
Data Driven Methods for Chemical Process and Product Synthesis and Design 
 

By 
 

Sarah Elizabeth Davis 
 
 
 
 

A dissertation submitted to the Graduate Faculty of 
Auburn University 

in partial fulfillment of the 
requirements for the Degree of 

Doctor of Philosophy 
 

Auburn, Alabama 
December 15, 2018 

 
 

  
 

Keywords:  Computer Aided Molecular Design, Principal Component Analysis, 
Surrogate Modeling 

 
 

Copyright 2018 by Sarah Elizabeth Davis 
 

Mario R. Eden, Chair, Joe T & Billie Carole McMillan Professor, Chemical Engineering 
Selen Cremaschi, Co-Chair, B. Redd Associate Professor, Chemical Engineering 

Allan E. David, John W. Brown Associate Professor, Chemical Engineering 
Steve E. Taylor, Associate Dean for Research, Biosystems Engineering 

 
 
 
 
 
 
 
 
 
 



ii 
 

 Abstract 
 

Data driven methods for chemical process and product synthesis have become 

integrated in all aspects of design.  The responsibly of the academic community should 

be to provide users with guidance when managing the ever-increasing amount of data 

and possible data analytics methods with a goal of utilizing these new design tools to 

ensure that their applications provides meaningful results.    

Progressive model improvement will lead us to improve characterization techniques 

to better describe molecules, more advanced modeling methods provide more correct 

results, and uncertainty management will ensure that the results are more accurate.  The 

methods presented in this work illustrate applications of data driven methods for chemical 

process and product synthesis and design with a focus on two specific tools computer 

aided molecular design and surrogate modeling.   

Computer Aided Molecular Design is a framework that allows us to utilize data to 

design molecules specific to a process.  This is important because it eliminates the need 

to alter the design to match the available inputs, rather the inputs are modified to match 

the design.  Once issue with this method is that it is reliant on characteristic data for each 

molecule or building block.  The work presented in this dissertation allows us to generate 

necessary data to apply to the framework thus expanding the possible molecules that can 

be utilized even further than the computer aided molecular design framework alone. 
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 Surrogate modeling allows us to understand complex or unknown processes to 

provided understanding of the process and improve designs.  The work presented in this 

dissertation provides information about the application of those models based on the 

surface shape and number of inputs.  Additionally, it provides information about sampling 

methods and sizing.  Basically, this information can help make an informed decision when 

selecting which surrogate model, sampling method and group for each type of application.   

Both advances provide added depth to data analysis by enhancing current 

methodologies.  This type of work is important because as the modern chemical engineer 

begins to implement data driven design techniques, the applications that are utilized will 

need to become more robust and accurate.       
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 Introduction 

1.1. Extracting Value from Data 

Over the broad spectrum of data analytics applications, one implicit goal is 

understanding.  More specifically when applied to chemical engineering processes, we 

seek to confirm what we know about a process or learn from something unusual. Process 

design can be improved because we can use existing data to optimize, improve or control 

processes.  Further extensions include prediction of process behavior prior to 

implementation and monitoring once a process is in place.  

1.1.1. Types of Data 

In the 1950’s when industrial manufacturing and chemical engineering really began to 

develop, data was collected from existing process or bench models.  Due to the manual 

nature, each variable measured was expensive, so only the most vital were collected.  

Classical visualization tools generally included scatter plots, time-series plots, 

exponentially weighted moving average charts for process monitoring, and multiple linear 

regression least-squares models.  To provide a graphical illustration, X will represent any 

data set where each row contains values from a variable where each row includes the 

measurements or observations at a point in time, various properties of a final product or 

raw material.  Columns represent the values recorded for each observation or variables 

and the number measured will be described as K. 
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Figure 1.  Basic Data Set, X, with M observations and K variables. 

 

 These data sets from the 1950’s usually had more observations and fewer 

variables due to time and money constraints.  As a result, the selection of variables was 

carefully considered, so variables were often independent with no or little correlated 

information and the variables were often measured in a controlled environment with a low 

amount of error.  In this case, the financial limitations of the data created an enhancement.  

Present day engineers generally do not have the same limitations as we can now 

measure variables electronically, however some of the accuracy and independence of 

the data may be lost.  Higher dimensional data sets are very common, so noise, correlated 

data and unnecessary data can create complicate the analysis.  

1.1.2. Potential Issues with Data 

 As sample sizes have increased along with increased number of variables, data 

management becomes increasingly important.  Additionally, larger data sets present a 

challenge for analytics because the data set must be treated in such a way as to learn 

from the relevant information and eliminate the irrelevant or incorrect data.   

K

M

X
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 Independent variables are essential when analyzing a data set.  In process 

modeling, many variables are dependent on one another, therefore lack of independence 

is a major concern.  The balancing act between omitting valuable data and reducing the 

number of variables can have a major impact on the results.  

 Steady state, a goal of most engineering systems, provides challenges for data 

analysis. Data from such systems have very little signal and high noise as much of the 

data is from constant operations, noise, slow drift, or error.  Finding the interesting signals 

in this routine data is the challenge (Denbig, 1951).   

 Data that was collected with error can skew the results of any experiment or 

observation.  Assumptions are often made that the measuring equipment was calibrated, 

that the person taking the reading was correct, or many other variables that can cause 

error in data can lead to unintended or unobserved error.  Missing data is very common 

in engineering applications due to any number of factors leading to a “missing” 

observation or data point.    

1.2. Data Driven Methods in Chemical Engineering 

 Today’s data driven methods need to overcome the potential points where failure 

occurs.  These methods should be able to extract relevant information and handle missing 

information from multidimensional data sets where the data may be stored in different 

locations while managing collinearity or measurement error in the recorded data.  Latent 

property models are one example of this type of advanced data driven problem solving.   
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1.3. Data Driven Process Systems Engineering 

The basis of process system engineering research is the development of 

computationally efficient prediction of the performance of a system of unit operations 

which are the essential stages of a process described by universal physical law such as 

fluid flow, heat and mass transfer, thermodynamic phase behavior, and reactions.  

Commonly, processes are a combination of process steps with many unit operations, 

resulting in highly complex systems.  To understand those complex systems, simulation 

and prediction models have been and continue to be developed.   

Over the last few decades a shift has taken place in the chemical engineering industry 

from gold standard commodity chemicals which were produced in bulk based on tried and 

true historical usage.  The chemicals tended to have minimal variation among 

manufacturers and were molecules with simple architecture.  Profits were proportional to 

increased production volume and improved process improvements.  As the market 

demands more sophisticated chemicals which are ideal for a specific process, the 

industry has begun moving forward from traditional process optimization to product 

innovation.  The obvious shift has taken place where expected in the biomedical arena, 

but in also more traditional chemical process plants.  Traditionally, chemical engineering 

process and product design studies have been performed by physical experimentation 

based on hypotheses and tested in a laboratory to test the validity of a design as shown 

in Figure 2.  This process has a significant shortcoming because the solution is limited to 

existing molecules with associated performance data.   
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Figure 2. Traditional Chemical Engineering Process Design 
 

 Specialty chemicals moving to the forefront has broadened the audience of 

chemical engineers seeking to understand the vital relationship between the molecular 

architecture of a specialty chemical and its physical and chemical properties.  Unlike 

traditional design of commodity chemicals, the design of specialty chemicals is not limited 

to raw material resources or defined molecular architectures.  The mindset is reversed; 

the consumer is asked to define the attributes of the ideal chemical than selecting the 

closest match.     

 Advancement is occurring in the computational and data driven arena rather than 

the laboratory to explore both molecular design and process simulation.  Over the last 

couple of decades, our ability to build models that simulate the behavior of complex 

phenomena has increased tremendously. Partially driven by powerful computing tools, 
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we can now model phenomena at different spatial and temporal scales and combine them 

in multi-scale models to predict the performances more accurately of our product and 

process designs while managing computational burdens.  Additionally, computer aided 

molecular design (CAMD) and the idea of reverse design allow the engineer to design the 

optimal chemical for the process which removes the traditional limitation of selecting 

chemicals that were readily available.  These advancements have allowed us to improve 

our chemical engineering design through optimization of the processes and materials as 

shown in Figure 3. 

 

Figure 3. Data Driven Chemical Engineering Design 
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1.3.1. Product Design 

Molecular design can design the ideal molecule for a set of constraints.  The tunable 

nature of ionic liquids and the estimation that 100 trillion possibilities may exist at room 

temperature lends itself well to molecular design (Turner et al, 2003).   

Ionic liquids can provide environmentally benign solutions that can be tailored to 

specific process requirements (Wasserscheild & Welton, 2007).  Due to the unique 

structure of ionic liquids, the cation, anion, and length of the alkyl chain can be varied to 

create a molecule with specific physical properties; however, experimental trial and error 

methods are impractical, so more advanced methods must be created determine the ideal 

combination for a specific set of process requirements.   

A study was undertaken to demonstrate this method and sought to determine the ideal 

ionic liquid to capture CO2.  However, only a small percentage of the potential ionic liquids 

have been synthesized and tested for the solubility of CO2.  This innovative approach 

detaches the solution from further laboratory study and streamlines the search for the 

ideal candidate.   

A characterization-based group contribution method is combined with density 

functional theory to determine the ionic liquid that can most effectively absorb CO2.  

Infrared spectra data contains descriptor data that can be used to estimate properties of 

ionic liquids but does not exist for all ionic liquids.  Density functional theory is used to 

create IR data based on a training set of experimental data.  Principal component analysis 

and partial least square techniques are employed to reveal important features and 

patterns in the molecular architecture.  A characterization-based group contribution 

method is used to estimate properties.  The reverse design of potential ionic liquid 
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molecules is completed by an exhaustive search of combinations with various cation, 

anions, and lengths of alkyl chains until a candidate molecule is found that provides the 

highest solubility of CO2.   

1.3.2. Process Modeling 

One method that is often utilized to simulate a process is surrogate modeling which 

statistically relate input data to output data.  Most often, these models are utilized when 

the relationship between input and output data is unknown, or when the relationship is 

highly complex and a simpler relationship with reasonable accuracy is desired. Many 

studies have developed and defined different surrogate model forms, but little work 

focuses on systematically comparing the abilities of these surrogate models to learn the 

response of the complicated models with different characteristics.   

The goal of this study was to provide guidance when selecting surrogate model form.  

The performances of eight surrogate model forms, Artificial Neural Network, Automated 

Learning of Algebraic Models for Optimization, Extreme Learning Machines, Support 

Vector Regression, Radial Basis Function Networks, Gaussian Process Regression, 

Random Forests, Multivariate Adaptive Regression Splines, are compared via 

computational experiments.  The training data was generated from thirty-five challenge 

functions using three different sampling methods, which are Latin Hypercube Sampling 

(LHS), Sobol Sequence and Halton Sequence.  Six performance metrics, r-squared, r-

squared adjusted, maximum absolute error (MaAE), root mean square error (RMSE), and 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), were 

calculated for each challenge function and surrogate model combination. The results 

provide guidance for selecting the ideal surrogate model based on specifics of the 
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problems including: surface shape of the challenge function, number of inputs of the 

challenge function, input sample generation method and input sample size. 

1.4. Organization 

Chapter 2 introduces the general theoretical background required for the development 

of the work presented in this dissertation.  Section 2.1 describes the computer aided 

molecular design framework that was utilized to predict the ionic liquid properties 

including:  reverse problem formulation, characterization-based group contribution 

technique using latent property parameters, density functional theory, chemometric 

techniques, and property clustering. Section 2.2 describes the surrogate models that were 

tested including:  Artificial Neural Networks (ANN), Automated Learning of Algebraic 

Models for Optimization (ALAMO), Automated Learning of Algebraic Models for 

Optimization (ALAMO), Extreme Learning Machine (ELM), Support Vector Regression 

(SVR), Radial Basis Function Networks (RBF), Gaussian Process Regression (GPR), 

Random Forests (RF), Multivariate Adaptive Regression Splines (MARS).  Chapter 3 

provides a case study for the prediction of properties of ionic liquids with the intent to find 

the ideal ionic liquid to remove CO2 from process flue gas.  Chapter 4 provides a study of 

surrogate models with the intent to seek the surrogate model best suited to a situation.  

Chapter 5 presents the overall conclusions and details possible future work that would 

advance data driven chemical engineering process and product design.   
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CHAPTER 2. Product Design 

Product design, the conversion of a conceptual idea into a tangible, manufactured 

object, enables manufactures to remain completive in a highly competitive and fluctuating 

market with global supply chains.  Unlike overall process design, product design is based 

primarily on a set of consumer requirements or requests that are directly related to 

molecular architecture and the resulting physical-chemical properties.  Work presented in 

this section was previously published in Computers and Chemical Engineering 34  (Davis, 

Hada, Herring III, & Eden, 2014) and Computers and Chemical Engineering 81 (Hada, 

Herring III, Davis, & Eden, 2015)      

2.1. Computer Aided Molecular Design (CAMD) 

Computer Aided Molecular Design (CAMD) facilitates the utilization of algorithms to 

solve chemical product or process design formulations.  Traditionally, chemical 

engineering design has seen two major roadblocks:  the ability to predict chemical and 

physical properties and the ability to solve large scale optimization problems.   

The work addressed in CHAPTER 3 takes advantage of the existing methods within 

the computer-aided molecular design (CAMD) framework.  (Harper et al, 2000 Eljack et 

al, 2008 McLesse et al, 2010)  A characterization-based method was combined with 

chemometric (Solvanson et al, 2011 Hada et al, 2011) and property clustering techniques 

(Shelley et al, 2000) in a reverse problem formulation (Eden et al, 2004) to develop a 

logical and systematic approach of selectively choosing a given ionic pair that matches a 

set of desired physical property targets.  This work was previously published in Computer 

aided Chemical Engineering (Davis, Herring III, & Eden, 2016). 
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2.1.1. Reverse Problem Formulation  

Reverse problem formulation helps circumvent the challenges posed by coupling of 

scales by bridging them through a property domain.  Reverse problem formulations use 

the duality of linear programming to reformulate the design problem as a series of reverse 

problems solved in the property domain. This way, an immense computational cost 

associated with the hierarchical nesting across multiple-scales is relieved leading to a 

much more efficient solution achieved through reduction in the need for enumeration. 

(Eden et al, 2003) 

Reverse problem formulation decomposes the conventional forward process-product 

design problem which are naturally iterative into two reverse problems linked by property 

targets.  The first step defines the property targets which will satisfy the desired process 

performance and the second step selects the molecules which provide the property 

targets.  This efficient process will identify the optimum solution and is pictorially displayed 

in Figure 4. 
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.  

Figure 4.  Reverse Process Design using Data Driven Methods 

2.1.2. Prediction of Properties 

Property prediction call pull from computationally complex models to data-dependent 

regression models and can be applied to any chemical system.  Constantinou and Gani 

(Gani & Constantinou, 1994) classified property estimation methods into two groups.  The 

first group referred to as approximate was further divided into empirical models and semi-

empirical models.  Empirical models included chemometrics, pattern matching, factor 

analysis, and quantitative structure property/activity relationships; whereas semi-

empirical models included corresponding state theory, topology/geometry, 

group/atom/bond additivity.  Opposite the approximate group, the reference group 

included fundamental models such as quantum mechanics, molecular mechanics, and 

molecular simulation.   
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Group Contribution theory employs quantitative structure property/activity 

relationships (QSPR/QSAR) to provide property estimations (Linusson et al, 2010).  

QSPR models relate the physical, mechanical, or chemical properties with the structure 

features of materials (Varnek et al, 2007).  These models can be used for screening and 

optimization because they provide information on features that affect the physiochemical 

properties.  One important consideration for this method is the requirement of a large 

training data set that includes the optimum molecules spanning the chemical and property 

space  (Karmer, 1998).  

2.1.3. Characterization Based Group Contribution Method 

The group contribution method is based on the idea that each portion of the molecule 

contributes to the overall function of the molecule.  The properties of the molecule are 

estimated by identifying fragments such as bonds, atoms or groups and summing all the 

contributions from each fragment to make the whole molecule  (Chemmangattuvalappil, 

Eljack, & Eden, 2009).  These estimations can be made utilizing only structural 

information.  As shown in Equation 2.1 (Gani R. , 2004) a group contribution property 

model estimates the property function of the molecule as a linear combination of the 

fragment contributions. 

𝑓𝑓(𝑥𝑥) = ∑ 𝑁𝑁𝑖𝑖𝐶𝐶𝑖𝑖 + ∑ 𝑀𝑀𝑗𝑗𝐷𝐷𝑗𝑗 + ∑ 𝑂𝑂𝑘𝑘𝐸𝐸𝑘𝑘𝑘𝑘𝑗𝑗𝑖𝑖        2.1 

Where, Ni = the number of occurrences of first-order group i 

  Ci = the contribution from the first-order group i 

 Mj = the number of occurrences of second-order group j 

  Di = the contribution from the second-order group j 

 Ok = the number of occurrences of third-order group k 
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  Ek = the contribution from the third-order group k 

 Since they assume no interaction between groups, basic information is stored in 

the first order terms.  Second order terms correct for the interactions between first order 

terms and are derived from the first order terms.  Third order terms are estimated to 

correct for poly-functional compounds using the first and second order terms  (Harper & 

Gani, Computer aided tools for design/selection of environmentally firnedsly substances, 

2000).   

While a good estimator, data is a limiting factor.  Since the availably of atom or group 

type and bonding present is required to describe the structure and property contributions 

for the groups must be obtainable, the method is reliant on building blocks that have been 

synthesized and measured.  For example, only a small portion of ionic liquids have been 

studied, so we are limited to molecules built from known building blocks that have been 

measured.  Additionally, group contribution method cannot represent all possible atomic 

configurations leading to the need for an efficient method to design structured molecules.  

One method combines multivariate methods with decomposition techniques.   

This framework employs infrared, near infrared spectroscopy or other multivariate 

characterization techniques to describe a set of samples.  Then, decomposition 

techniques including principal component analysis and partial least squares to determine 

the underlying latent variables that will describe the molecule’s properties.  Latent 

variables are characterized indirectly rather than being observed directly.  The candidate 

molecules can then be identified by combining molecular fragments until the resulting 

properties match the targets.   
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2.1.4. Characterization Techniques 

 Characterization techniques are a class of experimental tools meant to describe 

chemical constituency and molecular structure plus the orientation and alignment of those 

molecules.  These techniques provide large quantities of correlated data that can provide 

molecular architecture information  (Marrero & Gani, 2001).  Managing this complexity 

requires a systematic method for determination of which specific information will be useful 

in the modeling to reduce complexity.   Common examples include infrared spectroscopy, 

nuclear magnetic resonance, and x-ray diffraction spectroscopy.  This data is often 

applied to a training set of molecules defined by an experimental design used to 

understand a set of property attributes.  Figure 5 shows general characterization and 

associated attributes.  
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Figure 5.  An Overview of the Interconnectivity of Characterization Techniques, 
Molecular Architecture and Physical Properties and Attributes of Chemical and Material 

Products.  (Solvason, 2011) 

 Infrared and near infrared spectroscopy provides information concerning the 

electronic structure, atomic structure, chain structure and intermolecular structure.  While 

other techniques could have provided similar results, spectroscopy was considered in this 

dissertation.  Spectroscopy is the detection and analysis of the radiated energy absorbed 

or emitted by the architecture of a chemical species. (Atkins, 1998) The shape and size 

of relative intensities are indicators of molecular architecture because those intensities 

are primarily functions of the atom specific dipole changes caused by the vibrations of the 

corresponding bonds.  The infrared absorbance frequencies and magnitudes of the 

functional groups’ spectrums are listed below in Figure 6.        

 
Methine Groups, -CH-  

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
Bending (δ) 1360 1320 1340 w 90 

Stretching (𝜐𝜐) 2890 2880 2885 w 90 
 
Methylene Groups, -CH2- 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
Scissoring Bend (δs) 1480 1440 1460 m 50 

Symmetrical Stretching (𝜐𝜐s) 2870 2840 2855 m 50 

Asymmetrical Stretching (𝜐𝜐a) 2940 2915 2928 m-s 30 

 
Methyl Groups, -CH3 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
Sym Bend (δs) 1390 1370 1380 m-s 30 
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Asym. Bend. (δa) 1465 1440 1453 m 50 

Symmetrical Stretching (𝜐𝜐s) 2885 2865 2875 m 50 

Asymmetrical Stretching (𝜐𝜐a) 2975 2950 2963 m-s 30 

 
Tetramethyl Groups, -C(CH3)3 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C-C Skeletal Bend (δs) 930 925 928 m 50 

C-C Skeletal Bend (δs) 1010 990 1000 m-w 70 

C-C Skeletal Bend (δs) 1225 1165 1195 m 50 

C-C Skeletal Bend (δs) 1255 1245 1250 m 50 

C-CH3 Sym. Bend. (δs) 1395 1350 1373 m-s 30 

C-CH3 Sym. Bend. (δs) 1420 1375 1398 m 50 

C-CH3 Asym. Bend. (δa) 1475 1435 1455 m 50 

C-H Sym. Stretching (𝜐𝜐s) 2885 2865 2875 m 50 

C-H Asym. Stretching (𝜐𝜐a) 2975 2950 2963 m-s 30 

 
Aliphatic Methoxy Groups, -O-CH3 (Special Methyl) 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Averag
e 

C-O Def. Bend. (δd) 580 340 460 m-w 70 

CH3/CO Rocking Bend 
(δd) 

1190 1100 1145 m-w 70 

CH3 Rock Bend (δd) 1235 1155 1195 m-w 70 

CH3 Sym Bend (δs) 1460 1420 1440 M 50 

CH3 Asym. Bend. (δa) 1475 1435 1455 m 50 

CH3 Asym. Bend. (δa) 1485 1445 1465 m 50 
C-H3 Sym. Str. (𝜐𝜐s) 2880 2815 2848 m 50 

 C-H3 Asym. Str. 
(𝜐𝜐a) 

2985 2920 2953 m 50 

C-H Asym. Str. (𝜐𝜐a) 3030 2950 2990 m 50 

 
Vinyl Group, -CH=CH2 

 

Band Wavelength Region [cm-1] Relative % 
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 High Low Average Intensity Transmi 
ttance 

C=C Tors. Bend (δT) 485 410 448 m-s 30 

C=C Eth. Twist. Bend. (δt) 600 380 490 m-s 30 

C=C Eth. Twist. Bend. (δt) 720 410 565 w 90 

C-H2 OoP Rock. Bend. (δr) 980 810 895 s 10 

C-H OoP Bending. (δr) 1010 940 975 s 10 

C-H IP Def. Bend. (δd) 1180 1010 1095 m-w 70 

C-H2 Def. Bend. (δd) 1330 1240 1285 m 50 

C-H2 Sci. Bend. (δs) 1440 1360 1400 m 50 

C=C Stretching (𝜐𝜐) 1645 1640 1643 m-w 70 

C-H2 1st Overtone Bend (2δ) 1840 1820 1830 v 90 

C-H 1st Overtone Bend (2δ) 1990 1970 1980 v 90 

C-H2 Sym. Stretch (𝜐𝜐 s) 3070 2930 3000 M 50 

C-H Stretch (𝜐𝜐) 3110 2980 3045 M 50 

C-H2 Asym. Stretch (𝜐𝜐 a) 3150 3000 3075 M 50 

 
Vinylidene Group, CH2=C- - 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C=C Skeletal Stretch (𝜐𝜐) 470 435 453 m-w 70 

C=C Skeletal Stretch (𝜐𝜐) 560 530 545 s 10 

C=C Eth. Twist. Bend. 
(δt) 

715 680 698 w 90 

C-H2 OoP Rock. Bend. 
(δr) 

895 885 890 s 10 

C-H2 IP Def. Bend. (δd) 1320 1290 1305 w 90 
C-H2 Sci. Def Bend. (δs) 1420 1405 1413 w 90 

C=C Stretching (𝜐𝜐) 1675 1625 1650 m-w 70 

C-H2 1st Overtone Bend 
(2δ) 

1800 1750 1775 w 90 

C-H2 Sym. Stretch (𝜐𝜐 s) 2985 2970 2978 m-w 70 

C-H2 Asym. Stretch (𝜐𝜐 a) 3095 3075 3085 m-w 70 

 
cis-Vinylene Group, -CH=CH- 
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Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C-H Tors. Bend (δT) 490 320 405 m-s 30 

C=C Skeletal Bend (δT) 500 460 480 s 10 

-C=CH Def. Bend. (δd) 590 440 515 m-s 30 

C=C Eth. Twist. Bend. (δt) 630 570 600 s 10 

C-H Wag. Bend. (δw) 790 650 720 m-s 30 

C-H Wag. Bend. (δw) 1000 850 925 m-w 70 

C-H Def. Bend. (δd) 1295 1185 1240 w 90 

C-H Def. Bend. (δd) 1425 1355 1390 w 90 

C=C Stretching (𝜐𝜐) 1665 1630 1648 m 50 

C-H Stretch (𝜐𝜐) 3040 2980 3010 m 50 

C-H Stretch (𝜐𝜐) 3090 3010 3050 m 50 

 
trans-Vinylene Group, -CH=CH- 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C-H Tors. Bend (δT) 490 320 405 m-s 30 

C=C Skeletal Bend (δT) 500 480 490 s 10 

-C=CH Def. Bend. (δd) 590 440 515 m-s 30 
C=C Eth. Twist. Bend. 

(δt) 
580 515 548 m-s 30 

C-H Wag. Bend. (δw) 850 750 800 m-w 70 

C-H Wag. Bend. (δw) 1000 910 955 v 90 

C-H Def. Bend. (δd) 1305 1260 1282.5 v 90 
C-H Def. Bend. (δd) 1340 1355 1347.5 v 90 

C=C Stretching 
(𝜐𝜐) 

1680 1665 1673 m-w 70 

C-H Stretch (𝜐𝜐) 3050 3000 3025 m 50 

C-H Stretch (𝜐𝜐) 3065 3015 3040 m 50 

 
Hydroxyl Group, -OH (with intermolecular H-bonding) 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
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Bending (δ) 710 570 640 m 50 

Stretching (𝜐𝜐) 3550 3230 3390 m-s 30 

 
Primary Alcohol Group, -CH2OH (with intermolecular H-bonding) 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C-O Def. Bend (δd) 555 395 475 m-w 70 

C-O IP. Def. Bend (δd) 500 440 470 w 90 

O-H OoP. Def. Bending 
(δd) 

710 570 640 m-w 70 

C-CO Stretch (𝜐𝜐) 900 800 850 m 50 

C-H2 Twist Bend (δt) 960 800 880 m-w 70 

C-C-O Stretch (𝜐𝜐) 1090 1000 1045 S 10 

C-H2 Twist. Bending (δt) 1300 1280 1290 m-w 70 

C-H2 Wag Bend (δw) 1390 1280 1335 m-w 70 

O-H Def. Bend (δd) 1440 1260 1350 m-s 30 

C-H2Def Bend (δd) 1480 1410 1445 m-w 70 

C-H2 Sym. Stretch (𝜐𝜐 s) 2935 2840 2888 m-w 70 

C-H2 Asym. Stretch (𝜐𝜐a) 2990 2900 2945 m-w 70 

O-H Stretching (𝜐𝜐) 3550 3230 3390 m-s 30 

 
Secondary Alcohol Group, - -CHOH (with intermolecular H-bonding) 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C-O OoP. Def. Bend (δd) 390 330 360 m-w 70 

C-O IP. Def. Bend (δd) 500 440 470 w 90 

O-H OoP. Def. Bending 
(δd) 

660 600 630 m-w 70 

C-CO Stretch (𝜐𝜐) 900 800 850 m 50 

C-O Stretch (𝜐𝜐) 1150 1075 1113 m-w 70 

C-H Def. Bending (δd) 1350 1290 1320 s 10 

C-H Wag Bend (δw) 1400 1330 1365 s 10 

O-H + C-H2 Coup. Bend. 
(δc) 

1430 1370 1400 m-w 70 
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O-H Def. Bend (δd) 1440 1260 1350 m-w 70 

C-H Stretching (𝜐𝜐) 2890 2880 2885 m-s 30 

O-H Stretching (𝜐𝜐) 3550 3230 3390 m-w 70 

 
Aliphatic Ether Group, -O- 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C-O-C def vib (δd) 440 420 430 w 90 

Sym C-O-C str (𝜐𝜐 s) 1140 820 980 w 90 

Asym C-O-C Str (𝜐𝜐 a) 1150 1060 1105 s 10 

Rocking vib 1200 1185 1193 m-w 70 

Wagging vib 1400 1360 1380 m 50 

Asym and Sym -CH3 def. 
vib 

1470 1435 1453 m 50 

CH2 def vib 1475 1445 1460 m 50 

Sym CH2 str 2880 2835 2858 m 50 

Sym. -CH3 Str 2900 2840 2870 m 50 

Asym CH2 str 2955 2920 2938 m 50 

Asym. -CH3 Str 2995 2955 2975 m 50 

 
Alkyl Peroxide Group, -O-O- 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
O-O Stretch (𝜐𝜐) 900 800 850 w 90 

C-O Stretch (𝜐𝜐) 1150 1030 1090 m-s 30 

 
Saturated Aliphatic Ester Group, -CO-O- 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C-O-C Sym. Stretch (𝜐𝜐 s) 1160 1050 1105 s 10 

C-O-C Asym. Stretch (𝜐𝜐 a) 1275 1185 1230 s 10 

C=O Stretch (𝜐𝜐) 1750 1725 1738 s 10 

C=O 1st Overtone (2𝜐𝜐 s) 3460 3440 3450 w 90 
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Saturated Aliphatic Methyl Ester Group, -CO-O-CH3 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
Unlisted 450 430 440 m-s 30 

CO-O Rocking Bend (δr) 530 340 435 w 90 

C-C-O Sym. Stretch (𝜐𝜐 s) 1160 1050 1105 s 10 

C-O Stretch (𝜐𝜐) 1175 1155 1165 s 10 

C-C-O Asym. Stretch (𝜐𝜐 a) 1275 1185 1230 s 10 

O-CH3 Stretch (𝜐𝜐) 1315 1195 1255 s 10 

Unlisted 1370 1350 1360 w 90 

CH3 Sym. Def. Bend (δd) 1460 1420 1440 m-s 30 

CH3 Asym. Def. Bend (δd) 1465 1420 1443 m-s 30 

CH3 Asym. Def. Bend (δd) 1485 1435 1460 m 50 

C=O Stretch (𝜐𝜐) 1750 1725 1738 s 10 
CH3 Sym. Stretch (𝜐𝜐) 3000 2860 2930 m 50 

CH3 Asym. Stretch (𝜐𝜐) 3030 2950 2990 m-w 70 

CH3 Asym. Stretch (𝜐𝜐) 3050 2980 3015 m-w 70 

C=O 1st Overtone (2𝜐𝜐 s) 3460 3440 3450 w 90 

 
Saturated Aliphatic Ethyl Ester Group, -CO-O-CH2CH3 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C-O-C Def Bend (δd) 370 250 310 m-w 70 

C-O-C Def Bend (δd) 395 305 350 m-w 70 

CO-O Rocking Bend (δr) 485 365 425 m-w 70 
CO OoP Rocking Bend 

(δr) 
700 550 625 w 90 

CH2 Rocking Bend (δr) 825 775 800 w 90 

C-C str (𝜐𝜐) 940 850 895 w 90 

CH3 Rock. Bend (δr) 1150 1080 1115 w 90 

C-C-O Sym. Stretch (𝜐𝜐 s) 1160 1050 1105 s 10 

CH3 Rock. Bend (δr) 1195 1135 1165 w 90 

C-C-O Asym. Stretch (𝜐𝜐 a) 1275 1185 1230 s 10 
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CH2 Twist. Bend (δT) 1340 1325 1333 m-w 70 

CH2 Wag. Bend (δw) 1385 1335 1360 m-w 70 

CH3 Sym. Def. Bend (δ) 1390 1360 1375 m-s 30 

CH3 Asym. Def. Bend (δ) 1480 1435 1458 m 50 

OCH2 Def. Bend. (δ) 1490 1460 1475 m-w 70 

C=O Stretch (𝜐𝜐) 1750 1725 1738 s 10 

CH3 Stretch (𝜐𝜐) 2920 2860 2890 w 90 

CH3 Sym. Stretch (𝜐𝜐 s) 2930 2890 2910 w 90 

CH3 Asym. Stretch (𝜐𝜐 a) 2995 2930 2963 m 50 

C=O 1st Overtone (2𝜐𝜐 s) 3460 3440 3450 w 90 

 
Acrylate Ester Group, CH2=CH-CO-O- 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C=C Tors. Bend (δT) 485 410 448 m-s 30 

CO-O Rocking Bend (δr) 485 365 425 m-w 70 
C=C Eth. Twist. Bend. (δt) 600 380 490 m-s 30 

C-O-C Def Bend (δ) 675 660 668 m 50 
CO OoP Rocking Bend (δr) 700 550 625 w 90 

=CH2 Twist Bend (δt) 810 800 805 m-s 30 
CH2 Rocking Bend (δr) 825 775 800 w 90 

C-C str (𝜐𝜐) 940 850 895 w 90 
=CH2 Wag. Bend (δw) 970 960 965 s 10 

C-H Def. Wag (δw) 990 980 985 m 50 
C-H OoP Bending. (δr) 1010 940 975 s 10 

C-C Skel. Bend (δ) 1070 1065 1068 m 50 
CH3 Rock. Bend (δr) 1150 1080 1115 w 90 

C-C-O Sym. Stretch (𝜐𝜐 s) 1160 1050 1105 s 10 
C-H IP Def. Bend. (δd) 1180 1010 1095 m-w 70 

Unlisted 1200 1195 1198 s 10 
C-C-O Asym. Stretch (𝜐𝜐 a) 1275 1185 1230 s 10 

=CH Rock. Bend (δr) 1290 1270 1280 m 50 
Unlisted 1290 1280 1285 s 10 

=CH2 Def Bend (δ) 1420 1400 1410 m 50 
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C-H2 Sci. Bend. (δ s) 1440 1360 1400 m 50 
C=C Stretch (𝜐𝜐) 1635 1615 1625 m 50 
C=C Stretch (𝜐𝜐) 1650 1630 1640 m-s 30 
C=O Stretch (𝜐𝜐) 1725 1710 1718 s 10 

C-H2 1st Overtone Bend (2δ) 1840 1820 1830 w 90 
C-H 1st Overtone Bend (2δ) 1990 1970 1980 w 90 

C-H2 Sym. Stretch (𝜐𝜐 s) 3070 2930 3000 m 50 
C-H Stretch (𝜐𝜐) 3110 2980 3045 m 50 

C-H2 Asym. Stretch (𝜐𝜐 a) 3150 3000 3075 m 50 
C=O 1st Overtone (2𝜐𝜐s) 3460 3440 3450 w 90 

 
Methacrylate Ester Group, CH2=C(CH3)-CO-O- 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C=C Skeletal Stretch (𝜐𝜐) 470 435 453 m-w 70 

C=C Skeletal Stretch (𝜐𝜐) 560 530 545 s 10 

C-O-C Def Bend (δ) 660 645 653 m 50 

C=C Eth. Twist. Bend. (δ t) 715 680 698 w 90 

C-C Skel Bend (δ) 825 805 815 m-s 30 

C-H2 OoP Rock. Bend. (δ 
r) 

895 885 890 s 10 

=CH2 Wag. Bend (δw) 950 935 942.5 s 10 

C-C Skel. Bend (δ) 1010 990 1000 m 50 

C-C Skel. Bend (δ) 1020 1000 1010 m 50 

C-O-C Sym. Stretch (𝜐𝜐 s) 1160 1150 1155 s 10 

C-O-C Asym. Stretch (𝜐𝜐 a) 1275 1185 1230 s 10 

Unlisted 1310 1290 1300 s 10 

C-H2 IP Def. Bend. (δ d) 1320 1290 1305 w 90 

=CH Rock. Bend (δr) 1335 1315 1325 m 50 

CH3 Sym Bend (δ s) 1390 1370 1380 m-s 30 

=CH2 Def Bend (δ) 1420 1400 1410 m 50 

CH3 Asym. Bend. (δ a) 1465 1440 1453 m 50 

C=C Stretch (𝜐𝜐) 1650 1630 1640 m 50 

C=O Stretch (𝜐𝜐) 1725 1710 1718 s 10 
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C-H2 1st Overtone Bend 
(2δ) 

1800 1750 1775 w 90 

CH3 Sym. Stretching (𝜐𝜐 s) 2885 2865 2875 m 50 

C-H2 Sym. Stretch (𝜐𝜐 s) 2985 2970 2978 m-w 70 

CH3 Asym. Stretching (𝜐𝜐 a) 2975 2950 2963 m-s 30 

C-H2 Asym. Stretch (𝜐𝜐 a) 3095 3075 3085 m-w 70 

C=O 1st Overtone (2𝜐𝜐 s) 3460 3440 3450 w 90 

 
o-Alkyl Phenol Group (With H-bonding) 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C-OH IP Bending (δ) 450 375 413 w 90 

O-H OoP. Def. Bending 
(δd) 

720 600 660 s 10 

C-O Stretch (𝜐𝜐) 1260 1180 1220 s 10 

O-H IP Bending (δ) 1410 1310 1360 s 10 

COH bending vib 1330 1310 1320 m 50 

O-H Stretching (𝜐𝜐) 3250 3000 3125 m 50 

CO Str 1255 1240 1248 s 10 

OH def and CO str vib 1175 1160 1168 s 10 

OH def and CO str vib 760 740 750 m 50 

OR substituted 3595 3470 3533 m 50 

 
p-Alkyl Phenol Group (With H-bonding) 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
C-OH IP Bending (δ) 450 375 413 w 90 

O-H OoP. Def. Bending (δ 
d) 

720 600 660 s 10 

C-O Stretch (𝜐𝜐) 1260 1180 1220 s 10 

O-H IP Bending (δ) 1410 1310 1360 s 10 

O-H Stretching (𝜐𝜐) 3250 3000 3125 m 50 

CO Str 1260 1245 1253 s 10 

OH def and CO str vib 1175 1165 1170 s 10 
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OH def and CO str vib 835 815 825 m 50 

OR substituted 3595 3470 3533 m 50 

 
Monosubstituted Benzenes 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
Ring OoP def vib 560 415 488 m-s 30 

Ring IP def vib 630 605 618 m-w 70 

=C-H Ring OoP def vib 710 670 690 s 10 

=C-H OoP def vib 820 720 770 s 10 

=C-H OoP def vib 900 860 880 m-w 70 

=C-H IP def vib 1010 990 1000 w 90 

=C-H IP def vib 1040 1000 1020 m-w 70 

=C-H IP def vib 1085 1050 1068 m 50 

=C-H IP def vib 1175 1130 1153 w 90 

=C-H IP def vib 1195 1165 1180 m-w 70 

=C-H IP def vib 1250 1230 1240 w 90 

-C=C- Str Vib 1625 1590 1608 v 90 

=C-H Str. Vib 3105 3000 3053 m 50 

 
1,2,4- Trisubstituted Benzene 

 

Band Wavelength Region [cm-1] Relative 
Intensity 

% 
Transmi 
ttance 

 High Low Average 
Ring OoP def vib 475 425 450 m-s 30 

=C-H OoP def vib (2H) 740 690 715 m-w 70 

=C-H OoP def vib (2H) 780 760 770 s 10 

=C-H OoP def vib (2H) 860 840 850 m-s 30 

=C-H OoP def vib (1H) 940 885 913 m-s 30 

=C-H IP def vib 1040 1020 1030 m-w 70 

=C-H IP def vib 1160 1140 1150 m-w 70 

=C-H IP def vib 1220 1200 1210 w 90 

-C=C- Str Vib 1625 1590 1608 v 90 
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=C-H Str. Vib 3105 3000 3053 m 50 

Figure 6. IR Frequencies and Magnitudes of Functional Groups 

 

When the molecule is bombarded with radiation, molecular spectra are generated 

based on the motion of atomic nuclei within the architecture, exploiting the fact that 

molecules absorb specific frequencies that are characteristic of their nature.  Motions are 

either absorbed or emitted based on the surrounds and can be in straight line like 

symmetrical and asymmetrical stretching, and/or rotational like twisting, rocking, wagging, 

and scissoring.  (Workman, 2008)   

When group combination theory is applied to the design problem, the infrared 

spectroscopy data can be related to functional groups providing significant computational 

efficiency.  Using the concept of symmetry, many atoms, and combinations of atoms in a 

symmetric molecule can be considered to be in the same chemical environment, and by 

extension, the vibrational motions and absorptions or infrared spectra will be identical.  

(Solvason, 2011)  Figure 7 shows the infrared spectrum of butylated hydroxytoluene 
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molecule and its molecular structure showing the first and second order GC groups.

 

 Figure 7.  IR spectra of butylated hydroxytoluene molecule 

 

 This descriptor data provides information on the molecular architecture; however 

it is likely that descriptor variables will be correlated because they are linear functions of 

other variables (Matsuda, 2007).  Therefore, it is important to build appropriate models to 

manage that complexity and capture the important features of the data.  Multivariate 

statistical techniques will be used to decompose the information to be used in the initial 

training set.   

2.1.5. Density Functional Theory 

Most properties of a molecule are dependent on the behaviors of its electrons, and to 

model or predict them it is necessary to have an accurate method to compute the 
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electronic structure. (Talaty, 2004) Density functional theory is a computational technique 

the can be used to predict the properties of molecules through the investigation of the 

electronic structure based on the electron density.  It is a quantum theory in which the 

only input data are the atomic number of the constituent atoms and some initial structural 

information  (Hall & Kier, 2001).  Rather than calculating the implications of all electrons, 

they are replaced with an equivalent single electron calculation, also known as a 

functional, in which each electron is moving in an effective potential.  (Carrera et al, 2005) 

The potential is a sum of the external potentials determined by the elemental composition 

of the system and the goal is to minimize the total energy function.      

One class of energy functional forms used for estimation with density functional theory 

are hybrid functionals which combine aspects of density functional theory with the 

Hartree-Fock method.  The Hartree-Fock method approximates the wave function and 

energy of a quantum body in a stationary state (Scott A. R., 1996).  This combination 

solves problems inherent with each method.  Hartree-Fock methods exactly treat 

exchange correlation but have difficulties recovering dynamic electron correlation while 

density functional theory has an exact for dynamic electronic correlation but since DFT is 

not quantum mechanical, it must approximate exchange correlation.  These hybrid 

functionals are linear combinations of Hartree-Fock exchange functional shown in 

Equation 2.2. 

𝐸𝐸𝑥𝑥𝐻𝐻𝐻𝐻 = −1
2
∑ ∫∫𝜑𝜑𝑖𝑖∗(𝑟𝑟1)𝜑𝜑𝑗𝑗∗(𝑟𝑟1) 1

𝑟𝑟12
𝜑𝜑𝑖𝑖(𝑟𝑟2)𝜑𝜑2𝑑𝑑𝑑𝑑1𝑑𝑑𝑑𝑑2𝑖𝑖,𝑗𝑗       2.2 

One example of this class of hybrid functions is Becke, three-parameter, Lee-Yang-

Parr exchange correlation functional, also known as B3LYP.  It has become the most 
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common hybrid method and the equation for this function is given in equation 2.3 which 

incorporates equation 2.2.  (Scott & Random, 1996) 

𝐸𝐸𝑥𝑥𝑥𝑥𝐵𝐵3𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐸𝐸𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑎𝑎0(𝐸𝐸𝑥𝑥𝐻𝐻𝐻𝐻 − 𝐸𝐸𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿) + 𝑎𝑎𝑥𝑥(𝐸𝐸𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐸𝐸𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿) + 𝐸𝐸𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑎𝑎𝑐𝑐(𝐸𝐸𝑐𝑐𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐸𝐸𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿) 2.3 

 The application of density functional theory as it relates to characterization 

techniques as a part of a computer aided molecular design allows for the simulation of 

infrared spectroscopy for molecules where experimental data is not available.   For 

example, ionic liquids are a class that has the potential for many combinations that have 

not been synthesized.  Simulated infrared spectroscopy will allow for the study of those 

liquids in different applications without the time and expense of synthesizing all 

possibilities.  When infrared absorbance frequencies are seen in a certain wavelength 

range as shown in Figure 7, the presence of a certain functional group is implicit.   

2.1.6. Latent Variable Modeling 

In an effort to analyze the spectra data, decomposition techniques should be 

employed to consolidate the date and derive the latent variable relationships.  The goal 

of the decomposition techniques is to describe the variation in the characterization 

technique data using the smallest number of variables in a process that transforms a p-

dimensional property characterization structural descriptor data set of molecular 

architecture information into a low m-dimensional sub property space.  (Eriksson, et al., 

2006)  By compressing the p property data to m principal components data using the 

variance-covariance structure, it guarantees that the property space is orthogonal and 

without collinearity that may exist in that attribute.  Principal component analysis is the 

most common decomposition technique and utilizes least square as the fitting function 

(Gabrielsson, Lindberg , & Lundsteadt, 2002).   
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 The main shortcoming of principal component analysis and other decomposition 

techniques is the susceptibility to large differences in scales and variance, so data should 

be standardized prior to analysis. (Solvason, 2011)  If this pretreatment step is not 

conducted, then the resulting model runs the risk of not providing useful data.  General 

practice calls for the property variables to be mean-centered and scaled prior to analysis.  

Since variance is directly related to the size of the numerical range and principal 

component analysis is a maximum variance projection method, it follows that variables 

with large variances are more likely to be expressed in the model than lower variance 

variables.  This process ensures that all variables are considered equally as visually 

depicted in Figure 8.  The bars represent each variable with the horizonal lines denoting 

the mean and length of the bar is equal to its standard deviation.   

 

Figure 8.  Visual representation of data pre-treatment for principal component analysis 

 

 The property descriptor data matrix XMxK consisting of M observations described 

by K descriptors, is mean-centered and scaled as follows.  The mean for each variable is 

calculated based on the entire sample and then subtracted from each measurement to 
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mean center the data.  The scaling process then divides the mean centered data by the 

standard deviation as shown in the following equations.  

𝑥̅𝑥𝑗𝑗 = �1
𝑀𝑀
∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑀𝑀
𝑗𝑗=1 �               2.4 

𝑠𝑠𝑗𝑗2 = 1
𝑀𝑀−1

∑ �𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑥̅𝑥𝑗𝑗�
2𝑀𝑀

𝑗𝑗=1           2.5 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑗𝑗
𝑠𝑠𝑗𝑗

               2.6 

 This standardization ensures that the multiple sources of property data will be 

equally considered, and the data will be decomposed into a meaningful regression.   

2.1.6.1. Principal Component Analysis (PCA) 

Principal component analysis identifies patterns and visualizes multivariate data by 

using as few variables as possible by mapping the original data to a lower dimension.  

Principal component analysis compresses the size of the data and complexity of the data 

while capturing and analyzing the structure of the data.  (Erisson & Johansson, 1996)   

The process begins by relating a set of variables into principal components or linear 

combinations of the original variables ordered from greatest variance to the least 

variance.  The principal components are orthogonal and have no correlations with other 

principal components (Muteki, 2006).  Latent properties represent the relative distance to 

the projected values of each property on the eigenvector hyperplane.  The eigenvalues 

measure how the properties are weighted for each principal component and their 

representation on the hyperplane.  Eigenvalues which are uncorrelated have a value of 0 

ranging up to -1 or 1 for highly correlated values.  (Jackson, 1991) 
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Figure 9.  Projection of higher dimensional data onto a single hyperplane 

 

 When principal components are derived together, they define a plane, as seen in 

Figure 9, which is the best approximation of the data (Wold S. , 1995).  The score matrix 

(T) represents the projection of the data onto the plane and each new coordinate along 

the principal components line represents the score (ti).  The loadings matrix (L) and each 

loading defines the orientation of the principal component plane with respect to the 

original variable and reveal both the magnitude and direction of the correlation.  The data 

set of molecular architecture information known as XMxK signifies M observations of K 

variables where T is the score matrix and P is the loading matrix both of mutually 

orthogonal columns and is detailed in the following equation  (Jaeckle C. M., 1998). 

𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝑡𝑡𝑖𝑖𝑝𝑝𝑖𝑖𝑇𝑇 = 𝑇𝑇𝑀𝑀𝑀𝑀𝐾𝐾𝑃𝑃𝐾𝐾𝐾𝐾𝐾𝐾𝑇𝑇𝐾𝐾
𝑖𝑖=1            2.7 

Most principal component analysis result in the first two or three principal 

components accounting for 80% to 90% of the variation in a domain. (Johnson, 2007) 
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The orthogonal latent property components are fitted to the data structure beginning with 

the latent properties with the highest eigenvalues first and continuing until no appreciable 

difference from one principal component to the next.    

 

Figure 10.  JMP Scree Plot of the Covariance 

 

A scree plot, as shown in Figure 10, displays the magnitude of the eigenvectors of 

each principal component in decreasing magnitude.  The appropriate number of principal 

components are determined by the bend in the graph where the shows that the remaining 

values are small and the same.  The leveled portion of the graph displays the principal 

components that have no significant impact on the solution.  In principal component 

analysis, it becomes important to understand that selecting enough principal components 

is important to describe all useful data.  However, selecting too many can lead to 

overfitting the model, thus poor prediction capabilities.   
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Once the number of principal components is selected, the correlations between 

variables becomes relevant.  One can understand how the variables relate to 

observations by examining the loading and scores plots shown in which display the level 

of correlation of the variable and information about the direction of the correlation either 

positive or negative. 

 

Figure 11.  (a) Score Plot and (b) loading plot 

 

2.1.6.2. Principal Component Regression (PCR) 

Principal component regression is essentially a linear regression based on the results 

of principal component analysis and can be summarized by Figure 12.    

 

Figure 12. Diagram of Principal Component Regression 
The prediction of a response variable (Y) from predictor variables (X) is obtained 

employing the PCR as shown in equation 2.8.   

K A 1

PCA MLR

M M M

X T Y
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𝑌𝑌�𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐵𝐵�𝐴𝐴𝐴𝐴𝐴𝐴           2.8 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝐵𝐵� = (𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇)−1 ∗ 𝑇𝑇𝑇𝑇 ∗ 𝑌𝑌         2.9 

In order to solve a design problem in a single domain, all the physico-chemical 

attributes/properties are converted to principal properties (PP) by using the regression 

(B) coefficients from the calibration model shown in equation 2.10  (Jaeckle C. M., 1998).     

(𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇 )𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇 )𝑛𝑛𝑛𝑛𝑛𝑛 ∗ �𝐵𝐵�𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 ∗ 𝐵𝐵�𝐴𝐴𝐴𝐴𝐴𝐴�
−1
∗ 𝐵𝐵�𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇       2.10 

2.1.6.3. Partial Least Squares (PLS) 

Partial least squares is a regression method that is based on principal component 

analysis and multiple linear regression.  It takes principal component regression one step 

future because it deals with both the descriptive information such as found with 

characterization property data and response information including attributes of physical-

chemical property data (Kettanch-Wold, 1992).  It is important to note that while partial 

least squares provides the best correlation for the matrices together, it is not necessarily 

the best description of the two individually  (Joback & Reid, 1983).   

To illustrate, assume that data matrix, P, contains molecular descriptors and data 

matrix, Y, contains attribute information and that partial least squares is modelling their 

relationship.  The diagram below shows the individual principal component analysis for 

each matrix leading to the partial least squares regression where the descriptor scores, 

u, are plotted against the response scores, t.   
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Figure 13.  A Partial Least Squares Regression Performed on the P Descriptor and Y 
Response Variables  (Gabrielsson, Lindberg , & Lundsteadt, 2002) 

 

NIPALS is an iterative algorithm used to handle the development of these 

relationships. The method uses least squares regression for the mixture of related forms 

between P with Y and U with T.  Loading weights are needed to maintain orthogonality.  

The general equation is shown in equation 2.11. 

𝑌𝑌�𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑈𝑈𝑛𝑛𝑛𝑛1𝑊𝑊1𝑥𝑥𝑥𝑥          2.11 
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where 𝑌𝑌�  is the point estimate of the physical-chemical properties, U is a nx1 matrix of the 

latent variable scores and W is the 1x𝜙𝜙 matrix of the latent variable loadings.  The latent 

variable representations of the attributes and property descriptors will have a lower 

dimensionality.  Therefore, regressing the lower dimensional 𝑈𝑈𝑛𝑛𝑛𝑛1 attribute scores against 

the 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 property descriptor scores will result in Equation 2.11  where 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 is  set of 𝑚𝑚𝑚𝑚𝑚𝑚 

regressors describing the latent attribute-property descriptor relationship.   

𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚          2.12 

 Iterative algorithms, like NIPALS, introduced above are described in detail in many 

sources including (Geladi & Kowalski, 1986), (Wold S. , 1995), (Macgregor & Muteki, 

2007).  It is generally considered standard practice to calibrate spectroscopic techniques 

with principal component regression and partial least squares because it works to avoid 

collinearity problems that often occur in multivariate regression (Jollieffe, 2002).   

2.2. Process Modeling/Simulation 

Process simulation seeks to optimize scenarios by computerized modelling of a 

process with the ability to modify the variables without the time and expense of laboratory 

testing.  Despite advancement in computer technology, calculations related to 

optimization of processes can be quite cumbersome.  Surrogate modelling is one method 

that can reduce computational burden.  The input and output relationship of black box or 

complex relationships which only require simpler solutions can be statistically related 

through the use of surrogate models.   
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2.2.1. Surrogate Modeling 

2.2.1.1. Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANN) were developed from studying the brain and the 

connections between neurons.  Artificial neurons mimic biological neurons, which process 

signals, and weights mimic the synapses, which create the network between neurons.  

Biologically, those signal strengths are adaptive feedback loops.  ANN training is the 

process of optimizing the weights and biases to find the lowest error between the outputs 

and the target data (Haykin et al, 2009). 

2.2.1.2. Automated Learning of Algebraic Models for Optimization (ALAMO)  

Automated Learning of Algebraic Models for Optimization (ALAMO) was developed to 

reduce surrogate model complexity while maintaining high accuracy.  The approach is 

similar to polynomial regression and by extension, response surface methodology (RSM), 

because the final model is a summation of multiple basis functions.  Unlike polynomial 

regression and RSM, ALAMO uses polynomial, multinomial, exponential, logarithmic, and 

trigonometric (sine and cosine) basis functions as is appropriate for the given data.  

Overfitting is generally not a problem, due to the nature of the ALAMO algorithm (Cozad 

et al, 2014). 

2.2.1.3. Extreme Learning Machine (ELM) 

A special type of single layer feedforward neural network (SLFN) is called an Extreme 

Learning Machine (ELM).  In ELMs, the hidden layers’ weights and biases are randomly 

assigned provided that the activation function is differentiable.  The training of SLFN then 

becomes a linear equation system to solve.  ELM has a few advantages over other 

methods because it does not require a learning rate, stopping criteria or validation, and 
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no gradient descent learning methods for training.  Those advantages are suggested to 

lead to faster training times with lower errors (Huang et al, 2015).   

2.2.1.4. Support Vector Regression (SVR) 

 
Support vector machines are another common method used to relate nonlinear input 

and output data (Jin et al, 2001).  Support Vector Regression (SVR) is an application of 

support vector machines. This method transforms data (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) to an m-dimensional 

feature space and fits it to a linear model.  The main advantage of SVR is its significantly 

faster training times compared to other models.   

2.2.1.5. Radial Basis Function Networks (RBF) 

 
Under the umbrella of ANNs lies the Radial Basis Function Networks (RBFs).  The 

hidden layer in RBFs calculates the Euclidean distance between the input weights and 

the inputs, multiplies them with a bias vector, and passes them through the radial basis 

transfer function (Chen , Cowen, & Grant, 1991). 

2.2.1.6. Gaussian Process Regression (GPR) 

Developed as a machine learning technique, Gaussian Process Regression (GPR) is 

a surrogate model that generates the output as a linear combination of the inputs.  A 

Gaussian process is a collection of random variables, a finite set of which have a joint 

Gaussian distribution (Mirbagheri, 2015). The random variables are considered to be the 

value of the function evaluated at x.  An a priori distribution must first be assumed over 

the data.  The parameters of the a priori distribution are a mean function 𝜇𝜇(𝑥𝑥) and a 

covariance function 𝐾𝐾(𝑥𝑥, 𝑥𝑥’).  The distribution is then updated with the training data to 

generate the posterior probability distribution. 
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2.2.1.7. Random Forests (RF) 

Random Forests (RF) also stem from the machine learning field and have been found 

to be useful in many applications.  RF models generate an ensemble of regression 

decision trees called forests using bootstrap aggregation and random feature selection to 

average the predictions (Breiman, 2001). 

2.2.1.8. Multivariate Adaptive Regression Splines (MARS) 

Multivariate Adaptive Regression Splines (MARS) was introduced by Jerome 

Friedman in 1991.  The model is comprised of a linear summation of basis functions 

where the basis functions can be either spline functions or product of two or more spline 

functions. The model adds terms to intentionally cause overfitting, but then goes through 

a pruning process where the terms that contribute the least to the overall model are 

removed to generate the final surrogate model.  One disadvantage to using MARS is that 

this model tends to perform poorly with small sample sizes (Freidman et al, 1991). 
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CHAPTER 3. Reverse Design of Ionic Liquids 

3.1. Global Warming and CO2 Emission Reduction  

The “Greenhouse Effect” may seem like a modern buzz word used to describe our 

ever-warming environment, but it was first theorized by French mathematician and 

physicist, Jean-Baptiste Joseph Fourier.  In 1827, Fourier published an article with the 

title translated to English as the temperature of the Earth and planetary spaces.  He 

theorized that Earth’s atmosphere of gases was creating a warming insulation layer.  

Then in 1958, Charles David Keeling began studying the rapidly increasing levels of 

carbon dioxide (CO2) in the atmosphere and recorded his findings on the Keeling curve.  

(EPA, 2015)  Since this discovery, the world leaders have made recommendations about 

making changes to our processes and systems to reduce emissions.  Scientists and 

politicians have been working to create awareness, encourage change and in some 

cases, require emission reduction.  Newly constructed power plants are being regulated 

to operate more efficiently with lower emissions.  However, the older facilities which have 

been allowed to remain in operation for decades are left without many options if they are 

forced to reduce emissions.  In some cases, the CO2 can be recycled based into the 

system to provide benefit and reduce the amount emitted in the flue gas.  Generally, 

rebuilding a plant is not economically viable, so capture and sequestering of CO2 may be 

the only option. 

Traditional capture methods include separation using monoethanolamide (MEA)-

based solvents.  Amine based solvents have been widely used to treat acid gases, such 

as hydrogen sulfide and carbon dioxide, in gas streams since the beginning of the natural 

gas industry.  (Hasib-ur-Rahman, Siaj, & Larachi, 2010)  They are well tested and reliable.  
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However, amine-based solvents and other similar solvents can present an environmental 

and health risk to the area.  Though these types are solvents have proven that they are 

effective solvents, their risk factors dictate that we look for viable options with a more 

benign impact.  

3.2. Ionic Liquids 

Ionic liquids are organic salts which are composed of a cation, anion and an alkyl 

chain, as shown in Figure 14. 

 

Figure 14. Building Blocks of Ionic Liquids 
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They can be advantageous from an environmental and health hazard perspective for 

many reasons.  For example, low vapor pressures eliminate volatile organic carbon 

compounds (VOCs) which are closely monitored by the EPA and given off by most 

solvents and stability at high temperatures are just a couple of reasons ionic liquids may 

be valuable.  (Holbrey & Seddon, 1999)  

Ionic liquids have been used for centuries and known as molten salt; however more 

current research has been conducted since the 1980’s.  Though research has been 

ongoing for decades, there is still a relatively small amount of data compared to the 

number of possible ionic liquids (Ayala et al, 2006).  Estimations have stated that there 

are over 1014 possible combinations of cation, anion and alkyl chain combinations that 

would be liquids at room temperature (Turner et al, 2003). The majority of these 

possibilities have not been synthesized. 

One of the major benefits of ionic liquids is their unique capability to be customized by 

altering the combination of cation, anion and alkyl chain length to a specific situation 

including CO2 removal and sequestration, but also energy storage, chemical separations 

and many other chemical processes.  However, a method must be developed to more 

effectively determine the ideal ionic liquid, rather than the more conventional trial and 

error method where candidate ionic liquids are synthesized and tested for efficacy.   

The goal of this work is to determine the most ideal candidate for CO2 sequestration 

by calculating the highest Henry’s law constant.  A set of ionic liquids were selected from 

the IUPAC Ionic Liquids Database (Ionic Liquids Databased (ILThermo), 2014) for 

chemicals that had listed melting temperature and Henry’s Law constant data.  Table 1 

lists the ionic liquids used in this work. 



45 
 

 

 

 
Ionic Liquid KH 
3-(3-cyanopropyl)-1-methylimidazolium 1,1,1-
trifluoro-N-
[(trifluoromethyl)sulfonyl]methanesulfonamide 

5,890 

1-methyl-3-propylimidazolium 
hexafluorophosphate 

5,200 

1-methyl-3-octylimidazolium tetrafluoroborate 7,560 
1-(3-cyanopropyl)-3-methylimidazolium 
cyanocyanamide 

15,420 

1-ethyl-2,3-dimethylimidazolium 
bis[(trifluoromethyl)sulfonyl]imide 

6,050 

1-butyl-2,3-dimethylimidazolium tetrafluoroborate 9,220 
1-ethyl-3-methylimidazolium diethylphosphate 8,120 
1-butyl-3-methylimidazolium hexafluorophosphate 7,280 
1-butyl-2,3-dimethylimidazolium 
hexafluorophosphate 

8,850 

1,3-dimethylimidazolium dimethylphosphate 12,720 
1-butyl-3-methylimidazolium 
bis[(trifluoromethyl)sulfonyl]imide 

4,470 

1-ethyl-3-methylimidazolium 
bis[(trifluoromethyl)sulfonyl]imide 

4,630 

3-(3-cyanopropyl)-1,2-dimethylimidazolium 1,1,1-
trifluoro-N-
[(trifluoromethyl)sulfonyl]methanesulfonamide 

5,960 

1-butyl-3-methylimidazolium tetrafluoroborate 9,160 
1-ethyl-3-methylimidazolium dicyanamide 9,850 
1-butyl-3-methylimidazolium hexadecanoate 7,550 
1-butyl-3-methylimidazolium dibutylphosphate 5760 
1-hexyl-3-methylimidazolium 
bis[(trifluoromethyl)sulfonyl]imide 

3,500 

1-methyl-3-propylimidazolium 
bis[(trifluoromethyl)sulfonyl]imide 

3,700 

1-ethyl-3-methylimidazolium 
trifluoromethanesulfonate 

7,400 

1-butyl-3-methylimidazolium octadecanoate 5,920 
Table 1. Ionic Liquids Test Group and Associated Henry’s Law Constant in kPa @ 323K 
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3.3. Reverse Design of Ionic Liquids 

A methodical approach to select the most effective combination of cation, anions 

and alkyl chains to meet the required physical and chemical property targets will be 

required to further the use of ionic liquids into mainstream industry.  The characterization-

based group contribution method (cGCM) builds on the theory that each group provides 

different contribution to the physical and chemical properties of the overall compound.  

This is particularly useful when researching ionic liquids because each cation, anion and 

alkyl chain can provide valuable design data.  This method is combined with a reverse 

problem formulation to provide a method that can be tailored to a more diverse group of 

process needs.  The following sections more specifically describe the developed method. 

 
3.3.1. Infrared Spectroscopy Data 

Infrared spectroscopy data (IR) contains information about each functional group 

within an ionic liquid to provide clues to its composition because different molecules 

absorb specific frequencies. 

The group contribution method utilizes latent property parameters which are applied 

to the architecture of the overall molecule.  For this reason, the initial IR data will 

determine the validity of the resulting solution.  However, ample IR data has not been 

generated for the majority of ionic liquids.  To remove this as a limiting factor, density 

functional theory was utilized to generate the needed IR data.  Density functional theory 

is a molecular modelling method that can be used to predict the electronic structure of 

molecules. 
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To generate a starting point geometry for each ionic liquid pair, the structure was 

drawn in Avogadro (v1.1.1) (Hanwell, et al., 2012) and then optimized by minimization of 

the energy using Merck Molecular Force-Field (MMFF94).  MMFF94 has been 

parameterized for a broad spectrum of organic chemicals including many charged ions 

(Halgren, 1996).  Ionic liquids with phosphate anions have shown to be ill-suited for 

MMFF94.  Those ionic liquids were optimized universal force field (UFF)  (Linusson, 

Gottfires, Lingren, & Wold, 2000).  Each optimization algorithm with 10,000 iterations with 

a convergence of 10-7 was rerun until a local energy minimum was reached.  To provide 

a visual example of these calculations, a rendering of 1-butyl-2,3-dimethylimidazolium 

hexafluorophosphate is depicted in Figure 15. 

 

Figure 15.  Diagram of the molecular structure of 1-butyl-2,3-dimethylimidazolium 
hexafluorophosphate 
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An input file requesting frequency optimization for Gaussian 09 was generated by the 

utility within Avogadro.  The Gaussian input requires specification of the specific density 

functional theory method and B3-LYP with 6-31G(d) was found to the most applicable.  

B3-LYP, HF, MP2, and QCISD were compared and the lowest root-mean-square error 

for simulated fundamental molecular vibrations was found to be B3-LYP with 6-31G(d).  

(Scott et al, 1996) Additionally, experimental data was compared to estimated values for 

1-ethyl-3-methyl imidazolium hexafluorophosphate and strong agreement was found.  

(Hada et al, 2015)   

The files were then input into Gaussian 09 running through the Alabama 

Supercomputing Authority supercomputing cluster.  Gaussview was then utilized to 

generate an IR spectrum graph which was digitized to create a table of the resulting data 

for each ionic liquid, an example of which is shown in Figure 16. 

 

Figure 16. Generated IR Spectrum 
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3.3.2. Principal Component Analysis & Partial Least Squares Regression 

The resulting data carries a wide range of complicated information but will need to be 

reduced to only the most important.  Principal component analysis (PCA) seeks to identify 

patterns and important features in large quantities of information (Eriksson et al, 2006).  

This method was combined with partial least squares (PLS) to predict the structure 

property relationships by reducing the dimensions of the data to the most significant.  JMP 

11 (V11.0.0) was used to perform the analysis.  Generally, three principal components 

will provide the majority of the variance.  In this work, the first 3 components provided 

63% of the data and a plot of the eigenvalue vs. number of components leads us to select 

the first three principal components, as shown in Figure 17. 

 

Figure 17. Scree Plot used in PCA 
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  Loadings, P, describe the magnitude of correlation and the direction either positive 

or negative and how they contribute to the scores, t.  Model coefficients were also 

determined using JMP and PCR along with qualitative structure property relationship 

(QSPR) models for melting temperature to ensure that the resulting molecules were liquid 

at room temperature and Henry’s law constant shown in equations 3.1 and 3.2 which can 

be correlated with solubility (Duchowicz, Garro, & Castro, 2008).   

𝑒𝑒�
𝑇𝑇𝑚𝑚

𝑇𝑇𝑚𝑚𝑚𝑚
� � = 𝛽𝛽0 + ∑ 𝛽𝛽0𝑡𝑡𝑖𝑖 +3

𝑖𝑖=1 ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑗𝑗3
𝑗𝑗<𝑖𝑖 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖23

𝑖𝑖=1
3
𝑖𝑖<𝑗𝑗     3.1 

𝑙𝑙𝑙𝑙(𝐾𝐾𝐻𝐻) = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑡𝑡𝑖𝑖3
𝑖𝑖=1 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖23

𝑖𝑖=1        3.2 

     

3.3.3. Reverse Design of Ionic Liquids using QSPR and cGCM 

While the number of possible ionic liquid combinations is great, the number of 

functional groups which serve as the building blocks are more manageable.  The cation, 

anions and alkyl chains which were chosen to represent the ionic liquids in the test group 

are shown in Table 2. 

Name Building Block 
Type 

bis[(trifluoromethyl)sulfonyl]amide Anion 
Dibutylphosphate Anion 
Dicyanamide Anion 
Diethylphosphate Anion 
Dimethylphosphate Anion 
Hexadecanoate Anion 
Hexafluorophosphate Anion 
Octadecanoate Anion 
Tetrafluoroborate Anion 
1,3-dimethylimidazolium  Cation 
1-butyl-2,3-dimethylimidazolium  Cation 
1-butyl-3-methylimidazolium  Cation 
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1-ethyl-2,3-dimethylimidazolium  Cation 
1-hexyl-3-methylimidazolium  Cation 
1-methyl-3-octylimidazolium  Cation 
1-methyl-3-propylimidazolium  Cation 
Cyanopropyl-3-methylimidazolium Cation 
Methyl Alkyl Groups 
Methylene Alkyl Groups 

Table 2. Ionic Liquid Building Blocks from Test Group 

 

The reverse design of the ideal ionic liquid included an exhaustive search using an 

algorithm in the Python programming language (Hada S. , 2013) to generate all the 

possible ionic liquid possibilities that could be created using the above-mentioned anion, 

cation, and alkyl chain building blocks.  For each ionic liquid, the melting point was 

calculated to determine if the resulting combination was liquid at room temperature.  If the 

melting temperature was less than 298K, then the Henry’s law constant was calculated.  

The program then repeated until all possible combinations were considered.  The 

program then returned the top three results.   

3.4. Results 

The highest value calculated was for dimethylimidazolium dimethylphospahte at 

13,660 kPa, methylimidazolium bis(trifluoromethylsulfonly)-amide at 12,340 kPa, and 

methylimidazolium tetrafluoroborate at 9,280 kPa.   

While laboratory research is limited in this field, several studies have measured 

the solubility of CO2 in room temperature ionic liquids.  The results of a study which 

compared the solubility of CO2 in nine ionic liquids using a quartz crystal at 298 K and 1 

bar show that the imidazolium based ionic liquids have the highest solubility at these 

conditions (Baltus et al, 2004).  As a result of several studies which showed a data 
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supporting the theory that imidazolium based ionic liquids were the most effective 

solvents, one literature study was written which gathered a wide range of measured CO2 

in ionic liquid solubility data.  The results pointed to methylimidazolium based ionic liquids 

for higher solubility (Candena et al, 2004). These papers support the results of the 

calculations performed in this work which also found that the highest three molecules 

were methylimidazolium based.        

3.5. Conclusions 

The existing laboratory data related to ionic liquids is inadequate and can be a limiting 

factor for researchers seeking new applications for ionic liquids.  This information gap 

exists because it would simply be cost prohibitive to generate data for all the possible 

ionic liquids and study applications based on a traditional trial and error method. 

Researchers can utilize the computer-aided molecular design (CAMD) framework with 

reverse design methods and density functional theory to generate infrared spectroscopy 

data.  This can serve as a platform for future research that will span many sectors of 

academia and can easily be extended to the industrial sector.  
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CHAPTER 4. Surrogate Modeling Optimization 

Process simulation is one method that seeks to optimize scenarios by computerized 

modelling of a process with the ability to modify the variables without the time and 

expense of laboratory testing.  Despite advancement in computer technology, 

calculations related to optimization of processes can be quite cumbersome.  Surrogate 

modelling is one method that can reduce computational burden  (Beck, 2015).  The input 

and output relationship of black box or complex relationships which only require simpler 

solutions can be statistically related through the use of surrogate models.  Many studies 

have been sought to understand the applications of various surrogate models (Dife & 

Diwekar, 2016); however, this case study seeks to provide guidance about the optimal 

application of surrogate models.  This work has been published in Computer Aided 

Chemical Engineering 40 (Davis, Cremaschi, & Eden, 2017) and Computer Aided 

Chemical Engineering 44 (Davis, Cremaschi, & Eden, 2018). 

4.1. Surrogate Models Compared in This Study 

Surrogate models are a common optimization method employed to model a 

process by statistically relating the inputs with the outputs.  These models can be used to 

optimize black box processes or complex relationship that can be modelled with a simpler 

relationship when reasonable accuracy is desired.   

4.1.1. Artificial Neural Networks 

Artificial Neural Networks were inspired by the biological neural networks of the 

brain.  Just as a child learns to relate objects that they see to words, artificial neural 

networks progressively improve performance.  Each encounter, or calculation, the 

network develops an identity to the information which will be used in later steps (Haykin, 
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2009).  In this calculation schema, biological neurons are replaced with artificial neurons 

called nodes.  Those nodes are connected by a set of weights which are the counterpart 

of the biological synapse.  Learning is the process of optimizing the weights and biases 

to find the lowest error between the outputs and target data.  Artificial Neural Networks 

are useful because they can be applied to many applications and is an approachable 

method (Akkoyunlu, 2010).  As with biological learning, the learning process can take 

more computing time as compared to other models.   

4.1.2. Automated Learning of Algebraic Models for Optimization 

Automated Learning of Algebraic Models for Optimization utilizes a polynomial type 

regression to provide accurate results with a simpler model  (Cozad & Miller, 2014).  

Polynomial, multinomial, exponential, logarithmic and trigonometric functions are chosen 

based on the given data set.  Different variations of the regression are performed and an 

Akaike information criterion is calculated.  The model is presented when the Akaike 

information criterion either decreases or stabilizes.  Automated Learning of Algebraic 

Models for Optimization has the real advantage of creating a model of a real system that 

is simple while still providing increased accuracy over other models.  However, this 

accuracy can increase the computational time requirements. 

4.1.3. Extreme Learning Machines 

Extreme learning machines are a type of single layer feedforward neural network, so 

the basis is similar to artificial neural networks.  However, the primary difference between 

extreme learning machines and traditional artificial neural networks is the learning 

scheme.  Rather than using weights in a differential equation, extreme learning machines 

transforms the function into a linear equation utilizing a least squares solution to 
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determine the training error (Huang, Zhu, & Siew, 2015).  The reduction in complication 

provides a system that can be solved in a fraction of the time without reduction of 

accuracy.  Improved computation time provides solutions quickly, so it may be more 

useful as an industry computation. 

4.1.4. Support Vector Regression 

Support vector regression utilizes learning algorithms that classify data by mapping 

them as points in space through a kernel process.  This classification of data seeks to 

separate the data into groups and the details gathered are used to further classify data in 

a process in which a hyperplane that divides the group is a solution function.  Support 

vector regression is often a preferred because the resulting solution will be based on 

global minima rather than local minima that other surrogate models may provide.  

Additionally, there is no risk of overfitting due to the nature of the solver.  (Jin, Chen, & 

Simpson, 2001)   

4.1.5. Radial Basis Function Networks 

Radial basis function networks fall under the umbrella of artificial neural networks and 

are executed as linear model regressions where the function becomes the summation of 

weighted basis functions.  Radial basis functions are developed with a distance criterion 

with respect to a central point.  One advantage of radial basis function networks is their 

ability find the global minima without discovery of a local minima.  (Chen , Cowen, & 

Grant, 1991)   

4.1.6. Gaussian Process Regression 

Gaussian process regression utilizes a kernel method similar to support vector 

regression.  However, the essential difference is that gaussian process regression is 
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based on the estimation of probabilities  (Mirbagheri, 2015).  Those estimations are then 

used to predict the graphical representation of the data.  This method has the same 

advantages as the support vector regression related to the minima and overfitting.   

4.1.7. Random Forests 

Random forests are based on the implementation of decision trees.  This method 

utilizes the kernel method to remove trees to avoid overfitting the model.  It can be used 

for regression and classification solutions.  Random forests can provide applications for 

many situations, so the implementation is a good option.  (Breiman, 2001)  

4.1.8. Multivariate Adaptive Regression Splines 

Multivariate adaptive regression splines is comprised of a linear summation of basis 

functions.  The model adds terms to intentionally cause overfitting, but then goes through 

a pruning process where the terms that contribute the least to the overall model are 

removed to generate the final surrogate model. It is a preferred method because the 

model training process is efficient  (Freidman, 1991).  However, it has been found in 

studies that the model requires a larger data set to perform accurately.   

4.2. Challenge Functions 

To evaluate the efficacy of each surrogate model, challenge functions were used to 

calculate the functions and data sets.  Those functions were divided by surface plot shape 

and number of inputs.  The shapes reviewed included:  multi-local minima, bowl, plate, 

valley and ridges/drops; and the numbers of inputs were two, three, four, five and ten.  

Thirty-Four functions within the optimization group were applied to this study.  A summary 

of these groups is shown in Figure 18.   
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Figure 18.  Challenge Functions with shape and number of inputs 

 

Challenge Function Number of Inputs Surface Shape
ackley 2 Multilocal Minima
bukin 2 Multilocal Minima
crossit 2 Multilocal Minima
drop 2 Multilocal Minima
egg 2 Multilocal Minima
holder 2 Multilocal Minima
langer 2 Multilocal Minima
levy13 2 Multilocal Minima
schaffer2 2 Multilocal Minima
schaffer4 2 Multilocal Minima
shubert 2 Multilocal Minima
levy 3 Multilocal Minima
greiwank 10 Multilocal Minima
rastr 10 Multilocal Minima
schwef 10 Multilocal Minima
booth 2 Plate
matya 2 Plate
mccorm 2 Plate
powersum 10 Plate
zakharow 10 Plate
boha1 2 Bowl
spheref 3 Bowl
sumsqu 3 Bowl
rothyp 2 Bowl
trid 5 Bowl
perm0db 10 Bowl
sumpow 4 Bowl
camel3 2 Valley
camel6 2 Valley
dixonpr 3 Valley
rosen 3 Valley
dejong5 2 Ridges & Drops
easom 2 Ridges & Drops
michal 5 Ridges & Drops
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These functions were obtained from Virtual Library of Simulation Experiments 

(Surjanovic, 2015) which is a resource created at Simon Fraser University.  The goal of 

that work was to provide a tool to evaluate simulation methods.  This resource provides 

the equation, a graphical representation of the function and a MATLAB implementation 

which is available for use.  The following sections provides more information about the 

functions including the number of inputs, shape, equation and a graphical depiction of the 

surface.  
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4.2.1. Challenge Functions  

4.2.1.1.   Ackley Function has a shape of Multilocal Minima and has two inputs. 

𝑓𝑓(𝑥𝑥) = −𝑎𝑎 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒

⎝

⎛−𝑏𝑏�
1
𝑑𝑑
�𝑥𝑥𝑖𝑖2
𝑑𝑑

𝑖𝑖=1
⎠

⎞ − exp�
1
𝑑𝑑
� cos 𝑐𝑐𝑥𝑥𝑖𝑖

𝑑𝑑

𝑖𝑖=1

� + 𝑎𝑎 + exp(1) 

Variable value recommendations when d = 2: a = 20, b = 0.2, and c = 2π. 

 

Figure 19. Surface of the Challenge Function: Ackley 
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4.2.1.2. Bukin Function N.6 has a shape of Multilocal Minima and has two inputs. 

𝑓𝑓(𝑥𝑥) = 100�|𝑥𝑥2 − 100𝑥𝑥12| + 0.01|𝑥𝑥1 + 10| 

 

Figure 20. Surface of the Challenge Function: Bukin Function N.6 

 

 

 

 

 



61 
 

 

4.2.1.3. Cross-in-Tray Function has a shape of Multilocal Minima and has two inputs. 

𝑓𝑓(𝑥𝑥) = −0.0001��sin(𝑥𝑥1) sin(𝑥𝑥2)𝑒𝑒𝑒𝑒𝑒𝑒 ��100 −
�𝑥𝑥12 + 𝑥𝑥22

𝜋𝜋
��� + 1�

0.1

 

 

Figure 21. Surface of the Challenge Function: Cross-in-Tray Function 
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4.2.1.4. Drop-Wave Function has a shape of Multilocal Minima and has two inputs. 

𝑓𝑓(𝑥𝑥) =
1 + cos �12�𝑥𝑥12 + 𝑥𝑥22�

0.5(𝑥𝑥12 + 𝑥𝑥22) + 2
 

 

Figure 22. Surface of the Challenge Function: Drop-Wave Function 
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4.2.1.5. Eggholder Function has a shape of Multilocal Minima and has two inputs. 

𝑓𝑓(𝑥𝑥) = −(𝑥𝑥2 + 47) sin���𝑥𝑥2 +
𝑥𝑥1
2

+ 47�� − 𝑥𝑥1 sin ��|𝑥𝑥1 − (𝑥𝑥2 + 47)|� 

 

Figure 23. Surface of the Challenge Function: Eggholder Function 
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4.2.1.6. Holder Table Function has a shape of Multilocal Minima and has two inputs. 

𝑓𝑓(𝑥𝑥) = − �sin(𝑥𝑥1) cos(𝑥𝑥2)𝑒𝑒𝑒𝑒𝑒𝑒 ��1 −
�𝑥𝑥12 + 𝑥𝑥22

𝜋𝜋
��� 

 

Figure 24. Surface of the Challenge Function: Holder Table Function 
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4.2.1.7. Langermann Function has a shape of Multilocal Minima and has two inputs. 

𝑓𝑓(𝑥𝑥) = �𝑐𝑐𝑖𝑖 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒�−
1
𝜋𝜋
��𝑥𝑥𝑗𝑗 − 𝐴𝐴𝑖𝑖𝑖𝑖�

2
𝑑𝑑
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�
𝑚𝑚
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∗ cos�𝜋𝜋��𝑥𝑥𝑗𝑗 − 𝐴𝐴𝑖𝑖𝑖𝑖�
2
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� 

Variable value recommendations when d = 2: 

𝑚𝑚 = 5; 𝑐𝑐 = (1, 2, 5, 2, 3) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 =
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Figure 25. Surface of the Challenge Function: Langermann Function 
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4.2.1.8. Levy Function N.13 has a shape of Multilocal Minima and has two inputs. 

𝑓𝑓(𝑥𝑥) = sin2(3𝜋𝜋𝑥𝑥1) + (𝑥𝑥1 − 1)2[1 + sin2(3𝜋𝜋𝑥𝑥2)] + (𝑥𝑥1 − 1)2[1 + sin2(2𝜋𝜋𝑥𝑥2)] 

 

Figure 26. Surface of the Challenge Function: Levy Function N. 13 
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4.2.1.9. Schaffer Function N.2 has a shape of Multilocal Minima and has two inputs. 

𝑓𝑓(𝑥𝑥) = 0.5 +
sin2(𝑥𝑥12 − 𝑥𝑥22) − 0.5

[1 + 0.001(𝑥𝑥12 + 𝑥𝑥22)]2 

 

Figure 27. Surface of the Challenge Function: Schaffer Function N. 2 
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4.2.1.10. Schaffer Function N. 4 has a shape of Multilocal Minima and has two inputs. 

𝑓𝑓(𝑥𝑥) = 0.5 +
cos(sin(|𝑥𝑥12 − 𝑥𝑥22|)) − 0.5

[1 + 0.001(𝑥𝑥12 + 𝑥𝑥22)]2  

 

Figure 28. Surface of the Challenge Function: Schaffer Function N. 4 
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4.2.1.11. Shubert Function has a shape of Multilocal Minima and has two inputs. 

𝑓𝑓(𝑥𝑥) = ��𝑖𝑖 cos�(𝑖𝑖 + 1)𝑥𝑥1 + 𝑖𝑖�
5

𝑖𝑖=1

���𝑖𝑖 cos�(𝑖𝑖 + 1)𝑥𝑥2 + 𝑖𝑖�
5

𝑖𝑖=1

� 

 

Figure 29. Surface of the Challenge Function: Shubert Function 
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4.2.1.12. Levy Function has a shape of Multilocal Minima and has three inputs. 

𝑓𝑓(𝑥𝑥) = sin2(𝜋𝜋𝑤𝑤1) + �(𝑤𝑤𝑖𝑖 − 1)2[1 + 10 sin2(𝜋𝜋𝑤𝑤𝑖𝑖 + 1)] + (𝑤𝑤3 − 1)2[1 + sin2(2𝜋𝜋𝑤𝑤3)]
3

𝑖𝑖=1

 

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒:𝑤𝑤𝑖𝑖 = 1 +
𝑥𝑥𝑖𝑖 − 1

4
  

 

Figure 30. Surface of the Challenge Function: Levy Function 

 

 

 



71 
 

4.2.1.13. Griewank Function has a shape of Multilocal Minima and has ten inputs. 

𝑓𝑓(𝑥𝑥) = �
𝑥𝑥𝑖𝑖2

4000
−� cos �

𝑥𝑥𝑖𝑖
√𝑖𝑖
� + 1

10

𝑖𝑖=1

10

𝑖𝑖=1

 

 

Figure 31. Surface of the Challenge Function: Grenwank Function 
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4.2.1.14. Rastrigin Function has a shape of Multilocal Minima and has ten inputs. 

𝑓𝑓(𝑥𝑥) = 100 + �[𝑥𝑥𝑖𝑖2 − 10 cos(2𝜋𝜋𝑥𝑥𝑖𝑖)]
10

𝑖𝑖=1

 

 

Figure 32. Surface of the Challenge Function: Rastrigin Function 
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4.2.1.15. Schwefel Function has a shape of Multilocal Minima and has ten inputs. 

𝑓𝑓(𝑥𝑥) = 4189.829 −�𝑥𝑥𝑖𝑖 sin ��|𝑥𝑥𝑖𝑖|�
10

𝑖𝑖=1

 

 

Figure 33. Surface of the Challenge Function: Schwefel Function 
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4.2.1.16. Bohachevsky Function has a shape of bowl and has two inputs. 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥12 + 2𝑥𝑥22 − 0.3 cos(3𝜋𝜋𝑥𝑥1) − 0.4 cos(4𝜋𝜋𝑥𝑥2) + 0.7 

 

Figure 34. Surface of the Challenge Function: Bohachevsky Function 
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4.2.1.17. Sphere Function has a shape of bowl and has two inputs. 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥12 + 𝑥𝑥22 

 

Figure 35. Surface of the Challenge Function: Sphere Function 
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4.2.1.18. Rotated Hyper-Ellipsoid Function has a shape of bowl and has two inputs. 

𝑓𝑓(𝑥𝑥) = ��𝑥𝑥𝑗𝑗2
𝑖𝑖

𝑗𝑗=1

2

𝑖𝑖=1

 

 

Figure 36. Surface of the Challenge Function: Rotated Hyper-Ellipsoid Function 
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4.2.1.19. Sum Squares Function has a shape of bowl and has three inputs. 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥12 + 2𝑥𝑥22 + 3𝑥𝑥32 

 

Figure 37. Surface of the Challenge Function: Sum Squares Function 
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4.2.1.20. Sum of Different Powers Function has a shape of bowl and has four inputs.  

𝑓𝑓(𝑥𝑥) = �|𝑥𝑥𝑖𝑖|𝑖𝑖+1
4

𝑖𝑖=1

 

 

Figure 38. Surface of the Challenge Function: Sum of Different Powers Function 
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4.2.1.21. Trid Function has a shape of bowl and has five inputs. 

𝑓𝑓(𝑥𝑥) = �(𝑥𝑥𝑖𝑖 − 1)2 −�𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖−1

5

𝑖𝑖=2

5

𝑖𝑖=1

 

 

Figure 39. Surface of the Challenge Function: Trid Function 
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4.2.1.22. Perm Function 0, D, Beta has a shape of bowl and has ten inputs.  

𝑓𝑓(𝑥𝑥) = ���(𝑗𝑗 + 𝛽𝛽) �𝑥𝑥𝑗𝑗𝑖𝑖 −
1
𝑗𝑗𝑖𝑖
�

10

𝑗𝑗=1

�

210

𝑖𝑖=1

 

 

Figure 40.  Surface of the Challenge Function: Perm Function 0, D, Beta 
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4.2.1.23. Booth Function has a shape of plate and has two inputs. 

𝑓𝑓(𝑥𝑥) = (𝑥𝑥1 + 2𝑥𝑥2 − 7)2 + (2𝑥𝑥1 + 𝑥𝑥2 − 5)2 

 

Figure 41. Surface of the Challenge Function: Booth Function 
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4.2.1.24. Matyas Function has a shape of plate and has two inputs. 

𝑓𝑓(𝑥𝑥) = 0.26(𝑥𝑥12 + 𝑥𝑥22) − 0.48𝑥𝑥1𝑥𝑥2 

 

Figure 42.  Surface of the Challenge Function: Matyas Function 

 

 

 

 



83 
 

 

4.2.1.25. McCormick Function has a shape of plate and has two inputs. 

𝑓𝑓(𝑥𝑥) = sin(𝑥𝑥1 + 𝑥𝑥2) + (𝑥𝑥1 − 𝑥𝑥2)2 − 1.5𝑥𝑥1 + 2.5𝑥𝑥2 + 1 

 

Figure 43. Surface of the Challenge Function: McCormick Function 
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4.2.1.26. Power Sum Function has a shape of plate and has ten inputs. 

𝑓𝑓(𝑥𝑥) = ����𝑥𝑥𝑗𝑗𝑖𝑖
10

𝑗𝑗=1

� − 𝑏𝑏𝑖𝑖�

210

𝑖𝑖=1

 

 

Figure 44. Surface of the Challenge Function: Power Sum Function 
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4.2.1.27. Zakharov Function has a shape of plate and has two inputs. 

𝑓𝑓(𝑥𝑥) = �𝑥𝑥𝑖𝑖2 + ��0.5𝑖𝑖𝑥𝑥𝑖𝑖

10

𝑖𝑖=1

�

2

+ �� 0.5𝑖𝑖𝑥𝑥𝑖𝑖

10

𝑖𝑖=1

�

410

𝑖𝑖=1

 

 

Figure 45. Surface of the Challenge Function: Zakharov Function 
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4.2.1.28. Three-Hump Camel Function has a shape of valley and has two inputs. 

𝑓𝑓(𝑥𝑥) = 2𝑥𝑥12 − 1.05𝑥𝑥14 +
𝑥𝑥16

6
+ 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥22 

 

Figure 46. Surface of the Challenge Function: Three-Hump Camel Function 
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4.2.1.29. Six-Hump Camel Function has a shape of plate and has two inputs. 

𝑓𝑓(𝑥𝑥) = �4 − 2.1𝑥𝑥12 +
𝑥𝑥14

3
� 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + (−4 + 4𝑥𝑥22)𝑥𝑥22 

 

Figure 47. Surface of the Challenge Function: Six-Hump Camel Function 

 

 

 

 



88 
 

 

4.2.1.30. Dixon-Price Functions has a shape of plate and has three inputs. 

𝑓𝑓(𝑥𝑥) = (𝑥𝑥1 − 1)2 + �𝑖𝑖(2𝑥𝑥𝑖𝑖2 − 𝑥𝑥𝑖𝑖−1)2
3

𝑖𝑖=2

 

 

Figure 48. Surface of the Challenge Function: Dixon-Price Function 
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4.2.1.31. Rosenbrock Function has a shape of plate and has three inputs. 

𝑓𝑓(𝑥𝑥) = [100(𝑥𝑥2 − 𝑥𝑥12)2 + (𝑥𝑥1 − 1)2] + [100(𝑥𝑥3 − 𝑥𝑥22)2 + (𝑥𝑥2 − 1)2] 

 

Figure 49. Surface of the Challenge Function: Rosenbrock Function 
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4.2.1.32. De Jong Function N. 5 has a shape of ridges and drops and has two inputs. 

𝑓𝑓(𝑥𝑥) = �0.002 + �
1

𝑖𝑖 + (𝑥𝑥1𝑎𝑎1𝑖𝑖)2 + (𝑥𝑥2 − 𝑎𝑎2𝑖𝑖)6

25

𝑖𝑖=1

�

−1

 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎 = �−32 −16 0 16 32 −32 ⋯ 0 16 32
−32 −32 −32 −32 −32 −16 ⋯ 32 32 32� 

 

Figure 50. Surface of the Challenge Function: De Jong Function N.5 
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4.2.1.33. Easom Function has a shape of ridges and drops and has two inputs. 

𝑓𝑓(𝑥𝑥) = − cos(𝑥𝑥1) cos(𝑥𝑥2)𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑥𝑥1 − 𝜋𝜋)2 − (𝑥𝑥2 − 𝜋𝜋)2) 

 

Figure 51. Surface of the Challenge Function: Easom Function 
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4.2.1.34. Michalewicz Function has a shape of ridges and drops and has five inputs. 

𝑓𝑓(𝑥𝑥) = −� sin(𝑥𝑥𝑖𝑖) sin2𝑚𝑚 �
𝑖𝑖𝑥𝑥𝑖𝑖2

𝜋𝜋
�

5

𝑖𝑖=1

 

 

Figure 52. Surface of the Challenge Function: Michalewicz Function 
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4.3. Data Set Sampling Methods 

To evaluate the surrogate models, data sets were created to train and test the models.  

Three statistical methods were employed to generate the data sets and include:  Latin 

hypercube sampling, Sobol sequence and Halton sequence.  The use of these three 

methods provided additional guidance for surrogate model selection by eliminating the 

variation based on the data generation method.     

Latin hypercube sampling is based on a Latin square design. The square is divided 

into smaller squares and a single sample is assigned to each row and column.  This 

extension allows for more dimensions to be calculated per square.  This method allows 

the data set to be spread over the interval.  One disadvantage is that the number of 

intervals must be chosen prior to the application (McKay, 1979).  Figure 53 shows an 

example of a data set generated in MATLAB using this method with 500 data points. 

 

Figure 53.  500 datapoint set generated using Latin Hypercube Sampling Method 



94 
 

Sobol is a low discrepancy sequence which work by filling the larger gaps between 

the pervious numbers in the sequence.  Sobol is executed by using a base of 2 to 

generate the data (Navid, 2018).  Figure 54 shows and example of a data set generated 

in MATLAB using this method with 500 data points. 

 

Figure 54.  500 datapoint set generated using Sobol Sequencing Method 

 

Halton is similar to Sobol in that they are both low discrepancy sequences and work 

by filling the larger gaps between the previous numbers of the sequence.  The execution 

is slightly different in Halton operates on prime number bases (Chi, 2005).  Figure 55 

shows an example of a data set generated in MATLAB using this method with 500 data 

points. 
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Figure 55.  500 datapoint set generated using Halton Sequencing Method 

 

4.4. Error Calculation Methods 

Error calculation methods were used in this work to compare the predicted value to 

the actual value.  The six methods include R-squared, R-squared adjusted, Akaike 

Information Criterion, Bayesian Information Criterion, root mean square error and 

maximum absolute error.    

The coefficient of determination, R-squared, is defined as the proportion of the 

variance in the dependent variable that is predictable from the independent variable (Tjur, 

2009).  Essentially, R-squared provides a measure of the accuracy of the regression 

model and can be calculated using the following equations 4.1, 4.2, and 4.3. 

𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑖𝑖           4.1 
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𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ �𝑦𝑦𝑖𝑖 −
1
𝑛𝑛
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 �

2
𝑖𝑖          4.2 

𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

               4.3 

Where:   n = Number of data points 

  𝑦𝑦�𝑖𝑖= Predicted value 

𝑦𝑦𝑖𝑖= Actual Value 

R-squared adjusted in based on the original R-squared, however takes into account 

the impact of a model with multiple predictors.  It can be used to measure the useful 

variables in a model.  As variables are added to a model, R-squared will only increase.  

R-squared adjusted may increase or decrease with additional variables depending on 

their worth (Montgomery et al, 2009).  The calculation is shown in 4.4, 4.5, 4.6. 

𝑅𝑅�2 = 1 −
𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑𝑒𝑒�
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

𝑑𝑑𝑑𝑑𝑡𝑡�
          4.4 

𝑑𝑑𝑑𝑑𝑒𝑒 = 𝑛𝑛 − 𝑝𝑝 − 1          4.5 

𝑑𝑑𝑑𝑑𝑡𝑡 = 𝑛𝑛 − 1           4.6 

Where:   n = Number of data points 

  p = Number of variables in the model 

   

Akaike Information Criterion can be used to perform model comparisons.  This method 

is based on in-sample fit to estimate the likelihood of a model to predict the values ( 

(Mohammed & Far, 2015).  When using Akaike Information Criterion, a comparison may 

be made across a group of models by pinpointing the minimum value.  The Akaike 

Information Criterion is calculated using equation 4.7. 

𝐴𝐴𝐴𝐴𝐴𝐴 = −2 ∗ ln 𝐿𝐿 + 2 ∗ 𝑘𝑘          4.7 
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 Where:   L = Value of the Likelihood 

k = Number of estimated parameters 

 

 Bayesian Information Criterion is very similar to the Akaike Information Criterion in 

form and application, however their assumptions are very different.  Bayesian Information 

Criterion considers the number of recorded measurements (Busemeyer & Diederich, 

2014) as seen in equation 4.8.   

𝐵𝐵𝐵𝐵𝐵𝐵 = −2 ∗ ln 𝐿𝐿 + 2 ∗ ln𝑁𝑁 ∗ 𝑘𝑘        4.8 

Where:   L = Value of the Likelihood 

  N = Number of recorded measurements 

K = Number of estimated parameters 

 

Root mean square error represent the standard deviation of the residuals, or the 

distance from the regression line to the calculated point.  Root mean square error is 

generally helpful to evaluate the regression quality (Hyndman & Koehler, 2006).  The 

equation used for calculation is shown in equation 4.9. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
         4.9 

Where:   n = Number of data points 

  𝑦𝑦�𝑖𝑖= Predicted value 

𝑦𝑦𝑖𝑖= Actual Value 

 

Maximum absolute error represents the maximum absolute value of the difference of 

the predicted and observed values.  This method can provide valuable information related 

to the predicted points, whereas root mean square error can provide information about 
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the fit of the regression (Willmott & Matsuura, 2005).  The maximum absolute error can 

be calculated using equation 4.10.   

𝑀𝑀𝑀𝑀𝑀𝑀 = max |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|          4.10 

 

4.5. Computational Experiments 

Input-output pairs were generated using Latin hypercube sampling, Sobol Sequence 

and Halton Sequence over nine sample sizes including 50, 100, 200, 400, 800, 1600, 

3200, 6400, and 12800.  Those data sets were generated for all 34 challenge functions 

and then used to train the eight surrogate models.  Then a data set of 100,000 points 

created using Sobol Sequencing was generated to evaluate the models. 

The effectiveness was compared through six error methods including R-squared, R-

squared adjusted, Akaike Information Criterion, Bayesian Information Criterion, root 

mean square error and maximum absolute error based on the different between the 

output of the dataset and the calculated output.  The results of these error calculations 

validate the findings across the board to provide more accurate description of the results.  

Additionally, the training time was recorded during the phase of the program where the 

model was trained, and evaluation time was recorded during the phase when the final 

outputs were generated. All computations were carried out on a HP Spectre X360 X64-

based PC with 16 GB RAM using MATLAB 2017b. 
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4.6. Results 

4.6.1. Results Based on Sampling Method 

To establish a baseline understanding of the impact of sample size on the combination 

of surrogate model with sampling method, the R-squared Adjusted was calculated as a 

function of increasing sample size for each surrogate model when the data was generated 

using Sobol, Halton and LHS sampling methods and is displayed in Figure 56.   

 

Figure 56.  Comparison of Latin Hypercube Sampling, Sobol Sequence and Halton 
Sequence as a comparison of R-Squared Adjusted 
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Figure 57 compares the surrogate model results when the data set was generated 

using Halton sequence.  Radial Basis Function seemed to be least affected by the small 

sample sizes.  However, the performance of Multivariate Adaptive Regression Splines 

remained the least accurate until it began to rise when the sample size increased to 400.  

Artificial Neural Networks, Extreme Learning Machines and Automated Learning of 

Algebraic Models for Optimization performed similarly well after reaching a sample size 

of 1600. 

 

Figure 57.  R-Squared Adjusted calculated for each surrogate model using Halton 
sampling method with respect to sample size 
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Figure 58. compares the surrogate model results when the data set was generated 

using Sobol sequence.  Gaussian Process Regression and Random Forests showed little 

impact of the sample size on the values. The performance of Multivariate Adaptive 

Regression Splines remained the least accurate until it began to rise when the sample 

size increased to 200.  Artificial Neural Networks, Extreme Learning Machines and 

Automated Learning of Algebraic Models for Optimization performed similarly well after 

reaching a sample size of 1600. 

 

Figure 58.  R-Squared Adjusted for each surrogate model using Sobol sampling method 
with respect to sample size 
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Figure 59 compares the surrogate model results when the data set was generated 

using Latin Hypercube Sampling.  All surrogate models showed low R-Square adjusted 

values with small sample sizes and increase steadily as sample size increases to 1,600.  

Gaussian Process Regression and Random Forests showed little impact of the sample 

size on the values. Artificial Neural Networks, Extreme Learning Machines and 

Automated Learning of Algebraic Models for Optimization performed similarly well after 

reaching a sample size of 1600. 

 

Figure 59.  R-Squared Adjusted calculated for each surrogate model using Latin 
Hypercube Sampling method with respect to sample size 
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For all sampling methods and sizes, the previous graphs show that as the sample size 

increased from 50 to 1,600, the R-squared adjusted increases.  As sample size increases 

from 1,600 to 12,800, the values remain close to constant.  

4.6.2. Results Based on Training Time 

Model training time which is the time required to prepare the model for evaluation 

should be included when selecting a surrogate model.  Figure 60  displays the training 

time as sample size is increased for each surrogate model.  Extreme Learning Machine 

calculations were performed the quickest and did not increase significantly over increased 

sample size.  Automated Learning of Algebraic Models for Optimization show to have the 

longest training time and increased from 3.57 to 21.1 CPUs as sampling size increased 

from 50 to 12,800. 

 

Figure 60.  Surrogate Models Training Time Based on Sample Size 
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Figure 61 represents the evaluation time for each surrogate model over increasing 

sample sizes.  It shows that increasing the sample size does not relate to the evaluation 

time.  However, it does mirror the training time displayed in Figure 60 because the 

shortest time was ELM while the longest was ALAMO. 

 

Figure 61.  Surrogate Models Evaluation Time Based on Sample Size 
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4.6.3. Results Based on Challenge Function  

4.6.3.1. Challenge Functions with Two inputs 

Challenge functions with two inputs is the largest group with twenty functions.  The R-

squared values for the surrogate models over the range of sample sizes are shown in 

Figure 62. The graph shows that as the sample size increase 50 to 1,600 the R-square 

increases.  For sample sizes of 1,600 and above, the values seem to remain constant 

and the error bars decrease in size showing that there is decreased variation.     

 

Figure 62.  R-Squared Values of Challenge Functions with Two Inputs for all Surrogate 
Models over the range of Sample Sizes 
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The R-squared adjusted values for the surrogate models over the range of sample 

sizes are shown in Figure 63.  The graph shows that as the sample size increase 50 to 

1,600 the R-squared adjusted increases.  For sample sizes of 1,600 and above, the 

values seem to remain constant and the error bars decrease in size showing that there is 

decreased variation.     

 

Figure 63.  R-Squared Adjusted Values of Challenge Functions with Two Inputs for all 
Surrogate Models over the range of Sample Sizes 
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The Akaike Information Criterion for the surrogate models over the range of sample 

sizes are shown in Figure 64.  The graph shows that when sample size increases over 

1,600, the error bars and variation decreases.  Akaike Information Criterion is useful for 

comparing different models.  When considering the models with a sample size of 1,600 

or greater, the values remain constant.       

 

Figure 64.  Akaike Information Criterion of Challenge Functions with Two Inputs for all 
Surrogate Models over the range of Sample Sizes 
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The Bayesian Information Criterion for the surrogate models over the range of sample 

sizes are shown in Figure 65.  The graph shows that when sample size increases over 

1,600, the error bars and variation decreases.  Bayesian Information Criterion is useful 

for comparing different models.  When considering the models with a sample size of 1,600 

or greater, the values remain constant.       

 

Figure 65.  Bayesian Information Criterion of Challenge Functions with Two Inputs for all 
Surrogate Models over the range of Sample Sizes 
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The root mean square error for the surrogate models over the range of sample sizes 

are shown in Figure 66.  The graph shows that when sample size increases over 400, the 

error values decrease.  Additionally, the error bars decrease.         

 

Figure 66. Root Mean Square Error of Challenge Functions with Two Inputs for all 
Surrogate Models over the range of Sample Sizes 
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The maximum absolute error for the surrogate models over the range of sample sizes 

are shown in Figure 67.  The graph shows that when sample size increases over 400, the 

error values decrease, but not as dramatically as with the other error calculation methods.  

Additionally, the error bars do not seem to decrease over the range of sample sizes.   

 

Figure 67.  Maximum Absolute Error of Challenge Functions with Two Inputs for all 
Surrogate Models over the range of Sample Sizes 
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 Based on the discussion above, a sample size of 1,600 balances the increased 

accuracy and decreased training time.  To provide a more detailed view of the impact of 

surrogate model, the Akaike Information Criterion is displayed in  Figure 68.  The best 

performers were Artificial Neural Network, Automated Learning of Algebraic Models for 

Optimization, and Extreme Learning Machines which all provided very similar levels.  

Radial Basis Function reached the same value, but with a larger value range.  Multivariate 

Adaptive Regression Splines showed the next best performance.   

 

Figure 68.  Akaike Information Criterion for Challenge Functions with Two Inputs 

 

Based on the discussion in the previous section, the following sections will provide a 

detailed view of the surrogate model performance.  The graphs will portray the Akaike 

Information Criterion for a sample size of 1,600 to provide a true comparison of the 
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surrogate models.  Additional error calculation graphs were calculated and are included 

in Appendix A.     

4.6.3.2. Results for Challenge Functions with Three Inputs 

Challenge functions with three inputs form a group of five functions.  Figure 69 shows 

that that Artificial Neural Network, Automated Learning of Algebraic Models for 

Optimization, and Extreme Learning Machines provided well and with about the same 

value.  Radial Basis Function, Support Vector Regression and Gaussian Process 

Regression showed large error bars indicating variation.   

 

Figure 69.  Akaike Information Criterion calculations for Challenge Functions with Three 
Inputs for all Surrogate Models 
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4.6.3.3. Challenge Functions with Four Inputs 

In the group of challenge functions with four inputs, there are three challenge 

functions.  Figure 70 shows that that Gaussian Process Regression did reach the lowest 

value but showed the largest range.  Artificial Neural Network showed the least variation 

among the data and showed the lowest average.   

 

Figure 70.  Akaike Information Criterion calculations for Challenge Functions with Four 
Inputs for all Surrogate Models 
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4.6.3.4. Challenge Functions with Five Inputs 

In the group of challenge functions with five inputs, there are two challenge functions.  

The Akaike Information Criterion is displayed in Figure 71.   Gaussian Process 

Regression did reach the lowest value but showed the largest range.  Artificial Neural 

Network, Automated Learning of Algebraic Models for Optimization, Support Vector 

Regression and Multivariate Adaptive Regression Splines provided very similar levels.   

 

Figure 71.  Akaike Information Criterion calculations for Challenge Functions with Five 
Inputs for all Surrogate Models 
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4.6.3.5. Challenge Functions with Ten Inputs 

In the group of challenge functions with ten inputs, there are six challenge functions.  

To provide a more detailed view of the impact of surrogate model, the Akaike Information 

Criterion is displayed in  Figure 72.  Artificial Neural Network, Automated Learning of 

Algebraic Models for Optimization, and Gaussian Process Regression provided very 

similar levels at a low value.  Radial Basis Function reached the same value, but with a 

larger value range.  Multivariate Adaptive Regression Splines showed the next best 

performance.    

 

Figure 72.  Akaike Information Criterion calculations for Challenge Functions with Ten 
Inputs for all Surrogate Models 

 

 



116 
 

4.6.3.6. Multilocal Minima Challenge Functions 

Challenge function whose surface shape has Multilocal minima was the largest group 

with challenge functions fifteen. Figure 73 portrays the Akaike Information Criterion.  

Artificial Neural Network, Automated Learning of Algebraic Models for Optimization, 

Gaussian Process Regression, Radial Basis Function and Multivariate Adaptive 

Regression Splines provided very similar levels at a low value.  However, Radial Basis 

Function and Mutlivariate Regression Splines reached the same value, but with a larger 

value range.     

 

Figure 73.  Akaike Information Criterion calculations for Multilocal Minima Shaped 
Challenge Functions for all Surrogate Models 
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4.6.3.7. Plate Shaped Challenge Functions 

In the group of challenge functions with a plate shaped shape, there are 5 challenge 

functions.  The Akaike Information Criterion is depicted in Figure 74.  Automated Learning 

of Algebraic Models for Optimization and Support Vector Regression both reached the 

lowest value, however the range and length of the error bars is long.  Artificial Neural 

Network, Random Forests and Multivariate Adaptive Regression Splines provided very 

similar average values, but with a smaller range.   

 

Figure 74.  Akaike Information Criterion calculations for Plate Shaped Challenge 
Functions for all Surrogate Models 
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4.6.3.8. Ridges and Drops Shaped Challenge Functions 

Challenge function whose surface shape has ridges and drops has three challenge 

functions.  Figure 75 shows the Akaike Information Criterion.  Artificial Neural Network 

and Extreme Learning Machines reached the lowest values and their performance 

was alike.  With values only slightly larger, Gaussian Process Regression and 

Multivariate Adaptive Regression Splines were the next be models.   

 

Figure 75.  Akaike Information Criterion calculations for Ridges and Drops Shaped 
Challenge Functions for all Surrogate Models 
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4.6.3.9. Valley Shaped Challenge Functions 

In the group of challenge functions with a plate shaped shape, there are 4 challenge 

functions.  The Akaike Information Criterion is depicted in Figure 76.  Automated Learning 

of Algebraic Models for Optimization, Extreme Learning Machines and Radial Basis 

Functions all perfumed best with about the same values.  

 

Figure 76.  Akaike Information Criterion calculations for Valley Shaped Challenge 
Functions for all Surrogate Models 
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4.6.3.10. Bowl Shaped Challenge Functions 

In the group of challenge functions with a bowl-shaped shape, there are 7 challenge 

functions.  Figure 77 portrays the Akaike Information Criterion.  Extreme Learning 

Machines shows to have the lowest value, but with the largest range and error bars.  

Artificial Neural Network and Automated Learning of Algebraic Models for Optimization 

were the next best performers with similar values.  

 

Figure 77. Akaike Information Criterion calculations for Bowl Shaped Challenge 
Functions for all Surrogate Models 
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4.7. Conclusions 

Larger sample sizes performed more favourably over the smaller sample sizes.  

Accuracy increased exponentially as sample size increased from 50 to 1,600, however 

sample sizes of 1,600 or more performed equally as well as those with sample sizes of 

12,800.  To increase accuracy without increasing complexity, a sample size 1,600 was 

proven optimal. 

For all permutations, Extreme Learning Machines provided the shortest training time 

while Automated Learning of Algebraic Models for Optimization required the longest 

training time.  Due to relatively short training and evaluation time of all surrogate models, 

this should not be considered a limiting factor. 

The six-performance metrics, R-squared, R-squared adjusted, Akaike Information 

Criterion, Bayesian Information Criterion, root mean square error and maximum absolute 

error all provided similar results.  Akaike Information Criterion values were used to portray 

the results, but the other error calculations validated the findings.  See Appendix A for 

detailed error results for each error calculation divided by challenge function shape and 

number of inputs.  

Table 3 displays the first, second and third best performing models based on 

challenge function surface shape and number of inputs.  Artificial Neural Networks 

performed best for the majority of the challenge functions with Multilocal minima and 

ridges and drops shape and inputs of two, five and ten.  The next best performing model 

was ALAMO which ranked first for the challenge functions with plate and valley shape 

and inputs of three.  For the challenge functions with a bowl shape, Extreme Learning 

Machines provided the best fit.  Gaussian Process Regression provided the best fit for 
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challenge functions with four inputs.  Overall, each type of challenge function did provide 

a decent fit, however Artificial Neural Networks and ALAMO provided the best fit for the 

majority of challenge functions.    

 

Table 3.  Akaike Information Criterion Results Sorted by Challenge Function Surface 
Shape and Number of Inputs 

 

 

 

 

Challenge Function Type Number in Group First Second Third

Mulitlocal Minima Shape 15 ANN ALAMO ELM

Plate Shape 7 ALAMO SVR ANN

Ridges & Drops Shape 3 ANN GPR ELM

Valley Shape 4 ALAMO ELM RBF

Bowl Shape 7 ELM ALAMO ANN

2 Inputs 20 ANN ELM ALAMO

3 Inputs 5 ALAMO ANN ELM

4 Inputs 1 GPR ANN ALAMO

5 Inputs 2 ANN GPR ALAMO

10 Inputs 6 ANN ALAMO GPR

Average Akaike Information Criteria
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CHAPTER 5. Conclusions and Future Work 

5.1. Conclusions 

Data driven methods for chemical process and product synthesis have become 

integrated in all aspects of design.  The responsibly of the academic community should 

be to provide users with guidance when managing the ever-increasing amount of data 

and possible data analytics methods with a goal of utilizing these new design tools to 

ensure that their applications provides meaningful results.    

Progressive model improvement will lead us to improve characterization techniques 

to better describe molecules, more advanced modeling methods provide more correct 

results, and uncertainty management will ensure that the results are more accurate.  In 

addition, improvements to the modeling process, inclusion of additional process design 

that study the impact on society and sustainability will provide richer results compared to 

traditional economic and technical solutions.  The methods presented in this work 

illustrate applications of data driven methods for chemical process and product synthesis 

and design with a focus on two specific tools computer aided molecular design and 

surrogate modeling.   

Computer Aided Molecular Design is a framework that allows us to utilize data to 

design molecules specific to a process.  This is important because it eliminates the need 

to alter the design to match the available inputs, rather the inputs are modified to match 

the design.  Once issue with this method is that it is reliant on characteristic data for each 

molecule or building block.  The work presented in this dissertation allows us to generate 

necessary data to apply to the framework thus expanding the possible molecules that can 

be utilized even further than the computer aided molecular design framework alone. 
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 Surrogate modeling allows us to understand complex or unknown processes to 

provided understanding of the process and improve designs.  Though many studies have 

sought to test and provide guidance for the application of surrogate models, the results 

tend to cover only one or two surrogate models.  The work presented in this dissertation 

provides information about the application of those models based on the surface shape 

and number of inputs.  Additionally, it provides information about sampling methods and 

sizing.  Basically, this information can help make an informed decision when selecting 

which surrogate model, sampling method and group for each type of application.   

Both advances provide added depth to data analysis by enhancing current 

methodologies.  This type of work is important because as the modern chemical engineer 

begins to implement data driven design techniques, the applications that are utilized will 

need to become more robust and accurate.  Progressive model improvement requires 

that each stage of design should be examined looking for way to improve.     

5.2. Progressive Model Improvement  

Once a framework, such as computer aided molecular design, has been developed, 

future study should seek to progressively improve the processes within each step.  For 

example, multiway modeling could provide additional data through the replacement of 

infrared spectroscopy with excitation-emission fluorescence data or by selecting a more 

sophisticated modeling method by selecting a surrogate model over a linear model.   

5.2.1. Multiway Modeling 

Multiway modeling takes the matrix of two-way data with a single value for each 

variable or dimension one step further by adding additional dimensions.  For example, a 

matrix where data is collected over time.  (Bro & Kiers, 2003)  Multiway arrays can be 
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decomposed using parallel factor analysis, known as PARAFAC, which is essentially an 

extension of principal component analysis for two-way to three-way.  Essentially, principal 

component analyses rely on a score and loading matrix; whereas the PARAFAC uses a 

score matrix and two loading matrices.     

When considering the computer aided molecular design problem with ionic liquids 

presented, improvements from infrared or near infrared to excitation-emission matrix 

(EEM) fluorescence could provide more descriptive information. (Thygesen & Van Den 

Berg, 256-270)  EEM fluorescence provides a three-dimensional plot of excitation 

wavelength versus emission wavelength versus fluorescence intensity, an example of 

which is shown in Figure 78. 

 

Figure 78. EEM Fluorescence 

5.2.2. Modeling Method 

In addition to increased descriptor data found in the EEM fluorescence plots or other 

new characterization techniques, data modeling can be improved.  Since linear 

regression such as principal component analysis or PARAFAC are not valid for all 
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datasets, systems with non-linear and complex relationships can be modeled using 

surrogate models.  The surrogate modeling study presented in this dissertation provides 

guidance for the selection of the appropriate surrogate model for a given situation. (Bro 

& Kiers, 2003)   

5.2.3. Uncertainty Management 

A side effect of all data analysis is uncertainty.  This uncertainty can be introduced in 

every step from data collection through final conclusions.  Those uncertainties can have 

a major impact because they accumulate throughout model calibrations.  Future work 

should focus on including of uncertainty analysis techniques within the modeling 

frameworks.     

5.3.   Process Design to Include Social Impact 

Technical and economics are the two main considerations for traditional process or 

product design.  However, modern process design is moving towards the inclusion of 

ecological and social sustainability as illustrated in Figure 79.   
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Figure 79.  Process Design 

 

When these factors such as human toxicity or environmental impact are included 

within the model as a part of the target properties, then the resulting design is truly the 

most ideal from all aspects of design.   
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CHAPTER 7. Appendix A 

The following graphs show the results of each group of challenge functions over 

the range of sample sizes for each surrogate model.  This in-depth view of the results 

is presented in Section 4.6.3.1 for challenge functions with two inputs.  These graphs 

provided insight that a sample size of 1,600 was optimal.  Additionally, these graphs 

provided similar results regardless of the error calculation method.  As a result of these 

observations, the remaining challenge function groups were discussed based on a 

plot of Akaike Information Criterion with a sample size of 1,600.  The comparisons for 

the remaining groups are presented in the section for reference.   
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7.1. Challenge Functions with Three Inputs 
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7.2. Challenge Functions with Four Inputs 
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7.3. Results for Challenge Functions with Five Inputs 
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7.4. Results for Challenge Functions with Ten Inputs 
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7.5. Results for Challenge Functions with a Multilocal Minima Shape 
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7.6. Results for Challenge Functions with a Plate Shape 

 

 



156 
 

 

 

 



157 
 

 

 

 



158 
 

7.7. Results for Challenge Functions with a Ridges & Drops Shape 
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7.8. Results for Challenge Functions with a Valley Shape 
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7.9. Results for Challenge Functions with a Bowl Shape 
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