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Abstract

This thesis presents a new approach for the guidance and control of a UGV (Unmanned

Ground Vehicle). A special focus was placed on moving obstacles that interfere with the

planned path of the vehicle, this is due to the fact that the majority of obstacle avoidance

research has been completed on stationary objects. An obstacle avoidance algorithm was

developed using an integrated system involving Proportional Navigation (Pro-Nav) and a

Nonlinear Model Predictive Controller (NMPC). An obstacle avoidance variant of the ideal

proportional navigation law generates command lateral accelerations to avoid obstacles, while

the NMPC is used to track the reference trajectory given by the Pro-Nav. The NMPC utilizes

a lateral vehicle dynamic model along with a nonlinear tire model in order to issue control

inputs. In this application an obstacle avoidance algorithm can take over the control of a

vehicle until the obstacle is no longer a threat. Another application of a Pro-Nav and NMPC

algorithm was tested for leader/follower situations. The performance of the leader/follower

and obstacle avoidance algorithm is evaluated through different simulations.

Simulation of the performance of the PNCAG and NMPC algorithm was conducted us-

ing two different simulation environments; MATLAB and Simulink Vehicle Dynamics Block-

set. The MATLAB simulation validated the algorithm showing that it could be used to

accomplish obstacle avoidance. With the algorithm shown to be effective, it was placed into

the Vehicle Dynamics Blockset. The Vehicle Dynamics Blockset provided a higher fidelity

vehicle model to provide a more realistic simulation environment. In addition to obstacle

avoidance, simulation results verified the performance of a modified version of the PNCAG

and NMPC algorithm in a leader/follower scenario. The results show, the algorithm handled

the leader/follower and collision avoidance with reasonable error. Overall the algorithm was
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also able to follow a lead vehicle throughout a double lane change as well as avoid collision

with a moving obstacle in four different scenarios.
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Chapter 1

Introduction and Background

Vehicle automation is quickly expanding as technology continues to advance and push

the boundaries of what is possible. There are six levels of automation as defined by SAE

International, an automotive standardization body. The levels range from No Automation,

to Partial Automation, and eventually to Full Automation [1]. No Automation is a level

defined by the fact the driver performs all the driving tasks. Partial Automation is a state

of automation where the vehicle has automated functions such as acceleration and steering,

but the driver must remain engaged with the driving task and monitor the environment

at all times. Full Automation involves a vehicle capable of performing all functions under

all conditions, where the driver may have the option to control the vehicle. The algorithm

proposed in this thesis was developed for integration within a complete control system for

autonomous ground vehicles at the level of Partial Automation to Full Automation. Un-

manned ground vehicles (UGVs) are widely used in the military at present for dangerous

missions where a human driver would not be practical [2]. UGVs are the land-based counter-

part to unmanned aerial vehicles, on which a large amount of the research presented in this

thesis was based. The goal of this thesis is to develop a combined Proportional Navigation

and Nonlinear Model Predictive Control algorithm that is able to effectively avoid moving

obstacles in the UGV’s path of travel.

Many scenarios require a UGV to avoid a moving obstacle as well stationary objects.

Stationary object avoidance has been well researched with successful solutions, however this

thesis focuses on moving obstacles. Collision avoidance has been commonly defined as a

series of practices designed to prevent vehicles such as cars, trains, ships, and airplanes

from colliding with obstacles. Longitudinal collision avoidance systems have already been
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implemented in newer cars on the road today. These systems use RADAR (Radio Detection

and Ranging), LIDAR (Light Detection and Ranging), and image recognition in order to

detect a possible collision scenario [3]. Collision avoidance is typically accomplished by

braking the car once an obstacle is detected in the vehicle’s path. At low vehicle speeds

(below 20 mph) this method works well, however at higher speeds active steering is a more

appropriate and successful collision avoidance technique.

An additional application of the Pro-Nav and NMPC used together is a leader/follower

scenario. Truck platooning is a heavily pursued research area. Truck platooning is defined

as a group of semi-trucks that are digitally connected in order to save fuel by driving closely

with one vehicle following the other, thus reducing drag on the follower vehicle. In order to

accomplish this, all the trucks must stay in line laterally as well as follow at a close distance

in order for the draft effect to be utilized for fuel savings [4]-[5].

To handle the above mentioned scenarios, a novel approach is proposed which combines

Proportional Navigation to provide a navigation command, and Nonlinear Model Predictive

Control to implement the command and control the lateral position of the vehicle. Applica-

tions to avoid moving obstacles and for leader/follower truck platooning scenarios have been

completed and analyzed.

1.1 Overview of Model Predictive Control

Model Predictive Control (MPC) is a leading method of process control, created in the

1980s, that was originally developed for use in chemical plants and oil refineries [6]. At

the time of development, it was computationally expensive to run MPC on high dynamic

systems. Thus, uses of MPC were not very expansive. Today, computers have become more

powerful, allowing MPC to run in real time and handle complex systems, hence making it a

popular control technique.
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Figure 1.1: Basic MPC Diagram

Figure 1.1 shows a block diagram of the MPC control structure. MPC uses a dynamic model

to produce a set of control inputs over a finite time horizon. The controller only applies the

first control input, then optimizes again and the process continues to repeat.

Due to the finite horizon aspect of MPC, stability is not guaranteed, and tuning weights

and horizons are the only way to achieve stability especially for the nonlinear MPC variant

used in this thesis. Additionally, the disadvantages of MPC include the difficulty of obtaining

a high-accuracy model, along with the computational expense of solving the objective func-

tion [7]. Advantages of the MPC include the ability to include hard and soft constraints on

both the inputs and output states, as well as handling the nonlinear plant dynamics. In gen-

eral, MPC has lower rise time, settling time, and overshoots when compared to Proportional,

Integral, and Derivative (PID) control, thus providing smoother operation.
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1.1.1 Model Predictive Control for Autonomous Ground Vehicles

MPC has been applied to both longitudinal and lateral dynamics for vehicle control.

MPC in general has many advantages over other controllers, such as the ability to incorporate

prediction of future events and to implement soft and hard constraints on the system. In

[8] and [9], a vehicle bicycle model is used in conjunction with a nonlinear Pacejka tire

model for the development of an autonomous steering system based on Nonlinear Model

Predictive Control (NMPC). The nonlinearities of a real tire are captured well with the

Pacejka model and better estimate the performance when they become saturated at high

levels of lateral acceleration, as is discussed in the derivation of the Vehicle Model [10].

However, due to the nonlinear tire model, NMPC was used instead of linear MPC. NMPC

has the advantage of being a controller that inherently captures nonlinearities within a

dynamic system. NMPC allows for the stability boundary to be increased when compared

with similar linear controllers.

Multiple papers were analyzed involving control of steering for autonomous vehicles.

There are several methods that use either a MPC or NMPC algorithm based approach

utilizing a vehicle model, these methods helped to develop the NMPC used in this thesis.

The main goal of the NMPC based steering system in this thesis is to control a vehicle using

reference lateral velocities, while considering physical constraints on the system.

1.2 Overview of Proportional Navigation

Proportional Navigation (Pro-Nav) is a guidance law that has shown to be successful in

surface-to-air and air-to-air missile tracking systems [11]. The guidance law was developed

by the United States during World War II. The law has an advantage of being relatively

simplistic when compared to other guidance schemes [12]. It is important to note that

Proportional Navigation is intended to ensure collision between two objects. In order to

properly understand the guidance law, Figure 1.2 illustrates an object-target engagement

scenario.
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Figure 1.2: Pro-Nav Engagement Geometry

In Figure 1.2, λ and λ̇ represent the Line of Sight (LOS) and LOS rate, ac is the command

acceleration, VC and VO are the velocities of the user and obstacle, and RCO is the range

between the user car and target. The Line of Sight is an imaginary line between user and

the target. The guidance law is based on the Constant Bearing Decreasing Range (CBDR)

principle. CBDR states that when two objects are headed in constant directions with no

change in the LOS angle, the objects will collide [13]. Pro-Nav dictates the user velocity

vector must rotate at a rate proportional to that of the LOS, and in the same direction.

For Pro-Nav to be effective, full navigation states of the user and obstacle/target must

be known. Many challenges are associated with a Pro-Nav based guidance system as it is

classically implemented on a missile homing guidance system. In order for the system to

provide the desired performance; the root-mean-square final distance from all noise sources

need to be minimized, the guidance system must be able to maintain stability, and the system

nonlinearities need to be minimized. For the application of Pro-Nav within the scope of this
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thesis, nonlinearities are accounted for in the controller and the stability of the Pro-Nav is

assumed.

1.2.1 Proportional Navigation Types and Applications

There are various types of Proportional Navigation algorithms that have been devel-

oped [14]. Pure Proportional Navigation (PPN) follows the most basic definition of the

Proportional Navigation law. The basic law is implemented using the following equation

ac = NVUGV θ̇ (1.1)

where, ac is the command acceleration, N is the unitless navigation constant, VUGV is the

user vehicle velocity, and θ̇ is LOS rate of change.

True Proportional Navigation (TPN) improves upon PPN by using the closing velocity

instead of the user velocity. This is done because it is actually the closing velocity that drives

the LOS rate of change to zero. The improved law is shown below,

ac = N ′Vcθ̇ (1.2)

where N ′ is the effective navigation ratio, and Vc is the closing velocity between the user

and target. The main difference between the two laws is that the TPN law will be applied

perpendicular to the LOS and not perpendicular to the velocity of the user.

Generalized TPN allows the lateral acceleration angle to be deviated by some angle in

relation to the LOS. The last major development of basic Proportional Navigation (Pro-Nav)

is Ideal Proportional Navigation(IPN). IPN implements the commanded lateral acceleration

perpendicular to the relative velocity between the user and target. This specific law is what

was used in the Leader/Follower example and Obstacle Avoidance variant of the Pro-Nav

law described later in this thesis.
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1.3 Prior Obstacle Avoidance Research

Obstacle avoidance for vehicles is used in a variety of situations and applications, where

a possible threat (obstacle) could move into the planned path of a vehicle. Various techniques

have been used for obstacle avoidance, most utilized is dynamic path planning. Within path

planning there are several categories including grid-based, potential field, and optimization

through MPC [15]-[16]. Most of the research within obstacle avoidance has been focused on

land based mobile robots, however there is some research on UAVs and passenger vehicles.

Most of these obstacle avoidance algorithms are required to run continually. In the case

of the algorithm developed in this thesis, the algorithm would only take over if there is a

detected obstacle. Brief descriptions of the previous work done is presented below.

1.3.1 Grid-Based Algorithms

The grid-based method to path planning overlays a grid over the environment the user

is navigating. When the cell is located over an obstacle, the cell is set to a “False” value to

represent the presence of an obstacle and area where the user vehicle can’t go. Figure 1.3

shows the grid-based path planning algorithm [17].
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Figure 1.3: Grid-Based Schematic

Optimal search algorithms are used to find the global path, one that is free of obstacles,

to connect the user to the goal position [18]. In general, grid-based approaches are much

more suited to land-based mobile robots because of their good performance in low speed

applications. They also have not been adapted well to moving obstacle scenarios, especially

obstacles moving at higher speeds.

1.3.2 Potential Field Algorithm

The potential field algorithm views obstacle avoidance as a sub-task of a path planner

within mobile robotics. The algorithm assumes that a ground vehicle is navigated by virtual

forces that attract it towards a goal or repel it away from potential obstacles [19]. The path

is then determined as a result of the virtual forces. The Virtual Force Field (VFF) method

creates a virtual grid (similar to grid-based), then each occupied grid in the cell exerts a
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repulsive force driving the robot away from the obstacle as shown in Eq. (1.3),

F(i, j) =
FcrC(i, j))

d2(i, j)

[
xi − x0
d(i, j)

x̂+
yj − y0
d(i, j)

ŷ

]
(1.3)

where Fcr is the force constant, d(i, j) is the distance between the cell and robot, C(i, j) is the

certainty level of the cell, xo, yo are the robot coordinates, and xi, yj are the coordinates of the

cell [20]. Though the algorithm works reasonably well in certain situations, it struggles with

confined land-based constraints (i.e tight spaces), has issues with real time implementation,

and it inherently treats dynamic obstacles as static objects. Another disadvantage of the

potential field method is the risk of getting stuck in a local minima, meaning an appropriate

path may not be found.

1.3.3 Model Predictive Control Obstacle Avoidance

Model Predictive Control algorithms have typically fallen under the category of dis-

crete optimization. MPC has also been used as an obstacle avoidance technique [21]. In

these cases, MPC is used to calculate a trajectory around the obstacles, while a lower level

controller is used to track the trajectory in both longitudinal and lateral vehicle directions.

In the case of Park [22], longitudinal control was accomplished using a Proportion Inte-

gral Derivative controller (PID), while the lateral dynamics were controlled using a Linear

Quadratic Regulator (LQR).
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Figure 1.4: Typical MPC Obstacle Control Structure

The above diagram Figure 1.4 shows the layout of a common MPC approach to obstacle

avoidance. The approach works to avoid obstacles by implementing a cost term to reflect the

obstacle threat. This MPC approach has a couple of disadvantages. The MPC must always

be running and recalculating multiple trajectories before selecting the correct one, and it is

not straightforward to account for moving obstacles within this algorithm, meaning there is

no way to take current velocity and direction of an obstacle to better select a trajectory.

1.4 Prior Proportion Navigation and Model Predictive Control Combination

In [23], the combination of the Pro-Nav law and MPC was used on an Autonomous

Underwater Vehicle (AUV) to track underwater cables and pipelines. It was shown that a

PN law can be used to track a target objective and the MPC can be used to generate control

commands to keep the vehicle following the reference trajectory.
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Figure 1.5: Navigation, Guidance, and Control Structure

Figure 1.5, shows the design structure used in the AUV paper. The same design structure

was used as general basis for this thesis. Another implementation of a Line of Sight, not to

be confused with Pro-Nav, and MPC-based approach was used in [24]. In [24], a decision-

making model using a collision cone algorithm, similar to the type that will be described later

in this thesis, and MPC for lane changing is shown to be successful. Thus, the main scientific

hypothesis for the algorithm presented in this thesis was shown to be true. However, the

algorithm from [24] differs from the one developed in this thesis in that Pro-Nav was not

used, the algorithm was only applied to passing scenarios, and Nonlinear MPC was not used.

1.5 Contributions

This thesis presents an obstacle avoidance Pro-Nav and NMPC algorithm capable of

safely navigating a UGV around a moving obstacle in various user vehicle and obstacle

engagement scenarios. The obstacle avoidance algorithm calculates a desired command ac-

celeration to avoid the obstacle if the obstacle is considered a threat. This command ac-

celeration gets transformed into a command velocity in the correct reference frame through

rotation and integration. The command velocity is then used as a reference for the NMPC

controller. Advantages over other obstacle avoidance algorithms include the implementation

of a completely independent obstacle avoidance algorithm and the ability for the NMPC to
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run when the vehicle is making high dynamic maneuvers. This allows the algorithm to take

control of the vehicle from a driver or from a full automation control system. The proposed

algorithm uses basic conditional statements and is simple in comparison to other current

obstacle avoidance methods. Simulations of the Pro-Nav and NMPC algorithm to be used

for obstacle avoidance as well as a leader/follower application are provided. Simulation of

the performance are analyzed to validate the usefulness of the proposed architecture. In

summary, the thesis provides the following contributions to the field:

• Development of an obstacle avoidance algorithm for a UGV to avoid a moving obstacle

• NMPC algorithm featuring constraints on vehicle steer angle as well as the option to

place hard constraints on virtual lane boundaries

• Pro-Nav and NMPC algorithm applied to a Leader/Follower example that is applicable

to convoying research

• Simulation results that validate the obstacle avoidance algorithm

12



Chapter 2

Vehicle Model

This chapter presents the vehicle model used for the control of the system, as well as

MATLAB simulation. The most simplified model used in vehicle dynamics is a two degree of

freedom bicycle model, representing the lateral and yaw motions. In this work, the Nonlinear

Model Predictive Control (NMPC) algorithm uses the lateral dynamic vehicle model with a

nonlinear tire as the predication model.

2.1 Vehicle Dynamic Model

The vehicle bicycle model is one of the most commonly used models for the control algo-

rithms of land vehicles. The two common variations of the bicycle model are the kinematic

model and the lateral dynamic model [25]. The later model is used in this work, however

the kinematic model could be used at lower speeds.
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2.1.1 Kinematic Bicycle Model

Figure 2.1: Kinematic Bicycle Model

The governing equations in the global frame for the kinematic bicycle model shown in

Figure 2.1 are given below,

Ẋ = V cos(ψ + β) (2.1)

Ẏ = V sin(ψ + β) (2.2)

ψ̇ =
V

lr
sin(β) (2.3)

β̇ = tan−1
(

lr
lf + lr

tan(δ)

)
(2.4)

where X and Y are the coordinates of the center of mass in the global frame (X, Y ). Also,

ψ is the heading angle, V is the speed of the vehicle, lf and lr is the distance from the center

of mass to the front and rear tires, and β is the angle of the current velocity direction with
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respect to the longitudinal axis of the car, also known as the slide slip angle. This model

assumes that slip angles at both wheels are zero. This assumption is good at relatively low

speeds (less than 5 m/s), however since the desired user car speed in this thesis will be faster

than 5 m/s, a model more suited to higher velocities needed to be developed.

2.1.2 Lateral Bicycle Model

Figure 2.2: Lateral Bicycle Model

The model used in this thesis is shown in Figure 2.2. The model has two degrees of

freedom, lateral position and heading angle. The dynamic model is derived using Newton’s

laws of motion. The dynamic model is given as:

mÿ = −mψ̇Vx + 2Fyf + 2Fyr (2.5)

Izψ̈ = 2lfFyf − 2lrFyr (2.6)
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where Fyf and Fyr are the front and rear tire force, Vx is the longitudinal vehicle speed, ÿ and

ψ̈ are the body frame acceleration in the lateral direction and the yaw angular acceleration

about the center of mass of the vehicle respectively. Vehicle parameters m, Iz, lf , and lr

represent mass, yaw inertia and distance for the front axle and rear axle to the center of

mass. The above model assumes that longitudinal velocity is constant and that there is no

rolling or pitching [26]. Global X and Y positions must also be calculated for use in the

model and for validation of the simulation. These calculations are shown in the following

equations,

Ẋ = Vx cos(ψ)− ẏ sin(ψ) (2.7)

Ẏ = Vx sin(ψ) + ẏ cos(ψ) (2.8)

where Ẋ and Ẏ are global velocities in the X and Y directions. These equations are inte-

grated using Euler’s method in order to find X and Y position of the vehicle. Euler’s method

was used for simplicity, however future work could include using a Runge-Kutta method for

better accuracy. The input to the resulting model is the front steering wheel angle, and the

outputs through integration of the dynamic model are lateral velocity ẏ, lateral position y,

yaw angle ψ̇ and heading angle ψ.

2.2 Tire Model

In vehicle handling analysis, there are many different tire models that can be used to

model the tire and road interaction. The Pacejka model is chosen because of its relative

accuracy and general use in vehicle dynamic modeling. Though a linear tire model may be

more computationally efficient, the loss of accuracy at high lateral acceleration or near tire

saturation is considered to be too costly. The Pacejka model is used for representing the

front and rear tire forces, and is based on a semi-empirical model [27]. The lateral force is
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described below:

Fyf = D sin{C tan−1[B(1− E)αf + E tan−1(Bαf )]} (2.9)

Fyr = D sin{C tan−1[B(1− E)αr + E tan−1(Bαr)]} (2.10)

where,

D = a1F
2
z + a2Fz (2.11)

C = 1.3 (2.12)

B =
a3 sin[a4 tan−1(a5Fz)]

CD
(2.13)

E = a6F
2
z + a7Fz + a8 (2.14)

and,

αf = δ − ẏ + lf ψ̇

Vx
(2.15)

αr = − ẏ + lrψ̇

Vx
(2.16)

Eq. (2.11 - 2.14) are functions of Fzf and Fzr which are the vertical forces on the

front and rear tires. Fzf and Fzr are calculated by determining the weight split on the

front and rear tires due to the location of the center of gravity. Eq. (2.11 - 2.14) also are

functions of a1− a8, these are tire parameters that themselves are dependent on many other

factors including specific tire, road, and weather conditions [27]. It is also important to note

that in the model used in the Nonlinear Model Predictive Controller and in the MATLAB

simulations, weight transfer was not considered, therefore just static front and rear load are

assumed. In the tire slip angles calculated in Eq. (2.15) and Eq. (2.16), δ is the front steering

wheel angle.
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Figure 2.3: Pacejka Tire Model

Figure 2.3 shows an example of the Pacejka tire curve. The lateral tire forces are

calculated using both slip angle α and the normal force Fz. This plot shows a relatively

linear region at small slip angles and then as the slip angle increases the curve becomes

nonlinear, this affect is commonly referred to as tire saturation.

2.3 Vehicle Dynamics Blockset Vehicle Model

The dynamic lateral vehicle model along with the nonlinear tire model is effective and

works well with the NMPC that provides future control inputs based on the approximation

of the model. Also, for initial testing the model is a good approach for studying the vehicle’s

characteristics close to steady state conditions. Results from these MATLAB simulations

will be shown later in this thesis. In order to test the algorithm on a higher fidelity model,

the Simulink Vehicle Dynamics Blockset (SVDB) [28] provides a two track vehicle model

that is more realistic.

The two track or dual track model is a Six Degree of Freedom (6DOF) vehicle, where the

movement is defined by the bicycle model along with vertical vehicle displacement, roll, and
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pitch. This means that a suspension model needed to be incorporated into the dynamics,

as well as first-order dynamics applied to load transfer of the vehicle [29]. The model also

takes advantage of the Pacjeka tire model for the lateral tire dynamics as well as longitudinal

dynamics. Below Figure 2.4 shows a free body diagram used to develop the model.

Figure 2.4: Two Track Model Vehicle Dynamics Blockset

The equations required to develop the two track model used by the vehicle dynamic

blockset, is out of the scope of this thesis because they were not directly used in calculations.

For implementation of this higher fidelity model within simulation, Simulink was used. The

only computed input to the model was steering angle, and a constant longitudinal velocity.

The model was modified with vehicle parameters from an Infinity G-35 as well as realistic

tire parameters, this implementation is discussed in Chapter 5.
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Chapter 3

Proportional Navigation Collision Avoidance Algorithm

3.1 Considerations from Proportional Navigation

Proportional Navigation is inherently designed to intercept and collide with a target. In

theory, if the algorithm was designed to collide with a target, it should be possible to adapt

it for avoidance of an obstacle. Development of this idea began with developing a “ghost”

target. The “ghost” target would be placed at a specific distance relative to the obstacle. If

the user collides with the “ghost” target, than obstacle avoidance is ensured. This idea was

extended in a way that allowed the “ghost” target to dynamically change location depending

on the geometry of the user/obstacle engagement scenario.

3.2 Obstacle Avoidance Algorithm Development

The collision avoidance algorithm is designed to maintain a safe distance between the

car and the obstacle. This algorithm has been named the Proportional Navigation Collision

Avoidance Algorithm (PNCAG). Figure 3.1 shows a configuration for the collision avoidance

scenario. The obstacle (O) in this scenario is represented by a vehicle in a two-dimensional

ground plane. The obstacle cone region is formed by the points A,B, and the car coordinates

(C). For collision avoidance, a collision avoidance vector is defined as
−−→
CB or

−→
CA. The

algorithm may chose to use either the
−−→
CB or the

−→
CA vector depending on the geometry of

the engagement.
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Figure 3.1: Obstacle PN Engagement Geometry

In Figure 3.1; λ is the (LOS) angle, θ represents the direction of the collision avoidance

vector, γ is the collision avoidance vector, ψrel is the direction of the relative velocity vector,

RP is the set safety distance, C is the user vehicle, and O is the obstacle vehicle. This

algorithm applies the “ghost” target to either point A or B, making either point the “ghost”

target for the user vehicle to hit. If the user hits A or B then the obstacle will be avoided.

Implementation of the PNCAG algorithm within a navigation system is shown in Table. 3.1,

in pseudo code. Navigation mode represents normal autonomous vehicle operation where the

vehicle is acting based on various possible navigation methods [30]. In collision avoidance

mode, the car should perform collision avoidance maneuvers along its path to the goal. This

division is done in order to show how the algorithm can be implemented along with a separate

navigation mode.
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Table 3.1: Pseudo Code for Obstacle Avoidance

The algorithm first calculates the relative velocity vector (vrel) between the car and

the obstacle. If the vector is within the collision cone, collision avoidance mode is initi-

ated. Within collision avoidance mode, the PNCAG algorithm steers the vehicle towards the

collision avoidance vector
−−→
CB (for the specific scenario pictured). The avoidance law is:

an = Ncvrelθ̇ (3.1)

where an is command acceleration, vrel = v−vo is relative velocity, θ represents the direction

of the collision avoidance vector, θ̇ is the angular velocity of the collision avoidance vector

and Nc is the proportional navigation constant. In order to obtain angular velocity of the

collision avoidance vector, equations need to be established that define both the LOS angle

(λ) and the angle between the LOS and the collision avoidance vector (γ).

λ = tan−1
(
RCO2

RCO1

)
(3.2)

γ = sin−1
(
RP

RCO

)
(3.3)

With the above angles now defined, the rate of change of each with respect to time can be

calculated by direct differentiation of the expressions. Thus the avoidance law is equivalent
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to the ideal proportional navigation law, such that θ̇ is:

θ̇ = λ̇+ γ̇

=
RCO1VCO2 −RCO2VCO1

R2
CO

− RP ṘCO

R2
CO

√
1− R2

P

R2
CO

(3.4)

where RCO and VCO is the distance and velocity between the UGV (Unmanned Ground

Vehicle) and the obstacle car. RP represents a safety distance, which can be chosen for the

algorithm. Along with the safety distance, a detection radius (RD) was also implemented.

The detection radius would not only represent the possible scan range of a sensor, but

also ensures that the avoidance algorithm is not activated until the obstacle is considered a

threat. These equations are calculated by direct differentiation of the expressions for λ and

γ. Eq. (3.4) shows the PN guidance command can be generated from position and velocity

information of both the car and the obstacle. For the specific scenarios and simulations

completed in this thesis, obstacle and user velocity is set as a constant, with the obstacle

heading being constant and user heading controlled with steering.

The obstacle collision avoidance algorithm developed in thesis uses a safety distance

circle around the obstacle for the development of the avoidance geometry. A circle was

used because the tangents from the safety distance circle to the user created the collision

cone area as well as the collision avoidance vectors. Also, the algorithm states that if the

relative velocity vector is not within the collision cone, then the obstacle is not a threat

and navigation mode continues to run. Thus, there could be a situation where the obstacle

vehicle could not be considered a threat, but could still pass in front of the obstacle vehicle

at a closer distance than desired. This is not ideal, therefore a different shape safety area

could help account for these cases. An ellipse shaped safety distance could be used to help

avoid the car passing in the path of the obstacle vehicle. The parts of an ellipse include two

foci, a center, and minor and major axes. The obstacle car could be placed on the focus

of the ellipse so that the majority of the major axis is in front and in line with the path of
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the obstacle vehicle. The ellipse major axis would be rotated to be in line with the heading

of the obstacle vehicle. The collision code could still be derived by taking the tangents of

the ellipse to the user vehicle. The ellipse would effectively widen the collision code, and in

turn trigger collision avoidance mode in situations where the safety distance circle would not

have. Overall, this could improve the algorithm as to ensure the user doesn’t pass in front

of the obstacle at a distance that could make the user uncomfortable.

3.3 Sufficient Condition for Collision Avoidance

Conditions must be defined in order to convert from collision avoidance mode to navi-

gation mode when collision avoidance is accomplished. The sufficient conditions for collision

avoidance are listed as follows:

Condition 1: Obstacle is outside of the detection range. Therefore the obstacle can not be

tracked and considered a threat.

RCO > RD

Condition 2: The range between user and obstacle is greater than the safety distance. There-

fore the user will not hit the obstacle.

RCO ≥ RP

Condition 3: The relative velocity vector is outside of the obstacle avoidance cone. The

obstacle is located behind or ahead of the direction of the relative velocity vector. Therefore

the user is in no danger of colliding with the obstacle.

ψrel ≥
π

2
+ tan−1

(
yO − y
xO − x

)

or

ψrel ≤
π

2
+ tan−1

(
yO − y
xO − x

)
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3.4 NMPC Vehicle Steering and Pro-Nav Obstacle Integration

Now with the command acceleration calculated, the command acceleration is trans-

formed into the body frame of the vehicle. First, the current yaw angle (heading) of the

user vehicle in the global frame is obtained from the vehicle states. Then the angle ψrel is

calculated using the following equation:

ψrel = cos−1

 (~b · ~vrel)∥∥∥~b∥∥∥ · ‖ ~vrel‖
 (3.5)

where ~b is the base vector [1,0] from which all of the global angles are measured. Since

the command acceleration is perpendicular to the relative velocity, the angle between the

command acceleration and the body frame lateral vector is easily determined. Thus, the

command acceleration can now be moved into the body frame of the vehicle. Then, in order

to implement and use the PNCAG output, the command acceleration must be integrated

and implemented as a reference for the NMPC to track. Integration is needed because lateral

acceleration is not a typical vehicle state, however lateral velocity is. The implementation is

shown in Eq. (3.6)

ẏref = ẏ + ac∆t (3.6)

where, ẏref is a reference lateral velocity, ẏ is the current lateral of the vehicle, ac is the

command acceleration and ∆t is the discrete time step of the simulation. This method

was found to be most effective in both MATLAB and Simulink Vehicle Dynamics Blockset

simulations.
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Chapter 4

Nonlinear Model Predictive Control

In general, a NMPC controller can be used on a controlled process with the state

x(n) that can be measured at discrete time instances. The lateral vehicle model in this

thesis is a controlled process; “controlled” meaning that the steering input u(n) is used to

change the future behavior of the state of the vehicle. For the lateral vehicle model, the

NMPC controller performs the tracking control, in other words, the NMPC will determine

the control inputs u(n) such that x(n) follows the reference xref (n) that is supplied by the

Proportional Navigation Collision Avoidance Algorithm (PNCAG) algorithm. This chapter

outlines the development of the Nonlinear Model Predictive Control (NMPC) algorithm using

the nonlinear vehicle model presented previously in Grune [31]. The cost and constraint

functions for the NMPC are shown in the following section in detail.

4.1 Cost/Constraint Functions

The optimization algorithm is used to search for the optimal control signal, minimizing

the predefined cost function of the form:

JN =
N∑
k=1

l(y(t+ k|t), x(t+ k|t), u(t+ k|t)) (4.1)

where y(t + k|t), x(t + k|t) and u(t + k|t) represent the future outputs, future states, and

control signal. Also k is the current control interval and is given by k = 1, 2...N , where N is

the prediction horizon. Specifically in this thesis, the following cost function is used:

JN =
N∑

m=1

∆x(ki +m|ki)TQ∆x(ki +m|ki) +
N∑

m=0

∆u(ki +m)TR∆u(ki +m) (4.2)
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where Q and R are weight matrices used for changing characteristics of the controller. The

Q matrix penalizes state deviations from the references. The R matrix penalizes the rate of

change of the input variable. Additionally the following equality and inequality constraints

on the system states x, output y, and control input u, can be considered:

ci(y(t+ k|t), x(t+ k|t), u(t+ k|t)) = 0 (4.3)

cj(y(t+ k|t), x(t+ k|t), u(t+ k|t)) ≥ 0 (4.4)

where ci and cj can be linear or nonlinear functions. These functions can be used to place

constraints on the output states as well as the input states.

Since the cost function includes the difference between the future reference and the

predicted output, the optimization algorithm will generate the optimal control signal u.

This in turn, will reduce the error between the output and the reference trajectory w over

the prediction horizon N . This concept is represented in Eq. (4.5).

minuJN(x, u) (4.5)

Subject to the constraint equations, x and y are calculated over the prediction horizon using

the discretized dynamic model and output model.

4.2 Sequential Quadratic Programming

For implementation of the NMPC algorithm, the non-convex optimization problems

must be solved. This complex task is made more challenging by the fact that the NMPC

needs to run in real time. The minimization of the cost function can be accomplished using

numerical algorithms. In this thesis, a sequential quadratic programming (SQP) algorithm

was implemented. SQP is one of the newer methods in the area of nonlinear programming

[32]. SQP is an established class of methods to solve nonlinear optimization via a sequence of
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Quadratic Programs (QP) [33]. It has been shown to out perform other methods in accuracy,

efficiency, and the number of successful solutions over various different problems [34].

The goal of the SQP algorithm is to be able to solve the general constrained nonlinear

programming problem, shown below:

min f(x)

x ∈ Rn : gj(x) = 0, j = 1, ...,me,

gj(x) ≥ 0, j = me + 1, ...,m,

(4.6)

where f and gj, j = 1, ...,m are continuously differentiable. An accurate solution to the

problem depends on the number of constraints and design variables along with the char-

acteristics of the objective function and constraints. Given the general problem above, the

formulation of the QP subproblem is based on the Lagrangian function.

L(x, λ) = f(x) +
m∑
i=1

λi · gi(x) (4.7)

In the above equation, the matrix Hk is a positive definite approximation of the Hessian

matrix of the Lagrangian function. Hk can be updated using any quasi-Newton method,

though specifically the BFGS method [35] was used in this thesis. The simplification made

in Eq. (4.7) can be executed based on the assumption that bound constraints are expressed as

inequality constraints. Then the QP subproblem can be obtained by linearizing the nonlinear

constraints, shown below.

min
d∈Rn

1

2
dTHkd+5f(xk)Td

5 gi(xk)Td+ gi(xk) = 0, i = 1, ...,me

5 gi(xk)Td+ gi(xk) ≤ 0, i = me + 1, ...,m

(4.8)
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The above subproblem can them be solved using a Quadratic Programming algorithm at

each major iteration of the SQP method. The solution from the next iterate is as follows:

xk+1 = xk + αkdk (4.9)

where the step length parameter αk is determined by a line search procedure in order to

decrease a merit function.

4.3 NMPC Implementation

The NMPC was treated as a completely separate subsystem within the Proportional

Navigation (Pro-Nav) and NMPC guidance algorithm. This implementation allowed the

same NMPC to be used for both navigation mode or collision avoidance mode within the

guidance system. In navigation mode the reference lateral velocity will direct the user to the

target and in Collision Avoidance mode the reference lateral velocity will direct the user to

avoid the obstacle.

The inputs of the NMPC used in this thesis include the reference lateral velocity, all the

current states of the user vehicle, the discrete time step used by the simulation, and boolean

value that tells the controller the current guidance mode from the PNCAG algorithm. In

the controller, the prediction horizon is set, and the current reference velocity is set as a

constant over the time horizon. It is important to note that in these simulations, the control

and prediction horizon are the same value. Also, constraints were placed on the steering

angle of the output steering angle from the NMPC.

In order to implement weights and constraints, separate objective and constraint func-

tions were developed to be used by the NMPC controller. The objective function takes

current states of the user vehicle, the discrete time step, the prediction horizon, the boolean

value that represents guidance mode, and the reference lateral velocity as well as the lateral

location of the center lane. One advantage of the NMPC is that it can handle multiple
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inputs, thus location of the center lane is used in the NMPC to return the user vehicle to

the desired lane of travel during navigation mode. The constraint function takes the current

state of the user vehicle, the discrete time step, and the prediction horizon.

In the objective function, the Q matrix is chosen based on the current guidance mode

selected by the PNCAG algorithm. If in navigation mode, the Q matrix includes a weight

on the lateral position of the vehicle. If in Collision avoidance mode, the weight is set to 0

in order to ignore the lateral position that would drive the user vehicle towards the center

lane. With the Q value chosen, the function now loops through the prediction horizon using

the vehicle model and cost function, both of which were described early in the thesis. The

output of the objective function is the cumulative cost from the state deviation and input

rate of change. In the constraint function, constraints can be placed on the states of the

user vehicle rather than the inputs. In the simulations in this thesis, no constraints were

placed on the state variables. However, this implementation leaves room for constraints on

any variables that output states of the user vehicle.

With the functions defined, they can now be used within the SQP algorithm. The algo-

rithm takes the objective function, constraint function, and the constraints on the steering

input. SQP determines the optimal set of control inputs over the control horizon using the

provided functions. Then only the first control input is output (before recomputing) by the

NMPC controller to be used on either the dynamic bicycle model in MATLAB, or with the

dual track model found in the Simulink.

4.4 NMPC Weight Determination

The Q and R matrices of the cost functions described earlier in this chapter are the

typical areas in Model Predictive Control (MPC) design that usually require tuning. In

general, the plant of each individual MPC design requires different weight setups depending

on the number of output variables versus input variables. For adjusting Q (output weights),

nu is the number of plant inputs, ny is the number of plant outputs, and nyc is the number
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of desired controlled outputs. If an output is not desired to be held to a reference value

(controlled), the weight is set to a value of 0. If nu = nyc, then it is possible to achieve zero

tracking error to the reference at steady state. If nu > nyc, this is known as having excess

degrees of freedom, therefore the input values could drift, even if the outputs are near their

reference values. One way to prevent the drift is to set target values for the excess inputs.

If nu < nyc, there are enough degrees of freedom to keep all desired outputs near reference

values. Therefore, prioritizing reference tracking must be done by adjusting the weights.

Table 4.1 gives rough guidelines for Q weight values.

Table 4.1: Q Weight Guidelines

Weight Value Description

0.05 Low Priority

0.2 Below-Average Priority

1 Average Priority

5 Above Average Priority

20 High Priority

For R (input weights) setting, there is less structure to the process. In general, if it

is desired to have more aggressive changes to the inputs in order to accomplish reference

tracking, the value of the inputs are set below 1. If nominal input changes are desired, then

a value of 1 is set for the inputs. If less aggressive changes to the inputs are required, a value

of greater than 1 for the inputs should be used.

For the specific implementation within this thesis, the number of desired control outputs

depends on whether navigation mode or collision avoidance mode is active. In collision

avoidance mode, the only desired controlled output is lateral velocity. In navigation Mode,

both lateral velocity and global lateral position are desired controlled outputs. So for collision

avoidance mode, a weight of 1 was placed on lateral velocity. For navigation mode, a weight
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of 0.05 was placed on the global lateral position, and 1 was placed on lateral velocity. These

weights were chosen based on the Table 4.1, even during navigation mode priority was still

given to lateral velocity in order to reach the goal.
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Chapter 5

Simulation Environments

5.1 MATLAB Simulation

Simulations were first conducted in MATLAB, based on vehicle parameters collected on

the 2003 Infinity G35 Four Door Sedan, see Figure 5.1. Nominal tire parameters were taken

from a paper written by Pacejka [27]. The Infinity G35 vehicle model was chosen because,

for future work, the real vehicle can be used to test the algorithms presented in this thesis.

Parameters used in the simulation are shown in Table 5.1.

Figure 5.1: Infiniti G35 Test Vehicle
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Table 5.1: Infinity G35/Tire Parameters

Vehicle Parameters Tire Parameters

m 1528 [kg] B 0.22 rad−1

a 1.38 [m] C 1.3 rad−1

b 1.48 [m] D 5422 [N]

Izz 2400 [kg m2] E -0.95

The MATLAB simulation was designed first in order to quickly test the algorithm to

allow for tuning and verification. It is important to note that vehicle and tire parameters

were also used in the NMPC controller and held constant throughout all simulations. Vehicle

parameters from the MATLAB simulation were then transferred into the Simulink Vehicle

Dynamics Blockset. Longitudinal velocity of the vehicle was set as a constant in all the

simulation runs. User, obstacle, and target locations are given by (X, Y ) coordinates in a

global reference frame, and the user vehicle starts at (0 m, 0 m) for all simulations. Figure 5.2

shows a visual representation of the MATLAB simulation structure used in this thesis.
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Figure 5.2: MATLAB Simulation Block Diagram

5.2 Simulink Vehicle Dynamics Blockset

Simulink Vehicle Dynamics Blockset (SVDB) is a new product released as a part of

Matlab/Simulink 2018 for modeling and simulating vehicle dynamics. Simulink is a graphical

programming environment for modeling, simulating, and analyzing dynamic systems. The

interface includes a graphical block diagramming tool and block sets. The Vehicle Dynamics

Blockset adds in high fidelity models for passenger cars, as well as libraries of propulsion,

steering, suspension, vehicle body, brake, and tire components. For engineers familiar with

CarSim, the Vehicle Dynamics Blockset has very similar features. Because the SVDB is

integrated within Simulink it was chosen for this thesis. Figure 5.3 presents the Simulink

model used for testing with the Vehicle Dynamics Blockset. The only input provided by the

Pro-Nav NMPC algorithm to the user vehicle is the steering angle command. The desired

longitudinal velocity of the vehicle was chosen and a classical PID controller was used to

maintain the longitudinal velocity.
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Figure 5.3: Vehicle Dynamics Blockset Simulink Model

5.3 NMPC Run Time

Often times when a controller is a candidate for real time implementation, run time

of that controller is of interest. All the simulations in this thesis are completed with a

prediction/control horizon of 10. Also, the time step of all the simulations is 0.01 seconds,

thus the NMPC control horizon is 0.1 seconds. Computation time of the NMPC only is

averaged over Case I of the MATLAB Simulation, Case I parameters are shown in Chapter

7. Figure 5.4 is a chart of the average time required to run the NMPC control algorithm at

different control horizon lengths. This is done in order to observe the effect control horizon

has on computation time.
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Figure 5.4: NMPC Run Times

By looking at the chart, the control horizon of 0.1 seconds being used in this thesis has

a computation time of around 0.02 seconds. If only the NMPC component of the combined

avoidance algorithm needed to be run, then the algorithm could be run in 50 hz system. This

does not take into account time required to estimate user vehicle states or obstacle/target

vehicle states in a real life scenario. However, for real time implementation, the entire

algorithm can be coded into a faster programing language such as C++. This is due to the

fact that MATLAB is a interpreted language, and C++ is a compiled language. C++ has

been shown to greatly improve run times of MPC and NMPC in general [36].
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Chapter 6

Vehicle Leader/Follower Example and Simulation Results

In order to demonstrate a possible use case for a Proportional Navigation (Pro-Nav)

and Nonlinear Model Predictive Control (NMPC) algorithm, an example leader/follower

scenario was setup. In the simulations within this chapter, the PNCAG algorithm was not

used. Instead a classical proportional navigation law was implemented to track the lead

car, then provide a reference lateral velocity to the NMPC. A modified Double Lane Change

(DLC) maneuver was used in order to show whether the follower could successfully follow the

leader vehicle with reasonable error. DLC maneuvers are used by the automotive industry to

verify a vehicle dynamic path following ability. Figure 6.1 shows a DLC standard maneuver

that the lead car was executing.

Figure 6.1: Default Path for Double Lane Change

These tests were completed in both the MATLAB environment and in the Simulink the

Vehicle Dynamics Blockset (SVDB). The lead car was using the kinematic bicycle model in
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all simulations, while the follower was using the dynamic bicycle model in the MATLAB

simulations, and the dual track model in the Simulink simulations, both of which were de-

scribed in Chapter 2. The leader and follower vehicle are moving at a constant velocity of

10 m/s and performed the DLC maneuver. The leader vehicle starts 10 meters ahead of the

follower vehicle in both simulations and this distance is maintained throughout. Both the

MATLAB and Vehicle Dynamics Blockset simulations were setup with similar parameters,

the weights for the NMPC controller were also kept the same for both simulations. A small

change was also made to the NMPC algorithm. In the NMPC used with the PNCAG algo-

rithm, a center lane lateral reference is provided during navigation mode in order to return

the user car to the lane of travel. In the leader/follower version of NMPC algorithm, the lead

lateral position was used as a reference instead of the center lane. The lead lateral position

was used in conjunction with the lateral velocity reference to improve the performance of the

follower vehicle. For both MATLAB and SVDB simulations, the parameters are as follows;

prediction horizon N =10, R = 1, Q = [0, 0, 1, 0, .05] and a time step dt = 0.01 seconds.

Figure 6.2: Leader/Follower MATLAB Simulation

39



Figure 6.3: Steer Angle for MATLAB Follower

Figure 6.4: Lateral Error for MATLAB Leader/Follower
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Figure 6.2 shows the DLC completed in MATLAB. Figure 6.3 shows the resulting steer

angle for the follower vehicle in the DLC maneuver. As can be seen, the follower car is

able to track the lead car effectively throughout with minimal lateral error. Lateral error

is shown in Figure 6.4. From the plot it is observed that most of the error occurs during

steering zones. This is to be expected, and the lateral error is relatively small which would

still maintain the “draft” advantage gained from leader/follower.

Figure 6.5: Leader/Follower SVDB Simulation
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Figure 6.6: Steer Angle for SVDB Follower

Figure 6.7: Lateral Error for SVDB Leader/Follower
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Figure 6.5 shows the DLC completed in the SVDB. Figure 6.6 shows the resulting steer

angle for the follower in the DLC maneuver. The follower car is again able to effectively

follow the lead car through the maneuver. Lateral error again shown in Figure 6.4 shows

that the error in the SVDB is increased when compared with MATLAB. This increase is

most likely do to the lag in the steering system that is modeled by an actuator in the SVDB

scenario. The error in the SVDB is still of similar magnitude as with MATLAB and occurs

at the same points.

These results show that the follower successfully tracks the leader through a DLC sce-

nario. Differences between the MATLAB and the SVDB simulations in vehicle path and

steering input can be attributed to the differences with the fidelity of the user dynamic mod-

els. This shows the importance of matching the NMPC controller to actual dynamics of the

user vehicle, within simulation and for future real world testing. More possible applications

will be discussed in the conclusion and future work section of this thesis.
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Chapter 7

Simulation and Results of Obstacle Avoidance

In order to analyze and demonstrate the performance of the proposed combined PNCAG

and NMPC algorithm, simulation was done in MATLAB and with the Simulink Vehicle

Dynamics Blockset (SVDB). The user car is assumed to be represented by a dynamic model

and nonlinear tire model, calculated earlier in this thesis. For the simulation, five states

were used; lateral position in the body frame (y), lateral velocity (ẏ), yaw angle(ψ), yaw

rate (ψ̇), and lateral position in the global frame (X). The only input into the model is

steering angle (δ). The longitudinal velocity (Vx) is held constant or controlled by a PID in

the SVDB case. There is a weight placed on the global lateral position (X). A reference for

the lateral position of the user is set to X = 0 and is meant to represent the lane in which

the car is driving. The weight is only used in navigation mode to keep or return the car to

the desired lane. The obstacle is also simulated using a simple kinematic bicycle model as

described previously in the thesis; however in the case studies shown, vehicle velocity and

heading angle remain constant for the obstacle.

7.1 Simulation Conditions

Various simulation cases were developed in order to show the versatility of the PNCAG

and NMPC algorithm. The simulation conditions for the case studies are shown in Tab. 7.1.

44



Table 7.1: Simulation Conditions

Case I Case II Case III Case IV

Initial Vehicle Position [m] (0,0) (0,0) (0,0) (0,0)

Initial Obstacle Position [m] (-100,100) (-47,147) (0,150) (0,50)

Initial Vehicle Speed [m/s] 10 15 20 20

Initial Obstacle Speed [m/s] 10 10 15 10

Heading Angle Vehicle [rad] π/2 π/2 π/2 π/2

Heading Angle Obstacle [rad] 0 −π/4 −π/2 π/2

Case I represents an obstacle avoidance scenario, perpendicular to the vehicle’s path

towards the goal. Case II represents an obstacle traveling diagonally and downward towards

the vehicle. Case III represents an obstacle traveling head on towards the vehicle in the

vehicle’s path towards the goal. Case IV represents a passing scenario where the user car is

moving in the same direction as the obstacle but a higher velocity. In all cases, for navigation

mode, classical proportional navigation was used to solve for a lateral velocity in order to

reach the goal in times when the obstacle is not considered a threat. The same NMPC was

used for both modes of operation; navigation and collision avoidance.

These cases are meant to show possible real life scenarios. For example, Case I could

be a intersection where the obstacle runs through a red light. Or Case III could represent a

impending head on collision. These test cases were designed in order to ensure the PNCAG

and NMPC will work as a obstacle avoidance solution in various engagement situations.

7.1.1 NMPC Parameters

NMPC Simulation parameters used for the MATLAB and SVDB simulations include

a prediction horizon N =10, R = 1, Q = [0, 0, 1, 0, .05] in collision avoidance mode and

Q = [0, 0, 1, 0, 0] in navigation mode. It is important to note that Q is matrix of dimension

n × n where n is the number of output states. The values shown for Q are that of it’s
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diagonal. The weight values are placed on lateral velocity (ẏ) and global position (X) for

collision mode and just placed on lateral velocity (ẏ) for navigation mode . For the purpose of

testing the algorithm no noise was added to the simulation. The time step for the simulation

was 0.01 seconds.

Constraints on the steering deflection are placed at -.5 rad and .5 rad to represent not

only the physical limitations of steering on the system, but also to prevent tire saturation

that could cause vehicle instability. Ideally, placing constraints on lateral acceleration (ay)

or the front tire lateral force (Fyf ) could directly prevent saturation of the tires. However,

with the formulation of the NMPC, neither is a direct state, therefore direct constraints

could not be applied. Placing constraints on steering indirectly will limit instability of the

user vehicle.

7.1.2 PNCAG Parameters

In the PNCAG used in the MATLAB and SVDB simulations the obstacle has a safety

distance of Rp = 12 m and a detection radius of Rd = 40 m. However, for Case IV a safety

distance of Rp = 7.5 m, and a detection radius of Rd = 25 m, were changed to represent a

realistic passing scenario. The inclusion of an detection radius in the simulation represents

the distance in which a sensor placed on the car could get accurate measurements of the

obstacle. The PNCAG also uses a Pro-Nav constant (Nc) of 4. A value between 3-5 is

considered normal and can be tuned to improve performance.

7.2 MATLAB Simulations

In the MATLAB simulation engagement scenario plots, the blue line represents the user

vehicle, while the red line represents the obstacle vehicle. The green cross represents the

goal of the vehicle, where the navigation mode Pro-Nav algorithm is guiding the vehicle.

For each scenario shown there are also plots of the input steering angle (δ), the command
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acceleration of the body frame (an), and the distance from the user vehicle to the obstacle

vehicle (D).

Figure 7.1: Vehicle and Obstacle Path MATLAB Case I

Figure 7.2: Steer Angle for Case I MATLAB
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Figure 7.3: Distance from Obstacle for Case I MATLAB

Figure 7.4: Command Acceleration (Body Frame) for Case I MATLAB

In Case I shown above, the obstacle car is detected and collision avoidance mode is

initiated around the 7 second mark of the simulation. The user vehicle gets to within 12
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m of the vehicle, which is the proscribed safety distance (Rp) but does not get any closer.

Around the 9 second mark once the obstacle is no longer considered a threat, the vehicle

switches into navigation mode and is navigated back towards the center of the lane and

towards the goal. The user car successfully avoided the obstacle and stayed within the

desired trajectory.

Figure 7.5: Vehicle and Obstacle Path MATLAB Case II
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Figure 7.6: Steer Angle for Case II MATLAB

Figure 7.7: Distance from Obstacle for Case II MATLAB
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Figure 7.8: Command Acceleration (Body Frame) for Case II MATLAB

Case II shows the obstacle is again detected and collision avoidance mode is initiated

around the 5 second mark of the simulation. The user maintains a distance of greater then

12 m. Once the obstacle is no longer considered a threat, the user vehicle’s navigation mode

is activated around the 6 second mark and the car returns to the lane, and heads towards

the goal. The user vehicle again successfully avoids the obstacle to reach it’s goal.
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Figure 7.9: Vehicle and Obstacle Path MATLAB Case III

Figure 7.10: Steer Angle for Case III MATLAB
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Figure 7.11: Distance from Obstacle for Case III MATLAB

Figure 7.12: Command Acceleration (Body Frame) for Case III MATLAB

In Case III, the obstacle is detected and collision avoidance mode is initiated before

the 4 second mark. The minimum safety distance of 12 m is again maintained. After the 4
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second mark the user vehicle enters navigation mode and is guided back to the center lane

and towards the goal. In this scenario, since the obstacle vehicle and user vehicle are both

moving at an increased velocity, the NMPC controller weights that were kept constant in all

the simulations were insufficient to keep the car steering from becoming slightly oscillatory.

Figure 7.13: Vehicle and Obstacle Path MATLAB Case IV
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Figure 7.14: Steer Angle for Case IV MATLAB

Figure 7.15: Distance from Obstacle for Case IV MATLAB
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Figure 7.16: Command Acceleration (Body Frame) for Case IV MATLAB

In the last scenario, Case IV, the obstacle is detected and collision avoidance mode is

initiated after the 2 second mark. The minimum safety distance of 7.5 m is maintained.

At the 5 second mark the user vehicle enters navigation mode and is guided back to the

center lane and towards the goal. In this scenario, since the obstacle vehicle and user vehicle

are both moving at an increased velocity as with Case III, the NMPC controller weights

that were kept constant in all the simulations were insufficient to keep the car steering from

becoming slightly oscillatory. Future work could include dynamic weights that change with

the speed of the vehicle and road conditions. However, the vehicle still successfully avoided

the obstacle and reached the goal.

Simulation results from MATLAB show the UGV successfully avoids the moving obsta-

cle in all three scenario cases. Due to the fact that the collision avoidance is steered towards

the
−−→
CB vector, the UGV always avoids the car in the negative X direction. A conditional

statement could be included within the algorithm that would steer the car towards the
−→
CA.

An example of the user vehicle steering toward the vector
−→
CA is shown in the next section.
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7.3 Simulink Vehicle Dynamics Blockset

Next, the same scenarios were completed in the SVDB. All simulation parameters be-

tween MATLAB and SVDB remained the same. The vehicle path in this case is represented

in a different way to better visually understand the engagement scenario. The red rectangle

represents the obstacle, while the green rectangle represents the vehicle. The vehicle and

obstacle are shown at various points throughout the simulation with the objective to better

represent the path as the user vehicle is accomplishing avoidance. Also, the achieved lateral

acceleration (ay) of the vehicle was plotted for each case study. This is shown to ensure the

user isn’t performing any maneuvers that would be classified as “high g-force”.

Figure 7.17: Vehicle and Obstacle Path SVDB Case I
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Figure 7.18: Steer Angle for Case I SVDB

Figure 7.19: Lateral Acceleration for Case I SVDB

In the first scenario, Case I of the SVDB simulation, the obstacle car is detected and

collision avoidance mode is activated around the 7 second mark. The user vehicle maintains
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the safety distance between the obstacle of 12 m. Navigation mode is then initiated around

the 9 second mark. When compared with the MATLAB simulation, the steering input follows

a very similar profile. The user vehicle successfully avoids the obstacle and reaches the goal.

Figure 7.19 shows lateral acceleration (ay) is within reasonable bounds and follows the same

general shape as the steering plot.

Figure 7.20: Vehicle and Obstacle Path SVDB Case I Alternate

Figure 7.20 shows the Case I scenario with the initial position of the obstacle placed at

100 m in the X Direction and with a heading of π rad. This simulates the vehicle coming

from the other direction. The PNCAG algorithm is modified to use the vector
−→
CA rather

than vector
−−→
CB for this scenario. As can be seen, the car avoids the car on the exact same

way as with the original Case I.
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Figure 7.21: Vehicle and Obstacle Path SVDB Case II

Figure 7.22: Steer Angle for Case II SVDB
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Figure 7.23: Lateral Acceleration for Case II SVDB

Case II shows the obstacle car detected and collision avoidance mode is activated around

the 4 second mark. The user vehicle maintains the minimum safety distance of 12 m. At

the 6 second mark, the vehicle enters navigation mode, and returns to the center lane and

continues to the goal. Again, as with the previous scenario in the SVDB, the profile of

the steering input matches well with the MATLAB simulation. Figure 7.23 shows lateral

acceleration (ay) is stable and follows the general shape as the steering plot as with Case I.
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Figure 7.24: Vehicle and Obstacle Path SVDB Case III

Figure 7.25: Steer Angle for Case III SVDB
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Figure 7.26: Lateral Acceleration for Case III SVDB

The Case III scenario shows the obstacle being detected and collision avoidance mode

activating slightly before the 4 second mark. The user vehicle again maintains the desired

12 m of safety distance between itself and the obstacle vehicle. The user vehicle initiates

navigation mode after the 4 second mark. The user vehicle then navigates back to the desired

lane of the road eventually reaching the goal. As can be seen visually, the steering input

has even more oscillatory effects than seen in the MATLAB simulation. This is believed to

be caused by the higher speed and differences in the dynamic models of the two simulation

environments, such as steering lag. Figure 7.26 also reflects the oscillatory behavior shown

in the steering plot.
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Figure 7.27: Vehicle and Obstacle Path SVDB Case IV

Figure 7.28: Steer Angle for Case IV SVDB
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Figure 7.29: Lateral Acceleration for Case IV SVDB

The Case IV shows the obstacle being detected at a detection distance of 25 m and

collision avoidance mode activating slightly after the 2 second mark. The user vehicle again

maintains the safety distance of 7.5 m between itself and the obstacle vehicle. The user

vehicle initiates navigation mode between the 4 and 5 second mark. The user vehicle then

navigates back to the desired lane of the road eventually reaching the goal. As with Case III,

the steering input has even more oscillatory response. Again, this is believed to be caused by

the higher speed and differences in the dynamic models of the two simulation environments.

Figure 7.29 also has a increased amount of oscillatory response.

Simulation results from the SVDB show the UGV successfully avoids the moving obsta-

cle in all four scenario cases. As was seen with the Leader/Follower scenarios, the differences

between the dynamic bicycle model used for the NMPC and the dual track dynamic model

used for simulation, caused some delay in the steering and user car responsiveness. However,

the having a different model in the SVDB simulation shows the controller can still accomplish

the goal even when conditions are not ideal.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, a Proportional Navigation Collision Avoidance Algorithm (PNCAG) and

Nonlinear Model Predictive Control (NMPC) algorithm was presented for use on an un-

manned ground vehicle (UGV). The ground vehicle dynamics were first discussed and the

model was used in the MATLAB simulation with the NMPC controller. The NMPC uses a

lateral dynamic bicycle model with a Pacejka tire model in order to capture the nonlinear-

ities inherent within a vehicle specifically caused by the tires. This model was chosen due

to its high accuracy and relatively low computational expense when compared to a model

with a higher fidelity. Also, the use of a more complicated model leads to additional vehicle

specific parameters, which can actually cause more errors and more parameters that would

need to be calculated for each vehicle before the controller could be implemented. This error

can be seen with the Simulink Vehicle Dynamic Blockset (SVDB) simulation set. In this set

of simulations, the same NMPC was used as with MATLAB, however the model used by

SVDB is of higher fidelity.

The PNCAG and NMPC presented in this thesis is a unique approach to not only ob-

stacle avoidance, but Pro-Nav in general can also be applied to leader/follower applications.

The Proportional Navigation Collision Avoidance Algorithm features an avoidance cone cre-

ated by the safety circle around the obstacle and the user vehicle. This ensures that the

PNCAG is steering the user away from the obstacle vehicle, as long as both velocity and

position of the user and the obstacle are fully established. The PNCAG algorithm in general

is geometrically based allowing it to be run at relatively low computational expense at high
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rate. However the PNCAG can not be used to directly determine steering angle commands,

which is where a NMPC controller has been used for that purpose.

In order to integrate the PNCAG and NMPC algorithm, the best way to apply the com-

mand signals being output from the Pro-Nav filter had to first be determined. Proportional

navigation is generally used for homing missile guidance applications, therefore some modi-

fication had to be applied for ground vehicle implementation. Classical Pro-Nav provides a

command acceleration perpendicular to the line of sight from itself to the target. However,

Ideal Pro-Nav commands the acceleration perpendicular to relative velocity between the

user and the obstacle instead of the LOS. In order for this command acceleration to be used;

the command needs to first be placed into the body frame of the vehicle, specifically in the

lateral direction. Once accomplished, the rotated command acceleration needs to be output

as a lateral velocity command to the vehicle. The reason this is done is to allow the velocity

command to be given as an reference for the vehicle lateral controller. An integration equa-

tion was then developed and utilized in connecting the PNCAG and NMPC. The equation

takes the current lateral velocity of the vehicle, and adds a term comprised of the command

acceleration multiplied by the discrete time step of the controller. This process allows the

command acceleration given by the PNCAG to be used by the NMPC as reference velocity.

A major challenge of using an NMPC controller is the time and computational effort

required. However, given today’s current technology, computational power is at a point

where nonlinear model predictive control is a viable option for use in real time scenarios.

Model predictive control operates by calculating a series of inputs over future time steps.

Therefore at every time step, the controller is recomputing the series of inputs causing run

time to be significantly impacted. The quickness of this NMPC is in part thanks to the

SIMO (Single Input, Multiple Output) nature of the problem. Also, a relatively simple cost

function consisting of weights on the output and inputs of the plant was used for the prospect

of application to a real world system.

67



Simulations of the performance of PNCAG and NMPC algorithm were conducted using

two different simulation environments: a vehicle model implemented in MATLAB and vehicle

model provided by the Simulink Vehicle Dynamics Blockset. Both simulations use the same

Pro-Nav and NMPC formulation, however the MATLAB simulation uses the same dynamic

bicycle model/tire model used in the NMPC, while the Vehicle Dynamics Blockset uses a

higher fidelity model. This was done so that the MATLAB simulation could test the NMPC

without any variations in the model, thus eliminating a possible source of error and ensuring

the obstacle avoidance algorithm could properly be isolated and tested. The MATLAB

simulation verified that the algorithm performed successfully with both leader/follower and

collision avoidance scenarios. Once the algorithm was verified in the MATLAB simulation

it could then be placed in the SVDB simulation. All the available parameters from the 2003

Infinity G35 along with generic tire parameters were placed into the SVDB. It was determined

that this would be a reasonable test for the PNCAG and NMPC to see how it could handle

deviations in the model. The results from this thesis verified that the Pro-Nav and NMPC

algorithm handled the leader/follower and collision avoidance with reasonable error. The

algorithm was able to follow a leader car as it executed a double lane change. The algorithm

was also able to avoid collision with a moving obstacle in four different scenarios. The work

in this thesis lays the groundwork to provide a valuable tool for future development. This

work can also be built upon in order to improve and augment a new or existing navigation

system.

8.2 Future Work

There are several methods that could be improved upon within the PNCAG, NMPC,

and the simulation environments, as well as examining the effects of more potential sources

of error. Within the PNCAG, it can be seen in the case studies that the car always avoids

the target in the negative X direction due to the algorithm steering the car towards the

vector
−−→
CB. An example of the user being steered towards vector

−→
CA instead was show in
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Figure 7.19. For future development it may be useful to allow the car to move in whichever

direction would be best for avoidance. Therefore, a logical statement could be implemented

allowing the car to steer to the vector
−→
CA or

−−→
CB depending on the avoidance scenario.

Another possible additional area of algorithm validation would be to add noise to the mea-

surements of position and velocity of the user and obstacle car in order to see how the

command acceleration may fluctuate with realistic sensor noise.

The NMPC algorithm could be improved upon within several key areas. Currently,

Euler’s method was used for integration because quickness of the NMPC controller was a

concern. In order to gain more accuracy, ode23 or ode45 may be better choices. Other

investigation could be done into different nonlinear program solvers, some of which may give

better performance for the PNCAG and NMPC algorithm when compared with sequential

quadratic programming (SQP). Once a real world car is chosen, the soft and hard constraints

could be modified to represent the physical system. Better performance of the algorithm

could be achieved if the control horizons could change throughout the run, dependent on

vehicle speed and the distance to the obstacle.

The PNCAG and NMPC algorithm currently limits the steering deflection of the user

vehicle through a constraint within the NMPC. The limits on steering can be modified to help

insure indirectly that one or more the tires does not saturate. Saturation would cause a loss

in vehicle controllability. As shown in [37], reorganizing a MPC in order to take front lateral

tire forces as an input instead of the steer angle would be a solution to directly constrain the

tire forces to avoid saturation on the front tires. Also in [37], rear tire saturation was shown

to be preventable by implementing constraints on yaw rate and lateral velocity. Constraints

to prevent rear tire saturation could be implemented easily with the current controller design.

Implementation of the algorithm could also be modified. Currently classical proportional

navigation and NMPC is being used as the navigation mode. The usefulness of the algorithm

presented in the thesis means the navigation mode could use something less computationally

heavy than NMPC, especially for simple point to point navigation. Multiple moving obstacle
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avoidance could be another area of interest. The algorithm could be adapted for use with

weights that would determine which threat is the more immediate, then place weights on

individual obstacles in order to accomplish avoidance in a systematic process.

The algorithm currently has only been applied to obstacles moving at a constant speed

and direction. In theory, the update rate of the PNCAG and NMPC algorithm should allow

it to adapt to obstacles that change speed and direction of travel. Depending on the rate of

change of the obstacle speed and direction, including a prediction of future obstacle states

may improve the PNCAG and NMPC algorithm.

Currently if the obstacle is not within the detection distance in the PNCAG, then the

obstacle is not considered a threat. As soon as the obstacle is with the detection distance,

the PNCAG algorithm determines if the obstacle is a threat. If the obstacle is a threat, it

immediately enters collision avoidance mode. Therefore, future work could involve deter-

mining whether avoidance is achievable. One solution could be to determine if the command

velocity from the PNCAG algorithm is above a constraint on the lateral velocity. If it’s

above the constraint, then avoidance is not possible.

Finally, real experimental implementation of LIDAR, GPS (Global Positioning System),

INS (Inertial Navigation System) on the user vehicle for state estimation of the user and the

obstacle vehicle is the final step before implementing and testing the system on a real vehicle.

The GPS/INS would provide full information on the user vehicle, where the LIDAR could

provide relative position and velocities between the user and obstacle. Once the algorithm

is verified to work with these sensors, real world testing on a “drive by wire” vehicle would

be possible.
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