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Abstract

This thesis presents a method for GPS-free navigation using a radar-aided inertial navi-

gation filter with a magnetometer based attitude measurement. GPS has become the popular

tool of choice when considering navigation solutions today, however, GPS is a low-power sig-

nal that can be easily blocked by large structures or jamming. Previous work has been done

on attitude and heading reference systems which use magnetometers and accelerometers to

determine the attitude of a vehicle. The magnetometer and accelerometer attitude mea-

surement can be incorporated into the measurement update of an Extended Kalman Filter

(EKF). The EKF presented in this thesis propagates the inertial navigation solution in the

time update, while the measurement update uses the radar and attitude measurements to

correct the inertial navigation system propagation errors.

In this thesis, magnetometer calibration will first be discussed. A magnetometer calibra-

tion routine will be selected then verified though simulated and experimental tests. Then,

an attitude determination algorithm that uses magnetometer and accelerometer measure-

ments will be reviewed and tested in simulation and with experimental data. Next, intertial

navigation system propagation errors will be discussed and how radar-aiding in an Extended

Kalman Filter can reduce propagation errors. Radar target determination is overviewed

next, and finally, a new filter called the Radar-Aided INS (RAINS) filter is proposed and

tested in simulation. The results of RAINS filter analysis show the possibility of navigation

completely independent of GPS. The radar used in this thesis is a Delphi Electronically

Scanning Radar which provides measurements of range, range rate, and azimuth.
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Chapter 1

Introduction

Since the advent of GPS, research in the area of improving navigation continues to

increase as GPS sees more usage in all aspects of daily life. Originally, GPS allowed a

user to locate their position anywhere on the earth to within a few meters. Now, there are

methods available to not only locate a user’s position to sub-meter level, but to precisely

measure velocity and attitude as well. Research on improving GPS navigation is fueled by

the needs of both military and civilian applications that require extremely precise navigation

solutions, whether it be guided munitions or autonomous vehicles. One of the most common

navigation tools is the GPS/INS system. An INS, or inertial navigation system, is the

result of propagating the measurements from an inertial measurement unit (IMU) to obtain

position, velocity, and attitude. IMUs measure acceleration and angular rates, with some

also measuring magnetic fields, barometric pressure, and more. The advantages of using

GPS/INS are its accuracy and fast update rate, however it still suffers from several flaws that

can limit reliability for critical applications. GPS requires constant line-of-sight to the GPS

satellites, and the signal can be blocked or corrupted by structures or the natural landscape

around a vehicle. On the other hand, the IMUs used in GPS/INS systems commonly suffer

from errors such as noise and bias drift, and if not corrected by accurate GPS measurements

can lead to degraded navigation solutions over time.

1.1 Prior Work and Contributions

Much work has been devoted to improving the position, velocity, and attitude (PVA)

estimates of the GPS/INS navigation filter. When designing a navigation filter, one of the

first choices to be made is the quality of the IMU. In [20], the author explains the differences
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between IMU qualities and develops a tool to help aid a designer in making the right choice for

the application. There are also ways to aid a navigation solution produced by the GPS/INS

filter. A common tool used for navigation aiding is the magnetometer. Magnetometers are

useful in heading stabilization or attitude determination [9]. In [42], a magnetometer was

used to detect magnetic anomalies, which can be used as a marker to correct any drift or

bias in a navigation solution. Magnetometers have also been used in a spacecraft for attitude

determination [5]. Finally, in [36], a magnetometer based attitude determination algorithm

was used to produce an attitude measurement that could be used in the measurement update

of a closely-coupled filter that improves the observability of the states in a GPS/INS Kalman

Filter.

In other applications, radars have been used for GPS/INS aiding. Although radars

have been around longer than GPS, its use as a civilian vehicle navigation aid has not been

studied as extensively as GPS due to the fact that radar only has limited range and is

not available everywhere on earth at any given instance. However, radars can have many

practical applications, especially in areas where GPS may not be available, such as an urban

canyon within a city. In [38], a radar from a navy ship was used to aid GPS measurements in

missile system navigation, because the object to be guided was moving too fast for GPS to

accurately provide a navigation solution. For a more consumer-based application, radar was

used as an aid to dynamic real-time kinematic (DRTK) navigation for relative positioning

between two vehicles [43],.

In light of all the research that has been done to improve the navigation solutions

produced by GPS/INS systems, there are still areas that have yet to be explored. The

major contribution of this thesis is to use previous research and create a new navigation

filter that seeks to take IMU measurements and fuse them with radar and magnetometer-

based attitude measurements in an Extended Kalman Filter. This new filter is called the

radar-aided INS (RAINS) navigation filter. This filter eliminates some problems associated

with GPS, most prominently loss of signal, by replacing GPS with radar measurements to
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a known location. The inclusion of a magnetometer to obtain attitude measurements allows

for the use of the radar. This is due to the fact that without attitude measurements, the

filter uncertainty would grow indefinitely and no navigation solution would be possible, as

will be shown in this thesis. With this in mind, the next sections give a brief background

on magnetic sensing technology, inertial measurement units, and radar measurements along

with some of the difficulties involved in implementing these sensors effectively.

1.2 Magnetic Measurements

1.2.1 Background

Using the earth’s magnetic field for navigation is not a recent discovery. The compass

has been used to give explorers and navigators a heading reference for almost 2000 years [29].

Though the technology has advanced far beyond a simple magnetized needle, the principle

remains the same. Today, magnetometers are the state-of-the-art tool for utilizing earth’s

magnetic field as a navigation aid. Magnetometers are sensors that operate by measuring

magnetic fields around them, and can either be scalar or vector magnetometers. Scalar

magmetometers measure only the strength of the magnetic field around them, while vector

magnetometers measure both magnitude and direction. Magnetometers have seen much

use in navigation aiding, including use in spacecraft [5, 47], air vehicles [9, 16], pedestrian

navigation [22,30], and mining and surveying [19].

In many applications, magnetometers are measuring the earth’s magnetic field. Earth’s

magnetic field operates similar to a magnet, with the field always pointing from the south

to the north pole (see Figure 1.1). The components of the magnetic field that are parallel

to the surface of the earth can be used to find a vehicle’s heading. There are several models

available for representing the earth’s magnetic field, but for this thesis the International

Geomagnetic Reference Field (IGRF) is used [24].

Magnetometers, especially vector magnetometers, have proved their usefulness in many

navigation situations. When the magnetic field strength and direction is measured in a

3



Figure 1.1: Illustration of the Earth’s magnetic field [12]

vehicle with no pitch or roll, the heading (ψ) can be easily calculated using the simple

equation

ψ = atan2(by, bx) (1.1)

where using the 4-quadrant inverse tangent will yield heading for a full 360 degrees, and

bx and by are the magnetometer measurements in the x and y direction, respectively. For

this reason, vector magnetometers find the most use in navigation. In addition to heading

calculation, magnetometers can also be used for map-matching navigation [42] and 6 degree

of freedom (DOF) attitude determination [17, 31]. In this thesis, the magnetometer is used

to determine 6-DOF attitude, which will be further discussed later.
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1.2.2 Magnetometer Error Sources

In most applications, magnetometers will be measuring disturbances as well as the

earth’s magnetic field. If there is a material producing its own magnetic field nearby, such

as a magnet or a motor, then the magnetometer measurement will become biased relative to

the earth’s magnetic field. If there is a ferrous material nearby, then the magnetic field will

become distorted. These bias and scaling errors are known as a hard iron bias and soft iron

bias, respectively. Figure 1.2 shows what the error-free magnetometer measurements should

look like, and how hard and soft iron bias change those measurements.

Mag X (Gauss)
-0.2 0 0.2

M
a

g
 Y

 (
G

a
u

s
s
)

-0.2

-0.1

0

0.1

0.2

Perfect Mag Measurements

(a) Perfect Magnetometer
Measurements

Mag X (Gauss)
-0.2 0 0.2 0.4

M
a

g
 Y

 (
G

a
u

s
s
)

-0.4

-0.2

0

0.2

Hard Iron Error

True
Corrupt

(b) Magnetometer Measurements with
Hard Iron Bias

Mag X (Gauss)
-0.4 -0.2 0 0.2

M
a

g
 Y

 (
G

a
u

s
s
)

-0.2

-0.1

0

0.1

0.2

Soft Iron Error

True
Corrupt

(c) Magnetometer with Soft Iron Bias

Figure 1.2: Effects of Hard and Soft Iron Bias on Magnetometer Measurements

As shown in the Figure 1.2a, perfect measurements will result in a circle centered about

(0,0). If there is hard iron bias, as in Figure 1.2b, the measurements will be off-center.

In the presence of soft iron bias, shown in Figure 1.2c, the measurements are centered,
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but the magnitudes are skewed and the circle becomes an ellipse. In addition to these

errors, magnetometers will also be subject to common IMU errors such as wide-band noise.

Errors can also arise if the magnetometer is not aligned with the vehicle. For example,

if the magnetometer were rolled several degrees with respect to the vehicle, the y-axis of

the magnetometer would not be measuring the true y-component of earth’s magnetic field.

Instead, it would be measuring a mix of the y- and z-components of the earth’s magnetic field.

This difference can result in corrupt heading estimates. To reduce or eliminate the errors

caused by hard and soft biases and misalignment, the magnetometer must be calibrated,

which will be covered in detail later in Chapter 2.

1.3 Inertial Measurement Units

Inertial Measurement Units (IMU) are sensors that contain at least some combination

of accelerometers and gyroscopes. As magnetometers begin to show increasing promise as

a navigation aid, IMUs have begun to incorporate magnetometers into their sensor suite as

well. The work done in this thesis depends on magnetic measurements, so an IMU with a

magnetometer included was chosen to gather experimental data. As stated earlier, there are

various levels of quality of IMUs. The noise characteristics of the IMU will depend on the

quality. Marine-grade IMUs offer the longest term stability with the the least amount of

bias and drift, but can cost up to one million dollars. Consumer grade IMUs are available

for the lowest cost, but cannot give an accurate navigation solution on their own for more

than a few seconds. Table 1.1 lists the different levels of IMUs and the bias associated with

each [21].

Accelerometers operate on the principle of measuring the displacement of a proof mass.

When the IMU is subject to an acceleration, the proof mass will shift relative to the sen-

sitive axis and compress a spring. By measuring the displacement of this proof mass, the

acceleration can be calculated. Gyroscopes measure the angular rates of the IMU about a
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Table 1.1: Common Bias Values for IMU Grades [21]

IMU Grade Accelerometer Bias (m/s2) Gyroscope Bias (rad/s)
Marine 10−4 5x10−9

Aviation 3x10−4− 10−3 5x10−8
Intermediate 10−3− 10−2 5x10−7

Tactical 0.01− 0.1 5x10−6− 5x10−4
Automotive > 0.03 5x10−4

sensitive axis. Two common types of gyroscopes are optical and vibratory, and measure the

angular rates using principles such as the Sagnac Effect and Coriolis acceleration [21].

The technique of integrating and propagating IMU measurements to obtain a position,

velocity, and attitude solution is known as an Inertial Navigation System (INS), which is

a type of dead reckoning. To demonstrate the effects bias has on dead reckoning, a simple

trajectory of a vehicle travelling in a circle at a constant tangential velocity for thrity seconds

was created in simulation. From this trajectory, IMU measurements were generated to

simulate various IMU grades represented in Table 1.1. These IMU measurements were then

propagated in an inertial navigation system to obtain the measurement for position after

a single run. The position error is shown in Figure 1.3. As can be seen, the marine-grade

IMU creates the best estimate, with sub-meter level accuracy. However, the tactical and

automotive grade position estimates begin to drift rapidly. The results of this test show

where the motivation arises to aid IMUs. Aiding allows the use of cheaper IMUs while still

getting an accurate navigation solution that will not drift over time.

1.4 Radar Background

This section provides a brief history of radar. If more information on the subject is

desired, [50] provides a more in-depth look at its history and development. The word “radar”

is an acronym that stands for “RAdio Detection And Ranging.” Radar was first demonstrated

as early as 1886 by German physicist Heinrich Hertz, who showed that radio waves could

be reflected from solid objects (Figure 1.4) [23]. This principle was not thoroughly studied
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(a) Dead-Reckoned Position with an Automotive-Grade IMU

(b) Dead-Reckoned Position with a Tactical-Grade IMU

(c) Dead-Reckoned Position with a Marine-Grade IMU

Figure 1.3: Dead-Reckoned Position for Various Grades of IMU
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in earnest until the onset of World War 2, where radar played a critical role in Britain by

providing early warning of German aircraft [8]. With the full potential of radar demonstrated,

many nations began pouring resources into further developing their radar capabilities [8].

Today, radars are used in air traffic control, weather prediction and modeling, munitions

guidance, marine navigation, and autonomous vehicles [1, 13] . Radar works by emitting

radio waves and measuring the signal that gets reflected back off an object. From the

reflected signal, a radar can calculate the location and speed of that object. Of course, this

is a very simplistic way of viewing radar. For a more comprehensive review of the design

and workings of radar, see [46].

Figure 1.4: Basic Diagram of Radar Operation [7]

One of the major problems that plague radars is target acquisition. A radar will create

measurements for every signal that gets reflected back to it, so there will be many non-valid

“targets” that obscure the true measurements, which is known as “clutter.” To eliminate

clutter, an algorithm is needed that either filters the measurements to eliminate erroneous
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signals, or can statistically predict what the radar should be measuring. This process of

target acquisition will be further discussed in Chapter 5.

1.5 Conclusions

In this chapter, the motivation for this thesis was presented and several methods for

aiding the GPS/INS system were reviewed. Although GPS/INS is a well-know and depend-

able tool for navigation, it does have drawbacks with IMU errors when loss of GPS signals

occurs. A brief overview of magnetic sensing technology and the errors associated with it

was given. Inertial Measurement Units were introduced, and how quality can affect the long-

term performance an IMU. A short history of radar technology was given along with a simple

explanation on how radars operate and the issue of radar target acquisition. The goal of this

thesis seeks to utilize these methods in a new filter that uses radar and magnetometer-based

attitude measurements. Chapter 2 will cover how the magnetometer is calibrated for the ex-

periments performed, with calibration results shown in simulation and experimentally. The

use of magnetometers for attitude determination will be shown in Chapter 3. INS navigation

and INS aiding in Kalman Filters will be covered in Chapter 4. In Chapter 5, radar target

determination will be discussed, and the new filter proposed by this thesis will be tested

in simulation and experimentally. The results will demonstrate how combining radar and

attitude measurements with an inertial navigation system to create a new navigation filter

enables estimation of a vehicle’s position, velocity, and attitude without GPS measurements.

Finally, conclusions and future work will be provided in Chapter 6.
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Chapter 2

Magnetometer Calibraton

2.1 Introduction and Prior Work

To use a magnetometer in order to accurately calculate attitude, magnetometer er-

rors must be accounted for through magnetometer calibration. Magnetometer calibration

has been an area of extensive research for many years. All calibrations fall into either 2-

dimensional or 3-dimensional categories. With 3-dimensional calibration, the magnetometer

can be used to calculate the full attitude of a vehicle, however in many ground vehicle situa-

tions the third axis calibration is poor due to observability issues. If only heading is desired

instead of full attitude, then two-dimensional calibrations can be used. Caruso’s method pro-

vides a quick and easy way to accurately calibrate the magnetometer in two axes [10], and

can even handle small amounts of pitch and roll. Kwanmuang et. al. developed a calibration

procedure for pedestrian dead reckoning (PDR) heading calculation [30]. Two-dimensional

calibration has advantages with lower computational requirements and accuracy within just

a couple degrees for systems with low amounts of pitch and roll. However, for this thesis,

it was desired to have a calibration routine that would calibrate all three axes so the mag-

netometer measurements could easily be applied to six degree-of-freedom vehicles such as

aircraft. Koo et. al. use a particle filter for 3-axis calibration, but requires the use of multiple

IMUs to level the magnetic measurements [28], which increases the cost of the navigation

system. Alonso and Shuster then present their calibration algorithm, called TWOSTEP [2],

which is a 3-axis calibration that does not require other sensors to operate. The TWOSTEP

calibration improves on older calibration routines, and has been demonstrated in various sit-

uations to hold up well against other calibration algorithms [3,4]. However, the TWOSTEP

calibration routine was designed for spacecraft and does not hold well for in-atmosphere
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vehicles. In [18], Gebre-Egziabher presents a method for 3-axis magnetometer calibration

that can be performed with no a priori knowledge of attitude. Because of this algorithm’s

efficiency and accuracy of results, and based on the previous work done in [36], this method

was chosen as the calibration routine of choice for this thesis.

2.2 Gebre-Egziabher Calibration

The Gebre-Egziabher calibration routine seeks to fit the data from a magnetometer to

an ellipsoid of best fit centered about the origin by using a model of the earth’s magnetic

field. The calibration process first involves a batch least-squares estimator to generate initial

estimates of the hard and soft iron bias. Next, an iterative least squares process is performed

to refine the bias estimates until convergence is achieved. This calibration routine can

accurately estimate the hard and soft iron bias, represented by (bx, by, bz) and (γx, γy,

γz), respectively. The routine does not estimate misalignment errors but instead lumps

misalignment into the soft iron bias estimates. To calibrate the magnetometer, the problem

must be formulated as the least-squares equation of the form

~x = (HTH)−1HT~y (2.1)

where ~x is the vector of parameters that need to be estimated as defined in Equation (2.5).

To compute the error parameter estimates, an accurate error model is needed, shown by

h2 =

(
h̃bx − bx
γx

)2

+

(
h̃by − by
γy

)2

+

(
h̃bz − bz
γz

)2

(2.2)

where h is the magnitude of the earth’s magnetic field model, and h̃b represents the magne-

tometer measurements in each axis. By expanding Equation (2.2), Equation (2.3) is formed.

h2 =
(h̃bx)

2 − 2(h̃bx)(bx) + (bx)
2

γ2
x

+
(h̃by)

2 − 2(h̃by)(by) + (by)
2

γ2
y

+
(h̃bz)

2 − 2(h̃bz)(bz) + (bz)
2

γ2
z

(2.3)
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Given that there will be k magnetometer measurements, k instances of Equation (2.3)

can be created. After rearranging the k expressions of Equation (2.3), a matrix equation of

the form

~y = H~x+ ~ν (2.4)

can be written as

−



(h̃bx(t1))2

(h̃bx(t2))2

(h̃bx(t3))2

...

(h̃bx(tk−1))2

(h̃bx(tk))
2


=

[
H11H12

]



bx

µ2(by)

µ3(bz)

µ2

µ3

µ4


+ ~ν (2.5)

where ~ν represents the measurement noise, and H is composed of two (kx3) submatrices

defined as

H11 =



−2h̃bx(t1) −2h̃by(t1) −2h̃bz(t1)

−2h̃bx(t2) −2h̃by(t2) −2h̃bz(t2)

−2h̃bx(t3) −2h̃by(t3) −2h̃bz(t3)

...
...

...

−2h̃bx(tk−1) −2h̃by(tk−1) −2h̃bz(tk−1)

−2h̃bx(tk) −2h̃by(tk) −2h̃bz(tk)


(2.6)
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H12 =



(h̃by(t1))2 (h̃bz(t1))2 1

(h̃by(t2))2 (h̃bz(t2))2 1

(h̃by(t3))2 (h̃bz(t3))2 1

...
...

...

(h̃by(tk−1))2 (h̃bz(tk−1))2 1

(h̃by(tk))
2 (h̃bz(tk))

2 1


(2.7)

The µ terms in the state vector shown in Equation(2.5) are defined as

µ1 = h2γ2
x (2.8)

µ2 =
γ2
x

γ2
y

(2.9)

µ3 =
γ2
x

γ2
z

(2.10)

µ4 = (bx)
2 + µ2(by)

2 + µ3(bz)
2 − µ1 (2.11)

Since Equation (2.5) is in a common state-space format, the state vector can be solved

for using Equation (2.1). Using the solution for the state vector, the hard and soft iron bias

can then be calculated using Equations (2.8 -2.11).

As stated earlier, this batch least-squares estimate is only the initial estimate of the

error terms. However, in [18], Gebre-Egziabher shows that often times, the initial estimate

is good enough for accurate calibration. The accuracy of the initial estimate was further

validated in [36]. For that reason, only the initial estimates were used in this thesis. Also,

the state vector has been slightly modified from what was presented in [18]. The fourth term
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in ~x has been changed from a µ1 to a µ2 to better represent the model. This change can be

determined through inspection of Equation (2.3), and again was further validated in [36].

The calibration routine was evaluated with both simulated and experimental data. First,

the simulated case will be presented, then the experimental results will be discussed. Both

cases will compare the post-calibration magnetic heading to a ”truth” reference to validate

that the magnetometer has been accurately calibrated.

2.3 Calibration with Simulated Data

To simulate magnetometer measurements in MATLAB, the IGRF model of the earth’s

magnetic field was rotated 360 degrees about the vertical axis. Since the calibration from [18]

is seeking to fit an ellipsoid of best-fit to a magnetic model, it is essential that at least 360

degrees of rotation in one plane is gathered for the batch least-squares estimation, otherwise

the estimates will diverge. The authors also state that the estimates are improved by the

measurements being rotated out of the 2-dimensional plane, which is often the case seen

in real world use. To test the calibration in simulation, magnetometer measurements were

generated by using the IGRF magnetic model, and rotating those about the magnetometer’s

z-axis. To create “corrupted” magnetometer measurements, Equation (2.12) was used.

h̃b = (hb + b)γ (2.12)

In this equation, hb represents the true magnetic measurement from the IGRF data at a

location in Auburn, AL, b is the hard iron bias, γ is the soft iron bias, and h̃b is the measured

magnetic field from the magnetometer. On top of the hard and soft iron bias, the magnetic

measurements were also rolled by 9 degrees and pitched by 5 degrees and had random noise

with a standard deviation of .005 milliGauss added. These corrupted measurements were

then calibrated using the previously described calibration routine. Figure 2.1 shows the

perfect magnetometer measurements without any biases, roll, pitch, or noise, and Figure
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2.2 shows the magnetometer measurements corrupted by hard and soft iron bias, pitch,

roll, and white, Gaussian noise. The calibrated magnetometer can be seen in Figure 2.3,

where the measurements have been re-centered on the origin and rescaled. Even with the

added pitch and roll, there is still not enough variation to accurately calibrate the z-axis , so

the calibration results in z-axis measurements close to 0. This discrepency occurs because

the data collected does not provide enough variation in the z-axis measurements, so the

calibration seeks to shift the locus of data to the origin in the z-axis as well as the x- and

y-axes. To evaluate the calibration, a comparison of the heading calculations are shown in

Figure 2.4. As can be seen, the calibrated magnetometer heading matches very closely with

the true heading with only noise present in the calibrated measurements. This shows that

the calibration routine is correctly estimating the hard and soft bias errors.

(a) Perfect Magnetometer Measurements (b) Pefect Measurements in XY Plane

Figure 2.1: Perfect Simulated Magnetometer Measurements

(a) Corrupted Magnetometer Measurements
(b) Corrupted Magnetometer Measurements in

XY Plane

Figure 2.2: Corrupted Simulated Magnetometer Measurements
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(a) Calibrated Magnetometer Measurements
(b) Calibrated Magnetometer Measurements in

XY Plane

Figure 2.3: Calibrated Simulated Magnetometer Measurements

Figure 2.4: Simulated Magnetometer Heading

2.3.1 Experimental Results

Once the calibration routine was validated using simulated measurements, the calibra-

tion was then tested using experimental data. To test the routine, an Xsens MTi IMU

(Figure 2.5) was mounted in an Infiniti G35 (Figure 2.6). The vehicle also has a three an-

tenna Septentrio GPS receiver that was used as the “truth” for heading calculation. The

vehicle was driven to approximately the same location that was used for the IGRF data in

the simulation and driven in several circles to collect data in at least 360 degrees of rotation.
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The data was then calibrated in post-process, and the magnetometer measurements were

used to calculate heading.

Figure 2.5: Xsens MTi

Figure 2.6: Infiniti G35

The raw magnetometer measurements are shown in Figure 2.7. It can be seen in the

plots that the magnetometer suffers from hard iron bias, especially in the x-axis, and a small

amount of soft iron bias that is causing the measurements to be ellipsoidal in shape. After

calibrating the magnetometer, the measurements have been re-centered and corrected for

any scale-factor errors, as shown in Figure 2.8. However, the calibration routine still results
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(a) Uncalibrated Magnetometer Measurements
(b) Uncalibrated Magnetometer Measurements

in XY Plane

Figure 2.7: Uncalibrated Experimental Magnetometer Measurements

(a) Calibrated Magnetometer Measurements
(b) Calibrated Magnetometer Measurements in

XY Plane

Figure 2.8: Uncalibrated Experimental Magnetometer Measurements
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Figure 2.9: Vehicle Heading for Raw and Calibrated Mag and Septentrio Measurements

in z-axis measurements at zero because there was not enough pitch and roll in the vehicle to

accurately calibrate the z-axis.

To check that heading accuracy has been maintained throughout the calibration process,

the calibrated magnetometer heading was compared to the measured Septentrio heading.

Figure 2.9 shows a plot of all three heading measurements. The raw measurements are

strongly corrupted by the hard and soft iron biases, and are unable to estimate heading.

The calibrated magnetometer measurements estimate a much more accurate heading, and

are close to the true value. The error between the Septentrio heading and the calibrated

magnetometer calculated heading is shown in Figure 2.10. After calibration, the heading

error is never larger than four degrees. The resulting mean error for the calibrated heading

is -.0262 degrees with a standard deviation of 1.4921 degrees. The experimental results show

that the selected calibration routine is valid, and will yield accurate results when calculating

heading. It will be important to know that the magnetometer is being correctly calibrated

when trying to determine a vehicle’s attitude, which will be discussed later in this thesis.
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Figure 2.10: Vehicle Heading Error for Calibrated Magnetometer Measurements

2.4 Conclusion

Extensive research has been devoted to develop faster, more robust, and more accurate

magnetometer calibration under many conditions. For this thesis, one calibration algorithm

was chosen that met the needs for accuracy, efficiency, and robustness and could be applied

to an in-atmosphere 6 degree-of-freedom vehicle. This calibration was tested in simulation,

and then verified by collecting experimental data using an Xsens MTi IMU in an Infiniti

G35. Both the simulated and experimental results show that this algorithm can calibrate a

magnetometer to obtain accurate heading estimates.
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Chapter 3

Magnetometer-Based Attitude Determination

3.1 Background and Previous Work

While magnetometers can be used soley for vehicle heading calculation, they are also

useful in six degree-of-freedom (DOF) attitude determination. To correctly navigate and

control a vehicle, whether it is an air vehicle [17], a spacecraft [45], or a ground vehicle, it

is important to know how the vehicle is oriented in the navigation frame. Thus, there is

a need to determine the vehicle’s attitude. The process of combining different sensors into

an algorithm to determine attitude is called an Attitude Heading and Reference System, or

AHRS. In 1965, Grace Wahba proposed that the attitude of one coordinate frame relative to

another could be found using a set of vector measurements [49]. Each coordinate frame must

contain a set of at least two vectors, and each vector in that set must have a corresponding

vector in the opposing coordinate frame that points to the same point as itself. Under these

conditions, the problem is solving a rotation between the vector sets that will be the same

as the rotation between coordinate frames.

Wahba developed a solution when first proposing the problem by minimizing a least-

squares loss function with n vectors, where n ≥ 2. Since then, much research has been

devoted to improving the accuracy and efficiency of the solution and on how to incorporate

different sensors. The matrices representing the rotation between the coordinate frames is

usually represented in either Euler angles or quaternions, with quaternions being a more

common choice due to the fact that there are no angular singularities that can occur with

Euler angles [15]. For example, if an aircraft is flying straight up relative to the navigation

frame, then roll is not observable, and yaw and pitch are indistinguishable from each other.

This is a common problem known as gimbal-lock, shown in Figure 3.1.
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(a) Normal Operating Conditions [34] (b) Gimbal Lock Conditions [35]

Figure 3.1: Example of a Gyroscope Under Normal and Gimbal Lock Conditions

Most AHRS algorithms can be broadly placed in one of two categories, optimal and

deterministic. Deterministic solutions use a minimal data set to derive the attitude with

nonlinear equations, while optimal algorithms use two or more data sets to compute the

attitude by minimizing an appropriate cost function solution [48]. Shortly after Wahba’s

problem was proposed, Davenport produced his own deterministic least-squres solution for

attitude determination using Euler angles, but the solution still had one singularity [14].

Another deterministic solution, TRIAD, computed attitude by restricting the data to two

unit-vector pairs [44]. Later, optimal solutions were developed in the form of QUaternion

ESTimator (QUEST) [37] and the EStimators of the Optimal Quaternion (ESOQ) [44].

These algorithms avoid singularities because they estimate quaternions instead of Euler

angles, and they are both much faster than Davenport’s solution. However, neither of these

solutions are as robust as Davenport’s solution. Since determinstic solutions involve solving

cumbersome, nonlinear equations, most research has been devoted to optimal solutions. For

this reason, the optimal attitude determination algorithm presented in [31] was used for this

thesis. This algorithm estimates the rotation quaternion through an iterative Gauss-Newton

method. It was chosen because it is more robust then the QUEST and ESOQ algorithms,
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but more computationally efficient than Davenport’s solution. The algorithm is described

in more detail in the following section.

3.2 Attitude Determination

As stated earlier, in order to determine the rotation of one coordinate frame to another,

there must be a set of at least two vectors in each coordinate frame that point to corre-

sponding points. For example, in a body frame and a navigation frame, the accelerometer

would be measuring gravity effects, corresponding with earth’s gravity model. Let the two

vectors in the navigation frame be represented by y1
e and y2

e , with corresponding vectors in

the body frame represented by y1
b and y2

b . There exists between these vector sets a rotation

matrix such that

y1
e = Re

by
1
b (3.1)

y2
e = Re

by
2
b (3.2)

where Re
b is the rotation matrix between the coordinate frames. The vectors in the navi-

gation frame can come from any vector measurement sensors, such as star sensors, horizon

sensors, accelerometers, or magnetometers, to name a few. These measurements must then

correspond to the model used in the navigation frame. For this thesis, an accelerometer and

magnetometer were used for the vector measurements y1
b and y2

b , while the earth’s magnetic

field model and gravity model were used for y1
e and y2

e . In the first vector set, the magne-

tometer measurements will correspond to the magnetic field model, and for the second vector

set, the accelerometer measurements will correspond to the gravity model. The algorithm

seeks to minimize the error function H defined as follows

H = εT ε = (ye −Myb)
T (ye −Myb) (3.3)
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With magnetic measurements indicated by m, and accelerometer/gravity measurements

indicated by α, yb and ye can be defined as

yb =

[
mb αb

]T
(3.4)

ye =

[
me αe

]T
(3.5)

where M is defined as shown in Equation (3.6).

M =

Re
b 0

0 Re
b

 (3.6)

The attitdue determination algorithm seeks to minimize the error by estimating the

quaternion that best expresses the rotation between the body frame the navigation frame,

where the quaternion is written as shown in Equation (3.7).

n = âi+ bĵ + ck̂ + d (3.7)

This means that Re
b can be rewritten as shown below.

Re
b =


d2 + a2 − b2 − c2 2(ab− cd) 2(ac+ bd)

2(ab+ cd) d2 + b2 − a2 − c2 2(bc− ad)

2(ac− bd) 2(bc+ ad) d2 + c2 − b2 − a2

 (3.8)

With Re
b in terms of the quaternion components, a Gauss-Newton iterative process can be

used to estimate the terms in the quaternion n through the Jacobian matrix J such that

n̂k+1 = n̂k − [JT (n̂k)J(n̂k)]
−1JT (n̂k)ε(n̂k) (3.9)

where
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J =

[
δM
δa
yb

δM
δb
yb

δM
δc
yb

δM
δd
yb

]
(3.10)

ε(n̂k) = ye −M(n̂k)yb (3.11)

By iterating Equation (3.9) until convergence, the quaternion rotation that minimizes the

error function in Equation (3.3) will be found. Using this quaternion, the rotation matrix

in Equation (3.8) can be calculated. If necessary, the rotation matrix can also be converted

back to Euler angles.

3.3 Simulated Vehicle Attitude Determination

To test the AHRS presented in the previous section, a simulated vehicle trajectory was

created using a vehicle dynamic model. The model was put through a series of turns and

accelerations with zero pitch and roll to test the attitude determination algorithm. Based

off of the model, sensor measurements for the accelerometer and magnetometer could be

generated by using the noise characteristics of an Xsens IMU shown in Table 3.1. The

simulated path is shown in Figure 3.2 in a North-East-Down (NED) navigation frame along

with the vehicle velocity and heading in Figures 3.3 - 3.4, followed by the attitude estimates

and errors in Figures 3.5 - 3.7.

Table 3.1: Xsens Error Characteristics

Measurement Standard Deviation Bias Standard Deviation
Acceleromter (m/s2) 0.0098 0.0333
Gyroscope (rad/s) 8.7266x10−4− 10−3 0.0014

Magnetometer (mGauss) 0.5 -

Overall, the AHRS performs very well, with the error being approximately +/- two

degrees on all axes. However, when the vehicle makes sudden turns or accelerations, the

error spikes. The change represents a step input, and the spikes are the transient response
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Figure 3.2: Simulated Vehicle Trajectory

(a) North Velocity (b) East Velocity

Figure 3.3: Simulated Vehicle Velocity

Figure 3.4: Simulated Vehicle Heading
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(a) Roll (b) Roll Error

Figure 3.5: Simulated Vehicle Roll

(a) Pitch (b) Pitch Error

Figure 3.6: Simulated Vehicle Pitch

(a) Heading (b) Heading Error

Figure 3.7: Simulated Vehicle Heading

of the AHRS. This error occurs because the algorithm is attempting to match the measured

acceleration with the gravity vector. The problem with this comparison will be discussed in

more detail in Section 3.5.
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3.4 Experimental Attitude Determination

After the attitude determination algorithm was verified in simulation, it was tested

experimentally. The Infiniti G35 was driven in a circular path similar to what was used for the

magnetometer calibration, except now the accelerometer and the magnetometer data from

the Xsens are used to calculate roll, pitch, and yaw, and the the three-antenna Septentrio is

used as the reference for attitude truth. Figures 3.8 - 3.10 show the measured and true vehicle

attitude, along with the error in attitude between the attitude determination algorithm and

the Septentrio measured attitude. The experimental data confirms that this algorithm can

accurately calculate the attitude of a vehicle. Roll and pitch errors are never more than

five degrees, and usually less then three degrees. The heading error appears to suffer from

a constant bias of approximatley three to four degrees, likely due to misalignment between

the IMU and the GPS antennas. If this bias was accounted for, the heading error would be

mostly within five degrees.

3.5 Conclusions

This chapter provided a review of several attitude determination algorithms, and out-

lined the process and relevant equations for the AHRS used in the rest of this thesis. The

algorithm selected was then verified through both simulation and experimental data. How-

ever, there is one inherent flaw in this algorithm. The chosen algorithm for calculating

(a) Roll (b) Roll Error

Figure 3.8: Vehicle Roll with Experimental Data
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(a) Pitch (b) Pitch Error

Figure 3.9: Vehicle Pitch with Experimental Data

(a) Heading (b) Heading Error

Figure 3.10: Vehicle Heading with Experimental DataNoTitle

attitude attempts to find a rotation matrix that matches magnetometer data to an earth

magnetic field model, and accelerometer data to a gravity model. The issue here arises when

a vehicle experiences large amounts of acceleration. For the algorithm to work perfectly,

the accelerometer must be measuring only gravity. However, in any realistic scenario, the

vehicle will be accelerating in some manner. In principle, this means the attitude calculation

will have errors. In this chapter, the simulation had various accelerations, both linear and

centripetal and was still able to calculate an accurate attitude estimate. The experimental

data had one continuous centripetal acceleration and many other accelerations caused by the

rough, offroad path of the vehicle during data collection. Although these non-gravitational

accelerations cause a large amount of noise in the attitude estimate, the attitude determi-

nation algorithm was still able to calculate the vehicle’s attitude. Some of the work done
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in [36] also shows how the algorithm breaks down under extreme, multiple-gravity accel-

erations. However, the majority of consumer vehicles will never approach those levels of

continuous accelerations, so it is not a concern for this thesis. One option to eliminate the

acceleration errors is to use velocity vectors [36]. A wheel encoder can measure the vehicle

velocity, while a global measurement of velocity, usually provided by GPS, can be used as

another measurement of velocity. Since the purpose of this thesis is to avoid using GPS,

this method was not used. Another option could be used if the vehicle dynamic model is

well-known. Using the vehicle model, non-gravity measurements of the accelerometer could

be removed, however this method was not explored in this thesis and is left for future work.
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Chapter 4

Covariance Analysis of INS Propagation

As IMUs continue to become cheaper and smaller, their popularity for use in navi-

gation increases. From planes to ships to cell phones, IMUs are easily incorporated into

most integrated circuits, and provide high-frequency updates on acceleration and angular

rates. This size and cost reduction is especially important in the race to mass-produce the

first autonomous consumer vehicle. However, creating technology that is both cheaper and

smaller is not without drawbacks. To keep an IMU’s cost below the thousands of dollars

required for high precision, tradeoffs are made in noise and stability. Many consumer IMUs

suffer from bias and drift, and when utilized in an inertial navigation system (INS) to form

position, velocity, and attitude (PVA) estimates, the solution will quickly drift off track

with unbounded error. There are ways of correcting IMU errors, such as step detection in

pedestrian dead-reckoning [39], or using GPS measurements in an Extended Kalman Filter

(EKF) [21, 41]. However, the goal of this thesis is to show that IMUs can be paired with

other measurements, namely range and attitude, to bound the error that comes with inte-

grating and propagating IMU measurements. In the following sections, INS navigation will

be discussed with detailed analysis on unaided and radar/attitude aided INS.

4.1 INS Propagation Model

The process of propagating an INS can be done by using Equations (4.1 - 4.5), which

are derived from [21].

R̂n
b,k+1 = R̂n

b,k(I33 + Ωibdt) (4.1)
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Ωib = [(ωk − b̂g,k) ∧ ] (4.2)

fnib =
1

2
(R̂n

b,k+1 + R̂n
b,k)(αk − b̂a,k) (4.3)

V̂k+1 = V̂k + (fnib + gn)∆t (4.4)

P̂k+1 = P̂k +
∆t

2
(V̂k+1 + V̂k) (4.5)

The outputs of interest are the rotation matrix, R̂n
b,k+1, the velocity, V̂k+1, and the position,

P̂k+1. The current gyroscope measurement is represented by ωk. The current accelerometer

measurement is represented by αk. The IMU time step between measurements is represented

by ∆t, and the two bias terms come from the values in the error state vector of the previous

iteration. The error state vector is given below in Equation 4.6.

x̂ =

[
δP δV δΨ ba bg

]T
(4.6)

In Equation (4.2), the ’∧’ symbol indicates a skew symmetric matrix, and in Equation

(4.4), gn is the gravity vector in the local navigation frame. An error state vector is chosen as

it keeps the estimates small, and reduces errors from linearization of the dynamic equatiuons

[21, 40]. Since the INS is unaided with no external measurements, its propagation can be

represented as an Extended Kalman Filter without a measurement update

x̂−k+1 = x̂+
k + Φk+1x̂

+
k (4.7)

P−k+1 = Φk+1P
+
k ΦT

k+1 +BwQB
T
w (4.8)

where x̂ is the vector of the estimates of the state, P is the state estimate error covariance

matrix, and Φk+1 is the truncated matrix exponential approximated below.

Φk+1 = I + Fk+1∆t (4.9)
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F is the system model matrix, which is constructed by taking the partial derivatives of the

following equations with respect to x̂.

δṖ = δV (4.10)

δV̇ = Rn
b (α− ba)− gn (4.11)

δΨ̇ = Rn
b (ω − bg) (4.12)

Since the IMU biases are included in the state, it is necessary to have the appropriate

model equations for them. For this work, the IMU biases are modeled as a first order Markov

process as shown in Equation (4.13).

ḃ = −1

τ
b+ µ (4.13)

When the partial derivative with respect to the state vector is taken, Equations (4.10 -

4.13) will yield the system dynamics model, F ,

F =



O33 I33 O33 O33 O33

O33 O33 [(Rn
bα)∧] Rn

b O33

O33 O33 O33 O33 Rn
b

O33 O33 O33 − 1
τa
I33 O33

O33 O33 O33 O33 − 1
τg
I33


(4.14)

where I33 represents a 3x3 identity matrix, and O33 represents a 3x3 matrix of zeros. This

matrix can now be used to propagate the error-state estimates by using Equations (4.7) and

(4.9), and the error covariance matrix, P , is propagated with Equation (4.8). The error

covariance matrix depends on the process noise covariance matrix, Q, and the system model

noise sources, Bw, which are given by the following equations
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Q =



σ2
a 033 033 033

033 σ2
g 033 033

033 033 σ2
ba 033

033 033 033 σ2
bg


(4.15)

Bw =



033 033 033 033

Re
b 033 033 033

033 Re
b 033 033

033 033 Re
b 033

033 033 033 Re
b


(4.16)

where each σ2 term is a 3x3 diagonal matrix representing the variance on the corresponding

process noise source. Although these values are a tuning parameter, a good inital starting

point is the reported variances of the accelerometer and gyroscope measurements. Also in

this thesis, P was always initialized as an identity matrix.

A way of measuring the effectiveness of an estimator is to analyze the state estimate

error covariance matrix, P . This matrix is essentially a measure of the ”uncertainty” of the

estimates. For a good estimator, the diagonals of the covariance matrix will be bounded. To

examine the uncertainty of navigation estimates through IMU propagation, a simple simula-

tion was run of a VectorNav300 IMU, shown in Figure 4.1. The IMU was simulated moving

in a straight line at a constant velocity, then integrated and propagated using the previously

described process. To demonstrate how INS aiding can reduce errors associated with IMU

propagation, two different scenarios were examined. The first scenario is the unaided INS,

the second scenario being radar and attitude aided INS. The error characteristics of the

VectorNav300 and a Delph ESR, shown in Table 4.1, were used in the Q and R matrices,

and the P matrix was intialized as an identity matrix.
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Table 4.1: Standard Deviations of VectorNav300 and Delphi ESR Measurements

Sensor Measurement (m/s2) Standard Deviation (rad/s)

VectorNav300 Acceleration .00014 ∗
√

50 m/s2

VectorNav300 Angular Rate .0035 ∗
√

50 ∗ π
180

rad/s
Delphi ESR Range .5 m
Delphi ESR Range Rate .12 m/s
Delphi ESR Azimuth .5 ∗ π

180
rad

Figure 4.1: VectorNav 300 IMU

4.2 Unaided INS

Since the unaided INS has no measurement update, there is no way to correct the

estimates and keep error constrained. This means that an unaided INS will have an ever-

increasing uncertainty. This turns out to be the case, as can be seen in Figure 4.2. Although

the plot is only for the estimate of North position, the other states behave in the same

manner. This unbounded growth in uncertainty shows why it is necessary for an INS to be

coupled with some form of measurement.

4.3 Fully Aided INS

Next, the INS was aided with radar and attitude measurements. The goal of adding

these measurements is to constrain the error so that the covariance does not grow unbounded

as it does in the unaided case. With the addition of measurements to the INS, a measurement

update must now be applied to the propagation equations. The following section will detail

the equations used in the measurement update of the Extended Kalman Filter.
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Figure 4.2: Unaided INS North Covariance

4.3.1 Measurement Update Equations

Previously, the equations for INS navigation were introduced as an Extended Kalman

Filter without a measurement update. However, when radar and attitude measurements are

added, then the filter may now include a measurement update. The three equations that

make up the measurement update are defined as

Lk+1 = P−k+1H
T
k+1(Hk+1P

−
k+1H

T
k+1 +R)−1 (4.17)

P+
k+1 = (I − Lk+1Hk+1)P−k+1 (4.18)

x̂+
k+1 = x̂−k+1 + Lk+1δzk+1 (4.19)

where a ’+’ denotes a value calculated in the measurement update, a ’−’ symbol denotes a

value calculated in the time update, L is the Kalman Gain, H is the measurement Jacobian

matrix that maps the measurements to the states, and δz is the difference between the actual

measurements and the predicted measurements. Ideally, there are six possible measurements

a radar can return, as defined by the following equations given by [27].

R =
√

∆X2 + ∆Y 2 + ∆Z2 (4.20)
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Ṙ =
∆X∆Ẋ + ∆Y∆Ẏ + ∆Z∆Ż√

∆X2 + ∆Y 2 + ∆Z2
(4.21)

λy = tan−1

(
∆Y

∆X

)
(4.22)

λz = tan−1

(
∆Z

∆X

)
(4.23)

λ̇y =
∆X∆Ẏ −∆Y∆Ẋ

∆X2 + ∆Y 2
(4.24)

λ̇z =
∆X∆Ż −∆Z∆Ẋ

∆X2 + ∆Z2
(4.25)

These are the measurement equations for range, range rate, azimuth, elevation, azimuth

rate, and elevation rate, respectively. Here, ∆X,∆Y, and ∆Z are the difference between the

radar’s position and the target’s position in the navigation frame. In this thesis, the radar’s

position was assumed to be on a non-moving ground station at (0, 0, 0). In this case, each

delta term simplifies to just X, Y , and Z, and Ẋ, Ẏ , and Ż, which correspond to the

vehicle’s position and velocity in the navigation frame. Also, the radar was positioned so

that it was facing due north, and it was assumed that the radar was level in the navigation

frame. Most radars cannot provide all six measurements, and may only report range, range

rate, and azimuth. In this thesis, a Delphi ESR, shown in Figure 4.3, is one such radar that

only reports range, range rate, and azimuth. This results in a measurement vector as shown

below in Equation (4.26).

z =

[
λy R Ṙ φ θ ψ

]
(4.26)
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Figure 4.3: Delphi ESR

H is a Jacobian of the measurement vector, so by taking the partial derivatives of z

with respect to the states, the rows for H can be defined as follows

H1 =


−Y

X2+Y 2

X
X2+Y 2

013,1


T

(4.27)

H2 =



X√
X2+Y 2+Z2

Y√
X2+Y 2+Z2

Z√
X2+Y 2+Z2

012,1



T

(4.28)

H3 =



Ẋ√
X2+Y 2+Z2 −

X(XẊ+Y Ẏ+ZŻ)

(X2+Y 2+Z2)3/2

Ẏ√
X2+Y 2+Z2 −

Y (XẊ+Y Ẏ+ZŻ)

(X2+Y 2+Z2)3/2

Ż√
X2+Y 2+Z2 −

Z(XẊ+Y Ẏ+ZŻ)

(X2+Y 2+Z2)3/2

X√
X2+Y 2+Z2

Y√
X2+Y 2+Z2

Z√
X2+Y 2+Z2

09,1



T

(4.29)
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H4 =



033

033

I33

033

033



T

(4.30)

and H is defined as

H =



H1

H2

H3

H4


(4.31)

which will result in a (6x15) measurement matrix. With the state vector defined and the

measurement sources known, the measurement covariance matrix can be defined as

R =



σ2
λy

0 0 013

0 σ2
R 0 013

0 0 σ2
Ṙ

013

031 031 031 σ2
Ψ


(4.32)

where the first three terms on the diagonal are the variances for the range, range rate, and

azimuth measurements as given by Table 4.1, and the last term on the diagonal is the 3x3

matrix of the variances on the attitude estimates from the AHRS which was initialized as

.01 deg2. After the measurement update is complete, the position, velocity, and attitude

estimates must be updated using the error-state estimates.

P̂k+1 = P̂k + δP (4.33)
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V̂k+1 = V̂k + δV (4.34)

Θ̂k+1 = δΨ (4.35)

R̂n
b,k+1 = R̂n

b,k(2I33 + Θk+1)/(2I33 −Θk+1) (4.36)

The updated estimate for attitude can be obtained by decomposing the transpose of

R̂n
b,k+1. After the PVA estimates are updated, the error-state vector is reset to zero and the

process is repeated. A block diagram of the Extended Kalman Filter process is shown in

Figure 4.4.

Figure 4.4: Diagram of the Extended Kalman Filter Filter Process

One limitation in this filter structure lies in how the accelerometer measurements are

used. In the time update, the accelerometer is used to propagate the states. In the mea-

surement update, the acceleration is used in the attitude estimates through the AHRS. This
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causes some terms in the Q and R matrices to become correlated. An important assumption

of the Kalman filter is that Q and R are uncorrelated. This problem is discussed in greater

detail in Appendix B.

4.3.2 Fully Aided Covariance

As shown previously, without any external measurements, INS propagation will result

in unbounded error growth. In the previous section, a measurement update was been added

that aids the INS with radar range, range rate, and azimuth as well as AHRS attitude

estimates. This results in a bounded uncertainty, as shown in Figure 4.5. These results show

that a radar and attitude aided INS filter is stable and should be able to return an acurrate

navigaiton solution. To validate the results of this chapter, the described filter will be tested

in simulation in Chapter 5.

Figure 4.5: Fully Aided INS North Covariance

4.4 Conclusions

In this chapter, the concept of INS navigation was introduced and the equations used

for INS propagation were given. Due to the errors present in IMUs, it was shown that
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measurements from other sensors are necessary to bound the errors that occur with pure INS

navigation. The state estimate error covariance matrix was also introduced with examples

to show how it can be used as a metric for judging if a filter will return a good navigation

solution. Without any aiding, it was shown that the estimate uncertainty grows unbounded,

and no navigation solution can be formed. Next, the defining equations for radar were given

along with the equations for a Kalman Filter measurement update. It was then shown how

radar and attitude measurements can be used to aid an INS through the Extended Kalman

Filter structure. It was also shown that by aiding the INS with radar and attitude, the

estimate uncertainty can be bounded, which results in a good navigation solution. The

resulting radar-aided INS will be further discussed and tested in Chapter 5.
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Chapter 5

Radar-Aided INS Filter

As shown in the previous chapters, magnetometers and accelerometers can be very useful

for vehicle heading and attitude determination, however in navigation it is often required that

a vehicle’s position and velocity also be estimated. To do this, IMUs and GPS are commonly

coupled together in navigation filters. The reasoning behind this is that IMUs and GPS are

complementary; where one may fall short, the other stands strong. IMUs typically have a

very high update rate and can estimate position, velocity, and attitude (PVA). Despite the

advantage of fast PVA estimates, IMUs suffer from bias and other errors, which will cause

the solution to rapidly drift from truth if no corrections are provided.

In contrast to the IMU, GPS has a much slower update rate, but can provide position

and velocity measurements with long-term accuracy and stability. When GPS measurements

are paired with an IMU, the INS can continue to provide navigation solutions until GPS

measurements are re-acquired, and while GPS measurements are being received, the IMU

errors can be corrected to ensure the accuracy of the INS. However, GPS measurements are

subject to outages caused by faulty measurements or blockages from structures or terrain.

The goal of this thesis is to propose a potential alternative to the commonly used GPS/INS

navigation filter. This is accomplished by combining radar measurements with an inertial

navigation system, in what has been dubbed a radar-aided INS navigation filter, or a RAINS

filter. By itself, a radar does not yield enough measurements to estimate a vehicle’s position,

velocity, and attitude. This is where the importance of an attitude measurement comes

in. As discussed previously, a magnetometer can be calibrated and combined with another

vector sensor, such as an accelerometer, to form an attitude heading reference system. When

GPS measurements in a navigation filter are replaced with radar measurements, an attitude
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Figure 5.1: Delphi Range Measurements with No Filtering

measurement is required or else the RAINS filter’s estimates will diverge, as radar does not

provide enough measurements to estimate a vehicle’s attitude. When the RAINS filter has

attitude measurements, it can successfully correct dead-reckoning errors and constrain PVA

errors.

5.1 Radar Target Determination

When radar signals are reflected back from an object, there is no way to know for certain

whether the signal is returning from a valid target, or clutter in the environment. For this

reason, target determination is imperative to make sure the radar measurements are accurate

and also represent the correct target. The Delphi ESR uses 64 channels, which means at

each measurement time, there can be up to 64 different measurements on range, range rate

and azimuth. The output from the Delphi will look similar to what is shown in Figure 5.1.

The true range measurements are completely crowded out by clutter, which is what

makes target determination so important. There are statistical target acquistion methods

available for reducing clutter [6]. However, that level of target acquisition was outside the

scope of this thesis and has been left for future work. In this thesis, simple filtering methods
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Figure 5.2: Delphi Range Measurements with Filtering

were used instead. First, all radar measurements on the Delphi are returned with a status

message that represents the trustworthiness of the measurements. A status of ’0’ indicates

that the Delphi has determined that channel is not tracking a valid target, and can be

removed. Second, some intuition can be used to filter out more clutter. For instance, it is

known that the vehicle path will never be greater than a certain range, and the vehicle’s

speed will never be over a certain rate. This is very analogous to a radar operating on a

road where the max distance the radar is being used to track a vehicle and speed limits on

the road would set a gate for what range and range rates are to be expected. Using this

simple radar data clustering technique, the raw measurements in Figure 5.1 can be filtered

and reduced down to what is shown in Figure 5.2.

Although not all erroneous measurements will be removed, the filter removes much of

the clutter, and will greatly improve the measurements of the target. After filtering, the

average measurement at each time can be taken to produce a measurement that can be used

in the RAINS filter. This results in radar range measurements similar to what is shown in

Figure 5.3, along with corresponding range rate and azimuth.
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(a) Average Range After Filtering

(b) Average Range Rate After Filtering

(c) Average Azimuth After Filtering

Figure 5.3: Average Radar Measurements After Filtering
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As can be seen, even simple filtering techniques can be useful for reducing clutter and

calculating a good estimate for the radar measurements on the target. As stated earlier,

statistical filtering was beyond the scope of this work, but for a good example of how it can

be used to improve clutter reduction, especially when tracking a target on a less predictable

path, see [43].

5.2 Simulation Results

To test the RAINS filter in simulation, a vehicle trajectory was created in MATLAB.

By using the performance and error characteristics of the VectorNav 300 IMU and the

Delphi ESR as shown in Table 5.1, sensor measurements were generated and an attitude

estimate was made using the AHRS described in Chapter 3. The values in the Q matrix

were initialized by using the VectorNav error characteristics, the values in the R matrix

were set as the variances on the Delphi measurements, while the variance on attitude was

initialized at .01 deg2. The true vehicle path is shown in Figures 5.4 - 5.6, and the estimator

results are shown in Figures 5.7 - 5.13.

Table 5.1: Standard Deviations of VectorNav 300 and Delphi ESR Measurements

Sensor Measurement (m/s2) Standard Deviation (rad/s)

VectorNav 300 Acceleration .00014 ∗
√

50 m/s2

VectorNav 300 Angular Rate .0035 ∗
√

50 ∗ π
180

rad/s
Delphi ESR Range .5 m
Delphi ESR Range Rate .12 m/s
Delphi ESR Azimuth .5 ∗ π

180
rad

As seen in Figure 5.7, the dead-reckoning solution drifts quickly to the point of becoming

completely unusable for PVA estimates on its own. Despite the drift from the IMU, Figure

5.7 also shows that the RAINS filter is able to overcome those errors and correctly estimate

position. Figure 5.8 shows the error is within five meters of truth. Similar results are

achieved with velocity and attitude. Despite large the amounts of drift from dead reckoning

on velocity shown in Figures 5.9 and 5.10, the RAINS filter is able to accurately estimate
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Figure 5.4: Simulated Vehicle Trajectory

(a) North Velocity (b) East Velocity

Figure 5.5: Simulated Vehicle Velocity

Figure 5.6: Simulated Vehicle Heading
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Figure 5.7: Simulated Vehicle Position Estimates

(a) North Estimate Error (b) East Estimate Error

Figure 5.8: Position Estimate Error from Simulation

velocity to within two meters per second. Attitude is also accurately estimated, with the

RAINS filter reducing the error down to just two degrees, seen in Figures 5.11 - 5.13. One

important assumption made in the RAINS filter is that down position and down velocity are

zero. Maunally setting these two states to zero raises questions about the observability of

the RAINS filter. The concept of observability and its effect on a filter are discussed further

in Apendix A.

In theory, the vehicle’s position could also be calculated based on range and azimuth

measurements using Equations (5.1) and (5.2).

North = R ∗ cosλy (5.1)

50



(a) Velocity North Truth, Estimated, and
Dead-Reckoned (b) Velocity North Estimate Error

Figure 5.9: Velocity North from Simulation

(a) Velocity East Truth, Estimated, and
Dead-Reckoned (b) Velocity East Estimate Error

Figure 5.10: Velocity East from Simulation

(a) Roll Truth, Estimated, and Dead-Reckoned (b) Roll Estimate Error

Figure 5.11: Roll from Simulation

51



(a) Pitch Truth, Estimated, and Dead-Reckoned (b) Pitch Estimate Error

Figure 5.12: Pitch from Simulation

(a) Heading Truth, Estimated, and
Dead-Reckoned (b) Heading Estimate Error

Figure 5.13: Heading from Simulation

East = R ∗ sinλy (5.2)

However, radar measurements degrade as distance increases, which can quickly result in

large amounts of error. This effect is especially pronounced for the Delphi, which only has a

specified maximum effective range between 50-60 meters. Without the filter, the radar alone

returns poor position estimates, as shown in Figure 5.14.

5.3 Conclusions

This chapter introduced a new navigation filter called the Radar Aided INS navigation,

or the RAINS, filter. It was previously discussed how INS navigation requires additional

measurements to accurately estimate a vehicle’s position, velocity, and attitude. Although
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(a) Error North (b) Error East

Figure 5.14: Error from Radar Calculated Position

GPS is commonly used, it is not always available. To fill the gap when GPS is not available, it

was proposed that an INS solution be aided by radar and attitude measurements. By adding

these measurement, the estimate uncertainty can be reduced and accurate PVA estimates

can be produced.

To verify the RAINS filter, tests were done in simulation. The simulation returned

very good results, with position estimates within three meters of truth, velocity within two

meters per second, and attitude within two degrees. The sensors simulated for this test were

a VectorNav 300 IMU and a Delphi ESR. This simlated test has shown that the filter has

potential to overcome the errors caused by INS propagation and constrain the state estimate

error covariance.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Much research has been done regarding navigation and guidance for vehicles, even more

so today then ever. The prospect of driverless vehicles requires that highly accurate nav-

igation solutions be available in all circumstances. Although GPS/INS fusion can often

meet this need, conditions under which GPS becomes unavailable would prove disastrous

as IMUs cannot successfully estimate a vehicle’s position, velocity, and attitude over long

periods of time without being prohibitively costly. Several topics were addressed in this

thesis, culminating in a new filter to fill the gap during GPS outages.

First, magnetometers were introduced. Although magnetometers can suffer from errors

such as hard and soft iron bias, once calibrated, they can provide highly accurate heading

measurements. The calibration algorithm selected was a batch least-squares estimator that

seeks to fit corrupt magnetometer data to an ellipsoid of best fit around the origin. Both

simulated data and experimental data was used to demonstrate the effectiveness of this

algorithm by showing the magnetometer based heading compared to a reference heading.

When calibrated, magnetometers can also be used for attitude determination when

paired with another vector measurement such as acceleration. Although there are many at-

titude determination algorithms available, for this thesis, an error-minimization least squares

estimator that estimates the rotation quaternion was used. Although this algorithm’s per-

formance can suffer when a vehicle is undergoing large or sustained accelerations, it was

shown to perform well in simulation and with experimental data.

This thesis also analyzed the state estimate error covariance and showed how INS propa-

gation has unbounded uncertainty, while aided INS has bounded uncertainty. The Extended

54



Kalman Filter was intorduced as a way to incorporate radar and attitude measurements as

an aid for INS. Expanding on this idea, a new navigation filter was proposed by this work

called the radar-aided INS, or RAINS, filter. The RAINS filter operates by utilizing radar

measurement combined with the magnetometer-based attitude measurements to correct the

INS propagated estimates. Through simulation, it was shown that the RAINS filter can

successfully estimate a vehicle’s position, velocity, and attitude.

6.2 Future Work

Although this filter showed that radar and attitude can be used with an IMU to generate

position, velocity, and attitude estimates, there is some interesting work that could be done

going forward. The magnetometer calibration routine was shown to have issues correctly

calibrating the magnetometer in the z-axis, as a vehicle’s motion is restricted to a plane.

There are algorithms that can calibrate magnetometers real-time, which could potentially

lead to higher accuracy in attitude measurement as the magnetometer will be more accurately

calibrated in all three axes.

Additionally, the attitude determination algorithm’s accuracy suffers under accelera-

tions. One potential option for eliminating this error could be incorporating a vehicle model.

The vehicle’s acceleration output by the model could be used to remove non-gravitational

accelerations. This would make the algorithm a good fit for autonomous vehicles using Model

Predictive Control (MPC), as the controller will have a vehicle model and can output the

acceleration being commanded so the attitude determination algorithm can make use of it.

Besides using a model, the algorithm could also utilize more vector sensors that can increase

the accuracy and eliminate singularities under gimbal-lock conditions.

To obtain useable radar measurements, it is necessary to determine the target the radar

measurements are coming from. For this thesis, some assumptions were made regarding

knowledge about the vehicle’s path to acquire the target. Since the main application of this

filter would be in an urban canyon, it would makes sense that assumptions such as distance
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or range rate of the target could be made. Wherever the radar is located, it would be known

how long the road is, so ranges longer than the target road could be removed and range

rates higher than the speed limit could also be removed. Although this method of radar

data clustering worked for this thesis, there is a potential to get much better measurements

without these assumptions. Using statistical target acquisition methods could yield more

accurate radar measurements and could even potentially eliminate the errors seen in the

position and velocity estimates.

Another method to improve the radar measurements could be implementing better

target tracking operations. It is common to use other sensors such as LIDAR to assist radar

in target tracking, so there is the opportunity to improve the RAINS filter by using a network

of vehicles outfitted with various sensors, including LIDAR [11,25]. Also, a method of path

prediction could be used to assist the radar. By predicting where the vehicle should be and

how fast it should be going, measurements that do not match within a certain deviation of

these predictions could be thrown out.

Finally, experiemental verification of the RAINS filter would need to be completed. If

the RAINS filter is able to return accurate results with real-world data, it would further

validate that the RAINS filter can be used as a navigation tool.

The filter proposed in this thesis opens many opportunities to continue expanding on

the concepts of GPS free navigation. The goals of this thesis were to show that INS prop-

agation errors can be bounded with aiding and that radar and attitude measurements can

be combined with an IMU to accurately estimate a vehicle’s position, velocity, and attitude.

These goals were achieved in the form of the RAINS filter and verified in simulation. As

computing power continues to increase and the cost of IMUs continue to decrease, it could be

possible in the coming years that affordable IMUs may be able to hold a navigation solution

without any external aiding. Until that time arrives, they will continue to need innovative

ways to improve their navigation abilities. As the push for safe, fully autonomous vehicles
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grows, these innovations will continue, bringing about ever increasing accuracy in guidance

and navigation for everyone.
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Appendix A

Oberservability of the RAINS Filter

An important indicator on the performance of a filter is the filter’s observability. Ob-

servability is a measure of how well a filter can estimate its states. To determine a filter’s

observability, the rank of the observability matrix must be taken. Ideally, the observability

matrix would be full rank. A full rank observability matrix indicates that all states can

be observed and estimated given the dynamics of the system and the measurements being

taken. However, full rank is not a requirement in state estimation, as the commonly used

closesly-coupled GPS-INS coupled filters have 17 states, but commonly only have a rank of

14 [36]. In a discrete time system, the observability matrix can be calculated by the following

equation.

OLTV (tf , t0) =

∫ tf

t0

F T (τ, t0)HTHF (τ, t0)dτ (A.1)

F T (τ, t0) is the state transition matrix at the current time step, and H is the mea-

surement Jacobian. OLTV (tf , t0) is the observability grammian, evaluated from t0 to tf .

The observability of a system is indicated if the grammian is non-singular, which can be

determined by taking the rank of OLTV .

A.1 RAINS Filter Observability

To test the observability of the RAINS filter, an observability analysis was performed.

Looking at the results in Figure A.1, the observabilty matrix only reaches a rank of 8. This

means that almost half of the 15 states are unable to be observed, which greatly reduces

confidence in the estimates of the filter.
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Figure A.1: RAINS Filter Observability

Since the rank of the observability matrix is so low, it indicates that there would be

several states that are not being estimated. After some investigation, it was determined

that the bias states were not being estimated, and instead trended to zero. Since bias is not

estimated, there was potential to improve the RAINS filter by removing the bias estimates.

Removing the bias estimates is a decision about managing tradeoffs in filter performance.

In GPS-INS filters, the bias is estimated so that PVA solutions could still be generated in

brief periods where GPS may not be available. If the bias is not estimated in the RAINS

filter, then the filter permance would greatly suffer without the radar measurements. It was

decided that removing the bias estimates would not be an issue, because this filter is not

inteded to be used in situations where radar would be intermittent. It is assumed the vehicle

will always be in the radar’s line of sight.

The Delphi also has the limitation of not being able to measure elevation. This causes

down and down velocity to be onobservable. In previous cases, these states were manually

set to zero. However, this can cause errors in the covariance matrix, P . To correct this in

the observability analysis, the down and down velocity states were also removed.

64



A.2 Reduced State RAINS Filter

If bias, down, and down velocity are no longer being estimated, the structure of the

RAINS filter must be changed. This results in a similar filter structure, but with reduced

states. The propagation model will no longer have the bias estimates involved as follows

R̂n
b,k+1 = R̂n

b,k(I33 + Ωibdt) (A.2)

Ωib = [(ωk] (A.3)

fnib =
1

2
(R̂n

b,k+1 + R̂n
b,k)(αk) (A.4)

V̂k+1 = V̂k + (fnib + gn)∆t (A.5)

P̂k+1 = P̂k +
∆t

2
(V̂k+1 + V̂k) (A.6)

The state vector will similarly have the bias removed.

x̂ =

[
δN δE δṄ δĖ δφ δθ δψ

]T
(A.7)

Since the state vector has been reduced, the system dynamics model matrix, process

noise covariance matrix, and system model noise sources matrix will all be reduced.

F =


O22 I22 O23

O22 O22 [(Rn
b,redα)∧]

O32 O32 O33

 (A.8)

Q =

σ2
a 033

033 σ2
g

 (A.9)
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Bw =


023 023

Re
b,red 023

033 Re
b

 (A.10)

A subscript of red indicates a reduced rotation matrix that only includes the first and

second rows. The third row is no longer needed in the cases where it would produce a down

or down velocity. The measurement matrix, H, is also reduced to account for the removed

states.

H1 =


−Y

X2+Y 2

X
X2+Y 2

05,1


T

(A.11)

H2 =


X√

X2+Y 2+Z2

Y√
X2+Y 2+Z2

05,1


T

(A.12)

H3 =



Ẋ√
X2+Y 2+Z2 −

X(XẊ+Y Ẏ+ZŻ)

(X2+Y 2+Z2)3/2

Ẏ√
X2+Y 2+Z2 −

Y (XẊ+Y Ẏ+ZŻ)

(X2+Y 2+Z2)3/2

X√
X2+Y 2+Z2

Y√
X2+Y 2+Z2

03,1



T

(A.13)

H4 =


032

032

I33


T

(A.14)

H will still be matrix composed of the above vectors.
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H =



H1

H2

H3

H4


(A.15)

A.3 Reduced-State Simulation Results

To test this reduced state filter, the simulated data shown in Figures A.2 - A.4 was

passed through the new, reduced-state filter.

Figure A.2: Simulated Vehicle Trajectory

(a) North Velocity (b) East Velocity

Figure A.3: Simulated Vehicle Velocity
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Figure A.4: Simulated Vehicle Heading

The rank of the observability matrix with this simulated data is shown in Figure A.5.

Figure A.5: Rank of Observability Matris with No Bias, Down, or Down Velocity Estimates

The rank of this new filter is seven, which is now full rank after all other states have

been removed. Position estimates, shown in Figure A.6, are within five meters of truth.

Velocity estimates, shown in Figure A.7, are good, staying at less than two meters per

second. Attitude estimates, in Figure A.8, remain similar to before the states were removed.

Despite initialization errors, all attitude estimate errors converge towards zero with noise

error of approximately two degrees.

68



(a) Error North (b) Error East

Figure A.6: Estimator Position Error

(a) Error North (b) Error East

Figure A.7: Estimator Velocity Error

A.4 Conclusions

Observability is an important indicator on the trustworthiness of a filter’s estimates.

A rank-defiicient observability matrix could indicate a potential for instability or erroneous

estimates. By removing the bias and down estimates in the RAINS filter, the potential

for instability has been removed. Although this means the filter cannot operate without

radar measurements for an extended period of time, the tradeoff would be worth it for the

confidence that all states are being estimated accurately.
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(a) Roll Estimate Error

(b) Pitch Estimate Error

(c) Heading Estimate Error

Figure A.8: Attitude Estimate Errors
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Appendix B

RAINS Filter and Correlated Noise

One major drawback to the RAINS filter lies in how the acceleromter measurementes are

used. The measurements are first used to propagate the states in the time update through

IMU propagation, and then again indirectly through the AHRS in the measurement update.

One of the fundamental assumptions of the Kalman Filter is that the Process Noise (Q), and

Measurement Noise (R) covariance matrices are uncorrelated. However, since the RAINS

filter used the acceleromter measurement in the time and measurement update, this causes

the Q and R matrices to become correlated. To test the validity of the RAINS filter in light

of this fact, a centralized filter that decorrelates the process noise and measurement noise

covariance matrices was tested to see if navigation estimates could be improved.

B.1 Centralized Filter Formulation

The centralized fitler decorrelates the Q and R matrices by expanding the state vector

to include body-frame acceleration and angular rate measurement estimate errors. This

produces the following state vector

x̂ =

[
δP δV δαxyz δΨ δΨ̇xyz ba bg

]T
(B.1)

where δαxyz are the estimated accelerations in the vehicle body frame and δΨ̇xyz are the

estimated body frame angular rates. The propagation equations will now use the estimated

acceleration and angular rates instead of the measured acceleration and angular rates.

R̂n
b,k+1 = R̂n

b,k(I33 + Ωibdt) (B.2)
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Ωib = [
˙̂
Ψxyz,k] (B.3)

fnib = α̂xyz,k (B.4)

V̂k+1 = V̂k + (fnib + gn)∆t (B.5)

P̂k+1 = P̂k +
∆t

2
(V̂k+1 + V̂k) (B.6)

ˆ̇Ψxyz,k+1 = ˆ̇Ψxyz,k (B.7)

These equations will yield the following system dynamics model, F .

F =



O33 I33 O33 O33 O33 O33 O33

O33 O33 Rn
b [(Rn

bα)∧] O33 Rn
b O33

O33 O33 O33 O33 O33 O33 O33

O33 O33 O33 O33 O33 O33 Rn
b

O33 O33 O33 O33 O33 O33 O33

O33 O33 O33 O33 O33 − 1
τa
I33 O33

O33 O33 O33 O33 O33 O33 − 1
τg
I33



(B.8)

In the centrazlied filter, the driving input is white noise on jerk and angular acceleration,

which will result in Q and Bw matrices of the following form

Q =



σ2
j 033 033 033

033 σ2
Ψ̇

033 033

033 033 σ2
ba 033

033 033 033 σ2
bg


(B.9)
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Bw =



033 033 033 033

033 033 033 033

I33 033 033 033

033 033 033 033

033 I33 033 033

033 033 I33 033

033 033 033 I33



(B.10)

where the new terms in the Q matrix, σ2
j and σ2

Ψ̇
represent the variances on jerk and angular

acceleration. Since there is no direct way to quantify the variances on these two variables,

they are purely a tuning parameter. A good starting to point is to use the variances for the

acceleromter and gyroscope, and tune it until desired results are achieved. The measurement

vector in the centralized filter is also expanded, shown in Equation (B.11).

z =

[
λy R Ṙ αNED

˜̇Ψxyz α̃xyz Ψ

]T
(B.11)

The additional measurements now include the navigation frame acceleration, αNED, the

gyroscope measurements ˜̇Ψxyz, and the acclerometer measurements α̃xyz, along with the three

radar measurements λy, R, and Ṙ, and the attitude meausurements Ψ. In the centralized

filter, the attitude measurements are now found by using magnetometer measurements and

the estimated body frame acceleration, as opposed to the actual accelermeter measurements.

The equations defining the new measurements used in the centralized filter can be written

as follows

αNED = Rn
b,k+1α̂xyz,k (B.12)

˜̇Ψxyz = ˜̇Ψxyz − b̂g,k (B.13)

α̃xyz = α̃xyz − b̂a,k (B.14)
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where me is the IGRF model of earth’s magnetic field. These new measurement can be added

to the measurement matrix by once again taking the partial derivates of each equation with

respect to the states. The partial derivates for αNED and m̃xyz result in long, complex

equation because of the presence of the rotation matrices.

B.2 Simulation Results of the Centralized Filter

The centralized filter was tested in simulation with trajectory shown in Figures B.1 -

B.3.

Figure B.1: Simulated Vehicle Trajectory

(a) North Velocity (b) East Velocity

Figure B.2: Simulated Vehicle Velocity

The position estimate errors, shown in Figure B.4, have results that are similar to the

RAINS filter, within about three meters or less of truth.
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Figure B.3: Simulated Vehicle Heading

(a) North Estimate Error (b) East Estimate Error

Figure B.4: Simulated Position Estimate Error

Velocity estimate errors, shown in Figure B.5, are also similar to the RAINS filter. The

error stays within two meters per second of truth. Attitude estaimtes, shown in Figure B.6,

once again match closely with the RAINS filter and stay within two degrees of truth.

B.3 Conclusions

The results of the centralized filter match closely with the results of the RAINS filter.

This shows that the RAINS filter is still a valid option for estimation despite the correlated

noise. These results are not totally unexpected, even if they do violate an assumption of the

Kalman Filter. There has been other work done involving Extended Kalman Filters with

correlated noise that show EKFs can still operate with high accuracy even with the process
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(a) North Velocity Estimate Error (b) East Velocity Estimate Error

Figure B.5: Simulated Velocity North

noise and measurement noise matrices being correlated [36,51]. Even though the centralized

filter avoids the correlated noise issue altogether, it has one major drawback that prevents

it from becoming a preferrable option over the RAINS filter. To illustrate this drawback,

observe the equation for calculating the Kalman gain matrix in Equation B.15.

Lk+1 = P−k+1H
T
k+1(Hk+1P

−
k+1H

T
k+1 +R)−1 (B.15)

Calculating the Kalman gain matrix requires taking the inverse of a matrix of the same

dimension as R. In the centralized filter, the m number of measurements has increased from

six to 15, while the n number of states being estimated increases from 15 to 21. According

to [21], calculating the matrix inverse of the Kalman Gain requires 3
2
m3 − 1

2
m number of

multiplications and approximately m3 number of additions. This causes the centralized filter

to be drastically slower than the RAINS filter, and would greatly increase the computation

requirements and difficulty of real-time implementation. For this reason, the RAINS filter

remained the estimate method of choice in this thesis.
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(a) Roll Estimate Error

(b) Pitch Estimate Error

(c) Heading Estimate Error

Figure B.6: Attitude Estimate Errors
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