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Abstract 

 

With advancements in fields such as computational chemistry, computer-aided molecular 

design and chemoinformatics, the scientific community has now become inundated with a very 

large set of molecular descriptors. The advantage of availability of large set of descriptors is that 

computational modelers can now capture different characteristics of molecules of varying sizes 

in different solvent/reaction mediums. However, the drawback is that during model development, 

the number of descriptors can exceed the number of instances in a dataset. Such datasets are 

known as high-dimensional data matrix. This is especially the case when the process of data 

generation is complex, time-consuming and/or resource intensive. Apart from these reasons, this 

can also happen when a specific product needs to be developed for a very specific use (e.g. drugs 

for a specific physical condition, polymers of a specific property, reaction in a specific 

environment). These cases tend to be very condition-specific, e.g. type of chemical species, 

activities or responses in specific environment, temperature, pressure, etc. The challenges of 

modeling such cases include but are not limited to; difficulty of generating a generalizable 

model, large model uncertainty and overfitting of model(s) generated. To address the 

aforementioned drawbacks and ensuing challenges, in this work, we have developed hybrid 

algorithms which are efficient and can generate generalizable models. These algorithms 

overcome the disadvantage of traditional modeling techniques that break down when the number 

of descriptors exceed the sample size. The developed algorithms, in our work, can be 

incorporated in software platforms, useful for automated design of product-centric industrial 

processes. Such software should be capable of analyzing experimental data and generating the 

best possible molecular structure for the specific constraints and objectives. It is also required to 
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be fast and accurate at the same time. In the past, such situations were tackled with ab initio 

calculations, later replaced by DFT (Density Function Theory) based calculations. Apart from 

being computationally expensive, such methods include problems of manual handling of data for 

molecular design operations. To address such limitations, molecular descriptors (0D-7D) became 

attractive alternatives. However, the complexity of the calculation of descriptors increases with 

the complexity of the molecular structure. 2D (2 dimensional) descriptors, such as connectivity 

index descriptors, have been proven to be efficient in model generation with significant 

accuracy. Also, the design calculation steps are not computationally expensive. For these 

reasons, in this work, the generated models are based on 2D molecular descriptors. In this work, 

two unique condition-specific situations have been discussed. Case 1 encompasses relating 

reactant and solvent structures to the reaction rate constants for Diels Alder reactions. As 

reaction rates are more prone to depend of inter-atom connectivity, connectivity index 

descriptors were used to develop this model. A hybrid GA-DT (Genetic Algorithm-Decision 

Tree) algorithm was developed to select features and for model development. This case is unique 

as it involves the study of three different chemical species while generating the predictive model, 

and hence a challenge for both traditional and newly developed hybrid algorithms. Further 

improvements for the model were proposed using Multi-Gene Genetic Programming (MGGP) 

algorithm to derive non-linear models. Case 2 is based on developing a model to relate structures 

of 9-Anilinoacridine derivatives with respective DNA-drug binding affinity values. Although 

this case has only one group of chemical species under consideration, challenges emerge when 

two or more models with similar metrics are generated. Although the genetic algorithm was used 

for feature selection, initially, a novel adaptive version of LASSO (Least Absolute Shrinkage and 

Selection Operator) algorithm was developed. This adaptive correlation-based LASSO 
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(CorrLASSO) was used to perform regression and shrinkage calculations. To evaluate model 

fitness, R2 and Q2 values were calculated that represent model internal and external validation 

respectively. For the second case, mean square error (MSE) was also calculated to compare the 

performances of LASSO and CorrLASSO algorithm. 
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1. Introduction 

According to Staphanopoulos and Reklaitis (2011), chemical industries transformed to 

become more product-centric than process-centric in the period of 1980-2000. In the process-

centric period, products were considered to be molecules that can be used for a specific function 

and R&D was more focused on increasing process efficiency. This period produced the famous 

notion, “Chemical Engineers either make money, or save money.” The product-centric period 

required the chemical industries to focus more on development and sale of value-added materials 

that can be marketed based on performance (Hill, 2009). These products came to be known as 

chemical products. Grossman and Westerberg (2000) have also discussed this shift in focus by 

the chemical industries. They predicted that, demands for improved earnings performance from 

commodity and specialty product manufacture will become a significant method of attracting 

investors in the industries. According to their predictions, such driving forces were expected to 

lead to process design expanding to accommodate product design; where the particular emphasis 

would be on designing new molecular structures of chemical species. This shift in process design 

has influenced Process System Engineering (PSE) to add branches to its process roots; and 

include project management, multi-scale operations, even whole supply chain (Sargent, 2005). 

This expansion of PSE community also attracted and forced chemical engineers to collaborate 

with other disciplines like material sciences, computational chemistry, electrochemistry, etc. to 

pursue product design (Klatt and Marquardt, 2009). Klatt and Marquardt also suggested 

widening the scope of PSE into multi-scale product and process system engineering (MPPSE) to 

address product design in an integrated fashion. Adjiman and Galindo (2011) suggested the term 

Molecular Systems Engineering to formalize the recognition of designing molecules and 

materials as an integral part of designing and optimizing processes and products. Glavic (2012) 
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also mentioned that in the period of 1985-2006, integrated product development and design 

became one of the significant parts of PSE conferences. Certainly, there has been a successful 

attempt to illustrate and elevate the relevance of product design over the years in the PSE and the 

chemical engineering community. 

As stated in the article of Stephanopoulos and Reklaitis (2011), in the international PSE 

conference, named Foundations of Computer Aided Process Design (FOCAPD), held in 2005 at 

Princeton University, was themed to be “Discovery through Product and Process Design”. This 

conference made an important contribution to the field of product design as it promoted a very 

broad range of issues, ideas and fields related to product design. These ranged from designing 

simple small molecules, functional molecules such as dyes to structured products which perform 

certain functions such as batteries and products closely connected to emotional disposition of 

humans such as clothing. A significant amount of contributions from PSE community on product 

design focused on optimal generation of molecular structures that can satisfy specific needs. 

These structure development works are highly dependent on deriving models to assume a 

specific property or activity of a molecular structure using physico-chemical properties of the 

molecular structures under study. Although Stephanopoulos and Reklaitis (2011) expressed their 

doubts towards such operations due to reduction in reliability of mathematical models relating 

structures to properties, Mlinar (2015) has expressed that almost over 151 new products have 

been design in recent times using Computer Aided Molecular Design (CAMD) approaches. 

These products varied from polymers to pharmaceutical drugs to corrosion inhibition fluids. 

However, Segall (2012) raised his skepticism in the abilities of computer aided drug design 

(CADD) processes. He expressed that the prediction in drug discovery is not yet sufficient to 

permit a design paradigm, as demonstrated by the large number of compounds that must be 
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synthesized and tested to identify a successful drug. However, many drug-like index descriptors 

have been utilized for studies in present times. He also did not comment on whether choosing 

proper descriptors and model boosting could lead to successful drug design.  

1.1. Scope and Objectives 

In the present era of CAMD, a vast majority of the molecular design problems are 

addressed using computationally expensive approaches, such as quantum mechanics, molecular 

mechanics, density function theory, and electromagnetic valence bond theory. These approaches, 

although promising high accuracy, come with problems including time consumption, 

computational power consumption, and geometric evaluation restrictions. Geometric evaluation 

restrictions are generally caused by algorithms used to optimize the geometry. They can surely 

generate models with higher accuracy, but the consumed time and computational energy is 

exponentially high. Also, the product design operation is rarely an automated one using these 

models. Even if such system is automated, reaching an optimum result can consume much higher 

computational energy and time. Also, such developed models, although published worldwide, 

can be rarely used by communities not having the privileges of high computational powers 

provided by well-known HPC (High Power Computer) centers. For these reasons, a better 

approach of developing predictive models using lesser computational power and time is of 

paramount importance. QSAR (Quantitative Structure-Activity Relationship), in this situation, 

provides a lesser time consuming option. However, the model applications are dependent on 

descriptors used, and the size of the dataset available for model development.  

With the increase in demands of personalized product development, there is high 

uncertainty that a high volume of experimental data for a specific product design problem may 
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be available. Although the PSE focus has been on developing such predictive models for a while 

now, the future can demand a software platform for further analysis of these product 

development questions. This requires development of algorithms for QSAR generation and 

hybrid machine learning algorithms can serve an important purpose here.  

This project, aiming at developing predictive models using generic algorithms, can 

obviously show promise in dealing with such technical questions. The project used descriptors 

that are computationally easy to calculate but capture a significant amount of molecular 

information. The focus was to develop models with higher predictive accuracy. While doing so, 

caution was exercised to not overfit the training set. It was assumed that the models are 

applicable within a limited chemical space. For that reason, the focus was put on developing 

generic algorithms in addition to generalizable models. The proposed algorithms showcase two 

unique situations. One case involved multiple classes of chemical species influencing the 

particular property; and the second case involved generation of multiple predictive models with 

similar accuracy. Both involve questions not been answered significantly using QSAR 

approaches. The project also briefly describes the hybrid algorithms developed, used, and 

modified, and the considerations required for such alterations.  

1.2.  Research Significance 

Although, the end of Moore’s law can be noticed as present technologies have met their 

limits in producing smaller transistors at present, chip manufacturing companies are investing 

extensively to develop post-Moore’s law devices (Pavlus, 2015). These chips, if developed, can 

play a crucial part in significantly improving the current computational efficiency. Strategies 

such as ‘heterotic computing’ that involve usage of combination of two or more computational 
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systems are also emerging to help accelerate progress in a post-Moore’s law world (Kendon et 

al., 2015). Due to the recent developments and improvements in computer architecture and 

distribution techniques, Cedar and Persson (2013) suggest that our next step might be a giant 

leap towards a golden age of materials science. Until that time approaches, the smartest way of 

dealing with the increased diversity of product requirements is developing algorithms with high 

efficiency. The more condition-specific modeling problems that are being dealt with, the greater 

the need has become for efficient modeling and molecular design algorithms. The challenge, 

however, is to develop hybrid algorithms that can boost the modelling efficiency without 

increasing modelling cost. Such models can assist in developing software platforms for 

automating model development and optimum molecular structure generation. This important 

problem is being addressed in our work.  

Additionally, many of the algorithms developed in the discipline of computer science are 

not necessarily geared towards QSAR development. Hence, the algorithms may not be efficient 

for QSAR development. This issue has been further discussed in Section 2.3, while describing 

different varieties of machine learning and evolutionary algorithms used in this project. This 

results in cases where an algorithm needs to be modified to perform well for QSAR predictive 

model development purposes.  

Finally, every problem in QSAR has unique features, so needs different hybrid 

algorithms. Focus should be directed on the type of problem, chemical space, and chemical 

descriptors involved. This situation needs delicate consideration while developing hybrid 

algorithms. However, a good understanding of algorithms is also a prerequisite of developing 

efficient hybrid algorithms. In theory, a hybrid algorithm’s aim is to overcome the limitations of 

the individual algorithms and produce better result. This work aims at providing case studies for 
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understanding algorithm limitation, pros and cons, and choosing a perfect combination of two or 

more algorithms to overcome these limitations. While doing so, modifications and tuning 

approaches have also been proposed to keep a check on model overfitting. For these reasons, it 

can be argued that, a crucial part of CAMD research for the next decade at least will be highly 

dependent on developing hybrid algorithms to generate diverse and reliable predictive models 

and product design solutions. 

1.3. Cases presented  

Over the years, significant amount of efforts concerning computer-aided product design 

(CAPD) have been devoted to computer-aided molecular design (CAMD). However, there are 

problems involving CAMD that are yet to be substantially addressed. For example, processes 

that involve reactions involving multiple classes of chemical species need attention. Firstly, in 

terms of developing property models (PMs) attention is required; and second, in developing 

methodologies to utilize these PMs to design molecules and processes. So far, in processes 

involving a reaction, which is one of the focuses of our work, CAMD of solvents, catalysts, 

reactants and products has been carried out.  

The search for QSPR models to predict influence of structures of both reactants and 

solvents on reaction rate constants has long been a challenge. According to Roy et al. (2015a), 

QSPR (Quantitative Structure Property Relationship) models are generally linear or non-linear 

mathematical relationships that correlate a particular property or activity of a chemical species 

with their structure. Such structures are generally represented numerically by descriptors, which 

can be determined experimentally or theoretically as per the definition. Early attempts to develop 

QSPR models for the prediction of rate constant of a reaction have been restricted. Either the rate 
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constant was studied as a function of structures of reactants while keeping the solvent structure 

constant or the solvent structures were varied but the reactants’ structures were kept constant. 

With regards to the study of the influence of reactants’ structures, Chaudry and Popelier (2003) 

developed a property model to predict the rate constant of hydrolysis of esters by utilizing 

quantum chemical descriptors. Estrada and Matamala (2007) have used generalized topological 

indices to predict the gas phase reaction rate constants of alkanes and cycloalkanes with OH, Cl 

and NO3 radicals. With regards to studying the effect of solvent structures, not only have 

property models been derived but CAMD of solvents to enhance reaction kinetics has been 

pursued by researchers. Recently, Struebing et al. (2013) developed a methodology to design 

solvents by utilizing surrogate models and quantum chemical calculations. In the past, Stanescu 

and Achenie (2006) have presented a theoretical study of solvent effects on Kolbe-Schmitt 

reaction rates. There is a need for QSPR models that capture the influence of reactants’ and 

solvent structures. Such models will serve two purposes: The first would be to quickly predict 

the rate constant without relying on experiments, while the second purpose will be the 

simultaneous design of reactants, products and solvents. With regards to CAMD of 

reactants/products, Dev et al. (2015) have proposed a methodology to design reactions based on 

thermodynamic properties of reactions. Thus, there is scope for a methodology which designs 

reactants and solvents such that the rate of reaction is optimized.  

Diels-Alder reaction is a famous and well-studied organic chemical reaction involving a 

conjugate diene and an alkene, which is also termed as dienophile. Evans and Johnsons (1999) 

have considerably discussed this reaction in their work. This reaction involves cycloaddition of 

two reactants in the presence of a solvent. Rideout and Breslow (1980) have presented the 

hydrophobic acceleration of Diels-Alder reaction. Their work focused on discussing the 
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influence of hydrophobic cavity in organic structures for acceleration of the reaction rate. In both 

of the aforementioned works, the impact of the solvent on the rate constant of the reaction has 

been observed. This feature of this reaction makes it an appealing choice for the aimed study.  

Figure 1-1 represents a sample of Diels-Alder reaction. 

 

Figure 1-1: Sample Diels-Alder reaction 

With respect to QSPRs that capture reactant and solvent influence, Nandi et al. (2013) 

developed a quantitative structure-activation barrier relationship for Diels-Alder reaction that 

utilizes quantum chemical descriptors. Their aim was to construct a relationship between the 

activation energy and the structures of the utilized reactants and solvent. However, their data set 

lacked solvent variety. Recently, Zhou et al. (2014) have studied a variety of solvents for the 

Diels-Alder reaction in their search for new solvent descriptors though they only used one set of 

reactants. Thus, we have combined the data sets utilized by Nandi et al. (2013) and Zhou et al. 

(2014) and created a set which offers more diversity in terms of the solvents utilized. We have 

utilized this more diverse data set to develop a rate constant model in terms of connectivity 

indices. It is worth noting that Nandi et al. (2013) relied on the data set utilized in the work of 

Tang et al. (2012). In addition to improvement in the data set, we have also proposed an efficient 

hybrid GA-DT algorithm for model development which utilizes the “divide and conquer” 

strategy in combination with principal component analysis (PCA). Both internal and external 

validations were performed separately to determine model confidence. R2 and Q2 values in case 
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of internal and external validation were calculated respectively as they describe model fitness of 

data. 

In this work, additionally, we have proposed an efficient multi-gene genetic 

programming (MGGP) algorithm using initialization by a modified DT algorithm for model 

development which utilizes the “divide and conquer” strategy in combination with principal 

component analysis. This DT algorithm checks if the addition of branched gene improves model 

fitness. The MGGP algorithms hold promise as they possess the ability of developing models 

using a wide variety of nonlinear mathematical basis functions. Both internal and external 

validations were performed separately to determine model confidence. Additionally, model 

RMSE and R2 values in case of both external and internal validation were calculated as they 

describe model fitness of data.  

For the second case, the aim is to develop a QSPR model describing the DNA binding 

properties of 9-anilinoacridines in order to assist in their design and property prediction. Baguley 

et al. (1981) extensively studied the drug binding abilities of such chemical species and 

evaluated the drug-DNA association constants (K). For their evaluation, they studied the 

fluorescence of drug-Ethidiam-DNA mixtures to determine C50 values at pH 5. A C50 value 

denotes the micromolar drug concentration required to reduce the fluorescence of initially DNA-

bound ethidium by 50%. Baguley et al. (1981) also included the calculation of the extent of 

reduction of quenching (Cq) to finally calculate the K values for 9-anilinoacridines. Including all 

the expressions of C50 and Cq, K can be defined by Eq. (1.1). 

𝐾𝐾 =
𝐷𝐷𝑏𝑏
𝐷𝐷𝑓𝑓𝑆𝑆𝑓𝑓

 
 (1.1) 
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Where Db
 is the DNA-bound drug concentration, Df is the free concentration of drug, and 

Sf is the effective free DNA site concentration. All of these values were experimentally derived 

by equilibrium dialysis or spectrophotometric titration. Recently, Chtita et al. (2016) chose some 

of the values provided by Baguley et al. to develop a QSPR model to model K. In their work, 

Chtita et al. (2016) utilized DFT (Density Functional Theory) based descriptors to develop the 

models. Although their proposed model shows great promise for studying the response of such 

chemical species, the provided model is computationally expensive when used in an automated 

molecular design system. Also, they formed different descriptors based on free energy 

descriptors that made the molecular descriptors being dependent on each other to some extent. 

To ensure drug design efficiency, only topological index, ring index, conventional index, and 

connectivity index descriptors have been used in our work. For developing the model, a 

correlation-based LASSO has been combined with GA. Among the 65 chemical species studied 

by Baguley et al. (1981), 31 have been selected in our work to generate a linear model which has 

good predictive ability.  

1.4. Organization 

For truly evaluating the thesis, it is of paramount importance that readers should know 

about the background of this work. The background plays a significant role in helping the reader 

skeptically study the proposed methods to disregard any bias towards them. For such purposes, 

the background is provided in chapter 2. This gives the readers a brief idea about molecular 

descriptors, types of the descriptors, pros and cons of different classes of descriptors. Next, the 

section expands into description of various CAMD approaches, including molecular mechanics, 

quantum chemical methods, and QSAR/QSPR approaches. The sections provide ample amount 

of details on equations used, approaches developed, modifications made for computational 
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simplicity, and advantages and disadvantages of these approaches. Also, the chapter includes 

description of feature selection algorithms, different versions of such algorithms, and their 

potential uses. Afterwards, regression algorithms are also discussed in the same manner.  

Chapter 3 includes the methodology of the proposed methods. A significant portion of 

this chapter is divided into two parts, depending on the cases analyzed. The chapter presents a 

deeper look into the approaches used, modification of the algorithms introduced earlier, and 

reasons for the assumptions made during such modifications. The chapter places high importance 

on describing each algorithm, their general use, and their roles in this work. 

Chapter 4 presents the results observed using the approaches discussed earlier. As per the 

two cases, chapter 4 has also been divided in two sections. First one describes the observed 

results of the first case, the second part describing the observed results for the second case. The 

chapter contains algorithm and proposed model performances. The chapter also, in brief, 

discusses the probable limitations of the proposed models and methods. Finally, appendices have 

been provided to detail the codes prepared for the algorithms, the models, and to describe the 

descriptors in the models. 

The work in section 3.1 has been presented in the ESCAPE (European Symposium of 

Computer Aided Process Engineering) conference in 2016. It was also published in Computer 

Aided Chemical Engineering (Datta et al., 2016). An expanded version of this work also appears 

in work of Datta et al. (2017) in the journal, Computers and Chemical Engineering. An 

improvement of the approach has been presented in the PSE (Process Systems Engineering) 

conference in 2018. This work appears as a peer reviewed presentation publication (Datta et al., 

2018). The work discussed in Section 3.2, has been published in the journal, Computers & 

Chemical Engineering (Datta et al., 2018). 
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2. Background 

This chapter presents the theoretical ideas and techniques of CAMD required to 

understand the fundamentals of the project. Another crucial part of this section is to present 

comparisons of different elements of CAMD approaches through examples, discussion of 

benefits and shortcomings, and suggestions made to overcome such shortcomings until now. The 

section begins with describing the viability of using molecular descriptors, the properties of 

molecular descriptors, and classes of molecular descriptors. While discussing the different 

classes of the descriptors, both pros and cons of these algorithms are reported. In addition, the 

applicability of such classes has also been discussed in this section. In the second section, 

CAMD approaches, quantum mechanics method, molecular mechanics method, and 

QSAR/QSPR methods are discussed. Attempts were made to describe these methods with as 

much clarity possible, given their mathematical complexity. Also, as in previous section, 

advantages and disadvantages of these methods are presented with details. The third section is 

dedicated to discussion of the algorithms used in the project. While doing so, a deeper analysis of 

these algorithms is presented to learn about the different versions employed in this project.    

2.1. Molecular Descriptors 

Molecular Descriptors (MDs) are the numerical values related to the chemical 

constitution for correlation of chemical structure with various physical properties, chemical 

reactivity or biological activity (Roy et al., 2015a). Property models (PMs) utilize descriptors to 

represent the chemical structures by expressing relationships between properties and chemical 

structures of molecules. PMs are a means of developing a quantitative relationship between 

properties and structures of molecules. Hence they are also known as Quantitative Structure-
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Property Relationships (QSPRs). In cases when the property is the biological activity of a 

molecule, the QSPR is then known as a Quantitative Structure-Activity Relationship (QSAR). 

According to Todeschini and Consonni (2000), “the molecular descriptor is the final result of a 

logical and mathematical procedure which transforms chemical information encoded within a 

symbolic representation of a molecule into a useful number.”  

Thus, we can say that there are two types of descriptors: theoretical descriptors and 

experimental measurements. Theoretical descriptors are numerical values that are obtained 

analyzing symbolic representation of molecules while experimental measurements are values of 

physico-chemical properties like polarizability and dipole moment. Theoretical descriptors are 

more advantageous over experimental measurements because the error associated with 

experimental noise can be avoided. In addition, the practice of expressing the PMs in terms of 

other physicochemical properties is an older and obsolete one. These properties themselves can 

now be expressed in terms of theoretical descriptors. A wide variety of theoretical descriptors 

have been developed in terms of which different properties can be expressed. Although no set of 

rules or criteria could be found that dictates the development of new theoretical descriptors for 

various property models (Hong et al., 2012), some general guidelines have been listed by Roy et 

al. (2015b) as follows: 

• A descriptor must be correlated with the structural features. 

• A descriptor shows negligible correlation with other descriptors. 

• A descriptor should be applicable to a broad class of compounds. 

• A descriptor should be calculated rapidly, not depending on experimental properties  
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• A descriptor should generate dissimilar values for structurally different molecules, even if the 

structural differences are small. In other words, the descriptor should show minimal 

degeneracy.  

• In addition to degeneracy, a descriptor should be continuous. Small structural changes should 

lead to small changes in the value of the descriptor. 

• A descriptor should have some form of physical interpretability to encode the query features 

of the studied molecules. 

• A descriptor should have the ability to map descriptor values back to the structure for 

visualization purposes.  

Apart from the classification used by Todeschini and Consonni (2000), there are other 

types of classifications of molecular descriptors. For example, descriptors can be classified based 

on origin. Based on origin, MDs can be classified as topological (graph theory based), 

constitutional (functional group count), geometrical (distances, valence angles, surfaces, etc.), 

quantum-chemical (charge distribution related), and thermodynamic (heat of formation, entropy, 

etc.) descriptors (Hong et al., 2012). However, it is much easier to communicate the type of 

developed PMs when MDs are classified based on their dimensionality (Roy et al., 2015b). The 

MDs can be classified as zero-dimensional (0D), one dimensional (1D), two dimensional (2D), 

and so on. MDs with up to seven dimensions (7D) have been developed so far.  It is worth noting 

that descriptors with up to two dimensions are the most commonly utilized ones due to ease of 

calculation. However, when large molecules are involved (e.g. protein, DNA structure), 

descriptors with more than 2 dimensions are also utilized in property models. Descriptors with 

more than 3 dimensions are geared for more sophisticated applications. Due to the complexities 
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involved in calculating such high dimensional indices, these descriptors are lesser used.  Figure 

2-1 illustrates a simple example of descriptors generated from molecular structure. 

 

Figure 2-1: Generation of Descriptors from Molecular Structures 

 

2.1.1. 0D Descriptor 

Molecular descriptors that are derived from the molecular formula fall in the category of 

0D descriptors. Since while writing the molecular formula we are not concerned with the 

arrangement of molecules but only the composition, the descriptors are derived from a zero 

dimensional representation of the molecule. Thus the descriptors are referred to as 0D 

descriptors.  Examples of 0D descriptors include atom counts, charge, molecular weight, etc. 

In the example shown in Figure 2-2, carbon count, a 0D descriptor, was utilized in 

creating a linear property model for the boiling point of a series of alkanes (C1-C7). Although, 

the proposed model was able to account for 97% of the variance of data presented, more 

information is required to understand the structure of the molecule. 

Descriptor identifier 
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Figure 2-2: Example of constitutional descriptor correlation. 
 

2.1.2. 1D Descriptor 

If fragments (e.g. substructural fragments or functional groups) of a molecule are used for 

molecular representation then 1D descriptors are obtained, as only one dimension is required to 

depict the type of substitution or fragments present. 1D descriptors can be useful to quickly scan 

the chemical space for candidates based on some established similarity criteria with respect to a 

reference molecule. These have been used to filter out structures in the early stages of drug 

design. An example of such a descriptor is carbon count.  

2.1.3. 2D Descriptor 

2D descriptors are calculated from 2D representation of molecular structure, taking into 

account the types of atoms, their number and their connection pattern with each other. Examples 

of 2D descriptors include chiral center count, providing the number of chiral centers, and 

rotatable bonds count, the number of bonds capable of rotation (Roy et al., 2015a). The 

descriptors derived from the graphical representation of molecules are categorized under 2D 
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descriptors. In the graphical representation, the molecule is referred to as a molecular graph. A 

molecular graph, G, consists of atoms which form the vertices of the graph and the covalent 

bonds which form the edges in the graph. Thus atoms that have at least one bond between them 

are connected by an edge. The various fragments that can be obtained from G can be represented 

as sub-graphs. The sub-graphs thus consist of subset of edges belonging to the edge set, E, and 

subset of vertices belonging to the vertex set, V. The descriptors obtained from the graphical 

representation are termed as topological indices (TIs). These are the most widely used 

descriptors in model development and hence in computer-aided molecular design. TIs are very 

convenient to use because they can be easily computed and analyzed. As isomorphic graphs have 

identical values for a given TI, TIs are graph invariants i.e. their values are independent of 

labeling of the molecular graph. In the following subsections some details on the most widely 

used TIs both in modeling and CAMD algorithms are being provided.  

2.1.3.1.Connectivity Indices 

The connectivity index (CI) was introduced by Randic (1975) and since then has been 

modified into different forms. The connectivity index is usually denoted by the symbol χ (X in 

Dragon 6). One usually finds 2 superscripts and one subscript assigned to the CI (Sabljic, 1990). 

The superscript on the left is a non-negative number and reflects the order of the CI and the 

superscript on the right, v, denotes that a valence delta value has been utilized for calculation. 

The CIs are in general divided into 4 sub-classes: path (denoted by subscript p), cluster (denoted 

by subscript c), path/cluster (denoted by subscript pc) and chain (denoted by subscript ch). These 

subclasses are describing the substructural units considered while calculating the CIs. For 

example, the path-based CI is calculated using paths. A path is a sequence of edges from one 

vertex to another end vertex, ensuring that the edges are not repeated while traversing this 
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sequence of edges. In most general cases, the subscript p is removed and path type is considered 

as a default. CIs are usually calculated from hydrogen suppressed graphs. In such molecular 

graphs, the hydrogen atoms are not considered. Consider the example of the mth order valence 

connectivity index mχk
v. It is defined as follows (Mu and He, 2011): 

0.51

1 1

mn m
m v v

k i
j i j

χ δ
−+

= =
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=   
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∑ ∏   (2.1) 

(Z ) / (Z Z 1)v v v
i i i i iHδ = − − −   (2.2) 

(Z )v
i i iHδ = −   (2.3) 

 

Where, k denotes a contiguous path type fragment, which is divided into paths (p), 

clusters (c), paths/clusters (pc) and chains (ch). nm is the number of relevant path type fragments. 

δi
v is the valence delta value calculated as shown in Eq. (2.2). In Eq. (2.2), Zi

v is the number of 

valence electrons, Hi is the number of hydrogen atoms connected to atom i, Zi is the number of 

electrons of atom i. If we calculate the mth order connectivity index mχk, then δi will be 

substituted instead of δi
v in Eq. (2.1) to obtain mχk. δi is the degree of the atom i obtained from the 

hydrogen supressed graph. Hence Hi is subtracted from Zi
v in Eq. (2.3).  Consider the 3-methyl 

hexane molecule shown in Figure 2-3. The degree values, δi, of each of the atoms have also been 

displayed. 
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Figure 2-3: 3-methyl hexane molecule 

 

The 1χ value of the 3-methyl hexane molecule can be calculated as: 

1χ = (1x2)-0.5+(2x2)-0.5+(2x3)-0.5+(3x1)-0.5+(3x2)-0.5+(2x1)-0.5 = 3.3081 

2.1.4. 3D Descriptors 

3D Descriptors, also known as geometrical descriptors, are calculated by representing the 

molecule in the 3D space. Generally, geometrical descriptors are calculated either by utilizing 

optimized molecular geometry obtained by computational chemistry methods or from 

crystallographic coordinates (Cronin, 2010). 3D descriptors obtained by utilizing geometric 

distances between atoms constitute a special subset known as topographic indices. The 

geometrical representation is used to capture the relative positions of the atoms in 3D space. 

Thus, geometrical descriptors usually offer more information and discrimination power for 

similar molecular structures and molecule conformations than topological descriptors. This 

power to discriminate, however, is computationally costly in cases of modelling and molecular 

structure development.  

Since 3D descriptors require geometry optimization, a high computational expense is 

incurred as this involves calculation of optimal geometry, conformation analysis, Gibbs energy 

of structure, etc. Additionally, if several conformations of the molecules exist, complexities can 
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become much higher. Also, it may happen that the active conformations of the chemicals being 

studied for biological applications are unknown. An overview of the various types of geometric 

descriptors is provided in Figure 2-4 (Herring, 2014). 

 

Figure 2-4: Overview of geometrical descriptors (Herring, 2014) 

 

Another concern with 3D descriptors is that there is not a common understanding of the 

required degree of detail of molecular structure to calculate 3D descriptors reliably (Hechinger et 

al., 2012).  The computational methods utilized for calculation can be anywhere from molecular 

mechanics to quantum methods which are more rigorous and complex. Due to these reasons, 

simpler descriptors like TIs (Topological Indices) are usually preferred for the screening of large 

databases of molecules and CAMD applications. On the other hand, searching for relationships 

between molecular structures and complex properties, such as biological activities, sometimes 

consider the use of 3D descriptors.  
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2.1.5. 4D-7D Descriptors  

These descriptors have been utilized the least for CAMD applications as the 

computational cost incurred is even higher than 3D descriptors. These descriptors consider a 

variety of factors as dimensions. These include the orientation and the solvation function (Roy et 

al., 2015a). Such descriptors are beneficial in capturing ligand and receptor interactions.  

Although the descriptors mentioned so far have been categorized within whole number 

dimensions, there are descriptors that are difficult to categorize. For example, between 2D and 

3D descriptors, 2.5D descriptors exist as intermediates that tend to incorporate some aspects of 

the geometrical information contained in a 3D structure that were ignored by a 2D description of 

the molecule (Doucet and Panaye, 2010).  

2.2.Model Development 

Molecular modeling encompasses all of the techniques and tools useful for modeling the 

motions and interaction of molecules. These techniques are used in the fields of computational 

chemistry, drug design, computational biology, materials science, and now many engineering 

fields for studying molecular systems ranging from single small molecules in the gas phase to 

large biological molecules (e.g. receptor ligand complexes) and material assemblies. There are 

many approaches available for the treatment of molecular structures ranging from modeling 

atoms as the smallest individual unit (in the molecular mechanics approach) to explicitly 

modeling the electrons in each atom (in the quantum chemistry approach). The information 

gained from these techniques is useful in the development of three-dimensional descriptors, 

which have applications in a wide variety of structure-activity (property) correlations.  
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2.2.1. Molecular Mechanics 

Molecular mechanics stands for using classical mechanics to describe the motions of 

atoms and molecules. For such approaches, the atoms are treated as point charges with the 

nucleus and associated electrons. The structure potential energy, that indicates the likelihood of 

the structural occurrence, is calculated via the means of a force-field. This force-field, also called 

potential function, uses different terms to summarize the potential energy associated with the 

structure. The molecule is described using internal and external coordinates of each atom in the 

structure. The external coordinates are based on Cartesian coordinate system, whether the 

internal coordinates use the inherent nature of these systems by utilizing bond-lengths, bond-

angles, and torsional angles. Additionally, force-field calculation contains non-bonded 

interaction terms between the atoms as showed in Eq. (2.4) 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐸𝐸𝑑𝑑𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (2.4) 

𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 (2.5) 

As shown in Eq. (2.5), the non-bonded interactions represent the addition of electrostatic and van 

der Waals forces. (Leach, 2001) 

2.2.2. Quantum Chemical Methods 

Quantum mechanics (QM) lay out molecules in terms of interactions between nuclei and 

electrons. The molecular geometry is determined by determining a minimum energy arrangement 

of nuclei in a molecule or set of molecules. This process, involving high computational expense, 

has been made much more reasonable through a series of approximations. These approximations 
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are generally applied upon the original formulation based on the Schrodinger equation shown in 

Eq. (2.6). 

Where 

Ψ = many-electron wave function 

Ĥ = Hamiltonian operator (Hamiltonian)  

Ĥ can also be represented as in Eq. (2.7). 

Where 

Z = the nuclear charge 

MA = the ratio of mass of nucleus A to the mass of an electron 

RAB = the distance between nuclei A and B 

rij = the distance between electrons I and j 

riA = the distance between electron I and nucleus A.  

 𝐻𝐻�Ψ = EΨ (2.6) 
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This equation is too tedious to be exactly solved for even a simple two-electron system, 

e.g. helium atom or hydrogen molecule, without introducing some sort of approximation. One 

such method is known as the Born-Oppenheimer Approximation, which assumes that the motion 

of the electrons is much faster than that of the nuclei (Born and Huang, 1988). This allows 

decoupling the two and producing the “electronic” Schrodinger equation. The electronic 

Schrodinger equation is still intractable after this simplification, and more approximations are 

required. The Hartree-Fock approximation is based on independent movement of the electrons, 

meaning, the electrons move independently of each other (Slater, 1930). This turns total wave 

function in the form of a single determinant, also known as a Slater determinant. This leads to a 

set of the Hartree-Fock equations that involve the coordinates of a single electron. At this point, 

although numerical solution to these equations is possible, further approximations have to be 

introduced to transform them into a set of computationally applicable algebraic equations. The 

linear combination of atomic orbitals (LCAO) was the next step to develop a better tractable 

representation of a molecule through the quantum chemical formalism (Clark and Koch, 1999). 

When the Hartree-Fock and LCAO approximations are applied to the electronic Schrodinger 

equation, the Roothaan-Hall equations are derived (Roothaan, 1951). The solutions of the 

Roothaan-Hall equations results in Hartree-Fock models, also known as Ab Initio (“from the 

beginning”) models. These models help evaluate first and second derivatives of energy, making 

both geometry optimization and determination of vibrational frequencies possible. 

 A point to note, however, is that overestimation of electron-electron repulsion energies is 

a common phenomenon in the solutions generated using HF models. This is because pair-wise 

electron interactions are not considered directly in the assumptions for the optimization, causing 

overlapping of electron positions. This situation can be avoided using electron correlation that 
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helps accounting for coupling of electron motions, and lessens the electron-electron repulsion 

energy. One such approach is the density functional theory (DFT) model (Becke, 1988). This 

model tackles the situation by introducing an approximate correlation term without causing 

higher computational cost.  

 For larger problems, semi-empirical models are generally used using more 

simplifications to the HF models. In these simplifications only valance electrons are considered 

rather than core electrons. This approximation assumes that atomic orbital on different atomic 

centers do not overlap. This approximation is known as Neglect of Diatomic Differential Overlap 

(NDDO) approximation (Pople et al., 1967). For further simplification, additional 

approximations, and empirical parameters can be introduced. Some common semi-empirical 

models of such simplification are Austin Model 1(AM1) (Dewar et al., 1985), and Parameterized 

Model 3(PM3) (Stewart, 1989). 

2.2.3. QSPR/QSAR 

The aim of a structure activity relationship (SAR) is to develop a mapping between the 

structural information of a group of compounds and a desired activity/property. Corwin Hansch 

was a notable pioneer of this field. His work expanded the boundaries of formulating such 

relationships. Hansch et al. (1962) initially observed that the partition coefficient of various 

compounds, in combination with other cheminformatics parameters, can be utilized to 

characterize their relative biological activity. His observation led him to believe that SAR’s 

should not be limited to certain independent variables and fits, and paved the way for a 

successful merging between the development of these models with various 

mathematical/statistical techniques (Hansch, 1969). To further the improvements of the SAR 
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models, this trend has continued to grow and include modern day computational approaches such 

as pattern recognition, molecular modeling, artificial intelligence, and machine learning. Another 

key turning point in the development of SAR’s was proposed by Kier et al. (1975) by 

introducing the molecular connectivity index that shows to have strong correlations to 

physicochemical properties (Hall et al., 1975) as well as biological activities (Kier and Murray, 

1975). Thus a separate genre of developing and utilizing new molecular descriptors began, 

paving way for developing numerous techniques aiming to differentiate molecular structures 

combining mathematical invariants and formerly used physico-chemical properties. Regardless 

of the steps of developing and utilizing these models, the process can be divided into three 

distinct phases: 1) calculating molecular descriptors for structures in the training set 2) choosing 

the most informative molecular descriptors and 3) utilizing the chosen descriptors as independent 

variables to create a mapping into property/activity space. This approach is visualized in Figure 

2-5 (Dudek et al., 2006). 

 

Figure 2-5: Visualization of QSAR approach. 
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2.3.Variable Selection 

There are two ways of developing automated selection of descriptor variables for use in a 

property model (Guyon and Elisseeff, 2003). One technique, the feature selection approach, 

involves the identification of an optimal subset of descriptors based on random/guided selection 

of meaningful descriptors and ranking of formed models based on maximizing/minimizing 

objective/cost function, which is, in most SAR cases, an error function. The other, known as 

filtering, does not develop a subset to construct models in the selection process as features are 

evaluated using other criteria. This is a necessary step in developing of most structure activity 

relationships as a large number of descriptors are commercially or academically available for 

correlation with the result of interest. 

2.3.1. Genetic Algorithm 

Genetic Algorithm (Siedlecki and Sklansky, 1988), stands out for this approach and is an 

efficient method for sampling large descriptor spaces. Being categorized as stochastic 

programming, genetic algorithm mimics the process of natural evolution whereby a population is 

guided towards a higher degree of fitness, as often measured by the error of the model generated, 

through operations of mutation and crossover. Each member of the population is represented by 

a chromosome, within which each position usually corresponds to the absence or presence of a 

specific variable through the binary notation. Individual chromosomes with an increased measure 

of fitness, typically measured by the prediction capabilities of the model resulting from the 

descriptors represented within the chromosome, are selected for the conventional operations of 

crossover and mutation. Mutation typically involved the change of binary variables within the 

chromosome to either a 0 or 1, the opposite of its initial state; and crossover involves the 
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selection of two chromosomes which are cut and recombined at one (single-point crossover) or 

more points. However, the success of a GA relies on the careful tuning of several probability 

parameters such that the solution space can be effectively explored and early convergence to a 

homogenous population, occupying a local minimum, is not met. Genetic Algorithm is widely 

employed in developing QSPR/QSAR models. As Whitley (1994) describes, such an 

evolutionary algorithm is efficient as a function optimizer and its applications are very diverse. 

Houck et al. (1996) has presented a basic idea of GA. In their work, they have proposed these 

basic steps that can be used as a guideline for designing a GA process for function optimization 

problems. 

• Supply an initial population P0
 of N individuals with respective function values and 

constraints, if any. 

• i = 1 

• Pi
’ = selection_function(Pi-1) 

• Pi = reproduction_function(Pi
’) 

• evaluate (Pi) 

• i =i+1 

• Repeat 3rd step until termination condition met 

• Print best solution achieved 

 

Here, for a given GA, the selection_function() represents the Roulette wheel developed 

by Holland (1975). For this operation, the N individuals pass through the fitness evaluation that 

is performed by a fitness function. The individual with best fitness then replaces the individuals 

with least fitness. The reproduction_function() generally consists of both the crossover and 

mutation operators, also known as genetic operators. These steps generate new population that 

may produce better individuals. The reproduced population then goes through the evaluate() 
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function, which determines the acceptance of the population. This process is repeated until a 

better solution is not produced anymore or if any termination condition is met. Finally, the best 

possible result is printed. A flowchart of genetic algorithm is presented in Figure 2-6. Reeves 

(1995) has applied GA in case of flowshop sequencing problem. On the other hand, Leardi 

(2001) discussed its applications in molecular design and modeling. He discussed a variety of 

cases of property model development which benefited from implementing genetic algorithm.  

 

Figure 2-6: Flowchart of Genetic Algorithm 
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2.3.1.1.  Selection Strategies 

A Roulette wheel is considered to be the most commonly used selection operation. 

However, there also exists Tournament based selection strategy (Zhong et al., 2005). The 

followings will be discussing these selection strategies in details. 

2.3.1.1.1. Proportional Roulette Wheel 

In case of a proportional roulette wheel, the individuals are selected proportionally based 

on their fitness values. The name was derived from the instance that a pointer will have higher 

possibility of choosing an individual with the largest fitness. As it can be seen in Figure 2-7, in 

case of a proportional roulette wheel, the higher the fitness of an individual, the higher is the 

probability of it being selected for further operations. The presented example proposes a 

selection method that only selects individuals with highest fitness in every turn, thus preserving 

the ultimate requirement of survival of the fittest (Razali and Geraghty, 2011).  

 

Figure 2-7: Proportional roulette wheel strategy 
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Although this process has the advantage of preserving diversity in the population by not 

discarding the individuals with poorest fitness, some major deficiencies cannot be denied. One 

major problem with this strategy is that it quickly introduces bias of outstanding individuals in 

the beginning of the search. This can cause premature convergence during the initial rounds, 

resulting in lack of diversity in further generations. This premature convergence is a hindrance 

towards achieving diversity in gene pool, resulting in a poor optimization operation.  

Additionally, a problem occurs in this strategy when a large number of individuals having very 

similar fitness values are generated in the initial steps. This occurrence can make this strategy 

fruitless as the algorithm cannot move forward towards a better solution.  

2.3.1.1.2. Rank-based Roulette Wheel 

Since proportional roulette wheel develops complications during minimization, a solution 

was advanced through rank-based roulette wheel algorithm (Goldberg and Deb, 1991). This 

algorithm selects the individuals based on their fitness ranks rather than fitness values, a process 

also known as elitism. This method first performs a sorting operation over the generated 

population. As the selection scale shifts the strategy from fitness value dominance to individual 

fitness ranking, the selection strategy is forced to consider uniform scaling rather than being 

influenced by only outstanding individuals of the population (Figure 2-8).  
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Figure 2-8: Probability of individual selection using (a) proportional and (b) rank-based roulette wheel 
strategies 

 

The steps in general involve mapping the individuals based on their ranked probability. 

This mapping can be both linear and non-linear, and both can be used for the same purpose in 

different types of data matrix.  In case of linear mapping, a selective pressure, SP, is introduced 

to control fitness bias. For a minimization operation, the mapping is done based on Eq (2.8), for 

2.0 ≥ SP ≥ 1.0. Hence, for the best individual, the expected sampling rate is SP, and for the 

worst, it is 2-SP. For a minimization problem, pos = 1 for least fit individual, where pos = n fop 

the fittest individual. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝𝑝𝑝𝑝𝑝) = 2 − 𝑆𝑆𝑆𝑆 + (2(𝑆𝑆𝑆𝑆 − 1) �
𝑝𝑝𝑝𝑝𝑝𝑝 − 1
𝑛𝑛 − 1

�) 
Eq (2.8) 

Compared to the linear process, the non-linear method is less popular as it is based on the 

exponential function. For instance, in non-linear approach, the best individual is given a ranking 
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of 1, the second one is given SP, the third being SP2, and so on to the last one, SPN-1. This 

method is less popular due to increased need of convergence number to achieve the same goal 

compared to linear ranking process (Hancock, 1994). However, in case of situations where it is 

more important to preserve genetic diversity as much possible, this method can play a significant 

role. 

2.3.1.1.3. Tournament Selection 

Tournament selection method is quite popular for its efficiency and simplicity of 

computational implementation (Goldberg and Deb, 1991).  The process is based on selecting 

individuals randomly and putting them into tournaments with each other. The individuals with 

highest fitness in the group gets selected to move forward in the convergence (Figure 2-9). This 

is a unique process as these random selection-based tournaments give chance to individuals with 

different fitness values. The tournament selection process is highly advantageous in the cases of 

computational efficiency, premature convergence, and preserving diversity. As the selection 

method doesn’t require any probability or ranking calculations, some added burden of roulette 

wheel calculations get avoided in an effective manner.  
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Figure 2-9: Tournament selection strategy 
 

The only drawback, however, is the size of the tournament. Although ideal situation 

dictates using a binary tournament (2 individuals in each tournament), that is always not practical 

while using a high number of individuals in the population. And the higher the tournament size 

(number of individuals in a tournament), the higher the possibility of losing gene diversity. The 

challenge, in this case, is to find a balance between the tournament size and the population to 

operate the selection operation on. 
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2.3.1.2.Crossover Strategies  

During last few decades, numerous types of crossover strategies have been developed 

(Starkweather et al., 1991). The general aim of the crossover operation is to develop new 

members in the population and mixing the chromosomes of the present individuals (also called 

reproduction).  

2.3.1.2.1. Order Crossover 

Davis (1985) developed the order based crossover operator to develop offspring 

individuals inheriting elements from parents in the same order in preceding individuals. The 

operation generates new individuals using single/double swap points. In case of the single swap 

point, one point is used to identify swapping location (Figure 2-10 (a)). The offspring resulting 

from such operation retain the same chromosome order of the parents, with the change at the 

swapping point. In the case of the double point operation, however, two points are selected to 

choose a region to swap (Figure 2-10 (b)).  

 

Figure 2-10: Order crossover for (a) single point and (b) double point operation 
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2.3.1.2.2. Order 2 Crossover 

Syswerda (1990) also developed an order based crossover operation with some 

modifications. This crossover is also called as scatter point crossover. In this operation, several 

key points are chosen to be swapped to generate offsprings (Figure 2-11).  

 

Figure 2-11: Order 2 Crossover (Scatter point crossover) 
 

This operation is highly valuable in cases where a good number of candidates are present 

in the population. In such situations, using single/double point swaps can end up developing 

lesser efficient models. However, using scatter point operation in that case can help achieving 

optimization in shorter number of convergences.  

2.3.1.2.3. Cycle Crossover 

Oliver et al. (1987) developed this crossover strategy to develop a more efficient solution 

for the travelling salesman problem (TSP). For this operation, a parental sequence and a cycle 

starting point has to be selected. Both are selected in a random manner. In this operation, like the 

single point crossover operation, a swap point is chosen.  
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The offspring are developed adding one part of the chromosomes in direct order of one 

parents, and the other part using the cyclic reverse order of the another parent using the cycle 

starting point (Figure 2-12). However, in present algorithms, without using a cycle point, a more 

efficient approach is to simply reverse the other set of chromosomes. This is done to make the 

process computationally efficient. This approach is very useful in case of developing individuals 

where the sequence of the chromosomes matter (e.g. TSP optimization). In case of predictive 

model development, such approach rarely has any effect. 

 

Figure 2-12: Cycle Crossover operation 
 

2.3.1.2.4. Position based Crossover 

  Also developed by Syswerda (1990), position based crossover operation develops only 

one new individual using two parent individuals. This is very similar to the scatter swap 

algorithm, given that the only difference is to determine which of the parents will donate at what 

points. The example (Figure 2-13), however, makes the operation look almost similar to a 

multiple double point crossover operation. In practice, such assumption cannot be denied as the 
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algorithm developed for such strategy resembles the occurrence of multiple subset-based 

swapping of the chromosomes.  

 

Figure 2-13: position based crossover strategies 
 

This strategy is not as much utilized as the parent to child ratio mandates more number of 

crossover operations to generate a certain number of offspring. However, in some genetic 

algorithm approaches, this operation is used to develop new members in the population to 

replace the worst ranking members (Whitley, 1975). 

2.3.1.3.Mutation Strategies 

A noteworthy overview, containing examples of different mutation operation strategies, 

has been provided in the work of Sivanandam and Deepa (2007). In general, the aim of a 

mutation operation is to randomly select one or more chromosomes in the individuals and alter it. 

In the basic form of binary mutation, where values of chromosomes are either 0 or 1, the 

operation’s aim is to change one to another (Figure 2-14). In practical use, however, this operation 

can be completed using various approaches. This section discusses some of such approaches. 
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Figure 2-14: Mutation operation in binary GA optimization 

 

2.3.1.3.1. Insert Mutation 

This is generally used in cases of permutation encoding. The operation begins with the 

choice of two chromosome locations at random. It then moves the second location value to 

follow the first one, and rest of the chromosomes get shifted to accommodate accordingly. In this 

situation, however, no new value is introduced in the subset. 

2.3.1.3.2. Inversion Mutation 

In case of inversion mutation, however, two random chromosome locations are selected. 

After that, the substring between these locations gets inverted.  

2.3.1.3.3. Swap Mutation 

In the swap mutation, two chromosome locations are selected and the values of the 

chosen locations get swapped.  

2.3.1.3.4. Scramble Mutation 

In this mutation operation, a subset of genes is selected randomly. After that, the subset is 

rearranged in those positions in a random manner.  

2.3.1.3.5. Reversing Mutation 
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Reversing mutation is commonly used for binary encoded chromosomes. In this method, 

a location is chosen, and the bit next to it is reversed to produce the child.  

2.3.1.3.6. Creep Mutation 

In case of creep mutation, a random gene needs to be chosen. After that, the value of the 

chosen gene is changed with a random value between user defined upper and lower value. This is 

the most common approach used for predictive QSAR model development approaches. 

2.3.1.3.7. Uniform Mutation 

 In general, uniform mutation is similar to creep mutation, with the difference being that a 

uniform random value is chosen, making it usable for integer-based operations. 

2.3.2.   Decision Tree 

Decision tree is an algorithm that represents possible choices and their probable 

outcomes. This unique algorithm maps the best possible path to follow to reach the desirable 

result. In practice, decision tree is one of the most commonly used algorithms for data mining, 

data prescreening, classification and regression analysis (Gupta et al., 2017). Some advantages of 

this algorithm include easy visualization and interpretation with no requirement of data 

preparation, and removal of blank values. Additionally, the algorithm can also handle both 

categorical and numerical data, multiple output problems. Also, this algorithm can be simply 

explained by Boolean logic of true or false (yes or no). The earliest form of decision tree was 

introduced by North (1968), where it was introduced for solving an anniversary problem (Figure 

2-15). 
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Figure 2-15: Introduction of Decision Tree, North (1968) 

 

However, in present day, various types of decision tree approaches have been developed 

(e.g. ID3, CART, Random Forest, CHAD, C4.5, Boosted Forest). In this section, the discussion 

will be limited to the most commonly used ones.  

2.3.2.1.    Iterative Dichotomiser 3 (ID3) 

Developed by Quinlan (1986), the algorithm mostly focuses on classification operations. 

ID3 approaches the classification problem using a greedy search. Although this algorithm is 

strongly based on developing smallest decision trees possible, if needed, it ends up developing 
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larger decision trees for larger dataset analysis. ID3 only analyzed categorical data. However, the 

algorithm is not much effective against data noise and duplicates. This is due to the greedy 

approach used in the initial phase.  

Some advantages of the ID3 algorithm includes building the fastest and shortest trees 

possible for a given problem. Moreover, the algorithm searches the whole dataset to develop the 

overall tree. The training data can be used to develop comprehensible prediction rules. Finally, 

the calculation time required to develop an ID3 operation is a linear function O(n) of the product 

of characteristic number and node number.  

However, this algorithm comes with some limitations. First of all, due to being a greedy 

approach, overfitting is a common problem in cases of small datasets. Also, being an O(n) 

algorithm, classifying data of continuous nature can prove computationally expensive. This is 

also because the algorithm analyzed only one attribute at an instant. In cases of higher number of 

input values, the algorithm ends up showing preferences towards features with higher number of 

values (Gupta, 2017). 

 

2.3.2.2.    C4.5 algorithm 

C4.5, also developed by Quinlan (1987), is an extension of ID3 algorithm. This algorithm 

is often referred to as a statistical classifier. The improvement includes ability of handling both 

continuous and discreet attributes, missing values, and pruning trees after construction. By 

design, C4.5 is a tree pruning process. For its operation, C4.5 follows ID3 approach in case of 

categorical attributes, making sure continuous attributes generate binary splits. Next, attributes 

with highest gain ratios are selected. Gain ratio helps rank the classification based on the 
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diversity of the data in the classes rather than the count of data in a class. These steps keep 

repeating until the stopping criterion is met. Use of gain ration rather than number of inputs 

makes C4.5 less susceptible to data population bias. 

The algorithm is very easy to implement and builds models that are easily 

comprehensible. An added feature is that it can deal with both categorical and continuous values 

with ease. Also, due to added feature of gain ratio calculation, the algorithm is able to deal with 

noise and missing value attributes. However, the algorithm tends to not work well in case of 

small training sets. Also, a small variation in data leads to different trees being developed. 

2.3.2.3.   Classification and Regression Trees (CART) 

CART, introduced by Breiman (1984), is equipped to build both classification and 

regression trees. In case of developing classification tree, CART uses binary splitting using Gini 

index (Lerman and Yitzhaki, 1984). In its simple form, Gini index can be described as a class 

ranking strategy, derived from products of coefficient of variation of the considered variables, 

variable’s linear correlation coefficients with ranks, and a constant equal to 1/√3 (Milanovic, 

1997). CART also has a regression feature that can help develop predictive models for a 

dependent variable given a number of predictor variables. It consumes an average speed, and can 

deal with both continuous and nominal attribute data. 

CART is good with the missing values and combinations of continuous/discreet 

variables. It can automatically perform variable selection and form interactions between the 

variables. But it may also develop some unstable decision trees as it is non-parametric. Also, the 

split happens based on only one variable, which makes it difficult to use for large databases. 
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2.3.2.4.  Random Forest  

Random forest, also developed by Breiman (2001), is a collection of simple tree 

predictors. The simple trees are arranged such that each tree produces a different response based 

on different predictor value input. Like CART, random forest can also work for both 

classification and regression operations. Random forest is generally used as a tool to leverage the 

ability of multiple varied analyses, organization strategies, predictive modeling, machine 

learning, ranking, and deep data understanding. It can easily recognize outliers and anomalies in 

knowledgeable data. It is considered one of the most accurate tree-based learning algorithms 

available. It can perform classification with significant amount of focus in identifying the 

important predictor variables. The con, however, is that sometimes the presented classification of 

random forests may be difficult for human interpretation. Also, in cases of dealing with noisy 

datasets, overfitting is also a main concern. 

2.3.2.5.     Decision Tree in QSAR 

In case of feature selection for QSAR studies, decision trees are allowed to keep forming 

branches and following paths that produce better model fitness. DT starts with an initial node 

(O), and keeps presenting options for further study. In the example, the options (A, B, C, 

D,  …L) can be considered to be the descriptors (Figure 2-16). The numbers can be considered 

the R2 value that will result if the user opts to choose the next descriptor. In other terms, these 

numbers are generally the outcome of selecting the nodes. The example needs to select a path to 

achieve highest R2 value in the end. Here, path O-B-F-J-L gives maximum 0.413, which 

provides an idea about the path to follow to obtain the best result. But it also provides other 

options that can be taken into consideration (Path O-A-C-H).  Izrailev and Agrafiotis (2001) 
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have presented through their work that such an algorithm can be successfully applied for 

regression problems. They have utilized Artificial Ant Colony System for this purpose. On a 

different application in field of property modeling, Andres and Hutter (2006) used DT algorithm 

to predict drug properties. 

 

 

Figure 2-16: Decision Tree Algorithm 
 

2.3.3. Hybrid Algorithms 

According to Grosan and Abraham (2007), hybridization of evolutionary algorithms produces a 

different algorithm which can improve the algorithm performance and overall result. A hybrid 

algorithm is an algorithm that is generated combining two or more algorithms. The hybridization 

of the algorithms is performed such that two or more separate algorithms systematically perform 
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their desired tasks. In this process, the hybridization is meaningful only if the work-load of the 

algorithms is distributed in an efficient manner. This suggests level of hybridization is to be 

carefully determined for generating more efficient algorithm producing better results than the 

singular algorithms. In this respect, Loukas (2000) has developed an adaptive Neuro-Fuzzy 

inference algorithm to develop better QSAR models. The aim was to develop a QSAR model to 

calculate the apparent inhibition constant. This project used Gaussian Member Functions of 

Fuzzy system trained with hybrid back-propagation for property model development. Later, 

Goodarzi et al. (2009) developed a hybrid GA based Support Vector Regression (SVR) method. 

In their work, they used GA to optimize parameter values they received from SVR to improve 

the prediction efficiency of the initial model. On the other hand, Jun et al. (2010) developed two 

separate hybrid algorithms combining GA with Support Vector Machine learning and RBF 

Neural Networks respectively. Their generated models also provided better prediction in case of 

developing QSAR of aqueous solubility of polycyclic aromatic hydrocarbons. In the 

aforementioned works, hybrid algorithms have produced better QSAR models than the case 

where no hybridization was involved. These works also draw attention to the possibility of 

model generation requiring lesser computational time if the hybridization is performed properly. 

 

2.3.4. Multi Gene Genetic Programming (MGGP) 

In a feature selection approach using Genetic Algorithm, the chromosomes of the 

population generally contains position of variables (descriptors) that can be used to develop a 

property prediction model. The difference in MGGP is, instead of such variable positions, the 

chromosomes contain genes developed using GP tree (Gandomi and Alami, 2011).  
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Multigene symbolic regression is used to develop the genes (Searson et al., 2010). A 

symbolic regression begins with developing a GP tree, and the final model is the linear 

combination of these trees. The development of these initial genes requires identification of root 

node, functional nodes, and terminal nodes (Figure 2-17). The root nodes and functional nodes 

are populated by the arithmetic operators, geometric operators, Boolean logic functions, and 

other mathematical operators. The terminal nodes, on the other hand, contain the logical 

constants, numerical constants, and variables to populate the rest of the tree (Gandomi et al., 

2010). For selection process, tournament approach is used. 

 

Figure 2-17: GP tree with symbolic regression 
 

The crossover operation, in case of MGGP operation, has some significant difference 

than general GA operation. In MGGP approach, the crossover operation not only can swap a 

particular set of genes of the parents, but also can choose if swapping a particular section will be 
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more advantageous than swapping the whole gene (Figure 2-18). During this operation, however, 

precautions are required to prevent developing genes that may produce unacceptable 

mathematical tree. A way to prevent such situation is to perform the crossover at the same depth 

point for both parents, as can be noticed in Figure 2-18. This is chosen to be a safe process as 

performing crossover at the same depth has been seen to prevent development of bizarre 

symbolic trees in case of model development using higher gene depths. For such operation, two 

different crossover operations are performed. The high level crossover decides total swapping of 

the genes, whether low level crossover decides the subtree crossover, swapping of the particular 

section of the genes to create new individuals. However, a cancellation process is also 

maintained in case the newly formed individual ends up developing higher gene depth than 

allowed.

 

Figure 2-18: MGGP crossover operation (Gandomi et al., 2011) 
 

The mutation operation can be applied in six different ways. First, it can be a sub tree 

mutation, changing a section of the tree. Second, the constant values can be mutated using an 
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additive Gaussian perturbation. Third, functional node can be substituted by another randomly 

chosen functional node. Fourth, a randomly chosen constant can be set to zero. Fifth, the variable 

nodes can be substituted by a different variable node. Finally, some random constant values can 

be changed to one. Figure 2-19 shows an example of mutation operation of third kind. 

 

Figure 2-19: MGGP mutation operation (Gandomi et al., 2011) 
 

Weight of each genes are calculated and evolutionary algorithms (EA) are used to tune 

the values of d0, d1, d2, d3, and d4 (Riolo and Worzel, 2003). In Figure 2-20, a small example of 

model development in both GA(a) and MGGP(b) are presented. The figure also shows that the 

development of final model from the individual developed in MGGP. 
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Figure 2-20: Individual development of (a) Genetic Algorithm, and (b) Multi-gene genetic 
Programing 

  

2.4.  Coefficient Generation 

In general, model comprises of the features selected and the coefficient related to the 

features. These coefficients dictate the influence of a certain feature (e.g. descriptors) on the 

model. There are various ways of generating coefficients of features to develop the model.  

2.4.1. Multiple Linear Regression (MLR) 

To use MLR for coefficient calculation of linear models, it is important to ensure that the 

variables (x) are independent. According to Geladi and Kowalski (1986), MLR can be used to 

derive the coefficients of Eq. (2.9) provided that y is related to xj in a linear manner, where e 

denotes the error of the equation.  
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𝑦𝑦 = �𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑒𝑒 (2.9) 

For understanding the mathematical process of deriving 𝛽𝛽, let us assume a case with n 

numbers of y and m number of x. Figure 2-21 can be used to visualize this case based matrix 

setup. Although solving such system can be much easier when m = n as 𝛽𝛽 can be simply derived 

by Eq (2.10), in most cases of QSPR/QSAR development, it is possible to see either cases with 

m > n or m < n.  

 

Figure 2-21: Sample Multiple Linear Equation 
 

In case of m > n, there are more variables than samples. Such case causes generation of 

infinite number of solutions for 𝛽𝛽, and all of them are applicable. For this reason, MLR operation 

is never performed for cases where there are more variables than samples. 

For cases where m < n, it is difficult to get exact solution for 𝛽𝛽 by using Eq (2.10). 

However, one can use Eq (2.11) to generate a least-squares solution. 

𝛽𝛽 = 𝑋𝑋′𝑦𝑦 (2.10) 

𝛽𝛽 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑦𝑦  (2.11) 
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2.4.2. LASSO Regression 

LASSO regression was performed using descriptors generated by the genetic algorithm. 

LASSO regression has been discussed in detail in the work of Tibshirani (1996). LASSO 

attempts to shrink some coefficients of the models and sets others to zero. In this way, LASSO 

retains the beneficial features of subset selection and ridge regression. Eq. (2.12) shows that 

LASSO works to minimize MSE, and based on that, reduces the number of predictors required to 

generate the model. The final set of coefficients (𝛽𝛽 LASSO) is derived at the point of minimum 

MSE (Eq. (2.13)). Here, λ (lambda) is a user-defined constant. The higher the value of λ, the 

higher are the number of descriptors with zero coefficient. 

min�(𝑦𝑦𝑖𝑖 −�𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

+  𝜆𝜆� |𝛽𝛽𝑗𝑗| 
 (2.12) 

𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �|𝑦𝑦 − 𝑋𝑋𝛽𝛽|�
2
2

+ 𝜆𝜆 �|𝛽𝛽|�
1
 (2.13) 

Recently, Algamal et al. (2015) used an adaptive version of LASSO to generate a QSAR 

model of anticancer potency of imidazo derivatives. According to his report, LASSO can be 

greatly useful for model regression as well as model development algorithm when feature 

cancelation approach is followed. A simple representation of LASSO process to determine 

coefficients is presented in Figure 2-22. At this point, it is important to notice that derivation of 

LASSO coefficients depend on deriving a constant t such that �|𝛽𝛽|�
1
≤ 𝑡𝑡. The function values 

(f1-f4) presented in the figure can be assumed to be MSE (mean square error) values of the 

model under development due to different values of 𝛽𝛽1 and 𝛽𝛽2. LASSO tries to shrink the 

coefficients of the descriptors to push them towards zero values.  
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Figure 2-22: LASSO Coefficient shrinkage operation 

 

For this 2-coefficient system, LASSO pushed the values of the coefficients until 

summation of their absolute values become equal to or less than t. For that reason, LASSO will 

suggest f4 value of MSE to be most applicable value with 𝛽𝛽1 = 0 and 𝛽𝛽2=t. This process is not 

that simple when more than two variables are involved in the model. For that, a mathematical 

approach is required. 

So far, it has been established that regression process using LASSO highly depends on 

selection of λ (penalty) and t (tuning). These constants can also be called the controlling 

parameters of LASSO. As λ can be any positive real value in the range of 0→∝, an automated 

computational method can be developed to determine value of λ. 

Determining the right value for t requires few more steps. There are three methods that 

can be used to determine t: cross-validation, generalized cross-validation and an analytical 
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unbiased estimate of risk. According to Tibshirani (1996), the most conventional method is the 

first one due to its flexibility in terms of X-Y relationship complexity and decreased 

computational effort. 

𝑌𝑌 = 𝜂𝜂(𝑋𝑋) + 𝜖𝜖  (2.14) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑�𝜂̂𝜂(𝑋𝑋) − 𝜂𝜂(𝑋𝑋)�
2

  (2.15) 

𝑃𝑃𝑃𝑃 = ∑{𝑌𝑌 − 𝜂̂𝜂(𝑋𝑋)}^2 = 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜎𝜎2  (2.16) 

𝑀𝑀𝑀𝑀𝑀𝑀 = (𝛽̂𝛽 − 𝛽𝛽)′𝑉𝑉(𝛽̂𝛽 − 𝛽𝛽)  (2.17) 

For this part, relationship of X and Y has been supposed to be as Eq. (2.14). Here, 𝜎𝜎2 can be 

defined as variance of 𝜖𝜖. The prediction error for LASSO procedure (PE) is produced by at least 

fivefold cross-validation. A normalized parameter 𝑠𝑠 = 𝑡𝑡/∑�𝛽𝛽𝚥𝚥� � is used to index LASSO 

coefficients. Value of s can be varied from 0 to 1 and 𝛽̂𝛽 can be determined for lowest PE. 

Finally, Eq. 2.17 was used to determine MSE in simpler manner once 𝛽̂𝛽 exists. Here, V is a 

population covariance matrix of X, expressed by X’X. The whole process has been presented in 

the flowchart of Figure 2-23. 



55 
 

 

Figure 2-23: LASSO algorithm flowchart 
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3. Methodology 

 

Here, we present the methodology performed to develop models for both cases. Although 

the method applied to develop models from descriptors for the cases are different, some initial 

steps remain same. The first step is to develop a dataset that is suitable for the case. Based on the 

dataset, molecular structures are developed using Avogadro© software. Avogadro© is a free 

software platform to design molecules which is very user-friendly.  It is very easy to structures of 

varying complexities using Avogadro© as various fragments can be called in as per requirement. 

Figure 3-1 shows some sample molecular structures drawn by Avogadro© software. These 

structures are saved as .MOL files, which can be used to develop descriptors. 

 

Figure 3-1: Molecular Structures Developed in Avogadro Platform 
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After this step, the .MOL files are collected and used in Dragon© 6 software to calculate 

the descriptors. Dragon© 6 can calculate 4885 different descriptors that include 1D to 4D type of 

descriptors. These descriptors are saved in a .TXT file and processed for feature selection 

operations. For our case, we have limited our investigation to 2D descriptors. 

3.1.Case 1: Reaction Rate Constant of Diels-Alder Reaction 

From the work of Tang et al. (2012) and Zhou et al. (2014, 2015), we generated a diverse 

data set of 72 reactions that consisted of 38 different dienophiles, 19 dienes and 10 solvents. 

These reactions, along with respective experimental and predicted reaction rates, are presented in 

Appendix A. All chemical species were designed using Avogadro software. The structures were 

optimized using MMFF94s, a built-in geometry optimization algorithm of Avogadro software, as 

suggested by Datta et al. (2015). The optimized geometries were saved as .MOL files. These 

files were then used as input for Dragon 6 software to calculate descriptors. Following 

convention, one sixth of the reactions were separated for external validation and all other 

reactions were used to train the model. Keeping reaction design simplicity in mind, only 

connectivity descriptors were used for model development. 

3.1.1. Divide and Conquer Algorithm 

This method has been previously utilized in many studies that required handling 

complicated datasets. Bentley (1980) has expressed the significance of multidimensional divide 

and conquer algorithm in his work. He has presented some classic point-based problems, where 

the main goal is to determine the domination of a point over other points present in dataset. This 

domination is determined by ranking the points, which refers to influence or significance of the 

point in dataset. Figure 3-2 shows a simple representation of the algorithm.  
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Figure 3-2: Problem size reduction by Divide and Conquer Algorithm 

 

Zhang (2004) has showed application of this algorithm in his peptide sequencing 

algorithm. Cheng et al. (2012) have used this technique to improve their template-base modeling 

for their protein modeling project. The concept has also been discussed in detail in the work of 

Hemmateenezad et al. (2004). They have used PCA on different classes of descriptors to 

minimize the workload of GA. However, in this work, subsets of chemical species were subject 

to this strategy. The three subsets used were dienophiles, dienes and solvents. However, we 

checked for normalized standard deviation for all the descriptors of the subsets. After analyzing 

that, the descriptors with higher standard deviation were chosen to develop the dataset. For using 

this step, the number of meaningful descriptors was reduced to 32. These descriptors were then 

used as input to the DT algorithm for generating initial population of GA.  
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3.1.2. Decision Tree Algorithm 

After the dataset was properly reduced to generate a dataset with only meaningful 

descriptors, the dataset was analyzed using a DT algorithm. As discussed in Section 2.3.2, DT is 

a good algorithm that can be used both for feature selection and coefficient generation. It is 

worth noticing that in the previous cases and in the example provided, possible solutions were 

generated using unaltered initial node. This project used a different approach of DT where its 

aim was to develop best possible initial population for GA. For such a requirement, DT was 

modified to alter its initial node every time it generates a member of the initial population. This 

ensures uniqueness of the developed members in the population. 

3.1.3. Modified Genetic Algorithm 

In most cases, GA works with generating an initial population. This population then goes 

through Roulette wheel elitism, crossover and mutation in each generation to develop better 

population. However, mostly single point swap is used for the process of crossover. Single point 

swap, in general, chooses two parents for the crossover. This process is also known as paring. 

The children are developed by swapping the parent data from a chosen single point. This is the 

most widely used process of crossover.  In this work, scattered approach is used to perform the 

crossover operation. In scattered approach (Figure 3-3), multiple points of swaps are randomly 

selected. The swap occurs to the selected cells containing descriptors and the rest remains the 

same. The reason for choosing scatter swap over single point swap is to prevent over-

adulteration of initial population while seeking better solution causing surgical changes. 
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Figure 3-3: Comparison of single point swap and scatter swap in crossover operation 
 

3.1.4. Hybrid GA-DT Algorithm Development 

In this step, the GA algorithm was modified using DT approach for generating a better 

initial population. A modified version of DT was used to choose meaningful descriptors that will 

increase model fitness. As shown in Figure 3-4, the initiation of GA uses DT. The DT algorithm 

controls the selection of the descriptors so that they increase the R2 value of the candidates of the 

population. In this way, each member of the population represents a potential model. The first 

descriptor is a random selection. From the second descriptor and onwards, DT tries to include 

descriptors such that the R2 value keeps getting better. This ensures not only a good initial 

population but also a good final model using the fewest number of generations.  
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Figure 3-4: Developed hybrid GA-DT algorithm flowchart 

 

After obtaining a good initial population, the population goes through Roulette’s wheel 

population substitution. For the purpose of this work, any model with a R2 less than the mean of 

all R2 values were substituted by the best model value achieved in the generation. After that, 

Crossover and Mutation brings changes to populations. Crossover probability was selected to be 
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0.6 and mutation probability was assumed to be 0.02. Mutation, in this algorithm, randomly 

selects chromosomes and replaces them with descriptors not existing in the current population. 

After these steps, if the achieved generation does not produce at least one better model, the 

changes in the generation are rejected. And the system goes through crossover and mutation 

process again until the best possible model is identified. The operations of DT were confined to 

generating the initial population. The hypothesis behind this was that a more viable initial 

population can generate a potential model faster than one obtained from a randomly developed 

initial population. The entire algorithm was manually coded and executed using MATLAB 

scripts. 

3.1.5. Multi-Gene Genetic Programming (MGGP) 

To further investigate the effect of non-linear models on data prediction and representation, 

MGGP algorithm was used. For execution of this operation, the GPTIPS 2.0 (Searson et al., 

2010) toolbox of MATLAB was used due to its wide variety of flexibility presented. It is 

important to note that the initial node of developing an MGGP individual is always an arithmetic 

operator. The GPTIPS 2.0, to determine the overall coefficients for genes, uses simple MLR 

assuming the model structure can be considered linear. For our work, although we used MLR for 

initial determination of the overall coefficients, a genetic algorithm was used to tune the 

coefficients further for better result. There needs to be defined some parameters to use the 

toolbox, and such parameters are recorded in Table 3-1. It is worth noticing that various 

combinations of gene numbers, gene depth, high and low level crossover probabilities were used 

to develop acceptable models. After event numbers are decided by the percentage of crossover 

events, the numbers of events are divided into two groups, the low and high level crossover 
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operations. It is of prime importance to remember that total probability of high and low level 

crossover operation must result to 1. 

Table 3-1: MGGP parameters used for model development 

Parameter Settings 

Population size 50 

Number of generations 250 

Maximum number of genes 4-7 

Maximum gene depth 3-6 

Tournament size 12 

Crossover events 0.85 

Mutation events 0.02 

Subtree mutation 0.9 
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3.2.Case 2: Predicting DNA Drug Binding Affinity of 9-Anilinoacridine Derivatives 

Three principal classes of descriptors (Conventional, 2D and Connectivity Index) were 

generated using the Dragon© 6 software. A total of 205 descriptors were generated using the 

software. An initial screening was performed to reduce the number of descriptors by eliminating 

those with zero values. 185 descriptors were obtained after this initial screening. GA was used to 

perform feature selection operation in combination with MLR. Finally, a correlation-based 

adaptive LASSO was used to further decrease the number of descriptors required and generate a 

model with enhanced prediction ability. During model development, one sixth of the molecules 

(5 out of 31) were used to test the model and the rest of the molecules (26 out of 31) were used to 

train it. For this purpose, the descriptors were used to generate an initial population of 50 rows 

and 13 columns. This initial population underwent the processes of roulette-wheel selection, 

single point swap crossover (with probability 0.6), and mutation (with probability 0.02). The 

objective was to select descriptors such that a model with the best R2 and Q2 values are 

generated. R2 and Q2 values describe the fitness of generated model using the training and test 

sets respectively. But the problem occurred was presence of multiple models with same R2 and 

Q2 values. It was necessary to analyse the final models and decide which one can be used as a 

property model. 

Here, we have developed a correlation-based adaptive LASSO algorithm to direct the 

algorithm shrinkage towards descriptors in the model that show reduced correlation with the 

association constants. From previous discussions on LASSO, it was evident that correlations of 

target-descriptor values are never checked while shrinking the coefficients. A problem arises 

when LASSO tries to shrink descriptors with lowest values to zero and there are two of them. In 

such situations, LASSO automatically reduces both descriptors to zero. However, one can argue 



65 
 

that reducing one descriptor’s coefficient to zero will change the coefficients of the rest of the 

descriptors. In that case, one of the two “zeroed-out” descriptor might become a descriptor with 

higher coefficient. To evaluate this assumption and check the effect, one way is to allow only 

one coefficient to be “zeroed-out” while saving another. As the coefficients of the models are 

checked for every new 𝝀𝝀 value using MLR, it is important to save the descriptor that shows 

comparatively higher correlation although having lowest-most coefficient. We have named this 

algorithm as CorrLASSO.  To validate the superiority of the proposed algorithm, the results from 

the basic LASSO algorithm (using lasso() function of MATLAB) are compared with the 

correlation-based CorrLASSO algorithm. Finally, an overall R2 value is calculated for the model 

with the lowest MSE to provide the best model possible for the available dataset. Figure 3-5 

presents an overview on the process of CorrLASSO regression algorithm. This minor tuning of 

the algorithm is assumed to improve the algorithm efficiency as descriptor-property relationship 

is being utilized in model shrinkage and selection. 
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Figure 3-5: Flowchart of CorrLASSO regression algorithm 
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4. Results 

To discuss and analyse the effectiveness of the methods proposed, results based on both 

cases have been discussed in this section. 

4.1. Case Study 1 

Using modified DT to develop initial population for GA plays a vital role in efficiency of 

model development. As shown in Table 4-1, the difference of developed models with and 

without DT modification in GA shows significant difference in model confidence.  

Table 4-1: Improvement of initial model confidence with addition of descriptors in GA and GA-
DT method 

Descriptor 

addition 

GA method GA-DT method 

R2 Q2 R2 Q2 

1 -0.3035 -1.0256 -0.3035 -1.0256 

2 0.0136 -0.546 0.0169 0.0089 

3 0.2085 0.1029 0.0825 0.0153 

4 -10.52 -15.35 0.1253 0.0328 

5 -2.155 -4.081 0.3576 0.1284 

6 0.3025 0.0158 0.3661 0.1153 

7 0.1582 0.0379 0.4011 0.2086 

8 0.0631 -.5379 0.4583 0.4105 
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The negative values might have been generated due to selection of descriptors which 

generated a model that doesn’t follow the trend of the data. The table clearly demonstrates the 

influence of DT modification in this case. To make the comparison clearer, same seed number of 

random selection was used in both GA and GA-DT method. 

It has also been noticed that this method can generate a suitable model much faster than simple 

use of GA algorithm. As suggested in Figure 4-1, fewer generations are required to develop the 

best model possible. 

 

Figure 4-1: Q2 Value improvement of developed models with number of generations 

 
 

It can be seen that approximately 50 generations are sufficient for the hybrid GA-DT 

approach to develop the best model, while 250 generations of the GA approach was required to 

get a model with a confidence to that of the GA-DT model. In both cases, MLR was used as 

regression tool.  
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Figure 4-2 presents a comparison between the predicted and observed –log(k) values of 

the reactions used in model development. It can be seen that the model tends to have some 

difficulties predicting reaction rates in negative values. These values are related to reactions that 

were performed with water as solvent. So we can assume that this model is more applicable to 

reaction systems with organic solvents. 

 

Figure 4-2: Observed vs predicted -log(k) values using hybrid GA-DT algorithm 
 

It should be noted that the model is developed based only on connectivity descriptors of 

all chemical species. Eq. (4.1) shows the developed model: 

-log(k) = -57.0184 + 9.193891 X3AR-1 - 57.7238 X1KupR-1 - 7.33585 

X2sol +23.46769 X0AvR-1 + 96.15087 X3AvR-1 + 3.094669 X4R-2 + 

72.42918 X1PerR-1+ 66.62089 X0AR-2 

 (4.1) 
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Here, 

X3AR-1 - Average Connectivity Index of Order 3-Dienophile 

X1KupR-1 - Kupchik Connectivity Index-Dienophile 

X2sol - Connectivity Index of Order 2-Solvent 

X0AvR-1 - Average Valence Connectivity Index of Order 0-Dienophile 

X3AvR-1 – Average Valence Connectivity Index of Order 3-Dienophile 

X4R-2  - Connectivity Index of Order 4-Diene 

X1PerR-1 - Perturbation Connectivity Index-Dienophile 

X0AR-2  - Average Connectivity index of Order 0-Diene 

k – reaction rate constant for second order reaction 

 

The subscript R-1 denotes Dienophiles, while R-2 denotes Dienes and Sol denotes 

solvent. The model includes descriptors from every subset of chemical species used to develop 

the model. This gives reaction designers an opportunity to simultaneously evaluate effects of 

both reactants and solvents on the reaction rate constant. The model has R2 value of 0.81 and Q2 

value of 0.86. As genetic algorithm is an evolution-based algorithm that locates maximum or 

minimum value of a given setup, this model can be considered to have the best predictability 

possible for the reaction-solvent system using the mentioned descriptors. However, there is 

always a possibility that the model might not be the only one with same predictability. In reality, 

one more model with almost same R2 and Q2 value did form. However, that model was rejected 

as it did not include effect of solvent structure on the target property.   

However, better models were generated using MGGP algorithm. As GPTIPS 2.0 gives 

the opportunity for using various numbers and depths of the genes, the objective was to develop 
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a better model than Eq (4.1), presented by Datta et al. (2017), using a nonlinear model that 

contained the minimum number of descriptors possible. The population size and number of 

iterations were kept constant respectively to 50 and 250. In different settings of number of genes, 

gene depths, and high and low crossover possibilities, three models possessed better performance 

metrics than the model presented in the work of Datta et al. (2017). For convenience, they are 

identified as M1, M2, and M3. More details on these models have been presented in APPENDIX 

A. It should be noted that, all the selected models represent the influence of all the chemical 

classes involved in the reactions. However, the numbers of descriptors used to develop the 

models are different. M1 required 13 descriptors, where as M2 and M3 required 10 and 18 

descriptors respectively. Here, R2 and Q2 represent model fitness for training set and test set data 

respectively, and RMSE expresses overall root mean squared error for the model.   

Table 4-2: Properties of non-linear models developed and parameters used  

Model Number M1 M2 M3 

R2 0.9825 0.9011 0.9538 

Q2 0.8943 0.8213 0.9316 

RMSE 0.5471 0.8410 0.2918 

Gene number 4 5 7 

Gene depth 3 4 5 

Low level crossover 0.8 0.7 0.6 
High level crossover 0.2 0.3 0.4 

 

As presented in Table 4-2, M3 model shows the best fit compared to the other models. It 

can also be noticed that, in case of M2 and M3, decreased lower level crossover possibility, and 

increased number and depth of gene was able to improve fitness. This helps draw the conclusion 

that overuse of low level crossover can result in lower quality of predictive model. Although all 
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the models have significant level of nonlinearity, M3 was more successful in data fitness as the 

model showed highest nonlinearity among them due to comparatively higher numbers of gene 

number and depth. This also supports the assumptions made while developing model to describe 

reaction rate constants.   

From the analyses of observed vs predicted –log(k) values in Figure 4-3, Figure 4-4, and 

Figure 4-5, it is clear that the non-linear models have much better fit than the linear one 

presented in Figure 4-2.  

 

Figure 4-3: Observed vs predicted -log(k) values using M1 
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Figure 4-4: Observed vs predicted -log(k) values using M2 

 

Figure 4-5: Observed vs predicted -log(k) values using M3 
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Observing these figures, it also becomes definite that M3 has the best fit, as suggested by 

Table 4-2. It is notable that M1 and M3 have significantly similar fit. However, careful 

observation dictates that the values involving aqueous solvent shows tighter fit for M3 than M1. 

These values show anomalies due to the fact that using water as solvent causes a vacuum of 

descriptor values, and that causes the prediction errors in linear models. However, the non-linear 

models tend to address this matter better than the linear models, producing better fit. Among the 

non-linear models developed, M3 also shows the best fit for this region. For these reasons, and 

the minimum model RMSE value, M3 can be considered a great candidate to be used as a 

predictive model. 

The most important matter of this model is the descriptors are computationally easy to 

calculate from the molecular structures. This model gives an opportunity for studying not only 

the roles of the reactants but also solvents on the reaction rates of Diels-Alder reactions. A 

limitation, however, is that this model is only applicable for reactions performed at 250C (298K). 

A question may be raised about whether this model is suitable for reaction design at industrial 

level where temperatures being dealt with are much higher.  

4.2.Case Study 2 

From genetic algorithm, three acceptable sets of descriptors were generated. As the MLR 

(multiple linear regression) models generated from GA have very close R2 (0.87) and Q2 (0.92) 

values, more investigation was required to determine a unique model with the highest data 

fitness. In such a case, LASSO can be used to determine the best possible model. Figure 4-6 

demonstrates the observed vs. predicted values of log(K) for models generated by the genetic 

algorithm. Although there are some points which fall on the line, some severe anomalies can be 
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noticed. To generate a better model, traditional LASSO regression was performed on the set of 

descriptors generated from GA.  

 

Figure 4-6: Observed vs. predicted log(K) values using genetic algorithm 
 

It can be seen in Figure 4-7 that the traditional LASSO model reduced the MSE value, 

but the R2 (0.89) and Q2 (0.9) values suggest that the overall improvement was not significant. 

The observed vs predicted log(K) values (Figure 4-8) also show that there still remain some 

severe anomalies. However, the MSE value dropped significantly from around 0.05 to around 

0.027. The aim of LASSO is to minimize the MSE of the model through removal of descriptors 

by reducing their coefficients to zero. It is possible that a descriptor having good correlation with 

the target value may be suppressed to zero. 
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Figure 4-7: MSE analysis of model for log(K) using basic LASSO regression 
 

 

Figure 4-8: Observed vs predicted log(K) values for model generated using LASSO regression 
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In Table 4-3, coefficients of X3A are significantly different in LASSO and CorrLASSO 

evaluations. Presence of X3A in the model improved MSE value of the model as it has higher 

correlation than ZM2Mad and RBF with the target property. But its coefficient was suppressed 

to zero by LASSO algorithm based on its MLR coefficient.  

Table 4-3: Coefficients of descriptors based on MLR, LASSO and CorrLASSO regression 

Method MLR LASSO CorrLASSO 

Intercept 16.90 -12.09 -24.56 

D
es

cr
ip

to
rs

 

ZM2Mad 0.01 0.00 0.00 

IC0 -45.25 0.30 0.18 

RBF 0.02 0.00 0.00 

nCsp3 -7.26 -0.03 -0.01 

TIE 0.06 -0.05 -0.08 

PW2 0.03 3.40 7.54 

nDB 0.50 -0.33 -0.33 

TIC0 4.21 0.02 0.03 

CIC1 -0.02 -0.06 -0.01 

X5sol -0.68 0.37 0.57 

Psi_e_A -2.84 1.92 3.03 

X3A 0.01 0.00 -22.58 

H% 0.03 0.10 0.11 

Model MSE 0.05 0.027 0.0126 
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To address this shortcoming, correlation values of two descriptors with lowest absolute 

coefficient values (|bj|) were calculated. The descriptor with the lowest correlation with log(K) 

values was allowed to be suppressed to zero while the other one was protected to be evaluated 

further in the CorrLASSO.  

 

When the CorrLASSO is used, it improves the model fitness (Figure 4-9). It can be seen 

that the MSE value has dropped to almost 0.0126 and the fitting curve (Figure 4-10) has also 

improved. It can be seen that X3A is improving the model if that is protected for future 

calculation. To do that, correlation values of two descriptors (ZM2Mad, X3A) with lowest 

absolute coefficient values (|bj|) were calculated.  

 

Figure 4-9: MSE analysis of the model using CorrLASSO regression 

 

The descriptor with lowest correlation with log(K) values was allowed to be suppressed 

where the other one was protected to be tested further. When the CorrLASSO is used, it 

improves the model. Fitness values for both internal and external validations have improved. For 
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the achieved model, R2 value is 0.9 and Q2 value is 0.989. The overall R2 value for this model is 

0.947, which is better than the linear model proposed by Chtita et al. (2016) with R2 value of 

0.873. For the given model, the Q2 value is significantly high. This means that this model can be 

used with high confidence in case of developing and studying derivatives that were not part of 

the training set.  It can also be argued that the proposed model is not a significant improvement 

from the previous work. However, the descriptors used to develop the model are significantly 

easier to calculate for a given structure within the limits of the chemical space. Information about 

the molecular descriptors listed can be depicted from Talete information website (talete, 2018). 

From Table 4-3, it can be noticed that, logK values are highly dependent on three descriptors; 

X3A (average connectivity index of order 3), PW2 (path/walk 2 - Randic shape index), and 

Psi_e_A (intrinsic state pseudoconnectivity index - type S average). This proves the importance 

of CI descriptors in the developed model. 

 

Figure 4-10: Observed vs predicted log(K) values using CorrLASSO algorithm 

 



80 
 

The new proposed method of regression analysis has proven to be very efficient. The best 

feature about this change is this only takes effect in cases where two lowest coefficients exist. A 

significant fact to consider for such cases is that it is not a good idea to let an algorithm reject 

two descriptors in a single step, as happens in cases of LASSO. 
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5. Conclusions and Future Directions 

In this work, two condition-specific cases have been presented. The focus of the work 

was to develop hybrid algorithms that are computationally efficient and less expensive. 

Developing these systems can be utilized in case of developing software that tackles such 

situations. Overall, this project is dedicated to develop efficiency of GA-based hybrid approaches 

that has far more efficiency than the genetic algorithm alone. From their results, it could be also 

noticed that such algorithms can become efficient and less costly means of developing models in 

such condition-specific cases. It is very important to realize that such condition-specific models 

are likely to have a limited database to work on. These algorithms can be used to design a 

software platform for such CAMD investigations that will be user-friendly as the calculations 

can be performed in a simple computer system of present days. From the cases analyzed, it is not 

difficult to foresee that necessity of such platforms will emerge shortly to help our peers who are 

performing the experimental part of such studies. 

In the first case, we found that by modifying GA through inclusion of DT enhances 

model generation capabilities. The model generated in this case through the hybrid GA-DT 

approach has a very good confidence level for both describing and predicting Diels-Alder 

reaction kinetics with solvent influence. However, some limitations need to be mentioned. The 

model assumes that a linear relationship exists between the logarithm of the rate constant and the 

molecular descriptors. Conducting a non-linear analysis might produce a better model, which 

will be a topic of future study. Including other 2D descriptors might also affect model confidence 

However, for the second part of this case was focused on developing a better model than that 

previously proposed for the same property using QSPR analysis (Datta et al., 2017). From the 

work of Datta et al. (2017), it was clear that the hybrid GA-DT method was very efficient in 
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developing linear model of such kind. As Dev et al. (2017) also concluded that the hybrid GA-

DT method provided the best possible model, developing nonlinear model was the only option 

left to develop better property model. From the results it can be noticed that M1 and M3 models 

have similar metrics. However, in case higher level of accuracy is required, use of model M3 is 

advised. It can be noticed that Model M3 used five more descriptors than M1, but as connectivity 

index descriptors are very easy to calculate, no severe rise in computational expense is expected. 

Finally, it can be noticed that the models developed had better quality than it was in the case of 

linear model presented for same property by Datta et al. (2017). The model generated in our 

work relates the rate constant to the structures of reactants and solvent at a temperature of 298 K. 

Including temperature effects can be a good way to make the model more applicable for 

industrial process design. It should also be noted that although we have increased the diversity of 

the solvents in our study, in general, we need more data points in our study. We will explore the 

possibility of using quantum chemical calculations as a source of data to expand our data set. 

This approach has, for example, been investigated in the work of Sumathi et al. (2002). A 

concern can arise that the model generated in our study is only applicable for the Diels Alder 

reaction. Although this limits the application of the model generated, the process of model 

generation is a general one that can be used for any other reactant-solvent pair QSPR/QSAR 

study. 

The second study aimed at developing a new approach of combining evolutionary 

algorithm with a feature-selection-based regression algorithm. Although model optimization 

using traditional LASSO algorithm is strictly based on eliminating coefficients, this work has 

proposed a correlation based LASSO algorithm which checks for property-feature correlation 

information to determine feature shrinkage and cancellation. This modification is highly useful 
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for evaluating models derived from evolutionary algorithms such as genetic algorithm; which 

tend to produce optimum models that may not be unique as per statistical fitness values. In such 

cases, regression algorithms like LASSO can be very efficient to evaluate the models for better 

fitness values. Although we have proposed a way of generating a highly feasible model, more 

data points are required to include diversity in the processed data. Another point to notice is the 

avoidance of using 3D descriptors. It is possible that using 3D descriptors may generate a model 

with better fitness. However, the aim of this work is to develop a model useful for setups with 

lower computational power. Molecular design using some of the 3D descriptors can result in a 

process requiring higher computational power that is almost similar to using DFT descriptors. 

Also, the model generated in this process is only valid for evaluating drug-DNA binding constant 

of 1’ substituted 9-anilinoacridine derivatives, and effect of using 2’ and 3’ substituted 

derivatives can be a matter of future studies. However, the focus of this project is to develop an 

algorithm that can be utilized for any given chemical space. From that point of view, the 

proposed process is a universal one and can be used to generate models for predicting such drug-

related properties. 

5.1.  Future Directions 

The work aimed at developing algorithms to develop predictive models with high 

probability of predictability. However, the scope of developing models using larger chemical 

space is always an option. It certainly presents with it some degree of uncertainty; such can be 

dealt with cross validation. This was not dealt with in these cases due to not having a large 

chemical space consisting different types of chemical structures.  

Additionally, as the goal was to develop predictive models using algorithms with 

universal acceptability and descriptors that are lesser dependent on high performing computers, 



84 
 

more case studies can be performed using these algorithms to check the viability of these 

algorithms in different cases with similar situations but different chemical spaces.  

Finally, studies needed to be performed to validate the applicability of these models. 

These models need to be applied to product or research design and present novel solutions for the 

given problems. It is required to check the model performance in experimental setup before 

comments can be made on the effectiveness of these models in predicting required molecular 

structures.  
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Appendix A- Case 1 supplementary information 

 

A.1 – MATLAB Code for Divide and Algorithm 

clc 

clear 

load solvents.txt 

load regsolv.txt 

xint=solvents; 

yint=regsolv; 

[n,p]=size(xint); 

[pload,score,var]=pca(xint,'Economy',false); 

%internal 

crint=regress(yint-mean(yint),score(:,1:30)); 

crint=pload(:,1:30)*crint; 

crint=[mean(yint)-mean(xint)*crint;crint]; 

yfitint=[ones(n,1) xint]*crint; 

plot(yint,yfitint,'bo') 

tss=sum((yint-mean(yint)).^2); 

rss=sum((yint-yfitint).^2); 

rsqr=1-(rss/tss); 

disp(rsqr) 

% external 

yfitext=[ones(6,1) xext]*crint; 
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figure 

plot(yext,yfitext,'bo') 

tssex=sum((yext-mean(yext)).^2); 

rssex=sum((yext-yfitext).^2); 

rsqrex=1-(rssex/tssex); 

press=sum((yfitext-y).^2); 

qsr=1-(press/tss); 

disp(qsr) 

disp(rsqrex) 
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A.2 - MATLAB Code for Decision tree function 

function [a] = decision_tree( x1,x2,y1,y2) 

[row,column]=size(x1);  

ini_table=randi(column,1);  

for column_rand=1:7      

     [rsqr(column_rand) rsqrex(column_rand) 

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2);      

     if column_rand>1 

        if rsqrex(column_rand)<rsqrex(column_rand-1) 

         [rsqr(column_rand) rsqrex(column_rand) 

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2); 

     elseif rsqrex(column_rand)<rsqrex(column_rand-1) 

         [rsqr(column_rand) rsqrex(column_rand) 

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2); 

     elseif rsqrex(column_rand)<rsqrex(column_rand-1) 

         [rsqr(column_rand) rsqrex(column_rand) 

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2); 

    elseif rsqrex(column_rand)<rsqrex(column_rand-1) 
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         [rsqr(column_rand) rsqrex(column_rand) 

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2); 

    elseif rsqrex(column_rand)<rsqrex(column_rand-1) 

         [rsqr(column_rand) rsqrex(column_rand) 

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2);     

    elseif rsqrex(column_rand)<rsqrex(column_rand-1) 

         [rsqr(column_rand) rsqrex(column_rand) 

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2); 

    elseif rsqrex(column_rand)<rsqrex(column_rand-1) 

         [rsqr(column_rand) rsqrex(column_rand) 

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2); 

    elseif rsqrex(column_rand)<rsqrex(column_rand-1) 

         [rsqr(column_rand) rsqrex(column_rand) 

ini_table]=regression(row,ini_table,column,y1,y2,x1,x2); 

    elseif rsqrex(column_rand)<rsqrex(column_rand-1) 

         [rsqr(column_rand) rsqrex(column_rand) 

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2);  

        end 

     end 
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end  

a=ini_table; 

end 
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A.3 - MATLAB Code for regression function 

function [ r rex table ] = regression( 

row,column_rand,ini_table,column,y1,y2,x1,x2) 

random=randi(column,1); 

    ini_table(column_rand+1)=random; 

    [row_gen,column_gen]=size(ini_table);  

     %initialize table 

     x=ones(row,1); 

      xe=ones(46-row,1); 

      %column adding 

     for column_iter=1:column_gen 

         x=[x x1(:,ini_table(column_iter))]; 

     end 

     for col_ex_iter=1:column_gen 

         xe=[xe x2(:,ini_table(col_ex_iter))];    

     end 

%coeff calculation 

     coeff=regress(y1,x); 

     yfitint=x*coeff; 

     yfitext=xe*coeff; 

     %internal validation 

     tss=sum((y1-mean(y1)).^2); 

     rss=sum((y1-yfitint).^2); 
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     r=1-rss/tss; 

     %external validation 

     tssex=sum((y2-mean(y2)).^2); 

     rssex=sum((y2-yfitext).^2); 

     rex=1-rssex/tssex; 

     table=ini_table; 

 end 
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A.4 – MATLAB code for Hybrid GA-DT Algorithm 

 
clear 

clc 

load pcaint.txt 

load regint.txt 

load pcaext.txt 

load regext.txt 

yint=-log10(regint); 

yext=-log10(regext); 

%seed fixing 

rng(9); 

s=rng; 

rng(s); 

xint=pcaint; 

xext=pcaext; 

count=0; 

[row,column]=size(xint); 

for population=1:40 

gen_table_initial(population,:)=decision_tree(xint,xext,yint,yex

t); 

end 

[row_gen,column_gen]=size(gen_table_initial); 

loged_columns=randperm(column_gen,3); 
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for loging=1:3 

    

xint(:,loged_columns(loging))=log10(xint(:,loged_columns(loging)

));    

xext(:,loged_columns(loging))=log10(xext(:,loged_columns(loging)

)); 

end 

coeff_best=0; 

coeff_prev=0; 

cross_probable=0.4; 

mutation_probable=0.02; 

%starting GA operations 

for generation=1:550 

 %reggression calculation 

 for row_iter=1:row_gen 

     x=ones(row,1); 

      xe=ones(46-row,1); 

     for column_iter=1:column_gen 

         x=[x xint(:,gen_table_initial(row_iter,column_iter))]; 

     end 

     for col_ex_iter=1:column_gen 

  

         xe=[xe 

xext(:,gen_table_initial(row_iter,col_ex_iter))]; 



107 
 

     end 

     coeff=regress(yint,x); 

     yfitint=x*coeff; 

     yfitext=xe*coeff; 

     %internal validation 

     tss=sum((yint-mean(yint)).^2); 

     rss=sum((yint-yfitint).^2); 

     rsqr(row_iter)=1-rss/tss; 

     %external validation 

     tssex=sum((yext-mean(yext)).^2); 

     rssex=sum((yext-yfitext).^2); 

     rsqrex(row_iter)=1-rssex/tssex; 

     if row_iter>=2 

         if rsqrex(row_iter)>rsqrex(row_iter-1) 

         coeff_best=coeff; 

         best_x=[x; xe]; 

         coeff_prev=coeff_best; 

         else 

             coeff_best=coeff_prev; 

         end 

     else 

         coeff_prev=coeff; 

     end    

 end 
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%Roulette's wheel starts 

 for best=1:row_gen 

     if rsqrex(best)==max(rsqrex); 

         best_row=best; 

     end 

 end 

 for pop=1:row_gen 

     if rsqrex(pop)<mean(rsqrex) 

       gen_table_initial(pop)=gen_table_initial(best_row); 

         rsqr(pop)=rsqr(best_row); 

         rsqrex(pop)=rsqrex(best_row); 

     end 

 end 

 new_table=gen_table_initial; 

 r_new=rsqr; 

 q_new=rsqrex; 

    %crossover starts 

   cross_connection=floor(cross_probable*row_gen);%populations 

to change in crossover 

cross_relative_1=randi(floor(row_gen/2),1,floor(cross_connection

/2));%first set of populations to change 

cross_relative_2=randi([floor(row_gen/2),row_gen],1,floor(cross_

connection/2));%second set of population to change 

   [row_cross,column_cross]=size(cross_relative_1); 
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cross_point=randi(column_cross,floor(cross_connection/2),1);%col

umn where crossover happens 

   for marriage=1:floor(cross_connection/2)%crossover operation 

relative1temp=gen_table_initial(cross_relative_1(marriage),cross

_point(marriage):column_cross);    

relative2temp=gen_table_initial(cross_relative_2(marriage),cross

_point(marriage):column_cross);       

new_table(cross_relative_1(marriage),cross_point(marriage):colum

n_cross)=relative2temp;       

new_table(cross_relative_2(marriage),cross_point(marriage):colum

n_cross)=relative1temp;       

   end 

%    mutation starts 

      mut_cells=mutation_probable*row_gen*column_gen; 

      mut_cells=floor(mut_cells); 

      cell_row=randi(row_gen,1,mut_cells); 

      cell_column=randi(column_gen,1,mut_cells); 

      for mutation=1:mut_cells          

new_table(cell_row(mutation),cell_column(mutation))=randi(column

,1,1); 

      end 

     %regression calculation on new_table 

   for row_iter=1:row_gen 
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     x=ones(row,1); 

      xe=ones(46-row,1); 

     for column_iter=1:column_gen 

         x=[x xint(:,new_table(row_iter,column_iter))]; 

     end 

     for col_ex_iter=1:column_gen 

  

         xe=[xe xext(:,new_table(row_iter,col_ex_iter))]; 

  

     end 

     coeff=regress(yint,x); 

     yfitint=x*coeff; 

     yfitext=xe*coeff; 

     %internal validation 

     tss=sum((yint-mean(yint)).^2); 

     rss=sum((yint-yfitint).^2); 

     r_new(row_iter)=1-rss/tss; 

     %external validation 

     tssex=sum((yext-mean(yext)).^2); 

     rssex=sum((yext-yfitext).^2); 

     q_new(row_iter)=1-rssex/tssex; 

      

     if row_iter>=2 

         if q_new(row_iter)>q_new(row_iter-1) 
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         coeff_best_new=coeff; 

         best_x=[x; xe]; 

         coeff_prev=coeff_best_new; 

         else 

             coeff_best_new=coeff_prev; 

         end 

     else 

         coeff_prev=coeff; 

     end  

   end 

   %checking if the change is better 

 if max(rsqrex)<max(q_new)  

     count=count+1; 

     improved_rsqr(count)=max(q_new); 

gen_table_initial=new_table; 

rsqr=r_new; 

rsqrex= q_new; 

coeff_best=coeff_best_new; 

 end 

end 

 plot(1:count,improved_rsqr) 

 if max(rsqrex)>.80 

     disp('good model found') 

     disp('R-sqr value') 
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     key=find(rsqrex==max(rsqrex),1); 

     disp(rsqr(key)) 

     disp('Q-sqr value') 

 disp(rsqrex(key)) 

 disp('Descriptor positions') 

 disp(gen_table_initial(key,:)) 

 disp('Coefficients') 

 disp(coeff_best) 

 end 
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A.5 – Modified MATLAB functions of GPTIPS 2.0 for MGGP algorithm 

A.5.1- evalfitness function 

 
function gp = evalfitness(gp) 

%EVALFITNESS Calls the user specified fitness function. 

% 

%   GP = EVALFITNESS(GP) evaluates the the fitnesses of 

individuals stored 

%   in the GP structure and updates various other fields of GP 

accordingly. 

% 

%   Copyright (c) 2009-2015 Dominic Searson 

% 

%   GPTIPS 2 

% 

%   See also TREE2EVALSTR, EVALFITNESS_PAR 

  

%check parallel mode. 

if gp.runcontrol.parallel.enable && gp.runcontrol.parallel.ok 

    gp = evalfitness_par(gp); 

    return; 

     

    %regular version 

else 
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    for i = 1:gp.runcontrol.pop_size 

         

        gp.state.current_individual = i; 

         

        %retrieve values if cached 

        if gp.runcontrol.usecache && gp.fitness.cache.isKey(i) 

            cache = gp.fitness.cache(i); 

            gp.fitness.complexity(i,1) = cache.complexity; 

            gp.fitness.values(i,1) = cache.value; 

            gp.fitness.returnvalues{i,1} = cache.returnvalues; 

             

        else 

            %preprocess cell array of string expressions into a 

form that 

            %Matlab can evaluate 

            evalstr = tree2evalstr(gp.pop{i},gp); 

             

            %store complexity of individual (either number of 

nodes or tree 

            %expressional complexity) 

            if gp.fitness.complexityMeasure 

                gp.fitness.complexity(i,1) = 

getcomplexity(gp.pop{i}); 
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            else 

                gp.fitness.complexity(i,1) = 

getnumnodes(gp.pop{i}); 

            end 

             

            [fitness,gp] = feval(gp.fitness.fitfun,evalstr,gp); 

            gp.fitness.values(i) = fitness; 

             

        end 

    end 

end 
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A.5.2- gpmodelfilter Class 

 
classdef gpmodelfilter 

    %GPMODELFILTER Object to filter a population of multigene 

symbolic regression models. 

    % 

    %   Usage: 

    % 

    %   First, create a default filter object F 

    % 

    %   F = GPMODELFILTER 

    % 

    %   Next, set the properties of the filter. E.g. to keep 

only models 

    %   that have an R^2 >= 0.7 (training data) but contain no 

more than 3 

    %   input variables use: 

    % 

    %   F.MINR2TRAIN = 0.7; F.MAXVARS = 3; 

    % 

    %   Finally, apply the filter to the population of models in 

the GP 

    %   struct: 

    % 
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    %   GPF = F.APPLYFILTER(GP); 

    % 

    %   This returns a structure GPF which is functionally 

identical to GP 

    %   except that that models not meeting the filter 

specifications have 

    %   been removed. 

    % 

    %   It also removes duplicate models whose genotypes are 

identical. All 

    %   the usual GPTIPS functions such as POPBROWSER, RUNTREE, 

GPPOPVARS, 

    %   GPPRETTY etc. can be applied to the filtered data 

structure GPF. 

    % 

    %   Remarks: 

    % 

    %   The filter has the following settings and defaults: 

    % 

    %      MINR2TRAIN = 0 (keeps models attaining this R2 on the 

    %      training data). 

    % 

    %      MAXCOMPLEXITY = Inf (keeps models that have this 

level of 
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    %      expressional complexity or lower). 

    % 

    %      PARETOFRONT = FALSE (true to keep only models on the 

Pareto 

    %      front of performance and expressional complexity). 

Note that 

    %      'expressional complexity' is used to compute the 

front even if 

    %      the GPTIPS run was actually performed using 'node 

count' as the 

    %      measure of tree complexity. 

    % 

    %      MAXVARS = Inf (keeps models containing this max 

number of input 

    %      vars). 

    % 

    %      MINVARS = 0 (keeps models containing this min number 

of input 

    %      vars). 

    % 

    %      INCLUDEVARS = [] (keeps models that include these 

input variables 

    %      - a row vector containing the input indices). 

    % 
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    %      EXCLUDEVARS = [] (keeps models that do not contain 

these 

    %      input variables - a row vector containing the input 

indices). 

    % 

    %      REMOVEDUPLICATES = TRUE (removes duplicate genotypes 

from the 

    %      population). 

    % 

    %   Hence, the default filter object only removes 

duplicates. 

    % 

    %   [GPF,MODELINDS] = F.APPLYFILTER(GP) does the same but 

also returns 

    %   a Boolean vector MODELINDS which refers to the 

population indices 

    %   in GP that survived the filtering process. 

    % 

    %   Copyright (c) 2009-2015 Dominic Searson  

    % 

    %   GPTIPS 2 

    % 

    %   See also mergegp, genefilter, popbrowser, paretoreport 
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    properties (SetAccess = public) 

        minR2train = 0.9; %the minimum R2 on the selected 

dataset 

    minR2test = 0.8; %the minimum R2 on the test dataset, 

modification in the code  

        maxComplexity = Inf; %the maximum complexity of models 

to retain 

        paretoFront = false; %true to select only models on the 

pareto front 

        maxVars = Inf; %selects models containing a max number 

of input vars 

        minVars = 0; %selects models containing a minimum number 

of input vars 

        includeVars =[]; %row vector of inputs that the models 

must contain 

        excludeVars = []; %row vector of inputs that the models 

must not contain 

        removeDuplicates = true; %true to remove duplicate 

genotypes from population 

    end 

     

    methods 

         

        %set removeDuplicates property 
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        function obj = set.removeDuplicates(obj, bool) 

            if ~islogical(bool) 

                disp('Error: removeDuplicates must either be set 

to true or false'); 

                return; 

            end 

            obj.removeDuplicates=bool; 

        end 

         

        %set excludeVars property 

        function obj = set.excludeVars(obj,varList) 

             

            if isempty(varList) 

                obj.excludeVars = varList; 

                return; 

            end 

             

            if size(varList,1) > 1 

                disp('Error: supplied list must be a row vector 

of input variable numbers.'); 

                return; 

            end 

             

            if any(find(varList <= 0)) 
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                disp('Error: 0 or negative numbers are not valid 

input variable numbers.'); 

                return; 

            end 

             

            if numel(varList) ~= numel(unique(varList)) 

                disp('Error: supplied list must not contain 

duplicate input variable numbers.'); 

                return; 

            end 

             

            if ~isempty(intersect(varList,obj.includeVars)) 

                disp('Error: supplied exclude list contains 

variables on the include list.'); 

                return; 

            end 

             

            obj.excludeVars = varList; 

             

        end%includeVars 

         

        %set includeVars property 

        function obj = set.includeVars(obj,varList) 
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            if isempty(varList) 

                obj.includeVars = varList; 

                return; 

            end 

             

            if size(varList,1) > 1 

                disp('Error: supplied list must be a row vector 

of input variable numbers.'); 

                return; 

            end 

             

            if any(find(varList <= 0)) 

                disp('Error: 0 or negative numbers are not valid 

input variable numbers.'); 

                return; 

            end 

             

            if numel(varList) ~= numel(unique(varList)) 

                disp('Error: supplied list must not contain 

duplicate input variable numbers.'); 

                return; 

            end 

             

            if numel(varList) > obj.maxVars  
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                disp('Error: supplied list must not exceed the 

maxVars filter property.'); 

                return; 

            end 

             

            if ~isempty(intersect(varList,obj.excludeVars)) 

                disp('Error: supplied include list contains 

variables on the exclude list.'); 

                return; 

            end 

             

            obj.includeVars = varList; 

             

        end%includeVars 

         

         

        %set R2min property 

        function obj = set.minR2train(obj,r2min) 

             

            if ~isa(r2min,'double') 

                disp('Error: minimum R^2 training must be 

between 0 and 1.'); 

                return; 

            end 
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            if r2min < 0 || r2min > 1 

                disp('Error: minimum R^2 training must be 

between 0 and 1.'); 

                return; 

            end 

            obj.minR2train = r2min; 

        end 

         

         

        %set maxVars property 

        function obj = set.maxVars(obj,maxvars) 

             

            if ~isa(maxvars,'double') 

                disp('Error: max. input vars must be greater 

than 0.'); 

                return; 

            end 

             

            if maxvars < 1 

                disp('Error: max. input vars must be greater 

than 0.'); 

                return; 

            end 
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            if maxvars < obj.minVars 

                disp('Error: max. input vars must be equal to or 

greater than min. input vars.'); 

                return; 

            end 

             

            obj.maxVars = maxvars; 

        end 

         

        %set minVars property 

        function obj = set.minVars(obj,minvars) 

             

            if ~isa(minvars,'double') 

                disp('Error: min. input vars must be 1 or 

greater'); 

                return; 

            end 

             

            if minvars < 1 

                disp('Error: min. input vars must be 1 or 

greater'); 

                return; 

            end 
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            if minvars > obj.maxVars 

                disp('Error: min. input vars must be smaller 

than or equal to max. input vars.'); 

                return; 

            end 

             

            obj.minVars = minvars; 

        end 

         

        %set maxComplexity property 

        function obj = set.maxComplexity(obj,maxc) 

             

            if ~isa(maxc,'double') 

                disp('Error: maximum complexity must be a number 

greater than 1.'); 

                return; 

            end 

             

            if maxc < 1 

                disp('Error: maximum complexity must be a number 

greater than 1.'); 

                return; 

            end 
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            obj.maxComplexity = maxc; 

        end 

         

        %set pareto front property 

        function obj = set.paretoFront(obj,bool) 

             

            if ~islogical(bool) 

                disp('Error: paretoFront must either be set to 

true or false'); 

                return; 

            end 

            obj.paretoFront = bool; 

        end 

         

        %function to apply the filter settings to a GP structure 

        function [gp,filterInds] = applyFilter(obj,gp) 

             

            if nargin < 2 

                error('Usage is APPLYFILTER(GP)'); 

            end 

             

             

            if ~isfield(gp.fitness,'r2train') 
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                error('GPMODELFILTER cannot find R^2 training 

data. GPMODELFILTER is intended for use with populations 

containing multigene regression models.'); 

            end 

             

            if gp.runcontrol.pop_size > 1000 

                disp('Please wait, this may take a few 

moments...'); 

            end 

             

            %always do r2 & complexity filter first 

            filterInds = (gp.fitness.r2train >= obj.minR2train) 

& (gp.fitness.complexity <= obj.maxComplexity); 

            locations = find(filterInds); 

            numLeft = numel(locations); 

            disp([num2str(numLeft) ' models passed R^2 training 

(>= ' num2str(obj.minR2train) ') and expressional complexity (<= 

' int2str(obj.maxComplexity)  ') filter ...']); 

             

            if numLeft == 0 

               gp = [];  

               return; 

            end 
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            %pareto rank 1 filter 

            if obj.paretoFront 

                disp('Computing pareto front on training 

data...'); 

                paretoInds = ndfsort_rank1([(1-

gp.fitness.r2train) gp.fitness.complexity]); 

                filterInds = filterInds & paretoInds; 

            end 

             

            %next apply vars filters 

            if ~isinf(obj.maxVars) || obj.minVars || 

~isempty(obj.includeVars) || ~isempty(obj.excludeVars) 

                 

                locations = find(filterInds); 

                numLeft = numel(locations); 

                disp(['Applying variable filter to ' 

num2str(numLeft) ' remaining models ...']); 

                 

                for i=1:numLeft 

                    hvec = gpmodelvars(gp,locations(i)); 

                    vars = find(hvec); 

                    numvars = numel(vars); 
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                    if numvars > obj.maxVars || numvars < 

obj.minVars 

                        filterInds(locations(i)) = false; 

                    else 

                         

                        if ~isempty(obj.excludeVars) 

                            if 

~isempty(intersect(vars,obj.excludeVars)) 

                                filterInds(locations(i)) = 

false; 

                            end 

                        end 

                         

                        if ~isempty(obj.includeVars) 

                            intersection = 

intersect(vars,obj.includeVars); 

                            if  numel(intersection) < 

numel(obj.includeVars) 

                                filterInds(locations(i)) = 

false; 

                            end 

                        end 

                         

                    end 



132 
 

                     

                     

                end %end of loop through individuals 

            end 

             

             

            %if enabled, loop through remaining genotypes and 

remove 

            %duplicates. 

            if obj.removeDuplicates && 

~gp.info.duplicatesRemoved 

                 

                locations = find(filterInds); 

                numLeft = numel(locations); 

                disp(['Removing genotype duplicates from ' 

num2str(numLeft) ' remaining models ...']); 

                 

                for i=1:numLeft 

                     

                    for j=1:numLeft 

                         

                        if i~=j && locations(i) && locations(j) 

                            model_i = gp.pop{locations(i)}; 

                            model_j = gp.pop{locations(j)}; 
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                            if numel(model_i) ~= numel(model_j) 

                                continue 

                            end 

                             

                            if 

isequal(sort(model_i),sort(model_j)) 

                                filterInds(locations(j)) = 

false; 

                                locations(j)=0; 

                            end 

                        end 

                         

                    end 

                     

                end 

                 

                gp.info.duplicatesRemoved = true; 

            end%end of removeDuplicates 

             

             

            numModels = sum(filterInds); 

             

            if numModels == 0 
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                disp('No models matching all filter criteria 

were found.'); 

                gp=[]; 

                return 

            end 

             

            gp.pop = gp.pop(filterInds); 

            gp.fitness.returnvalues = 

gp.fitness.returnvalues(filterInds); 

            gp.fitness.values = gp.fitness.values(filterInds); 

            gp.fitness.r2train = gp.fitness.r2train(filterInds); 

             

            if isfield(gp.fitness,'r2val') 

                gp.fitness.r2val = gp.fitness.r2val(filterInds); 

            end 

             

            if isfield(gp.fitness,'r2test') 

                gp.fitness.r2test = 

gp.fitness.r2test(filterInds); 

            end           

             

            gp.fitness.complexity = 

gp.fitness.complexity(filterInds); 
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            gp.fitness.nodecount = 

gp.fitness.nodecount(filterInds); 

            gp.runcontrol.pop_size = numModels; 

            gp.info.filtered = true; 

            gp.info.lastFilter = obj; 

            gp.source = 'gpmodelfilter'; 

            disp([num2str(numModels) ' models passed the 

filtering process.']); 

        end %applyFilter         

    end %methods     

end %classdef 
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A.5.3- Models generated using MGGP algorithm 

 

Model M1: 

−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 6.038 𝑋𝑋1𝑅𝑅1 + 7.133 𝑋𝑋0𝐴𝐴𝑣𝑣𝑅𝑅1 − 5.605𝑋𝑋0𝑠𝑠𝑠𝑠𝑙𝑙𝑅𝑅1 − 7.133𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅1 + 6.038𝑋𝑋1𝑅𝑅2
+ 5.605𝑋𝑋4𝑣𝑣𝑅𝑅2 + 1.528𝑋𝑋𝑋𝑋𝑋𝑋𝐷𝐷𝑅𝑅2 + 7.133𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅2 + 19.34𝑋𝑋0𝐴𝐴𝑣𝑣𝑅𝑅1𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅1
− 6.308𝑋𝑋1𝑣𝑣𝑅𝑅2𝑋𝑋1𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 − 7.133X3solR2X5vs
+ 5.605𝑋𝑋0𝐴𝐴𝑣𝑣𝑅𝑅1(X3solR1 − X4vR2 − 𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅2 + 𝑋𝑋1𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠) + 16.03𝑋𝑋3𝐴𝐴𝑣𝑣𝑅𝑅2𝑋𝑋1𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠2

− 19.34𝑋𝑋0𝐴𝐴𝑣𝑣𝑅𝑅12 𝑋𝑋4𝑠𝑠𝑠𝑠𝑙𝑙𝑅𝑅1𝑋𝑋5𝑠𝑠 − 6.308𝑋𝑋0𝐴𝐴𝑣𝑣𝑅𝑅1𝑋𝑋4𝑠𝑠𝑠𝑠𝑙𝑙𝑅𝑅1𝑋𝑋3𝐴𝐴𝑣𝑣𝑅𝑅2𝑋𝑋5𝑠𝑠𝑋𝑋2𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 − 33.74 

Model M2:  

−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 10.89𝑋𝑋0𝐴𝐴𝑣𝑣𝑅𝑅1 − 0.1703 exp �𝑋𝑋𝑋𝑋𝑋𝑋𝐷𝐷𝑠𝑠 
1
2� − 3.064 sin(sin(𝑋𝑋𝑋𝑋𝑋𝑋𝐷𝐷𝑠𝑠)) − 21.78 exp(𝑋𝑋4𝐴𝐴𝑣𝑣𝑅𝑅2)

− 3.064 log(𝑋𝑋0𝑅𝑅1) + 10.89 log(𝑋𝑋3𝐴𝐴𝑅𝑅1)− 3.064 log(𝑋𝑋0𝑅𝑅1)
1
4

+ 10.1sin (𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅1
1
2 ) sin(sin(𝑋𝑋4𝑣𝑣𝑅𝑅1))

+ 20.84|𝑠𝑠𝑠𝑠𝑠𝑠(cos(𝑋𝑋3𝐴𝐴𝑅𝑅1))|�𝑋𝑋1𝑠𝑠𝑠𝑠𝑙𝑙𝑅𝑅2 + log(𝑋𝑋3𝐴𝐴𝑅𝑅1) + 𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅1
1
4 � + 10.89𝑋𝑋1𝑘𝑘𝑘𝑘𝑝𝑝𝑅𝑅1

1
4

− 10.89𝑅𝑅𝑅𝑅𝑅𝑅𝑄𝑄𝑅𝑅2
1
2 + 48.94 

Model M3: 

−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 14.08𝑋𝑋1𝑅𝑅2 − 3.755𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅1 − 3.755𝑥𝑥𝑥𝑥1𝑣𝑣𝑅𝑅2 + 13.63𝑋𝑋4𝐴𝐴𝑣𝑣𝑅𝑅2 + 13.63𝑋𝑋1𝑀𝑀𝑀𝑀𝑑𝑑𝑠𝑠
+ 3.075 cos(𝑋𝑋1𝑣𝑣𝑅𝑅2 tan(𝑋𝑋1𝑠𝑠𝑠𝑠𝑙𝑙𝑅𝑅1))− 1.246 exp(− sin(𝑋𝑋4𝑅𝑅1 + 𝑋𝑋𝑋𝑋𝑋𝑋𝐷𝐷𝑅𝑅1))
− 35.19 tan(exp(−𝑋𝑋4𝑣𝑣𝑅𝑅1)) + 230 cos(𝑋𝑋3𝐴𝐴𝑣𝑣𝑅𝑅2𝑋𝑋1𝑀𝑀𝑀𝑀𝑑𝑑𝑅𝑅2) − 3.755 log(𝑋𝑋2𝑣𝑣𝑅𝑅1)
+ 13.84 log(𝑋𝑋1𝑃𝑃𝑃𝑃𝑟𝑟𝑅𝑅1)− 48.83 tan(𝑋𝑋3𝐴𝐴𝑅𝑅1) − 35.19 exp(−𝑋𝑋1𝑅𝑅2)
− 868.5 exp(−𝑋𝑋3𝐴𝐴𝑣𝑣𝑅𝑅2) + 3.755𝑋𝑋0𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠(𝑋𝑋5𝐴𝐴𝑣𝑣𝑅𝑅2 + 𝑋𝑋0𝑠𝑠𝑜𝑜𝑙𝑙𝑠𝑠)

+
3.87𝑋𝑋1𝑅𝑅2

0.275(𝑋𝑋1𝑣𝑣𝑅𝑅1 + 𝑋𝑋1𝑀𝑀𝑀𝑀𝑑𝑑𝑠𝑠) + 13.84 tan(𝑋𝑋3𝐴𝐴𝑅𝑅1) (𝑋𝑋3𝐴𝐴𝑣𝑣𝑅𝑅2 − 4.932)

+
6.587 log(𝑋𝑋3𝐴𝐴𝑅𝑅1) (𝑋𝑋2𝐴𝐴𝑅𝑅1 − 4.714)

cos(𝑋𝑋3𝐴𝐴𝑣𝑣𝑅𝑅2 + 𝑋𝑋0𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠) + 617.70  

Subscripts: 

R1 – Dienophile 
R2- Diene 
S- Solvent 
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Appendix B- Case 2 supplementary information 

B.1 – MATLAB code for using CorrLASSO algorithm 

clear 

clc 

gen_table_initial=[78 117 49  167  180  143  185  153 186 79 94 

170 44]; 

[row_gen,column_gen]=size(gen_table_initial); 

load internal.txt 

load external.txt 

load Yint.txt 

load Yext.txt 

yint=Yint; 

yext=Yext; 

xint=internal; 

xext=external; 

 [row,column]=size(xint); 

     x=[]; 

      xe=[]; 

     for column_iter=1:column_gen 

         x=[x xint(:,gen_table_initial(column_iter))]; 

     end 

     for col_ex_iter=1:column_gen 

         xe=[xe xext(:,gen_table_initial(col_ex_iter))]; 
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     end 

    real_x=[x; xe]; 

    real_y=[yint; yext]; 

     [B, fitinfo]=corrlasso(real_x,real_y); 

     coeff=B(:,fitinfo.IndexMinMSE); 

     yfitint=x*coeff; 

     yfitext=xe*coeff; 

     %internal validation 

     tss=sum((yint-mean(yint)).^2); 

     rss=sum((yint-yfitint).^2); 

     rsqr=1-rss/tss; 

     %external validation 

     tssex=sum((yext-mean(yext)).^2); 

     rssex=sum((yext-yfitext).^2); 

     rsqrex=1-rssex/tssex; 

     disp(rsqr) 

     disp(rsqrex) 

     disp(B(:,fitinfo.IndexMinMSE)) 
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B.2 – MATLAB code for CorrLASSO function 

function [B, fitinfo]= corrlasso(x,y) 

lambda=logspace(-5,-1,100); 

initial_B=regress(y,x); 

maxdex=[]; 

for i=1:length(lambda)    

    B(:,i)=initial_B; 

   [m, ind]=min(abs(B(:,i))); 

   %check correlation if more than one minimum value exists 

   if length(ind)>1 

       for mindex=1:length(ind) 

          r(mindex)=corrcoef(x(:,mindex),y);  

       end 

       [k,maxdex]=max(abs(r)); 

   end 

   s_count=0; 

   %finding s value for minimum PE 

   for s=0:.01:1 

   s_count=s_count+1; 

   B(:,i)=s*B(:,i); 

   if maxdex~=[] 

       B(maxdex,i)=initial_B(maxdex);    

   end 
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   y_check=B(:,i)*x; 

   err(s_count)=immse(y,y_check); 

   pe(s_count)= err(s_count)+ var((y-y_check)); 

   end 

   [l, mins]=min(pe); 

   B(:,i)=0.01*mins*B(:,i); 

   mserr(i)=err(mins)+lambda(i)*(sum(abs(B(:,i)))); 

end 

%finding minimum MSE 

   [m,minmse]=min(mserr);  

%recording min MSE values 

    fitinfo.IndexMinMSE=minmse; 

    fitinfo.minMSE=m; 

    fitinfo.minPE=l;   

end 
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Appendix C- List of Descriptors Used 

C.1 –Descriptors Name and Description 

Name Description Indices 
MW molecular weight Constitutional indices 
AMW average molecular weight Constitutional indices 

Sv 
sum of atomic van der Waals volumes (scaled on Carbon 
atom) Constitutional indices 

Se 
sum of atomic Sanderson electronegativities (scaled on 
Carbon atom) Constitutional indices 

Sp sum of atomic polarizabilities (scaled on Carbon atom) Constitutional indices 
Si sum of first ionization potentials (scaled on Carbon atom) Constitutional indices 

Mv 
mean atomic van der Waals volume (scaled on Carbon 
atom) Constitutional indices 

Me 
mean atomic Sanderson electronegativity (scaled on 
Carbon atom) Constitutional indices 

Mp mean atomic polarizability (scaled on Carbon atom) Constitutional indices 
Mi mean first ionization potential (scaled on Carbon atom) Constitutional indices 
nAT number of atoms Constitutional indices 
nSK number of non-H atoms Constitutional indices 
nBT number of bonds Constitutional indices 
nBO number of non-H bonds Constitutional indices 
nBM number of multiple bonds Constitutional indices 
SCBO sum of conventional bond orders (H-depleted) Constitutional indices 
RBN number of rotatable bonds Constitutional indices 
RBF rotatable bond fraction Constitutional indices 
nDB number of double bonds Constitutional indices 
nTB number of triple bonds Constitutional indices 
nAB number of aromatic bonds Constitutional indices 
nH number of Hydrogen atoms Constitutional indices 
nC number of Carbon atoms Constitutional indices 
nN number of Nitrogen atoms Constitutional indices 
nO number of Oxygen atoms Constitutional indices 
nP number of Phosphorous atoms Constitutional indices 
nS number of Sulfur atoms Constitutional indices 
nF number of Fluorine atoms Constitutional indices 
nCL number of Chlorine atoms Constitutional indices 
nBR number of Bromine atoms Constitutional indices 
nI number of Iodine atoms Constitutional indices 
nB number of Boron atoms Constitutional indices 
nHM number of heavy atoms Constitutional indices 
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nHet number of heteroatoms Constitutional indices 
nX number of halogen atoms Constitutional indices 
H% percentage of H atoms Constitutional indices 
C% percentage of C atoms Constitutional indices 
N% percentage of N atoms Constitutional indices 
O% percentage of O atoms Constitutional indices 
X% percentage of halogen atoms Constitutional indices 
nCsp3 number of sp3 hybridized Carbon atoms Constitutional indices 
nCsp2 number of sp2 hybridized Carbon atoms Constitutional indices 
nCsp number of sp hybridized Carbon atoms Constitutional indices 
nCIC number of rings (cyclomatic number) Ring descriptors 
nCIR number of circuits Ring descriptors 
TRS total ring size Ring descriptors 
Rperim ring perimeter Ring descriptors 
Rbrid ring bridge count Ring descriptors 
MCD molecular cyclized degree Ring descriptors 
RFD ring fusion density Ring descriptors 
RCI ring complexity index Ring descriptors 
NRS number of ring systems Ring descriptors 
NNRS normalized number of ring systems Ring descriptors 
nR03 number of 3-membered rings Ring descriptors 
nR04 number of 4-membered rings Ring descriptors 
nR05 number of 5-membered rings Ring descriptors 
nR06 number of 6-membered rings Ring descriptors 
nR07 number of 7-membered rings Ring descriptors 
nR08 number of 8-membered rings Ring descriptors 
nR09 number of 9-membered rings Ring descriptors 
nR10 number of 10-membered rings Ring descriptors 
nR11 number of 11-membered rings Ring descriptors 
nR12 number of 12-membered rings Ring descriptors 
nBnz number of benzene-like rings Ring descriptors 
ARR aromatic ratio Ring descriptors 
D/Dtr03 distance/detour ring index of order 3 Ring descriptors 
D/Dtr04 distance/detour ring index of order 4 Ring descriptors 
D/Dtr05 distance/detour ring index of order 5 Ring descriptors 
D/Dtr06 distance/detour ring index of order 6 Ring descriptors 
D/Dtr07 distance/detour ring index of order 7 Ring descriptors 
D/Dtr08 distance/detour ring index of order 8 Ring descriptors 
D/Dtr09 distance/detour ring index of order 9 Ring descriptors 
D/Dtr10 distance/detour ring index of order 10 Ring descriptors 
D/Dtr11 distance/detour ring index of order 11 Ring descriptors 
D/Dtr12 distance/detour ring index of order 12 Ring descriptors 
ZM1 first Zagreb index Topological indices 
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ZM1V first Zagreb index by valence vertex degrees Topological indices 
ZM1Kup first Zagreb index by Kupchik vertex degrees Topological indices 
ZM1Mad first Zagreb index by Madan vertex degrees Topological indices 
ZM1Per first Zagreb index by perturbation vertex degrees Topological indices 

ZM1MulPer 
first Zagreb index by multiplicative perturbation vertex 
degrees Topological indices 

ZM2 second Zagreb index Topological indices 
ZM2V second Zagreb index by valence vertex degrees Topological indices 
ZM2Kup second Zagreb index by Kupchik vertex degrees Topological indices 
ZM2Mad second Zagreb index by Madan vertex degrees Topological indices 
ZM2Per second Zagreb index by perturbation vertex degrees Topological indices 

ZM2MulPer 
second Zagreb index by multiplicative perturbation vertex 
degrees Topological indices 

ON0 overall modified Zagreb index of order 0 Topological indices 

ON0V 
overall modified Zagreb index of order 0 by valence 
vertex degrees Topological indices 

ON1 overall modified Zagreb index of order 1 Topological indices 

ON1V 
overall modified Zagreb index of order 1 by valence 
vertex degrees Topological indices 

Qindex quadratic index Topological indices 
BBI Bertz branching index Topological indices 
DBI Dragon branching index Topological indices 
SNar Narumi simple topological index (log function) Topological indices 
HNar Narumi harmonic topological index Topological indices 
GNar Narumi geometric topological index Topological indices 
Xt total structure connectivity index Topological indices 
Dz Pogliani index Topological indices 
Ram ramification index Topological indices 
BLI Kier benzene-likeliness index Topological indices 
Pol polarity number Topological indices 
LPRS log of product of row sums (PRS) Topological indices 
MSD mean square distance index (Balaban) Topological indices 
SPI superpendentic index Topological indices 
PJI2 2D Petitjean shape index Topological indices 
ECC eccentricity Topological indices 
AECC average eccentricity Topological indices 
DECC eccentric Topological indices 
MDDD mean distance degree deviation Topological indices 
UNIP unipolarity Topological indices 
CENT centralization Topological indices 
VAR variation Topological indices 
ICR radial centric information index Topological indices 
SMTI Schultz Molecular Topological Index (MTI) Topological indices 
SMTIV Schultz Molecular Topological Index by valence vertex Topological indices 
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degrees 
GMTI Gutman Molecular Topological Index Topological indices 

GMTIV 
Gutman Molecular Topological Index by valence vertex 
degrees Topological indices 

Xu Xu index Topological indices 
CSI eccentric connectivity index Topological indices 
Wap all-path Wiener index Topological indices 
S1K 1-path Kier alpha-modified shape index Topological indices 
S2K 2-path Kier alpha-modified shape index Topological indices 
S3K 3-path Kier alpha-modified shape index Topological indices 
PHI Kier flexibility index Topological indices 
PW2 path/walk 2 - Randic shape index Topological indices 
PW3 path/walk 3 - Randic shape index Topological indices 
PW4 path/walk 4 - Randic shape index Topological indices 
PW5 path/walk 5 - Randic shape index Topological indices 
MAXDN maximal electrotopological negative variation Topological indices 
MAXDP maximal electrotopological positive variation Topological indices 
DELS molecular electrotopological variation Topological indices 
TIE E-state topological parameter Topological indices 
Psi_i_s intrinsic state pseudoconnectivity index - type S Topological indices 
Psi_i_A intrinsic state pseudoconnectivity index - type S average Topological indices 
Psi_i_0 intrinsic state pseudoconnectivity index - type 0 Topological indices 
Psi_i_1 intrinsic state pseudoconnectivity index - type 1 Topological indices 
Psi_i_t intrinsic state pseudoconnectivity index - type T Topological indices 
Psi_i_0d intrinsic state pseudoconnectivity index - type 0d Topological indices 
Psi_i_1d intrinsic state pseudoconnectivity index - type 1d Topological indices 
Psi_i_1s intrinsic state pseudoconnectivity index - type 1s Topological indices 

Psi_e_A 
electrotopological state pseudoconnectivity index - type S 
average Topological indices 

Psi_e_0 electrotopological state pseudoconnectivity index - type 0 Topological indices 
Psi_e_1 electrotopological state pseudoconnectivity index - type 1 Topological indices 
Psi_e_t electrotopological state pseudoconnectivity index - type T Topological indices 

Psi_e_0d 
electrotopological state pseudoconnectivity index - type 
0d Topological indices 

Psi_e_1d 
electrotopological state pseudoconnectivity index - type 
1d Topological indices 

Psi_e_1s 
electrotopological state pseudoconnectivity index - type 
1s Topological indices 

BAC Balaban centric index Topological indices 
LOC lopping centric index Topological indices 
X0 connectivity index of order 0 Connectivity indices 
X1 connectivity index of order 1 (Randic connectivity index) Connectivity indices 
X2 connectivity index of order 2 Connectivity indices 
X3 connectivity index of order 3 Connectivity indices 
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X4 connectivity index of order 4 Connectivity indices 
X5 connectivity index of order 5 Connectivity indices 
X0A average connectivity index of order 0 Connectivity indices 
X1A average connectivity index of order 1 Connectivity indices 
X2A average connectivity index of order 2 Connectivity indices 
X3A average connectivity index of order 3 Connectivity indices 
X4A average connectivity index of order 4 Connectivity indices 
X5A average connectivity index of order 5 Connectivity indices 
X0v valence connectivity index of order 0 Connectivity indices 
X1v valence connectivity index of order 1 Connectivity indices 
X2v valence connectivity index of order 2 Connectivity indices 
X3v valence connectivity index of order 3 Connectivity indices 
X4v valence connectivity index of order 4 Connectivity indices 
X5v valence connectivity index of order 5 Connectivity indices 
X0Av average valence connectivity index of order 0 Connectivity indices 
X1Av average valence connectivity index of order 1 Connectivity indices 
X2Av average valence connectivity index of order 2 Connectivity indices 
X3Av average valence connectivity index of order 3 Connectivity indices 
X4Av average valence connectivity index of order 4 Connectivity indices 
X5Av average valence connectivity index of order 5 Connectivity indices 
X0sol solvation connectivity index of order 0 Connectivity indices 
X1sol solvation connectivity index of order 1 Connectivity indices 
X2sol solvation connectivity index of order 2 Connectivity indices 
X3sol solvation connectivity index of order 3 Connectivity indices 
X4sol solvation connectivity index of order 4 Connectivity indices 
X5sol solvation connectivity index of order 5 Connectivity indices 
XMOD modified Randic index Connectivity indices 
RDCHI reciprocal distance sum Randic-like index Connectivity indices 
RDSQ reciprocal distance sum inverse Randic-like index Connectivity indices 
X1Kup Kupchik connectivity index Connectivity indices 
X1Mad connectivity topochemical index Connectivity indices 
X1Per perturbation connectivity index Connectivity indices 
X1MulPer multiplicative perturbation connectivity index Connectivity indices 
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