/final drainage design; final cost estimates. 

 

Table 2. Cost Estimating Classification (Adapted from AASHTO 2013) 

Project 

Development 

Phase 

Project Maturity 

(% project definition 

completed) 

Estimating 

Methodology 

Estimating 

Accuracy 

Planning 

0% to 2% Parametric -50% to +200% 

1% to 15% Parametric or 

Historical Bid-Based 
-40% to +100% 

Scoping 10% to 30% 
Historical Bid-Based 

or Cost-Based 

-30% to +50% 

Design 30% to 90% -10% to +25% 

Final Design 90% to 100% -5% to +10% 

 

Table 2 shows three different estimating methodologies used in the transportation construction 

industry: parametric; historical bid-based; and cost-based. There is one more estimating 

methodology mentioned in the ASSHTO guidebook and not shown in Table 2, which is actually 

an optional version for any of the other three methodologies: risk-based estimating. The following 

is a brief definition for each of these four estimating methodologies. 

 Parametric Estimating: “Parametric estimating techniques are primarily used to support 

development of planning or early scoping phase estimates when minimal project definition 

is available. Statistical relationships or non-statistical ratios, or both, between historical 
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data and other project parameters are used to calculate the cost of various items of work 

(i.e., center lane miles or square foot of bridge deck area)” (AASHTO 2013). 

 Historical Bid-Based Estimating: “Historical bid-based estimating uses data from recently 

let contracts as the basis for determining estimated unit prices for a future project” 

(AASHTO, 2013). It is recognized as the most common estimating methodology used by 

STAs (Anderson et al. 2009). 

 Cost-Based Estimating: “Cost-based estimating considers seven basic elements: time, 

equipment, labor, subcontractor, material, overhead, and profit. Generally, a work 

statement and set of drawings or specifications are used to ‘take off’ material quantities 

required for each discrete task necessary to accomplish the project bid items. From these 

quantities, direct labor, materials, and equipment costs are calculated based on assumed 

production rates. Contractor overhead and profit are then added to this direct cost. The total 

cost divided by the quantity gives the estimated unit price for the work item” (AASHTO 

2013). 

 Risk-Based Estimating: This estimating methodology combines any of the other estimating 

methodologies with risk analysis techniques in an attempt to quantify uncertainty in 

construction cost estimates. “This approach is used to establish the range of total project 

cost and to define how contingency should be allocated among the critical project 

elements” (AASHTO 2013). 

Table 2 also shows that bid-based cost estimating can be applied at all four project development 

phases with different levels of accuracy. The bid-based cost estimating methodology proposed in 

this thesis is intended to be applied at the final design phase, shortly before advertising the project 

and after identifying all pay items and calculating their respective quantities of work. However, it 
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could be applied to a single pay item, at any development phase, as soon as having an estimate for 

its quantity, and as long as having sufficient and reliable historical bid data on that specific item.     

2.3 HISTORICAL BID-BASED COST ESTIMATING  

“There is a growing data torrent such that managers and potential users are ‘drowning in data while 

thirsting for knowledge’” (Woldesenbet, 2014). With this sentence, Woldesenbet is referring to 

the fact that public agencies have been spending a considerable amount of resources to collect, 

clean, and store large amounts of different types of data, but they lack the tools and skills to process 

this data into meaningful knowledge that could be exploited to improve various types of 

procedures undertaken by these agencies. The unused potential of the existing STAs’s data could 

help to optimize procedures in virtually all management areas, including construction cost 

estimating. The use of historical bid data to estimate costs for current and future projects is not 

new practice in the transportation construction industry. It has been used for decades and has 

become the most commonly used estimating approach among STAs (Anderson, 2007). However, 

it does not mean this is a mature approach that has been successfully refined throughout the years. 

Unfortunately, there is not much guidance for STAs on how to develop, implement, and update 

bid-based cost estimating systems, which frequently leads to an inefficient use of public resources 

due to a “trial and error” approach. Likewise, most STAs have not taken full advantage of the 

advanced data processing technologies and procedures available today (Woldesenbet, 2014).  

Previous studies have proposed a number of quantitative methods to estimate construction 

costs using historical data. These methods have been classified into two major groups: Statistical 

and causal methods. Statistical methods mainly rely on time series analysis and curve fitting to 

estimate unit prices based on recent trends (Touran and Lopez 2006; Hanna and Blair 1993). On 

the other hand, causal methods use mathematical techniques to model the relationship between 
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one or multiple independent variables (also called explanatory or causal variables) and the 

dependent variable (Hanna and Blair 1993; Makridakis et al. 1998), which under the context of 

this study, would be the unit price of the item under consideration. Based on this classification of 

data-driven cost estimating methodologies, it can be said that the methodology proposed in this 

thesis corresponds to a statistical bid-based estimating approach. Although without providing 

much detail, the AASHTO guidebook shows some examples of statistical bid-based estimating 

approaches currently under use by STAs. Figure 2 was taken from the AASHTO guidebook and 

shows an example of a spreadsheet used by a STA to estimate unit prices using curve-fitting 

techniques, more specifically, to develop a non-linear regression model, similar to those used in 

this thesis.  

 

Figure 2. Historical bid analysis using non-linear regression modeling (AASHTO, 2013) 
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The literature review reveled that causal methods, such as multiple regression, are more 

popular and have been more frequently used by previous authors than statistical methods statistical 

bid-based estimating methods (Bowen & Edwards, 1985; Khosrowshahi & Kaka, 1996). It could 

be due to the fact that, in comparison with causal approaches, statistical methods required a 

substantial amount of data, which is not usually available to researchers. A study about previous 

research work on data-driven cost estimating modeling conducted by Gardner et al. (2015) found 

that more than 50% of the construction bid-based cost estimating models are developed and 

validated with data from less than 100 previous projects. The largest sample of projects found by 

Gardner et al. was 530 projects –a small dataset considering the vast databases currently managed 

by construction owners and contractors. It is also considerably less than the number of projects 

used in this thesis. 

The literature contains several examples of bid-based estimating models. Most of them 

using multiple regression techniques. In fact, one of the first causal cost estimating models for 

highway construction projects was developed for ALDOT. In 1987, Bell and Bozai used multiple 

regression to develop bid-based cost estimating models for ALDOT (at that time known as the 

Alabama Highway Department). These models were built and tested with 174 projects and were 

intended to forecast construction costs over long time horizons. The independent variables for this 

model included the quantities per mile for various pay items. Bell and Bozai’s multiple regression 

equations calculated project costs per mile with an estimating accuracy ranging from ±17% to 

±35%. In a subsequent study, also in Alabama, Sander et al. (1992) developed a multiple regression 

cost-estimating model for bridge widening projects in urban highways. With and average accuracy 

of 6%, Sander et al.’s model could be considered fairly accurate. However, this results are 
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questionable due to the fact the model was developed and validated only with data from 11 

previous projects.  

Based on the review of extensive literature on this topic, it can be concluded that historical 

bid-based cost estimating is a highly effective approach, as long as it is appropriately performed 

with sufficient and reliable data.  

2.4 CONSTRUCTION COST INDEXING  

As defined by Fisher (1922), who is a pioneer in the development of index numbers, “[a]n index 

number of prices […] shows the average percentage change of prices from point of time to another” 

(Fisher 1922). Thus, for the purposes of this thesis, a CCI is defined as an instrument to measure 

the average fluctuations of construction price over time. Indexes were initially used to track 

fluctuations in the stock market, wholesale/retail prices, and wages. Their use in the construction 

industry started by the early 20s with the Aberthaw Index, which was intended to measure changes 

in construction costs on standard seven-story reinforced concrete buildings (Hubbard 1921; Gill 

1933). Since then, the use of CCIs has been increasing, and today it is possible to find several cost 

indexes published and maintain by different public and private organizations in the construction 

industry. There are also other types of indexes aimed to measure changes in factors other than 

money, such as safety (Du 2013), quality (Lee 2013), sustainability indexes (Olson 2013). 

However, the main use of CCIs is still focused on the adjustment of unit prices and the estimation 

of construction costs based on observed trends in the construction market (Rueda and Gransberg 

2015).   

The literature review revealed several different criteria used to classify CCIs. They can be 

classified based on their mathematical approach (e.g. arithmetic, geometric, aggregative), index 

composition and configuration (e.g. simple or unweighted, weighted, composite), frequency of 
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recalculation (e.g. monthly, quarterly, annual), and scope/location(s) (e.g. national, local) (Fisher 

1922; Allen 1975; Rueda 2013). CCIs are also classified as input or output indexes. “Input indexes 

measure the price change in one or more construction components or materials, while output 

indexes indicate observed changes in construction prices, including general costs, overhead, profit, 

risk, and other possible external factors” (Rueda and Gransberg 2015). Moreover, Rueda and 

Gransberg (2015) propose a three-tier CCI classification system based on their usage. This 

classification system is illustrated in Figure 3. 

 
Figure 3. Construction Cost Index Classification by Usage (Rueda and Gransberg 2015) 

Tier 1 corresponds to indexes designed to track price changes for specific commodities 

(e.g. fuel, asphalt, cement, steel, etc.). This tier also includes indexes at the price index level as 

those developed in this study. Indexes intended to track construction prices as such level of detail, 

as those in Tier 1, are mainly intended to adjust prices for their respective commodities/pay items 

over time (Skolnik, 2011). On the other hand, indexes in Tiers 2 have been classified at a broader 

scale into building (vertical construction) and highway (horizontal construction) CCIs. These 

indexes are commonly used at a broader scale to estimate and forecast costs at the project or 

program level within their respective construction sectors. Finally, general CCIs at Tier 3 are 
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calculated at the broadest level in an attempt to quantify overall changes in the construction 

industry, including all construction sectors. 

The literature review for this thesis has found several STAs developing and using Tier 1 

and 2 indexes to better understand changes in highway construction costs over time, estimate future 

highway funding needs, and estimate construction costs at the project level (Erickson, 2011; 

White, 2011; Guerrero, 2003). A Tier 2 index developed by a STA is usually intended to be 

applicable to all highway construction projects undertaken by the agency, meaning that there is a 

single index number to be applied to all types of work (e.g. resurfacing, bridge construction, road 

widening) (Rueda and Gransberg, 2015). To calculate these CCIs, STAs collect historical unit 

costs from a few relevant construction activities or commodities and mathematically combine them 

to obtain a single index number (Rueda and Gransberg 2015). These are called composite weighted 

indexes (Rueda and Gransberg, 2015). The main challenges associated with the development of 

composite weighted indexes are the definition of weights and the integration of different types of 

index components. For example, a single index could be calculated using price fluctuations in 

asphalt (dollars/ton) and changes in labor rates (dollars/hour). How could these two components 

be combined into a single index? Which of these elements would be more relevant for cost 

indexing purposes? Fortunately, the econometrics literature offers various mathematical equations 

to overcome these challenges. The three most common price index equations used in the 

construction index are Laspeyres, Paasche and Fisher (FHWA 2017). In these equations, the 

weights of index components are given by their respective quantities of work. Thus, greater 

weights would be assigned to commodities or construction activities widely used by an STA. 

Equations 1, 2 and 3 represent these three indexing formulas.  
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These three equations are widely used by STAs for the calculation of their own CCIs. Table 

3 shows some examples of the different elements considered by 16 STAs in the calculation of 

composite CCIs. 

 

 

 

 

 

 

 

 



24 

 

Table 3. Examples of CCI Components used by STAs 

Agency Components used in the Calculation of CCI  

California Roadway excavation; aggregate base; asphalt concrete pavement; Portland 

cement concrete pavement; Portland cement concrete structural; bar reinforcing 

steel; and structural steel. 

Colorado Earthwork; hot mix asphalt; concrete pavement; structural concrete; reinforcing 

steel. 

Florida Surfacing; earthwork; Portland cement concrete; bituminous concrete structural; 

reinforcing steel; structural steel; structural concrete. 

Iowa Roadway excavation; hot mix asphalt pavement; Portland concrete cement 

pavement; reinforcing steel; structural steel; structural concrete. 

Minnesota Excavation; reinforcing steel; structural steel; structural concrete; concrete 

pavement; plant-mix bituminous. 

Mississippi Unclassified excavation; warm and hot mix asphalt pavement; concrete 

pavement; reinforcing steel; structural steel; class ‘aa’ bridge concrete. 

Montana Excavation; aggregate base; surfacing; drainage; concrete; reinforcing steel; 

bridge; traffic; misc. item. 

Nebraska Roadway excavation; concrete pavement; concrete for box culverts; 24” & 36” 

pipe, culvert; corrugated metal and plastic (cmp), reinforced; concrete for bridges; 

structural steel; piling, concrete and steel; asphalt concrete; asphalt cement; 

emulsified asphalt for track coat. 

New 

Hampshire 

Roadway excavation; crushed materials; hot mix asphalt, structural concrete, -

rebar; structural steel. 

Oregon Excavation; crushed rock; Portland concrete cement; mixed asphalt; reinforcing 

steel; structural steel; structural concrete. 

Ohio Asphalt; aggregate base; barrier; bridge painting; curbing; drainage; earth work; 

erosion control; guardrail; landscaping; lightning; maintenance of traffic; 

pavement marking; pavement repair; Portland cement concrete pavement; 

removal; signalization; structures; traffic control; unclassified construction items. 

South 

Dakota 

Unclassified excavation; liquid asphalt; asphalt concrete; gravel cushion; sub-

base and base; Portland cement concrete pavement; class a concrete (structures); 

reinforcing steel; structural steel. 

Texas Earthwork; excavation; embankment subgrade and base course -lime treated 

subgrade or base; cement treated subgrade or base; asphalt treated base or 

foundation course; flexible base surfacing; surface treatment; bituminous 

mixtures; concrete pavement structures; structural concrete; metal for structures; 

prestructured concrete beams; foundations; drainage -riprap -retaining walls. 

Utah Roadway excavation; bituminous surface mix; bitumen; Portland cement concrete 

pavement; reinforcing steel; structural steel; structural concrete. 

Washington  Roadway excavation; crushed surfacing; hot mix asphalt; Portland cement 

concrete pavement; structural concrete; steel reinforcing bar; structural steel. 

West 

Virginia 

Unclassified excavation; class 1 aggregate base course; Marshall hot-mix base 

course, stone; Marshall hot-mix wear course, stone, -class b concrete; reinforcing 

steel bars; -type 1 guardrail. 
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Rueda and Gransberg (2015) introduced two important principles that are repeatedly violated when 

using composite indexes to adjust construction prices at the project level: the matching and the 

proportionality principles. The matching principle refers to the degree of similarity between the 

components used in the calculation of a CCI and the actual activities/elements used in the project 

to be adjusted by the index. Once the matching principle has been fairly met, the proportionality 

principle appears. It refers to the degree of consistency between the weights of index components 

and the actual contribution of these components to the total cost of the project to be adjusted. Thus, 

“a perfect application of a CCI (unlikely situation) implies that each pay item in a given CCI-

adjusted contract is represented by one commodity in the CCI and the weights used in the 

calculation of the index numbers are exactly proportional to the contribution of their respective 

pay items to the total project cost” (Rueda and Gransberg 2015). It should be noted that a violation 

of the matching principle implies a violation of the proportionality principle. Likewise, Rueda and 

Gransberg (2015) discuss how two assumptions usually made by STAs when using composite 

CCIs for estimating purposes suppose a strong violation of these two principles. These 

assumptions are: 

1. Changes in the construction market from period to period have equal or similar impact on 

all kinds of construction projects. 

2. Weighted price changes between construction periods in a few significant materials or 

construction components represent an overall construction cost change during the same 

period of time.     

STAs usually assume that a single CCI represents average overall fluctuations in the highway 

construction industry in their respective states, so that, this CCI can be applied in cost estimating 

procedures for all types of projects (assumption 1). Then, these CCI are calculated with a few 
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commodities or items, assuming that they are significant enough to represent the entire highway 

construction market (assumption 2). With these two assumption, STAs are clearly violating the 

matching and proportionality principles since not all projects are compose by the same elements 

or pay items, and even if some projects share the same items, they would not be included in the 

projects in the same proportions (Rueda and Gransberg 2015).  

Regardless of the known limitations of traditional cost indexing practices in construction 

cost estimating, and due to the fact that it is impossible to find an indexing approach that perfectly 

comply with the matching and proportionality principles, this thesis has considered and assessed 

the performance of eight existing composite CCIs as an alternative to adjust bid-based cost 

estimates. However, in this study, the author has also developed twelve different versions of a 

construction cost index system (CCIS) following a methodology previously developed by 

Gransberg and Rueda (2014) for the Minnesota Department of Transportation (MnDOT). This 

methodology is intended to create a Multilevel Construction Cost Index (MCCI) strategically 

designed to overcome the limitation of traditional indexing practices and to better meet the 

matching and proportionality principles. The MCCI consists of a group of indexes organized in a 

multi-level arrangement. Thus, different cost items in a construction contract could be adjusted 

with different indexes from the MCCI. Therefore, different projects may require different sets of 

indexes, offering great flexibility to customize price adjustment procedures to the unique 

characteristics of each project. More information on the development and implementation of this 

innovative CCIS is presented in Chapter 3. Additionally, a research report authored by Gransberg 

and Rueda (2014) and submitted to MnDOT presents a detailed description of the methodology 

followed to produce a MCCI. It should be noted that, for the purposes of this theses, the term 

Construction Cost Indexing System (CCIS) refers to an arrangement of multiple Tier 1 indexes 
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intended to track price changes at the pay item level. While the term Construction Cost Index 

(CCI) refers to a single Tier 2 composite index aimed to measure fluctuations at higher level 

(building/highway construction sector). 
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CHAPTER THREE: METHODOLOGY 
 

3.1 INTRODUCTION 

This chapter describes the research methodology that led to the development of the look-back 

period determination protocol and data-driven cost estimating approach proposed in this thesis. 

The flow chart in Figure 4 illustrates the research methodology and illustrates the sequence of 

work followed throughout this study. The information in this chapter is presented in logical order 

following the order of activities illustrated in Figure 4, starting with the data collection and 

cleaning processes, and then guiding the reader through the data processing procedures that 

allowed the achievement of the research objectives. Finally, this chapter describes the validation 

strategies used to demonstrate the potential positive impact of this study on ALDOT construction 

cost estimating practices. As illustrated in Figure 4, this study started with a comprehensive 

literature review on current and effective bid-based cost estimating procedures. Findings and 

information gathered during the literature review was already presented in Chapter 2; therefore, 

that step of the research methodology is not covered in this chapter.  



29 

 

 

Figure 4. Illustration of Research Methodology 
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3.2 DATA COLLECTION & CLEANING 

 

 “State highway agencies invest a large amount of resources in collecting, storing 

and managing various types of data ranging from roadway inventory to pavement 

condition data during the life cycle of a highway infrastructure project. Despite this 

huge investment, the current level of data use is limited and is raising concerns 

whether the growing amount of data adds value to users and offers meaningful 

return on data collection efforts.” (Woldesenbet, 2014)   

Taking into consideration the issue highlighted by Woldesenbet in the quote above, this study has 

paid special attention and has invested a considerable amount of research time and efforts to fully 

exploit and appropriately use the large amounts of cost data stored by ALDOT during the last 

decade. This section summarizes the data collection and cleaning procedures implemented in this 

study to successfully develop and validate the look-back period determination protocol and the 

proposed CCIS, as well as to develop the overall data-driven cost estimating methodology that 

integrates the quantitative approaches proposes in this this. Data collection efforts were directed 

to extracting bid tabulations from ALDOT’s databases for all construction projects awarded from 

2006 to 2016 (eleven years of data). 3661 contracts were awarded during that period. Figure 5 is a 

rough representation of the structure of the bid tabulations collected for this study. In addition to 

some project-specific information, such as project description, contract ID, location, letting date, 

etc., the bid tabulations present all the unit prices submitted by each bidder for each pay item listed 

in the Requests for Proposals (RFPs). It should be noted that the list of pay items and quantities 

are provided by ALDOT in the RFP; therefore, all contractors are bidding on the same items and 

quantities. All 3,661 projects have been awarded on a low-bid basis, meaning that the contractor 

that submits the lowest total bid price –after adding all extended prices (Extended Price = Quantity 
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x Unit Price)– is awarded the contract. Bid tabulations sort bidders in an ascending order, from the 

lowest (the winner) to the highest bid. Depending on the project complexity, the number of items 

in a project may vary from 10 to 200. Likewise, the number of bidders competing for a project 

may vary from one bidder to twenty.  

 

Figure 5. ALDOT Structure of the Bid Tabulations 

Historical bid data was extracted directly from ALDOT’s letting website in Portable 

Document Format (PDF). Figure 6 shows a screen capture of the PDF file for a given project. For 

data manipulation and processing purposes, it was necessary to convert all PDF files into Microsoft 

Excel (hereinafter referred to as Excel) format. The format conversion process was carried out 

using an internet-based free software application. The conversion process was not perfect and the 

Excel files had some critical consistency issues, making data processing virtually impossible for 
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such a large database. Even with a perfect format conversion, data processing would have been 

extremely difficult with the data arrangement used in ALDOT’s bid tabulations. Therefore, it was 

necessary the development of a meticulous and complex Excel spreadsheet to bring the poorly 

formatted data into a data processing-friendly format. This spreadsheet used a series of algorithms 

to reformat, in a semi-automatic fashion, all PDF-to-Excel converted data into a tidy database.  

Data tidying is a critical part of the data cleaning process (Wickham, 2014). It refers to the 

arrangement of a dataset into a tabular format, so that each observation is assigned a single row 

and each column represents a different attribute of the observations. Thus, a user of a tidy dataset 

should be able to find all the characteristics of an observation on a single row. Part of the tidy 

dataset for this project is shown in Figure 7. In this dataset, each row corresponds to a pay item 

included in a construction contract and the columns include 24 data attributes on each pay item. 

Data attributes include letting date, contract ID, county, project title, contract time, number of 

bidders, total bid for the contract, pay item ID, item description, unit of measurement, quantity, 

unit prices submitted by all bidders on that specific item, etc. The final collected data includes bid 

data of 3,661 projects with 5,246 different pay items and 169,947 observations (rows). Some of 

the 24 data attributes are presented in multiple columns, such the bidders name and bids summited 

by each of them for the same item. Thus, the final tidy dataset was arranged into 131 columns.   It 

should be noted that some pay items appear multiple times throughout the datasets as they are used 

in different projects. The twelve CCIS developed in this study track construction price fluctuation 

across all eleven years of data (using all 3,661 projects). However, the look-back determination 

period protocol and the bid-based estimating methodology are developed and validated using only 

2122 projects, which are all the projects awarded by ALDOT between 2011 a 2016 (six years of 

data). This decision was made because the CCIS revealed what seemed to be a trend change in 
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historical bid prices for asphalt paving project in 2010. Therefore, the results of the application of 

the proposed methodologies before 2010 might not effectively represent the expected results from 

their potential application in today’s construction industry.          

 

 

Figure 6. Screen Capture of Project Data in PDF Format 

 

 

Figure 7. Tidy Project Data in Excel 
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3.3 OUTLIER DETECTION AND REMOVAL 

 

“An outlying observation is numerically distant from other members of the sample in which it 

occurs. Although it may occur by chance in any distribution, it often stems from unmodeled factors 

or anomalous causes” (Agamennoni et al. 2011). Two main outlier detection methods were used 

in this study as part of the data cleaning process: 1) the modified Z-score method and 2) robust 

regression and outlier removal (ROUT). Both methods are used under the assumption that values 

are normally distributed around the mean value. These methods are described in the following two 

sections 

Modified Z-Score Method         

Even though the outlying condition of unit prices in historical bid datasets may be due to data entry 

errors or unreasonable unit prices mistakenly submitted by contractors, most outliers in these 

datasets are probably the result of unbalanced bids (Rueda 2016). According to Manzo (1997), a 

price proposal is considered to be unbalanced if each of its bid items “fails to carry its proportionate 

share of the overhead and profit in addition to the necessary costs for the item. The results are 

understated prices for some items and enhanced or overstated prices for others.” The presence of 

outliers in datasets used to build data-driven models can potentially affect the performance of the 

models. It is a common practice to implement outlier detection mechanisms at an early stage during 

the development of this type of models in an attempt to discard unbalanced bids, as well as other 

unintentional outliers (FHWA 1988). 

The modified Z-score method was mainly used in an attempt to remove the outliers 

resulting from unbalanced bids. If for example, five bidders submit proposals on a given contract, 

this method can be applied to determine whether or not a given unit price submitted by one of the 

bidders for a specific pay item is unbalanced, by comparing it against the other four bids for the 
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same item. As shown in this example, the sample size to be assessed for outlier detection is given 

by the number of bidders on each contract, which is usually a small number. The reason for using 

the modified Z-score method in this study is because it is more suitable for small samples since it 

uses the median of the values under consideration (𝑥̃) and the absolute deviation of the median 

(MAD) to identify outliers, while other more commonly used methods are based on mean and 

standard deviation values (Iglewicz and Hoaglin, 1993). Mean and standard deviation values in 

small datasets are very sensitive to extreme values, so that outliers could be masked and pass 

undetected (Seo, 2006). Equation 4 was used for the calculation of the modified Z-score (Seo, 

2006). As recommended by Iglewicz and Hoaglin (1993), all unit prices whose absolute modified 

Z-score was greater than 3.5 (|𝑀𝑖| >3.5) were marked as outliers and removed from the study. 

 

𝑀𝑖 = (
0.6745(𝑥𝑖−𝑥̌)

𝑀𝐴𝐷
)  Eq. 4   

 

Where: 𝑥𝑖 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 

 𝑀𝐴𝐷 =  𝑀𝑒𝑎𝑛𝑠 𝐴𝑏𝑠𝑜𝑢𝑙𝑡𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 
 x᷉𝑖 = 𝑀𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

𝑀𝑖 = 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑍 𝑆𝑐𝑜𝑟𝑒  

 

Robust Regression and Outlier Removal (ROUT) Method         

This method was proposed by Motulsky and Brown in 2006. It uses robust regression techniques 

to optimize non-linear regression models by discarding extreme values that significantly differ 

from the other values in the sample, allowing for regression models that better fit the data. In this 

study, ROUT was mainly intended to remove outliers not detected by the modified Z-score 

method. These outliers are removed during the development of the non-linear regression models 

used to correlate quantities and unit prices. Outliers not detected by the first method might be the 
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result of unusual project conditions/requirements, forcing all bidders to submit atypical unit prices. 

If all unit prices for a given pay item in a contract are equally deviated from the typical price range, 

no outliers would be detected by the modified Z-score method since it is applied at the project 

level. However, the non-linear regression models in this thesis are developed with data from 

several projects, allowing for the identification and removal of those unusual projects that may 

affect the effectiveness of the proposed data-driven methodologies. This method was applied to 

this study using a statistical software package called GraphPad Prism 7, which, to the best 

knowledge of the author, and at this writing, is the only software package that offers a ROUT 

function.       

3.4 EXPLORATORY ANALYSIS AND DATA SELECTION 

The exploratory data analysis was conducted to gain a better understanding of the available 

historical bid data and to characterize the variables. It also allowed the author to identify and 

address data formatting and quality issues. By better understanding the data, the author was also 

able to adjust the research plan to ensure that the data requirements of the plan matched the actual 

condition and configuration of the available data. However, the main purpose of the exploratory 

data analysis was the selection of the items to be considered for the CCIS and the case study item 

to be used to illustrate the development and implementation of the look-back period determination 

protocol and the overall bid-based cost estimating methodology. 

 As mentioned above, the CCIS developed and tested in this study consists of multiple cost 

indexes for a number of pay items. The CCIS is used to adjust prices at the pay item level by 

selecting from the pool of indexes the one that best matches each pay item. Thus, the greater the 

number of items included in the CCIS the greater the expected accuracy of the price adjustments. 

However, not all 5,246 pay items used by ALDOT between 2006 and 2016 can be considered for 
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the CCIS since not all of them are frequently included in ALDOT’s construction contracts, making 

it difficult to track their pricing behavior over time. Therefore, at this stage, the study was focused 

on finding the largest possible group of significant repetitive pay items to build the CCIS. The 

following steps followed to select frequently used pay items suitable for the CCIS:   

1. Discard those items whose units are not precisely defined (e.g. each, lump sum), and keep 

those with consistent and specific characteristics that allow a price comparison over time. 

Unit prices for these types of items are usually not comparable across projects and cannot 

be modeled through non-linear regression techniques; therefore, it is not possible to track 

their prices over time with traditional indexing techniques or with the innovative approach 

used in this thesis. For example, while two projects may include in their RFPs the same 

mobilization pay item, which is usually paid once and on a lump sum basis (quantity = 1), 

the unit prices for this item could be very different between the projects due to the fact that 

each lump sum value might comprise different mobilization requirements. 

2. Identify those used by ALDOT at least once in every quarter since 2006 to 2016. For this 

study, the calendar year is divided into four quarters as follows: Quarter 1 (Q1) from 

January 1 to March 31; Quarter 2 (Q2) from April 1 to June 30; Quarter 3 (Q3) from July 

1 to September 30; and Quarter 4 (Q4) from October 1 to December 31. Since a quarterly 

index was the shortest recalculation period considered for the CCIS, it is necessary to 

include only pay items that are used at least once per quarter. 

3. Discard those items that show no apparent correlation between their unit prices and their 

respective quantities of work. In other words, those items whose quantity-unit price 

relationship cannot be reasonably modeled using non-linear regression techniques (models 

similar to those shown in Figure 1 and 2).  
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 Fifty three (53) pay items remained after following the three steps listed above. Although this 

number of items (about 1% of all 5,246 items) does not seem to be sufficient to represent the 

transportation construction industry in Alabama, these 53 pay items actually consume, on average 

(annual average from 2011-2016), over 20.41% of ALDOT’s annual construction budget between 

2011 and 2016. Several of the other 5,193 pay items are used just a few times, many of them only 

in one or two projects, in the 11-year period comprised in the available data. The list of all 53 items 

with their item identification numbers, descriptions, and units of measurement is presented in 

Appendix 1.      

 On the other hand, the case study item, which is also one of the 53 items used in the CCIS, 

corresponds to the most relevant pay item used in ALDOT’s paving projects: “Superpave 

Bituminous Concrete Wearing Surface Layer, 1/2" Maximum Aggregate Size Mix, ESAL Range 

C/D – Item ID 424A360.” In fact, this item has the second largest participation in ALDOT’s annual 

construction budget, with only mobilization consuming a larger portion of the budget. It should be 

noted that mobilization is paid to contractors in almost all projects, not only asphalt paving 

projects, which explains why more dollars are spent in mobilization than on the case study item.  

3.5 NON-LINEAR REGRESSION MODELS 

 

To understand the non-linear relationship between quantities of work and unit prices, it is 

important to first understand the concept of economies of scale. According to this concept, lower 

unit prices should be expected from larger quantities of work (Zuoyi Zhang 2007). It happens 

because the fixed costs can be distributed among a greater number of units of work (Camacho and 

Garcia, 2011). Figure 1, in Chapter 1, illustrates the impact of economies of scale on the case study 

item. Unit prices decrease at a lower ratio as the number of units of work increase. That is why the 

curve is almost horizontal for large quantities of work (see Figure 1 and 2).  
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Research conducted by Rueda (2013; 2016) and the AASHTO guidebook (2013) suggest 

that power regression models are more suitable to explain quantity-unit price relationships for pay 

items in transportation construction contracts. These are non-linear regression models defined by 

Equation 5 (A and B are constant values). These model were created using GraphPad Prism 7, a 

statistical software that facilitates the use of the ROUT method for the identification and removal 

of outliers (see Section 3.3). The screen capture in Figure 8 shows an example of a power 

regression model developed with this software for the case study item using bid data from projects 

awarded between 2006 and 2016.  

 

𝑈𝑛𝑖𝑡 𝑃𝑟𝑖𝑐𝑒 = 𝐴 ∗ (𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦)𝐵       Eq. 5 

Where: 𝐴 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 B = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
   
 

 

 
Figure 8. Power Regression Model for case study item in GraphPad Prism 7 

 

Non-linear regression techniques are used for two different purposes in this thesis. Later in 

the study, they are used to produce initial unit price estimates based on the quantities of work to 

be included in ALDOT’s RFPs, but these regression models initially are used to make sure that 
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price fluctuations are measured in the CCIS using comparable unit prices for similar quantities of 

work. This was the reason to include the third step in the selection of items for the CCIS (see 

Section 1.2). The economies of scale concept suggests that a comparison between the unit price 

for 50 tons of asphalt and the unit price for 50,000 tons of asphalt is not an “apples to apples 

comparison. Thus, the next step in this study was to define quantity ranges for each of the 53 items 

used in the CCIS, so that price changes over time are measure between unit prices from the same 

quantity ranges. 

 

3.6 QUANTITY RANGES 

 

Following the same approach used by Gransberg and Rueda (2014) for the development of a 

similar CCIS for MnDOT, the quantity ranges for a given item were defined using its non-linear 

regression model and the largest average price variation (LAPV) between the lowest and the largest 

bids received by ALDOT for that specific. The LAPV is calculated as shown in Equation 6 and is 

defined as “the typical maximum difference [in dollars] between two bids for the same pay item 

and quantity” (Gransberg and Rueda, 2014).  

               𝐿𝐴𝑃𝑉 =
∑

𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑏𝑖𝑑𝑖−𝐿𝑜𝑤𝑒𝑠𝑡 𝑏𝑖𝑑𝑖
𝐿𝑜𝑤𝑒𝑠𝑡 𝑏𝑖𝑑𝑖

𝑛
𝑖=1

𝑛
× 100%            Eq. 6 

Where: 𝐿𝐴𝑃𝑉 =  𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑖𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 

 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑏𝑖𝑑𝑖 =  𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑢𝑛𝑖𝑡 𝑝𝑟𝑖𝑐𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑖  
 𝐿𝑜𝑤𝑒𝑠𝑡 𝑏𝑖𝑑𝑖 =  𝐿𝑜𝑤𝑒𝑠𝑡 𝑢𝑛𝑖𝑡 𝑝𝑟𝑖𝑐𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑖 

𝑛 =  𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

Figure 9 and Table 4 illustrate the process to define the quantity ranges for the case study item. 

Using Equation 6 and the available historical bid data, it was found that the LAPV for this item is 

13.87%. Figure 9 shows how to use this LAPV and the values given by the regression model to 

define the quantity ranges for this item. Four quantity ranges have been defined for this item. 

Different pay items may have a different number of quantity ranges. The minimum and maximum 
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numbers of quantity ranges among the 53 CCIS items are 1and 41 respectively. The number ranges 

depends on the LAPV value and the regression equation. The lower and upper values for each of 

the four ranges for the case study item are summarized in Table 4. As done by Gransberg and 

Rueda (2014), quantity ranges were defined to cover at least 90% of the observations.  

 
Figure 9. Case study item – Quantity range determination. 

 

Table 4. Quantity Ranges for Case Study Item (Item 424A360) 

Pay Item 

Average Percentage 

Variation In Unit 

Price 

Quantity 

Range 

Lower Limit of 

Range 

Upper Limit 

of Range 

424A360 

13.87% 

1 188.00 766.38 

424A360 2 766.38 3124.10 

424A360 3 3124.10 12735.28 

424A360 4 12735.28 51914.93 

 



42 

 

3.7 CONSTRUCTION COST INDEXING SYSTEM 

As mentioned in Chapter 2, the proposed CCIS is based on multi-level cost indexing system 

previously developed by Gransberg and Rueda (2014) for MnDOT. The CCIS developed in this 

thesis, and illustrated in Figure 10, consists of 88 cost indexes arranged on four different levels. 

The lowest level is the Pay Item Level and it contains cost indexes for the 53 CCIS items. This is 

the level with the most specific indexes since each of 53 indexes at this level is only intended to 

be used on its respective pay item.      

 
Figure 10. Structure of Construction Cost Indexing System 

Following a bottom-up calculation approach, indexes at the Pay Item Level are then used 

to calculate the 29 indexes at the Sub-Division Level, which are less specific. Similarly, the indexes 

at the Sub-Division Level are used to calculate five broader indexes at the Division Level, which 

are then used to calculate a single general index to be used at the Agency Level.  

Chapter 4 presents a comparative analysis conducted to select the most suitable cost 

indexing approach among 20 alternatives in order to identify the alternative that maximizes 

estimating accuracy. The 20 alternatives include twelve different versions of the CCIS (developed 

in this study) and eight existing construction cost indexes (CCIs) currently used in the construction 

industry. It means that the author has developed twelve different versions of the CCIS illustrated 

in Figure 10. All of them with the 88 cost indexes arranged in the same way, and with the same 53 
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items at the pay item level. The twelve versions of the CCIS were developed by taking into 

consideration three different index recalculation periods (i.e. quarterly, semi-annual, and annual) 

and four types of inputs for each recalculation period (i.e. average values on a project basis, median 

values on a project basis, only awarded bids, and all bids). Table 5 shows the recalculation dates 

for each of the recalculation periods. The twelve CCIS’s are listed below: 

 Quarterly recalculation with average values (Quarterly Average) 

 Quarterly recalculation with median values (Quarterly Median) 

 Quarterly recalculation only with awarded bids (Quarterly Awarded Bids) 

 Quarterly recalculation with all bids (Quarterly All Bids) 

 Semi-Annual recalculation with average values (Semi-Annual Average) 

 Semi-Annual recalculation with median values (Semi-Annual Median) 

 Semi-Annual recalculation only with awarded bids (Semi-Annual Awarded Bids) 

 Semi-Annual recalculation with all bids (Semi-Annual All Bids) 

 Annual recalculation with average values (Annual Average) 

 Annual recalculation with median values (Annual Median) 

 Annual recalculation only with awarded bids (Annual Awarded Bids) 

 Annual recalculation with all bids (Annual All Bids) 

         Table 5. Index Recalculation Dates 

Recalculation Period Recalculation Date 

Quarterly 

Quarter 1 (Q1) 31st March 

Quarter 2 (Q2) 30th June 

Quarter 3 (Q3) 30th September 

Quarter 4 (Q4) 31st December 

Semi 

Annual 

Semester 1 (S1) 30th June 

Semester 2 (S2) 31st December 

Annual Year (Y) 31st December 
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The calculations required to develop the CCIS’s can be classified into two major steps. The 

first step consists of the calculation of the all indexes at the Pay Item Level. Table 6 presents the 

quarterly, semi-annual, and annual cost indexes for case study item for 2006 and 2007. The index 

values in this table correspond to the CCIS calculated with all bids received by ALDOT for this 

item during these two years. All cost indexes have a start period used as a point of reference to 

measure price changes, and which is usually assigned an index value of 100 (Gransberg and Rueda, 

2014). In this study, the start periods for the quarterly, semi-annual, and annual indexes are Q1-

2006, S1-2006, and Y-2006, respectively (see Table 6). Variations in the index values are intended 

to proportionally represent average price changes between periods. Thus, based on Table 6, the 

annual index indicates that between 2006 and 2007 there was an average increase of -0.24% in the 

price of this item. Similarly, the semi-annual index shows an average price increase of 4.23% 

between first semester of 2006 and the first semester of 2007, and the quarterly index have 

measured and average increase of -2.71% between the fourth quarter of 2006 and the fourth quarter 

of 2007 ([120.87 – 124.24]/124.24). Cost indexes shown in Table 6 were calculated from 2006 to 

2016 for all 53 CCIS items and for all types of inputs.  

Table 6. CCIS for Case Study Item 2006-2007 (All bids) 

Annual 

Index 

2006 2007 

100 99.76 

Semi-Annual 

Index 

S1 S2 S1 S2 

100 111.42 104.23 107.14 

Quarterly 

Index 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

100 104.33 115.78 124.24 120.31 118.47 122.71 120.87 

 

The average price variation between two periods is calculated as a weighted average of the 

variations at each quantity range, as shown below in Equation 7. In this equation, quantity ranges 

are weighted based on the total number of bids used to calculate the variation at each range. The 

larger the number of bids used to calculate the price variability, the more reliable the measure of 
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variability, and the greater the weight. Once the average price variation between two periods has 

been calculated, the new index value for the current period is calculated using Equation 8.    

                  𝐴𝑃𝑉𝑃𝐶 =
∑ ((𝑃𝐵𝑅𝑖+𝐶𝐵𝑅𝑖)×

𝐶𝐴𝑃𝑅𝑖−𝑃𝐴𝑃𝑅𝑖
𝑃𝐴𝑃𝑅𝑖

)𝑛
𝑖=1

∑ (𝑃𝐵𝑅𝑖+𝐶𝐵𝑅𝑖)𝑛
𝑖=1

                         Eq.7 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒 = 𝑃𝑎𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒 × (1 + 𝐴𝑃𝑉𝑃𝐶)             Eq.8 

Where: 𝐴𝑃𝑉𝑃𝐶 =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑖𝑐𝑒 𝑣𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑎𝑠𝑡 𝑎𝑛𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 

 𝑃𝐵𝑅𝑖 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑠𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑢𝑛𝑑𝑒𝑟 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑟𝑎𝑛𝑔𝑒 𝑖 
 𝐶𝐵𝑅𝑖 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑢𝑛𝑑𝑒𝑟 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑟𝑎𝑛𝑔𝑒 𝑖 

𝐶𝐴𝑃𝑅𝑖 =  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑖𝑐𝑒 𝑢𝑛𝑑𝑒𝑟 𝑟𝑎𝑛𝑔𝑒 𝑖 
𝑃𝐴𝑃𝑅𝑖 =  𝑃𝑎𝑠𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑖𝑐𝑒 𝑢𝑛𝑑𝑒𝑟 𝑟𝑎𝑛𝑔𝑒 𝑖 
𝑛 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑟𝑎𝑛𝑔𝑒𝑠 𝑓𝑜𝑟 ℎ𝑡𝑒 𝑖𝑡𝑒𝑚 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑡𝑖𝑜𝑛 

 

 

The second major step in the development of the CCIS refers to bottom-up calculations 

used to define the indexes for the three upper level. To calculate the indexes at the Sub-Division 

Level, the 53 indexes were grouped based on similar characteristics and the indexes within each 

group were aggregated to produce one index per group. It means that 29 groups were form out of 

the original 53 indexes, resulting in the 29 indexes at the Sub-Division Level. In a similar way, 

these 29 indexes were arranged into 5 groups to produce the 5 indexes at the Division Level, which 

were then used to produce the general index at the Agency Level. The characterization of indexes 

was performed using the item identification numbers. Pay item identification numbers are assigned 

based on the nature of the work, materials, and activities associated with each item and according 

to the classification or activities and the construction divisions defined in ALDOT’s Standard 

Specifications for Highway Construction (ALDOT, 2018). Therefore, it can be assumed that 

similar item identification numbers refer to similar pay items. Table 7 shows an example of how 

indexes were grouped al label across the CCIS. The description for the items in this table can be 

found in Appendix 1.        
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Table 7. Grouping of Indexes based on Levels 

Pay Item Level Sub-Division Level Division Level Agency Level 

408A051 
408 

4 

General Cost Index 

(calculated using all 

53 indexes at the Pay 

Item Level) 

408A052 

424A360 

424 

424B650 

424B655 

424B659 

424B681 

 

The five indexes at the Division Level correspond to five major construction division 

defined in ALDOT’s construction specifications (2018). ALDOT’s specifications book is divided 

into the eight divisions listed below: 

  Division 100 – General Provisions 

 Division 200 – Earthwork 

 Division 300 – Bases 

 Division 400 – Surfacing and Pavements 

 Division 500 – Structures 

 Division 600 – Incidentals 

 Division 700 – Traffic Control Devices And Highway Lighting 

 Division 800 – Materials 

Item identification numbers are associated with the number of their respective divisions. 

For example, all items with identification numbers starting with 4 are related to Division 400 – 

Surfacing and Pavements. The divisions not included in the CCIS are Divisions 100, 300 and 800. 

ALDOT construction contract include no pay items associated with Divisions 100 and 800, so that, 

these divisions do not need to be considered in the CCIS. On other hand, this study found not 

suitable items for the CCIS within Division 300. 
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The proposed CCIS is designed to allow for the adjustment of unit prices at the pay item 

level using the cost index that best matches the characteristics of the item under consideration. If 

a given pay item is not included among the indexes at the Pay Item Level, it still can be adjusted 

with one of indexes at the upper levels. For example, if pay item 408B001 - Micro-Milling Existing 

Pavement (Approximately 1.10" Thru 2.00" Thick) is to be adjusted, it cannot be adjusted with an 

index form the Pay Item Level since this is not one of the 53 CCIS items. However, it could be 

adjusted with the index 408 at the Sub-Division Level (see Table 7). Likewise, pay items under 

Division 300 could be adjusted with the general cost index at the Agency Level, which is not 

different to what some STAs are currently doing. The Agency Level index could also be used as a 

macroeconomic indicator of the overall situation of the transportation construction market or to 

support strategic decisions made at upper management levels. 

The combination of similar indexes into higher-level indexes is performed using the 

aggregate price index method shown in Equation 9 (FHWA, 2017). This is just the weighted sum 

of the indexes of the grouped items at the lower level. Weights for this equation are proportional 

to the dollar amount spent on the items under consideration at a given period of time.    

𝐼𝑢𝑝𝑝𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 = ∑ 𝑤𝑖 × 𝐼𝑖
𝑛
𝑖=1  Eq.9 

Where: 𝐼𝑢𝑝𝑝𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 =  𝐼𝑛𝑑𝑒𝑥 𝑡𝑜 𝑏𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎 𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 

 𝑤𝑖 =  𝑊𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑖 𝑎𝑡 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 
 𝐼𝑖 =  𝐼𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑖𝑚𝑡𝑒 𝑖 𝑎𝑡 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 
 𝑛 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑔𝑟𝑜𝑢𝑝𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 

 

3.8 MOVING-WINDOW DATA OPTIMIZATION ALGORITHM  

The main purpose of the moving-window data optimization algorithm is roughly illustrated in 

Figure 11, which is to aid ALDOT in the identification of optimal look-back periods for specific 

pay items, as well as in the selection of suitable indexing alternatives to facilitate the development 

of effective bid-based construction cost estimates. Figure 11 shows the 20 indexing alternatives 
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considered in this project: 12 CCIS’S developed in this study and 8 existing CCIs. In this thesis, 

the moving-window algorithm is presented through its application to the case study item 

(424A360) using data from all projects awarded by ALDOT between 2011 and 2016 and 

considering different look-back periods ranging from 1 to 5 years.   

 

Figure 11. Look-Back Periods and Indexing Alternatives 

Moving-Window Data Optimization Approach 

Indexing 

Alternatives 
Look-Back 

Periods 

1 Year Quarterly 

Average 

Semi Annual 

Average 

Annual 

Average 

Quarterly 

Median 
Semi Annual 

Median 

Annual 

Median 

Quarterly 

All Bids 

Semi Annual 

All Bids 

Annual  

 All Bids 

Quarterly 

Awarded 

Bids 

Semi Annual 

Awarded 

Bids 

Annual 

Awarded 

 Bids 

RS Means 

CCI 

Engineering News 

Record CCI 

Engineering News 

Record Building Cost 

Index  

Engineering News 

Record CCI- 

Birmingham 

Washington State DOT 

CCI 

National Highway CCI 

ALDOT Asphalt 

Index 

Caltrans 

CCI 

Best Combination of Look-Back 

Period and Indexing Approach 

2 Year 3 Year 

4 Year 5 Year 
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The algorithm was run several times to consider all possible combinations of look-back periods 

and indexing alternatives (20 indexing alternatives x 5 different look-back periods = 100 possible 

combinations]). The algorithm was run ten more times: five times to demonstrate the importance 

of the non-linear regression models (once for each look-back period) and five more times using no 

indexing approach (once for each look-back period). These additional ten calculations were 

intended to demonstrate the importance of using non-linear regression to model quantity-unit price 

relationships, as well as to prove the importance of adjusting bid-based estimates to counteract the 

impact of time. It was run a total of 110 times.        

Figures 12 and 13 better illustrate the methodological procedure contained in the moving-

window algorithm. The algorithm is basically intended to use real data from previous projects to 

show what would have happened if ALDOT would have actually used the proposed data-driven 

methodology along a given period of time in the past.  

 
Figure 12. Moving-Window Data Optimization Algorithm  

 

 

 

 

 

 



50 

 

 
Figure 13. Time adjustment with indexing system. 

 

At each run of the algorithm, the author produced bid-based unit price estimates for all the 

times the case study item was actually used during a given period of time. In this thesis, that period 

of time was the year 2016. The case study item was used 97 times in 2016, which would be once 

per project from Project 1 (P1) to Project n (Pn) in Figure 12 (n=97). Thus, each run in this study 

consisted of 97 estimated unit prices compared against the 97 actual unit prices submitted to 

ALDOT by the selected contractors. In other words, the estimated values were compared against 

the prices actually paid by ALDOT every time this item was used in 2016. The result of this 

comparison is a Mean Absolute Percentage Error (MAPE) for each iteration. MAPE values, 

calculated with Equation 10, are commonly used to assess the effectiveness of construction cost 

indexes (Gardner, 2015). After all the 110 calculations, the lowest MAPE corresponds to the 

combination of look-back period and indexing approach that would offer to ALDOT the best 

average accuracy for the case study item. Figure 13 shows how each of the indexing alternatives 

was used to adjust every estimated unit prices. Basically, the estimate produced with the non-linear 

regression models are assumed to represent expected unit prices at the mid-point of the look-back 
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period, so that, cost indexes are then used to adjust unit price estimates by “moving” them from 

the mid-point date to the current date (end of look-back period). The term “moving-window” refers 

to the use of a fixed period of time (look-back period) that moves forward in time, stopping each 

time that the item under consideration is used in a construction project to provide the required 

historical bid data. Thus, the process illustrated in Figure 13, is performed every time that the 

“moving-window” finds a project using the given pay item, and this is also proposed data-driven 

methodology that should be used to ensure in practice to ensure an appropriate utilization of the 

identified look-back period and CCIS.   

                    𝑀𝐴𝑃𝐸 =  
∑

|𝐴𝑖−𝐸𝑖|

𝐴𝑖

𝑛
𝑖=1

𝑛
× 100%              Eq.10 

Where: 𝑀𝐴𝑃𝐸 =  𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 

 𝐴𝑖 =  𝐴𝑐𝑡𝑢𝑎𝑙 𝑢𝑛𝑖𝑡 𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟 𝑐𝑎𝑠𝑒 𝑠𝑡𝑢𝑑𝑦 𝑖𝑡𝑒𝑚 𝑖𝑛 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑖 
 𝐸𝑖 =  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑢𝑛𝑖𝑡 𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟 𝑐𝑎𝑠𝑒 𝑠𝑡𝑢𝑑𝑦 𝑖𝑡𝑒𝑚 𝑖𝑛 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑖 
 𝑛 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑢𝑠𝑖𝑛𝑔 𝑐𝑎𝑠𝑒 𝑠𝑡𝑢𝑑𝑦 𝑖𝑡𝑒𝑚 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛  

 

The proposed moving-window algorithm may be easier to understand with a more specific 

example. Figure 14 shows one of the 110 algorithm calculations for the case study item. The one 

conducted to calculate the MAPE value for a one-year look-back period when using the Quarterly 

Annual CCIS. The algorithm started by finding the first time that the case study was used in 2016. 

It was found that this item was first used in January 22 of that year. One year of historical bid data 

was then retrieved; from January 22, 2015, to January 21, 2016. The retrieved data was then used 

to develop a non-linear regression model, which, in turn, was used to estimate the unit price for 

the case study item in July 22, 2015 (mid-point of look-back period), and based on the given 

quantity for this item (quantity listed in January 21, 2016). The Quarterly Annual CCIS was then 

used to adjust this unit prices for inflation and all construction market changes that may have 

happened between the mid-point of the look-back period and the current date. Equation 11 shows 
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how index values at these two points in time are used to adjust unit prices. The accuracy of the 

adjusted unit price was measured by the absolute percentage error resulting by comparing the 

estimated value against the actual unit price (|Actual Unit Price – Estimated Unit Price|/Actual 

Unit Price). This value was stored and the window was moved forward until finding the second 

time the case study item was used in 2016. When found, the window stops and the same process 

is carried out to get the second absolute percentage error. This process was repeated every time 

that the case study item was used in 2017: 97 times. Finally, all 97 absolute percentage errors were 

used as shown above in Equation 10 to calculate the MAPE associated with the use of a one-year 

look-back period and the Quarterly Annual CCIS.       

One-Year Look-Back Period and Quarterly Annual CCIS

Find Date (Di = D1) and 
Quantity (Qi = Q1) for 

first time Item 424A360 
was used in 2016

Retrieve one year of 
bid data s tarting 

one year before Di   

Develop non-lineal 
regress ion model 

with retrieved data    

Use non-linear 
regress ion model to 
estimate unit price 

(UP) for Qi    

Use Quarterly Annual 
CCIS to adjust unit price 
from mid-point of look-
back period (6 months 

before Di) to Di    

Calculate absolute 
percentage error:

  |Actual UP – Estimated UP|/

Actual UP

Is this the last 
time 424A360 

is used?

Find Date (Di) and 
Quantity (Qi) for next 
time Item 424A360 
was used in 2016

No

Calculate MAPE for 
One-Year Look-Back 
Period & Quarterly 

Annual CCIS

No

 
Figure 14. Moving-window algorithm example – One-year look-back period & Quarterly  

Annual CCIS. 

 

𝑈𝑛𝑖𝑡 𝑃𝑟𝑖𝑐𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑎𝑡𝑒 = 𝑈𝑛𝑖𝑡 𝑃𝑟𝑖𝑐𝑒𝑀𝑖𝑑−𝑃𝑜𝑖𝑛𝑡 𝑜𝑓 𝐿𝐵𝑃 ×
𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑎𝑡𝑒

Index Value𝑀𝑖𝑑−𝑃𝑜𝑖𝑛𝑡 𝑜𝑓 𝐿𝐵𝑃
    Eq. 11 
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3.9 IDENTIFICATION OF OPTIMAL LOOK-BACK PERIOD AND INDEXING 

APPROACH   

After applying the moving-window algorithm as described in the previous section, and after 

discarding the “no non-linear regression and no indexing approach” and the “no indexing 

approach” alternatives (the 10 additional calculations mentioned in the previous section) due to 

their inferior performance, the author had to develop a system to identify the best look-back 

period/indexing approach combination. Even though MAPE values are good indicators of the 

average accuracy of each combination, this is only a measure of central tendency. It is the expected 

average accuracy to be expected after applying a given combination several times. In quantitative 

modeling, the MAPE value would be used to measure the validity of a model, which is the degree 

to which a given model truly measures what it is intended to measure (Glafshani 2003). Thus, a 

model with a lower MAPE can be assumed to offer greater validity. However, two models could 

be equally valid, but it does not mean that they are equally reliable. Reliability refers to the degree 

of consistency or uncertainty in the outputs of quantitative models (Glafshani 2003). Therefore, an 

ideal quantitative model must be both valid and reliable. Recognizing the fact, that it is impossible 

to develop construction cost estimating models that are 100% valid and reliable, this study made 

efforts to identify the look-back period/indexing approach combination that best satisfies both 

principles.  

 Given that all 9,700 absolute percentage errors calculated with the moving-window 

algorithm (97 projects x 100 possible combinations = 9,700 absolute percentage errors) can be 

classified according to two different categorical variables (look-back period [1-5] and indexing 

approach). Two-way ANOVA is a suitable statistical test to compare MAPE values across both 

categorical variables, as well as to determine if there is any interaction between them (Laerd 
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Statistics 2013). Two-way ANOVA is performed under the assumption that the dependent variable 

(i.e. absolute percentage error) is normally distributed and that variances across all combinations 

of the two categorical variables are equal. The normality assumption was not challenged in this 

study. This assumption will be reviewed in future research efforts. On the other hand, the 

assumption of homogenous variables was tested using the Levene’s test, following the guidelines 

provided by Glass (1966). The Levene’s test is a statistical test intended to test the homogeneity 

of variances among multiple samples, and is commonly used before using two-way ANOVA to 

validate this assumption. Besides being used to comply with the conditions of the two-way 

ANOVA test, this test was also used to maximize reliability. The null hypothesis tested with the 

Levene’s test was that the variances across all look-back period/indexing approach combinations 

are equal. This test was systematically used in this study to reduce the number of possible look-

back period/indexing approach combinations into the subset of combinations that offered the 

lowest variance. The look-back periods and indexing approaches yielding the higher average 

variability were discarded one-by-one until having a subset of combinations with the lowest 

homogenous variances. After applying this test, the original 100 combinations were reduced to 18 

combinations of 9 cost indexes (8 CCIS’s and 1 existing CCI) and only two possible look-back 

periods: one and two years. 

Two- way ANOVA was then applied to the remaining 18 combinations, failing to reject 

the three null hypotheses associated to this test: 

1. The means of the absolute percentage errors across the two look-back periods are the same;  

2. The means of the absolute percentage errors across all nine indexing approaches are the 

same; 
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3. There is no interaction between the look-back periods and the indexing approaches. It 

means that both categorical variables are independent, which is a requirement for this test. 

More information about the statistical tests used in this study and results of the quantitative analysis 

described in this section are presented in the following chapters.  

3.10 RESEARCH VALIDATION  

Research validation efforts in this study were conducted at two different stages. Initial validation 

efforts were conducted during the implementation of the moving-window algorithm. This 

algorithm is the main research instrument in this thesis and it served as an advanced validation 

strategy. While comparing the performance of the different look-back period/indexing approach 

combinations using the results of the moving-window algorithm and the Levene’s and two-way 

ANOVA tests, the author is not only identifying the best combination(s), but also demonstrating 

how this combination(s) outperforms the other alternatives. Likewise, by including the “no non-

linear regression” and “no indexing approach” alternatives in the moving-window calculations, 

the author was able to demonstrate the importance of modeling and considering both scale (using 

non-linear regression) and time (using the cost indexes) impacts in bid-based cost estimating. 

Unfortunately, the author had no access to actual estimates made by ALDOT for each time 

that the case study item was used. It would have allowed a direct comparison of the proposed bid-

based cost estimating methodology and ALDOT’s current estimating system. However, further 

validation efforts were made to compare the estimated unit prices against the unit prices submitted 

by the unsuccessful bidders. This is a valuable validation approach when taking into consideration 

that the proposed methodology is intended to estimate unit prices submitted by low bidders 

(successful contractors selected to execute the contracts), which, in fact, is also the goal of all 

bidders. A bidder would only invest time in the preparation and submission of a bid package if 



56 

 

there were a reasonable probability of winning the contract. Therefore, it can be assumed that all 

price proposals submitted for a given contract correspond to the best efforts made by the bidders 

to estimate what would be the lowest bid for that contract. Thus, by demonstrating that the 

estimated unit prices produced in this study are closer to the unit prices submitted by the lowest 

bidders than the prices submitted by the unsuccessful contractors, it can be said that proposed 

methodology outperforms the estimating practices of the non-selected contractors. The positive 

results from this validation are even more relevant when considering that contractors’ estimating 

practices are designed to assess unit prices with a better understanding of specific project 

requirements, while unit prices with the proposed methodology were produced only with the 

quantities of work listed in the RFP. 
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CHAPTER FOUR: DEVELOPMENT OF CONSTRUCTION COST 

INDEXING SYSTEMS AND EXISTING CONSTRUCTION COST 

INDEXES  
 

4.1 INTRODUCTION 

This short chapter starts by proving detailed information on the twelve CCIS’s developed in this 

study. Specifically, this chapter presents the non-linear equations, the LAPV values, and the 

number of quantity ranges for each of the 53 CCIS items, and used to develop the twelve CCIS’s. 

The chapter also presents the twelve different versions of the cost index for the case study item 

(only one of the 53 CCIS items). Finally, the chapter includes a summary of the characteristics of 

the eight existing composite indexes considered in this study, including the components used in 

their calculation, their geographical applicability and their frequency of recalculation.       

4.2 DEVELOPMENT CONSTRUCTION COST INDEXING SYSTEMS  

This section presents the non-linear regression equations, the LAPV values, and number of 

quantity ranges for all 53 CCIS items, which were fundamental in the development of the twelve 

CCIS’s assessed in this study. Even though the proposed look-back period determination protocol 

and data-driven cost estimating methodology are illustrated in this thesis only for the case study 

item, the CCIS’s were fully developed for all 53 pay items and at all four levels, so that, these 

methodologies can be applied by ALDOT to develop bid-based estimates for any pay item. All 

processes has been explained in sufficient detail so they can be replicated by ALDOT on an as 

needed basis.    
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4.3 NON-LINEAR REGRESSION MODELS & QUANTITY RANGES 

As mentioned in Chapter 3, non-linear regression models were used in this thesis for two main 

purposes. Later in the study, they are used to estimate unit prices based on expected quantities of 

work, but at this stage, these models are used, along with LAPV values, to define the quantity 

ranges for each of the 53 CCIS items, which are critical to ensure that CCIS’s are built by 

measuring fluctuations between comparable quantities of work. Table 8 presents the number of 

ranges, the parameters of the non-linear regression equations, and the LAPV values for all 53 CCIS 

items. A description of each of 53 CCIS items listed below can be found in Appendix 1. 

Table 8. Summary of Non-linear Regression Models 

Non-Linear Regression Model – Power Regression Equation 

𝑈𝑛𝑖𝑡 𝑃𝑟𝑖𝑐𝑒 = 𝐴 ∗ (𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦)𝐵 

Item Id 
No of 

Ranges 

Largest Average 

Price Variation  
A B Item Id 

No of 

Ranges 

Largest Average 

Price Variation  
A B 

206C010 3 1.250 126.470 -0.412 620A000 2 0.436 1030.656 -0.111 

206D000 1 1.321 15.985 -0.102 630A001 5 0.091 29.109 -0.052 

206D001 6 0.103 3.554 -0.079 650A000 3 0.709 46.198 -0.170 

210A000 3 0.972 24.096 -0.129 650B000 2 0.925 21.047 -0.163 

210D021 2 0.729 45.024 -0.172 652A100 4 0.211 932.512 -0.108 

212A000 3 0.571 144.649 -0.235 652C000 6 0.214 153.175 -0.146 

214A000 2 1.319 20.205 -0.118 654A000 3 0.261 9.142 -0.092 

214B001 2 0.530 63.085 -0.085 654A001 3 0.319 7.688 -0.075 

230A000 1 0.776 502.448 -0.067 656A010 5 0.245 894.685 -0.168 

401A000 4 0.250 3.481 -0.121 665A000 4 0.348 701.219 -0.204 

405A000 2 0.321 5.184 -0.048 665E000 1 1.340 3.639 -0.096 

408A051 7 0.550 61.795 -0.399 665I000 1 0.467 51.768 -0.044 

408A052 6 0.574 55.073 -0.365 665L000 1 0.776 20.951 -0.054 

424A360 4 0.139 155.183 -0.092 665O001 2 0.655 3.268 -0.161 

424B650 4 0.136 123.282 -0.075 666A001 3 0.592 65.085 -0.244 

424B655 3 0.357 199.628 -0.130 701C000 4 0.071 796.668 -0.048 

424B659 3 0.203 130.898 -0.092 701C001 4 0.080 884.271 -0.058 

424B681 4 0.154 127.839 -0.085 701H001 41 0.063 9.758 -0.308 

502A000 3 0.464 2.583 -0.092 701H006 27 0.068 4.434 -0.240 

505M002 1 0.376 54.903 -0.030 703A002 7 0.084 7.466 -0.079 

508A000 1 0.592 5.478 -0.034 703B002 5 0.081 6.330 -0.061 

510A000 1 0.636 743.829 -0.056 703D001 13 0.073 4.208 -0.136 

510E000 1 0.517 1271.267 -0.108 710A115 2 0.206 21.165 -0.045 

530A001 2 0.567 56.539 -0.090 710A126 2 0.200 22.577 -0.037 

610C001 2 0.382 56.045 -0.058 730H001 3 0.097 3.577 -0.049 

610D003 1 0.732 4.730 -0.073 740B000 1 0.200 10.245 -0.047 

614A000 3 0.283 460.505 -0.084 - - - - -  
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4.4 CONSTRUCTION COST INDEXES FOR CASE STUDY ITEM 

As mentioned in Chapter 3, each of the twelve CCIS versions consists of multiple cost indexes at 

different levels. Due to the number of pages required to contain all CCIS, it would be impractical 

to present all of them in this thesis. However, this section presents all twelve versions of the cost 

index for the case study item (only one of the 53 CCIS items), which are at the Pay Item Level 

(lowest level) of their respective CCIS’s. Table 9, 10, and 11 show the quarterly, semi-annual, and 

annual indexes for the case study item (item 424A360), respectively. Each table presents the index 

values for the four different types of inputs (i.e. all bids, average values on a project basis, median 

values on a project basis, and only awarded bids). 
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Table 9. Quarterly Construction Cost Indexes – Case Study Item (Item 424A360) 
Year Quarter All Bids  Average Median Awarded Bids 

2006 

Q1 100.00 100.00 100.00 100.00 

Q2 104.33 105.36 105.57 105.91 

Q3 115.78 117.37 117.79 116.18 

Q4 124.24 121.91 121.54 124.61 

2007 

Q1 120.31 121.78 121.26 119.25 

Q2 118.47 120.36 120.99 107.26 

Q3 122.71 124.36 125.91 126.52 

Q4 120.87 120.79 121.41 118.93 

2008 

Q1 128.95 125.34 125.71 128.77 

Q2 129.38 130.17 131.37 125.94 

Q3 191.03 185.04 187.68 193.60 

Q4 169.11 161.68 161.52 162.22 

2009 

Q1 160.34 152.56 153.53 149.91 

Q2 148.40 141.95 142.15 138.21 

Q3 145.04 143.29 143.94 141.36 

Q4 147.06 147.20 147.95 144.11 

2010 

Q1 146.61 149.57 150.43 146.53 

Q2 152.48 150.73 150.73 144.60 

Q3 151.77 151.47 152.08 146.31 

Q4 153.04 153.37 152.17 155.67 

2011 

Q1 150.45 149.57 150.13 153.68 

Q2 161.44 159.07 160.31 161.01 

Q3 171.34 174.61 176.19 178.55 

Q4 164.69 166.31 166.46 167.25 

2012 

Q1 170.42 169.45 170.83 173.51 

Q2 175.08 178.35 177.45 181.40 

Q3 162.06 162.52 163.48 164.23 

Q4 169.67 170.50 171.84 178.32 

2013 

Q1 175.35 176.65 178.09 179.98 

Q2 172.78 175.33 176.87 181.73 

Q3 176.72 178.23 179.94 183.02 

Q4 173.91 177.02 177.58 176.49 

2014 

Q1 179.59 180.08 180.51 179.56 

Q2 173.83 178.41 179.42 183.73 

Q3 195.06 198.87 200.49 201.19 

Q4 196.49 200.11 200.35 201.91 

2015 

Q1 192.02 195.18 195.78 201.46 

Q2 189.49 192.18 192.53 192.87 

Q3 189.33 195.21 196.02 202.41 

Q4 177.23 177.58 178.14 176.47 

2016 

Q1 174.54 181.02 180.87 179.97 

Q2 173.03 183.42 183.54 183.68 

Q3 169.09 175.13 173.57 173.00 

Q4 184.68 196.08 195.70 204.99 
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           Table 10. Semi Annual Construction Cost Indexes – Case Study Item (Item 424A360) 

Year Semester All Bids Average Median Awarded Bids 

2006 
S1 100.00 100.00 100.00 100.00 

S2 111.42 111.81 112.02 111.45 

2007 
S1 104.23 105.84 105.57 103.43 

S2 107.14 108.45 108.71 105.41 

2008 
S1 109.91 110.58 110.79 107.96 

S2 152.27 149.58 150.24 149.07 

2009 
S1 123.87 121.33 121.82 119.51 

S2 120.99 120.82 121.45 119.15 

2010 
S1 125.22 125.01 125.41 122.83 

S2 128.18 126.79 126.92 125.79 

2011 
S1 128.83 125.82 125.89 126.59 

S2 140.40 140.35 140.28 139.81 

2012 
S1 141.73 141.37 141.02 141.90 

S2 137.40 136.62 136.87 137.55 

2013 
S1 145.91 144.35 144.63 144.99 

S2 147.24 145.94 146.23 145.64 

2014 
S1 148.84 147.41 147.29 146.81 

S2 163.83 162.41 162.68 161.63 

2015 
S1 159.82 157.45 157.49 158.99 

S2 153.92 152.10 152.54 153.05 

2016 
S1 144.37 147.27 147.30 145.81 

S2 141.31 141.70 140.63 139.68 

 

Table 11. Annual Construction Cost Indexes – Case Study Item (Item 424A360) 

Year All Bids Average Median Awarded Bids 

2006 100.00 100.00 100.00 100.00 

2007 99.76 100.31 100.13 99.63 

2008 112.57 111.99 112.00 111.69 

2009 111.90 111.17 111.26 110.41 

2010 114.97 115.92 115.86 115.19 

2011 120.43 120.24 119.81 121.34 

2012 126.15 127.24 126.85 128.46 

2013 131.60 132.04 131.95 132.76 

2014 139.37 140.14 139.83 139.50 

2015 141.18 140.69 140.49 142.30 

2016 128.31 131.25 130.59 129.91 
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4.5 EXISTING CONSTRUCTION COST INDEXES 

Table 12 summarizes the eight existing CCIs considered in this study. It includes indexes published 

and maintained by private organization, such the Building Cost Index (BCI) and CCI developed 

by the Engineering News Record (ENR), and the CCI published by the RSMeans. The ENR 

provides a National CCI, as well as CCIs for 20 cities across the country. This study has assessed 

the performance of both the ENR National CCI and one specifically developed to track changes in 

the construction market in Birmingham, Alabama. Table 12 includes two indexes mainly intended 

to be used in the vertical construction industry: the ENR-BCI and the RSMeans CCI. Even though 

these two indexes are aimed for a different construction sector, they have been considered in this 

study because that literature review has revealed that some building CCIs has been considered for 

cost estimating purposes by STAs or by other authors (Rueda 2016).  

Three of eight indexes in Table X have been developed by public transportation agencies: 

1) the National Highway Construction Cost Index published by the Federal Highway 

Administration (FHWA); 2) the Price Index for Selected Highway Construction Items published 

by the California Department of Transportation (CALTRANS); and 3) the Price Index for 

Highway Construction Items published by the Washington State Department of Transportation 

(WSDOT). The last index in the Table 12 is not actually a composite index. This is the Asphalt 

Price Index maintained and published by ALDOT. It only tracks the market of asphalt per gallon 

(single index component). ALDOT’s Asphalt Price Index was included in this study because it is 

closely related to the case study item. However, it should not be considered for other pay items.        
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Table 12. Existing Construction Cost Indexes          

Index Components Applicability  Frequency  

Engineering News Record: 

Building Cost Index (BCI)  

 Cement  

 Structural Steel  

 Lumber  

 Labor 

National  Monthly 

Engineering News Record: 

Construction Cost Index 

(CCI)  

 Cement  

 Structural Steel  

 Lumber  

 Labor (more labor intensive than BCI) 

National  Monthly 

Engineering News Record: 

Construction Cost Index 

(CCI)- Birmingham, AL  

 Cement  

 Structural Steel  

 Lumber  

 Labor (more labor intensive than BCI) 

Birmingham, 

AL 
Monthly 

RSMeans Construction Cost 

Index (CCI)  

 9 types of buildings 

- 66 construction materials 

- Wage rates for 21 different trades 

- 6 types of construction equipment 

National  Quarterly 

Federal Highway 

Administration: 

National Highway 

Construction Cost Index 

(NHCCI) 

 Nations Highway Projects 

- Standard Pay Items 

- Material 

- Labor 

National  Quarterly 

California Department of 

Transportation:  

Price Index for Selected 

Highway Construction Items  

 Roadway excavation per cubic yard 

 Aggregate base per ton 

 Asphalt concrete pavement per ton 

 Portland cement concrete (Pavement) per 

cubic yard 

 Portland cement concrete (Structure) per 

pound 

 Bar reinforcing steel per pound 

 Structural steel per pound 

California Quarterly 

Washington State 

Department of 

Transportation: Price Index 

for Highway Construction 

Items  

 Roadway excavation per cubic yard 

 Crushed Surfacing per ton 

 Hot Mix Asphalt per ton 

 Concrete Pavement per cubic yard 

 Structural concrete per cubic yard 

 Steel Reinforcing bar per pound 

 Structural steel per pound 

Washington 

State 
Annual 

Alabama Department of 

Transportation: Price Index 

for Asphalt 

 Asphalt – Price per gallon  

 Alabama Monthly 
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CHAPTER FIVE: MOVING-WINDOW DATA OPTIMIZATION 

ALGORITHM: ANALYSIS OF RESULTS   
 

5.1 INTRODUCTION 

As mentioned in Chapter 3, the main purpose of the moving-window data optimization algorithm 

is to aid ALDOT in the identification of optimal look-back periods for specific pay items, as well 

as in the selection of a suitable indexing alternative to facilitate the development of effective bid-

based construction cost estimates. This chapters presents the results obtained from the 110 

calculations of moving-window algorithm: 100 calculations from combining all look-back periods 

and indexing alternatives; 5 calculations from the “no non-linear regression and no indexing 

approach” alternative (once for each look-back period); and 5 calculations from the “no indexing 

approach” alternative (once for each look-back period).  

After discarding the “no non-linear regression and no indexing approach” and “no indexing 

approach” alternatives due to their inferior performance, the chapter presents the exhaustive 

statistical analysis conducted to identify the best loo-back period/indexing approach set among the 

100 combinations. Two main statistical tests were used in this analysis: Levene’s test to evaluate 

the variances among the alternatives and the two-way ANOVA test to compare their MAPE values. 

Figure 15 clearly illustrates the systematic statistical analysis applied to the 100 combinations and 

elimination of alternatives until obtaining a set of alternatives whose performance is not 

significantly different from each other, in terms of validity and reliability. As show in Figure 15 

the Levene’s test allowed for the reduction of the number of alternative to 18 (9 indexing  
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approaches x 2 look-back periods = 18), which is the set of alternatives with the lowest 

homogenous variance.  

 

Figure 15. Methodology for Statistical Analysis 

 

The two-way ANOVA test was then used to compare the MAPE values for the 18 

combinations finding no significant difference among them. It should be noted that since no 

20 Indexing Approaches: 

12 CCIS’s 
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significant differences were found among the 18 MAPE values, the loop in two-way ANOVA test 

shown in Figure 15 was not actually used. However, it was still included in this figure given that 

this thesis is intended to provide a framework to be applied to other pay items different than the 

case study item, in which case the loop may be required.  

5.2 MOVING-WINDOW ALGORITHM – SUMMARY OF RESULTS 

Table 13 represents the summary of results that were generated by the 110 calculations of moving-

window algorithm. Each iteration was used to estimates unit prices for the case study item for all 

projects awarded in 2016. The table shows the MAPE and standard deviation of the average 

percentage errors (APEs) for each combination, as well as a ranking of combinations by MAPE 

value and a ranking by standard deviation.  

Table 13. Results of Moving-window Data Optimization Algorithm 

Approach 
Look-Back 

Period 
MAPE SD of APEs 

Ranking by 

MAPE 

Ranking by 

SD 

No No-Linear 

Regression Model & 

No Indexing Approach 

1 Year 19.46% 14.79% 84 99 

2 Year 21.62% 16.18% 99 106 

3 Year 20.61% 15.30% 94 101 

4 Year 20.19% 15.24% 90 100 

5 Year 19.31% 14.60% 82 98 

No Indexing Approach 

1 Year 14.95% 10.30% 25 35 

2 Year 16.62% 10.85% 55 51 

3 Year 16.16% 10.44% 49 39 

4 Year 15.47% 9.99% 41 29 

5 Year 14.96% 9.63% 26 21 

Quarterly All Bids  

1 Year 13.33% 8.94% 10 10 

2 Year 12.52% 8.21% 1 1 

3 Year 13.53% 10.41% 13 37 

4 Year 14.64% 10.05% 22 30 

5 Year 14.75% 9.90% 23 26 

Quarterly Median 

1 Year 14.32% 8.92% 18 9 

2 Year 13.12% 8.43% 6 3 

3 Year 13.49% 9.66% 12 22 

4 Year 15.23% 10.11% 34 31 

5 Year 15.78% 10.16% 45 32 

Quarterly Average  

1 Year 14.36% 8.89% 19 7 

2 Year 13.15% 8.46% 7 4 

3 Year 13.57% 9.67% 15 23 

4 Year 15.34% 10.21% 38 33 

5 Year 16.08% 10.34% 48 36 
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Table 13. Results of Moving-window Data Optimization Algorithm (Cont.) 

Approach 
Look-Back 

Period 
MAPE SD of APEs 

Ranking by 

MAPE 

Ranking by 

SD 

Quarterly Awarded Bid 

1 Year 14.49% 9.31% 20 14 

2 Year 12.90% 8.29% 4 2 

3 Year 12.86% 9.02% 3 11 

4 Year 14.80% 9.91% 24 28 

5 Year 15.35% 9.60% 39 20 

Semi Annual All Bid  

1 Year 13.44% 9.36% 11 15 

2 Year 12.73% 8.90% 2 8 

3 Year 15.08% 11.68% 30 75 

4 Year 16.24% 11.23% 52 65 

5 Year 16.21% 11.19% 50 58 

Semi Annual Median  

1 Year 13.72% 9.45% 17 18 

2 Year 13.24% 8.84% 9 6 

3 Year 15.36% 11.62% 40 73 

4 Year 16.95% 11.21% 64 61 

5 Year 16.93% 11.21% 61 62 

Semi Annual Average  

1 Year 13.70% 9.39% 16 16 

2 Year 13.22% 8.81% 8 5 

3 Year 15.21% 11.48% 33 70 

4 Year 16.88% 11.18% 59 57 

5 Year 16.94% 11.19% 62 59 

Semi Annual Awarded 

Bid 

1 Year 13.53% 9.29% 14 13 

2 Year 13.09% 9.05% 5 12 

3 Year 15.63% 11.87% 43 77 

4 Year 17.06% 11.44% 66 69 

5 Year 16.79% 11.23% 58 64 

Annual All Bid  

1 Year 15.31% 10.74% 37 49 

2 Year 17.54% 11.31% 69 68 

3 Year 19.68% 12.51% 85 88 

4 Year 20.43% 12.80% 92 92 

5 Year 21.91% 13.46% 100 97 

Annual Median  

1 Year 15.07% 10.46% 29 40 

2 Year 16.95% 11.02% 63 55 

3 Year 19.02% 12.26% 80 84 

4 Year 19.78% 12.51% 86 87 

5 Year 21.09% 13.03% 97 94 

Annual Average  

1 Year 15.05% 10.43% 27 38 

2 Year 16.89% 10.99% 60 53 

3 Year 19.04% 12.28% 81 85 

4 Year 19.84% 12.54% 87 90 

5 Year 21.02% 12.99% 96 93 

Annual Awarded Bid  

1 Year 15.53% 10.99% 42 54 

2 Year 18.07% 11.56% 72 72 

3 Year 19.84% 12.52% 88 89 

4 Year 20.34% 12.76% 91 91 

5 Year 21.31% 13.13% 98 95 
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Table 13. Results of Moving-window Data Optimization Algorithm (Cont.) 

Approach 
Look-Back 

Period 
MAPE SD of APEs 

Ranking by 

MAPE 

Ranking by 

SD 

National Highway CCI 

1 Year 14.56% 9.41% 21 17 

2 Year 15.17% 9.91% 32 27 

3 Year 15.12% 9.75% 31 24 

4 Year 16.07% 10.74% 47 50 

5 Year 16.52% 10.53% 53 41 

Caltrans CCI 

1 Year 20.91% 15.34% 95 102 

2 Year 22.42% 15.40% 101 103 

3 Year 25.63% 16.09% 103 105 

4 Year 27.25% 17.79% 104 108 

5 Year 33.27% 28.47% 106 110 

Washington State 

DOT CCI 

1 Year 19.91% 13.34% 89 96 

2 Year 20.52% 15.83% 93 104 

3 Year 16.22% 10.54% 51 43 

4 Year 27.40% 16.56% 105 107 

5 Year 40.04% 23.18% 110 109 

Engineering News 

Record -Birmingham 

CCI 

1 Year 15.28% 10.54% 36 44 

2 Year 17.80% 11.49% 71 71 

3 Year 17.39% 11.22% 68 63 

4 Year 17.21% 10.90% 67 52 

5 Year 17.64% 11.20% 70 60 

Engineering News 

Record CCI 

1 Year 15.85% 10.72% 46 47 

2 Year 18.72% 11.90% 77 79 

3 Year 18.80% 11.95% 78 81 

4 Year 18.97% 12.10% 79 83 

5 Year 19.31% 12.28% 83 86 

Engineering News 

Record Building Cost 

Index 

1 Year 15.65% 10.63% 44 45 

2 Year 18.21% 11.64% 73 74 

3 Year 18.36% 11.70% 74 76 

4 Year 18.63% 11.88% 75 78 

5 Year 18.69% 11.93% 76 80 

RSMeans CCI 

1 Year 15.07% 10.27% 28 34 

2 Year 17.03% 11.07% 65 56 

3 Year 16.71% 10.74% 57 48 

4 Year 16.63% 10.70% 56 46 

5 Year 16.56% 10.53% 54 42 

ALDOT Asphalt 

Index 

1 Year 15.24% 11.30% 35 67 

2 Year 22.51% 12.07% 102 82 

3 Year 34.78% 11.28% 107 66 

4 Year 37.09% 9.83% 109 25 

5 Year 36.84% 9.59% 108 19 
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The MAPE value for each combination was calculated by considering the average of 

absolute percentage errors resulting by comparing the estimated values against the prices actually 

awarded by ALDOT. Generally, the lowest MAPE corresponds to the combination of look-back 

period and indexing approach that would offer ALDOT the highest estimating accuracy. On the 

other hand, the standard deviation is assumed to be a measure of reliability. The lower the standard 

deviation, the more reliable the combination. From table 13, and based on the rankings of MAPE 

and standard deviation values, it could be said that a two-year look-back period and the Quarterly 

All Bids CCIS would offer ALDOT the highest accuracy and reliability in the estimation of unit 

prices for the case study item. However, the next combinations in the raking do not seem to be too 

far from the front-runner. Therefore, it is necessary to determine if the gaps between the top ranked 

are statistically significant. It would prove if a two-year look-back is indisputably the best 

combination, or if there other combinations as good as that one that could be considered by 

ALDOT. That is what this chapter is aimed to determine, but before that, it is important to review 

the results of the “no non-linear regression and no indexing approach” and “no indexing approach” 

to understand the importance of considering the scale and time cost influencing factors in bid-

based cost estimating.   

5.3 IMPORTANCE OF CONSIDERING SCALE AND TIME IN BID-BASED 

ESTIMATING 

As shown in Figure 15, out of all 110 alternatives only 100 combinations were considered for 

statistical analysis. It is because the 10 “no non-linear regression and no indexing approach” and 

“no indexing approach” were discarded due to their inferior performance. The main purpose of 

considering these 10 alternatives in this model was to demonstrate the importance of using non-

linear regression to model quantity-unit price relationships, as well as to prove the importance of 
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adjusting bid-based estimates to counteract the impact of time. A closer look at the results in Table 

13 shows an improvement in estimating accuracy and reliability. First, there was an improvement 

when incorporating the non-linear regression models, and then improves even more when applying 

an indexing approach.   

“No non-linear regression and No indexing approach” Vs “No indexing approach”       

The first iteration of the moving-windowing algorithm corresponds to the “no non-linear 

regression and no indexing approach” alternative, in which estimated unit prices are the unadjusted 

average of all unit prices contained within each look-back period, disregarding the scale and time 

effects. The second iteration was the “no indexing approach,” in which the non-linear regression 

models are introduced, but no adjustments for inflation are performed. Theoretically, the MAPE 

from “no indexing approach” should be less than the one from the “no non-linear regression and 

no indexing approach” alternative given that the latter considers the concept of economies of scale. 

Table 14 presents the MAPE and standard deviations for these two approaches, which demonstrate 

this theoretical assumption. Both the MAPE and standard deviation values are reduced when the 

nonlinear regression model is considered. There accuracy of the estimates is improved by 22.5% 

and their reliability improves by 34.0%. A statistical F-test was performed to measure the level of 

significance in the reduction of the standard deviation showing at it was statistically significant at 

a 5% significance level (p-value = 3.04 x 10-4). Likewise, a paired two-sample t-test was performed 

to compare the MAPE values revealing also a statistically significant improvement in accuracy (p-

value = 5.1 x 10-4). These results allow to strongly conclude that the consideration of project scale 

effects (through non-linear regression) facilitates a significant improvement in accuracy and 

reliability in bid-based estimating for the case study item.  
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Table 14. Comparison of results (“No non-linear regression and No indexing approach” Vs “No 

indexing approach”) 

 MAPE Standard Deviation of APEs 

No nonlinear regression and No 

indexing approach (A) 
19.31%  14.60%  

No indexing approach (B) 14.95%  9.63%  

Percentage Reduction (A-B)/A 22.5%  34.0%  

Significance of Improvement at 99% 

Confidence Level 
Statistically Significant Statistically Significant 

P-value <0.01 <0.01 

 

“No indexing approach” Vs “Indexing approach”     

“Indexing approach” in the title of this subsection refers to the 100 combinations that include an 

indexing approach. In a similar way as done in the previous subsection. This study has 

demonstrated the importance considering time effects in cost estimating by comparing the 

performance of the “no indexing approach” alternative against the performance of the 

combinations that used an indexing approach.  

Even though the use of no indexing approach seems to outperform the results obtained with some 

of the cost indexes considered in this study, such as the Caltrans and ALDOT Asphalt CCI, it is 

only necessary to find one indexing approach that improve estimating performance to demonstrate 

that inflation and price fluctuations along look-back periods affect estimating accuracy and 

reliability. Thus, the “no indexing approach” was compared against the combination that seems to 

offer the best performance” a two-year look-back period with a Quarterly All Bids CCIS. The 

results of this comparison are shown in Table 15. The values in this table show that the 

incorporation of a CCIS to adjust bid-based estimates for inflation and market fluctuations could 

improve accuracy by 16.3% and reliability 14.7%. Even though the F-test does not show a 
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significant increase in reliability at a 5% significance level, it can by assumed at a 6% significance 

level (p-value = 0.059), which is still considered highly significant by the author. The paired two-

sample t-test allows to make a stronger conclusion regarding the reduction in the MAPE value, 

showing a significant improvement with a p-value of 1.17x10-4.   

Table 15. Comparison of results (“No indexing approach” Vs “Moving-window data approach)       

 MAPE Standard Deviation of APEs 

No indexing approach (A) 14.95%  9.63%  

Two-Years Look-Back Period & 

Quarterly All Bids CCIS (B) 
12.52%  8.21%  

Percentage Improvement (A-B)/A 16.3%  14.7%  

Significance of Improvement at 99% 

Confidence Level  
Statistically Significant Statistically Significant 

P-value <0.01 <0.01 

 

5.4 IDENTIFICATION OF SUBSET WITH LOWEST HOMOGENEOUS VARIANCES – 

LEVENE’S TEST 

 

In order to determine if there is a top group of combinations with comparable performance, the 

author decided to first focus on the combinations that offer the highest reliability (lowest variance). 

The Levene’s test was used for this purpose. The reason to assess variances before comparing 

MAPEs lays in the fact that the two-way ANOVA test used for MAPE comparisons works under 

the assumption of homogenous variances, so that, the Levene’s test is usually performed before a 

two-way ANOVA test.  

The Levene’s test was applied within a loop to systematically eliminate the look-back 

periods and indexing approaches that show the highest variability until obtaining a p-value greater 

that 0.05, which would mean that the variances for the remaining combinations could be 

considered equal at a significance level of 5%. Thus, the remaining set of combinations would 
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correspond to the combinations with the lowest homogenous variances. In other words, the 

combinations in this set would offer a similar level of reliability. Figure 16 and 17 show the average 

variability offered by each of the 5 look-back periods and 20 indexing approaches, respectively. 

This figures also highlight the look-back periods and indexing approaches that were discarded by 

the Levene’s loop due to their high variances. Tables 16 and 17 show the values plotted in Figures 

16 and 17, respectively. It should be noted that the values in these figures and tables do not 

correspond to variances of individual combinations, but to average variances within each group. 

For example, the average variance of 0.095 for the three-year look-back period (see Figure 16 and 

Table 16) is the average of the variances from all indexing approaches with a three-year look-back 

period (the average of 20 variances). Likewise, the average variance of 0.08 for the NHCCI index 

(see Figure 17 and Table 17) is the average of the variances for this index with each of the five 

look-back periods (the average of 5 values).       

 

 

 

 

 

 

 

 

 

 

Figure 16. Average Variance among Look-back periods 
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Figure 17. Average Variance among Indexing Approaches 

 

Table 16. Average Variance among Look-back Periods (Ranked) 

 

 

 

 

Table 17. Average Variance among Indexing Approaches (Ranked) 

Index Average Variance  Index Average Variance  

Quarterly Awarded Bid 0.0744 ALDOT Asphalt Index 0.0895 

Quarterly Median 0.0769 ENR- CCI Birmingham 0.0925 

Quarterly Average 0.0775 ENR BCI National 0.0971 

Quarterly All Bid 0.0775 ENR CCI National  0.0991 

NHCCI 0.0811 Annual Average 0.0997 

Semi Annual Average 0.0867 Annual Median 0.0997 

Semi Annual Median 0.0872 Annual All Bid 0.1028 

Semi Annual All Bid 0.0875 Annual  Awarded Bid 0.1032 

Semi Annual Awarded Bid 0.0881 WSDOT 0.1316 

RS Means 0.0882 Caltrans 0.1557 
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Table 18 shows step-by-step how the Levene’s test loop eliminated look-back periods and 

indexing approaches, as well as how the p-value from the test was increasing until getting over 

0.05. Finally, Table 19 presents the remaining 18 combinations which offer the lowest 

homogenous variances. The 18 combinations have been re-ranked by MAPE and standard 

deviation value.   

Table 18. Systematic elimination of factors Based on Levene’s Test 
Step P Value Discarded Look-Back Period and/or indexing Approach 

Initial sample 7.87E-196 - 

Step -1 3.71E-32 Caltrans, WSDOT 

Step-2 1.85E-20 Years 4 &5 

Step-3 9.41E-18 Annual All Unit Bid & Annual Awarded Bid 

Step-4 2.39E-14 Annual Median & Annual Average & ENR-CCI 

Step-5 7.04E-12 ENR-CCI Birmingham & ENR BCI 

Step-5 9.48E-09 RS Means &  ALDOT Asphalt 

Step-6 0.908 Year 3 

 

Table 19. Rankings of Indexing Approaches based on MAPE and Standard Deviation 

Indexing Approach 

Look-

Back 

Period 

MAPE 

Standard 

Deviation 

of APEs 

Ranking 

by MAPE 

Ranking 

by SD 

Quarterly All Bid Unit Prices 
1 Year 13.33% 8.94% 9 10 

2 Year 12.52% 8.21% 1 1 

Quarterly Median of Unit Prices 
1 Year 14.32% 8.92% 14 9 

2 Year 13.12% 8.43% 5 3 

Quarterly Average of Unit Prices 
1 Year 14.36% 8.89% 15 7 

2 Year 13.15% 8.46% 6 4 

Quarterly Awarded Bid Unit Prices 
1 Year 14.49% 9.31% 16 13 

2 Year 12.90% 8.29% 3 2 

Semi Annual All Bid Unit Prices 
1 Year 13.44% 9.36% 10 14 

2 Year 12.73% 8.90% 2 8 

Semi Annual Median of Unit Prices 
1 Year 13.72% 9.45% 13 17 

2 Year 13.24% 8.84% 8 6 

Semi Annual Average of Unit Prices 
1 Year 13.70% 9.39% 12 15 

2 Year 13.22% 8.81% 7 5 

Semi Annual Awarded Bid Unit Prices 
1 Year 13.53% 9.29% 11 12 

2 Year 13.09% 9.05% 4 11 

National Highway CCI 
1 Year 14.56% 9.41% 17 16 

2 Year 15.17% 9.91% 18 18 
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5.5 ANALYSIS OF MAPE VALUES – TWO-WAY ANOVA 

Having identify the 18 combination with the lowest homogenous variances (see Table 19), the next 

step was to compare the MAPE values with the two-way ANOVA test. This statistical process 

allowed to author to test the following three null hypothesis: 

1. The means of the absolute percentage errors across the two look-back periods are the same;  

2. The means of the absolute percentage errors across all nine indexing approaches are the 

same; 

3. There is no interaction between the look-back periods and the indexing approaches. It 

means that both categorical variables are independent, which is a requirement for this test. 

Table 20 summarizes the results of the two-way ANOVA test for remaining 18 combinations. 

With a p-value of 0.696, it is possible to assume, with a high level of confidence, that a similar 

level of accuracy would be achieved with a one- or two-year look back period (first null 

hypothesis). The same could be said about the accuracy of the remaining nine indexing approaches 

(with a p-value of 0.127). Finally, a p-value of 0.982 allows to conclude that there is no interaction 

between the remaining look-back periods and indexing approaches, meaning that these are 

independent variables. In summary, none of the null hypothesis could be rejected, meaning that all 

the 18 remaining combinations offer similar accuracy and reliability.   

Table 20. Results of Two-way ANOVA Test for 18 Combinations 

Source of 

Variation 
SS df MS F P-value F crit 

Indexing Approach 0.0149 8 0.0019 0.6955 0.696 1.9438 

Look-Back Period 0.0062 1 0.0062 2.3284 0.127 3.8468 

Interaction 0.0053 8 0.0007 0.2472 0.982 1.9438 

Within 4.6327 1728 0.0027       

Total 4.6591 1745         
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5.6 VALIDATION AGAINST CURRENT ESTIMATING SYSTEMS 

This thesis has successfully proved that the 18 look back period/indexing approach 

combinations listed in Table 19 offer a superior performance for the estimation of unit prices for 

the case study item in comparison with the other 82 combinations considered in this study. 

However, it is still necessary to prove if these 18 combinations are also better, in term of accuracy 

and reliability, than the current cost estimating techniques used in the transportation construction 

industry. Given that the author had no access to actual estimates made by ALDOT for the case 

study item, it is not possible to determine if the proposed methodology to ALDOT’s current cost 

estimating system. However, as discussed in Section 5.6, it can be compared against the 

performance of the estimating systems adopted by the contractors doing business with ALDOT. 

This is a significant validation considering the fact that all the bidders have a common goal of 

submitting least minimum possible cost, so that, rather than trying to estimate actual construction 

costs they are trying to determine what would the lowest bid for a given construction project. They 

can decided later if they would be able to do the work with the estimated lowest bid. 

Table 21 compares the MAPE’s and standard deviation between the second lowest bids 

and the estimates obtained with the top ranked combination: two-year look-back period with a 

Quarterly All Bids Index. Even though the seems to be significant reduction in the MAPE and 

standard deviation values in Table 21, the magnitude of these improvements was also tested 

through statistical testing. The F-test showed a significant improvement in reliability at a 5% 

significance level (p-value = 7.21x10-11). This time the paired two-sample t-test was not suitable 

for the comparison of the means since some contracts have multiple bids for the same item; 

therefore, this is not a one-to-one comparison. The two-sample t-test assuming unequal variances 

was used in this case, showing a significance improvement in accuracy at a 5% significance level 
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(p-value = 0.042). I should be noted outliers had been already removed from the unsuccessful bids, 

discarding unit prices unreasonable low or high. 

Table 21. Comparison of Results Using Unsuccessful Bidders 

 MAPE 
Standard Deviation of 

APEs 

Unsuccessful Bids (A) 15.09%  15.51%  

Two-Years Look-Back Period & 

Quarterly All Bids CCIS (B) 
12.52%  8.21%  

Percentage Improvement (A-B)/A 15.24 % 49.01% 

Significance of Improvement at 99% 

Confidence Level  
Statistically Significant Statistically Significant 

P-value <0.01 <0.01 

 

Even though the results in Table 21 and the statistical tests on these results do not allow to 

conclude that the proposed methodology is more effective than the estimating system of any 

contractor doing business with ALDOT (it was not compared against every single contractor), it 

is possible to conclude that methodology presented in this study offer greater accuracy and 

reliability in the calculation of unit prices for the case study item than the average estimating 

techniques used by transportation construction contractors in Alabama.  

Finally, even though no statistically significant differences were found in the performance 

of the 18 alternatives listed in Table 19. The final recommendation made by the author regarding 

the selection of the most suitable combination is still to select the top ranked combination. In the 

case of this study, that would be the two-year look-back period with the Quarterly All Bids CCIS. 

Rather than proving that all 18 combination would have the same performance, the statistical test 

failed to prove the opposite –that there are significant differences. It is still possible that the test 

failed to detect actual significant gaps in the performance of the top combinations. If that were the 
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case, the top-ranked alternative would most likely be the one offering the significantly superior 

performance. It is still important to conduct the statistical analysis after ranking all combinations, 

because that would tell ALDOT if there are other combinations with a comparable effectiveness 

in case of not having access to the elements required to use to top ranked alternative.      
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 CONCLUSIONS 

The main contribution to the body of knowledge made by this thesis is a comprehensive 

data-driven estimating methodology that takes into consideration the scale of projects and the 

impact of time to improve the accuracy and reliability of bid-based estimates for paving projects 

executed by ALDOT. The scale and time cost influencing factors were introduced into the cost 

estimating process using non-linear regression models, a look-back period determination protocol, 

and cost indexing mechanism to adjust bid-based estimates for inflation and market fluctuations. 

The development and validation of the proposed system was illustrated by applying it to a 

case study item: “Superpave Bituminous Concrete Wearing Surface Layer, 1/2" Maximum 

Aggregate Size Mix, ESAL Range C/D – Item ID 424A360.” This is the most relevant pay item 

used in ALDOT’s paving projects. The author has used a moving-window data optimization 

algorithm to identify the optimal look-back period for data retrieval and the most suitable indexing 

approach for the case study item. A total of 5 look-back periods, ranging from 1 to 5 years, and 20 

indexing approach have been considered in this study. Twelve of these indexing approaches were 

developed in this study and are referred to as CCIS’s, which are arrangements of several cost 

indexes organized in a multilevel arrangement. Statistical tests failed to find significant differences 

between the estimating performance of the top 18 look-back period/indexing approach 

combinations. However, the study recommends the use of a two-year look-back period and a 

Quarterly All Bids CCIS to maximize the estimating accuracy and reliability for the case study 
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item. This combination showed the highest accuracy and reliability among the 100 combinations 

evaluated in this study (5 look-back periods x 20 indexing approaches = 100 combinations).    

Besides being used to identify the best look-back period/indexing approach combination, 

the moving-window algorithm was used to demonstrate the importance of considering scale a time 

effects into the cost estimating process. It was achieved by adding 10 more calculations to the 

moving-window algorithm: five for each of the look-back period and using no non-linear 

regression and no indexing approach; and five more for each of the look-back periods using non-

linear models but no indexing approach. The best accuracy and reliability among the five “no non-

linear regression and no indexing approach” calculations were compared against the best accuracy 

and reliability among the five “no indexing approach” calculations, which include non-linear 

regression models. It showed an increase in estimating accuracy and reliability of 22.5% and 

34.0%, respectively, which is attributed to the used of the non-linear regression models. This 

improvement was found statistically significant with a 99% confidence level. Similarly, a 

statistically significant improvement was obtained after incorporating the time adjustments into 

the bid-based cost estimating process, showing the importance of considering this cost-influencing 

factor. The improvement in estimating accuracy and reliability associated with the use of the CCIS 

was 16.3% and 14.7%, respectively.     

It should be noted that the specific quantitative results presented in this study are only 

applicable to the case study item in projects to be awarded by ALDOT. However, the process that 

led the author to these findings has been explained in great detail through this thesis, so that it 

could repeated by ALDOT for other pay items. 
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6.2 RECOMMENDATIONS FOR FUTURE RESEARCH  

This thesis is the first of a series of research efforts intended to enhance ALDOT’s 

construction cost estimating system. The data-driven cost estimating methodology presented in 

this research considers only two factors; scale and time. However, other factors like geographic 

conditions, level of competition, and uncertainty may have a potential influence on the accuracy 

and reliability of construction cost estimating systems. Further research is required to assess the 

impact of other cost-influencing factors to facilitate the incorporation of these impacts into the cost 

estimating process.  

There is also a need for further research to analysis the reasons behind the outlying 

condition of the unit prices discarded in this study during the data cleaning process. Some of these 

unit prices may be substantially higher or lower than normal price ranges due to unique project 

requirements. A better understanding of the circumstances that force bidders to submit abnormal 

unit prices would allow ALDOT to identify those projects in which the proposed cost estimating 

methodology, or could also help model developers to improve this methodology making it 

applicable to those projects with special requirements.  

Finally, part of the process used in this thesis to identify the best look-back period/indexing 

approach combinations was based on visual inspections. More specifically, the elimination of 

look-back periods and indexing approaches through visual inspection was conducted during the 

Levene’s test and ANOVA test loops. The author recognizes that the application of an objective 

process, instead of the visual inspection, could have yielded different and stronger conclusions. 

Thus, future research efforts towards the improvement of ALDOT cost estimating system should 

address this issue. 
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APPENDICES 

 

Apendix-1. 53 Pay Items Specifications 

Item id 
Unit of 

Measurement 
Description 

206C010 Square Yard Removing Concrete Driveway 

206D000 Linear Foot Removing Pipe 

206D001 Linear Foot Removing Guardrail 

210A000 Cubic Yard Unclassified Excavation 

210D021 Cubic Yard Borrow Excavation (Loose Truck bed Measurement)(A4 or Better) 

212A000 Station Machine Grading Shoulders 

214A000 Cubic Yard Structure Excavation 

214B001 Cubic Yard Foundation Backfill, Commercial 

230A000 Roadbed Station Roadbed Processing 

401A000 Square Yard Bituminous Treatment A 

405A000 Gallon Tack Coat 

408A051 Square Yard Planing Existing Pavement (Approximately 0.00" Thru 1.0" Thick) 

408A052 Square Yard Planing Existing Pavement (Approximately 1.10" Thru 2.0" Thick) 

424A360 Ton 
Superpave Bituminous Concrete Wearing Surface Layer, 1/2" Maximum 

Aggregate Size Mix, ESAL Range C/D 

424B650 Ton 
Superpave Bituminous Concrete Upper Binder Layer, 3/4" Maximum Aggregate 

Size Mix, ESAL Range C/D 

424B655 Ton 
Superpave Bituminous Concrete Upper Binder Layer, Patching, 1" Maximum 

Aggregate Size Mix, ESAL Range C/D 

424B659 Ton 
Superpave Bituminous Concrete Upper Binder Layer, Leveling, 1" Maximum 

Aggregate Size Mix, ESAL Range C/D 

424B681 Ton 
Superpave Bituminous Concrete Lower Binder Layer, 1" Maximum Aggregate 

Size Mix, ESAL Range C/D 

502A000 Pound Steel Reinforcement 

505M002 Linear Foot Steel Piling Furnished And Driven (HP 12x53) 

508A000 Pound Structural Steel 

510A000 Cubic Yard Bridge Substructure Concrete, Class A 

510E000 Square Yard Grooving Concrete Bridge Decks 

530A001 Linear Foot 18" Roadway Pipe (Class 3 R.C.) 

610C001 Ton Loose Riprap, Class 2 

610D003 Square Yard Filter Blanket, Geotextile 
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Item id 
Unit of 

Measurement 
Description 

614A000 Cubic Yard Slope Paving 

620A000 Cubic Yard Minor Structure Concrete 

630A001 Linear Foot Steel Beam Guardrail, Class A, Type 2 

650A000 Cubic Yard Topsoil 

650B000 Cubic Yard Topsoil From Stockpiles 

652A100 Acre Seeding 

652C000 Acre Mowing 

654A000 Square Yard Solid Sodding 

654A001 Square Yard Solid Sodding (Bermuda) 

656A010 Acre Mulching 

665A000 Acre Temporary Seeding 

665E000 Square Yard Polyethylene 

665I000 Ton Temporary Riprap, Class 2 

665L000 Linear Foot Floating Basin Boom 

665O001 Linear Foot Silt Fence Removal 

666A001 Acre Pest Control Treatment 

701C000 Mile Broken Temporary Traffic Stripe 

701C001 Mile Solid Temporary Traffic Stripe 

701H001 Linear Foot Solid Traffic Stripe Removed (Plastic) 

701H006 Linear Foot Broken Traffic Stripe Removed (Plastic) 

703A002 Square Foot Traffic Control Markings, Class 2, Type A 

703B002 Square Foot Traffic Control Legends, Class 2, Type A 

703D001 Square Foot Temporary Traffic Control Markings 

710A115 Square Foot 
Class 4, Aluminum Flat Sign Panels 0.08" Thick Or Steel Flat Sign Panels 14 

Gauge (Type III Or Type IV Background) 

710A126 Square Foot 
Class 8, Aluminum Flat Sign Panels 0.08" Thick Or Steel Flat Sign Panels 14 

Gauge (Type IX Background) 

730H001 Linear Foot Loop Wire 

740B000 Square Foot Construction Signs 

 


