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Abstract 

 

In order for an active exoskeleton and its user to achieve synchronous motion, the 

intended motion of the user needs to be detected with enough lead-time to process and move 

the exoskeleton accordingly. This must also happen with a level of accuracy such that the 

exoskeleton does not impedes the motion of the user. Synchronous motion is difficult to 

achieve because human musculoskeletal motion is extremely complex with multiple muscles 

controlling multiple degrees of freedom of the joints. One promising method of reading 

human motion intent is with the detectible electrical signal that results from muscle activation 

measured via electromyography. This signal can be measured noninvasively on the surface of 

the skin, and is detectable approximately 100 ms before movement ensues. For the work 

presented in this thesis, a control scheme that associates muscle activation to future knee 

flexion was developed using artificial neural network machine learning algorithms. Artificial 

neural networks are designed to function much like the human brain. Inversely to how the 

brain decides on the movement that the body will take and then tells the muscles to activate 

accordingly, the algorithms will read the muscle activation signal and make informed 

estimations of the joint angles that the brain is trying to achieve. This method was used to 

create a model for anticipating error versus prediction time.  Furthermore, the method was used 

to assess the necessary inputs for an algorithm to make accurate knee flexion predictions on a user 

independent from the algorithm’s training data. 
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Chapter 1 

Introduction 

 

 

 

Since the beginning of civilization, humankind has sought to increase physical 

performance. Impaired individuals have adopted technology such as glasses and hearing aids to 

restore full function. Healthy individuals lift weights and take supplements to push human limits 

and compete for notoriety. Recently a push has been made for exoskeletons to increase human 

potential beyond the natural limitations of the human body [1]. Exoskeletons can be used for 

rehabilitation after an injury, allowing the user to regain strength and mobility. They can also be 

used for enhancement, allowing workers to lift and hold heavy objects that they otherwise could 

not [2].  

Naturalistic and synchronized movement of an exoskeleton with its operator is crucial for 

widespread adoption of the technology since lagging or cumbersome designs could increase the 

metabolic costs and reduce the potential benefits to the user [3]. Furthermore, the powerful 

actuation mechanisms could cause injury to the user’s joints if desynchronization occurs.  

Various designs and control methods have been proposed for exoskeletons to achieve 

naturalistic and synchronized movement. Passive exoskeleton designs can involve a spring at the 

ankle that stores energy on impact and releasing the energy to propel the user during walking or 
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running gait [4]. More complex powered exoskeleton designs involve sensors, control boards, and 

actuators to read the intentions and then mimic or assist the joint at which they are mounted [5]. 

Providing a naturalistic and synchronized movement for a powered exoskeleton based on the 

intention of the user is an active area of research. The use of machine learning to assess current 

joint angles and associated muscle activation to predict future joint angles is a potential solution 

for providing naturalistic and synchronized movement for a powered exoskeleton. By making 

predictions rather than estimations as seen in previous designs, the system will be able to counter 

any delays caused by data transmission, computation, and actuation of the exoskeleton.  

The overall objective of this thesis is to increase the knowledge base of machine learning 

algorithms as a means to control exoskeletons. This will be accomplished by providing an 

assessment for various prediction times compared to the accuracy of said prediction. It will be 

important to understand the tradeoffs between time saved and accuracy lost. Secondly, assessing 

the necessary inputs for a machine learning algorithm to make accurate knee flexion predictions 

for a population independent of the algorithm’s training population. The ability to predict joint 

angles for an independent population will negate the need for individually tuning an exoskeleton 

to each user. This could lead to a wider adaptation of exoskeleton technology due to a removal of 

costly and time prohibitive barriers. 
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Chapter 2 

Background and Lit Review 

 

 

 

2.1 Exoskeleton  

Over the past several decades, wearable robotics have developed at a rapid rate due to the 

size reduction of electronics, increases in computing power, and improved battery technology [6]. 

Exoskeleton technology, in particular, continues to demonstrate exponential improvements for the 

user [2]. While technological advances in exoskeletons have been made, further improvements are 

required before a truly seamless connection between the user and the wearable device can occur.  

Exoskeletons are, by definition, any structure that provides rigidity and/or protection 

outside of a living organism. In the field of biomechanics, the term exoskeleton normally refers to 

a device outside of the human body that moves with the user and often assists the user in movement 

of either their internal body structure or an external load [7]. Moving the internal body structure is 

largely important for restoring functionality to the user who may have a neurological disorder or 

sustained a musculoskeletal injury. Most of the time, these exoskeletons are used for rehabilitative 

purposes but can also be assistive and used in place of mobility devices such as wheelchairs. A 

rehabilitative exoskeleton can reduce the required load for the muscles to move one’s own body 

to a point where muscle strengthening can occur through assisted gait. As the muscles strengthen 
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over time, the reliance on the exoskeleton can be reduced to a point where it is no longer required. 

For the case of neurological disorders and severe musculoskeletal injuries, the assistive 

exoskeleton becomes an integral part of the user’s ability to function and move without the reliance 

on assistance from other human such as nurses. Examples of assistive exoskeletons include the 

HAL, ReWalk, and Ekso [8] [9] [10].  

An exoskeleton can also augments a user’s strength, which will allow them to move an 

external load with less strain on the musculoskeletal system. This is currently seen in many 

industrial settings where lifting heavy objects for extended periods of time above the worker’s 

head is required. Many automotive manufacturers in the United States are implementing 

exoskeleton technologies to reduce the wear and tear on their workers’ shoulders and backs. 

Examples of strength augmentation exoskeletons include BLEEX, XOS, and HULC [11] [12] [13]. 

 

2.2 Exoskeleton Designs 

Arguably, the most important aspect of an exoskeleton is its means of simulating the human 

body’s mode of movement. The human body uses muscles that span over joints and shorten to 

produce a force on the bone. Muscles provide torque about joints which allows for the body to 

control a sum total of 244 degrees of freedom (DOF) [14]. Exoskeleton technology currently lacks 

the precision of control for sufficient synergy between user and exoskeleton resulting in limited 

cooperation between the two. Consequently, designs are often made in a way that attempt to 

minimize complexity without sacrificing naturalistic motion [15]. The most common ways of 

simplification are to remove DOFs, under-actuate the system, or only actuate through portions of 

the overall movement. All exoskeleton designs seek to find a balance between necessary 

complexities associated with naturalistic motion and the ability to match the speed and force output 
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of human motion. This can be accomplished with both passive and active exoskeleton designs [1].  

 

2.2.1 Passive Exoskeletons 

Passive exoskeletons utilize mechanical manipulations of force transfer in order to lessen 

the work to be accomplished by the user. Many unpowered exoskeletons, such as the Lockheed 

FORTIS, are utilized in industry to transmit forces around the user to reduce loads for 

physiologically taxing tasks [7]. Other designs are used to improve human efficiencies by 

recycling energy lost through motions such as gait. An example of a lower body unpowered ankle 

exoskeleton is one that Collins et al. built to reduce the metabolic rate of the user while walking 

on a treadmill [4]. The design utilizes a spring and clutch to store and return energy during the gait 

cycle. It was shown to reduce metabolic rates by an average of 7.2% over their nine subjects when 

compared to walking without an exoskeleton. A major limitation of the passive exoskeleton is that 

mechanical work cannot be created and, therefore, the user is responsible for creating the necessary 

work to maintain motion. Another major limitation is the lack of variability in the design. Collins 

et al. looked to vary spring stiffness in order to maximize metabolic efficiency in normal walking. 

However, the optimal spring stiffness could vary drastically for walking with increased loads or 

running and, with this design, there is no way to make the changes instantaneously. There would 

either need to be specific mechanisms to be changed when starting a different task, or to implement 

a generalized design that can handle every task without optimization for any task individually.  

 

 

2.2.2 Active Exoskeletons 

Active exoskeletons use an input of mechanical energy to actuate the system, requiring 
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power sources. As such, they are much more complex than their unpowered counterparts. An 

active exoskeleton consists of three main components: actuators, sensors, and controllers. With 

data transmission and processing times, there is a time gap between detecting human intent (e.g. 

via EMG) and when the exoskeleton movement occurs.  It is not entirely clear how fast a system 

must operate for lag to be completely unnoticeable to the user, but currently, the clinically accepted 

response time delay to the user’s movement is 300 ms [16]. Furthermore, work by Petrella et al. 

(1997) shows that through proprioception, healthy young adults are able to distinguish and 

reproduce knee flexion angle positions to within two degrees of accuracy [17]. Although the need 

for empirical validation remains, it can be inferred that from the study by Petrella et al. any 

movement between the user and the exoskeleton should result in a discrepancy of less than two 

degrees to ensure seamless interaction between the two. 

 

2.2.2.1 Actuators 

Active exoskeletons can rely on gears and cable drives, electric motors, linear actuators, 

pneumatics, or hydraulics for force transmission. Designs often face the challenge of generating 

sufficient force at rates similar to muscular movement without becoming awkward or cumbersome 

to the user. Currently, electric motors are used to actuate approximately 72% of exoskeletons 

designs [7]. Electric motors provide a mature technology that is easily controlled; however, there 

are discrepancies in the movement of human motions and the optimal operation of an electric 

motor. Electric motors often are measured in revolutions per minute (rpm) while no joint in the 

human body is designed to make an entire rotation. Some options such as gear reduction techniques 

can increase the output torque at the sacrifice of travel velocity in an attempt to better simulate the 

human body. Another problem with electric motors is that the size and weight of the motor is 
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correlated with the power output. For a active exoskeleton to lift heavy objects, bulky motors are 

required to be designed into the system. For this reason, many augmentation exoskeletons rely on 

pneumatics or hydraulics for actuation [3]. Both are subject to the problem of leakage, although, 

pneumatics can have an onboard compressor to regain any lost air. Another problem with 

pneumatics is that since air is a compressible fluid, fine control of heavy loads are difficult to 

manage. Much work is being done on the development of soft actuators such as shape memory 

allows (SMA) [18]. Soft actuators will actuate in a manner similar to human muscles, theoretically 

allowing exoskeletons to increase DOF while maintaining a light profile. SMAs currently hold a 

number of limitations that deter from wide scale adoption. They have an inverse relationship of 

force output to actuation velocity and can only shorten on the scale of 4-8% [19]. Further 

advancements are required before SMAs are a viable option on exoskeleton designs. 

 

2.2.2.2 Sensors  

 In order for an exoskeleton to move synchronously with the user, it must fully understand 

the movement intentions of the user. Exoskeletons can utilize single signals or implement sensor 

fusion algorithms that allow for utilization of inputs from multiple sensors in order to achieve 

intention inferences. Sensors are able to pick up on both non-biological and biological signals that 

are indicative of human motion. Common non-biological signals include eye tracking, speech, 

kinematics (positions, orientations, velocities, accelerations), and kinetics (force outputs of a 

segment). Kinematic and kinetic parameters can be provided using inertial measurement units 

(IMUs), encoders, and force sensors. These sensors are often used in commercial exoskeletons due 

to the cost, size, simplicity, and reliability. Many augmentation exoskeletons such as BLEEX or 

the Nurse Robotic Suit rely on strictly kinematic and kinetic sensors [20] [21] [22] [23]. The 
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biggest drawback to non-biological sensors is that they measure motion that has already occurred, 

which eliminates lead time for an exoskeleton to move synchronously with a user. Exoskeletons 

that rely heavily on the use of non-biological sensors, particularly force sensors, often require the 

user to come into contact with the exoskeleton in order for movement to occur. This reactive 

response is less than ideal as it can result in delays that cause inefficiencies of use as well as 

potential injury from contact stress. 

 In contrast, biological signals are records that can be tracked during a biological event. 

Signals that are used for exoskeleton intention inference are magnetoencephalogram (MEG) which 

record magnetic fields around the head to track brain activity, mechanomyogram (MMG) which 

record mechanical vibrations of a muscle to detect contraction, sonomyogram (SMG) which 

produces a sonogram image of a muscle using ultrasound echo, electrocorticogram (ECoG) and 

electroencephalogram (EEG) which are ways of monitoring electrical activities of the brain, and 

electromyogram (EMG) which reads electrical activity of a muscle [24]. Surface EMG is the most 

commonly used biological signal because it is relatively inexpensive, noninvasive, read in close 

proximity to the exoskeleton, and generates a well understood signal.  

 

2.2.2.2.1 EMG 

 EMG measures the electrical action potential in a muscle that occurs when a neurological 

signal is sent from the brain for the purpose of activation.  This signal can be measured up to 100ms 

before activation of the skeletal muscle ensues [25]. Surface EMG is a method of placing 

electrodes on the skin above the belly of the muscle to record its activation. The measurement 

waveform from surface EMG sensors is considered irregular due to crosstalk from multiple muscle 

fibers. Irregularities in EMG waveform is mitigated though standardized data collection methods, 
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filtering, feature extraction, and normalization to allow for easy comparisons of EMG signals. 

Collection standards for EMG include skin preparation, electrode placement, and 

adherence. Before placing the electrode, the skin should be shaved and cleaned to remove oils and 

dead skin. A safety razor and alcohol swabs are most commonly used.  It is then important for 

researchers to accurately identify the muscle belly and place the electrodes where there will be 

little interference from neighboring muscle groups. There are international standards, such as 

Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles (SENIAM), to find ideal 

locations for commonly collected muscles [26]. It is also vital that electrodes do not shift during 

data collection as changes in position will read new muscle fibers and comparison with previous 

tests will become more difficult or, in severe cases, impossible. Double sided tape and external 

wraps can help to minimize sensor shift. 

Once the raw EMG signals are collected, they are filtered through a bandpass filter to 

remove frequencies of data outside of the desired range. Typically, the discarded frequencies are 

under 20 Hz, as they can be attributed to mechanical artifacts, and above 450 Hz, as high-frequency 

aliasing can corrupt the signal [27]. When surrounded by other exoskeleton components such as 

motors or controller boards, notch filtering at frequencies around 50 or 60 Hz can remove electrical 

noise. 

The EMG signal is considered to be a combination of features all describing different 

aspects of the muscle firing patterns [28] [29]. The three types of feature extractions typically used 

to decode EMG signals are 1) time domain features, 2) frequency domain features, and 3) time-

frequency domain features. 

Time domain features generally deal with the overall shape of the signal and are most 

frequently used in continuous motion estimation problems since these features are often correlated 
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with the level of activation or “effort” exerted by the muscle. Examples of time domain features 

include root mean square (RMS) (Figure 2.1), slope sign change (SSC), zero crossings, waveform 

length (WL), and mean absolute value (MAV) [30] [31]. Frequency Domain Features are extracted 

by using the estimated power spectrum density and are computationally more taxing than Time 

Domain Features. Examples include power spectrum (PS), mean frequency (MNF), and median 

frequency (MDF) [5]. There is evidence that Frequency Domain Features allow for the detection 

of muscular fatigue [29].  

 

 

Figure 2.1: Example EMG data and corresponding RMS values calculated with 70 and 250 data 

point moving windows. 

 

Time-Frequency Domain Features help assess the signal in both the time and frequency 

domains through a single set of computations. However, given the combination of time and 

frequency, this domain is generally the most computationally expensive and time consuming, 
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making it a less practical method than calculating the time domain and frequency domain features 

individually if they are to both be used [5]. 

After extracting the desired features, normalization techniques can be used to compare the 

muscle firing patterns between muscles, subjects, or even the same subject collected at a different 

time [32] [33]. Because EMG relies on reading the muscle activation through the surface of the 

skin, skin impedance can play a large role in the shape of the collected signal [32]. This means that 

testing a subject at various levels of hydration will affect their EMG readings. One of the most 

common normalization methods is to compare everything as a percentage of the maximum 

voluntary isometric contraction (MVIC). At the beginning of collection, the subject is asked to 

contract each muscle as hard as they can while the tester restricts motion of the subject [34]. 

Another method is a reference voluntary contraction (RVC) where a known weight, similar to the 

weights that would be moved during collection, is lifted [35]. The RVC is designed to set the 

calibration point much closer to the desired collection data range than the MVIC. Finally, there 

are methods such as mean or peak activation levels that normalize the EMG signals during the 

desired task. The subject performs the desired task, the mean or peak EMG value is determined, 

and then all subsequent testing is divided by that value. These last methods have been shown to 

reduce variability between subjects when compared to raw EMG data, MVIC, and RVC methods 

[36] [37] [38].  

 

2.2.2.3 Controllers 

 Similar to brains in humans, exoskeleton controllers input data from sensors and then 

output a response to the actuators to achieve a certain outcome. The chosen sensors in part dictate 

the choice of controller design. In some cases, a handheld selection device is used. For others, the 
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exoskeleton tries to use the sensors available to determine user intention. For exoskeleton systems, 

user intention can be inferred using classification and regression-based algorithms. Classification 

designates a distinct label chosen from a list of possible outcomes that it has deemed to be the 

statistically most likely based on the given input data. One way classification can be visualized is 

through an example of a k-nearest neighbor (KNN) algorithm (Figure 2.2). KNN algorithms 

attempt to classify new data by measuring its distance to the existing data and classifying as the 

group with the shortest average distance. Classification is commonly used for sorting algorithms 

such as shown in Figure 2.3. Many assistive and rehabilitative exoskeletons such as Ekso, ReWalk, 

AUSTIN, Mina, LOPES, PAM, and ALTACRO rely on classifying high-level commands (e.g. 

walk, sit down) to drive the user to the predefined motion profiles [10] [39] [9] [40] [41] [42] [43] 

[44]. Exoskeletons used for repetitive movement tasks can be controlled with a simple timing-

based, mechanically intrinsic controller on a loop, but do not allow for variability of tasks and 

often lead to users relying excessively on the exoskeleton [45]. Even laboratory-based 

exoskeletons are driven by labelling actions, poses, or even parts of a repetitive action such as 

portions of the gait cycle [46] [47] [48]. Classification alone could run into problems when a 

similar action requires varying velocity or torque outputs to the actuators. For example, a user with 

a fast gait might have adjust their walking speed if the programmed gait cycle is slower.   
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Figure 2.2: Example KNN Classification Algorithm 

 

 

Figure 2.3: Example Classification Sorting Algorithm 

 

Alternative to classification, regression is the method for continuously outputting analog 

signal throughout the entire motion. A regression approach removes the need for preprogrammed 

actions and delivers velocity or torque on a needed basis to produce a more naturalistic motion. 

Regression techniques for continuous motion can be categorized as static model-based or adaptive 

model-based. In a static model-based approach, a relationship is formed between the input signals 

to an estimated output signal through established equations or experimentation. Kinematic, 

dynamic, and musculoskeletal models have all been proposed. Kinematic models look at the 

human body as a chain and use techniques such as forward or inverse kinematics to calculate joint 

position, orientation, velocity, or acceleration [5]. Borbély & Szolgay have used an inverse 

kinematic model for real time estimations of joints in the arm for an OpenSim model [49]. 
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Dynamic models use similar methods as the kinematic models but expand upon them by adding 

calculations of inertia, Coriolis, centrifugal, or gravity vector calculations in order to estimate a 

torque or force output. Koike et al. was able to mimic arm movements from EMG channels by 

using a forward dynamics model [50]. Musculoskeletal models use EMG signals combined with 

joint kinematics to estimate forces of muscles using understood muscle models such as Hill-type 

muscle model [51] [52]. Adaptive model-based approaches look to develop a relationship between 

inputs and a desired output by utilizing “black box” techniques, which mostly fall into the 

categorization of machine learning. Machine learning approaches operate by using large data sets 

to optimize a mapping function that can often find relationships not easily detectible through 

conventional methods. 

 

2.2.2.3.1 Machine Learning 

Machine learning methods can be separated into unsupervised methods, supervised 

methods, and reinforcement learning methods. In a supervised learning model, both the inputs and 

desired outputs are presented as part of the training data set. The algorithm produced will be a 

function that will link every given input to every given output by altering the equations used 

between them. Increasing the number of data points in the training set will generally lead to 

increased accuracy of the estimated output. Another method of machine learning is unsupervised 

learning, for which the training set only includes input data, and the algorithm finds patterns in the 

input dataset itself. Lastly, is a method of machine learning known as reinforcement learning, in 

which models learn by interacting with their environment, similar to humans learning a skill. A 

supervised learning method is typically pursued for exoskeleton applications since unsupervised 

learning may have limited association between inputs and outputs and reinforcement learning 
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would require a complex simulated environment. 

Supervised machine learning is commonly investigated as a way of generating controls for 

exoskeletons. One method of supervised machine learning is Hidden Markov Models (HMM), 

which are statistical models that use a stochastic process to, first, describe how the system may 

transition from one state to another. Secondly, they provide the statistical probabilities for the 

outcome from each state [15]. Work by Chan and Englehart showed that a HMM built on EMG 

data of the arm could be used to classify six unique static poses of the hand and wrist [53]. Another 

example of a supervised machine learning technique is Gaussian Mixture Models (GMM), which 

are combinations of normal Gaussian distributions. Kilicarslan et al. has  used EEG signals for 

real-time classification of six unique motions in paraplegic subjects [54]. Support Vector Machines 

(SVM) are another type of supervised machine learning, which are used to create a separation of 

data sets that maximizes the overall margins between the line or plane, and the data classifications. 

Khokhar et al. showed that EMG and force data could be used to classify 19 classes of torque at 

the wrist [30]. A method of supervised machine learning that is common in fields such as 

navigation systems or computer vision is Kalman Filters (KF). KF are recursive solutions that 

work by estimating current state variables using sets of understood equations, observing the 

accuracy of the estimation, and updating the weighted averages used to compute the estimation. A 

method of using a state space model built on a Hill-based muscle model and modified with an 

extended Kalman filter has been used to estimate joint angles and velocities at the elbow [51]. 

Finally, there are Artificial Neural Networks (ANN). ANN are mathematical models that are 

designed in a similar manner to the biological neural network comprising animal brains. The 

general structure of ANN can be broken down into three layers: 1) the input layer which receives 

the various signals, 2) the hidden layer(s) which perform various transformations, and 3) the output 
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layer which quantifies the results of the hidden layer(s) into outputs for the system [55]. EMG 

based ANN has been used for continuous motion estimation by continuously estimating joint 

angles, in some cases more than one joint angle simultaneously [56] [57] [58]. Figure 2.4 shows 

an example ANN. The input to the ANN could be EMG signals of the leg while the overall output 

could be a joint angle prediction. By training the algorithms in this way, a real time system could 

be built to control the exoskeleton. 

 

Figure 2.4: Example ANN Layer Structure  

 

ANN layers are made up of nodes (circles in Figure 2.4), which are connected to the 

previous layer by a series of weighting functions (arrows in Figure 2.4). The number of hidden 

layers determine if it is a single-layer neural network (zero hidden layers), a shallow multi-layer 

neural network (one hidden layer), or a deep neural network (multiple hidden layers) [55]. The 

data streams come in through the input nodes without any transformation. The transition layer 

nodes are then calculated by the following equation: 

 𝑣 = (𝑤1 × 𝑥1) + (𝑤2 × 𝑥2) + ⋯ + (𝑤𝑛 × 𝑥𝑛) + 𝑏 (2.1) 

Where 𝑣 is the weighted sum for the node, 𝑤𝑛 are the weighting functions (expressed in a 

1 × 𝑛 matrix, 𝑤), 𝑥𝑛 are the input values for the node (expressed in a 𝑛 × 1 matrix, 𝑥), and 𝑏 is 
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the bias added to each node [55]. The weighted sum is then calculated through an activation 

function as follows: 

 𝑦 =  𝜑(𝑣) (2.2) 

Where 𝑦 is the output for the given node and 𝜑 is the activation function. Activation 

functions used for machine learning are often three types of transfer functions. 1) Logistic sigmoid 

transfer function (log-sig): 

 
𝜑(𝑥) =  

1

1 + 𝑒−𝑥
 

(2.3) 

2) Hyperbolic tangent sigmoid transfer function (tan-sig): 

 
𝜑(𝑥) = tanh(𝑥) =  

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(2.4) 

3) Linear transfer function: 

 𝜑(𝑥) = 𝐶𝑥 (2.5) 

𝐶 is defined as a constant. The log-sig function will generate 𝜑 values apostolically 

between 0 and 1 while tan-sig generates values apostolically between -1 and 1 (Figure 2.5).  
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Figure 2.5: Example Tan-Sig Transfer Function  

 

The concept of supervised learning is that an error is calculated for the estimated output 

against the actual output. The weighting functions are then updated for all of the nodes and the 

process repeated until the error is minimized [59]. The math is often simple enough to be 

completed by hand, but a single iteration would take minutes to calculate. In the same amount of 

time, the machine learning algorithm could have gone through a thousand iterations and converged 

on a result. This process benefits from large datasets to compute the weighting functions, often 

resulting in the need for long data streams. Delays are introduced mathematically into time series 

problem functions by the following equation: 

 𝑦(𝑡) =  𝜑(𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑑)) (2.6) 

Where 𝑑 is the delay and correlates to the number of terms in the transfer.  

The larger the delay, the greater number of past inputs will be used in the calculations. 

Figure 2.6 shows an example ANN that is used in the work of this thesis. This network is designed 
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with an input of seven data streams (𝑥𝑛(𝑡) where 𝑛 = 7). The delay value is two data points. The 

weighting and bias are added together into a tan-sig transfer function in the hidden layer of ten 

nodes. Finally, the weighting and bias are added into a linear transfer function of the output layer 

of a single node to calculate a single output stream (𝑦𝑛(𝑡) where 𝑛 = 1). 

 

Figure 2.6: Figure of ANN used in this thesis, generated from Matlab®  

To illustrate the capabilities of the algorithm described in Figure 2.6, example data has 

been used to predict knee flexion angles during gait (Figure 2.7). 

 

Figure 2.7: Example Output Data of an ANN 
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In this example, six streams of EMG data and a single stream of knee flexion angles were 

the inputs used to predict a stream of knee flexion angles 50 ms into the future. For clarity, the 

error has been enlarged in scale relative to the knee flexion angle plot.  

 

2.3 Purpose 

The following work employs the described ANNs to make predictions of knee flexion 

angles. These predictions will utilize the ability to detect EMG signals roughly 100 ms before 

bodily motion occurs to create a control algorithm capable of reducing lag time between the 

exoskeleton and the user. Furthermore, the following work will assess the necessary inputs for an 

ANN to make accurate knee flexion predictions on a population independent of the population 

used to train such ANN. 
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Chapter 3 

Subjects and Data Collection Methods 

 

 

 

This chapter describes the combined methods used in the two studies (Chapters 4 and 5) 

presented in this thesis. Subjects and data collection methods overlapped while data processing 

distinguishes between the two and will be discussed in their respective chapters. Overall, there 

were ten subjects that participated in this study (5 males, age = 21.5 ± 2.0 yrs, weight = 64.5 ± 9.8 

kg, height = 166.9 ± 14.5 cm). All subjects reported no history of chronic pain in the spine or lower 

extremities in the six months prior to participating in the study. All study procedures were 

approved by the Auburn University Institutional Review Board (IRB), and subjects provided 

informed written consent before participating. The experiment took place at the Auburn University 

Biomechanical Engineering Laboratory. 

Twelve surface EMG electrodes (Delsys Trigno IM, Delsys Inc.) were placed bilaterally 

on six muscles along the thigh. These muscles were the right and left tensor fasciae latae, rectus 

femoris, vastus medialis, vastus lateralis, biceps femoris, and semitendinosus. The placement of 

these electrodes was consistent with SENIAM guidelines [26]. Before placing the electrodes, 

excessive hair was removed with a small electric hair trimmer and the skin was cleansed of oils 

and debris with an alcohol swab to improve the quality of the recorded signals. A double-sided 
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adhesive was used to secure the sensors in their desired locations and sports wrap was added over 

the electrode to help prevent loss of signal connection. Before testing, the subjects were allowed 

time to acclimate to the equipment. Raw EMG signals were collected at 1111 Hz for each of the 

twelve channels and fed through a Butterworth filter to remove motion artifacts (< 20 Hz) and high 

frequency aliasing effects (> 450 Hz). These signals were then detrended and rectified so that the 

RMS for each muscle could be calculated. 

A ten-camera Vicon motion capture system was used to track a 79 retroreflective marker 

set consistent with the work of Andriacchi et al. [60]. A Vicon Lock+ box was used to ensure 

synchronicity between the Vicon motion capture and the Delsys Trigno sensor signals. Nexus 

software was used to collect the marker position at 120 Hz (Version 2.6.1; Vicon Motion Systems 

Ltd, Oxford Industrial Park, Oxford, UK). Marker positional data was transferred to Visual3D, 

where it was filtered with a 15 Hz low pass Butterworth filter to remove noise. Body segments 

were created using the marker positions following the International Society of Biomechanics 

recommendations [61]. Grood and Stunay’s joint coordinate system was used to calculate knee 

flexion [62]. The Visual 3D model of the knee was made with six degrees of freedom, but because 

the knee flexion angle is much greater than other rotations and translations in the knee, the focus 

of the predictive algorithms was on a single degree: flexion.  

Participants performed 15 walking trials over a distance of approximately 30 feet at a self-

selected pace. Minimal feedback was provided in order to capture naturalistic movements. 

Collected trials were randomly split into training and testing categories in order to counter learning 

effects over the duration of the trials. Ten trials were chosen as training trials to train the 

algorithms. The ten chosen training trials were trials one, two, four, five, seven, eight, ten, eleven, 

thirteen, and fourteen. The remaining five testing trials were used to test the algorithm accuracy. 
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This study used the time domain feature, amplitude, to compute root mean squared (RMS) of the 

EMG for analysis with a moving window set to 70 data points. MATLAB was used to create 

Nonlinear Input-Output Time Series Neural Network algorithms trained using Bayesian 

Regularization with a single hidden layer of ten nodes and a feedback delay set to two. The inputs 

and outputs of the algorithms were study dependent and will expanded upon accordingly. 
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Chapter 4 

EMG and Joint Angle-Based Machine Learning to  

Predict Future Joint Angles at the Knee 

 

 

 

4.1 Introduction  

In order for an exoskeleton to feel naturalistic to a user, the motion of the actuator must 

match the intended motion of the person. Delays in control mechanisms are likely to lead to 

desynchronization with the user and increased metabolic cost.  It is not entirely clear how fast a 

system must operate, but currently, the clinically accepted response time delay to the user’s 

movement is 300 ms [16]. Furthermore, work by Petrella et al. (1997) shows that through 

proprioception, healthy young adults are able to distinguish and reproduce knee flexion angle 

positions within two degrees of accuracy [17]. Although the need for empirical validation remains, 

the work by Petrella et al. provide a reasonable target of a discrepancy less than two degrees for a 

naturalistic feel.  

The largest gaps in active exoskeleton technology include controls that are limited in the 

number of actions they can perform and delays between the user and the actuation of the 

exoskeleton. EMG can be read noninvasively and approximately 100 ms before human motion 

ensues [63]. Therefore, a theoretical window exists between the readings of EMG signal to the 
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realization of motion in which a prediction can be made of a biomechanical parameter, such as a 

future joint angle. Regression algorithms can create an advantage that involves the allowance for 

any motion to occur if trained correctly, rather than the user of the exoskeleton being limited to a 

predetermined path.  

The purpose of this study was to assess the feasibility of employing a predictive ANN 

algorithm trained using supervised learning to accurately counter any delays that may be caused 

by computation time or the transmission of data from sensors to an active exoskeleton actuator. 

The study also explored the effects of various time delays on predictive accuracy. 

 

4.2 Methods 

The seven input variables for the machine learning algorithms were the six EMG signals 

on a single leg and the knee flexion angle calculated post hoc with Visual 3D. The algorithms 

output predictions of that same knee’s flexion angle estimated at 50, 100, 150, and 200 ms into the 

future.  

Ten algorithms were trained for a varying number of randomly assigned training trials (1-

10) for each of the ten subject’s two legs and for all four prediction time intervals. This resulted in 

a total of 800 trained algorithms. RMS error was calculated by comparing the algorithms’ output 

angle against the motion capture-based calculation of the knee flexion angle for each data point of 

that subject’s five testing trials. The averages and standard deviations of RMS error were 

calculated for each algorithm for each prediction time and number of training trials.  

Analysis of variance (ANOVA) was used to test for the significance of each prediction 

variable (subject, gender, leg, and time interval) and their interactions. Time interval was treated 
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as a repeated measures variable. The unadjusted algorithm error data were found to have fan-

shaped residuals (indicating unequal variances by time interval), thus a log transformation of the 

algorithm predictions was used for the ANOVA. This resolved the equal variance assumption 

violation. Tukey Honestly Significant Difference (HSD) post hoc tests were used to evaluate 

significant differences between conditions for main effects or interactions that were significant. 

Linear regression was used to develop a prediction model for error based on variables identified 

as significant in the ANOVA model. The Type I error rate (alpha) was set at 0.05 for all tests. 

 

4.3 Results  

Figures 3.1 and 3.2 show the average RMS errors of all the subjects at various prediction 

times and the various number of training trials separated by the right and left leg. Both legs saw a 

significant decrease in the average prediction error as the number of training trials increased and 

as the prediction times were decreased. The largest decrease in error from a single trial to ten trials 

was observed in the right leg being predicted at 100 ms with a 93% reduction. The smallest 

decrease was observed in the right leg 200 ms prediction with a reduction of 74%. Similarly, 

Figures 3.3 and 3.4 show that standard deviation of the error also decreased with an increase in the 

number of training trials. 
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Figure 4.1: Number of training trials effects on average degrees of RMS error in left knee flexion 

prediction 

 

 

Figure 4.2: Number of training trials effects on average degrees of RMS error in right knee 

flexion prediction 
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Figure 4.3: Number of training trials effects on average standard deviation of degrees of RMS 

error in left knee flexion prediction 

 

 

Figure 4.4: Number of training trials effects on average standard deviation of degrees of RMS 

error in right knee flexion prediction 
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Figure 4.5 shows a box and whisker plot of the RMS error for each of the subjects’ 

algorithms trained with one (top) as well as all ten (bottom) available training trials. A similar 

trend is seen in both the right and the left leg that the error and variation of predictions increase 

the further into the future the algorithm is attempting to predict. The median errors for both the 

right and left leg were reduced at rates of 97% when comparing 200 ms to 50 ms at ten training 

trials.  

 

Figure 4.5: Prediction times effects on average degrees of RMS error in knee flexion prediction 

for one training trial and for ten training trials. Outlier in Subplot A, 150 ms prediction time of 

value 810.85 degrees. Outlier in Subplot B, 100 ms prediction time of value 157.70 degrees. 

Outlier in Subplot D, 200 ms prediction time of value 42.02 degrees. 

 

Table 4.1 shows the results of the Tukey HSD All-Pairwise Comparisons Test with a 

calculated Standard Error for Comparison of 0.03, Critical Q Value of 3.76, and Critical Value for 

Comparison of 0.086. ANOVA results demonstrated that the main effect of time was statistically 

significant with respect to algorithm predictions (F3,48 = 953.88, p <0.0001). Tukey HSD post hoc 
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tests demonstrated that algorithm predictions for each time period were significantly different from 

one another (Table 4.2).  

Table 4.1: Analysis of Variance performed for subject, gender, leg, and prediction time 

Analysis of Variance Table for Algorithm 

Source DF SS MS F p 

Subject 4 0.7523 0.18807    

Gender 1 0.5241 0.52411 7.38 0.0532 

Error Subject*Gender 4 0.2840 0.07100    

Leg 1 0.0701 0.07007 1.19 0.3076 

Gender*Leg 1 0.0634 0.06341 1.07 0.3303 

Error Subject*Gender*Leg 8 0.4721 0.05902    

Times 3 29.7298 9.90993 953.88 0.0000 

Gender*Times 3 0.0049 0.00164 0.16 0.9243 

Leg*Times 3 0.0369 0.01230 1.18 0.3256 

Gender*Leg*Times 3 0.0094 0.00312 0.30 0.8250 

Error Subject*Gender*leg*Times 48 0.4987 0.01039    

Total 79         

Note: SS are marginal (type III) sums of squares      

    
 

Table 4.2: Tukey HSD All-Pairwise Comparisons Test for time intervals showing significance 

between each time interval. 

Prediction 

Time 

Mean 

RMS 

Error 

50 ms 0.48 

100 ms 3.51 

150 ms 10.99 

200 ms 18.47 

 

 

ANOVA results reveal that subject, leg, or gender differences were not statistically 

significantly different in terms of the algorithm predictions, nor were any interactions among these 

variables. It may be noted that the main effect of gender demonstrated a non-significant trend. 
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Thus, the final model indicates that the only significant factor relating to algorithm predictions was 

time interval. 

Figure 4.6 shows the regression model with slope = 10.522 log(RMS error)/seconds, 

p<0.0001 and y-intercept = -0.721 log(RMS error), p<0.0001. The adjusted R² fit was equivalent 

to 0.85. Figure 3.7 shows the same data without logarithmic transformation. 

 

Figure 4.6: Regression model of logarithmically transformed error for prediction times.  
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Figure 4.7: Regression model of error for prediction times compared to 2 degrees of error 

 

4.4 Discussion  

This study investigated the accuracy of an ANN designed to predict future flexion angles 

of the knee using EMG measurements and past measurements of knee flexion. Using a two-degree 

error metric as the measure for success, based upon the study by Petrella et al. [17], it can be 

concluded that the algorithms succeeded in predicting the knee flexion angle 50 ms into the future 

for all subjects, and succeeded in predicting the knee flexion angle 100 ms into the future for some 

subjects (Figure 4.7). These predictive algorithms were successful for both legs and both genders. 

The generated regression prediction model calculated that times less than 97.2 ms (Figure 4.7) 

have the greatest potential for generating undetectable errors. This is directly in line with the time 

allowable for reading muscle activation before motion occurs [63]. Predictions made further out 

than 100 ms could be detrimentally affected by the inputs of EMG signals that are not associated 

with the impending motions. In addition, the finding that time is the only significant factor opens 

the possibility to exploring opportunities of using independent sets of data for training and testing. 
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Training and testing on the same subject and same leg may not always be feasible, for example, if 

the exoskeleton will be used for rehabilitating a musculoskeletal injury. Predicting future angles 

is essential for synchronized movement between the user and exoskeleton even with the 

computational abilities of modern exoskeletons. The bigger the gap in prediction time, the more 

buffer the exoskeleton has to process signals and actuate the given joints to match the motion of 

the user. 

A limitation of this study is the small sample size and narrow range of demographic 

characteristics of the subjects. Age, percentage body fat, and activity level could impact the quality 

of predictions. Another limitation is the focus on subjects engaged in an established gait cycle. 

Expanding the predictions to less repeatable actions will most likely cause the accuracies to 

decrease if using the same machine learning method. Further testing should be conducted to 

determine if a single walking-based regression algorithm is sufficient for multiple actions or if a 

more complex solution is required. Examples of complex solutions would be deep learning models 

or multilayer networks that can classify the movement and then used a specific regression 

algorithm to predict angles of that action.  

Further work should also explore if a single algorithm can be utilized across an independent 

population. With the inclusion of multiple subjects or both of an individual’s legs into a single 

algorithm, various patterns can be learned in hopes of making predictions on a subject without the 

need for their specific individual training data. Additional future work could include assessing the 

number of training trials required to reach the point of diminishing returns to prediction accuracy, 

introducing transitional movements into the training sets, or using techniques such as hyper-

parameter tuning in order to design the optimal machine-learning algorithm parameters for the 

desired prediction time. 
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4.5 Conclusion 

This study successfully demonstrated the feasibility of employing an ANN to accurately 

predict knee flexion angle. This can be used to counter delays caused by transmission of data and 

computation times of powered exoskeletons. A prediction model has been created which draws 

the correlation of prediction time against the expected accuracy. It also outlines the basis for 

understanding the amount of data needed to accurately train an algorithm for a given subject.   
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Chapter 5 

Population and Training Source Influence on Machine  

Learning Ability to Predict Future Joint Angles at the Knee 

 

 

 

5.1 Introduction  

Currently, many assistive and rehabilitative exoskeletons such as Ekso, ReWalk, AUSTIN, 

Mina, LOPES, PAM, and ALTACRO rely on predefined motion profiles to drive the user to high-

level commands (e.g. walk, sit down) [10] [39] [9] [40] [41] [42] [43] [44]. Predefined motion 

patterns lack full mobility, especially for healthy users where low-level control is desired (e.g. 

walking speed, stride length). Many augmentation exoskeletons such as BLEEX or the Nurse 

Robotic Suit rely strictly on kinematic and kinetic sensors such as inertial measurement units 

(IMUs), encoders, and force sensors to initiation a movement response [20] [21] [22] [23]. The 

biggest drawback of such mechanical sensors is that detection of motion intent can only occur once 

the motion has begun, resulting in lack sufficient synergy between user and exoskeleton and 

limiting cooperation between the two [15].  

In response to this problem, the work presented in Chapter 4 utilized EMG to create 

predictive algorithms that could accurately estimate knee flexion angles (< 2° error) as far as 97 

ms into the future. The results indicated that accurate predictive algorithms could be created 
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regardless of subject, leg, and gender. The next steps were to see if the distinguishing of subject, 

leg and gender could be removed to achieve accurate predictions, thus, creating a generalized 

algorithm that could work for anyone. A gap exists in current regression methods found in the 

literature whereas algorithms must be created for each individual subject to predict joint motion 

[56] [58]. This is often not feasible as training individualized algorithms can be cost, time, and 

physically prohibitive. The regimen needed for training individualized algorithms would currently 

require every task to be performed in a laboratory setting by the user without the aid of such 

exoskeletons. 

One of the main reasons a generalized algorithm has not yet been developed is because 

EMG signals are often noisier than non-biological signals and fluctuate between users [32]. Many 

studies that utilize EMG to make comparisons between subjects will apply a form of normalization 

based on the given task [32] [33]. The normalized signals often yield similar signal profiles for the 

given task, therefore, removing any natural subject-to-subject variability [37] [38]. Removal of 

variability is theorized to be necessary for the creation of generalized exoskeleton control 

algorithms. 

The purpose of this study was to employ a predictive ANN algorithm to explore the effects 

of various training sources on predictive accuracy for theoretical control of an active knee 

exoskeleton. This study will attempt to create a generalized control algorithm that would be ideal 

for situations when the user is unable to perform the required trials for an individual fit. For this 

study, the following hypotheses were developed: 1.) Training and testing on the same leg would 

yield the highest accuracy when compared to training and testing on the contralateral leg or 

independent populations; 2.) EMG signals without knee flexion angles do not provide enough 

information to accurately predict future knee flexion angles; 3.) Using only past flexion angles will 
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be able to produce accurate predictions for knee flexion angles during a repetitive gait cycle; and 

4.) The combination of EMG signals and flexion angles will improve the accuracy when compared 

to only using knee flexion angles only. 

 

5.2 Methods 

In this chapter, MATLAB was used to create Nonlinear Input-Output Time Series ANN 

algorithms trained using Bayesian Regularization with a single hidden layer of ten nodes and a 

feedback delay set to two. Input variables for the algorithms included all six EMG channel signals 

(either RMS normalized to mean walking values or raw, not normalized RMS) from a single leg 

and/or the simultaneous knee flexion angle of the same leg that was calculated post hoc with Visual 

3D. As a result, five testing input conditions were created based on the type of training data 

provided to the algorithm: 1.) Not normalized RMS + flexion angle (NNR+FA), 2.) Normalized 

RMS + flexion angle (NR+FA), 3.) Flexion angle (FA) only, 4.) Normalized RMS (NR) only, and 

5.) Not normalized RMS (NNR) only. The target output for the predictive algorithms was the knee 

flexion angle predicted 50 ms into the future. Results of these predictions were compared to results 

from Visual 3D at the corresponding 50 ms into the future. 

Further, all five testing input conditions were tested for three subgroups of subjects: 1.) 

Trained on a single user, single leg and tested on that user’s same leg (ipsilateral); 2.) Trained on 

a single user, single leg and tested on that user’s alternate leg (contralateral); and 3.) Trained on 

nine subjects, both legs and tested on the remaining subject’s two legs (independent population). 

Moreover, ten algorithms were trained for each permutation of testing resulting in 150 predictive 

algorithms total (5 training data types, 3 training subgroups, 10 subjects). Each algorithm 

generated two data points because right and left legs of each subject were used independent of one 
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another. Figure 5.1 provides a breakdown for each testing input condition to how the subgroups 

were formed. RMS error was calculated by comparing the algorithms’ output angle against the 

motion capture-based calculation of the knee flexion angle for each data point of that subject’s five 

testing trials. Means and standard deviations were calculated from the 20 data points in each 

subgroup.  

 

 

Figure 5.1: Breakdown of Testing Data Type into Subgroups 

 

A power analysis was conducted to find the number of subjects required to assess the 

success metric of 2 degrees RMS error given a 0.8 power. The power analysis indicated that 10 

legs were required. By using both right and left legs of the ten subjects, a sufficient sample size 

was obtained. Analysis of variance (ANOVA) was used to test for significant differences in 

resulting RMS error between each test condition (type of training data and the training/testing 

population). The threshold for outcomes to be included in the ANOVA was set at <10 degrees of 
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mean RMS error as larger error values indicate unrealistic utility for a knee exoskeleton control 

system. Following the ANOVA, Tukey Honestly Significant Difference (HSD) post hoc tests were 

used to further evaluate significant differences between conditions for main effects or interactions 

that were significant. The Type I error rate (alpha) was set at 0.05 for all tests.  

 

5.3 Results 

Seven out of the 15 groupings successfully produced results with <10 degrees of RMS 

error (Table 5.1). All of the subgroupings of NR+FA and FA combined for six of the seven while 

zero of the algorithms for NR or NNR were able to predict knee flexion angles with <10 degrees 

RMS error.  

 

Table 5.1: Mean and Standard Deviation Root Mean Squared (RMS) Error in Degrees for 

All Groups 

 

  

Mean RMS 

Error 

(Degrees) 

Standard 

Deviation RMS 

Error (Degrees) 

Not Normalized RMS + Flexion Angle 

(NNR+FA) 

Ipsilateral 0.58 0.39 

Contralateral 36.61 149.88 

Independent Population 321.31 961.94 

Normalized RMS + Flexion Angle 

(NR+FA) 

Ipsilateral 0.50 0.25 

Contralateral 1.16 0.41 

Independent Population 1.69 1.01 

Flexion Angle  

(FA) 

Ipsilateral 1.06 0.35 

Contralateral 1.55 0.53 

Independent Population 2.17 0.91 

Normalized RMS  

(NR) 

Ipsilateral 239.25 111.06 

Contralateral 402.15 81.53 

Independent Population 352.23 106.27 

Not Normalized RMS  

(NNR) 

Ipsilateral 238.15 106.22 

Contralateral 541.45 403.22 

Independent Population 716.39 879.61 
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Table 5.2 shows the individual results for the algorithms trained for NNR+FA. The results 

of this specific test condition were isolated because the results for contralateral and independent 

population exhibited a standard deviation much larger than the mean RMS error, indicating 

outliers. It was found that a small number of algorithms produced large errors, as much as 3,488 

degrees RMS error, while most of the outcomes were close to, if not within, the desired range of 

less than two degrees RMS error. NR+FA is included to highlight improvement of normalization. 

 

Table 5.2: Mean Output Values for Algorithms Trained Not Normalized RMS + Flexion Angle 

(NNR+FA) and Normalized RMS +Flexion Angle (NR+FA) 

Test 

Population 

Not Normalized RMS + Flexion Angle 

(NNR+FA) RMS Error (Degrees) 

Normalized RMS + Flexion Angle 

(NR+FA) RMS Error (Degrees) 

Ipsilateral Contralateral 
Independent 

Population 
Ipsilateral Contralateral 

Independent 

Population 

F01 Left 0.41 1.03 1.22 0.45 0.57 0.66 

F01 Right 0.43 0.87 1.47 0.43 0.81 0.83 

F02 Left 0.48 3.01 1.58 0.62 1.26 1.58 

F02 Right 0.42 1.61 2.04 0.37 1.21 1.84 

F03 Left 0.81 1.09 2.48 0.71 0.95 1.48 

F03 Right 0.48 1.08 2.96 0.48 0.67 1.99 

F04 Left 1.75 1.75 2.92 0.50 1.70 1.83 

F04 Right 0.4 1.97 2.12 0.40 1.48 1.29 

F05 Left 0.37 1.49 1.12 0.32 1.23 0.85 

F05 Right 0.37 0.69 1.29 0.36 0.51 0.81 

M01 Left 0.31 24.29 2.65 0.35 1.81 0.96 

M01 Right 1.01 673.09 3.16 0.46 1.56 1.56 

M02 Left 1.2 8.06 3488.27 1.16 1.49 2.42 

M02 Right 1.06 2.26 2898.84 1.15 1.55 3.06 

M03 Left 0.29 1.42 4.72 0.27 1.76 5.32 

M03 Right 0.36 3.89 1.61 0.35 0.80 1.77 

M04 Left 0.41 1.16 1.88 0.48 0.83 1.30 

M04 Right 0.39 0.47 1.82 0.38 0.70 1.18 

M05 Left 0.33 2.17 2.29 0.38 0.98 1.57 

M05 Right 0.28 0.86 1.78 0.29 1.22 1.52 
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Figure 5.2 shows a box and whisker plot comparing mean RMS Error for all of the test 

conditions with mean error <10 degrees. ANOVA results indicated significance between the seven 

groupings (p <0.0001). Figure 5.3 and Table 5.3 shows results of the Tukey HSD post hoc tests 

and demonstrate groups that are significantly different from one another by whether or not the 

vertical bounds lines overlap. 

 

 

Figure 5.2: Box and Whisker Plot of Degrees of Root Mean Squared (RMS) Error for Groups with 

<10 Degrees RMS Error 
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Figure 5.3: Tukey Honestly Significant Difference (HSD) Comparison Test for Groups with <10 

Degrees Root Mean Squared (RMS) Error. Groups that do not overlap are significantly different 

from each other (indicated with the dotted lines). 
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Table 5.3: Tukey Honestly Significant Difference (HSD) Comparison Test for Groups with <10 

Degrees Root Mean Squared (RMS) Error. Emboldened indicates significance (p<0.05) 

First Group 
Second 
Group 

Lower 
Limit 95% 

Confidence 
Interval 

Difference 
in Mean 

(deg) 

Upper 
Limit 95% 

Confidence 
Interval 

p-Value 

NNR+FA (Ips) NR+FA (Ips) -0.4987 0.0832 0.6650 0.9996 

NNR+FA (Ips) FA (Ips) -1.0609 -0.4791 0.1028 0.1870 

NNR+FA (Ips) NR+FA (Con) -1.1587 -0.5768 0.0050 0.0538 

NNR+FA (Ips) FA (Con) -1.5569 -0.9751 -0.3932 0.0000 

NNR+FA (Ips) NR+FA (Ind) -1.6944 -1.1125 -0.5307 0.0000 

NNR+FA (Ips) FA (Ind) -2.1729 -1.5911 -1.0092 0.0000 

NR+FA (Ips) FA (Ips) -1.1441 -0.5623 0.0196 0.0661 

NR+FA (Ips) NR+FA (Con) -1.2419 -0.6600 -0.0781 0.0145 

NR+FA (Ips) FA (Con) -1.6401 -1.0583 -0.4764 0.0000 

NR+FA (Ips) NR+FA (Ind) -1.7776 -1.1957 -0.6138 0.0000 

NR+FA (Ips) FA (Ind) -2.2561 -1.6743 -1.0924 0.0000 

FA (Ips) NR+FA (Con) -0.6796 -0.0977 0.4841 0.9989 

FA (Ips) FA (Con) -1.0779 -0.4960 0.0859 0.1543 

FA (Ips) NR+FA (Ind) -1.2153 -0.6334 -0.0516 0.0226 

FA (Ips) FA (Ind) -1.6939 -1.1120 -0.5301 0.0000 

NR+FA (Con) FA (Con) -0.9801 -0.3983 0.1836 0.4030 

NR+FA (Con) NR+FA (Ind) -1.1176 -0.5357 0.0461 0.0946 

NR+FA (Con) FA (Ind) -1.5961 -1.0143 -0.4324 0.0000 

FA (Con) NR+FA (Ind) -0.7193 -0.1374 0.4444 0.9928 

FA (Con) FA (Ind) -1.1978 -0.6160 -0.0341 0.0298 

NR+FA (Ind) FA (Ind) -1.0604 -0.4785 0.1033 0.1880 

 

 

 

5.4 Discussion 

This study investigated the accuracy of an ANN built from various training sources and 

designed to predict future knee flexion angles using combinations of EMG and current knee 

flexion angles. For all of the scenarios tested, six subgroupings were able to predict knee flexion 

angles under the target goal of two degrees of error (Table 5.1). Three of these six successful 

algorithms were trained using contralateral or independent population subgroup conditions. This 

suggests that it may be possible to build a predictive control algorithm that would work for an 
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exoskeleton user outside of this study, thus removing the need to develop an individual algorithm 

for each user.  

In a practical sense, the contralateral subgroup may be considered representative of a user 

who lost the full ability of a single leg. The findings of this study suggest that a control algorithm 

trained using data from the other, healthy leg sufficiently simulates knee flexion necessary to allow 

an exoskeleton to operate on the impaired leg to increase maneuverability. The independent 

population subgroup may be considered representative of a generalized algorithm that could be 

used for any new user. More development would be required for a true generalized algorithm to 

be created; however, the results indicate promise in such an approach. 

Consistent with the first hypothesis, training and testing performed on the same leg was 

the best performing scenario for every data type (Table 5.1). The ANN algorithms were able to 

discern the movement patterns of each individual user and associate muscle activation to those 

patterns. However, as per hypothesis 2, EMG alone, whether normalized or not normalized, was 

unable to produce errors within the acceptable range. This is likely because muscle activation 

alone, even during a cyclic action like walking, does not provide enough information to allow for 

an accurate prediction of joint angles. For example, muscles can theoretically produce similar 

activation levels throughout the entire range of knee flexion angles. Additionally, the angles 

outputted by the ANN were not limited to the physical bounds of the knee (e.g. 0-140° of flexion), 

and in every NR and NNR case, the error greatly exceeded angles that would be safe for human 

knees. However, by allowing the algorithm to exceed anatomical limits, an accurate assessment of 

the performance was achieved. If simulated stops were put in place at the bounds, the algorithms 

may have artificially inflated performance numbers as the bounds could be closer to the measured 

value than the predicted value.  
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Regarding the third hypothesis, flexion angle-only based algorithms trained for the 

ipsilateral or contralateral case generated predictions with less than 2 degrees of RMS error. 

However, for an independent population, RMS errors were calculated at just over 2 degrees (Table 

5.1). With the introduction of “not normalized” EMG signals, however, NNR+FA algorithms were 

shown to be unsuccessful, on average, for contralateral and independent population conditions 

based on both the two-degree and ten-degree metrics of error (Table 5.1). The NNR+FA condition 

did work on average when the training and testing was performed on the same leg, which is in line 

with previous studies using EMG to predict joint angles for various joints of the arm [56] [58]. 

Testing on the contralateral and on independent population conditions resulted in 10% of 

algorithms (both legs for M01 contralateral and both legs for M02 independent population) 

producing RMS errors so large that the group averages exceeded 10 degrees (Table 5.2). Despite 

the outliers, the NNR+FA algorithms trained on the independent population showed that nine out 

of the twenty legs tested were under the two-degree success metric and that 18 were under the ten-

degree success metric (Table 5.2). EMG normalization (NR+FA) drastically improved the results, 

with 17 of the legs under the two-degree metric, all 20 legs under the ten-degree metric, and a max 

error of 5.3 degrees (Figure 5.2). It is noteworthy that it was especially challenging for researchers 

to locate lower-limb musculature for subjects M01 and M02 due to higher BMI and less muscular 

definition. Therefore, sensor placement error likely contributed to increased errors among these 

particular subjects during not normalized conditions. Nonetheless, these large errors were reduced 

greatly following EMG normalization (Table 5.2), providing additional support to the value of 

normalization with this technique. 

The Tukey HSD Comparison Test showed 10 overlaps between the tested groups, meaning 

that 11 from the possible 21 interactions produced statistically significant differences from one 
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another (Figure 5.3). Ideally, the results would show that algorithms tested on an independent 

population would not be significantly different from results of the ipsilateral condition because it 

would suggest that the two sources of training data might be able to be used interchangeably. 

However, although statistically significant, the differences were small (<0.5° for NR+FA) and may 

not be practically significant. It is not yet clear if differences of this magnitude would be 

problematic or if indeed an independent population may be used to train the predictive algorithm 

used in exoskeleton control since the error still remains quite small.  

Although the fourth hypothesis, stating NR+FA would produce algorithms being more 

accurate than only FA, was not statistically significant for any case, it is possible that an increase 

in accuracy of ~0.5° for every case could indicate a noticeable increase in synchronization and 

comfort for the user (Table 5.3). More testing should be completed to fully assess the practical 

benefits to the user when adding normalized EMG signals.  

This study was subject to a number of limitations. For example, the tested action, walking 

gait, is cyclical and largely universal between subjects. The cyclic nature likely contributed heavily 

to the predictive ability of the algorithms. It is believed that by testing similar algorithms trained 

on more complicated movements, such as initiation and conclusion of gait or dynamic lateral turns, 

errors will increase. As such, this style of training and testing should be expanded to actions less 

repeatable as the algorithms will then lose the ability to rely heavily on past knee flexion angles 

and will have to rely more heavily on EMG to predict future joint angles. Less repeatable actions 

would also provide more information as to ipsilateral, contralateral, and independent population 

algorithms ability to succeed for real world use. 

Another limitation of this study was that all testing was completed theoretically rather than 

empirically with a user wearing an actual exoskeleton. It is likely that users would change their 
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muscle firing patterns or walking gait patterns to adapt to delays or tendencies of a worn 

exoskeleton. The perceived size and weight added by the exoskeleton could also cause the user to 

alter gait characteristics in unanticipated ways. Exoskeletons that are assistive or rehabilitative can 

change muscle firing signals based on the level of assistance, with zero muscle activation meaning 

full assistance [3]. This limitation can be countered in future studies by providing training muscle 

signals with the user donning the exoskeleton.  

A final limitation to this study is the small sample size and the narrow range of 

demographic characteristics of the subjects. Future work with a greater number of subjects with 

wider demographics would provide a deeper understanding of the utility of ANN algorithms to 

predict future knee joint angles in a population at large.  

 

5.5 Conclusion 

This study demonstrated the feasibility of employing an EMG and knee flexion angle-

based ANN to accurately predict the knee flexion angle for a population independent of the 

algorithm’s training population 50 ms into the future and within two degrees of error. It was found 

that a simple mean walking EMG normalization greatly increases the chance of success to make 

accurate knee flexion predictions for an independent population. It was also found that EMG alone 

is not a sufficient input for training a predictive algorithm, while flexion angle alone could be for 

cyclic movements such as walking. The results of this work will inform future investigations with 

the aim of training an algorithm with an independent population to be used to pair a user to an 

exoskeleton.  
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Chapter 6 

Conclusions and Future Work 

 

 

Various methods of controlling exoskeletons have been pursued and are evidenced 

throughout the literature [2] [3] [5] [7] [13] [15]. The use of EMG poses many challenges that, if 

overcome, could potentially produce an exoskeleton that is able to synchronize with user intent. 

The work presented in this thesis provides a step towards a fully capable exoskeleton. 

Understanding that predictions can be made as far as ~100 ms into the future and that a population 

independent of the population used to generate control algorithms for exoskeleton users may 

benefit impaired populations, industry workers, and even military soldiers. The improvement 

include quicker response time of the exoskeleton, shortened or eliminated calibration trials, and 

better accuracy of angle prediction than current exoskeleton designs. 

 There are many avenues for future work in this area. The first and foremost opportunity 

should be focused on expanding the testing cohort. Incorporation of more subjects, actions, or 

sensors could continue to expand knowledge in this area. Chapter 5 illustrated that algorithms 

trained strictly from past motion data could perform a repetitive task such as gait with high levels 

of accuracy. The inclusion of EMG improved upon those results as it tailored the gait to the 

individuals based on muscle firing patterns better than kinematic information alone. EMG results 

are anticipated to have an even larger impact for motions that are non-repetitive or non-
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symmetrical. Actions that involve altering speeds or directions could use EMG as the main 

predictor to the upcoming change.  

 Additional control methods should also be pursued. It should be determined whether or not 

a single regression algorithm is enough for predicting multiple actions. By incorporating additional 

actions into a study design, a better framework for the controls algorithm could be developed. 

Testing should be completed to see if there is enough processing time or power to run a multilayer 

algorithm that combines both classification of the action and a regression of that chosen movement. 

In this scenario, a user could begin to lean forward from a stand, and the exoskeleton would classify 

that the user is initiating gait and then would utilize muscular activation to determine which foot 

is the intended lead foot. This method would be ideal over a predetermined path after classification. 

Future work should also focus on implementing the control algorithms in real time. An 

exoskeleton knee brace could be built to measure the effects through a serious of stages. First, by 

simultaneously measuring joint angles of a subject and an exoskeleton through motion capture, 

testing could be completed such that the exoskeleton could be tested against varying loads without 

the subject ever donning one. Once a full understanding of the accuracies and delays have been 

achieved, then metabolic testing should ensue with the subjects operating an exoskeleton. 

Finally, future work should involve expanding to more than a single joint. Much of the 

human body moves synchronously and these outside motions could add increased resilience to a 

predictive algorithm. Testing should be completed to see if adding the hip, ankle, or contralateral 

leg joints or muscles into the algorithms would produce greater accuracies in predictions. It could 

be possible to design a regression algorithm with more than one joint output.  

If some of the proposed future work is explored, then this thesis stands to have lain the 

groundwork for improvements in the understanding of exoskeleton technology and its control.  
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