

Machine Learning Algorithms for

QSPR/QSAR Predictive Model Development Involving
High-Dimensional Data

by

Shounak Datta

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 4, 2019

Keywords: machine learning, cheminformatics, hybrid algorithms, predictive model

Copyright 2019 by Shounak Datta

Approved by

Mario R. Eden, Chair, Professor of Chemical Engineering
Allan E. David, Associate Professor of Chemical Engineering
Elizabeth Lipke, Associate Professor of Chemical Engineering

Thomas Vincent Gallagher, Professor of Forestry and Wildlife Sciences

ii

Abstract

With advancements in fields such as computational chemistry, computer-aided molecular

design and chemoinformatics, the scientific community has now become inundated with a very

large set of molecular descriptors. The advantage of availability of large set of descriptors is that

computational modelers can now capture different characteristics of molecules of varying sizes

in different solvent/reaction mediums. However, the drawback is that during model development,

the number of descriptors can exceed the number of instances in a dataset. Such datasets are

known as high-dimensional data matrix. This is especially the case when the process of data

generation is complex, time-consuming and/or resource intensive. Apart from these reasons, this

can also happen when a specific product needs to be developed for a very specific use (e.g. drugs

for a specific physical condition, polymers of a specific property, reaction in a specific

environment). These cases tend to be very condition-specific, e.g. type of chemical species,

activities or responses in specific environment, temperature, pressure, etc. The challenges of

modeling such cases include but are not limited to; difficulty of generating a generalizable

model, large model uncertainty and overfitting of model(s) generated. To address the

aforementioned drawbacks and ensuing challenges, in this work, we have developed hybrid

algorithms which are efficient and can generate generalizable models. These algorithms

overcome the disadvantage of traditional modeling techniques that break down when the number

of descriptors exceed the sample size. The developed algorithms, in our work, can be

incorporated in software platforms, useful for automated design of product-centric industrial

processes. Such software should be capable of analyzing experimental data and generating the

best possible molecular structure for the specific constraints and objectives. It is also required to

iii

be fast and accurate at the same time. In the past, such situations were tackled with ab initio

calculations, later replaced by DFT (Density Function Theory) based calculations. Apart from

being computationally expensive, such methods include problems of manual handling of data for

molecular design operations. To address such limitations, molecular descriptors (0D-7D) became

attractive alternatives. However, the complexity of the calculation of descriptors increases with

the complexity of the molecular structure. 2D (2 dimensional) descriptors, such as connectivity

index descriptors, have been proven to be efficient in model generation with significant

accuracy. Also, the design calculation steps are not computationally expensive. For these

reasons, in this work, the generated models are based on 2D molecular descriptors. In this work,

two unique condition-specific situations have been discussed. Case 1 encompasses relating

reactant and solvent structures to the reaction rate constants for Diels Alder reactions. As

reaction rates are more prone to depend of inter-atom connectivity, connectivity index

descriptors were used to develop this model. A hybrid GA-DT (Genetic Algorithm-Decision

Tree) algorithm was developed to select features and for model development. This case is unique

as it involves the study of three different chemical species while generating the predictive model,

and hence a challenge for both traditional and newly developed hybrid algorithms. Further

improvements for the model were proposed using Multi-Gene Genetic Programming (MGGP)

algorithm to derive non-linear models. Case 2 is based on developing a model to relate structures

of 9-Anilinoacridine derivatives with respective DNA-drug binding affinity values. Although

this case has only one group of chemical species under consideration, challenges emerge when

two or more models with similar metrics are generated. Although the genetic algorithm was used

for feature selection, initially, a novel adaptive version of LASSO (Least Absolute Shrinkage and

Selection Operator) algorithm was developed. This adaptive correlation-based LASSO

iv

(CorrLASSO) was used to perform regression and shrinkage calculations. To evaluate model

fitness, R2 and Q2 values were calculated that represent model internal and external validation

respectively. For the second case, mean square error (MSE) was also calculated to compare the

performances of LASSO and CorrLASSO algorithm.

v

Acknowledgements

This astonishing journey of last five years, in many ways, has occurred in debt of many

amazing persons, both in Auburn and back home. I was fortunate to have acquaintance with

people who admired a poetic soul in STEM; people who saw a philosopher in me and supported

that ideology and philosophy while blossoming through scientific research. Above all, I was

fortunate to have acquaintance with people who cared to know, understand, and be part of this

journey, making these five years to be the best part of my life so far.

First and foremost, my heartfelt gratitude to Dr. Mario R. Eden, my thesis supervisor.

None can ask for a better supervisor. This part of my life has been very enjoyable due to his

guidance, friendship, and endless support. He has provided me opportunities not only to pursue

my passion for research, but also to present my work and connect with my peers both in US and

abroad. Nothing can be truer than the fact that the advisor, particularly while pursuing a

doctorate, can make all the difference in growing as a researcher, and a wondering soul. Dr. Eden

did everything humanly possible to provide me with the environment to grow as a researcher, a

professional, a problem solver, and a seeker of knowledge. For that, I am forever in debt of his

gracious nature.

I would also like to take the opportunity to acknowledge the support provided by my

committee members, Dr. Allan David, Dr. Elizabeth Lipke, and Dr. Thomas Gallagher. Their

feedback, support, and constant interest in my work can be considered of utmost importance for

development of my dissertation, as well as the quality of my work. To add, I have been the most

vi

fortunate to have the following people as my peers and groupmates. The list includes, but is not

limited to, Dr. Vikrant Dev, Dr. Narendra Sadhwani, Dr. Anjan Kumar Tula, Dr. Sawitree

Kalakul, Dr. Robert H. Herring III, Mr. Bernardo Lausada, and Mr. Pengcheng Li. The bond of

friendship, companionship, and camaraderie I have shared with each and every one of them is

priceless. These incredibly smart and wise peers of mine have always been able to help me with

professional and academic advice, suggestions, and comments. Special thanks to both Dr. Robert

H. Herring III, and Dr. Vikrant Dev for always collaborating with me in my projects.

In life, it’s not only people around you, but also people you never meet, that sometimes

end up leaving something behind, making your life a better one. This section is for the people

I’ve never met, but who inspired or helped me get through the challenges of this phase of my

professional journey. With that spirit, I’d like to thank John Lenon (Imagine), Frank Sinatra (My

Way), Edith Piaf (Rien de Rien), Nada (Senza Un Perche), Johhny Cash (Hurt), 4 Non Blondes

(What’s Up), Queen (Break Free), Bee Gees (Stayin Alive), Franz Lehar (The Merry Widow

Waltz), Claude-Michel Schönberg (One Day More, Les Mis), and last but not the least, Ludovico

Einaudi (Divenire, Experience, Prima Verra, Newton’s Cradle). To add, a special gratitude for

the unnamed and unknown heroes who have discovered palatability of coffee, boiled eggs, and

bananas.

A special thanks to all the friends I’ve made during my stay in Auburn. The list of their

name and their contributions in my life deserve a thesis dissertation of its own. However, to keep

it short, I would like to thank the graduate recruits of Fall 2013. In a literal sense, “we had joy,

we had fun, we had seasons in the sun” (Terry Jacks). Thanks to all my friends in Miller Writing

Center, specially David Vinson, Phineas Dowling, Katie Kirk, James Truman, Savanna Davey,

and Jacob Dylian Geiger.

https://en.wikipedia.org/wiki/Claude-Michel_Sch%C3%B6nberg

vii

 Additionally, special thanks for my parents, who supported me through the decision of

leaving a lucrative job back home and pursuing my passion for research. Also, I would like to

express my gratitude to my parents-in-law, my sister-in-law, for always concerning themselves

with my worries and wellbeing. And in the end, to the girl who I saw distributing food in a

carnival, fell in love with, and who chose be the most important part of my life, four years ago;

accepting the hardships of starting a family abroad all by herself, Joyeeta Das. Challenges came

in bundles, storms brewed, both personal and professional, and all were much easier to deal with

due to her elegant presence, endless support, encouragement, and love.

viii

Table of Contents

Abstract ... ii

Acknowledgements ... v

List of Figures .. xi

List of Tables .. xii

List or Abbreviations ... xiii

1. Introduction ... 1

1.1. Scope and Objectives .. 3

1.2. Research Significance ... 4

1.3. Cases presented ... 6

1.4. Organization .. 10

2. Background ... 12

2.1. Molecular Descriptors ... 12

2.1.1. 0D Descriptor .. 15

2.1.2. 1D Descriptor .. 16

2.1.3. 2D Descriptor .. 16

2.1.3.1. Connectivity Indices ... 17

2.1.4. 3D Descriptors .. 19

2.1.5. 4D-7D Descriptors .. 21

2.2. Model Development .. 21

2.2.1. Molecular Mechanics .. 22

2.2.2. Quantum Chemical Methods .. 22

2.2.3. QSPR/QSAR ... 25

2.3. Variable Selection ... 27

2.3.1. Genetic Algorithm... 27

2.3.1.1. Selection Strategies ... 30

2.3.1.1.1. Proportional Roulette Wheel .. 30

2.3.1.1.2. Rank-based Roulette Wheel ... 31

2.3.1.1.3. Tournament Selection .. 33

2.3.1.2. Crossover Strategies .. 35

2.3.1.2.1. Order Crossover ... 35

2.3.1.2.2. Order 2 Crossover .. 36

ix

2.3.1.2.3. Cycle Crossover ... 36

2.3.1.2.4. Position based Crossover ... 37

2.3.1.3. Mutation Strategies ... 38

2.3.1.3.1. Insert Mutation ... 39

2.3.1.3.2. Inversion Mutation ... 39

2.3.1.3.3. Swap Mutation ... 39

2.3.1.3.4. Scramble Mutation ... 39

2.3.1.3.5. Reversing Mutation .. 39

2.3.1.3.6. Creep Mutation .. 40

2.3.1.3.7. Uniform Mutation .. 40

2.3.2. Decision Tree .. 40

2.3.2.1. Iterative Dichotomiser 3 (ID3) .. 41

2.3.2.2. C4.5 algorithm .. 42

2.3.2.3. Classification and Regression Trees (CART) ... 43

2.3.2.4. Random Forest .. 44

2.3.2.5. Decision Tree in QSAR .. 44

2.3.3. Hybrid Algorithms .. 45

2.3.4. Multi Gene Genetic Programming (MGGP) ... 46

2.4. Coefficient Generation .. 50

2.4.1. Multiple Linear Regression (MLR) .. 50

2.4.2. LASSO Regression ... 52

3. Methodology ... 56

3.1. Case 1: Reaction Rate Constant of Diels-Alder Reaction ... 57

3.1.1. Divide and Conquer Algorithm ... 57

3.1.2. Decision Tree Algorithm .. 59

3.1.3. Modified Genetic Algorithm ... 59

3.1.4. Hybrid GA-DT Algorithm Development .. 60

3.1.5. Multi-Gene Genetic Programming (MGGP) .. 62

3.2. Case 2: Predicting DNA Drug Binding Affinity of 9-Anilinoacridine Derivatives 64

4. Results ... 67

4.1. Case Study 1 ... 67

4.2. Case Study 2 ... 74

5. Conclusions and Future Directions ... 81

5.1. Future Directions .. 83

x

6. References ... 85

Appendix A- Case 1 supplementary information.. 98

A.1 – MATLAB Code for Divide and Algorithm .. 98

A.2 - MATLAB Code for Decision tree function ... 100

A.3 - MATLAB Code for regression function .. 103

A.4 – MATLAB code for Hybrid GA-DT Algorithm .. 105

A.5 – Modified MATLAB functions of GPTIPS 2.0 for MGGP algorithm ... 113

A.5.1- evalfitness function .. 113

A.5.2- gpmodelfilter Class .. 116

A.5.3- Models generated using MGGP algorithm .. 136

Appendix B- Case 2 supplementary information .. 137

B.1 – MATLAB code for using CorrLASSO algorithm ... 137

B.2 – MATLAB code for CorrLASSO function ... 139

Appendix C- List of Descriptors Used .. 141

C.1 –Descriptors Name and Description ... 141

xi

List of Figures

Figure 1-1: Sample Diels-Alder reaction .. 8
Figure 2-1: Generation of Descriptors from Molecular Structures ... 15
Figure 2-2: Example of constitutional descriptor correlation. .. 16
Figure 2-3: 3-methyl hexane molecule ... 19
Figure 2-4: Overview of geometrical descriptors (Herring, 2014) ... 20
Figure 2-5: Visualization of QSAR approach. .. 26
Figure 2-6: Flowchart of Genetic Algorithm .. 29
Figure 2-7: Proportional roulette wheel strategy .. 30
Figure 2-8: Probability of individual selection using (a) proportional and (b) rank-based roulette wheel
strategies ... 32
Figure 2-9: Tournament selection strategy ... 34
Figure 2-10: Order crossover for (a) single point and (b) double point operation 35
Figure 2-11: Order 2 Crossover (Scatter point crossover) .. 36
Figure 2-12: Cycle Crossover operation ... 37
Figure 2-13: position based crossover strategies .. 38
Figure 2-14: Mutation operation in binary GA optimization .. 39
Figure 2-15: Introduction of Decision Tree, North (1968) ... 41
Figure 2-16: Decision Tree Algorithm .. 45
Figure 2-17: GP tree with symbolic regression .. 47
Figure 2-18: MGGP crossover operation (Gandomi et al., 2011) ... 48
Figure 2-19: MGGP mutation operation (Gandomi et al., 2011) .. 49
Figure 2-20: Individual development of (a) Genetic Algorithm, and (b) Multi-gene genetic Programing 50
Figure 2-21: Sample Multiple Linear Equation .. 51
Figure 2-22: LASSO Coefficient shrinkage operation.. 53
Figure 2-23: LASSO algorithm flowchart .. 55
Figure 3-1: Molecular Structures Developed in Avogadro Platform .. 56
Figure 3-2: Problem size reduction by Divide and Conquer Algorithm ... 58
Figure 3-3: Comparison of single point swap and scatter swap in crossover operation 60
Figure 3-4: Developed hybrid GA-DT algorithm flowchart ... 61
Figure 3-5: Flowchart of CorrLASSO regression algorithm .. 66
Figure 4-1: Q2 Value improvement of developed models with number of generations.............................. 68
Figure 4-2: Observed vs predicted -log(k) values using hybrid GA-DT algorithm 69
Figure 4-3: Observed vs predicted -log(k) values using M1 ... 72
Figure 4-4: Observed vs predicted -log(k) values using M2 ... 73
Figure 4-5: Observed vs predicted -log(k) values using M3 ... 73
Figure 4-6: Observed vs. predicted log(K) values using genetic algorithm.. 75
Figure 4-7: MSE analysis of model for log(K) using basic LASSO regression ... 76
Figure 4-8: Observed vs predicted log(K) values for model generated using LASSO regression 76
Figure 4-9: MSE analysis of the model using CorrLASSO regression... 78
Figure 4-10: Observed vs predicted log(K) values using CorrLASSO algorithm 79

xii

List of Tables

Table 3-1: MGGP parameters used for model development .. 63
Table 4-1: Improvement of initial model confidence with addition of descriptors in GA and GA-DT
method .. 67
Table 4-2: Properties of non-linear models developed and parameters used .. 71
Table 4-3: Coefficients of descriptors based on MLR, LASSO and CorrLASSO regression 77

xiii

List or Abbreviations

AM1 Austin Model 1

CAMD Computer Aided Molecular Design

CART Classification and Regression Trees

CI Connectivity Index

DFT Density Function Theory

DT Decision Tree

ESCAPE European Symposium of Computer Aided Process Engineering

FOCAPD Foundation of Computer Aided Process Design

GA Genetic Algorithm

GA-DT Genetic Algorithm- Decision Tree

GP Genetic Programming

HF Hartree- Fock

ID3 Iterative Dichotomiser 3

LASSO Least Absolute Square and Shrinkage Operator

LCAO Linear Combination of Atomic Orbitals

MD Molecular Descriptor

MGGP Multi-Gene Genetic Programming

MLR Multiple Linear Regression

MPPSE Multi-scale Product and Process System Engineering

MSE Mean Squared Error

PCA Principal Component Analysis

xiv

PE Prediction Error

PM Property Model

PM3 Parameterized Model 3

PSE Process Systems Engineering

QM Quantum Mechanics

QSAR Quantitative Structure-Activity Relationship

QSPR Quantitative Structure-Property Relationship

RMSE Root Mean Squared Error

SAR Structure-Activity Relationship

SVR Support Vector Regression

TI Topological Index

TSP Travelling Salesman Problem

1

1. Introduction

According to Staphanopoulos and Reklaitis (2011), chemical industries transformed to

become more product-centric than process-centric in the period of 1980-2000. In the process-

centric period, products were considered to be molecules that can be used for a specific function

and R&D was more focused on increasing process efficiency. This period produced the famous

notion, “Chemical Engineers either make money, or save money.” The product-centric period

required the chemical industries to focus more on development and sale of value-added materials

that can be marketed based on performance (Hill, 2009). These products came to be known as

chemical products. Grossman and Westerberg (2000) have also discussed this shift in focus by

the chemical industries. They predicted that, demands for improved earnings performance from

commodity and specialty product manufacture will become a significant method of attracting

investors in the industries. According to their predictions, such driving forces were expected to

lead to process design expanding to accommodate product design; where the particular emphasis

would be on designing new molecular structures of chemical species. This shift in process design

has influenced Process System Engineering (PSE) to add branches to its process roots; and

include project management, multi-scale operations, even whole supply chain (Sargent, 2005).

This expansion of PSE community also attracted and forced chemical engineers to collaborate

with other disciplines like material sciences, computational chemistry, electrochemistry, etc. to

pursue product design (Klatt and Marquardt, 2009). Klatt and Marquardt also suggested

widening the scope of PSE into multi-scale product and process system engineering (MPPSE) to

address product design in an integrated fashion. Adjiman and Galindo (2011) suggested the term

Molecular Systems Engineering to formalize the recognition of designing molecules and

materials as an integral part of designing and optimizing processes and products. Glavic (2012)

2

also mentioned that in the period of 1985-2006, integrated product development and design

became one of the significant parts of PSE conferences. Certainly, there has been a successful

attempt to illustrate and elevate the relevance of product design over the years in the PSE and the

chemical engineering community.

As stated in the article of Stephanopoulos and Reklaitis (2011), in the international PSE

conference, named Foundations of Computer Aided Process Design (FOCAPD), held in 2005 at

Princeton University, was themed to be “Discovery through Product and Process Design”. This

conference made an important contribution to the field of product design as it promoted a very

broad range of issues, ideas and fields related to product design. These ranged from designing

simple small molecules, functional molecules such as dyes to structured products which perform

certain functions such as batteries and products closely connected to emotional disposition of

humans such as clothing. A significant amount of contributions from PSE community on product

design focused on optimal generation of molecular structures that can satisfy specific needs.

These structure development works are highly dependent on deriving models to assume a

specific property or activity of a molecular structure using physico-chemical properties of the

molecular structures under study. Although Stephanopoulos and Reklaitis (2011) expressed their

doubts towards such operations due to reduction in reliability of mathematical models relating

structures to properties, Mlinar (2015) has expressed that almost over 151 new products have

been design in recent times using Computer Aided Molecular Design (CAMD) approaches.

These products varied from polymers to pharmaceutical drugs to corrosion inhibition fluids.

However, Segall (2012) raised his skepticism in the abilities of computer aided drug design

(CADD) processes. He expressed that the prediction in drug discovery is not yet sufficient to

permit a design paradigm, as demonstrated by the large number of compounds that must be

3

synthesized and tested to identify a successful drug. However, many drug-like index descriptors

have been utilized for studies in present times. He also did not comment on whether choosing

proper descriptors and model boosting could lead to successful drug design.

1.1. Scope and Objectives

In the present era of CAMD, a vast majority of the molecular design problems are

addressed using computationally expensive approaches, such as quantum mechanics, molecular

mechanics, density function theory, and electromagnetic valence bond theory. These approaches,

although promising high accuracy, come with problems including time consumption,

computational power consumption, and geometric evaluation restrictions. Geometric evaluation

restrictions are generally caused by algorithms used to optimize the geometry. They can surely

generate models with higher accuracy, but the consumed time and computational energy is

exponentially high. Also, the product design operation is rarely an automated one using these

models. Even if such system is automated, reaching an optimum result can consume much higher

computational energy and time. Also, such developed models, although published worldwide,

can be rarely used by communities not having the privileges of high computational powers

provided by well-known HPC (High Power Computer) centers. For these reasons, a better

approach of developing predictive models using lesser computational power and time is of

paramount importance. QSAR (Quantitative Structure-Activity Relationship), in this situation,

provides a lesser time consuming option. However, the model applications are dependent on

descriptors used, and the size of the dataset available for model development.

With the increase in demands of personalized product development, there is high

uncertainty that a high volume of experimental data for a specific product design problem may

4

be available. Although the PSE focus has been on developing such predictive models for a while

now, the future can demand a software platform for further analysis of these product

development questions. This requires development of algorithms for QSAR generation and

hybrid machine learning algorithms can serve an important purpose here.

This project, aiming at developing predictive models using generic algorithms, can

obviously show promise in dealing with such technical questions. The project used descriptors

that are computationally easy to calculate but capture a significant amount of molecular

information. The focus was to develop models with higher predictive accuracy. While doing so,

caution was exercised to not overfit the training set. It was assumed that the models are

applicable within a limited chemical space. For that reason, the focus was put on developing

generic algorithms in addition to generalizable models. The proposed algorithms showcase two

unique situations. One case involved multiple classes of chemical species influencing the

particular property; and the second case involved generation of multiple predictive models with

similar accuracy. Both involve questions not been answered significantly using QSAR

approaches. The project also briefly describes the hybrid algorithms developed, used, and

modified, and the considerations required for such alterations.

1.2. Research Significance

Although, the end of Moore’s law can be noticed as present technologies have met their

limits in producing smaller transistors at present, chip manufacturing companies are investing

extensively to develop post-Moore’s law devices (Pavlus, 2015). These chips, if developed, can

play a crucial part in significantly improving the current computational efficiency. Strategies

such as ‘heterotic computing’ that involve usage of combination of two or more computational

5

systems are also emerging to help accelerate progress in a post-Moore’s law world (Kendon et

al., 2015). Due to the recent developments and improvements in computer architecture and

distribution techniques, Cedar and Persson (2013) suggest that our next step might be a giant

leap towards a golden age of materials science. Until that time approaches, the smartest way of

dealing with the increased diversity of product requirements is developing algorithms with high

efficiency. The more condition-specific modeling problems that are being dealt with, the greater

the need has become for efficient modeling and molecular design algorithms. The challenge,

however, is to develop hybrid algorithms that can boost the modelling efficiency without

increasing modelling cost. Such models can assist in developing software platforms for

automating model development and optimum molecular structure generation. This important

problem is being addressed in our work.

Additionally, many of the algorithms developed in the discipline of computer science are

not necessarily geared towards QSAR development. Hence, the algorithms may not be efficient

for QSAR development. This issue has been further discussed in Section 2.3, while describing

different varieties of machine learning and evolutionary algorithms used in this project. This

results in cases where an algorithm needs to be modified to perform well for QSAR predictive

model development purposes.

Finally, every problem in QSAR has unique features, so needs different hybrid

algorithms. Focus should be directed on the type of problem, chemical space, and chemical

descriptors involved. This situation needs delicate consideration while developing hybrid

algorithms. However, a good understanding of algorithms is also a prerequisite of developing

efficient hybrid algorithms. In theory, a hybrid algorithm’s aim is to overcome the limitations of

the individual algorithms and produce better result. This work aims at providing case studies for

6

understanding algorithm limitation, pros and cons, and choosing a perfect combination of two or

more algorithms to overcome these limitations. While doing so, modifications and tuning

approaches have also been proposed to keep a check on model overfitting. For these reasons, it

can be argued that, a crucial part of CAMD research for the next decade at least will be highly

dependent on developing hybrid algorithms to generate diverse and reliable predictive models

and product design solutions.

1.3. Cases presented

Over the years, significant amount of efforts concerning computer-aided product design

(CAPD) have been devoted to computer-aided molecular design (CAMD). However, there are

problems involving CAMD that are yet to be substantially addressed. For example, processes

that involve reactions involving multiple classes of chemical species need attention. Firstly, in

terms of developing property models (PMs) attention is required; and second, in developing

methodologies to utilize these PMs to design molecules and processes. So far, in processes

involving a reaction, which is one of the focuses of our work, CAMD of solvents, catalysts,

reactants and products has been carried out.

The search for QSPR models to predict influence of structures of both reactants and

solvents on reaction rate constants has long been a challenge. According to Roy et al. (2015a),

QSPR (Quantitative Structure Property Relationship) models are generally linear or non-linear

mathematical relationships that correlate a particular property or activity of a chemical species

with their structure. Such structures are generally represented numerically by descriptors, which

can be determined experimentally or theoretically as per the definition. Early attempts to develop

QSPR models for the prediction of rate constant of a reaction have been restricted. Either the rate

7

constant was studied as a function of structures of reactants while keeping the solvent structure

constant or the solvent structures were varied but the reactants’ structures were kept constant.

With regards to the study of the influence of reactants’ structures, Chaudry and Popelier (2003)

developed a property model to predict the rate constant of hydrolysis of esters by utilizing

quantum chemical descriptors. Estrada and Matamala (2007) have used generalized topological

indices to predict the gas phase reaction rate constants of alkanes and cycloalkanes with OH, Cl

and NO3 radicals. With regards to studying the effect of solvent structures, not only have

property models been derived but CAMD of solvents to enhance reaction kinetics has been

pursued by researchers. Recently, Struebing et al. (2013) developed a methodology to design

solvents by utilizing surrogate models and quantum chemical calculations. In the past, Stanescu

and Achenie (2006) have presented a theoretical study of solvent effects on Kolbe-Schmitt

reaction rates. There is a need for QSPR models that capture the influence of reactants’ and

solvent structures. Such models will serve two purposes: The first would be to quickly predict

the rate constant without relying on experiments, while the second purpose will be the

simultaneous design of reactants, products and solvents. With regards to CAMD of

reactants/products, Dev et al. (2015) have proposed a methodology to design reactions based on

thermodynamic properties of reactions. Thus, there is scope for a methodology which designs

reactants and solvents such that the rate of reaction is optimized.

Diels-Alder reaction is a famous and well-studied organic chemical reaction involving a

conjugate diene and an alkene, which is also termed as dienophile. Evans and Johnsons (1999)

have considerably discussed this reaction in their work. This reaction involves cycloaddition of

two reactants in the presence of a solvent. Rideout and Breslow (1980) have presented the

hydrophobic acceleration of Diels-Alder reaction. Their work focused on discussing the

8

influence of hydrophobic cavity in organic structures for acceleration of the reaction rate. In both

of the aforementioned works, the impact of the solvent on the rate constant of the reaction has

been observed. This feature of this reaction makes it an appealing choice for the aimed study.

Figure 1-1 represents a sample of Diels-Alder reaction.

Figure 1-1: Sample Diels-Alder reaction

With respect to QSPRs that capture reactant and solvent influence, Nandi et al. (2013)

developed a quantitative structure-activation barrier relationship for Diels-Alder reaction that

utilizes quantum chemical descriptors. Their aim was to construct a relationship between the

activation energy and the structures of the utilized reactants and solvent. However, their data set

lacked solvent variety. Recently, Zhou et al. (2014) have studied a variety of solvents for the

Diels-Alder reaction in their search for new solvent descriptors though they only used one set of

reactants. Thus, we have combined the data sets utilized by Nandi et al. (2013) and Zhou et al.

(2014) and created a set which offers more diversity in terms of the solvents utilized. We have

utilized this more diverse data set to develop a rate constant model in terms of connectivity

indices. It is worth noting that Nandi et al. (2013) relied on the data set utilized in the work of

Tang et al. (2012). In addition to improvement in the data set, we have also proposed an efficient

hybrid GA-DT algorithm for model development which utilizes the “divide and conquer”

strategy in combination with principal component analysis (PCA). Both internal and external

validations were performed separately to determine model confidence. R2 and Q2 values in case

9

of internal and external validation were calculated respectively as they describe model fitness of

data.

In this work, additionally, we have proposed an efficient multi-gene genetic

programming (MGGP) algorithm using initialization by a modified DT algorithm for model

development which utilizes the “divide and conquer” strategy in combination with principal

component analysis. This DT algorithm checks if the addition of branched gene improves model

fitness. The MGGP algorithms hold promise as they possess the ability of developing models

using a wide variety of nonlinear mathematical basis functions. Both internal and external

validations were performed separately to determine model confidence. Additionally, model

RMSE and R2 values in case of both external and internal validation were calculated as they

describe model fitness of data.

For the second case, the aim is to develop a QSPR model describing the DNA binding

properties of 9-anilinoacridines in order to assist in their design and property prediction. Baguley

et al. (1981) extensively studied the drug binding abilities of such chemical species and

evaluated the drug-DNA association constants (K). For their evaluation, they studied the

fluorescence of drug-Ethidiam-DNA mixtures to determine C50 values at pH 5. A C50 value

denotes the micromolar drug concentration required to reduce the fluorescence of initially DNA-

bound ethidium by 50%. Baguley et al. (1981) also included the calculation of the extent of

reduction of quenching (Cq) to finally calculate the K values for 9-anilinoacridines. Including all

the expressions of C50 and Cq, K can be defined by Eq. (1.1).

𝐾𝐾 =
𝐷𝐷𝑏𝑏
𝐷𝐷𝑓𝑓𝑆𝑆𝑓𝑓

 (1.1)

10

Where Db
 is the DNA-bound drug concentration, Df is the free concentration of drug, and

Sf is the effective free DNA site concentration. All of these values were experimentally derived

by equilibrium dialysis or spectrophotometric titration. Recently, Chtita et al. (2016) chose some

of the values provided by Baguley et al. to develop a QSPR model to model K. In their work,

Chtita et al. (2016) utilized DFT (Density Functional Theory) based descriptors to develop the

models. Although their proposed model shows great promise for studying the response of such

chemical species, the provided model is computationally expensive when used in an automated

molecular design system. Also, they formed different descriptors based on free energy

descriptors that made the molecular descriptors being dependent on each other to some extent.

To ensure drug design efficiency, only topological index, ring index, conventional index, and

connectivity index descriptors have been used in our work. For developing the model, a

correlation-based LASSO has been combined with GA. Among the 65 chemical species studied

by Baguley et al. (1981), 31 have been selected in our work to generate a linear model which has

good predictive ability.

1.4. Organization

For truly evaluating the thesis, it is of paramount importance that readers should know

about the background of this work. The background plays a significant role in helping the reader

skeptically study the proposed methods to disregard any bias towards them. For such purposes,

the background is provided in chapter 2. This gives the readers a brief idea about molecular

descriptors, types of the descriptors, pros and cons of different classes of descriptors. Next, the

section expands into description of various CAMD approaches, including molecular mechanics,

quantum chemical methods, and QSAR/QSPR approaches. The sections provide ample amount

of details on equations used, approaches developed, modifications made for computational

11

simplicity, and advantages and disadvantages of these approaches. Also, the chapter includes

description of feature selection algorithms, different versions of such algorithms, and their

potential uses. Afterwards, regression algorithms are also discussed in the same manner.

Chapter 3 includes the methodology of the proposed methods. A significant portion of

this chapter is divided into two parts, depending on the cases analyzed. The chapter presents a

deeper look into the approaches used, modification of the algorithms introduced earlier, and

reasons for the assumptions made during such modifications. The chapter places high importance

on describing each algorithm, their general use, and their roles in this work.

Chapter 4 presents the results observed using the approaches discussed earlier. As per the

two cases, chapter 4 has also been divided in two sections. First one describes the observed

results of the first case, the second part describing the observed results for the second case. The

chapter contains algorithm and proposed model performances. The chapter also, in brief,

discusses the probable limitations of the proposed models and methods. Finally, appendices have

been provided to detail the codes prepared for the algorithms, the models, and to describe the

descriptors in the models.

The work in section 3.1 has been presented in the ESCAPE (European Symposium of

Computer Aided Process Engineering) conference in 2016. It was also published in Computer

Aided Chemical Engineering (Datta et al., 2016). An expanded version of this work also appears

in work of Datta et al. (2017) in the journal, Computers and Chemical Engineering. An

improvement of the approach has been presented in the PSE (Process Systems Engineering)

conference in 2018. This work appears as a peer reviewed presentation publication (Datta et al.,

2018). The work discussed in Section 3.2, has been published in the journal, Computers &

Chemical Engineering (Datta et al., 2018).

12

2. Background

This chapter presents the theoretical ideas and techniques of CAMD required to

understand the fundamentals of the project. Another crucial part of this section is to present

comparisons of different elements of CAMD approaches through examples, discussion of

benefits and shortcomings, and suggestions made to overcome such shortcomings until now. The

section begins with describing the viability of using molecular descriptors, the properties of

molecular descriptors, and classes of molecular descriptors. While discussing the different

classes of the descriptors, both pros and cons of these algorithms are reported. In addition, the

applicability of such classes has also been discussed in this section. In the second section,

CAMD approaches, quantum mechanics method, molecular mechanics method, and

QSAR/QSPR methods are discussed. Attempts were made to describe these methods with as

much clarity possible, given their mathematical complexity. Also, as in previous section,

advantages and disadvantages of these methods are presented with details. The third section is

dedicated to discussion of the algorithms used in the project. While doing so, a deeper analysis of

these algorithms is presented to learn about the different versions employed in this project.

2.1. Molecular Descriptors

Molecular Descriptors (MDs) are the numerical values related to the chemical

constitution for correlation of chemical structure with various physical properties, chemical

reactivity or biological activity (Roy et al., 2015a). Property models (PMs) utilize descriptors to

represent the chemical structures by expressing relationships between properties and chemical

structures of molecules. PMs are a means of developing a quantitative relationship between

properties and structures of molecules. Hence they are also known as Quantitative Structure-

13

Property Relationships (QSPRs). In cases when the property is the biological activity of a

molecule, the QSPR is then known as a Quantitative Structure-Activity Relationship (QSAR).

According to Todeschini and Consonni (2000), “the molecular descriptor is the final result of a

logical and mathematical procedure which transforms chemical information encoded within a

symbolic representation of a molecule into a useful number.”

Thus, we can say that there are two types of descriptors: theoretical descriptors and

experimental measurements. Theoretical descriptors are numerical values that are obtained

analyzing symbolic representation of molecules while experimental measurements are values of

physico-chemical properties like polarizability and dipole moment. Theoretical descriptors are

more advantageous over experimental measurements because the error associated with

experimental noise can be avoided. In addition, the practice of expressing the PMs in terms of

other physicochemical properties is an older and obsolete one. These properties themselves can

now be expressed in terms of theoretical descriptors. A wide variety of theoretical descriptors

have been developed in terms of which different properties can be expressed. Although no set of

rules or criteria could be found that dictates the development of new theoretical descriptors for

various property models (Hong et al., 2012), some general guidelines have been listed by Roy et

al. (2015b) as follows:

• A descriptor must be correlated with the structural features.

• A descriptor shows negligible correlation with other descriptors.

• A descriptor should be applicable to a broad class of compounds.

• A descriptor should be calculated rapidly, not depending on experimental properties

14

• A descriptor should generate dissimilar values for structurally different molecules, even if the

structural differences are small. In other words, the descriptor should show minimal

degeneracy.

• In addition to degeneracy, a descriptor should be continuous. Small structural changes should

lead to small changes in the value of the descriptor.

• A descriptor should have some form of physical interpretability to encode the query features

of the studied molecules.

• A descriptor should have the ability to map descriptor values back to the structure for

visualization purposes.

Apart from the classification used by Todeschini and Consonni (2000), there are other

types of classifications of molecular descriptors. For example, descriptors can be classified based

on origin. Based on origin, MDs can be classified as topological (graph theory based),

constitutional (functional group count), geometrical (distances, valence angles, surfaces, etc.),

quantum-chemical (charge distribution related), and thermodynamic (heat of formation, entropy,

etc.) descriptors (Hong et al., 2012). However, it is much easier to communicate the type of

developed PMs when MDs are classified based on their dimensionality (Roy et al., 2015b). The

MDs can be classified as zero-dimensional (0D), one dimensional (1D), two dimensional (2D),

and so on. MDs with up to seven dimensions (7D) have been developed so far. It is worth noting

that descriptors with up to two dimensions are the most commonly utilized ones due to ease of

calculation. However, when large molecules are involved (e.g. protein, DNA structure),

descriptors with more than 2 dimensions are also utilized in property models. Descriptors with

more than 3 dimensions are geared for more sophisticated applications. Due to the complexities

15

involved in calculating such high dimensional indices, these descriptors are lesser used. Figure

2-1 illustrates a simple example of descriptors generated from molecular structure.

Figure 2-1: Generation of Descriptors from Molecular Structures

2.1.1. 0D Descriptor

Molecular descriptors that are derived from the molecular formula fall in the category of

0D descriptors. Since while writing the molecular formula we are not concerned with the

arrangement of molecules but only the composition, the descriptors are derived from a zero

dimensional representation of the molecule. Thus the descriptors are referred to as 0D

descriptors. Examples of 0D descriptors include atom counts, charge, molecular weight, etc.

In the example shown in Figure 2-2, carbon count, a 0D descriptor, was utilized in

creating a linear property model for the boiling point of a series of alkanes (C1-C7). Although,

the proposed model was able to account for 97% of the variance of data presented, more

information is required to understand the structure of the molecule.

Descriptor identifier

16

Figure 2-2: Example of constitutional descriptor correlation.

2.1.2. 1D Descriptor

If fragments (e.g. substructural fragments or functional groups) of a molecule are used for

molecular representation then 1D descriptors are obtained, as only one dimension is required to

depict the type of substitution or fragments present. 1D descriptors can be useful to quickly scan

the chemical space for candidates based on some established similarity criteria with respect to a

reference molecule. These have been used to filter out structures in the early stages of drug

design. An example of such a descriptor is carbon count.

2.1.3. 2D Descriptor

2D descriptors are calculated from 2D representation of molecular structure, taking into

account the types of atoms, their number and their connection pattern with each other. Examples

of 2D descriptors include chiral center count, providing the number of chiral centers, and

rotatable bonds count, the number of bonds capable of rotation (Roy et al., 2015a). The

descriptors derived from the graphical representation of molecules are categorized under 2D

17

descriptors. In the graphical representation, the molecule is referred to as a molecular graph. A

molecular graph, G, consists of atoms which form the vertices of the graph and the covalent

bonds which form the edges in the graph. Thus atoms that have at least one bond between them

are connected by an edge. The various fragments that can be obtained from G can be represented

as sub-graphs. The sub-graphs thus consist of subset of edges belonging to the edge set, E, and

subset of vertices belonging to the vertex set, V. The descriptors obtained from the graphical

representation are termed as topological indices (TIs). These are the most widely used

descriptors in model development and hence in computer-aided molecular design. TIs are very

convenient to use because they can be easily computed and analyzed. As isomorphic graphs have

identical values for a given TI, TIs are graph invariants i.e. their values are independent of

labeling of the molecular graph. In the following subsections some details on the most widely

used TIs both in modeling and CAMD algorithms are being provided.

2.1.3.1.Connectivity Indices

The connectivity index (CI) was introduced by Randic (1975) and since then has been

modified into different forms. The connectivity index is usually denoted by the symbol χ (X in

Dragon 6). One usually finds 2 superscripts and one subscript assigned to the CI (Sabljic, 1990).

The superscript on the left is a non-negative number and reflects the order of the CI and the

superscript on the right, v, denotes that a valence delta value has been utilized for calculation.

The CIs are in general divided into 4 sub-classes: path (denoted by subscript p), cluster (denoted

by subscript c), path/cluster (denoted by subscript pc) and chain (denoted by subscript ch). These

subclasses are describing the substructural units considered while calculating the CIs. For

example, the path-based CI is calculated using paths. A path is a sequence of edges from one

vertex to another end vertex, ensuring that the edges are not repeated while traversing this

18

sequence of edges. In most general cases, the subscript p is removed and path type is considered

as a default. CIs are usually calculated from hydrogen suppressed graphs. In such molecular

graphs, the hydrogen atoms are not considered. Consider the example of the mth order valence

connectivity index mχk
v. It is defined as follows (Mu and He, 2011):

0.51

1 1

mn m
m v v

k i
j i j

χ δ
−+

= =

 
=   

 
∑ ∏ (2.1)

(Z) / (Z Z 1)v v v
i i i i iHδ = − − − (2.2)

(Z)v
i i iHδ = − (2.3)

Where, k denotes a contiguous path type fragment, which is divided into paths (p),

clusters (c), paths/clusters (pc) and chains (ch). nm is the number of relevant path type fragments.

δi
v is the valence delta value calculated as shown in Eq. (2.2). In Eq. (2.2), Zi

v is the number of

valence electrons, Hi is the number of hydrogen atoms connected to atom i, Zi is the number of

electrons of atom i. If we calculate the mth order connectivity index mχk, then δi will be

substituted instead of δi
v in Eq. (2.1) to obtain mχk. δi is the degree of the atom i obtained from the

hydrogen supressed graph. Hence Hi is subtracted from Zi
v in Eq. (2.3). Consider the 3-methyl

hexane molecule shown in Figure 2-3. The degree values, δi, of each of the atoms have also been

displayed.

19

Figure 2-3: 3-methyl hexane molecule

The 1χ value of the 3-methyl hexane molecule can be calculated as:

1χ = (1x2)-0.5+(2x2)-0.5+(2x3)-0.5+(3x1)-0.5+(3x2)-0.5+(2x1)-0.5 = 3.3081

2.1.4. 3D Descriptors

3D Descriptors, also known as geometrical descriptors, are calculated by representing the

molecule in the 3D space. Generally, geometrical descriptors are calculated either by utilizing

optimized molecular geometry obtained by computational chemistry methods or from

crystallographic coordinates (Cronin, 2010). 3D descriptors obtained by utilizing geometric

distances between atoms constitute a special subset known as topographic indices. The

geometrical representation is used to capture the relative positions of the atoms in 3D space.

Thus, geometrical descriptors usually offer more information and discrimination power for

similar molecular structures and molecule conformations than topological descriptors. This

power to discriminate, however, is computationally costly in cases of modelling and molecular

structure development.

Since 3D descriptors require geometry optimization, a high computational expense is

incurred as this involves calculation of optimal geometry, conformation analysis, Gibbs energy

of structure, etc. Additionally, if several conformations of the molecules exist, complexities can

20

become much higher. Also, it may happen that the active conformations of the chemicals being

studied for biological applications are unknown. An overview of the various types of geometric

descriptors is provided in Figure 2-4 (Herring, 2014).

Figure 2-4: Overview of geometrical descriptors (Herring, 2014)

Another concern with 3D descriptors is that there is not a common understanding of the

required degree of detail of molecular structure to calculate 3D descriptors reliably (Hechinger et

al., 2012). The computational methods utilized for calculation can be anywhere from molecular

mechanics to quantum methods which are more rigorous and complex. Due to these reasons,

simpler descriptors like TIs (Topological Indices) are usually preferred for the screening of large

databases of molecules and CAMD applications. On the other hand, searching for relationships

between molecular structures and complex properties, such as biological activities, sometimes

consider the use of 3D descriptors.

21

2.1.5. 4D-7D Descriptors

These descriptors have been utilized the least for CAMD applications as the

computational cost incurred is even higher than 3D descriptors. These descriptors consider a

variety of factors as dimensions. These include the orientation and the solvation function (Roy et

al., 2015a). Such descriptors are beneficial in capturing ligand and receptor interactions.

Although the descriptors mentioned so far have been categorized within whole number

dimensions, there are descriptors that are difficult to categorize. For example, between 2D and

3D descriptors, 2.5D descriptors exist as intermediates that tend to incorporate some aspects of

the geometrical information contained in a 3D structure that were ignored by a 2D description of

the molecule (Doucet and Panaye, 2010).

2.2.Model Development

Molecular modeling encompasses all of the techniques and tools useful for modeling the

motions and interaction of molecules. These techniques are used in the fields of computational

chemistry, drug design, computational biology, materials science, and now many engineering

fields for studying molecular systems ranging from single small molecules in the gas phase to

large biological molecules (e.g. receptor ligand complexes) and material assemblies. There are

many approaches available for the treatment of molecular structures ranging from modeling

atoms as the smallest individual unit (in the molecular mechanics approach) to explicitly

modeling the electrons in each atom (in the quantum chemistry approach). The information

gained from these techniques is useful in the development of three-dimensional descriptors,

which have applications in a wide variety of structure-activity (property) correlations.

22

2.2.1. Molecular Mechanics

Molecular mechanics stands for using classical mechanics to describe the motions of

atoms and molecules. For such approaches, the atoms are treated as point charges with the

nucleus and associated electrons. The structure potential energy, that indicates the likelihood of

the structural occurrence, is calculated via the means of a force-field. This force-field, also called

potential function, uses different terms to summarize the potential energy associated with the

structure. The molecule is described using internal and external coordinates of each atom in the

structure. The external coordinates are based on Cartesian coordinate system, whether the

internal coordinates use the inherent nature of these systems by utilizing bond-lengths, bond-

angles, and torsional angles. Additionally, force-field calculation contains non-bonded

interaction terms between the atoms as showed in Eq. (2.4)

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐸𝐸𝑑𝑑𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (2.4)

𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 (2.5)

As shown in Eq. (2.5), the non-bonded interactions represent the addition of electrostatic and van

der Waals forces. (Leach, 2001)

2.2.2. Quantum Chemical Methods

Quantum mechanics (QM) lay out molecules in terms of interactions between nuclei and

electrons. The molecular geometry is determined by determining a minimum energy arrangement

of nuclei in a molecule or set of molecules. This process, involving high computational expense,

has been made much more reasonable through a series of approximations. These approximations

23

are generally applied upon the original formulation based on the Schrodinger equation shown in

Eq. (2.6).

Where

Ψ = many-electron wave function

Ĥ = Hamiltonian operator (Hamiltonian)

Ĥ can also be represented as in Eq. (2.7).

Where

Z = the nuclear charge

MA = the ratio of mass of nucleus A to the mass of an electron

RAB = the distance between nuclei A and B

rij = the distance between electrons I and j

riA = the distance between electron I and nucleus A.

 𝐻𝐻�Ψ = EΨ (2.6)

𝐻𝐻� = −
1
2

� ∇𝑖𝑖2
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖

−
1
2
�

1
𝑀𝑀𝐴𝐴

𝛻𝛻𝐴𝐴2
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝐴𝐴

−

� �
𝑍𝑍𝐴𝐴
𝑟𝑟𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝐴𝐴

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖

+ � �
1
𝑟𝑟𝑖𝑖𝑖𝑖

𝑗𝑗

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖<

+ � �
𝑍𝑍𝐴𝐴𝑍𝑍𝐵𝐵
𝑅𝑅𝐴𝐴𝐴𝐴

𝐵𝐵

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝐴𝐴

(2.7)

24

This equation is too tedious to be exactly solved for even a simple two-electron system,

e.g. helium atom or hydrogen molecule, without introducing some sort of approximation. One

such method is known as the Born-Oppenheimer Approximation, which assumes that the motion

of the electrons is much faster than that of the nuclei (Born and Huang, 1988). This allows

decoupling the two and producing the “electronic” Schrodinger equation. The electronic

Schrodinger equation is still intractable after this simplification, and more approximations are

required. The Hartree-Fock approximation is based on independent movement of the electrons,

meaning, the electrons move independently of each other (Slater, 1930). This turns total wave

function in the form of a single determinant, also known as a Slater determinant. This leads to a

set of the Hartree-Fock equations that involve the coordinates of a single electron. At this point,

although numerical solution to these equations is possible, further approximations have to be

introduced to transform them into a set of computationally applicable algebraic equations. The

linear combination of atomic orbitals (LCAO) was the next step to develop a better tractable

representation of a molecule through the quantum chemical formalism (Clark and Koch, 1999).

When the Hartree-Fock and LCAO approximations are applied to the electronic Schrodinger

equation, the Roothaan-Hall equations are derived (Roothaan, 1951). The solutions of the

Roothaan-Hall equations results in Hartree-Fock models, also known as Ab Initio (“from the

beginning”) models. These models help evaluate first and second derivatives of energy, making

both geometry optimization and determination of vibrational frequencies possible.

 A point to note, however, is that overestimation of electron-electron repulsion energies is

a common phenomenon in the solutions generated using HF models. This is because pair-wise

electron interactions are not considered directly in the assumptions for the optimization, causing

overlapping of electron positions. This situation can be avoided using electron correlation that

25

helps accounting for coupling of electron motions, and lessens the electron-electron repulsion

energy. One such approach is the density functional theory (DFT) model (Becke, 1988). This

model tackles the situation by introducing an approximate correlation term without causing

higher computational cost.

 For larger problems, semi-empirical models are generally used using more

simplifications to the HF models. In these simplifications only valance electrons are considered

rather than core electrons. This approximation assumes that atomic orbital on different atomic

centers do not overlap. This approximation is known as Neglect of Diatomic Differential Overlap

(NDDO) approximation (Pople et al., 1967). For further simplification, additional

approximations, and empirical parameters can be introduced. Some common semi-empirical

models of such simplification are Austin Model 1(AM1) (Dewar et al., 1985), and Parameterized

Model 3(PM3) (Stewart, 1989).

2.2.3. QSPR/QSAR

The aim of a structure activity relationship (SAR) is to develop a mapping between the

structural information of a group of compounds and a desired activity/property. Corwin Hansch

was a notable pioneer of this field. His work expanded the boundaries of formulating such

relationships. Hansch et al. (1962) initially observed that the partition coefficient of various

compounds, in combination with other cheminformatics parameters, can be utilized to

characterize their relative biological activity. His observation led him to believe that SAR’s

should not be limited to certain independent variables and fits, and paved the way for a

successful merging between the development of these models with various

mathematical/statistical techniques (Hansch, 1969). To further the improvements of the SAR

26

models, this trend has continued to grow and include modern day computational approaches such

as pattern recognition, molecular modeling, artificial intelligence, and machine learning. Another

key turning point in the development of SAR’s was proposed by Kier et al. (1975) by

introducing the molecular connectivity index that shows to have strong correlations to

physicochemical properties (Hall et al., 1975) as well as biological activities (Kier and Murray,

1975). Thus a separate genre of developing and utilizing new molecular descriptors began,

paving way for developing numerous techniques aiming to differentiate molecular structures

combining mathematical invariants and formerly used physico-chemical properties. Regardless

of the steps of developing and utilizing these models, the process can be divided into three

distinct phases: 1) calculating molecular descriptors for structures in the training set 2) choosing

the most informative molecular descriptors and 3) utilizing the chosen descriptors as independent

variables to create a mapping into property/activity space. This approach is visualized in Figure

2-5 (Dudek et al., 2006).

Figure 2-5: Visualization of QSAR approach.

27

2.3.Variable Selection

There are two ways of developing automated selection of descriptor variables for use in a

property model (Guyon and Elisseeff, 2003). One technique, the feature selection approach,

involves the identification of an optimal subset of descriptors based on random/guided selection

of meaningful descriptors and ranking of formed models based on maximizing/minimizing

objective/cost function, which is, in most SAR cases, an error function. The other, known as

filtering, does not develop a subset to construct models in the selection process as features are

evaluated using other criteria. This is a necessary step in developing of most structure activity

relationships as a large number of descriptors are commercially or academically available for

correlation with the result of interest.

2.3.1. Genetic Algorithm

Genetic Algorithm (Siedlecki and Sklansky, 1988), stands out for this approach and is an

efficient method for sampling large descriptor spaces. Being categorized as stochastic

programming, genetic algorithm mimics the process of natural evolution whereby a population is

guided towards a higher degree of fitness, as often measured by the error of the model generated,

through operations of mutation and crossover. Each member of the population is represented by

a chromosome, within which each position usually corresponds to the absence or presence of a

specific variable through the binary notation. Individual chromosomes with an increased measure

of fitness, typically measured by the prediction capabilities of the model resulting from the

descriptors represented within the chromosome, are selected for the conventional operations of

crossover and mutation. Mutation typically involved the change of binary variables within the

chromosome to either a 0 or 1, the opposite of its initial state; and crossover involves the

28

selection of two chromosomes which are cut and recombined at one (single-point crossover) or

more points. However, the success of a GA relies on the careful tuning of several probability

parameters such that the solution space can be effectively explored and early convergence to a

homogenous population, occupying a local minimum, is not met. Genetic Algorithm is widely

employed in developing QSPR/QSAR models. As Whitley (1994) describes, such an

evolutionary algorithm is efficient as a function optimizer and its applications are very diverse.

Houck et al. (1996) has presented a basic idea of GA. In their work, they have proposed these

basic steps that can be used as a guideline for designing a GA process for function optimization

problems.

• Supply an initial population P0
 of N individuals with respective function values and

constraints, if any.

• i = 1

• Pi
’ = selection_function(Pi-1)

• Pi = reproduction_function(Pi
’)

• evaluate (Pi)

• i =i+1

• Repeat 3rd step until termination condition met

• Print best solution achieved

Here, for a given GA, the selection_function() represents the Roulette wheel developed

by Holland (1975). For this operation, the N individuals pass through the fitness evaluation that

is performed by a fitness function. The individual with best fitness then replaces the individuals

with least fitness. The reproduction_function() generally consists of both the crossover and

mutation operators, also known as genetic operators. These steps generate new population that

may produce better individuals. The reproduced population then goes through the evaluate()

29

function, which determines the acceptance of the population. This process is repeated until a

better solution is not produced anymore or if any termination condition is met. Finally, the best

possible result is printed. A flowchart of genetic algorithm is presented in Figure 2-6. Reeves

(1995) has applied GA in case of flowshop sequencing problem. On the other hand, Leardi

(2001) discussed its applications in molecular design and modeling. He discussed a variety of

cases of property model development which benefited from implementing genetic algorithm.

Figure 2-6: Flowchart of Genetic Algorithm

30

2.3.1.1. Selection Strategies

A Roulette wheel is considered to be the most commonly used selection operation.

However, there also exists Tournament based selection strategy (Zhong et al., 2005). The

followings will be discussing these selection strategies in details.

2.3.1.1.1. Proportional Roulette Wheel

In case of a proportional roulette wheel, the individuals are selected proportionally based

on their fitness values. The name was derived from the instance that a pointer will have higher

possibility of choosing an individual with the largest fitness. As it can be seen in Figure 2-7, in

case of a proportional roulette wheel, the higher the fitness of an individual, the higher is the

probability of it being selected for further operations. The presented example proposes a

selection method that only selects individuals with highest fitness in every turn, thus preserving

the ultimate requirement of survival of the fittest (Razali and Geraghty, 2011).

Figure 2-7: Proportional roulette wheel strategy

31

Although this process has the advantage of preserving diversity in the population by not

discarding the individuals with poorest fitness, some major deficiencies cannot be denied. One

major problem with this strategy is that it quickly introduces bias of outstanding individuals in

the beginning of the search. This can cause premature convergence during the initial rounds,

resulting in lack of diversity in further generations. This premature convergence is a hindrance

towards achieving diversity in gene pool, resulting in a poor optimization operation.

Additionally, a problem occurs in this strategy when a large number of individuals having very

similar fitness values are generated in the initial steps. This occurrence can make this strategy

fruitless as the algorithm cannot move forward towards a better solution.

2.3.1.1.2. Rank-based Roulette Wheel

Since proportional roulette wheel develops complications during minimization, a solution

was advanced through rank-based roulette wheel algorithm (Goldberg and Deb, 1991). This

algorithm selects the individuals based on their fitness ranks rather than fitness values, a process

also known as elitism. This method first performs a sorting operation over the generated

population. As the selection scale shifts the strategy from fitness value dominance to individual

fitness ranking, the selection strategy is forced to consider uniform scaling rather than being

influenced by only outstanding individuals of the population (Figure 2-8).

32

Figure 2-8: Probability of individual selection using (a) proportional and (b) rank-based roulette wheel
strategies

The steps in general involve mapping the individuals based on their ranked probability.

This mapping can be both linear and non-linear, and both can be used for the same purpose in

different types of data matrix. In case of linear mapping, a selective pressure, SP, is introduced

to control fitness bias. For a minimization operation, the mapping is done based on Eq (2.8), for

2.0 ≥ SP ≥ 1.0. Hence, for the best individual, the expected sampling rate is SP, and for the

worst, it is 2-SP. For a minimization problem, pos = 1 for least fit individual, where pos = n fop

the fittest individual.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝𝑝𝑝𝑝𝑝) = 2 − 𝑆𝑆𝑆𝑆 + (2(𝑆𝑆𝑆𝑆 − 1) �
𝑝𝑝𝑝𝑝𝑝𝑝 − 1
𝑛𝑛 − 1

�)
Eq (2.8)

Compared to the linear process, the non-linear method is less popular as it is based on the

exponential function. For instance, in non-linear approach, the best individual is given a ranking

33

of 1, the second one is given SP, the third being SP2, and so on to the last one, SPN-1. This

method is less popular due to increased need of convergence number to achieve the same goal

compared to linear ranking process (Hancock, 1994). However, in case of situations where it is

more important to preserve genetic diversity as much possible, this method can play a significant

role.

2.3.1.1.3. Tournament Selection

Tournament selection method is quite popular for its efficiency and simplicity of

computational implementation (Goldberg and Deb, 1991). The process is based on selecting

individuals randomly and putting them into tournaments with each other. The individuals with

highest fitness in the group gets selected to move forward in the convergence (Figure 2-9). This

is a unique process as these random selection-based tournaments give chance to individuals with

different fitness values. The tournament selection process is highly advantageous in the cases of

computational efficiency, premature convergence, and preserving diversity. As the selection

method doesn’t require any probability or ranking calculations, some added burden of roulette

wheel calculations get avoided in an effective manner.

34

Figure 2-9: Tournament selection strategy

The only drawback, however, is the size of the tournament. Although ideal situation

dictates using a binary tournament (2 individuals in each tournament), that is always not practical

while using a high number of individuals in the population. And the higher the tournament size

(number of individuals in a tournament), the higher the possibility of losing gene diversity. The

challenge, in this case, is to find a balance between the tournament size and the population to

operate the selection operation on.

35

2.3.1.2.Crossover Strategies

During last few decades, numerous types of crossover strategies have been developed

(Starkweather et al., 1991). The general aim of the crossover operation is to develop new

members in the population and mixing the chromosomes of the present individuals (also called

reproduction).

2.3.1.2.1. Order Crossover

Davis (1985) developed the order based crossover operator to develop offspring

individuals inheriting elements from parents in the same order in preceding individuals. The

operation generates new individuals using single/double swap points. In case of the single swap

point, one point is used to identify swapping location (Figure 2-10 (a)). The offspring resulting

from such operation retain the same chromosome order of the parents, with the change at the

swapping point. In the case of the double point operation, however, two points are selected to

choose a region to swap (Figure 2-10 (b)).

Figure 2-10: Order crossover for (a) single point and (b) double point operation

36

2.3.1.2.2. Order 2 Crossover

Syswerda (1990) also developed an order based crossover operation with some

modifications. This crossover is also called as scatter point crossover. In this operation, several

key points are chosen to be swapped to generate offsprings (Figure 2-11).

Figure 2-11: Order 2 Crossover (Scatter point crossover)

This operation is highly valuable in cases where a good number of candidates are present

in the population. In such situations, using single/double point swaps can end up developing

lesser efficient models. However, using scatter point operation in that case can help achieving

optimization in shorter number of convergences.

2.3.1.2.3. Cycle Crossover

Oliver et al. (1987) developed this crossover strategy to develop a more efficient solution

for the travelling salesman problem (TSP). For this operation, a parental sequence and a cycle

starting point has to be selected. Both are selected in a random manner. In this operation, like the

single point crossover operation, a swap point is chosen.

37

The offspring are developed adding one part of the chromosomes in direct order of one

parents, and the other part using the cyclic reverse order of the another parent using the cycle

starting point (Figure 2-12). However, in present algorithms, without using a cycle point, a more

efficient approach is to simply reverse the other set of chromosomes. This is done to make the

process computationally efficient. This approach is very useful in case of developing individuals

where the sequence of the chromosomes matter (e.g. TSP optimization). In case of predictive

model development, such approach rarely has any effect.

Figure 2-12: Cycle Crossover operation

2.3.1.2.4. Position based Crossover

 Also developed by Syswerda (1990), position based crossover operation develops only

one new individual using two parent individuals. This is very similar to the scatter swap

algorithm, given that the only difference is to determine which of the parents will donate at what

points. The example (Figure 2-13), however, makes the operation look almost similar to a

multiple double point crossover operation. In practice, such assumption cannot be denied as the

38

algorithm developed for such strategy resembles the occurrence of multiple subset-based

swapping of the chromosomes.

Figure 2-13: position based crossover strategies

This strategy is not as much utilized as the parent to child ratio mandates more number of

crossover operations to generate a certain number of offspring. However, in some genetic

algorithm approaches, this operation is used to develop new members in the population to

replace the worst ranking members (Whitley, 1975).

2.3.1.3.Mutation Strategies

A noteworthy overview, containing examples of different mutation operation strategies,

has been provided in the work of Sivanandam and Deepa (2007). In general, the aim of a

mutation operation is to randomly select one or more chromosomes in the individuals and alter it.

In the basic form of binary mutation, where values of chromosomes are either 0 or 1, the

operation’s aim is to change one to another (Figure 2-14). In practical use, however, this operation

can be completed using various approaches. This section discusses some of such approaches.

39

Figure 2-14: Mutation operation in binary GA optimization

2.3.1.3.1. Insert Mutation

This is generally used in cases of permutation encoding. The operation begins with the

choice of two chromosome locations at random. It then moves the second location value to

follow the first one, and rest of the chromosomes get shifted to accommodate accordingly. In this

situation, however, no new value is introduced in the subset.

2.3.1.3.2. Inversion Mutation

In case of inversion mutation, however, two random chromosome locations are selected.

After that, the substring between these locations gets inverted.

2.3.1.3.3. Swap Mutation

In the swap mutation, two chromosome locations are selected and the values of the

chosen locations get swapped.

2.3.1.3.4. Scramble Mutation

In this mutation operation, a subset of genes is selected randomly. After that, the subset is

rearranged in those positions in a random manner.

2.3.1.3.5. Reversing Mutation

40

Reversing mutation is commonly used for binary encoded chromosomes. In this method,

a location is chosen, and the bit next to it is reversed to produce the child.

2.3.1.3.6. Creep Mutation

In case of creep mutation, a random gene needs to be chosen. After that, the value of the

chosen gene is changed with a random value between user defined upper and lower value. This is

the most common approach used for predictive QSAR model development approaches.

2.3.1.3.7. Uniform Mutation

 In general, uniform mutation is similar to creep mutation, with the difference being that a

uniform random value is chosen, making it usable for integer-based operations.

2.3.2. Decision Tree

Decision tree is an algorithm that represents possible choices and their probable

outcomes. This unique algorithm maps the best possible path to follow to reach the desirable

result. In practice, decision tree is one of the most commonly used algorithms for data mining,

data prescreening, classification and regression analysis (Gupta et al., 2017). Some advantages of

this algorithm include easy visualization and interpretation with no requirement of data

preparation, and removal of blank values. Additionally, the algorithm can also handle both

categorical and numerical data, multiple output problems. Also, this algorithm can be simply

explained by Boolean logic of true or false (yes or no). The earliest form of decision tree was

introduced by North (1968), where it was introduced for solving an anniversary problem (Figure

2-15).

41

Figure 2-15: Introduction of Decision Tree, North (1968)

However, in present day, various types of decision tree approaches have been developed

(e.g. ID3, CART, Random Forest, CHAD, C4.5, Boosted Forest). In this section, the discussion

will be limited to the most commonly used ones.

2.3.2.1. Iterative Dichotomiser 3 (ID3)

Developed by Quinlan (1986), the algorithm mostly focuses on classification operations.

ID3 approaches the classification problem using a greedy search. Although this algorithm is

strongly based on developing smallest decision trees possible, if needed, it ends up developing

42

larger decision trees for larger dataset analysis. ID3 only analyzed categorical data. However, the

algorithm is not much effective against data noise and duplicates. This is due to the greedy

approach used in the initial phase.

Some advantages of the ID3 algorithm includes building the fastest and shortest trees

possible for a given problem. Moreover, the algorithm searches the whole dataset to develop the

overall tree. The training data can be used to develop comprehensible prediction rules. Finally,

the calculation time required to develop an ID3 operation is a linear function O(n) of the product

of characteristic number and node number.

However, this algorithm comes with some limitations. First of all, due to being a greedy

approach, overfitting is a common problem in cases of small datasets. Also, being an O(n)

algorithm, classifying data of continuous nature can prove computationally expensive. This is

also because the algorithm analyzed only one attribute at an instant. In cases of higher number of

input values, the algorithm ends up showing preferences towards features with higher number of

values (Gupta, 2017).

2.3.2.2. C4.5 algorithm

C4.5, also developed by Quinlan (1987), is an extension of ID3 algorithm. This algorithm

is often referred to as a statistical classifier. The improvement includes ability of handling both

continuous and discreet attributes, missing values, and pruning trees after construction. By

design, C4.5 is a tree pruning process. For its operation, C4.5 follows ID3 approach in case of

categorical attributes, making sure continuous attributes generate binary splits. Next, attributes

with highest gain ratios are selected. Gain ratio helps rank the classification based on the

43

diversity of the data in the classes rather than the count of data in a class. These steps keep

repeating until the stopping criterion is met. Use of gain ration rather than number of inputs

makes C4.5 less susceptible to data population bias.

The algorithm is very easy to implement and builds models that are easily

comprehensible. An added feature is that it can deal with both categorical and continuous values

with ease. Also, due to added feature of gain ratio calculation, the algorithm is able to deal with

noise and missing value attributes. However, the algorithm tends to not work well in case of

small training sets. Also, a small variation in data leads to different trees being developed.

2.3.2.3. Classification and Regression Trees (CART)

CART, introduced by Breiman (1984), is equipped to build both classification and

regression trees. In case of developing classification tree, CART uses binary splitting using Gini

index (Lerman and Yitzhaki, 1984). In its simple form, Gini index can be described as a class

ranking strategy, derived from products of coefficient of variation of the considered variables,

variable’s linear correlation coefficients with ranks, and a constant equal to 1/√3 (Milanovic,

1997). CART also has a regression feature that can help develop predictive models for a

dependent variable given a number of predictor variables. It consumes an average speed, and can

deal with both continuous and nominal attribute data.

CART is good with the missing values and combinations of continuous/discreet

variables. It can automatically perform variable selection and form interactions between the

variables. But it may also develop some unstable decision trees as it is non-parametric. Also, the

split happens based on only one variable, which makes it difficult to use for large databases.

44

2.3.2.4. Random Forest

Random forest, also developed by Breiman (2001), is a collection of simple tree

predictors. The simple trees are arranged such that each tree produces a different response based

on different predictor value input. Like CART, random forest can also work for both

classification and regression operations. Random forest is generally used as a tool to leverage the

ability of multiple varied analyses, organization strategies, predictive modeling, machine

learning, ranking, and deep data understanding. It can easily recognize outliers and anomalies in

knowledgeable data. It is considered one of the most accurate tree-based learning algorithms

available. It can perform classification with significant amount of focus in identifying the

important predictor variables. The con, however, is that sometimes the presented classification of

random forests may be difficult for human interpretation. Also, in cases of dealing with noisy

datasets, overfitting is also a main concern.

2.3.2.5. Decision Tree in QSAR

In case of feature selection for QSAR studies, decision trees are allowed to keep forming

branches and following paths that produce better model fitness. DT starts with an initial node

(O), and keeps presenting options for further study. In the example, the options (A, B, C,

D, …L) can be considered to be the descriptors (Figure 2-16). The numbers can be considered

the R2 value that will result if the user opts to choose the next descriptor. In other terms, these

numbers are generally the outcome of selecting the nodes. The example needs to select a path to

achieve highest R2 value in the end. Here, path O-B-F-J-L gives maximum 0.413, which

provides an idea about the path to follow to obtain the best result. But it also provides other

options that can be taken into consideration (Path O-A-C-H). Izrailev and Agrafiotis (2001)

45

have presented through their work that such an algorithm can be successfully applied for

regression problems. They have utilized Artificial Ant Colony System for this purpose. On a

different application in field of property modeling, Andres and Hutter (2006) used DT algorithm

to predict drug properties.

Figure 2-16: Decision Tree Algorithm

2.3.3. Hybrid Algorithms

According to Grosan and Abraham (2007), hybridization of evolutionary algorithms produces a

different algorithm which can improve the algorithm performance and overall result. A hybrid

algorithm is an algorithm that is generated combining two or more algorithms. The hybridization

of the algorithms is performed such that two or more separate algorithms systematically perform

46

their desired tasks. In this process, the hybridization is meaningful only if the work-load of the

algorithms is distributed in an efficient manner. This suggests level of hybridization is to be

carefully determined for generating more efficient algorithm producing better results than the

singular algorithms. In this respect, Loukas (2000) has developed an adaptive Neuro-Fuzzy

inference algorithm to develop better QSAR models. The aim was to develop a QSAR model to

calculate the apparent inhibition constant. This project used Gaussian Member Functions of

Fuzzy system trained with hybrid back-propagation for property model development. Later,

Goodarzi et al. (2009) developed a hybrid GA based Support Vector Regression (SVR) method.

In their work, they used GA to optimize parameter values they received from SVR to improve

the prediction efficiency of the initial model. On the other hand, Jun et al. (2010) developed two

separate hybrid algorithms combining GA with Support Vector Machine learning and RBF

Neural Networks respectively. Their generated models also provided better prediction in case of

developing QSAR of aqueous solubility of polycyclic aromatic hydrocarbons. In the

aforementioned works, hybrid algorithms have produced better QSAR models than the case

where no hybridization was involved. These works also draw attention to the possibility of

model generation requiring lesser computational time if the hybridization is performed properly.

2.3.4. Multi Gene Genetic Programming (MGGP)

In a feature selection approach using Genetic Algorithm, the chromosomes of the

population generally contains position of variables (descriptors) that can be used to develop a

property prediction model. The difference in MGGP is, instead of such variable positions, the

chromosomes contain genes developed using GP tree (Gandomi and Alami, 2011).

47

Multigene symbolic regression is used to develop the genes (Searson et al., 2010). A

symbolic regression begins with developing a GP tree, and the final model is the linear

combination of these trees. The development of these initial genes requires identification of root

node, functional nodes, and terminal nodes (Figure 2-17). The root nodes and functional nodes

are populated by the arithmetic operators, geometric operators, Boolean logic functions, and

other mathematical operators. The terminal nodes, on the other hand, contain the logical

constants, numerical constants, and variables to populate the rest of the tree (Gandomi et al.,

2010). For selection process, tournament approach is used.

Figure 2-17: GP tree with symbolic regression

The crossover operation, in case of MGGP operation, has some significant difference

than general GA operation. In MGGP approach, the crossover operation not only can swap a

particular set of genes of the parents, but also can choose if swapping a particular section will be

48

more advantageous than swapping the whole gene (Figure 2-18). During this operation, however,

precautions are required to prevent developing genes that may produce unacceptable

mathematical tree. A way to prevent such situation is to perform the crossover at the same depth

point for both parents, as can be noticed in Figure 2-18. This is chosen to be a safe process as

performing crossover at the same depth has been seen to prevent development of bizarre

symbolic trees in case of model development using higher gene depths. For such operation, two

different crossover operations are performed. The high level crossover decides total swapping of

the genes, whether low level crossover decides the subtree crossover, swapping of the particular

section of the genes to create new individuals. However, a cancellation process is also

maintained in case the newly formed individual ends up developing higher gene depth than

allowed.

Figure 2-18: MGGP crossover operation (Gandomi et al., 2011)

The mutation operation can be applied in six different ways. First, it can be a sub tree

mutation, changing a section of the tree. Second, the constant values can be mutated using an

49

additive Gaussian perturbation. Third, functional node can be substituted by another randomly

chosen functional node. Fourth, a randomly chosen constant can be set to zero. Fifth, the variable

nodes can be substituted by a different variable node. Finally, some random constant values can

be changed to one. Figure 2-19 shows an example of mutation operation of third kind.

Figure 2-19: MGGP mutation operation (Gandomi et al., 2011)

Weight of each genes are calculated and evolutionary algorithms (EA) are used to tune

the values of d0, d1, d2, d3, and d4 (Riolo and Worzel, 2003). In Figure 2-20, a small example of

model development in both GA(a) and MGGP(b) are presented. The figure also shows that the

development of final model from the individual developed in MGGP.

50

Figure 2-20: Individual development of (a) Genetic Algorithm, and (b) Multi-gene genetic
Programing

2.4. Coefficient Generation

In general, model comprises of the features selected and the coefficient related to the

features. These coefficients dictate the influence of a certain feature (e.g. descriptors) on the

model. There are various ways of generating coefficients of features to develop the model.

2.4.1. Multiple Linear Regression (MLR)

To use MLR for coefficient calculation of linear models, it is important to ensure that the

variables (x) are independent. According to Geladi and Kowalski (1986), MLR can be used to

derive the coefficients of Eq. (2.9) provided that y is related to xj in a linear manner, where e

denotes the error of the equation.

51

𝑦𝑦 = �𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑒𝑒 (2.9)

For understanding the mathematical process of deriving 𝛽𝛽, let us assume a case with n

numbers of y and m number of x. Figure 2-21 can be used to visualize this case based matrix

setup. Although solving such system can be much easier when m = n as 𝛽𝛽 can be simply derived

by Eq (2.10), in most cases of QSPR/QSAR development, it is possible to see either cases with

m > n or m < n.

Figure 2-21: Sample Multiple Linear Equation

In case of m > n, there are more variables than samples. Such case causes generation of

infinite number of solutions for 𝛽𝛽, and all of them are applicable. For this reason, MLR operation

is never performed for cases where there are more variables than samples.

For cases where m < n, it is difficult to get exact solution for 𝛽𝛽 by using Eq (2.10).

However, one can use Eq (2.11) to generate a least-squares solution.

𝛽𝛽 = 𝑋𝑋′𝑦𝑦 (2.10)

𝛽𝛽 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑦𝑦 (2.11)

52

2.4.2. LASSO Regression

LASSO regression was performed using descriptors generated by the genetic algorithm.

LASSO regression has been discussed in detail in the work of Tibshirani (1996). LASSO

attempts to shrink some coefficients of the models and sets others to zero. In this way, LASSO

retains the beneficial features of subset selection and ridge regression. Eq. (2.12) shows that

LASSO works to minimize MSE, and based on that, reduces the number of predictors required to

generate the model. The final set of coefficients (𝛽𝛽 LASSO) is derived at the point of minimum

MSE (Eq. (2.13)). Here, λ (lambda) is a user-defined constant. The higher the value of λ, the

higher are the number of descriptors with zero coefficient.

min�(𝑦𝑦𝑖𝑖 −�𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

+ 𝜆𝜆� |𝛽𝛽𝑗𝑗|
 (2.12)

𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �|𝑦𝑦 − 𝑋𝑋𝛽𝛽|�
2
2

+ 𝜆𝜆 �|𝛽𝛽|�
1
 (2.13)

Recently, Algamal et al. (2015) used an adaptive version of LASSO to generate a QSAR

model of anticancer potency of imidazo derivatives. According to his report, LASSO can be

greatly useful for model regression as well as model development algorithm when feature

cancelation approach is followed. A simple representation of LASSO process to determine

coefficients is presented in Figure 2-22. At this point, it is important to notice that derivation of

LASSO coefficients depend on deriving a constant t such that �|𝛽𝛽|�
1
≤ 𝑡𝑡. The function values

(f1-f4) presented in the figure can be assumed to be MSE (mean square error) values of the

model under development due to different values of 𝛽𝛽1 and 𝛽𝛽2. LASSO tries to shrink the

coefficients of the descriptors to push them towards zero values.

53

Figure 2-22: LASSO Coefficient shrinkage operation

For this 2-coefficient system, LASSO pushed the values of the coefficients until

summation of their absolute values become equal to or less than t. For that reason, LASSO will

suggest f4 value of MSE to be most applicable value with 𝛽𝛽1 = 0 and 𝛽𝛽2=t. This process is not

that simple when more than two variables are involved in the model. For that, a mathematical

approach is required.

So far, it has been established that regression process using LASSO highly depends on

selection of λ (penalty) and t (tuning). These constants can also be called the controlling

parameters of LASSO. As λ can be any positive real value in the range of 0→∝, an automated

computational method can be developed to determine value of λ.

Determining the right value for t requires few more steps. There are three methods that

can be used to determine t: cross-validation, generalized cross-validation and an analytical

54

unbiased estimate of risk. According to Tibshirani (1996), the most conventional method is the

first one due to its flexibility in terms of X-Y relationship complexity and decreased

computational effort.

𝑌𝑌 = 𝜂𝜂(𝑋𝑋) + 𝜖𝜖 (2.14)

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑�𝜂̂𝜂(𝑋𝑋) − 𝜂𝜂(𝑋𝑋)�
2

 (2.15)

𝑃𝑃𝑃𝑃 = ∑{𝑌𝑌 − 𝜂̂𝜂(𝑋𝑋)}^2 = 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜎𝜎2 (2.16)

𝑀𝑀𝑀𝑀𝑀𝑀 = (𝛽̂𝛽 − 𝛽𝛽)′𝑉𝑉(𝛽̂𝛽 − 𝛽𝛽) (2.17)

For this part, relationship of X and Y has been supposed to be as Eq. (2.14). Here, 𝜎𝜎2 can be

defined as variance of 𝜖𝜖. The prediction error for LASSO procedure (PE) is produced by at least

fivefold cross-validation. A normalized parameter 𝑠𝑠 = 𝑡𝑡/∑�𝛽𝛽𝚥𝚥� � is used to index LASSO

coefficients. Value of s can be varied from 0 to 1 and 𝛽̂𝛽 can be determined for lowest PE.

Finally, Eq. 2.17 was used to determine MSE in simpler manner once 𝛽̂𝛽 exists. Here, V is a

population covariance matrix of X, expressed by X’X. The whole process has been presented in

the flowchart of Figure 2-23.

55

Figure 2-23: LASSO algorithm flowchart

56

3. Methodology

Here, we present the methodology performed to develop models for both cases. Although

the method applied to develop models from descriptors for the cases are different, some initial

steps remain same. The first step is to develop a dataset that is suitable for the case. Based on the

dataset, molecular structures are developed using Avogadro© software. Avogadro© is a free

software platform to design molecules which is very user-friendly. It is very easy to structures of

varying complexities using Avogadro© as various fragments can be called in as per requirement.

Figure 3-1 shows some sample molecular structures drawn by Avogadro© software. These

structures are saved as .MOL files, which can be used to develop descriptors.

Figure 3-1: Molecular Structures Developed in Avogadro Platform

57

After this step, the .MOL files are collected and used in Dragon© 6 software to calculate

the descriptors. Dragon© 6 can calculate 4885 different descriptors that include 1D to 4D type of

descriptors. These descriptors are saved in a .TXT file and processed for feature selection

operations. For our case, we have limited our investigation to 2D descriptors.

3.1.Case 1: Reaction Rate Constant of Diels-Alder Reaction

From the work of Tang et al. (2012) and Zhou et al. (2014, 2015), we generated a diverse

data set of 72 reactions that consisted of 38 different dienophiles, 19 dienes and 10 solvents.

These reactions, along with respective experimental and predicted reaction rates, are presented in

Appendix A. All chemical species were designed using Avogadro software. The structures were

optimized using MMFF94s, a built-in geometry optimization algorithm of Avogadro software, as

suggested by Datta et al. (2015). The optimized geometries were saved as .MOL files. These

files were then used as input for Dragon 6 software to calculate descriptors. Following

convention, one sixth of the reactions were separated for external validation and all other

reactions were used to train the model. Keeping reaction design simplicity in mind, only

connectivity descriptors were used for model development.

3.1.1. Divide and Conquer Algorithm

This method has been previously utilized in many studies that required handling

complicated datasets. Bentley (1980) has expressed the significance of multidimensional divide

and conquer algorithm in his work. He has presented some classic point-based problems, where

the main goal is to determine the domination of a point over other points present in dataset. This

domination is determined by ranking the points, which refers to influence or significance of the

point in dataset. Figure 3-2 shows a simple representation of the algorithm.

58

Figure 3-2: Problem size reduction by Divide and Conquer Algorithm

Zhang (2004) has showed application of this algorithm in his peptide sequencing

algorithm. Cheng et al. (2012) have used this technique to improve their template-base modeling

for their protein modeling project. The concept has also been discussed in detail in the work of

Hemmateenezad et al. (2004). They have used PCA on different classes of descriptors to

minimize the workload of GA. However, in this work, subsets of chemical species were subject

to this strategy. The three subsets used were dienophiles, dienes and solvents. However, we

checked for normalized standard deviation for all the descriptors of the subsets. After analyzing

that, the descriptors with higher standard deviation were chosen to develop the dataset. For using

this step, the number of meaningful descriptors was reduced to 32. These descriptors were then

used as input to the DT algorithm for generating initial population of GA.

59

3.1.2. Decision Tree Algorithm

After the dataset was properly reduced to generate a dataset with only meaningful

descriptors, the dataset was analyzed using a DT algorithm. As discussed in Section 2.3.2, DT is

a good algorithm that can be used both for feature selection and coefficient generation. It is

worth noticing that in the previous cases and in the example provided, possible solutions were

generated using unaltered initial node. This project used a different approach of DT where its

aim was to develop best possible initial population for GA. For such a requirement, DT was

modified to alter its initial node every time it generates a member of the initial population. This

ensures uniqueness of the developed members in the population.

3.1.3. Modified Genetic Algorithm

In most cases, GA works with generating an initial population. This population then goes

through Roulette wheel elitism, crossover and mutation in each generation to develop better

population. However, mostly single point swap is used for the process of crossover. Single point

swap, in general, chooses two parents for the crossover. This process is also known as paring.

The children are developed by swapping the parent data from a chosen single point. This is the

most widely used process of crossover. In this work, scattered approach is used to perform the

crossover operation. In scattered approach (Figure 3-3), multiple points of swaps are randomly

selected. The swap occurs to the selected cells containing descriptors and the rest remains the

same. The reason for choosing scatter swap over single point swap is to prevent over-

adulteration of initial population while seeking better solution causing surgical changes.

60

Figure 3-3: Comparison of single point swap and scatter swap in crossover operation

3.1.4. Hybrid GA-DT Algorithm Development

In this step, the GA algorithm was modified using DT approach for generating a better

initial population. A modified version of DT was used to choose meaningful descriptors that will

increase model fitness. As shown in Figure 3-4, the initiation of GA uses DT. The DT algorithm

controls the selection of the descriptors so that they increase the R2 value of the candidates of the

population. In this way, each member of the population represents a potential model. The first

descriptor is a random selection. From the second descriptor and onwards, DT tries to include

descriptors such that the R2 value keeps getting better. This ensures not only a good initial

population but also a good final model using the fewest number of generations.

61

Figure 3-4: Developed hybrid GA-DT algorithm flowchart

After obtaining a good initial population, the population goes through Roulette’s wheel

population substitution. For the purpose of this work, any model with a R2 less than the mean of

all R2 values were substituted by the best model value achieved in the generation. After that,

Crossover and Mutation brings changes to populations. Crossover probability was selected to be

62

0.6 and mutation probability was assumed to be 0.02. Mutation, in this algorithm, randomly

selects chromosomes and replaces them with descriptors not existing in the current population.

After these steps, if the achieved generation does not produce at least one better model, the

changes in the generation are rejected. And the system goes through crossover and mutation

process again until the best possible model is identified. The operations of DT were confined to

generating the initial population. The hypothesis behind this was that a more viable initial

population can generate a potential model faster than one obtained from a randomly developed

initial population. The entire algorithm was manually coded and executed using MATLAB

scripts.

3.1.5. Multi-Gene Genetic Programming (MGGP)

To further investigate the effect of non-linear models on data prediction and representation,

MGGP algorithm was used. For execution of this operation, the GPTIPS 2.0 (Searson et al.,

2010) toolbox of MATLAB was used due to its wide variety of flexibility presented. It is

important to note that the initial node of developing an MGGP individual is always an arithmetic

operator. The GPTIPS 2.0, to determine the overall coefficients for genes, uses simple MLR

assuming the model structure can be considered linear. For our work, although we used MLR for

initial determination of the overall coefficients, a genetic algorithm was used to tune the

coefficients further for better result. There needs to be defined some parameters to use the

toolbox, and such parameters are recorded in Table 3-1. It is worth noticing that various

combinations of gene numbers, gene depth, high and low level crossover probabilities were used

to develop acceptable models. After event numbers are decided by the percentage of crossover

events, the numbers of events are divided into two groups, the low and high level crossover

63

operations. It is of prime importance to remember that total probability of high and low level

crossover operation must result to 1.

Table 3-1: MGGP parameters used for model development

Parameter Settings

Population size 50

Number of generations 250

Maximum number of genes 4-7

Maximum gene depth 3-6

Tournament size 12

Crossover events 0.85

Mutation events 0.02

Subtree mutation 0.9

64

3.2.Case 2: Predicting DNA Drug Binding Affinity of 9-Anilinoacridine Derivatives

Three principal classes of descriptors (Conventional, 2D and Connectivity Index) were

generated using the Dragon© 6 software. A total of 205 descriptors were generated using the

software. An initial screening was performed to reduce the number of descriptors by eliminating

those with zero values. 185 descriptors were obtained after this initial screening. GA was used to

perform feature selection operation in combination with MLR. Finally, a correlation-based

adaptive LASSO was used to further decrease the number of descriptors required and generate a

model with enhanced prediction ability. During model development, one sixth of the molecules

(5 out of 31) were used to test the model and the rest of the molecules (26 out of 31) were used to

train it. For this purpose, the descriptors were used to generate an initial population of 50 rows

and 13 columns. This initial population underwent the processes of roulette-wheel selection,

single point swap crossover (with probability 0.6), and mutation (with probability 0.02). The

objective was to select descriptors such that a model with the best R2 and Q2 values are

generated. R2 and Q2 values describe the fitness of generated model using the training and test

sets respectively. But the problem occurred was presence of multiple models with same R2 and

Q2 values. It was necessary to analyse the final models and decide which one can be used as a

property model.

Here, we have developed a correlation-based adaptive LASSO algorithm to direct the

algorithm shrinkage towards descriptors in the model that show reduced correlation with the

association constants. From previous discussions on LASSO, it was evident that correlations of

target-descriptor values are never checked while shrinking the coefficients. A problem arises

when LASSO tries to shrink descriptors with lowest values to zero and there are two of them. In

such situations, LASSO automatically reduces both descriptors to zero. However, one can argue

65

that reducing one descriptor’s coefficient to zero will change the coefficients of the rest of the

descriptors. In that case, one of the two “zeroed-out” descriptor might become a descriptor with

higher coefficient. To evaluate this assumption and check the effect, one way is to allow only

one coefficient to be “zeroed-out” while saving another. As the coefficients of the models are

checked for every new 𝝀𝝀 value using MLR, it is important to save the descriptor that shows

comparatively higher correlation although having lowest-most coefficient. We have named this

algorithm as CorrLASSO. To validate the superiority of the proposed algorithm, the results from

the basic LASSO algorithm (using lasso() function of MATLAB) are compared with the

correlation-based CorrLASSO algorithm. Finally, an overall R2 value is calculated for the model

with the lowest MSE to provide the best model possible for the available dataset. Figure 3-5

presents an overview on the process of CorrLASSO regression algorithm. This minor tuning of

the algorithm is assumed to improve the algorithm efficiency as descriptor-property relationship

is being utilized in model shrinkage and selection.

66

Figure 3-5: Flowchart of CorrLASSO regression algorithm

67

4. Results

To discuss and analyse the effectiveness of the methods proposed, results based on both

cases have been discussed in this section.

4.1. Case Study 1

Using modified DT to develop initial population for GA plays a vital role in efficiency of

model development. As shown in Table 4-1, the difference of developed models with and

without DT modification in GA shows significant difference in model confidence.

Table 4-1: Improvement of initial model confidence with addition of descriptors in GA and GA-
DT method

Descriptor

addition

GA method GA-DT method

R2 Q2 R2 Q2

1 -0.3035 -1.0256 -0.3035 -1.0256

2 0.0136 -0.546 0.0169 0.0089

3 0.2085 0.1029 0.0825 0.0153

4 -10.52 -15.35 0.1253 0.0328

5 -2.155 -4.081 0.3576 0.1284

6 0.3025 0.0158 0.3661 0.1153

7 0.1582 0.0379 0.4011 0.2086

8 0.0631 -.5379 0.4583 0.4105

68

The negative values might have been generated due to selection of descriptors which

generated a model that doesn’t follow the trend of the data. The table clearly demonstrates the

influence of DT modification in this case. To make the comparison clearer, same seed number of

random selection was used in both GA and GA-DT method.

It has also been noticed that this method can generate a suitable model much faster than simple

use of GA algorithm. As suggested in Figure 4-1, fewer generations are required to develop the

best model possible.

Figure 4-1: Q2 Value improvement of developed models with number of generations

It can be seen that approximately 50 generations are sufficient for the hybrid GA-DT

approach to develop the best model, while 250 generations of the GA approach was required to

get a model with a confidence to that of the GA-DT model. In both cases, MLR was used as

regression tool.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

Q
2

Number of Generations

GA

GA-DT

69

Figure 4-2 presents a comparison between the predicted and observed –log(k) values of

the reactions used in model development. It can be seen that the model tends to have some

difficulties predicting reaction rates in negative values. These values are related to reactions that

were performed with water as solvent. So we can assume that this model is more applicable to

reaction systems with organic solvents.

Figure 4-2: Observed vs predicted -log(k) values using hybrid GA-DT algorithm

It should be noted that the model is developed based only on connectivity descriptors of

all chemical species. Eq. (4.1) shows the developed model:

-log(k) = -57.0184 + 9.193891 X3AR-1 - 57.7238 X1KupR-1 - 7.33585

X2sol +23.46769 X0AvR-1 + 96.15087 X3AvR-1 + 3.094669 X4R-2 +

72.42918 X1PerR-1+ 66.62089 X0AR-2

 (4.1)

70

Here,

X3AR-1 - Average Connectivity Index of Order 3-Dienophile

X1KupR-1 - Kupchik Connectivity Index-Dienophile

X2sol - Connectivity Index of Order 2-Solvent

X0AvR-1 - Average Valence Connectivity Index of Order 0-Dienophile

X3AvR-1 – Average Valence Connectivity Index of Order 3-Dienophile

X4R-2 - Connectivity Index of Order 4-Diene

X1PerR-1 - Perturbation Connectivity Index-Dienophile

X0AR-2 - Average Connectivity index of Order 0-Diene

k – reaction rate constant for second order reaction

The subscript R-1 denotes Dienophiles, while R-2 denotes Dienes and Sol denotes

solvent. The model includes descriptors from every subset of chemical species used to develop

the model. This gives reaction designers an opportunity to simultaneously evaluate effects of

both reactants and solvents on the reaction rate constant. The model has R2 value of 0.81 and Q2

value of 0.86. As genetic algorithm is an evolution-based algorithm that locates maximum or

minimum value of a given setup, this model can be considered to have the best predictability

possible for the reaction-solvent system using the mentioned descriptors. However, there is

always a possibility that the model might not be the only one with same predictability. In reality,

one more model with almost same R2 and Q2 value did form. However, that model was rejected

as it did not include effect of solvent structure on the target property.

However, better models were generated using MGGP algorithm. As GPTIPS 2.0 gives

the opportunity for using various numbers and depths of the genes, the objective was to develop

71

a better model than Eq (4.1), presented by Datta et al. (2017), using a nonlinear model that

contained the minimum number of descriptors possible. The population size and number of

iterations were kept constant respectively to 50 and 250. In different settings of number of genes,

gene depths, and high and low crossover possibilities, three models possessed better performance

metrics than the model presented in the work of Datta et al. (2017). For convenience, they are

identified as M1, M2, and M3. More details on these models have been presented in APPENDIX

A. It should be noted that, all the selected models represent the influence of all the chemical

classes involved in the reactions. However, the numbers of descriptors used to develop the

models are different. M1 required 13 descriptors, where as M2 and M3 required 10 and 18

descriptors respectively. Here, R2 and Q2 represent model fitness for training set and test set data

respectively, and RMSE expresses overall root mean squared error for the model.

Table 4-2: Properties of non-linear models developed and parameters used

Model Number M1 M2 M3

R2 0.9825 0.9011 0.9538

Q2 0.8943 0.8213 0.9316

RMSE 0.5471 0.8410 0.2918

Gene number 4 5 7

Gene depth 3 4 5

Low level crossover 0.8 0.7 0.6
High level crossover 0.2 0.3 0.4

As presented in Table 4-2, M3 model shows the best fit compared to the other models. It

can also be noticed that, in case of M2 and M3, decreased lower level crossover possibility, and

increased number and depth of gene was able to improve fitness. This helps draw the conclusion

that overuse of low level crossover can result in lower quality of predictive model. Although all

72

the models have significant level of nonlinearity, M3 was more successful in data fitness as the

model showed highest nonlinearity among them due to comparatively higher numbers of gene

number and depth. This also supports the assumptions made while developing model to describe

reaction rate constants.

From the analyses of observed vs predicted –log(k) values in Figure 4-3, Figure 4-4, and

Figure 4-5, it is clear that the non-linear models have much better fit than the linear one

presented in Figure 4-2.

Figure 4-3: Observed vs predicted -log(k) values using M1

73

Figure 4-4: Observed vs predicted -log(k) values using M2

Figure 4-5: Observed vs predicted -log(k) values using M3

74

Observing these figures, it also becomes definite that M3 has the best fit, as suggested by

Table 4-2. It is notable that M1 and M3 have significantly similar fit. However, careful

observation dictates that the values involving aqueous solvent shows tighter fit for M3 than M1.

These values show anomalies due to the fact that using water as solvent causes a vacuum of

descriptor values, and that causes the prediction errors in linear models. However, the non-linear

models tend to address this matter better than the linear models, producing better fit. Among the

non-linear models developed, M3 also shows the best fit for this region. For these reasons, and

the minimum model RMSE value, M3 can be considered a great candidate to be used as a

predictive model.

The most important matter of this model is the descriptors are computationally easy to

calculate from the molecular structures. This model gives an opportunity for studying not only

the roles of the reactants but also solvents on the reaction rates of Diels-Alder reactions. A

limitation, however, is that this model is only applicable for reactions performed at 250C (298K).

A question may be raised about whether this model is suitable for reaction design at industrial

level where temperatures being dealt with are much higher.

4.2.Case Study 2

From genetic algorithm, three acceptable sets of descriptors were generated. As the MLR

(multiple linear regression) models generated from GA have very close R2 (0.87) and Q2 (0.92)

values, more investigation was required to determine a unique model with the highest data

fitness. In such a case, LASSO can be used to determine the best possible model. Figure 4-6

demonstrates the observed vs. predicted values of log(K) for models generated by the genetic

algorithm. Although there are some points which fall on the line, some severe anomalies can be

75

noticed. To generate a better model, traditional LASSO regression was performed on the set of

descriptors generated from GA.

Figure 4-6: Observed vs. predicted log(K) values using genetic algorithm

It can be seen in Figure 4-7 that the traditional LASSO model reduced the MSE value,

but the R2 (0.89) and Q2 (0.9) values suggest that the overall improvement was not significant.

The observed vs predicted log(K) values (Figure 4-8) also show that there still remain some

severe anomalies. However, the MSE value dropped significantly from around 0.05 to around

0.027. The aim of LASSO is to minimize the MSE of the model through removal of descriptors

by reducing their coefficients to zero. It is possible that a descriptor having good correlation with

the target value may be suppressed to zero.

76

Figure 4-7: MSE analysis of model for log(K) using basic LASSO regression

Figure 4-8: Observed vs predicted log(K) values for model generated using LASSO regression

77

In Table 4-3, coefficients of X3A are significantly different in LASSO and CorrLASSO

evaluations. Presence of X3A in the model improved MSE value of the model as it has higher

correlation than ZM2Mad and RBF with the target property. But its coefficient was suppressed

to zero by LASSO algorithm based on its MLR coefficient.

Table 4-3: Coefficients of descriptors based on MLR, LASSO and CorrLASSO regression

Method MLR LASSO CorrLASSO

Intercept 16.90 -12.09 -24.56

D
es

cr
ip

to
rs

ZM2Mad 0.01 0.00 0.00

IC0 -45.25 0.30 0.18

RBF 0.02 0.00 0.00

nCsp3 -7.26 -0.03 -0.01

TIE 0.06 -0.05 -0.08

PW2 0.03 3.40 7.54

nDB 0.50 -0.33 -0.33

TIC0 4.21 0.02 0.03

CIC1 -0.02 -0.06 -0.01

X5sol -0.68 0.37 0.57

Psi_e_A -2.84 1.92 3.03

X3A 0.01 0.00 -22.58

H% 0.03 0.10 0.11

Model MSE 0.05 0.027 0.0126

78

To address this shortcoming, correlation values of two descriptors with lowest absolute

coefficient values (|bj|) were calculated. The descriptor with the lowest correlation with log(K)

values was allowed to be suppressed to zero while the other one was protected to be evaluated

further in the CorrLASSO.

When the CorrLASSO is used, it improves the model fitness (Figure 4-9). It can be seen

that the MSE value has dropped to almost 0.0126 and the fitting curve (Figure 4-10) has also

improved. It can be seen that X3A is improving the model if that is protected for future

calculation. To do that, correlation values of two descriptors (ZM2Mad, X3A) with lowest

absolute coefficient values (|bj|) were calculated.

Figure 4-9: MSE analysis of the model using CorrLASSO regression

The descriptor with lowest correlation with log(K) values was allowed to be suppressed

where the other one was protected to be tested further. When the CorrLASSO is used, it

improves the model. Fitness values for both internal and external validations have improved. For

79

the achieved model, R2 value is 0.9 and Q2 value is 0.989. The overall R2 value for this model is

0.947, which is better than the linear model proposed by Chtita et al. (2016) with R2 value of

0.873. For the given model, the Q2 value is significantly high. This means that this model can be

used with high confidence in case of developing and studying derivatives that were not part of

the training set. It can also be argued that the proposed model is not a significant improvement

from the previous work. However, the descriptors used to develop the model are significantly

easier to calculate for a given structure within the limits of the chemical space. Information about

the molecular descriptors listed can be depicted from Talete information website (talete, 2018).

From Table 4-3, it can be noticed that, logK values are highly dependent on three descriptors;

X3A (average connectivity index of order 3), PW2 (path/walk 2 - Randic shape index), and

Psi_e_A (intrinsic state pseudoconnectivity index - type S average). This proves the importance

of CI descriptors in the developed model.

Figure 4-10: Observed vs predicted log(K) values using CorrLASSO algorithm

80

The new proposed method of regression analysis has proven to be very efficient. The best

feature about this change is this only takes effect in cases where two lowest coefficients exist. A

significant fact to consider for such cases is that it is not a good idea to let an algorithm reject

two descriptors in a single step, as happens in cases of LASSO.

81

5. Conclusions and Future Directions

In this work, two condition-specific cases have been presented. The focus of the work

was to develop hybrid algorithms that are computationally efficient and less expensive.

Developing these systems can be utilized in case of developing software that tackles such

situations. Overall, this project is dedicated to develop efficiency of GA-based hybrid approaches

that has far more efficiency than the genetic algorithm alone. From their results, it could be also

noticed that such algorithms can become efficient and less costly means of developing models in

such condition-specific cases. It is very important to realize that such condition-specific models

are likely to have a limited database to work on. These algorithms can be used to design a

software platform for such CAMD investigations that will be user-friendly as the calculations

can be performed in a simple computer system of present days. From the cases analyzed, it is not

difficult to foresee that necessity of such platforms will emerge shortly to help our peers who are

performing the experimental part of such studies.

In the first case, we found that by modifying GA through inclusion of DT enhances

model generation capabilities. The model generated in this case through the hybrid GA-DT

approach has a very good confidence level for both describing and predicting Diels-Alder

reaction kinetics with solvent influence. However, some limitations need to be mentioned. The

model assumes that a linear relationship exists between the logarithm of the rate constant and the

molecular descriptors. Conducting a non-linear analysis might produce a better model, which

will be a topic of future study. Including other 2D descriptors might also affect model confidence

However, for the second part of this case was focused on developing a better model than that

previously proposed for the same property using QSPR analysis (Datta et al., 2017). From the

work of Datta et al. (2017), it was clear that the hybrid GA-DT method was very efficient in

82

developing linear model of such kind. As Dev et al. (2017) also concluded that the hybrid GA-

DT method provided the best possible model, developing nonlinear model was the only option

left to develop better property model. From the results it can be noticed that M1 and M3 models

have similar metrics. However, in case higher level of accuracy is required, use of model M3 is

advised. It can be noticed that Model M3 used five more descriptors than M1, but as connectivity

index descriptors are very easy to calculate, no severe rise in computational expense is expected.

Finally, it can be noticed that the models developed had better quality than it was in the case of

linear model presented for same property by Datta et al. (2017). The model generated in our

work relates the rate constant to the structures of reactants and solvent at a temperature of 298 K.

Including temperature effects can be a good way to make the model more applicable for

industrial process design. It should also be noted that although we have increased the diversity of

the solvents in our study, in general, we need more data points in our study. We will explore the

possibility of using quantum chemical calculations as a source of data to expand our data set.

This approach has, for example, been investigated in the work of Sumathi et al. (2002). A

concern can arise that the model generated in our study is only applicable for the Diels Alder

reaction. Although this limits the application of the model generated, the process of model

generation is a general one that can be used for any other reactant-solvent pair QSPR/QSAR

study.

The second study aimed at developing a new approach of combining evolutionary

algorithm with a feature-selection-based regression algorithm. Although model optimization

using traditional LASSO algorithm is strictly based on eliminating coefficients, this work has

proposed a correlation based LASSO algorithm which checks for property-feature correlation

information to determine feature shrinkage and cancellation. This modification is highly useful

83

for evaluating models derived from evolutionary algorithms such as genetic algorithm; which

tend to produce optimum models that may not be unique as per statistical fitness values. In such

cases, regression algorithms like LASSO can be very efficient to evaluate the models for better

fitness values. Although we have proposed a way of generating a highly feasible model, more

data points are required to include diversity in the processed data. Another point to notice is the

avoidance of using 3D descriptors. It is possible that using 3D descriptors may generate a model

with better fitness. However, the aim of this work is to develop a model useful for setups with

lower computational power. Molecular design using some of the 3D descriptors can result in a

process requiring higher computational power that is almost similar to using DFT descriptors.

Also, the model generated in this process is only valid for evaluating drug-DNA binding constant

of 1’ substituted 9-anilinoacridine derivatives, and effect of using 2’ and 3’ substituted

derivatives can be a matter of future studies. However, the focus of this project is to develop an

algorithm that can be utilized for any given chemical space. From that point of view, the

proposed process is a universal one and can be used to generate models for predicting such drug-

related properties.

5.1. Future Directions

The work aimed at developing algorithms to develop predictive models with high

probability of predictability. However, the scope of developing models using larger chemical

space is always an option. It certainly presents with it some degree of uncertainty; such can be

dealt with cross validation. This was not dealt with in these cases due to not having a large

chemical space consisting different types of chemical structures.

Additionally, as the goal was to develop predictive models using algorithms with

universal acceptability and descriptors that are lesser dependent on high performing computers,

84

more case studies can be performed using these algorithms to check the viability of these

algorithms in different cases with similar situations but different chemical spaces.

Finally, studies needed to be performed to validate the applicability of these models.

These models need to be applied to product or research design and present novel solutions for the

given problems. It is required to check the model performance in experimental setup before

comments can be made on the effectiveness of these models in predicting required molecular

structures.

85

6. References

C.S. Adjiman, A. Galindo, 2011, Front Matter. Process System Engineering, Wiley Online

Library, I – XVII. .

Z.Y. Algamal, M.H. Lee, A.M. Al-Fakih, M. Aziz, 2015, High-dimensional QSAR prediction of

anticancer potency of imidazo[4,5-b]pyridine derivatives using adjusted adaptive LASSO, J.

Chemometrics, 29, 547-556

E.A. Amin and W.J. Welsh, 2001, Three-dimensional Quantative Structure-Activity Relationship

(3D-QSAR) models for a movel class of Piperazine-based Stromelysin-1 (MMP-3)

inhibitors: Applying a “Divide and Conquer” strategy, J. Med. Chem, 44, 3849-3855

C.M. Anderson-Cook , 2005, Practical Genetic Algorithms, Journal of the American Statistical

Association, 100:471, 1099-1099

C. Andres and M.C. Hutter, 2006, CNS permeability of drugs predicted by a Decision Tree,

QSAR Comb. Sci., 25, 305-309

A. Becke, 1988, Density-functional exchange-energy approximation with correct asymptotic

behavior. Physical Reviews A, 3098-3100.

J.L. Bently, 1980, multidimensional Divide-and-Conquer, Communications of the ACM, 23(4),

214-229

M. Born, & K. Huang, 1988, Dynamical Theory of Crystal Lattices. Oxford: Clarendon Press.

86

L. Breiman, H. Friedman, R.A. Olshen, and C.J. Stone, 1984. Classification and Regression

mes, Wadsworth International Group, Belmont, California, 356-358.

L. Breiman, 2001, Random Forests, Machine Learning, 45, 1, 5-32

B.C. Bugaley, W.A. Denny, G.J. Atwell, B.F. Cain, 1981, Potential antitumor agents. 34.

Quantitative relationships between DNA binding and molecular structure for 9-

anilinoacridines substituted in the aniline ring, J. Med. Chem, 24, 170-177

G. Ceder, K. Persson, 2013, How Supercomputers Will Yield a Golden Age of Materials

Science, Sci. Am.

U.A. Chaudry, P.L.A. Popelier, 2003, Ester Hydrolysis Rate Constant Prediction from Quantum

Topological Molecular Similarity Descriptors, J. Chem. Phys. Chem. A, 107, 4578-4582.

J. Cheng, J. Eickholt, Z. Wang, X. Deng, 2012, Recursive protein modeling: A divide and

conquer strategy for protein structure prediction and its case study in CASP9, J Bioinform.

Comput. Biol., doi:10.1142/S0219720012420036

S. Chtita, R. Hmamouchi, M. Larif, M. Ghamali, M. Bouachrine, T. Lakhlifi, 2016, QSPR

studies of 9-anilinoacridine derivatives for their DNA drug binding properties based on

density functional theory using statistical methods: Model, validation and influencing factors,

J of Taibah University for Science, 10, 868-876

T. Clark, & R. Koch, 1999, Linear Combination of Atomic Orbitals. Berlin: Springer.

V. Consonni, R Todeshini, 2008, Handbook of Molecular Descriptors. Wiley Online Library, I –

XXI.

87

M.T.D Cronin, J.S. Jaworska, J.D. Walker, M.H.I. Comber, C.D. Watts, A.P. Worth, 2003, Use

of QSARs in international decision-making frameworks to predict health effects of chemical

substances. Environ Health Perspect, 111(10), 1391–1401.

S. Datta, R.H. Herring III, M.R. Eden, 2015, Data Mining and Regression Algorithms for the

Development of a QSPR Model Relating Solvent Structure and Ibuprofen Crystal

Morphology, Computer-Aided Chemical Engineering, 37, 1439-1444.

S. Datta, V.A. Dev. M.R. Eden, 2016, Relating Reaction Rate Constant to Structures of

Reactants and Solvent Using a Hybrid GA-DT Approach, Computer-Aided Chemical

Engineering, 38, 2049-2054.

S. Datta, V.A. Dev, M.R. Eden, 2017, Hybrid genetic algorithm-decision tree approach for rate

constant prediction using structures of reactants and solvent for Diels-Alder reaction.

Computers and Chemical Engineering, 106, 60-698

S. Datta, V.A. Dev, M.R. Eden, 2018a, Developing Non-linear Rate Constant QSPR using

Decision Trees and Multi-Gene Genetic Programming, Computer-Aided Chemical

Engineering, 44, 2473-2478

S. Datta, V.A. Dev, M.R. Eden, 2018b, Using correlation based adaptive LASSO algorithm to

develop QSPR of antitumor agents for DNA-drug binding prediction, Computers and

Chemical Engineering, https://doi.org/10.1016/j.compchemeng.2018.08.039

L. Davis, 1986, Applying adaptive algorithms to epistatic domain, 9th joint conf on AI, 162-164

https://doi.org/10.1016/j.compchemeng.2018.08.039

88

V.A. Dev, N.G. Chemmangattuvalappil, M.R. Eden, 2015, Designing Reactants and Products

with Properties Dependent on Both Structures, Computer-Aided Chemical Engineering, 37,

1445-1450.

V.A. Dev, S. Datta, N.G. Chemmangattuvalappil, M.R. Eden, 2017, Comparison of Tree Based

Ensemble Machine Learning Methods for Prediction of Rate Constant of Diels-Alder

Reaction, Computer Aided Chemical Engineering, 40, 997-1002.

M. Dewar, E. Zoebisch, E. Healy, & J.Stewart, (1985). Development and use of quantum

mechanical molecular models. 76. AM1: a new general purpose quantum mechanics

molecular model. Journal of the American Chemical Society, 3902-3909.

A. Dudek, T. Arodz, J. Galvez, 2006, Computational Methods in Developing Quantitative

Structure-Activity Relationships (QSAR): A Review. Combinatorial Chemistry & Hight

Throughput Screening, 213-228

E. Estrada, A.R. Matamala, 2007, Generalized Topological Indices. Modeling Gas-Phase Rate

Coefficients of Atmospheric Relevance, J. Chem. Inf. Model., 47, 794-804.

D.A. Evans and J.S. Johnson, Diels-Alder Reactions, 1999, Chapter 33.1, Comprehensive

Asymmetric Catalysis I-III, Springer-Verlag, Berlin Heidelberg, 1178-1235

A.H. Gandomi and A.H. Alavi, 2011, Multi-stage genetic programming: A new strategy to

nonlinear system modeling, Information Sciences, 181,23, 5227-5239.

89

A.H. Gandomi and A.H. Alavi, 2012, A new multi-gene genetic programming approach to

nonlinear system modeling. Part I: materials and structural engineering problems, Neural

Computation and application, 21, 171-187

P. Geladi, B.R. Kowalski, Partial Least-Squares Regression: A Tutorial, 1986, Analytica

Chimica Acta, 186 (1986), 1-17.

P. Glavič, 2012, Thirty Years of International Symposia on Process Systems Engineering. Curr

Opin Chem Eng, 1(4), 421–429.

M. Goodarzi, P.R. Duchowicz, C.H. Wu, F.M. Fernandez, E.A. Castro, 2009, New hybrid

genetic based support vector regression as QSAR approach for analyzing Flavonoids-

GABA(A) complexes, J. Chem. Inf. Model, 49, 1475-1485

C. Grosan and A. Abraham, 2007, Hybrid evolutionary algorithms: Methodology, architectures,

and review, Studies in Computational Intelligence, 75, 1-17

I.E. Grossmann, A.W. Westerberg, 2000, Research challenges in Process Systems Engineering.

AIChE J, 46(9), 1700–1703.

D.E. Goldberg and K. Deb, 1991, A comparative analysis of selection schemes used in genetic

algorithms, in: G.J.E. Rawlins (Ed.), Foundations of Genetic Algorithms, Morgan Kaufmann,

Los Altos, 69–93.

B. Gupta, A. Rawat, A. Jain, A. Arora,, A. Dhami, 2017, Analysis of Various Decision Tree

Algorithms for Classification in Data Mining, International Journal of Computer

Applications, 163,8, 15-19

90

I. Guyon, A. Elisseeff, 2003, An Introduction to Variable and Feature Selection. Journal of

Machine Learning Research, 1157-1182.

L. Hall, L. Kier, W. Murray, 1975, Molecular connectivity II: Relationship to water solubility

and boiling point. Journal of pharmaceutical sciences, 1974-1977.

P.J.B. Hancock, 1994, An empirical comparison of selection methods in evolutionary algorithms,

Selected Papers from AISB Workshop on Evolutionary Computing, Springer–

Verlag, London, UK (1994), 80-94

C. Hansch, 1969, A Quantitative Approach to Biochemical Structure-Activity Relationships.

Acc. Chem. Res., 232-239.

C. Hansch, P. Maloney, T. Fujita, R. Muir, 1962, Correlation of biological activity of

phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature,

178-180.

B. Hemmateenejad, M.A. Sarafpour, R. Miri, F. Taghavi, 2004, Application of Ab Initio

Theory to QSAR Study of 1,4-Dihydropyridine-Based Calcium Channel Blockers Using GA-

MLR and PC-GA-ANN Procedures, Computational Chemistry, 25, 12, 1495-1503

R.H. Herring III, 2014, Computer aided molecular design with multi-dimentional

characterization (Doctoral dissertation), Retrieved from http://hdl.handle.net/10415/4352

M. Hill, 2009, Chemical Product Engineering—The third paradigm. Comput Chem Eng, 33(5),

947–953.

http://hdl.handle.net/10415/4352

91

J.H. Holland, 1975, Adaptation in natural and artificial systems, The University of Michigan

Press, Ann Arbor

H. Hong, S. Slavov, W. Ge, F. Qian, Z. Su, H. Fang, 2012, Molecular Descriptors for QSAR.

Stat Model Mol Descriptors QSAR/QSPR, WileyOnline Library, 65–109.

C.R Houck, J.A. Joines, M.G. Kay, 1996, A Genetic Algorithm for function Optimization: A

MATLAB implementation (accessed 02.05.2017)

https://www.researchgate.net/publication/2386612_A_Genetic_Algorithm_for_Function_Opt

imization_A_MATLAB_implementation

S. Izralev and D. Agrafiotis, 2001, A novel method for building regression tree models for

QSAR based on artificial ant colony systems, J. Chem. Inf. Comput. Sci., 41,176-180

Q. Jun, S. Chang-Hong, W. Jia, 2010, Comparison of Genetic Algorithm based Support Vector

Mahine anf Genetic Algorithm based RBF Neural Network in Quantitative Structure-

Property Relationship models on aqueous solubility of polycyclic aromatic hydrocarbons,

Procedia Environmental Sciences, 2, 1429-1437

V. Kendon, A. Sebald, S. Stepney, 2015, Heterotic computing: exploiting hybrid computational

devices, Philos Trans R Soc London A Math Phys Eng Sci, 373 (2046).

K.U. Klatt, W. Marquardt, 2009, Perspectives for process systems engineering—Personal views

from academia and industry. Comput Chem Eng , 33(3), 536–550.

L. Kier, W. Murray, 1975, Molecular Connectivity. 4. Relationships to Biological Activity.

Journal of Medicinal Chemistry, 1272-1274.

https://www.researchgate.net/publication/2386612_A_Genetic_Algorithm_for_Function_Optimization_A_MATLAB_implementation
https://www.researchgate.net/publication/2386612_A_Genetic_Algorithm_for_Function_Optimization_A_MATLAB_implementation

92

L. Kier, W. Murray, M. Randic, L. Hall, 1975, Molecular connectivity. I. Relationship to

nonspecific local anesthesia. Journal of Pharmaceutical Sciences, 1971-1974.

R. Leardi, 2001, Genetic algorithms in chemometrics and chemistry: a review, Journal of

Chemometrics, 15, 559-569

R.I. Lerman, S. Yitzhaki, 1984, A note on the calculation and interpretation of the Gini index,

Economic letters, 15, 363-368

Y.L. Loukas, 2001, Adaptive Neuro-Fuzzy infrence system: An instant and architecture –free

predictor for improved QSAR studies, J. Med. Chem., 44, 2772-2783

B. Milanovic, 1997, A simple way to calculate the gini coefficient, and some implications,

Economic letters, 56, 45-49

V. Mlinar, 2015, Utilization of inverse approach in the design of materials over nano- to macro-

scale. Ann Phys., 527(3-4), 187–204.

S. Nandi, A. Monesi, V. Drgan, F. Merzel, M. Novic, Quantitative structure-activation barrier

relationship modeling for Diels-Alder ligations utilizing quantum chemical structural

descriptors, Chemistry Central Journal, 7, 171

I. M. Oliver, D. J. Smith and J. R. C. Holland, “A study of permutation crossover operators on

the travelling salesman problem,” Proc. Second Int. Con. Genetic Algorithms, 1987, pp. 224-

230.

J. Pavlus, 2015, The Search for a New Machine. Scientific American, 312, 58-63.

93

Pople, J., Beveridge, D., & Dobosh, P. (1967). Approximate Self-Consistent MolecularOrbital

Theory. V. Intermediate Neglect of Differential Ocerlap. The Journal of Chemical Physics,

2026-2033.

J.R. Quinlan, 1986, Induction of Decision Trees; Kluwer Academic Publishers: Dordrecht, The

Netherlands, 81–106.

J.R. Quinlan, 1987, Generating Production Rules from Decision Trees, In Proceedings of the

International Joint Conference on Artificial Intelligence, Cambridge, MA, USA, 304–307.

M. Randic, 1975, Characterization of molecular branching. J Am Chem Soc. American Chemical

Society, 97(23), 6609–6615.

N.M. Razali, J. Geraghty, 2011, Genetic algorithm performance with different selection

strategies in solving TSP, Proceedings of Workld Congress on Engineering 2011, Vol II,

ISBN: 978-988-19251-4-5

S. Reddy, S. Kumar, R. Garg, 2010, hybrid-genetic algorithm based descriptors optimization and

QSAR models for predicting the biological activity of Tipranavir analogs for HIV protease

inhibition, Journal of Molecular Graphics and Modelling, 28, 852-862

C.R. Reeves, 1995, A genetic algorithm for flowshop sequencing, Computers Ops. Res., 22, 5-13

D.C. Rideout and R. Breslow, 1980, Hydrophobic acceleration of Diels-Alder reactions, J. Am.

Chem. Soc., 102, 7817-7818

R. Riolo and B. Worzel, 2003,Classification of gene expression data with genetic programming,

Genetic Programming Theory and Practice, New Yor, USA.

94

Roothaan, C. (1951). New Developments in Molecular Orbital Theory. Reviews of Modern

Physics, 69-89.

K. Roy, S. Kar, R.N. Das, 2015a, QSAR/QSPR Modeling: Introduction. A Prim QSAR/QSPR

Model SE - 1. Springer International Publishing, 1–36.

K. Roy, S. Kar, R.N. Das, 2015b, Understanding the Basics of QSAR for Applications in

Pharmaceutical Sciences and Risk Assessment, 47–80.

A Sabljic, H Guesten, J Schoenherr, M Riederer, 1990, Modelling plant uptake of airborne

organic chemicals. 1. Plant cuticle/water partitioning and molecular connectivity. Environ

Sci Technol, American Chemical Society, 24(9):1321–1326.

R. Sargent, 2005, Process systems engineering: A retrospective view with questions for the

future, Comput Chem Eng., 29(6):1237–1241.

D.P. Searson, D.E. Leahy, M.J. Willis, 2010, GPTIPS: an open source genetic programming

toolbox for multigene symbolic regression, Proceedings of International Multiconference of

Enginners and Computer Scientists 2010, Hong Kong.

M. Segall, 2012, Can we really do computer-aided drug design? J Comput Aided Mol Des.

Springer Netherlands, 26(1):121–124.

W. Siedlecki, J. Sklansky, 1988, On Automatic Feature Selection. International Journal of

Pattern Recognition and Artificial Intelligence, 197-220

95

S.N. Sivanandam and S. N. Deepa., 2007, Introduction to Genetic Algorithms, Springer, ISBN

9783540731894

N. Soni and T. Kumar, 2014, Study of Various Mutation Operators in Genetic Algorithms,

International Journal of Computer Science and Information Technologies, 5 (3), 4519-4521

T. Starkweather, S. McDaniel, K. Mathias, C. Whitley, & D. Whitley, (1991). A Comparison of

Genetic Sequencing Operators. In Belew, R. & Booker, L. (eds.) Proceedings on the Fourth

International Conference on Genetic Algorithms, 69-76. Los Altos, CA: Morgan Kaufmann

Publishers.

I. Stanescu, L.E.K. Achenie, 2006, Atheoretical study of solvent effects on Kolbe–Schmitt

reaction kinetics Chemical Engineering Science, 61, 6199-6212

G. Stephanopoulos, G.V. Reklaitis, 2011, Process systems engineering: From Solvay to modern

bio- and nanotechnology. : A history of development, successes and prospects for the future.

Chem Eng Sci, 66(19):4272–4306.

J. Stewart, (1989). Optimization of parameters for semiempirical methods I. Method. The

Journal of Computational Chemistry, 209-220.

H. Struebing, Z. Ganase, P.G. Karamertzanis, E. Siougkrou, P. Haycock, P.M. Piccione, A.

Armstrong, A. Galindo, C.S. Adjiman, 2013, Computer-aided molecular design of solvents

for accelerated reaction kinetics, Nature Chemistry, 5, 952–957

http://www.nature.com/nchem/journal/v5/n11/full/nchem.1755.html#auth-1
http://www.nature.com/nchem/journal/v5/n11/full/nchem.1755.html#auth-2
http://www.nature.com/nchem/journal/v5/n11/full/nchem.1755.html#auth-3
http://www.nature.com/nchem/journal/v5/n11/full/nchem.1755.html#auth-4
http://www.nature.com/nchem/journal/v5/n11/full/nchem.1755.html#auth-5
http://www.nature.com/nchem/journal/v5/n11/full/nchem.1755.html#auth-6
http://www.nature.com/nchem/journal/v5/n11/full/nchem.1755.html#auth-7
http://www.nature.com/nchem/journal/v5/n11/full/nchem.1755.html#auth-7
http://www.nature.com/nchem/journal/v5/n11/full/nchem.1755.html#auth-8
http://www.nature.com/nchem/journal/v5/n11/full/nchem.1755.html#auth-9

96

R. Sumathi, H. Carstensen, W.H. Green Jr., 2002, Reaction Rate Predictions Via Group

Additivity. Part 3: Effect of Substituents with CH2 as the Mediator, J. Phys. Chem. A, 106,

5474-5489

G. Syswerda, 1991, Schedule optimization using genetic algorithms, L Davis (Ed.), Handbook of

Genetic Algorithms, Van Nostrand Reinhold, New York (1991), pp. 332-349

S. Tang, J. Shi, Q. Guo, 2012, Accurate prediction of rate constants of Diels–Alder reactions and

application to design of Diels–Alder ligation, Org. Biomol. Chem., 10, 2673

R. Tibshirani, 1996, Regression Shrinkage and Selection via the Lasso, Journal of the Royal

Statistical Society, 58, 267-288

D. Whitley, 1994, A Genetic Algorithm Tutorial, Statistics and Computing, 4,65-85

Z. Zhang, 2004, De novo peptide sequencing based on a divide-and-conquer algorithm and

peptide tandem spectrum simulation, Anal. Chem., 76, 6374-6383

J. Zhong, X. Hu, M. Gu, J. Zhang, 2005, Comparison of Performance between Different

Selection Strategies on Simple Genetic Algorithms, Proceedings of the 2005 International

Conference on Computational Intelligence for Modelling, Control and Automation, and

International Conference on Intelligent Agents, Web Technologies and Internet Commerce

(CIMCA-IAWTIC’05), doi: 10.1109/CIMCA.2005.1631619

T. Zhou, K. Mcbride, X. Zhang, Z. Qi, K. Sundmacher, 2014, Integrated solvent and process

design exemplified for a Diels–Alder reaction, AIChE Journal, 61, 1, 147-158

97

T. Zhou, Z. Lyu, Z. Qi, K. Sundmacher, 2015, Robust design of optimal solvents for chemical

reactions-A combined experimental and computational strategy, Chemical Engineering

Science, http://dx.doi.org/10.1016/j.ces.2015.07.010

http://dx.doi.org/10.1016/j.ces.2015.07.010

98

Appendix A- Case 1 supplementary information

A.1 – MATLAB Code for Divide and Algorithm

clc

clear

load solvents.txt

load regsolv.txt

xint=solvents;

yint=regsolv;

[n,p]=size(xint);

[pload,score,var]=pca(xint,'Economy',false);

%internal

crint=regress(yint-mean(yint),score(:,1:30));

crint=pload(:,1:30)*crint;

crint=[mean(yint)-mean(xint)*crint;crint];

yfitint=[ones(n,1) xint]*crint;

plot(yint,yfitint,'bo')

tss=sum((yint-mean(yint)).^2);

rss=sum((yint-yfitint).^2);

rsqr=1-(rss/tss);

disp(rsqr)

% external

yfitext=[ones(6,1) xext]*crint;

99

figure

plot(yext,yfitext,'bo')

tssex=sum((yext-mean(yext)).^2);

rssex=sum((yext-yfitext).^2);

rsqrex=1-(rssex/tssex);

press=sum((yfitext-y).^2);

qsr=1-(press/tss);

disp(qsr)

disp(rsqrex)

100

A.2 - MATLAB Code for Decision tree function

function [a] = decision_tree(x1,x2,y1,y2)

[row,column]=size(x1);

ini_table=randi(column,1);

for column_rand=1:7

 [rsqr(column_rand) rsqrex(column_rand)

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2);

 if column_rand>1

 if rsqrex(column_rand)<rsqrex(column_rand-1)

 [rsqr(column_rand) rsqrex(column_rand)

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2);

 elseif rsqrex(column_rand)<rsqrex(column_rand-1)

 [rsqr(column_rand) rsqrex(column_rand)

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2);

 elseif rsqrex(column_rand)<rsqrex(column_rand-1)

 [rsqr(column_rand) rsqrex(column_rand)

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2);

 elseif rsqrex(column_rand)<rsqrex(column_rand-1)

101

 [rsqr(column_rand) rsqrex(column_rand)

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2);

 elseif rsqrex(column_rand)<rsqrex(column_rand-1)

 [rsqr(column_rand) rsqrex(column_rand)

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2);

 elseif rsqrex(column_rand)<rsqrex(column_rand-1)

 [rsqr(column_rand) rsqrex(column_rand)

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2);

 elseif rsqrex(column_rand)<rsqrex(column_rand-1)

 [rsqr(column_rand) rsqrex(column_rand)

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2);

 elseif rsqrex(column_rand)<rsqrex(column_rand-1)

 [rsqr(column_rand) rsqrex(column_rand)

ini_table]=regression(row,ini_table,column,y1,y2,x1,x2);

 elseif rsqrex(column_rand)<rsqrex(column_rand-1)

 [rsqr(column_rand) rsqrex(column_rand)

ini_table]=regression(row,column_rand,ini_table,column,y1,y2,x1,

x2);

 end

 end

102

end

a=ini_table;

end

103

A.3 - MATLAB Code for regression function

function [r rex table] = regression(

row,column_rand,ini_table,column,y1,y2,x1,x2)

random=randi(column,1);

 ini_table(column_rand+1)=random;

 [row_gen,column_gen]=size(ini_table);

 %initialize table

 x=ones(row,1);

 xe=ones(46-row,1);

 %column adding

 for column_iter=1:column_gen

 x=[x x1(:,ini_table(column_iter))];

 end

 for col_ex_iter=1:column_gen

 xe=[xe x2(:,ini_table(col_ex_iter))];

 end

%coeff calculation

 coeff=regress(y1,x);

 yfitint=x*coeff;

 yfitext=xe*coeff;

 %internal validation

 tss=sum((y1-mean(y1)).^2);

 rss=sum((y1-yfitint).^2);

104

 r=1-rss/tss;

 %external validation

 tssex=sum((y2-mean(y2)).^2);

 rssex=sum((y2-yfitext).^2);

 rex=1-rssex/tssex;

 table=ini_table;

 end

105

A.4 – MATLAB code for Hybrid GA-DT Algorithm

clear

clc

load pcaint.txt

load regint.txt

load pcaext.txt

load regext.txt

yint=-log10(regint);

yext=-log10(regext);

%seed fixing

rng(9);

s=rng;

rng(s);

xint=pcaint;

xext=pcaext;

count=0;

[row,column]=size(xint);

for population=1:40

gen_table_initial(population,:)=decision_tree(xint,xext,yint,yex

t);

end

[row_gen,column_gen]=size(gen_table_initial);

loged_columns=randperm(column_gen,3);

106

for loging=1:3

xint(:,loged_columns(loging))=log10(xint(:,loged_columns(loging)

));

xext(:,loged_columns(loging))=log10(xext(:,loged_columns(loging)

));

end

coeff_best=0;

coeff_prev=0;

cross_probable=0.4;

mutation_probable=0.02;

%starting GA operations

for generation=1:550

 %reggression calculation

 for row_iter=1:row_gen

 x=ones(row,1);

 xe=ones(46-row,1);

 for column_iter=1:column_gen

 x=[x xint(:,gen_table_initial(row_iter,column_iter))];

 end

 for col_ex_iter=1:column_gen

 xe=[xe

xext(:,gen_table_initial(row_iter,col_ex_iter))];

107

 end

 coeff=regress(yint,x);

 yfitint=x*coeff;

 yfitext=xe*coeff;

 %internal validation

 tss=sum((yint-mean(yint)).^2);

 rss=sum((yint-yfitint).^2);

 rsqr(row_iter)=1-rss/tss;

 %external validation

 tssex=sum((yext-mean(yext)).^2);

 rssex=sum((yext-yfitext).^2);

 rsqrex(row_iter)=1-rssex/tssex;

 if row_iter>=2

 if rsqrex(row_iter)>rsqrex(row_iter-1)

 coeff_best=coeff;

 best_x=[x; xe];

 coeff_prev=coeff_best;

 else

 coeff_best=coeff_prev;

 end

 else

 coeff_prev=coeff;

 end

 end

108

%Roulette's wheel starts

 for best=1:row_gen

 if rsqrex(best)==max(rsqrex);

 best_row=best;

 end

 end

 for pop=1:row_gen

 if rsqrex(pop)<mean(rsqrex)

 gen_table_initial(pop)=gen_table_initial(best_row);

 rsqr(pop)=rsqr(best_row);

 rsqrex(pop)=rsqrex(best_row);

 end

 end

 new_table=gen_table_initial;

 r_new=rsqr;

 q_new=rsqrex;

 %crossover starts

 cross_connection=floor(cross_probable*row_gen);%populations

to change in crossover

cross_relative_1=randi(floor(row_gen/2),1,floor(cross_connection

/2));%first set of populations to change

cross_relative_2=randi([floor(row_gen/2),row_gen],1,floor(cross_

connection/2));%second set of population to change

 [row_cross,column_cross]=size(cross_relative_1);

109

cross_point=randi(column_cross,floor(cross_connection/2),1);%col

umn where crossover happens

 for marriage=1:floor(cross_connection/2)%crossover operation

relative1temp=gen_table_initial(cross_relative_1(marriage),cross

_point(marriage):column_cross);

relative2temp=gen_table_initial(cross_relative_2(marriage),cross

_point(marriage):column_cross);

new_table(cross_relative_1(marriage),cross_point(marriage):colum

n_cross)=relative2temp;

new_table(cross_relative_2(marriage),cross_point(marriage):colum

n_cross)=relative1temp;

 end

% mutation starts

 mut_cells=mutation_probable*row_gen*column_gen;

 mut_cells=floor(mut_cells);

 cell_row=randi(row_gen,1,mut_cells);

 cell_column=randi(column_gen,1,mut_cells);

 for mutation=1:mut_cells

new_table(cell_row(mutation),cell_column(mutation))=randi(column

,1,1);

 end

 %regression calculation on new_table

 for row_iter=1:row_gen

110

 x=ones(row,1);

 xe=ones(46-row,1);

 for column_iter=1:column_gen

 x=[x xint(:,new_table(row_iter,column_iter))];

 end

 for col_ex_iter=1:column_gen

 xe=[xe xext(:,new_table(row_iter,col_ex_iter))];

 end

 coeff=regress(yint,x);

 yfitint=x*coeff;

 yfitext=xe*coeff;

 %internal validation

 tss=sum((yint-mean(yint)).^2);

 rss=sum((yint-yfitint).^2);

 r_new(row_iter)=1-rss/tss;

 %external validation

 tssex=sum((yext-mean(yext)).^2);

 rssex=sum((yext-yfitext).^2);

 q_new(row_iter)=1-rssex/tssex;

 if row_iter>=2

 if q_new(row_iter)>q_new(row_iter-1)

111

 coeff_best_new=coeff;

 best_x=[x; xe];

 coeff_prev=coeff_best_new;

 else

 coeff_best_new=coeff_prev;

 end

 else

 coeff_prev=coeff;

 end

 end

 %checking if the change is better

 if max(rsqrex)<max(q_new)

 count=count+1;

 improved_rsqr(count)=max(q_new);

gen_table_initial=new_table;

rsqr=r_new;

rsqrex= q_new;

coeff_best=coeff_best_new;

 end

end

 plot(1:count,improved_rsqr)

 if max(rsqrex)>.80

 disp('good model found')

 disp('R-sqr value')

112

 key=find(rsqrex==max(rsqrex),1);

 disp(rsqr(key))

 disp('Q-sqr value')

 disp(rsqrex(key))

 disp('Descriptor positions')

 disp(gen_table_initial(key,:))

 disp('Coefficients')

 disp(coeff_best)

 end

113

A.5 – Modified MATLAB functions of GPTIPS 2.0 for MGGP algorithm

A.5.1- evalfitness function

function gp = evalfitness(gp)

%EVALFITNESS Calls the user specified fitness function.

%

% GP = EVALFITNESS(GP) evaluates the the fitnesses of

individuals stored

% in the GP structure and updates various other fields of GP

accordingly.

%

% Copyright (c) 2009-2015 Dominic Searson

%

% GPTIPS 2

%

% See also TREE2EVALSTR, EVALFITNESS_PAR

%check parallel mode.

if gp.runcontrol.parallel.enable && gp.runcontrol.parallel.ok

 gp = evalfitness_par(gp);

 return;

 %regular version

else

114

 for i = 1:gp.runcontrol.pop_size

 gp.state.current_individual = i;

 %retrieve values if cached

 if gp.runcontrol.usecache && gp.fitness.cache.isKey(i)

 cache = gp.fitness.cache(i);

 gp.fitness.complexity(i,1) = cache.complexity;

 gp.fitness.values(i,1) = cache.value;

 gp.fitness.returnvalues{i,1} = cache.returnvalues;

 else

 %preprocess cell array of string expressions into a

form that

 %Matlab can evaluate

 evalstr = tree2evalstr(gp.pop{i},gp);

 %store complexity of individual (either number of

nodes or tree

 %expressional complexity)

 if gp.fitness.complexityMeasure

 gp.fitness.complexity(i,1) =

getcomplexity(gp.pop{i});

115

 else

 gp.fitness.complexity(i,1) =

getnumnodes(gp.pop{i});

 end

 [fitness,gp] = feval(gp.fitness.fitfun,evalstr,gp);

 gp.fitness.values(i) = fitness;

 end

 end

end

116

A.5.2- gpmodelfilter Class

classdef gpmodelfilter

 %GPMODELFILTER Object to filter a population of multigene

symbolic regression models.

 %

 % Usage:

 %

 % First, create a default filter object F

 %

 % F = GPMODELFILTER

 %

 % Next, set the properties of the filter. E.g. to keep

only models

 % that have an R^2 >= 0.7 (training data) but contain no

more than 3

 % input variables use:

 %

 % F.MINR2TRAIN = 0.7; F.MAXVARS = 3;

 %

 % Finally, apply the filter to the population of models in

the GP

 % struct:

 %

117

 % GPF = F.APPLYFILTER(GP);

 %

 % This returns a structure GPF which is functionally

identical to GP

 % except that that models not meeting the filter

specifications have

 % been removed.

 %

 % It also removes duplicate models whose genotypes are

identical. All

 % the usual GPTIPS functions such as POPBROWSER, RUNTREE,

GPPOPVARS,

 % GPPRETTY etc. can be applied to the filtered data

structure GPF.

 %

 % Remarks:

 %

 % The filter has the following settings and defaults:

 %

 % MINR2TRAIN = 0 (keeps models attaining this R2 on the

 % training data).

 %

 % MAXCOMPLEXITY = Inf (keeps models that have this

level of

118

 % expressional complexity or lower).

 %

 % PARETOFRONT = FALSE (true to keep only models on the

Pareto

 % front of performance and expressional complexity).

Note that

 % 'expressional complexity' is used to compute the

front even if

 % the GPTIPS run was actually performed using 'node

count' as the

 % measure of tree complexity.

 %

 % MAXVARS = Inf (keeps models containing this max

number of input

 % vars).

 %

 % MINVARS = 0 (keeps models containing this min number

of input

 % vars).

 %

 % INCLUDEVARS = [] (keeps models that include these

input variables

 % - a row vector containing the input indices).

 %

119

 % EXCLUDEVARS = [] (keeps models that do not contain

these

 % input variables - a row vector containing the input

indices).

 %

 % REMOVEDUPLICATES = TRUE (removes duplicate genotypes

from the

 % population).

 %

 % Hence, the default filter object only removes

duplicates.

 %

 % [GPF,MODELINDS] = F.APPLYFILTER(GP) does the same but

also returns

 % a Boolean vector MODELINDS which refers to the

population indices

 % in GP that survived the filtering process.

 %

 % Copyright (c) 2009-2015 Dominic Searson

 %

 % GPTIPS 2

 %

 % See also mergegp, genefilter, popbrowser, paretoreport

120

 properties (SetAccess = public)

 minR2train = 0.9; %the minimum R2 on the selected

dataset

 minR2test = 0.8; %the minimum R2 on the test dataset,

modification in the code

 maxComplexity = Inf; %the maximum complexity of models

to retain

 paretoFront = false; %true to select only models on the

pareto front

 maxVars = Inf; %selects models containing a max number

of input vars

 minVars = 0; %selects models containing a minimum number

of input vars

 includeVars =[]; %row vector of inputs that the models

must contain

 excludeVars = []; %row vector of inputs that the models

must not contain

 removeDuplicates = true; %true to remove duplicate

genotypes from population

 end

 methods

 %set removeDuplicates property

121

 function obj = set.removeDuplicates(obj, bool)

 if ~islogical(bool)

 disp('Error: removeDuplicates must either be set

to true or false');

 return;

 end

 obj.removeDuplicates=bool;

 end

 %set excludeVars property

 function obj = set.excludeVars(obj,varList)

 if isempty(varList)

 obj.excludeVars = varList;

 return;

 end

 if size(varList,1) > 1

 disp('Error: supplied list must be a row vector

of input variable numbers.');

 return;

 end

 if any(find(varList <= 0))

122

 disp('Error: 0 or negative numbers are not valid

input variable numbers.');

 return;

 end

 if numel(varList) ~= numel(unique(varList))

 disp('Error: supplied list must not contain

duplicate input variable numbers.');

 return;

 end

 if ~isempty(intersect(varList,obj.includeVars))

 disp('Error: supplied exclude list contains

variables on the include list.');

 return;

 end

 obj.excludeVars = varList;

 end%includeVars

 %set includeVars property

 function obj = set.includeVars(obj,varList)

123

 if isempty(varList)

 obj.includeVars = varList;

 return;

 end

 if size(varList,1) > 1

 disp('Error: supplied list must be a row vector

of input variable numbers.');

 return;

 end

 if any(find(varList <= 0))

 disp('Error: 0 or negative numbers are not valid

input variable numbers.');

 return;

 end

 if numel(varList) ~= numel(unique(varList))

 disp('Error: supplied list must not contain

duplicate input variable numbers.');

 return;

 end

 if numel(varList) > obj.maxVars

124

 disp('Error: supplied list must not exceed the

maxVars filter property.');

 return;

 end

 if ~isempty(intersect(varList,obj.excludeVars))

 disp('Error: supplied include list contains

variables on the exclude list.');

 return;

 end

 obj.includeVars = varList;

 end%includeVars

 %set R2min property

 function obj = set.minR2train(obj,r2min)

 if ~isa(r2min,'double')

 disp('Error: minimum R^2 training must be

between 0 and 1.');

 return;

 end

125

 if r2min < 0 || r2min > 1

 disp('Error: minimum R^2 training must be

between 0 and 1.');

 return;

 end

 obj.minR2train = r2min;

 end

 %set maxVars property

 function obj = set.maxVars(obj,maxvars)

 if ~isa(maxvars,'double')

 disp('Error: max. input vars must be greater

than 0.');

 return;

 end

 if maxvars < 1

 disp('Error: max. input vars must be greater

than 0.');

 return;

 end

126

 if maxvars < obj.minVars

 disp('Error: max. input vars must be equal to or

greater than min. input vars.');

 return;

 end

 obj.maxVars = maxvars;

 end

 %set minVars property

 function obj = set.minVars(obj,minvars)

 if ~isa(minvars,'double')

 disp('Error: min. input vars must be 1 or

greater');

 return;

 end

 if minvars < 1

 disp('Error: min. input vars must be 1 or

greater');

 return;

 end

127

 if minvars > obj.maxVars

 disp('Error: min. input vars must be smaller

than or equal to max. input vars.');

 return;

 end

 obj.minVars = minvars;

 end

 %set maxComplexity property

 function obj = set.maxComplexity(obj,maxc)

 if ~isa(maxc,'double')

 disp('Error: maximum complexity must be a number

greater than 1.');

 return;

 end

 if maxc < 1

 disp('Error: maximum complexity must be a number

greater than 1.');

 return;

 end

128

 obj.maxComplexity = maxc;

 end

 %set pareto front property

 function obj = set.paretoFront(obj,bool)

 if ~islogical(bool)

 disp('Error: paretoFront must either be set to

true or false');

 return;

 end

 obj.paretoFront = bool;

 end

 %function to apply the filter settings to a GP structure

 function [gp,filterInds] = applyFilter(obj,gp)

 if nargin < 2

 error('Usage is APPLYFILTER(GP)');

 end

 if ~isfield(gp.fitness,'r2train')

129

 error('GPMODELFILTER cannot find R^2 training

data. GPMODELFILTER is intended for use with populations

containing multigene regression models.');

 end

 if gp.runcontrol.pop_size > 1000

 disp('Please wait, this may take a few

moments...');

 end

 %always do r2 & complexity filter first

 filterInds = (gp.fitness.r2train >= obj.minR2train)

& (gp.fitness.complexity <= obj.maxComplexity);

 locations = find(filterInds);

 numLeft = numel(locations);

 disp([num2str(numLeft) ' models passed R^2 training

(>= ' num2str(obj.minR2train) ') and expressional complexity (<=

' int2str(obj.maxComplexity) ') filter ...']);

 if numLeft == 0

 gp = [];

 return;

 end

130

 %pareto rank 1 filter

 if obj.paretoFront

 disp('Computing pareto front on training

data...');

 paretoInds = ndfsort_rank1([(1-

gp.fitness.r2train) gp.fitness.complexity]);

 filterInds = filterInds & paretoInds;

 end

 %next apply vars filters

 if ~isinf(obj.maxVars) || obj.minVars ||

~isempty(obj.includeVars) || ~isempty(obj.excludeVars)

 locations = find(filterInds);

 numLeft = numel(locations);

 disp(['Applying variable filter to '

num2str(numLeft) ' remaining models ...']);

 for i=1:numLeft

 hvec = gpmodelvars(gp,locations(i));

 vars = find(hvec);

 numvars = numel(vars);

131

 if numvars > obj.maxVars || numvars <

obj.minVars

 filterInds(locations(i)) = false;

 else

 if ~isempty(obj.excludeVars)

 if

~isempty(intersect(vars,obj.excludeVars))

 filterInds(locations(i)) =

false;

 end

 end

 if ~isempty(obj.includeVars)

 intersection =

intersect(vars,obj.includeVars);

 if numel(intersection) <

numel(obj.includeVars)

 filterInds(locations(i)) =

false;

 end

 end

 end

132

 end %end of loop through individuals

 end

 %if enabled, loop through remaining genotypes and

remove

 %duplicates.

 if obj.removeDuplicates &&

~gp.info.duplicatesRemoved

 locations = find(filterInds);

 numLeft = numel(locations);

 disp(['Removing genotype duplicates from '

num2str(numLeft) ' remaining models ...']);

 for i=1:numLeft

 for j=1:numLeft

 if i~=j && locations(i) && locations(j)

 model_i = gp.pop{locations(i)};

 model_j = gp.pop{locations(j)};

133

 if numel(model_i) ~= numel(model_j)

 continue

 end

 if

isequal(sort(model_i),sort(model_j))

 filterInds(locations(j)) =

false;

 locations(j)=0;

 end

 end

 end

 end

 gp.info.duplicatesRemoved = true;

 end%end of removeDuplicates

 numModels = sum(filterInds);

 if numModels == 0

134

 disp('No models matching all filter criteria

were found.');

 gp=[];

 return

 end

 gp.pop = gp.pop(filterInds);

 gp.fitness.returnvalues =

gp.fitness.returnvalues(filterInds);

 gp.fitness.values = gp.fitness.values(filterInds);

 gp.fitness.r2train = gp.fitness.r2train(filterInds);

 if isfield(gp.fitness,'r2val')

 gp.fitness.r2val = gp.fitness.r2val(filterInds);

 end

 if isfield(gp.fitness,'r2test')

 gp.fitness.r2test =

gp.fitness.r2test(filterInds);

 end

 gp.fitness.complexity =

gp.fitness.complexity(filterInds);

135

 gp.fitness.nodecount =

gp.fitness.nodecount(filterInds);

 gp.runcontrol.pop_size = numModels;

 gp.info.filtered = true;

 gp.info.lastFilter = obj;

 gp.source = 'gpmodelfilter';

 disp([num2str(numModels) ' models passed the

filtering process.']);

 end %applyFilter

 end %methods

end %classdef

136

A.5.3- Models generated using MGGP algorithm

Model M1:

−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 6.038 𝑋𝑋1𝑅𝑅1 + 7.133 𝑋𝑋0𝐴𝐴𝑣𝑣𝑅𝑅1 − 5.605𝑋𝑋0𝑠𝑠𝑠𝑠𝑙𝑙𝑅𝑅1 − 7.133𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅1 + 6.038𝑋𝑋1𝑅𝑅2
+ 5.605𝑋𝑋4𝑣𝑣𝑅𝑅2 + 1.528𝑋𝑋𝑋𝑋𝑋𝑋𝐷𝐷𝑅𝑅2 + 7.133𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅2 + 19.34𝑋𝑋0𝐴𝐴𝑣𝑣𝑅𝑅1𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅1
− 6.308𝑋𝑋1𝑣𝑣𝑅𝑅2𝑋𝑋1𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 − 7.133X3solR2X5vs
+ 5.605𝑋𝑋0𝐴𝐴𝑣𝑣𝑅𝑅1(X3solR1 − X4vR2 − 𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅2 + 𝑋𝑋1𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠) + 16.03𝑋𝑋3𝐴𝐴𝑣𝑣𝑅𝑅2𝑋𝑋1𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠2

− 19.34𝑋𝑋0𝐴𝐴𝑣𝑣𝑅𝑅12 𝑋𝑋4𝑠𝑠𝑠𝑠𝑙𝑙𝑅𝑅1𝑋𝑋5𝑠𝑠 − 6.308𝑋𝑋0𝐴𝐴𝑣𝑣𝑅𝑅1𝑋𝑋4𝑠𝑠𝑠𝑠𝑙𝑙𝑅𝑅1𝑋𝑋3𝐴𝐴𝑣𝑣𝑅𝑅2𝑋𝑋5𝑠𝑠𝑋𝑋2𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 − 33.74

Model M2:

−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 10.89𝑋𝑋0𝐴𝐴𝑣𝑣𝑅𝑅1 − 0.1703 exp �𝑋𝑋𝑋𝑋𝑋𝑋𝐷𝐷𝑠𝑠
1
2� − 3.064 sin(sin(𝑋𝑋𝑋𝑋𝑋𝑋𝐷𝐷𝑠𝑠)) − 21.78 exp(𝑋𝑋4𝐴𝐴𝑣𝑣𝑅𝑅2)

− 3.064 log(𝑋𝑋0𝑅𝑅1) + 10.89 log(𝑋𝑋3𝐴𝐴𝑅𝑅1)− 3.064 log(𝑋𝑋0𝑅𝑅1)
1
4

+ 10.1sin (𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅1
1
2) sin(sin(𝑋𝑋4𝑣𝑣𝑅𝑅1))

+ 20.84|𝑠𝑠𝑠𝑠𝑠𝑠(cos(𝑋𝑋3𝐴𝐴𝑅𝑅1))|�𝑋𝑋1𝑠𝑠𝑠𝑠𝑙𝑙𝑅𝑅2 + log(𝑋𝑋3𝐴𝐴𝑅𝑅1) + 𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅1
1
4 � + 10.89𝑋𝑋1𝑘𝑘𝑘𝑘𝑝𝑝𝑅𝑅1

1
4

− 10.89𝑅𝑅𝑅𝑅𝑅𝑅𝑄𝑄𝑅𝑅2
1
2 + 48.94

Model M3:

−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 14.08𝑋𝑋1𝑅𝑅2 − 3.755𝑋𝑋1𝐾𝐾𝐾𝐾𝑝𝑝𝑅𝑅1 − 3.755𝑥𝑥𝑥𝑥1𝑣𝑣𝑅𝑅2 + 13.63𝑋𝑋4𝐴𝐴𝑣𝑣𝑅𝑅2 + 13.63𝑋𝑋1𝑀𝑀𝑀𝑀𝑑𝑑𝑠𝑠
+ 3.075 cos(𝑋𝑋1𝑣𝑣𝑅𝑅2 tan(𝑋𝑋1𝑠𝑠𝑠𝑠𝑙𝑙𝑅𝑅1))− 1.246 exp(− sin(𝑋𝑋4𝑅𝑅1 + 𝑋𝑋𝑋𝑋𝑋𝑋𝐷𝐷𝑅𝑅1))
− 35.19 tan(exp(−𝑋𝑋4𝑣𝑣𝑅𝑅1)) + 230 cos(𝑋𝑋3𝐴𝐴𝑣𝑣𝑅𝑅2𝑋𝑋1𝑀𝑀𝑀𝑀𝑑𝑑𝑅𝑅2) − 3.755 log(𝑋𝑋2𝑣𝑣𝑅𝑅1)
+ 13.84 log(𝑋𝑋1𝑃𝑃𝑃𝑃𝑟𝑟𝑅𝑅1)− 48.83 tan(𝑋𝑋3𝐴𝐴𝑅𝑅1) − 35.19 exp(−𝑋𝑋1𝑅𝑅2)
− 868.5 exp(−𝑋𝑋3𝐴𝐴𝑣𝑣𝑅𝑅2) + 3.755𝑋𝑋0𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠(𝑋𝑋5𝐴𝐴𝑣𝑣𝑅𝑅2 + 𝑋𝑋0𝑠𝑠𝑜𝑜𝑙𝑙𝑠𝑠)

+
3.87𝑋𝑋1𝑅𝑅2

0.275(𝑋𝑋1𝑣𝑣𝑅𝑅1 + 𝑋𝑋1𝑀𝑀𝑀𝑀𝑑𝑑𝑠𝑠) + 13.84 tan(𝑋𝑋3𝐴𝐴𝑅𝑅1) (𝑋𝑋3𝐴𝐴𝑣𝑣𝑅𝑅2 − 4.932)

+
6.587 log(𝑋𝑋3𝐴𝐴𝑅𝑅1) (𝑋𝑋2𝐴𝐴𝑅𝑅1 − 4.714)

cos(𝑋𝑋3𝐴𝐴𝑣𝑣𝑅𝑅2 + 𝑋𝑋0𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠) + 617.70

Subscripts:

R1 – Dienophile
R2- Diene
S- Solvent

137

Appendix B- Case 2 supplementary information

B.1 – MATLAB code for using CorrLASSO algorithm

clear

clc

gen_table_initial=[78 117 49 167 180 143 185 153 186 79 94

170 44];

[row_gen,column_gen]=size(gen_table_initial);

load internal.txt

load external.txt

load Yint.txt

load Yext.txt

yint=Yint;

yext=Yext;

xint=internal;

xext=external;

 [row,column]=size(xint);

 x=[];

 xe=[];

 for column_iter=1:column_gen

 x=[x xint(:,gen_table_initial(column_iter))];

 end

 for col_ex_iter=1:column_gen

 xe=[xe xext(:,gen_table_initial(col_ex_iter))];

138

 end

 real_x=[x; xe];

 real_y=[yint; yext];

 [B, fitinfo]=corrlasso(real_x,real_y);

 coeff=B(:,fitinfo.IndexMinMSE);

 yfitint=x*coeff;

 yfitext=xe*coeff;

 %internal validation

 tss=sum((yint-mean(yint)).^2);

 rss=sum((yint-yfitint).^2);

 rsqr=1-rss/tss;

 %external validation

 tssex=sum((yext-mean(yext)).^2);

 rssex=sum((yext-yfitext).^2);

 rsqrex=1-rssex/tssex;

 disp(rsqr)

 disp(rsqrex)

 disp(B(:,fitinfo.IndexMinMSE))

139

B.2 – MATLAB code for CorrLASSO function

function [B, fitinfo]= corrlasso(x,y)

lambda=logspace(-5,-1,100);

initial_B=regress(y,x);

maxdex=[];

for i=1:length(lambda)

 B(:,i)=initial_B;

 [m, ind]=min(abs(B(:,i)));

 %check correlation if more than one minimum value exists

 if length(ind)>1

 for mindex=1:length(ind)

 r(mindex)=corrcoef(x(:,mindex),y);

 end

 [k,maxdex]=max(abs(r));

 end

 s_count=0;

 %finding s value for minimum PE

 for s=0:.01:1

 s_count=s_count+1;

 B(:,i)=s*B(:,i);

 if maxdex~=[]

 B(maxdex,i)=initial_B(maxdex);

 end

140

 y_check=B(:,i)*x;

 err(s_count)=immse(y,y_check);

 pe(s_count)= err(s_count)+ var((y-y_check));

 end

 [l, mins]=min(pe);

 B(:,i)=0.01*mins*B(:,i);

 mserr(i)=err(mins)+lambda(i)*(sum(abs(B(:,i))));

end

%finding minimum MSE

 [m,minmse]=min(mserr);

%recording min MSE values

 fitinfo.IndexMinMSE=minmse;

 fitinfo.minMSE=m;

 fitinfo.minPE=l;

end

141

Appendix C- List of Descriptors Used

C.1 –Descriptors Name and Description

Name Description Indices
MW molecular weight Constitutional indices
AMW average molecular weight Constitutional indices

Sv
sum of atomic van der Waals volumes (scaled on Carbon
atom) Constitutional indices

Se
sum of atomic Sanderson electronegativities (scaled on
Carbon atom) Constitutional indices

Sp sum of atomic polarizabilities (scaled on Carbon atom) Constitutional indices
Si sum of first ionization potentials (scaled on Carbon atom) Constitutional indices

Mv
mean atomic van der Waals volume (scaled on Carbon
atom) Constitutional indices

Me
mean atomic Sanderson electronegativity (scaled on
Carbon atom) Constitutional indices

Mp mean atomic polarizability (scaled on Carbon atom) Constitutional indices
Mi mean first ionization potential (scaled on Carbon atom) Constitutional indices
nAT number of atoms Constitutional indices
nSK number of non-H atoms Constitutional indices
nBT number of bonds Constitutional indices
nBO number of non-H bonds Constitutional indices
nBM number of multiple bonds Constitutional indices
SCBO sum of conventional bond orders (H-depleted) Constitutional indices
RBN number of rotatable bonds Constitutional indices
RBF rotatable bond fraction Constitutional indices
nDB number of double bonds Constitutional indices
nTB number of triple bonds Constitutional indices
nAB number of aromatic bonds Constitutional indices
nH number of Hydrogen atoms Constitutional indices
nC number of Carbon atoms Constitutional indices
nN number of Nitrogen atoms Constitutional indices
nO number of Oxygen atoms Constitutional indices
nP number of Phosphorous atoms Constitutional indices
nS number of Sulfur atoms Constitutional indices
nF number of Fluorine atoms Constitutional indices
nCL number of Chlorine atoms Constitutional indices
nBR number of Bromine atoms Constitutional indices
nI number of Iodine atoms Constitutional indices
nB number of Boron atoms Constitutional indices
nHM number of heavy atoms Constitutional indices

142

nHet number of heteroatoms Constitutional indices
nX number of halogen atoms Constitutional indices
H% percentage of H atoms Constitutional indices
C% percentage of C atoms Constitutional indices
N% percentage of N atoms Constitutional indices
O% percentage of O atoms Constitutional indices
X% percentage of halogen atoms Constitutional indices
nCsp3 number of sp3 hybridized Carbon atoms Constitutional indices
nCsp2 number of sp2 hybridized Carbon atoms Constitutional indices
nCsp number of sp hybridized Carbon atoms Constitutional indices
nCIC number of rings (cyclomatic number) Ring descriptors
nCIR number of circuits Ring descriptors
TRS total ring size Ring descriptors
Rperim ring perimeter Ring descriptors
Rbrid ring bridge count Ring descriptors
MCD molecular cyclized degree Ring descriptors
RFD ring fusion density Ring descriptors
RCI ring complexity index Ring descriptors
NRS number of ring systems Ring descriptors
NNRS normalized number of ring systems Ring descriptors
nR03 number of 3-membered rings Ring descriptors
nR04 number of 4-membered rings Ring descriptors
nR05 number of 5-membered rings Ring descriptors
nR06 number of 6-membered rings Ring descriptors
nR07 number of 7-membered rings Ring descriptors
nR08 number of 8-membered rings Ring descriptors
nR09 number of 9-membered rings Ring descriptors
nR10 number of 10-membered rings Ring descriptors
nR11 number of 11-membered rings Ring descriptors
nR12 number of 12-membered rings Ring descriptors
nBnz number of benzene-like rings Ring descriptors
ARR aromatic ratio Ring descriptors
D/Dtr03 distance/detour ring index of order 3 Ring descriptors
D/Dtr04 distance/detour ring index of order 4 Ring descriptors
D/Dtr05 distance/detour ring index of order 5 Ring descriptors
D/Dtr06 distance/detour ring index of order 6 Ring descriptors
D/Dtr07 distance/detour ring index of order 7 Ring descriptors
D/Dtr08 distance/detour ring index of order 8 Ring descriptors
D/Dtr09 distance/detour ring index of order 9 Ring descriptors
D/Dtr10 distance/detour ring index of order 10 Ring descriptors
D/Dtr11 distance/detour ring index of order 11 Ring descriptors
D/Dtr12 distance/detour ring index of order 12 Ring descriptors
ZM1 first Zagreb index Topological indices

143

ZM1V first Zagreb index by valence vertex degrees Topological indices
ZM1Kup first Zagreb index by Kupchik vertex degrees Topological indices
ZM1Mad first Zagreb index by Madan vertex degrees Topological indices
ZM1Per first Zagreb index by perturbation vertex degrees Topological indices

ZM1MulPer
first Zagreb index by multiplicative perturbation vertex
degrees Topological indices

ZM2 second Zagreb index Topological indices
ZM2V second Zagreb index by valence vertex degrees Topological indices
ZM2Kup second Zagreb index by Kupchik vertex degrees Topological indices
ZM2Mad second Zagreb index by Madan vertex degrees Topological indices
ZM2Per second Zagreb index by perturbation vertex degrees Topological indices

ZM2MulPer
second Zagreb index by multiplicative perturbation vertex
degrees Topological indices

ON0 overall modified Zagreb index of order 0 Topological indices

ON0V
overall modified Zagreb index of order 0 by valence
vertex degrees Topological indices

ON1 overall modified Zagreb index of order 1 Topological indices

ON1V
overall modified Zagreb index of order 1 by valence
vertex degrees Topological indices

Qindex quadratic index Topological indices
BBI Bertz branching index Topological indices
DBI Dragon branching index Topological indices
SNar Narumi simple topological index (log function) Topological indices
HNar Narumi harmonic topological index Topological indices
GNar Narumi geometric topological index Topological indices
Xt total structure connectivity index Topological indices
Dz Pogliani index Topological indices
Ram ramification index Topological indices
BLI Kier benzene-likeliness index Topological indices
Pol polarity number Topological indices
LPRS log of product of row sums (PRS) Topological indices
MSD mean square distance index (Balaban) Topological indices
SPI superpendentic index Topological indices
PJI2 2D Petitjean shape index Topological indices
ECC eccentricity Topological indices
AECC average eccentricity Topological indices
DECC eccentric Topological indices
MDDD mean distance degree deviation Topological indices
UNIP unipolarity Topological indices
CENT centralization Topological indices
VAR variation Topological indices
ICR radial centric information index Topological indices
SMTI Schultz Molecular Topological Index (MTI) Topological indices
SMTIV Schultz Molecular Topological Index by valence vertex Topological indices

144

degrees
GMTI Gutman Molecular Topological Index Topological indices

GMTIV
Gutman Molecular Topological Index by valence vertex
degrees Topological indices

Xu Xu index Topological indices
CSI eccentric connectivity index Topological indices
Wap all-path Wiener index Topological indices
S1K 1-path Kier alpha-modified shape index Topological indices
S2K 2-path Kier alpha-modified shape index Topological indices
S3K 3-path Kier alpha-modified shape index Topological indices
PHI Kier flexibility index Topological indices
PW2 path/walk 2 - Randic shape index Topological indices
PW3 path/walk 3 - Randic shape index Topological indices
PW4 path/walk 4 - Randic shape index Topological indices
PW5 path/walk 5 - Randic shape index Topological indices
MAXDN maximal electrotopological negative variation Topological indices
MAXDP maximal electrotopological positive variation Topological indices
DELS molecular electrotopological variation Topological indices
TIE E-state topological parameter Topological indices
Psi_i_s intrinsic state pseudoconnectivity index - type S Topological indices
Psi_i_A intrinsic state pseudoconnectivity index - type S average Topological indices
Psi_i_0 intrinsic state pseudoconnectivity index - type 0 Topological indices
Psi_i_1 intrinsic state pseudoconnectivity index - type 1 Topological indices
Psi_i_t intrinsic state pseudoconnectivity index - type T Topological indices
Psi_i_0d intrinsic state pseudoconnectivity index - type 0d Topological indices
Psi_i_1d intrinsic state pseudoconnectivity index - type 1d Topological indices
Psi_i_1s intrinsic state pseudoconnectivity index - type 1s Topological indices

Psi_e_A
electrotopological state pseudoconnectivity index - type S
average Topological indices

Psi_e_0 electrotopological state pseudoconnectivity index - type 0 Topological indices
Psi_e_1 electrotopological state pseudoconnectivity index - type 1 Topological indices
Psi_e_t electrotopological state pseudoconnectivity index - type T Topological indices

Psi_e_0d
electrotopological state pseudoconnectivity index - type
0d Topological indices

Psi_e_1d
electrotopological state pseudoconnectivity index - type
1d Topological indices

Psi_e_1s
electrotopological state pseudoconnectivity index - type
1s Topological indices

BAC Balaban centric index Topological indices
LOC lopping centric index Topological indices
X0 connectivity index of order 0 Connectivity indices
X1 connectivity index of order 1 (Randic connectivity index) Connectivity indices
X2 connectivity index of order 2 Connectivity indices
X3 connectivity index of order 3 Connectivity indices

145

X4 connectivity index of order 4 Connectivity indices
X5 connectivity index of order 5 Connectivity indices
X0A average connectivity index of order 0 Connectivity indices
X1A average connectivity index of order 1 Connectivity indices
X2A average connectivity index of order 2 Connectivity indices
X3A average connectivity index of order 3 Connectivity indices
X4A average connectivity index of order 4 Connectivity indices
X5A average connectivity index of order 5 Connectivity indices
X0v valence connectivity index of order 0 Connectivity indices
X1v valence connectivity index of order 1 Connectivity indices
X2v valence connectivity index of order 2 Connectivity indices
X3v valence connectivity index of order 3 Connectivity indices
X4v valence connectivity index of order 4 Connectivity indices
X5v valence connectivity index of order 5 Connectivity indices
X0Av average valence connectivity index of order 0 Connectivity indices
X1Av average valence connectivity index of order 1 Connectivity indices
X2Av average valence connectivity index of order 2 Connectivity indices
X3Av average valence connectivity index of order 3 Connectivity indices
X4Av average valence connectivity index of order 4 Connectivity indices
X5Av average valence connectivity index of order 5 Connectivity indices
X0sol solvation connectivity index of order 0 Connectivity indices
X1sol solvation connectivity index of order 1 Connectivity indices
X2sol solvation connectivity index of order 2 Connectivity indices
X3sol solvation connectivity index of order 3 Connectivity indices
X4sol solvation connectivity index of order 4 Connectivity indices
X5sol solvation connectivity index of order 5 Connectivity indices
XMOD modified Randic index Connectivity indices
RDCHI reciprocal distance sum Randic-like index Connectivity indices
RDSQ reciprocal distance sum inverse Randic-like index Connectivity indices
X1Kup Kupchik connectivity index Connectivity indices
X1Mad connectivity topochemical index Connectivity indices
X1Per perturbation connectivity index Connectivity indices
X1MulPer multiplicative perturbation connectivity index Connectivity indices

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List or Abbreviations
	1. Introduction
	1.1. Scope and Objectives
	1.2. Research Significance
	1.3. Cases presented
	1.4. Organization

	2. Background
	2.1. Molecular Descriptors
	2.1.1. 0D Descriptor
	2.1.2. 1D Descriptor
	2.1.3. 2D Descriptor
	2.1.3.1. Connectivity Indices

	2.1.4. 3D Descriptors
	2.1.5. 4D-7D Descriptors

	2.2. Model Development
	2.2.1. Molecular Mechanics
	2.2.2. Quantum Chemical Methods
	2.2.3. QSPR/QSAR

	2.3. Variable Selection
	2.3.1. Genetic Algorithm
	2.3.1.1. Selection Strategies
	2.3.1.1.1. Proportional Roulette Wheel
	2.3.1.1.2. Rank-based Roulette Wheel
	2.3.1.1.3. Tournament Selection

	2.3.1.2. Crossover Strategies
	2.3.1.2.1. Order Crossover
	2.3.1.2.2. Order 2 Crossover
	2.3.1.2.3. Cycle Crossover
	2.3.1.2.4. Position based Crossover

	2.3.1.3. Mutation Strategies
	2.3.1.3.1. Insert Mutation
	2.3.1.3.2. Inversion Mutation
	2.3.1.3.3. Swap Mutation
	2.3.1.3.4. Scramble Mutation
	2.3.1.3.5. Reversing Mutation
	2.3.1.3.6. Creep Mutation
	2.3.1.3.7. Uniform Mutation

	2.3.2. Decision Tree
	2.3.2.1. Iterative Dichotomiser 3 (ID3)
	2.3.2.2. C4.5 algorithm
	2.3.2.3. Classification and Regression Trees (CART)
	2.3.2.4. Random Forest
	2.3.2.5. Decision Tree in QSAR

	2.3.3. Hybrid Algorithms
	2.3.4. Multi Gene Genetic Programming (MGGP)

	2.4. Coefficient Generation
	2.4.1. Multiple Linear Regression (MLR)
	2.4.2. LASSO Regression

	3. Methodology
	3.1. Case 1: Reaction Rate Constant of Diels-Alder Reaction
	3.1.1. Divide and Conquer Algorithm
	3.1.2. Decision Tree Algorithm
	3.1.3. Modified Genetic Algorithm
	3.1.4. Hybrid GA-DT Algorithm Development
	3.1.5. Multi-Gene Genetic Programming (MGGP)

	3.2. Case 2: Predicting DNA Drug Binding Affinity of 9-Anilinoacridine Derivatives

	4. Results
	4.1. Case Study 1
	4.2. Case Study 2

	5. Conclusions and Future Directions
	5.1. Future Directions

	6. References
	Appendix A- Case 1 supplementary information
	A.1 – MATLAB Code for Divide and Algorithm
	A.2 - MATLAB Code for Decision tree function
	A.3 - MATLAB Code for regression function
	A.4 – MATLAB code for Hybrid GA-DT Algorithm
	A.5 – Modified MATLAB functions of GPTIPS 2.0 for MGGP algorithm
	A.5.1- evalfitness function
	A.5.2- gpmodelfilter Class
	A.5.3- Models generated using MGGP algorithm

	Appendix B- Case 2 supplementary information
	B.1 – MATLAB code for using CorrLASSO algorithm
	B.2 – MATLAB code for CorrLASSO function

	Appendix C- List of Descriptors Used
	C.1 –Descriptors Name and Description

