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Abstract

Chemotherapy is a fundamental and commonly used form of cancer treatment, usually

done with the application of a chemotherapy agent to the infected individual. The chemother-

apy agent targets fast-growing cells including cancer cells as well as other fast-growing normal

cells such as those of the skin, hair and bone marrow, and hence may cause severe side ef-

fects to the body of the patient. To better understand the trade-offs between reducing cancer

cells and impacting normal cells, mathematical models have been used extensively to study the

effectiveness of chemotherapy treatments. In particular, Pinho et al. proposed an autonomous

dynamical system with time delays which modeled the interaction between the normal cells and

cancer cells with metastasis and used to study the effect of the metastasis. Based on the idea of

Pinho’s work, a nonautonomous dynamical system that models the interactions among cancer

cells, normal cells and the chemotherapy agent under time varying environmental conditions

was developed and studied by Xiaoying Han in 2017.

It is well justified in the existing literature that time delays often exist in chemotherapy

treatments, yet the effect of delays is not fully understood. For example, Pihno et al. conjec-

tured that time delays are critical for the global stability of the tumor-free equilibrium but did

not provide further evidence. To the best of our knowledge there are no solid results elaborat-

ing how time delays affect dynamics of chemotherapy models. The goal of this dissertation

is to investigate both analytically and numerically the effects of time delays and time-varying

environmental conditions on the stability of steady states of chemotherapy models.

To this end two mathematical models of chemotherapy cancer treatment are studied and

compared, one modeling the chemotherapy agent as the predator and the other modeling the

chemotherapy agent as the prey. In both models constant delay parameters are introduced to

incorporate the time lapsed from the instant the chemotherapy agent is injected to the moment

it starts to be effective. For each model, the existence and uniqueness of non-negative bounded

solutions are first established. Then both local and Lyapunov stability for all steady states are
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investigated. In particular, sufficient conditions dependent on the delay parameters under which

each steady state is asymptotically stable are constructed. Numerical simulations are presented

to illustrate the theoretical results.

Furthermore, another nonautonomous mathematical model of chemotherapy cancer treat-

ment with time-dependent infusion concentration of the chemotherapy agent is developed and

studied. In particular, a mutual inhibition type model is adopted to describe the interactions

between the chemotherapy agent and cells, in which the chemotherapy agent is modeled as the

prey being consumed by both cancer and normal cells, thereby reducing the population of both.

Properties of solutions and detailed dynamics of the nonautonomous system are investigated,

and conditions under which the treatment is successful or unsuccessful are established. It can

be shown both theoretically and numerically that with the same amount of chemotherapy agent

infused during the same period of time, a treatment with variable infusion may over perform a

treatment with constant infusion.
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Chapter 1

Introduction

Cancer is still one of the leading causes of death worldwide (see, e.g., [3, 6, 22]). Conventional

methods used in cancer treatment include chemotherapy, immunotherapy, radiotherapy and

surgery, etc. Chemotherapy is a well-known and commonly used method of cancer treatment,

that involves the application of a chemotherapy agent to the body of the infected individual

thereby attacking the cancerous cells. While being easily applicable, most of the chemotherapy

agents attack not only the cancer cells but also other fast-renewing tissues such as skin, bone-

marrow, gut, and other digestive epithelia (see, e.g., [1, 11, 26, 29]). This motivates both

theoretical and experimental studies to better understand the trade-offs between reducing cancer

cells and impacting healthy cells.

In particular, mathematical models have been used extensively to study the effectiveness

of chemotherapy treatments, from dynamical point of view, optimization point of view, and

compartmental point of view (see, e.g., [1, 2, 7, 12, 17, 20, 23, 24, 25, 26, 31]). Since the

chemotherapy agents and cells have negative effects on each others’ growth rates, their in-

teractions are of the mutual inhibition type [30]. In the context of chemotherapy treatments,

such interactions can be understood as a “predator-prey” type relation that the “predator” has a

negative growth rate by consuming the “prey”, as if the prey is poisoned. Thus, among various

mathematical models, the predator-prey type of systems with mutual negative effects have been

adopted to describe the interaction between the chemotherapy agent and cells. There are two

perspectives in modeling the chemotherapy treatment as a predator-prey system: the first type

is to model the chemotherapy agent as the “predator” that kills both normal and cancer cells

(see, e.g., [17, 26]), and the second type is to model the chemotherapy agent as the “prey” that

is consumed by both normal and cancer cells (see, e.g., [1, 30]).
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For the first type where the chemotherapy agent is considered as the predator, an au-

tonomous model of the interaction between the normal cells and tumor cells with metastasis

and time delays was studied in [26], and a nonautonomous model of interactions among tumor

cells, normal cells and the chemotherapy agent under time varying environmental conditions

was later developed and studied in [17]. It was demonstrated in [17] that treatments with

time-dependent infusion of the chemotherapy agent can be more effective than treatments with

constant infusion. Furthermore, it is well justified in the existing literature that time delays

often exist in chemotherapy treatments (see, e.g., [5], [20], [26], [27], [28]), yet the effect of

delays is not fully understood. For example, in [26] Pihno et al. conjectured that time delays

are critical for the global stability of the tumor-free equilibrium but did not provide further

evidence. To the best of our knowledge there are no solid results elaborating how time delays

affect dynamics of chemotherapy models.

In this dissertation, we investigate both analytically and numerically the effect of time

delays on stability of steady states of chemotherapy models. Moreover, we investigate detailed

dynamics of both autonomous and nonautonomous chemotherapy models of the second type,

in which the chemotherapy agent is modeled as a prey, and infused into the treatment site with

or without time-dependent infusion.
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Chapter 2

Effects of Delays in Mathematical Models of Cancer Chemotherapy

In this chapter, we formulate and study in great details two chemotherapy models governed

by systems of delay differential equations. For each model, we first establish the existence and

uniqueness of nonnegative bounded solutions and classify all steady states. Then we investigate

both the local and global stability of every steady states. In particular, we construct sufficient

conditions dependent on the time delays under which the chemotherapy treatment is successful

or failed.

2.1 Model formulation

Predator-prey models have been used to model interactions between cells and the chemotherapy

agent. In particular, there are two perspectives: (1) modeling the chemotherapy agent as the

“predator” that kills both normal and cancer cells (see, e.g., [17], [26]), and (2) modeling the

chemotherapy agent as the “prey” that is consumed by both normal and cancer cells (see, e.g.,

[1], [30]). Both types of models will be studied and compared in this chapter.

The quantities of interest in all models are the concentration of the cancer cells, normal

cells, and the chemotherapy agent, at a single tumor site for treatment in the body. Let x(t) be

the concentration of the cancer cells, y(t) be the concentration of the normal cells, and z(t) be

the concentration of the chemotherapy agent, for any time t ≥ 0 at the treatment site. The site

is assumed to be spatially uniform, i.e., the concentrations are the same everywhere within the

tumor site.

In all models to be studied, both cancer and normal cells are assumed to follow logistic

growth (see, e.g., [1], [10], [17], [21], [26]), with per capita growth rates of β1 and β2, respec-

tively, and environmental carrying capacities κ1 and κ2, respectively. Intraspecific competitions

3



between the cancer and normal cells are also included (see, e.g., [9]), with competition coeffi-

cients δ1 and δ2, respectively. The chemotherapy agent is assumed to be injected and flushed

out by a constant rate D, and the infusion concentration of the chemotherapy agent is assumed

to be a constant I .

Throughout this chapter the interaction between cells and the chemotherapy agent will

be modeled by an uptake function (or response function, or consumption function). Basic

assumptions on a general uptake function U : [0,∞)→ [0,∞) include [32]

1. U(0) = 0, U(x) > 0 for x > 0;

2. limx→∞ U(x) = LU <∞;

3. U is continuously differentiable;

4. U is monotone increasing.

2.1.1 Chemotherapy agent as the predator

Let U1(x(t)) and U2(y(t)) be the uptake functions describing how the agent consumes the

cancer and the normal cells, respectively. Let α1 and α2 be the maximal consumption rate of the

cancer and normal cells, respectively. Then U1(x(t))z(t) represents the cancer concentration

consumed by the chemotherapy agent z at the rate α1 and thus the cancer concentration is

reduced by α1U1(x(t))z(t) at any time t. Similarly the normal cell concentration is reduced by

α2U2(y(t))z(t) as a consumption by z at any time t.

The consumption of cancer and normal cells causes a loss, or a negative growth of z.

Let γ1 and γ2 represent the effectiveness of the consumption of the cancer and normal cells,

respectively. Then the chemotherapy agent z is reducing at the rate γ1α1U1(x(t))z(t) due to

the consumption of cancer cells and at the rate γ2α2U1(x(t))z(t) due to the consumption of

normal cells. The dynamics of the chemotherapy treatment can be described by the following
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system of ordinary differential equations (ODEs):

(ODE− I)



dx
dt

= −α1z(t)U1(x(t)) + β1x(t)(1− x(t)
κ1

)− δ1x(t)y(t),

dy
dt

= −α2z(t)U2(y(t)) + β2y(t)(1− y(t)
κ2

)− δ2x(t)y(t),

dz
dt

= DI −Dz(t)− γ1α1z(t)U1(x(t))− γ2α2z(t)U2(y(t)).

When the effect of the chemotherapy treatment is not instantaneous, time delays of lengths

τ1 and τ2 can be introduced to represent the time lapsed from the injection of the chemother-

apy till the concentration of cancer and normal cells start to decrease, respectively. Cor-

respondingly, the terms describing the negative effect of chemotherapy agent on the cells

−α1z(t)U1(x(t)) and −α2z(t)U2(y(t)) are modified to −α1z(t − τ1)U1(x(t)) and −α2z(t −

τ2)U2(y(t)), respectively. The above ODE model then becomes the following system of delay

differential equations (DDEs):

(DDE− I)



dx
dt

= −α1z(t− τ1)U1(x(t)) + β1x(t)(1− x(t)
κ1

)− δ1x(t)y(t),

dy
dt

= −α2z(t− τ2)U2(y(t)) + β2y(t)(1− y(t)
κ2

)− δ2x(t)y(t),

dz
dt

= DI −Dz(t)− γ1α1z(t)U1(x(t))− γ2α2z(t)U2(y(t)).

Throughout this paper when explicit calculations are needed it is assumed that the uptake

functions U1 and U2 takes the Michaelis-Menten or Holling type-II form given by

U1(x) =
x

θ1 + x
, U2(y) =

y

θ2 + y
,

where θ1 > 0 and θ2 > 0 are the half saturation constants (see, e.g., [30]) for the cancer cells

and the normal cells, respectively.
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2.1.2 Chemotherapy agent as the prey

When the chemotherapy agent is modeled as the prey and time delays are taken into account,

we adopt the DDE model proposed in [1]:

(DDE− II)



dx
dt

= −α̂1x(t)U3(z(t− τ1)) + β1x(t)(1− x(t)
κ1

)− δ1x(t)y(t),

dy
dt

= −α̂2y(t)U3(z(t− τ2)) + β2y(t)(1− y(t)
κ2

)− δ2x(t)y(t),

dz
dt

= DI −Dz(t)− γ1α̂1x(t)U3(z(t))− γ2α̂2y(t)U3(z(t)),

where β1, β2, δ1, δ2, γ1,γ2, τ1 and τ2 still have the same meanings as in system (DDE-I). Here

U3(·) is the uptake function describing how the chemotherapy agent is consumed by the cells,

and is also assumed to take the Michaelis-Menten or Holling type-II form given by

U3(z) =
z

θ3 + z
,

where θ3 > 0 is the half saturation constant of the chemotherapy agent. The parameters α̂1

and α̂2 now represent the maximal consumption of the chemotherapy agent by the cancer and

normal cells, respectively. For the reader’s convenience, parameters in both models are sum-

marized in the table below.

Table 2.1: Description of parameters in the chemotherapy models

Parameter Description

D Injection rate of the chemotherapy agent

I Injection concentration of the chemotherapy agent

δj (j = 1, 2) Intraspecific competition coefficient for cancer/normal cells

βj (j = 1, 2) Per capita growth rate of cancer/normal cells

κj (j = 1, 2) Environmental carrying capacity of cancer/normal cells

γj (j = 1, 2) Effectiveness of consumption of cancer/normal cells

αj (j = 1, 2) Maximal consumption rate of cancer/normal cells by the agent

α̂j (j = 1, 2) Maximal consumption rate of the agent by cancer/normal cells

τj (j = 1, 2) Time elapsed from the injection of the agent to the instants
when cancer/normal cells start to decay (due to the treatment)
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2.2 Basic properties of solutions

Assume that the DDE systems (DDE-I) and (DDE-II) are both subjective to the initial condi-

tions:

(IC)



x(t) = x0(t) ≡ x0 > 0, for− τ ≤ t ≤ 0,

y(t) = y0(t) ≡ y0 > 0 for− τ ≤ t ≤ 0,

z(t) = φ(t) ≥ 0, for− τ ≤ t ≤ 0.

where

τ := max{τ1, τ2} > 0

and φ is a continuous and nonnegative function on [−τ, 0].

In this section we first show that both of the DDE systems (DDE-I) and (DDE-II) are biolog-

ically meaningful. To this end we prove that each of the systems has a unique global solution

which is non-negative and bounded. We then calculate the steady states of each system to be

further studied in later sections.

Throughout the rest of this paper, for n ≥ 1 denote

Rn
+ := {(x1, . . . , xn) ∈ Rn : x1, . . . , xn ≥ 0} .

And for simplicity write

Φ(s) = (x0(s), y0(s), φ(s)) for s ∈ [−τ, 0].

Theorem 2.1 Let φ : [−τ, 0] → R1
+ be continuous. Then the DDE systems (DDE-I) and

(DDE-II) under the initial condition (IC) each has a unique non-negative bounded global

solution.

Proof: The existence and uniqueness of a global non-negative bounded solution to the sys-

tem (DDE-II) was proved in [1], and the existence and uniqueness of a global non-negative

bounded solution to the system (DDE-I) can be proved by using the same computations. For

completeness we still present it below.
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First since functions on the right hand side of (DDE-I) are continuous and differentiable

with respect to (x(t), y(t), z(t)), then by standard theory of delay ODEs (see, e.g., [14, 15, 16])

the system (DDE-I) has a unique local solution (x(t; Φ), y(t; Φ), z(t; Φ)) := u(t; Φ) on [−τ, T ]

for some T > 0. Noticing that x′(t)|x=0 = 0, y′(t)|y=0 = 0 and z′(t)|z=0 = DI > 0, thus by

continuity and uniqueness of solutions u(t; Φ) ∈ C1([−τ, T ],R3
+). We next show that the local

solution u(t; Φ) is actually global.

In fact, since u(t; Φ) is non-negative on [−τ, T ],

dx

dt
≤ β1x

(
1− x

κ1

)
, and

dy

dt
≤ β2y

(
1− y

κ2

)
,

and by standard comparison theory, we get

0 ≤ x(t) ≤ max{x0, κ1}, 0 ≤ y(t) ≤ max{y0, κ2}, ∀t ∈ [−τ, T ]. (2.1)

Also, using the fact that x, y ≥ 0 and Uj ≥ 0, j = 1, 2, we get

dz

dt
≤ DI −Dz(t),

which implies that

0 ≤ z(t) ≤ max{φ̄, I} ∀ t ∈ [−τ, T ] where φ̄ = max
s∈[−τ,0]

φ(s). (2.2)

The inequalities 2.1 and 2.2 together show that the solution of system (DDE-I) is non-negative

and bounded for every t ≥ 0, since the upper bounds for x, y, z are independent of t. This

implies that system (DDE-I) has a unique bounded and non-negative global solution given any

non-negative initial condition. End of the proof.

There are four classes of steady state solutions to the DDE systems (DDE-I) and (DDE-

II), namely: (i) the axial steady state Ea = (0, 0, I); (ii) the success steady state Es =

(0, y∗, z∗); (iii) the failure steady state Ef = (x∗, 0, z∗); and (iv) the persistent steady state

Ep = (x∗, y∗, z∗), with x∗, y∗, z∗ > 0. Our focus of this paper is to study stabilities of the
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axial, success and failure steady states of each system (DDE-I) and (DDE-II). Same set of

techniques can also be employed to study stabilities of the persistent state with more complex

computations.

Lemma 2.2 The system (DDE-I) has one positive success steady state provided α2I < β2θ2;

and has two positive success steady states provided

0 <
α2I

β2
− [Dθ2 − κ2(D + γ2α2)]

2

4κ2D(D + γ2α2)
< θ2 < min

{
α2I

β2
,
κ2
D

(D + γ2α2)

}
. (2.3)

The system (DDE-I) has one positive failure steady state provided α1I < θ1β1; and has two

positive success steady states provided

0 <
α1I

β1
− [Dθ1 − κ1(D + γ1α1)]

2

4κ1D(D + γ1α1)
< θ1 < min

{
α1I

β1
,
κ1
D

(D + γ1α1)

}
. (2.4)

Proof: Success steady states for system (DDE-I) are positive solutions to the algebraic system


−κ2α2z∗

θ2+y∗
+ β2(κ2 − y∗) = 0

DI −Dz∗ − α2γ2
z∗y∗

θ2+y∗
= 0

(2.5)

which can be reduced to the quadratic equation

(D + α2γ2)y
∗2 + [Dθ2 − κ2(D + α2γ2)]y

∗ + κ2D(β−12 α2I − θ2) = 0.

The above equation has one unique positive solution when α2I − θ2β2 < 0, and has two

distinctive positive solutions when 2.3 is satisfied.

Similarly, failure steady states for system (DDE-I) are positive solutions to the algebraic

system 
−κ1α1z∗

θ1+x∗
+ β1(κ1 − x∗) = 0

κ1D(β−11 α1I − θ1) = 0

(2.6)
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which can be reduced to the quadratic equation

(D + α1γ1)x
∗2 + [Dθ1 − κ1(D + α1γ1)]x

∗ + κ1D(β−11 α1I − θ1) = 0

that has one unique positive solution when α1I − θ1β1 < 0, and has two distinctive positive

solutions when 2.4 is satisfied. End of the proof.

Lemma 2.3 The system (DDE-II) has at least one success and one failure steady states.

Proof: More precisely, a preferred state satisfies


−α2κ2U(z∗) + β2(κ2 − y∗) = 0

DI −Dz∗ − α2γ2y
∗U(z∗) = 0

(2.7)

and a failure state satisfies 
−α1κ1U(z∗) + β1(κ1 − x∗) = 0

DI −Dz∗ − α1γ1x
∗U(z∗) = 0

. (2.8)

Notice that equations 2.7 are equivalent to

y∗ = κ2

(
1− α2

β2
U(z∗)

)

with z∗ satisfying the cubic equation

(z∗)3 + a1(z
∗)2 + a2z

∗ + a3 = 0

where

a1 = 2θ + α2
κ2γ2
D
− α2

2

γ2κ2
β2D

− I, a2 = θ2 − 2θI + αθ
κ2γ2
D

, a3 = −θ2I,

and hence have at least one positive solution since a3 < 0. Similarly, equations 2.8 also have at

least one positive solution. This complete the proof.
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2.3 Stability analysis

In this section we investigate the stability of steady states for systems (DDE-I) and (DDE-II),

respectively. In particular, we discuss the local stability as well as Lyapunov stability for each

steady state of systems (DDE-I) and (DDE-II).

Throughout this section, denote by u(t) = (x(t), y(t), z(t)) the state variable and u∗ =

(x∗, y∗, z∗) a generic steady state.

2.3.1 Local stability

To investigate the local stability of (DDE-I), we linearize the system about u = u∗ to obtain

du

dt
= Pu(t) +Qu(t− τ1) +Ru(t− τ2),

where

P =


P1 −δ1x∗ 0

−δ2y∗ P2 0

−γ1α1θ1z∗

(θ1+x∗)2
−γ2α2θ2z∗

(θ2+x∗)2
P3

 , Q =


0 0 − α1x∗

θ1+x∗

0 0 0

0 0 0

 , R =


0 0 0

0 0 − α2y∗

θ2+y∗

0 0 0

 ,

with

P1 = −α1
θ1z
∗

(θ1 + x∗)2
+ β1

(
1− 2x∗

κ1

)
− δ1y∗,

P2 = −α2
θ2z
∗

(θ2 + x∗)2
+ β2

(
1− 2y∗

κ2

)
− δ2x∗,

P3 = −D − γ1α1
x∗

θ1 + x∗
− γ2α2

y∗

θ2 + y∗
.

Theorem 2.4 For the system (DDE-I)

(a) the axial steady state Ea = (0, 0, I) is locally asymptotically stable provided

β1 <
α1I

θ1
and β2 <

α2I

θ2
; (2.9)
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(b) a success steady state Es = (0, y∗, z∗) is locally asymptotically stable provided

β1 <
α1z

∗

θ1
+ δ1y

∗ (2.10)

κ2 ≤ 2y∗; (2.11)

(c) a failure steady state Ef = (x∗, 0, z∗) is locally asymptotically stable provided

β2 <
α2z

∗

θ2
+ δ2x

∗ (2.12)

κ1 ≤ 2x∗; (2.13)

Proof: The characteristic equation reads

det[λI − P − e−λτ1Q− e−λτ2R] = 0. (2.14)

(a) When x∗ = y∗ = 0 and z∗ = I , equation 2.14 becomes

(
λ− β1 +

α1I

θ1

)
·
(
λ− β2 +

α2I

θ2

)
· (λ+D) = 0,

which can be solved explicitly to obtain

λ = β1 −
α1I

θ1
, λ = β2 −

α2I

θ2
, λ = −D.

All the above eigenvalues are negative under the assumption 2.9, and thus Ea = (0, 0, I) is

asymptotically stable.

(b) When x∗ = 0 equation 2.14 becomes

∣∣∣∣∣∣∣∣∣∣
λ− β1 + α1z∗

θ1
+ δ1y

∗ 0 0

δ2y
∗ λ− β2(1− 2y∗

κ2
) + α2θ2z∗

(θ2+y∗)2
α2y∗

θ2+y∗
e−λτ2

α1γ1z∗

θ1

α2γ2θ2z∗

(θ2+y∗)2
λ+D + α2γ2y∗

θ2+y∗

∣∣∣∣∣∣∣∣∣∣
= 0
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where y∗ and z∗ satisfies the equations in 2.5. The above equation is equivalent to

λ− β1 +
α1z

∗

θ1
+ δ1y

∗ = 0 and p(λ) + qe−λτ2 = 0,

where

p(λ) =
(
λ− β2(1−

2y∗

κ2
) +

α2θ2z
∗

(θ2 + y∗)2

)
·
(
λ+D +

α2γ2y
∗

θ2 + y∗

)
,

q =
−α2

2γ2θ2y
∗z∗

(θ2 + y∗)3
.

First observe that when 2.10 holds, one of the eigenvalues

λ = β1 −
α1z

∗

θ1
− δ1y∗ < 0.

Also, under the assumption 2.11, the roots of the polynomial p(λ) satisfy

λ1 = β2(1−
2y∗

κ2
)− α2θ2z

∗

(θ2 + y∗)2
< 0, λ2 = −D − α2γ2y

∗

θ2 + y∗
< 0.

Moreover when the assumption 2.11 holds, we have

|p(0)| =
∣∣∣ α2θ2z

∗

(θ2 + y∗)2
− β2(1−

2y∗

κ2
)
∣∣∣ · ∣∣∣D +

α2γ2y
∗

θ2 + y∗

∣∣∣
>

α2θ2z
∗

(θ2 + y∗)2
· α2γ2y

∗

θ2 + y∗
= |q|.

It then follows from Corollary 4.10 of [16] that all roots of equation 2.14 have negative real

parts, and hence Es = (0, y∗, z∗) is asymptotically stable.

(c) When y∗ = 0 equation 2.14 becomes

∣∣∣∣∣∣∣∣∣∣
λ− α1θ1z∗

(θ1+x∗)2
+ β1(1− 2x∗

κ1
) δ1x

∗ α1x∗

θ1+x∗
e−λτ1

0 λ− β2 + α2z∗

θ2
+ δ2x

∗ 0

α1γ1θ1z∗

(θ1+x∗)2
α2γ2θ2z∗

(θ1+x∗)2
λ+D + α1γ1x∗

θ1+x∗

∣∣∣∣∣∣∣∣∣∣
= 0
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where x∗ and z∗ satisfies the equations in 2.6. The above equation is equivalent to

λ− β2 +
α2z

∗

θ2
+ δ2x

∗ = 0 and p(λ) + qe−λτ1 = 0,

where

p(λ) =
(
λ− β1(1−

2x∗

κ1
) +

α1θ1z
∗

(θ1 + x∗)2

)
·
(
λ+D +

α1γ1x
∗

θ1 + x∗

)
,

q =
−α2

1γ1θ1x
∗z∗

(θ1 + x∗)3
.

First observe that when 2.12 holds, one of the eigenvalues

λ = β2 −
α2z

∗

θ2
− δ2y∗ < 0.

Also, under the assumption 2.13, the roots of the polynomial p(λ) satisfy

λ1 = β1(1−
2x∗

κ1
)− α1θ1z

∗

(θ1 + x∗)2
< 0, λ2 = −D − α1γ1x

∗

θ1 + x∗
< 0.

Moreover when the assumption 2.13 holds, we have

|p(0)| =
∣∣∣ α1θ1z

∗

(θ1 + x∗)2
− β1(1−

2x∗

κ1
)
∣∣∣ · ∣∣∣D +

α1γ1x
∗

θ1 + x∗

∣∣∣
>

α1θ1z
∗

(θ1 + x∗)2
· α1γ1x

∗

θ1 + x∗
= |q|.

It then follows from Corollary 4.10 of [16] that all roots of equation 2.14 have negative real

parts, and hence Ef = (x∗, 0, z∗) is asymptotically stable. End of the proof.

To investigate the local stability of (DDE-II), we proceed by first linearizing the system

about u = u∗ to obtain

du

dt
= Pu(t) +Qu(t− τ1) +Ru(t− τ2), (2.15)
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where the coefficient matrices P , Q, and R are calculated to be

P =


P11 −δ1x∗ 0

−δ2y∗ P22 0

−α1γ1U3(z
∗) −α2γ2U3(z

∗) P33

 ,

with

P11 = −α1U3(z
∗) + β1

(
1− 2x∗

κ1

)
− δ1y∗,

P22 = −α2U3(z
∗) + β2

(
1− 2y∗

κ2

)
− δ2x∗,

P33 = −D − (α1γ1x
∗ + α2γ2y

∗)
θ3

(θ3 + z∗)2
.

and

Q =


0 0 − α1x∗θ3

(θ3+z∗)2

0 0 0

0 0 0

 , R =


0 0 0

0 0 − α2y∗θ3
(θ3+z∗)2

0 0 0

 .

The characteristic equation then reads

h(λ, τ1, τ2) = det[λI − P − e−λτ1Q− e−λτ2R] = 0. (2.16)

Theorem 2.5 For the system (DDE-II) we have:

(i) the axial steady state (0, 0, I) is asymptotically stable provided

β1
α1

<
I

θ3 + I
and

β2
α2

<
I

θ3 + I
; (2.17)

(ii) a preferred steady state (0, y∗, z∗) is asymptotically stable provided

β1 < α1U3(z
∗) + δ1y

∗ and (2.18)
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2y∗ ≥ κ2; (2.19)

(iii) a failure steady state (x∗, 0, z∗) is asymptotically stable provided

β2 < α2U3(z
∗) + δ2x

∗ (2.20)

2x∗ ≥ κ1. (2.21)

Proof: (i) When x∗ = y∗ = 0 and z∗ = I , the equation 2.16 becomes

(
λ+

α1I

θ3 + I
− β1

)
·
(
λ+

α2I

θ3 + I
− β2

)
· (λ+D) = 0. (2.22)

The three simple solutions to the characteristic equation 2.22 are

λ = −D, λ = β1 −
α1I

θ3 + I
, λ = β2 −

α2I

θ3 + I
.

They are all negative when 3.12 holds, which implies immediately that the axial steady state

(0, 0, I) is asymptotically stable.

(ii) When x∗ = 0 the equation 2.16 becomes

det


λ+ α1U3(z

∗)− β1 + δ1y
∗ 0 0

δ1y
∗ λ+ α2U3(z

∗)− β2
(

1− 2y∗

κ2

)
e−λτ2 α2y∗θ3

(θ3+z∗)2

α1γ1U3(z
∗) α2γ2U3(z

∗) λ+D + γ2y∗α2θ3
(θ3+z∗)2

 = 0,

(2.23)

where y∗ and z∗ satisfy the equations 2.7.

Equation 2.23 is equivalent to

λ+ α1U3(z
∗)− β1 + δ1y

∗ = 0, (2.24)

p(λ) + qe−λτ2 = 0, (2.25)
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where

p(λ) =

(
λ+ α2U3(z

∗)− β2
(

1− 2y∗

κ2

))(
λ+D +

γ2x
∗α2θ3

(θ3 + z∗)2

)
,

q = −α2γ2U3(z
∗)

α2y
∗θ3

(θ3 + z∗)2
.

First notice that when the assumption 3.13 holds, by 2.7 the solution to the equation 2.24

satisfies

λ = −α2U3(z
∗) + β2

(
1− 2y∗

κ2

)
= −β2 + β2 +

(
β2
κ2
− δ
)
y∗ < 0. (2.26)

Then notice that the polynomial p(λ) has two roots:

λ1 = −D − γ2y
∗α2θ3

(θ3 + z∗)2
< 0, λ2 = −α2U3(z

∗) + β2

(
1− 2y∗

κ2

)
.

By using 2.7 again we have

λ2 = −β2
(

1− y∗

κ2

)
+ β2

(
1− 2y∗

κ2

)
= −β2

y∗

κ2
< 0.

In addition by the assumption 3.14 and 2.7,

β2
y∗

κ2
≥ β2 − β2

y∗

κ2
= α2U3(z

∗),

and consequently

|p(0)| =

∣∣∣∣α2U3(z
∗)− β2

(
1− 2y∗

κ2

)∣∣∣∣ · ∣∣∣∣D +
γ2y

∗α2θ3
(θ3 + z∗)2

∣∣∣∣
= β2

y∗

κ2
·
∣∣∣∣D +

γ2y
∗α2θ3

(θ3 + z∗)2

∣∣∣∣ > α2U3(z
∗) · γ2y

∗α2θ3
(θ3 + z∗)2

= |q|.

It then follows from Corollary 4.10 of [16] that Reλ < 0 for every root λ of the equation 2.25,

and together with 2.26 we conclude that the steady state (0, y∗, z∗) satisfying 2.7 is asymptoti-

cally stable.
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(iii) When y∗ = 0 the equation 2.16 becomes

det


λ+ α1U3(z

∗)− β1
(

1− 2x∗

κ1

)
δ1x
∗ e−λτ1 α1x∗θ3

(θ3+z∗)2

0 λ+ α2U3(z
∗)− β2 + δ2x

∗ 0

α1γ1U3(z
∗) α2γ2U3(z

∗) λ+D + γ1x∗α1θ3
(θ3+z∗)2

 = 0,

(2.27)

where x∗ and z∗ satisfy equations 2.8.

Equation 2.27 is equivalent to

λ+ α2U3(z
∗)− β2 + δ2x

∗ = 0, (2.28)

p(λ) + qe−λτ1 = 0, (2.29)

where

p(λ) =

(
λ+ α1U3(z

∗)− β1
(

1− 2x∗

κ1

))(
λ+D +

γ1x
∗α1θ3

(θ3 + z∗)2

)
,

q = −α1γ1U3(z
∗)

α1x
∗θ3

(θ3 + z∗)2
.

Under the assumption 3.15, using 2.8 we have the solution of equation 2.28 satisfies

λ = −α2U3(z
∗) + β2 − δ2x∗ < 0. (2.30)

Notice that the polynomial p(λ) has two roots,

λ1 = −D − γ1x
∗α1θ3

(θ3 + z∗)2
< 0, λ2 = −α1U3(z

∗) + β1

(
1− 2x∗

κ1

)
,

where by using 2.8 again we have

λ2 = −β1
(

1− x∗

κ1

)
+ β1

(
1− 2x∗

κ1

)
= −β1

x∗

κ1
< 0.
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By the assumption 3.16 and 2.8,

β1
x∗

κ1
≥ β1 − β1

x∗

κ1
= α1U3(z

∗),

and consequently

|p(0)| =

∣∣∣∣α1U3(z
∗)− β1

(
1− 2x∗

κ1

)∣∣∣∣ · ∣∣∣∣D +
γ1x

∗α1θ3
(θ3 + z∗)2

∣∣∣∣
= β1

x∗

κ1
·
∣∣∣∣D +

γ1x
∗α1θ3

(θ3 + z∗)2

∣∣∣∣ > α1U3(z
∗) · γ1x

∗α1θ3
(θ3 + z∗)2

= |q|.

It then follows from Corollary 4.10 of [16] that Reλ < 0 for every root λ of the equation 2.29,

and together with 2.30 we conclude that the steady state (x∗, 0, z∗) satisfying 2.8 is asymptoti-

cally stable. The proof is complete.

2.3.2 Lyapunov stability

In this subsection we investigate Lyapunov stability for each steady state of systems (DDE-I)

and (DDE-II). Recall that for all t ≥ 0

x(t) ≤ max{x0, κ1}, y(t) ≤ max{y0, κ2}, z(t) ≤ max{φ̄, I}.

Throughout this subsection we restrict our attention to the the bounded and invariant region of

all solutions,

Ω = {(x, y, z) ∈ R3
+ : x ≤ κ1, y ≤ k2, z ≤ I}.

Theorem 2.6 below gives the sufficient conditions under which a success steady state

(0, y∗, z∗) of system (DDE-I) is asymptotically stable; Theorem 2.7 below gives the sufficient

conditions under which a failure steady state (x∗, 0, z∗) of system (DDE-I) is asymptotically

stable. Theorem 2.8 below gives the sufficient conditions under which a generic steady state

(x∗, y∗, z∗) of system (DDE-II) is asymptotically stable.
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Theorem 2.6 A success steady state (0, y∗, z∗) of system (DDE-I) is asymptotically stable pro-

vided

τ1 ≤
2θ1
α2

β1, (2.31)

τ2 ≤
2θ2β2
α2κ2

· 1

1 + γ2I
(
D + α2γ2 + α1γ1I

θ1
+ α2γ2I

θ2

) , (2.32)

2β1 < δ1y
∗ +

α2z
∗

θ1 + κ1
, (2.33)

β2
κ2

> max
{ 1

2θ2γ22
+
θ1
θ2
β1, 2δ2 +

2α2

θ2
(1 +

2z∗

θ2 + y∗
)

+
4θ1
θ2
β1γ2I(D + α2γ2 +

α1γ1I

θ1
+
α2γ2I

θ2
)
}
, (2.34)

1

4
>

(
D + α2γ2 + I(

α1γ1
θ1

+
α2γ2
θ2

)

)2(
δ1θ1θ2
α2
2

+
2γ2z

∗

D

)
, (2.35)

β1
κ1

>
δ1
2

+
α2

2θ1
+
α1α2γ2z

∗

θ21D

+

(
δ1 +

2α2
2γ2z

∗

Dθ1θ2

)(
δ2κ2
2β2

+
α1γ1θ2
θ1α2

(1 +
1

4γ2
)

)
. (2.36)

Proof: The proof is proceeded in three steps.

(i) Given any solution of (DDE-I) (x(t), y(t), z(t) ∈ C1([−τ,∞),Ω), define

V1(x(t), y(t), z(t)) = ax(t) +
(
y(t)− y∗ − y∗ ln

y(t)

y∗

)
+
b

2
(z(t)− z∗)2,

where a > 0 and b > 0 will be determined later. Clearly V1(0, y∗, z∗) = 0 and V1(x(t), y(t), z(t)) >

0 for any (x(t), y(t), z(t)) ∈ C1([−τ,∞),Ω\{(0, y∗, z∗)}. Differentiating V1(t) along solutions

to system (DDE-I) gives

dV1
dt

= ax(t)

(
−α1z(t− τ1)

θ1 + x
+ β1(1−

x(t)

κ1
)− δ1y(t)

)
+ (y(t)− y∗)

(
−α2z(t− τ2)

θ2 + y
+ β2(1−

y(t)

κ2
)− δ2x(t)

)
+(z(t)− z∗) [DI −Dz(t)− γ1z(t)U1(x(t))− γ2z(t)U2(y(t))] ,
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which can be rewritten by using equations in 2.5 to be

dV1
dt

= ax

(
β1 − δ1y∗ −

β1
κ1
x− δ1(y − y∗)−

α1z(t− τ1)
θ1 + x

)
+(y − y∗)

(
−β2
k2

(y − y∗)− δ2x−
α2z(t− τ2)
θ2 + y

+
α2z

∗

θ2 + y∗

)
+b(z − z∗) (−D(z − z∗)− γ1zU1(x)− γ2zU2(y) + γ2z

∗U2(y
∗)) .

Simplifying the above equation gives

dV1
dt

= −aβ1
κ1
x2 − β2

κ2
(y − y∗)2 − b

(
D +

α1γ2x

θ1 + x
+
α2γ2y

θ2 + y

)
(z − z∗)2

+a(β1 − δ1y∗)x+
α2z

∗

θ2 + y∗
(y − y∗)− (aδ1 + δ2)x(y − y∗)− bα1γ2z

∗

θ1 + x
x(z − z∗)

− bα2γ2θ2z
∗

(θ2 + y)(θ2 + y∗)
(y − y∗)(z − z∗) + η1(t), where (2.37)

η1(t) = − aα2x

θ1 + x
z(t− τ1)−

α2(y − y∗)
θ2 + y

z(t− τ2).

Noticing that z(t− τj) = z(t)−
∫ t
t−τj z

′(s)ds for j = 1, 2, then

η1(t) = −aα2xz

θ1 + x
− α2(y − y∗)z

θ2 + y
+

aα1x

θ1 + x

∫ t

t−τ1
z′(s)ds+

α2(y − y∗)
θ2 + y

∫ t

t−τ2
z′(s)ds,

and the equation 2.37 can be further simplified to

dV1
dt

= η2(t)− a
β1
κ1
x2 −

(
β2
κ2
− α2z

∗

(θ2 + y)(θ2 + y∗)

)
(y − y∗)2 − (aδ1 + δ2)x(y − y∗)

+a

(
β1 − δ1y∗ −

α2z
∗

θ1 + x

)
x− b

(
D +

α1γ2x

θ1 + x
+
α2γ2y

θ2 + y

)
(z − z∗)2

−(aα2 + bα1γ2z
∗)
x(z − z∗)
θ1 + x

−
(

1 +
bγ2θ2z

∗

θ2 + y∗

)
α2(y − y∗)(z − z∗)

θ2 + y
,

where

η2(t) =
aα1x

θ1 + x

∫ t

t−τ1
z′(s)ds+

α2(y − y∗)
θ2 + y

∫ t

t−τ2
z′(s)ds. (2.38)
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Using pq ≤ 1
2
p2 + 1

2
q2 for all the cross terms with x(y − y∗), x(z − z∗) and (y − y∗)(z − z∗)

we get

dV1
dt
≤ K1x

2 +K2(y − y∗)2 +K3(z − z∗)2 + a

(
β1 − δ1y∗ −

α2z
∗

θ1 + x

)
x+ η2(t), (2.39)

where

K1 = −aβ1
κ1

+
aδ1 + δ2

2
+
aα2 + bα1γ2z

∗

2(θ1 + x)
,

K2 = −β2
κ2

+
aδ1 + δ2

2
+

α2

2(θ2 + y)

(
1 +

(bγ2θ2 + 2)z∗

θ2 + y∗

)
,

K3 = −b
(
D +

α1γ1x

θ1 + x
+
α2γ2y

θ2 + y

)
+
aα2 + bα1γ2z

∗

2(θ1 + x)
+

α2

2(θ2 + y)

(
1 +

bγ2θ2z
∗

θ2 + y∗

)
.

By using pq ≤ 1
2
p2 + 1

2
q2 for z′(s) and (y(t)− y∗)z′(s) in 2.38, we have

η2(t) ≤
aα2x

2(θ1 + x)
· τ1 +

1

2

∫ t

t−τ1
[z′(s)]2ds+

α2(y − y∗)2

2(θ2 + y)
· τ2 +

1

2

∫ t

t−τ2
[z′(s)]2ds. (2.40)

(ii) The second step is to deal with the two positive integrals in 2.40. To this end, introduce

V2(t) =
1

2

∫ t

t−τ1
dr

∫ t

r

[z′(s)]2ds+
1

2

∫ t

t−τ2
dr

∫ t

r

[z′(s)]2ds.

Then the derivative of V2(t) along solutions to system (DDE-I) satisfies

dV2(t)

dt
=

1

2
[z′(t)]2(τ1 + τ2)−

1

2

∫ t

t−τ1
[z′(s)]2ds− 1

2

∫ t

t−τ2
[z′(s)]2ds,

and by the third equation of system (DDE-I):

η2(t) +
dV2(t)

dt
≤ 1

2
[z′(t)]2(τ1 + τ2) +

aα2x

2(θ1 + x)
· τ1 +

α2(y − y∗)2

2(θ2 + y)
· τ2. (2.41)

Squaring the third equation of (DDE-I), applying pq ≤ 1
2
p2 + 1

2
q2 for all the cross terms

with x(y− y∗), x(z − z∗) and (y− y∗)(z − z∗) and using the facts that x
θ1+x

≤ 1 and y
θ2+y
≤ 1
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we get

[z′(t)]
2 ≤ K4x

2 +K5(y − y∗)2 +K6(z − z∗)2, (2.42)

where

K4 =
I

θ1
α1γ1

(
D + α2γ2 +

α1γ1I

θ1
+
α2γ2I

θ2

)
,

K5 =
I

θ2
α2γ2

(
D + α2γ2 +

α1γ1I

θ1
+
α2γ2I

θ2

)
,

K6 = (D + α2γ2)
2 + I(D + α2γ2)

(
α1γ1
θ1

+
α2γ2
θ2

)
.

(iii) Finally, let V (t) := V1(t) + V2(t). Then the inequalities 2.39, 2.41 and 2.42 together gives

the time derivative of V (t) along solutions of system (DDE-I) to satisfy

dV (t)

dt
≤ B1x

2 +B2(y − y∗)2 +B3(z − z∗)2 +B4x, (2.43)

where

B1 = K1 +
1

2
(τ1 + τ2)K4,

B2 = K2 +
1

2
(τ1 + τ2)K5 +

α2τ2
2(θ2 + y)

,

B3 = K3 +
1

2
(τ1 + τ2)K6,

B4 = a

(
β1 − δ1y∗ −

α2z
∗

θ1 + x
+

α2

2(θ1 + x)
τ1

)
.

The final step is to show that B1, B2, B3, B4 < 0 under assumptions of the theorem. First

notice that under assumptions 2.33 and 2.31,

β1 − δ1y∗ −
α2z

∗

θ1 + x
+

α2

2(θ1 + x)
τ1 ≤ −β1 +

α2

2θ1
τ1 < 0,

and hence

B4 < 0. (2.44)
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To deal with B2 and B3, pick a and b such that

aδ1 + b
α2γ2z

∗

θ2 + y∗
≤ β2
κ2

and
α2

θ1
· a ≤ b

(
D − α1γ2z

∗

2θ1
− α2γ2z

∗

2(θ2 + y∗)

)
.

In particular, pick

a =
β2
κ2

Dθ1θ2
Dδ1θ1θ2 + 2α2

2γ2z
∗ , and b =

2α2

θ1D
a.

Then

B2 ≤ −
β2
2κ2

+
δ2
2

+
α2

2θ2

(
1 +

2z∗

θ2 + y∗)

)
+

1

2
K5τ2 +

1

2

(
K5 +

α2

θ2

)
τ2,

and it follows from assumptions 2.31, 2.34 and 2.32 that

B2 < −
β2
4κ2

+
1

2

(
K5 +

α2

θ2

)
τ2 < 0. (2.45)

Also from the choice of a and b above and the assumptions 2.31 and 2.32 we have

B3 < −a α2

2θ1
+
α2

2θ2
+

1

2
(τ1 + τ2)K6

<
β2
κ2

(
− Dα2θ2

2(Dδ1θ1θ2 + 2α2
2γ2z

∗)
+
θ2
α2

K6

)
+
α2

2θ2
+
θ1
α2

β1K6.

Note that the assumption 2.35 implies that

Dθ2α2

2(Dδ1θ1θ2 + 2α2
2γ2z

∗)
− θ2
α2

K6 >
θ2
α2

K6,

and then by using assumption 2.34 we obtain

B3 < −
(

1

2θ22γ
2
2

+
θ1
θ2
β1

)
θ2
α2

K6 +
α2

2θ2
+
θ1
α2

β1K6 =
α2

2θ2

(
1− K6

α2
2θ

2
2

)
< 0. (2.46)

Finally, by assumptions 2.31 and 2.32

B1 < a

(
−β1
κ1

+
δ1
2

+
α2

2θ1
+
α1α2γ2z

∗

θ21D

)
+
δ2
2

+
α1γ1β2θ2
θ1α2κ2

24



+
α1γ1β1I

α2

(
D + α2γ2 +

α1γ1I

θ1
+
α2γ2I

θ2

)
.

Now noticing that assumption 2.34 implies

I

(
D + α2γ2 +

α1γ1I

θ1
+
α2γ2I

θ2

)
<
β2
κ2

θ2
4θ1β1γ2

,

and hence

K7 :=
1

a

(
δ2
2

+
α1γ1β2θ2
θ1α2κ2

+
α1γ1β1I

α2

(D + α2γ2 +
α1γ1I

θ1
+
α2γ2I

θ2
)

)
≤

(
δ1 +

2α2
2γ2z

∗

Dθ1θ2

)(
δ2κ2
2β2

+
α1γ1θ2
θ1α2

(1 +
1

4γ2
)

)
.

Then assumption 2.36 immidiately implies that

B1 = a

(
−β1
κ1

+
δ1
2

+
α2

2θ1
+
α1α2γ2z

∗

θ21D
+K7

)
< 0. (2.47)

Summarizing the above, inserting inequalities 2.44, 2.45, 2.46 and 2.47 into 2.43 results

in
dV (t)

dt
< 0 ∀ x 6= 0, y 6= y∗, z 6= z∗,

and thus (0, y∗, z∗) is asymptotically stable. The proof is complete.

Following similar calculations we can obtain the parallel stability results for a failure

steady state as follows.

Theorem 2.7 A failure steady state (x∗, 0, z∗) of system (DDE-I) is asymptotically stable pro-

vided

τ1 ≤
2θ2
α1

β2,

τ2 ≤
2θ1β1
α1κ1

· 1

1 + γ1I
(
D + α1γ1 + α2γ2I

θ2
+ α1γ1I

θ1

) ,
2β2 < δ2x

∗ +
α1z

∗

θ2 + κ1
,
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β1
κ1

> max
{ 1

2θ1γ21
+
θ2
θ1
β2, 2δ1 +

2α1

θ1
(1 +

2z∗

θ1 + x∗
)

+
4θ2
θ1
β2γ1I(D + α1γ1 +

α2γ2I

θ2
+
α1γ1I

θ1
)
}
,

1

4
>

(
D + α1γ1 + I(

α2γ2
θ2

+
α1γ1
θ1

)

)2(
δ2θ1θ2
α2
1

+
2γ1z

∗

D

)
,

β2
κ2

>
δ2
2

+
α1

2θ2
+
α1α2γ1z

∗

θ22D

+

(
δ2 +

2α2
1γ1z

∗

Dθ1θ2

)(
δ1κ1
2β1

+
α2γ2θ1
θ2α1

(1 +
1

4γ1
)

)
.

Note that sufficient conditions for asymptotic stability of a persistent steady stateEp = (x∗, y∗, z∗)

of system (DDE-I) can be constructed in a similar manner as above. The computations then

become tedious and omitted here.

We next investigate the stability of steady states for system (DDE-II). Instead of study-

ing success and failure steady states respectively, here we consider a generic steady state

(x∗, y∗, z∗). For notice that any steady state (x∗, y∗, z∗) of system (DDE-II) satisfies

−α̂1x
∗U3(z

∗) + β1x
∗
(

1− x∗

κ1

)
− δ1x∗y∗ = 0, (2.48)

−α̂2y
∗U3(z

∗) + β2y
∗
(

1− y∗

κ2

)
− δ2x∗y∗ = 0, (2.49)

Dz∗ + γ1α̂1x
∗U3(z

∗) + γ2α̂2y
∗U3(z

∗) = DI. (2.50)

Theorem 2.8 A steady state (x∗, y∗, z∗) of system (DDE-II) is asymptotically stable provided

τ1 ≤
θ3β1

2α̂1κ1
· 1

1 + γ1(α̂1 + α̂2)
(
D + α̂1γ1 + α̂2γ2 + α̂1γ1κ1

θ3
+ α̂2γ2κ2

θ3

) , (2.51)

τ2 ≤
θ3β1

2α̂1κ1
· 1

γ1(α̂1 + α̂2)
(
D + α̂1γ1 + α̂2γ2 + α̂1γ1κ1

θ3
+ α̂2γ2κ2

θ3

) , (2.52)

β1
κ1

> 2(δ1 + δ2) + 4α̂1γ1 +
2α1

θ3 + z∗
, (2.53)

β2
κ2

> δ1 + δ2 + 2α̂2γ2 +
α̂2

θ3 + z∗
+
β1α̂2γ2
κ1α̂1γ1

+
1

2
· β1
κ1α̂1γ1D

, (2.54)

D > α̂1γ1 + α̂2γ2 +
α̂1

2(θ3 + z∗)
+

α̂2

2(θ3 + z∗)
, (2.55)

1 >
β1

2κ1α̂1γ1

(
1 +

α̂1γ1κ1
θ3D

+
α̂2γ2κ2
θ3D

)
. (2.56)
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Proof: The proof will be proceed in three steps.

(i) Given any solution of (DDE-II) (x(t), y(t), z(t) ∈ C1([−τ,∞),Ω) define

V1(x(t), y(t), z(t)) = a

(
x(t)− x∗ − x∗ ln

x(t)

x∗

)
+b

(
y(t)− y∗ − y∗ ln

y(t)

y∗

)
+(z(t)−z∗)2,

where a, b > 0 will be determined later. Clearly V1(x∗, y∗, z∗) = 0 and V1(x(t), y(t), z(t)) > 0

for any (x(t), y(t), z(t)) ∈ C1([−τ,∞),Ω\{(x∗, y∗, z∗}). Differentiating V1(t) along solutions

to system (DDE-II) and using 2.48 – 2.50 gives

dV1
dt

= (x− x∗)
[
−α̂1U3(z(t− τ1)) + β1

(
1− x(t)

κ1

)
− δ1y(t)

]
+ (y − y∗)

[
−α̂2U3(z(t− τ2)) + β2

(
1− y(t)

κ2

)
− δ2x(t)

]
+(z − z∗) [DI −Dz(t)− α̂1γ1x(t)U3(z(t))− α̂2γ2y(t)U3(z(t))] .

which can be simplified by using equations 2.48–2.50 to be

dV1
dt

= −β1
κ1

(x− x∗)2 − β2
κ2

(y − y∗)2 −D(z − z∗)2 − (δ1 + δ2)(x− x∗)(y − y∗)

−α̂1(x− x∗) (U3(z(t− τ1))− U3(z
∗))− α̂2(y − y∗) (U3(z(t− τ2))− U3(z

∗))

+(z − z∗) (−α̂1γ1xU3(z) + α̂1γ1x
∗U3(z

∗)− α̂2γ2yU3(z) + α̂2γ2y
∗U3(z

∗)) .

Define the function g : R→ R by

g(·) = U3(·+ z∗)− U3(z
∗).

Noticing that

−α̂1γ1xU3(z) + α̂1γ1x
∗U3(z

∗) =
−α̂1γ1θ3x(z − z∗)
(θ3 + z)(θ3 + z∗)

− α̂1γ1z
∗(x− x∗)

θ3 + z∗
,

−α̂2γ2yU3(z) + α̂2γ2y
∗U3(z

∗) =
−α̂2γ2θ3y(z − z∗)
(θ3 + z)(θ3 + z∗)

− α̂2γ2z
∗(y − y∗)

θ3 + z∗
,
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the above equation becomes

dV1
dt

= −β1
κ1

(x− x∗)2 − β2
κ2

(y − y∗)2 − (δ1 + δ2)(x− x∗)(y − y∗)

−2

(
D +

α̂1γ1θ3x

(θ3 + z)(θ3 + z∗)
+

α̂2γ2θ3y

(θ3 + z)(θ3 + z∗)

)
(z − z∗)2 (2.57)

−2α̂1γ1z
∗

θ3 + z∗
(x− x∗)(z − z∗)− 2α̂2γ2z

∗

θ3 + z∗
(y − y∗)(z − z∗) + µ1(t),

where

µ1(t) = −α̂1(x− x∗)g(z(t− τ1)− z∗)− α̂2(y − y∗)g(z(t− τ2)− z∗). (2.58)

For simplicity let z̃(t− τj) := z(t− τj)− z∗, then

g(z̃(t− τj)) = g(z̃(t))−
∫ t

t−τj
g′(z̃(s))z̃′(s)ds for j = 1, 2,

and equation 2.58 can be written as

µ1(t) = −α̂1(x− x∗)g(z̃(t))− α̂2(y − y∗)g(z̃(t)) + µ2(t), (2.59)

where

µ2(t) = α̂1(x− x∗)
∫ t

t−τ1
g′(z̃(s))z̃′(s)ds+ α̂2(y − y∗)

∫ t

t−τ2
g′(z̃(s))z̃′(s)ds. (2.60)

Using g(z̃(t)) = θ3(z−z∗)
(θ3+z)(θ3+z∗)

in 2.59 then inserting the resultant equation in 2.57 gives

dV1
dt

= −β1
κ1

(x− x∗)2 − β2
κ2

(y − y∗)2 − (δ1 + δ2)(x− x∗)(y − y∗)

−2

(
D +

α̂1γ1θ3x

(θ3 + z)(θ3 + z∗)
+

α̂2γ2θ3y

(θ3 + z)(θ3 + z∗)

)
(z − z∗)2

−α̂1

(
2γ1z

∗

θ3 + z∗
+

θ3
(θ3 + z)(θ3 + z∗)

)
· (x− x∗)(z − z∗)

−α̂2

(
2γ2z

∗

θ3 + z∗
+

θ3
(θ3 + z)(θ3 + z∗)

)
· (y − y∗)(z − z∗) + µ2(t).
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Then use pq ≤ 1
2
p2 + 1

2
q2 for all the cross terms with (x− x∗)(y − y∗), (x− x∗)(z − z∗)

and (y − y∗)(z − z∗) to obtain

dV1
dt
≤ A1(x− x∗)2 + A2(y − y∗)2 + A3(z − z∗)2 + µ2(t), (2.61)

where

A1 = −β1
κ1

+
1

2
(δ1 + δ2) +

α̂1

2

(
2γ1 +

θ3
(θ3 + z)(θ3 + z∗)

)
,

A2 = −β2
κ2

+
1

2
(δ1 + δ2) +

α̂2

2

(
2γ2 +

θ3
(θ3 + z)(θ3 + z∗)

)
,

A3 = −2

(
D +

α̂1γ1θ3x

(θ3 + z)(θ3 + z∗)
+

α̂2γ2θ3y

(θ3 + z)(θ3 + z∗)

)
+
α̂1

2

(
2γ1 +

θ3
(θ3 + z)(θ3 + z∗)

)
+
α̂2

2

(
2γ2 +

θ3
(θ3 + z)(θ3 + z∗)

)
.

Noticing that

g′(w) = U ′3(w + z∗) =
θ3

(θ3 + w + z∗)2
≤ 1

θ3
for all w ∈ R,

and using pq ≤ 1
2
p2 + 1

2
q2 for (x− x∗)z′(s) and (y(t)− y∗)z′(s) in 2.60, we have

µ2(t) ≤
1

2θ3
· α̂1(x− x∗)2τ1 +

1

2θ3
α̂1

∫ t

t−τ1
[z′(s)]2ds+

1

2θ3
· α̂2(y − y∗)2τ2

+
1

2θ3
α̂2

∫ t

t−τ2
[z′(s)]2ds. (2.62)

(ii) The second step is to deal with the two positive integrals in 2.62. To this end, we introduce

V2(t) =
1

2θ3
· α̂1

∫ t

t−τ1
dr

∫ t

r

[z′(s)]2ds+
1

2θ3
· α̂2

∫ t

t−τ2
dr

∫ t

r

[z′(s)]2ds.

Then the derivative of V2(t) along solutions to system (DDE-II) satisfies

dV2(t)

dt
=

1

2θ3
(α̂1 + α̂2)(τ1 + τ2)[z

′(t)]2 − 1

2θ3
· α̂1

∫ t

t−τ1
[z′(s)]2ds
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− 1

2θ3
· α̂2

∫ t

t−τ2
[z′(s)]2ds,

and by equation 2.62 we have

µ2(t) +
dV2(t)

dt
≤ 1

2θ3
(α̂1 + α̂2)(τ1 + τ2)[z

′(t)]2 +
1

2θ3
· α̂1(x− x∗)2τ1

+
1

2θ3
· α̂2(y − y∗)2τ2. (2.63)

Squaring the third equation of (DDE-II), applying pq ≤ 1
2
p2 + 1

2
q2 for all the cross terms with

(x− x∗)(y− y∗), (x− x∗)(z− z∗) and (y− y∗)(z− z∗); and using the facts that z
θ3+z
≤ 1, we

get

[z′(t)]
2 ≤ A4(x− x∗)2 + A5(y − y∗)2 + A6(z − z∗)2, (2.64)

where

A4 = α̂1γ1

(
D + α̂1γ1 + α̂2γ2 +

α̂1γ1κ1
θ3

+
α̂2γ2κ2
θ3

)
,

A5 = α̂2γ2

(
D + α̂1γ1 + α̂2γ2 +

α̂1γ1κ1
θ3

+
α̂2γ2κ2
θ3

)
,

A6 =

(
D +

α̂1γ1κ1
θ3

+
α̂2γ2κ2
θ3

)2

+ (α̂1γ1 + α̂2γ2)

(
D +

α̂1γ1κ1
θ3

+
α̂2γ2κ2
θ3

)
.

(iii) Finally, let V (t) := V1(t) + V2(t). Then the inequalities 2.61, 2.63 and 2.64 together gives

the time derivative of V (t) along solutions of system (DDE-II) to satisfy

dV (t)

dt
≤ B1(x− x∗)2 +B2(y − y∗)2 +B3(z − z∗)2, (2.65)

where

B1 = A1 +
1

2θ3
(α̂1 + α̂2)(τ1 + τ2)A4 +

1

2θ3
· α̂1τ1,

B2 = A2 +
1

2θ3
(α̂1 + α̂2)(τ1 + τ2)A5 +

1

2θ3
· α̂2τ2,

B3 = A3 +
1

2θ3
(α̂1 + α̂2)(τ1 + τ2)A6.
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The last step is to show that B1, B2, B3 < 0 under assumptions of the theorem. First notice that

B1 = −β1
κ1

+
1

2
(δ1 + δ2) +

α̂1

2

(
2γ1 +

θ3
(θ3 + z)(θ3 + z∗)

)
+

1

2θ3
(α̂1 + α̂2)(τ1 + τ2)A4 +

1

2θ3
· α̂1τ1

≤ − β1
2κ1

+
1

2
(δ1 + δ2) + α̂1γ1 +

α̂1

2(θ3 + z∗)

+
1

2θ3
[α̂1 + (α̂1 + α̂2)A4] τ1 +

1

2θ3
(α̂1 + α̂2)A4τ2,

and it follows from assumption 2.53, 2.51, and 2.52 that

B1 < −
β1
4κ1

+
1

2θ3
[α̂1 + (α̂1 + α̂2)A4] τ1 +

1

2θ3
(α̂1 + α̂2)A4τ2 < 0. (2.66)

Second,

B2 = −β2
κ2

+
1

2
(δ1 + δ2) +

α̂2

2

(
2γ2 +

θ3
(θ3 + z)(θ3 + z∗)

)
+

1

2θ3
(α̂1 + α̂2)(τ1 + τ2)A5 +

1

2θ3
· α̂2τ2

≤ − β2
2κ2

+
1

2
(δ1 + δ2) + α̂2γ2 +

α̂2

2(θ3 + z∗)

+
1

2θ3
(α̂1 + α̂2)A5τ1 +

1

2θ3
[α̂2 + (α̂1 + α̂2)A5] τ2,

and it follows from assumption 2.51 and 2.52 that

B2 < − β2
2κ2

+
1

2
(δ1 + δ2) + α̂2γ2 +

α̂2

2(θ3 + z∗)

+
β1
4κ1
· 1

α̂1γ1D
+

β1α̂2γ2
2κ1α̂1γ1

.

Thus, by assumption 2.54 we get

B2 < 0. (2.67)

Last,

B3 = −2

(
D +

α̂1γ1θ3x

(θ3 + z)(θ3 + z∗)
+

α̂2γ2θ3y

(θ3 + z)(θ3 + z∗)

)
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+
α̂1

2

(
2γ1 +

θ3
(θ3 + z)(θ3 + z∗)

)
+
α̂2

2

(
2γ2 +

θ3
(θ3 + z)(θ3 + z∗)

)
+

1

2θ3
(α̂1 + α̂2)(τ1 + τ2)A6

≤ −2D + α̂1γ1 + α̂2γ2 +
α̂1

2(θ3 + z∗)
+

α̂2

2(θ3 + z∗)

+
1

2θ3
(α̂1 + α̂2)A6τ1 +

1

2θ3
(α̂1 + α̂2)A6τ2,

and using assumption 2.51 and 2.52 we get

B3 ≤ −2D + α̂1γ1 + α̂2γ2 +
α̂1

2(θ3 + z∗)
+

α̂2

2(θ3 + z∗)

+
1

2
· β1
α̂1γ1κ1

·
(
D +

α̂1γ1κ1
θ3

+
α̂2γ2κ2
θ3

)
.

Applying condition 2.55 and 2.56 we obtain

B3 < 0. (2.68)

The inequalities 2.66, 2.67 and 2.68 altogether ensure

dV

dt
< 0 for all x 6= x∗, y 6= y∗, z 6= z∗,

and thus (x∗, y∗, z∗) is asymptotically stable. The proof is complete.

2.4 Numerical simulations

In this section we demonstrate the theoretical results obtained in previous sections. In partic-

ular, we are interested in the scenarios where the time delay changes the stability, i.e., for one

system with the same set of parameters a stable steady state becomes unstable with a change

in the delays, or vice versa. For each model, two sets of simulations with the same model

parameters but different delays are presented, in which a success steady state becomes failure,

and vice versa, due to the difference in the delay parameters.

For the simulations of system (DDE-I) the parameters in Table 2.2 are used. When τ1 = 1
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Table 2.2: Model parameters used in simulating (DDE-I)

D α1 α2 β1 β2 γ1 γ2
50 23.486 0.0085 35 20 2.52073 0.34
I δ1 δ2 κ1 κ2 θ1 θ2

32.5 0.095 0.1 240 125 18 20

and τ2 = 3 the conditions in Theorem 2.7 are satisfied and the system thus approaches a failure

steady state asymptotically (see Fig. 2.1). On the other side, when τ1 = 2 and τ2 = 1 the

conditions in Theorem 2.6 are satisfied and thus the system approaches a success steady state

asymptotically (see Fig. 2.2).
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Figure 2.1: A stable failure steady state of system (DDE-I) with parameters in Table 2.2 and
delays τ1 = 1 and τ2 = 3.

For the simulations of system (DDE-II) the parameters in Table 2.3 are used. When

Table 2.3: Model parameters used in simulating (DDE-II)

D α̂1 α̂2 β1 β2 γ1 γ2
4 2 1.2763 3 2 2 3
I δ1 δ2 κ1 κ2 θ1 θ2
4 2 2 5 9 1 1

τ1 = 0.000344538 and τ2 = 0.000345331 the conditions in Theorem 2.8 with y∗ = 0 are

satisfied and the system thus approaches a failure steady state asymptotically (see Fig. 2.3).
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Figure 2.2: A stable success steady state of system (DDE-I) with parameters in Table 2.2 and
delays τ1 = 2 and τ2 = 1 .

On the other side, when τ1 = 11 and τ2 = 15 the conditions in Theorem 2.8 with x∗ = 0 are

satisfied and thus the system approaches a success steady state asymptotically (see Fig. 2.4).

2.5 Closing remarks

Two mathematical models of chemotherapy treatments with time delays are formulated and

studied, one treats the chemotherapy agent as the predator (system (DDE-I)), and the other

treats the chemotherapy agent as the prey (system (DDE-II)). For each model, we showed

the existence, uniqueness, non-negativeness and boundedness of a global solution. We also

investigated the stability for different type of steady states. Particular interests are given to

success steady states (all cancer cells are cleared while normal cells remains), and failure steady

states (all normal cells die out while cancer cells remains).

Sufficient conditions for the stability of success and failure steady states are constructed

for system (DDE-I), and for the stability of a generic steady states are constructed for system

(DDE-II). Note that sufficient conditions for the stability of a generic steady state for system
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Figure 2.3: A stable failure steady state of system (DDE-II) with parameters in Table 2.3 and
delays τ1 = 0.000344538 and τ2 = 0.000345331.
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Figure 2.4: A stable success steady state of system (DDE-II) with parameters in Table 2.3 and
delays τ1 = 11 and τ2 = 15 .
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(DDE-I) can also be constructed, following more technical computations, but are omitted to

avoid redundancy of the presentation.

The parameters chosen for the numerical simulations are assumed to satisfy the basic as-

sumptions α1 > α2 and β1 > β2, i.e., the cancer cells grow at a faster rate than the normal cells

and the chemotherapy treatment is more efficient for the cancer cells than the normal cells.

While the order of magnitudes of model parameters used in different systems appear different,

noticing that the systems under consideration are both dimensionless and thus the parameters

are chosen mainly to serve for the purpose of illustrating the theoretical results other than mak-

ing perfect biological sense. Provided empirical values of the model parameters, and through

extensive numerical experiments, parameters with biological units satisfying assumptions in

our main theorems (after non-dimensionalization) can be constructed.
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Chapter 3

Stability Analysis of a Chemotherapy Model with or without Delays

In this chapter, we consider the special case of system (DDE-II) by letting α1 = α2 = α

and δ1 = δ2 = δ (i.e., the killing rate of the chemotherapy agent on both cells as well as the

intraspecific competition coefficient between cancer and normal cells are same). The resulting

system of delay differential equations (DDEs) describing dynamics of chemotherapy reads

dx

dt
= −αx(t)U(z(t− τ1)) + β1x(t)

(
1− x(t)

κ1

)
− δx(t)y(t), (3.1)

dy

dt
= −αy(t)U(z(t− τ2)) + β2y(t)

(
1− y(t)

κ2

)
− δx(t)y(t), (3.2)

dz

dt
= DI −Dz(t)− αγ1x(t)U(z(t))− αγ2y(t)U(z(t)). (3.3)

In the absence of time delay, the above system 3.1–3.3 results in the following system of ordi-

nary differential equations (ODEs) describing dynamics of chemotherapy as

dx(t)

dt
= −αx(t)U(z(t)) + β1x(t)

(
1− x(t)

κ1

)
− δx(t)y(t), (3.4)

dy(t)

dt
= −αy(t)U(z(t)) + β2y(t)

(
1− y(t)

κ2

)
− δx(t)y(t), (3.5)

dz(t)

dt
= DI −Dz(t)− αγ1x(t)U(z(t))− αγ2y(t)U(z(t)). (3.6)

The aim is to investigate the stability of each meaningful steady state of the chemotherapy

model without time delay, and compare with its analog model with delay. Note that we already

proved existence, uniqueness, boundedness and positiveness of solution as well as local and
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Lyapunov stability of the above DDEs system 3.1–3.3 in the previous chapter. We will just go

ahead with the comparison of the model with and without time delays.

3.1 Stability analysis

In this section we investigate the stability of the axial, preferred and failure states for the system

3.4–3.6 and then compare with its analog model with delay. Throughout this section denote by

u∗ = (x∗, y∗, z∗) a generic steady state solution of the system 3.4 – 3.6.

3.1.1 Absence of time delay

The Jacobian matrix of system 3.4 – 3.6 at the generic steady state u∗ = (x∗, y∗, z∗) is

J =


J11 −δx∗ − αθx∗

(z∗+θ)2

−δy∗ J22 − αθy∗

(z∗+θ)2

−αγ1U(z∗) −αγ2U(z∗) J33

 ,

where

J11 = −αU(z∗) + β1

(
1− 2x∗

κ1

)
− δy∗,

J22 = −αU(z∗) + β2

(
1− 2y∗

κ2

)
− δx∗,

J33 = −D − αθ

(z∗ + θ)2
(γ1x

∗ + γ2y
∗).

Theorem 3.1 For the linearization of system 3.4 – 3.6,

(i) the axial steady state (0, 0, I) is asymptotically stable provided

β1
α
<

I

θ + I
and

β2
α
<

I

θ + I
; (3.7)
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(ii) a preferred steady state (0, y∗, z∗) is asymptotically stable provided

β1 < αU(z∗) + δy∗, and (3.8)

β2 ≥ 2αU(z∗); (3.9)

(iii) a failure steady state (x∗, 0, z∗) is asymptotically stable provided

β2 < αU(z∗) + δx∗, and (3.10)

β1 ≥ 2αU(z∗). (3.11)

Proof: (i) When x∗ = y∗ = 0 and z∗ = I , the Jacobian matrix is reduced to

J =


− αI
θ+I

+ β1 0 0

0 − αI
θ+I

+ β2 0

−γ1 αI
θ+I

−γ2 αI
θ+I

−D


with eigenvalues

λ1 = − αI

θ + I
+ β1, λ2 = − αI

θ + I
+ β2, λ3 = −D,

which are all negative under the assumption 3.7.

(ii) When x∗ = 0 and y∗ and z∗ satisfy equation 2.7, the Jacobian matrix is reduced to

J =


β1 − αU(z∗)− δy∗ 0 0

−δy∗ −β2 y
∗

κ2
− αθy∗

(z∗+θ)2

−αγ1U(z∗) −αγ2U(z∗) −D − αγ2θy∗

(z∗+θ)2

 .
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The first eigenvalue of the above matrix is

λ1 = β1 − αU(z∗)− δy∗ < 0

under the assumption 3.8. The other two eigenvalues of the above matrix coincide with the

eigenvalues of the submatrix

B =

 −β2 y
∗

κ2
− αθy∗

(z∗+θ)2

−αγ2U(z∗) −D − αγ2θy∗

(z∗+θ)2

 .
First notice that

Tr(B) = −β2
y∗

κ2
−D − αγ2θy

∗

(z∗ + θ)2
< 0.

In addition, by using αU(z∗) = β2 (1− y∗/κ2), we have

det(B) = y∗
(
β2
κ2

+ β2
αγ2θ

(z∗ + θ)2
− 2U(z∗)

α2γ2θ

(z∗ + θ)2

)
> 0

by the assumption 3.9. Therefore all eigenvalues of J are negative, which implies the asymp-

totic stability of the preferred state (0, y∗, z∗).

(iii) When y∗ = 0 and x∗ and z∗ satisfy equation 2.8, the Jacobian matrix is reduced to

J =


−β1
κ1
x∗ −δx∗ − αθx∗

(z∗+θ)2

0 β2 − αU(z∗)− δx∗ 0

−αγ1U(z∗) −αγ2U(z∗) −D − αγ1θx∗

(z∗+θ)2

 .

The first eigenvalue of the above matrix is

λ1 = β2 − αU(z∗)− δx∗ < 0
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under the assumption 3.10. The other two eigenvalues of the above matrix coincide with the

eigenvalues of the submatrix

B =

 −β1 x
∗

κ1
− αθx∗

(z∗+θ)2

−αγ1U(z∗) −D − αγ1θx∗

(z∗+θ)2

 .
First notice that

Tr(B) = −β1
x∗

κ1
−D − αγ1θy

∗

(z∗ + θ)2
< 0.

In addition, by using αU(z∗) = β1 (1− y∗/κ1), we have

det(B) = y∗
(
β1
κ1

+ β1
αγ1θ

(z∗ + θ)2
− 2U(z∗)

α2γ1θ

(z∗ + θ)2

)
> 0

by the assumption 3.11. Therefore all eigenvalues of J are negative, which implies the asymp-

totic stability of the failure state (x∗, 0, z∗). The proof is complete.

Remark 1 Assumptions 3.7 are both sufficient and necessary conditions for the asymptotic

stability of the axial steady state. Assumptions 3.8 and 3.9 are sufficient conditions for the

asymptotic stability of the preferred steady state, but the assumption 3.8 is also a necessary

condition for the asymptotic stability of the preferred steady state. Similarly, assumptions 3.10

and 3.11 are sufficient conditions for the asymptotic stability of the failure steady state, but the

assumption 3.10 is also a necessary condition for the asymptotic stability of the failure steady

state.

Notice that assumption 3.7 is equivalent to

α > max

{
β1
θ + I

I
, β2

θ + I

I

}
.

Thus part (i) of Theorem 3.1 indicates that when the killing rate of the chemotherapy agent

is higher than a certain threshold (dependent of the largest growth rate of cells, the input con-

centration of the chemotherapy agent, and the half saturation constant), then both normal and

cancer cells will be cleared.
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The assumptions 3.8 and 3.9 together are equivalent to

β1 − δy∗

U(z∗)
< α ≤ β2

2U(z∗)
.

Thus part (ii) of Theorem 3.1 indicates that when the killing rate of the chemotherapy agent

is well controlled between β1−δy∗
U(z∗)

and β2
2U(z∗)

, the treatment will be successful. This implicitly

requires the steady state to satisfy β2 ≥ 2(β1 − δy∗), which essentially put a restriction on the

growth rates of cancer and normal cells. Similarly part (iii) of Theorem 3.1 indicates that when

the killing rate of the chemotherapy agent lies between β2−δx∗
U(z∗)

and β1
2U(z∗)

, the treatment will

fail. This also implicitly requires the steady state to satisfy β1 ≥ 2(β2 − δx∗).

Notice that the conditions in parts (ii) and (iii) depend on the magnitude of each specific

steady state. For example, a preferred steady state with smaller quantity of normal cells is

easier to achieve than a preferred steady state with larger quantity of normal cells, and a failure

steady state with smaller quantity of cancer cells is easier to achieve than a failure steady state

with larger quantity of cancer cells.

3.1.2 Constant time delay

Local stabilities of steady states of system (DDE-II) were discussed in theorem 3.2 of chapter

2. Here we state the corresponding results for the system 3.1 – 3.3 without proof since it is a

special case.

Theorem 3.2 For the system 3.1 – 3.3 we have:

(i) the axial steady state (0, 0, I) is asymptotically stable provided

β1
α
<

I

θ + I
and

β2
α
<

I

θ + I
; (3.12)

(ii) a preferred steady state (0, y∗, z∗) is asymptotically stable provided

β1 < αU(z∗) + δy∗ and (3.13)

2y∗ ≥ κ2; (3.14)
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(iii) a failure steady state (x∗, 0, z∗) is asymptotically stable provided

β2 < αU(z∗) + δx∗ (3.15)

2x∗ ≥ κ1. (3.16)

Remark 2 Assumptions 3.12 are both sufficient and necessary conditions for the asymptotic

stability of the axial steady state. Assumptions 3.13 and 3.14 are sufficient conditions for the

asymptotic stability of the preferred steady state, but the assumption 3.13 is also a necessary

condition for the asymptotic stability of the preferred steady state. Similarly, assumptions 3.15

and 3.11 are sufficient conditions for the asymptotic stability of the failure steady state, but the

assumption 3.16 is also a necessary condition for the asymptotic stability of the failure steady

state.

Part (i) of Theorem 3.2 has the same interpretation as part (i) of Theorem 3.1. Since the

conditions imposed are necessary and sufficient conditions, we obtain an important information

that the stability of the axial steady state is not affected by the time delay of the treatment.

Assumptions 3.13 and 3.8, and assumptions 3.15 and 3.10 are the same, respectively.

Therefore these specific necessary conditions for the stability of preferred and failure steady

states are also not affected by the time delay. Also, by using the relation y∗ = κ2(1 −

αU(z∗)/β2) when x∗ = 0 and x∗ = κ1(1 − αU(z∗)/β1) when y∗ = 0, assumptions 3.14

and 3.16 are also the same as assumptions 3.9 and 3.11 for the no delay case, respectively.

To further interpret these assumptions, we rewrite 3.13 as

κ1(β1 − β2) > (β1 − κ1δ)x∗ (3.17)

and rewrite 3.15 as

κ2(β1 − β2) < (κ2δ − β2)y∗. (3.18)

Then parts (ii) and (iii) of Theorem 3.2 provide two interpretations depending on the strength

of inter-specific competitions. When the inter-specific competition is strong, in the sense that
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δ > κ2/β2 and δ > κ1/β1, then assumptions 3.17 and 3.14 can be combined to be

y∗ > max

{
κ2(β1 − β2)
κ2δ − β2

,
κ2
2

}
, (3.19)

and assumptions 3.18 and 3.16 can be combined to be

x∗ > max

{
κ1(β2 − β1)
κ1δ − β1

,
κ1
2

}
. (3.20)

One special case of 3.19 happens when cancer cells grow slower than normal cells, i.e., β1 <

β2, then the treatment will be successful as long as y∗ is more than half of the environmental

carrying capacity of normal cells. Similarly one special case of 3.20 when cancer cells grow

faster than normal cells, i.e., β1 > β2, then the treatment will be a failure as long as x∗ is more

than half of the environmental carrying capacity of cancer cells.

On the other hand, when the inter-specific competition is weak, in the sense that δ < κ2/β2

and δ < κ1/β1, then assumptions 3.17 and 3.14 can be combined to be

κ2
2
≤ y∗ <

κ2(β2 − β1)
β2 − κ2δ

,

which may only happen when β2 > β1 and β2−β1
β2−κ2δ > 1/2. When the inter-specific competition

is negligible, this implies that the normal cells need to grow at least twice as fast as the can-

cer cells do for a possible successful treatment. Similarly assumptions 3.18 and 3.16 can be

combined to be
κ1
2
≤ x∗ <

κ1(β1 − β2)
β1 − κ1δ

,

which may only happen when β1 > β2 and β1−β2
β1−κ1δ > 1/2. When the inter-specific competition

is negligible, this implies that the cancer cells need to grow at least twice as fast as the normal

cells do for a possible failed treatment.
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3.2 Numerical simulations

In this section we include some numerical results with parameters satisfying the conditions

constructed in the previous section.

3.2.1 Axial steady state

The first set of parameters simulated satisfy the sufficient and necessary conditions for the axial

steady state (0, 0, I). In particular, the parameters are chosen as

τ1 τ2 D I α δ θ β1 κ1 γ1 β2 κ2 γ2

3 2 4 4 8 1 1 2 5 3 1 9 2

that satisfy the assumptions in 3.7. The initial conditions are set to be x0 = 5, y0 = 3, φ(t) = 4

for t ∈ [−3, 0]. Evolution of the concentrations of normal and cancer cells, and the chemother-

apy agent is illustrated in Figure 3.1. It can be clearly seen that concentration of both normal

and cancer cells tend to 0 as time goes on.
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Figure 3.1: Chemotherapy with delays approaching the axial steady state.

To closer examine the effect of delays, we compare the concentration of cancer and normal

cells of the above example with the special case when τ1 = τ2 = 0, shown in Fig. 3.2. Though
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Figure 3.2: Comparison of normal and cancer cells of chemotherapy with/without delays

concentrations of both cancer and normal approach zero, with or without delays, differences in

cell concentrations between the cases with delays and the cases without delays can be clearly

seen. In this particular example, the chemotherapy treatment approaches the axial steady state

faster with the presence of delays.

3.2.2 Preferred steady state

The second set of parameters simulated satisfy the sufficient and necessary conditions for a

preferred steady state (0, y∗, z∗). In particular, the parameters are chosen as

τ1 τ2 D I α δ θ β1 κ1 γ1 β2 κ2 γ2

3 2 4 4 3 1 1 2 5 3 3 9 2

There is only one real positive solution to the equations 2.7, y∗ = 5.2422 and z∗ = 0.7168, that

satisfy the assumptions 3.8 and 3.9.

Evolution of the concentrations of normal and cancer cells, and the chemotherapy agent

is illustrated in Figure 3.3, where it can be seen that the concentration of cancer cells tends

to 0 while the concentration of normal cells tends to y∗ = 5.2422. The treatment is hence

successful. It is also interesting to see that although the cancer cells become vanish soon, it

takes a much longer time for the normal cells to recover to their steady state.

Similarly we compare the concentration of cancer and normal cells of the above example

with the special case when τ1 = τ2 = 0 in Fig. 3.4, where differences in cell concentrations

for the cases with delays and the cases without delays can be clearly seen. In this particular
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Figure 3.3: Chemotherapy with delays approaching a preferred steady state.

example, the cancer cells are removed slightly faster when there are delays, whereas the normal

cells recover much faster when there are no delays.

3.2.3 Failure steady state

The third set of parameters simulated satisfy the sufficient and necessary conditions for a pre-

ferred steady state (x∗, 0, z∗). In particular, the parameters are chosen as

τ1 τ2 D I α δ θ β1 κ1 γ1 β2 κ2 γ2

3 2 4 4 2 2 1 3 5 2 2 9 3

There is only one (real and positive) preferred steady state x∗ = 2.728, y∗ = 0, z∗ = 2.14, and

it satisfies the assumptions 3.10 and 3.11.

Evolution of the concentrations of normal and cancer cells, and the chemotherapy agent is

illustrated in Figure 3.5, where it can be seen that the concentration of normal cells tends to 0

while the concentration of cancer cells tends to x∗ = 2.728.
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Figure 3.4: Comparison of normal and cancer cells of chemotherapy with/without delays
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Figure 3.5: Chemotherapy with delays approaching a failure steady state.

A comparison between the concentration of cancer and normal cells of the above example

and the special case when τ1 = τ2 = 0 is shown in Fig. 3.6. The difference in cancer cells for

the cases with or without delays is clearly seen, whereas the difference in normal cells for the

cases with or without delays is not detectible.

3.3 Closing remarks

We constructed sufficient and necessary conditions for the stability of the axial steady state

(0, 0, I), which are indifferent for the system with or without delay. We also constructed suffi-

cient conditions for the stability of the preferred and failure steady states, respectively, which

48



0 1 2 3 4 5 6 7 8 9 10

Time

1.5

2

2.5

3

3.5

4

4.5

5

Ca
nc
er

 c
el

l c
on

ce
nt

ra
tio

n
Evolution of cancer cells with/without delays

With delays
Without delays

(a) Cancer cells

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time

-0.5

0

0.5

1

1.5

2

2.5

3

N
or

m
al

 c
el

l c
on

ce
nt

ra
tio

n

Evolution of normal cells with/without delays

With delays
Without delays

(b) Normal cells

Figure 3.6: Comparison of normal and cancer cells of chemotherapy with/without delays

turned out to coincide. The indifference of stability conditions is mainly due to the special

bounded structure of the consumption function U , that mitigate the effect of delays. However,

we cannot conclude that the time delay does not affect the stability of non-axial steady states.

In fact, the numerical experiments presented above clearly show the difference in dynamics of

the chemotherapy model with or without delays. Further numerical experiments indicated that

stability of preferred or failure steady states that do not satisfy conditions 3.14 or 3.16, respec-

tively, could be affected by the delay. In other words, a stable preferred state with y∗ < κ2/2

or a stable failure state with x∗ < κ1/2 when there are no delays, can become unstable with

delays, and vice versa. In the previous chapter, conditions on the magnitudes of delays had

been established for stability of various states by constructing appropriate Lyapunov functions,

which provided more insights in the effect of delays for chemotherapy treatments.
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Chapter 4

A Mathematical Model of Chemotherapy with Variable Infusion

In this chapter, we developed and studied a nonautonomous mathematical model of chemother-

apy cancer treatment with time-dependent infusion concentration of the chemotherapy agent.

In particular, a mutual inhibition type model is adopted to describe the interactions between the

chemotherapy agent and cells, in which the chemotherapy agent is modeled as the prey being

consumed by both cancer and normal cells, thereby reducing the population of both. We first

established properties of solutions and detailed dynamics of the nonautonomous system, and

then conditions under which the treatment is successful or unsuccessful are established. More-

over, we showed both theoretically and numerically that with the same amount of chemother-

apy agent infused during the same period of time, a treatment with variable infusion may over

perform a treatment with constant infusion.

4.1 Mathematical model

The model to be developed and studied is based on the system 3.4–3.5 developed and studied in

the previous chapter, but with time-dependent infusion due to the natural (temporal or random)

fluctuation of environments or human control, and few modifications.

4.1.1 Model formulation

Consider a single site where the cells are treated, e.g., a tumor, with fixed volume V . It is

assumed that all cells, as well as the chemotherapy agent, are spatially uniform within the site,

i.e., their concentrations do not depend on the location. At any time t denote by N1(t), N2(t)

and C(t) be the concentration of cancer cells, normal cells, and the chemotherapy agent at the
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treatment site, respectively. Let Fin = Fout = F be the blood flows brought into and coming out

from the tumor site at any time. The novelty and focus of this work is that the chemotherapy is

assumed to be infused with blood flow at time-dependent concentration. More precisely, denote

by I(t) the concentration of the chemotherapy agent in the blood flowing into the site, where

I(t) is a continuous, positive and bounded function that varies with time deterministically or

randomly.

Using the idea of [30], the negative effect of the chemotherapy agent on the growth of cells

is modeled by a “kill rate” Kj(C) (j = 1, 2 for cancer and normal cells, respectively), and the

chemotherapy agent is regarded as the “prey” being consumed by both types of cells at rates

proportional to the kill rates. In addition, assume that the normal and cancer cells both fol-

low a logistic growth [10, 17, 21, 26] and have Lotka-Volterra type intra-specific competitions

between them [9]. These leads to the following nonautonomous system of ODEs describing

dynamics of chemotherapy

dN1(t)

dt
= −K1(C)N1 + b1N1

(
1− N1

κ1

)
− d1N1N2, (4.1)

dN2(t)

dt
= −K2(C)N2 + b2N2

(
1− N2

κ2

)
− d2N1N2, (4.2)

dC(t)

dt
= −r1K1(C)N1 − r2K2(C)N2 −

CF

V
+
I(t)F

V
. (4.3)

Note that the key difference between the model above and autonomous models in the litera-

ture is that the input concentration I is time-dependent. In addition, the difference between

the model above and the nonautonomous model studied in [17] lies in that the killing rates K1

and K2 are functions of C instead of functions of N1 and N2. More precisely, the functions

−r1K1(C)N1 and −r2K2(C)N2 can be regarded as the interactions that create a positive feed-

back on both variables in the mutual inhibition relation between the chemotherapy agents and

the cells.

Meanings and units of parameters b1, b2, κ1, κ2, r1, r2, d1 and d2 are listed in Table 4.1

below.
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Table 4.1: Description of parameters in the nonautonomous chemotherapy model

Parameter Description
b1 (1/time) Per capita growth rate of cancer cells
b2 (1/time) Per capita growth rate of normal cells
κ1 (mass/vol) Environmental carrying capacity of cancer cells
κ2 (mass/vol) Environmental carrying capacity of normal cells
d1 (vol/time·mass) Intraspecific competition coefficient of cancer on normal cells
d2 (vol/time·mass) Intraspecific competition coefficient of normal on cancer cells
r1 (1) Consumption effectiveness of cancer cells on the agent
r2 (1) Consumption effectiveness of normal cells on the agent

Throughout this chapter we adopt the Michaelis-Menten formulation of the killing rates [30]:

Kj(C) =
Kmax
j C

khalfj + C
, j = 1, 2,

where Kmax
j is the maximum killing rate of the chemotherapy agent on the cells, and khalfj is

the concentration of cells corresponding to Kj(C) = Kmax
j /2, which is usually referred to as

the half saturation rate. Note that Kmax
j is a rate, and has units 1/time and khalfj has units of

concentration.

4.1.2 Non-dimensionalization

For the convenience of mathematical analysis, we first non-dimensionalize the system 4.1 – 4.3

by setting

N1(t) = N∗1 · x(t), N2(t) = N∗2 · y(t), C(t) = C∗ · z(t), t = t∗ · t̃,

with

N∗1 =
khalf1 F

r1V Kmax
1

, N∗2 =
khalf2 F

r2V Kmax
2

, C∗ = khalf1 + khalf2 , t∗ =
V

F
.

Still denoting t̃ by t, the ODEs 4.1 – 4.3 now become the following system

dx(t)

dt
= −α1

x(t)z(t)

θ1 + z(t)
+ β1x(t)(1− γ1x(t))− δ1x(t)y(t), (4.4)

dy(t)

dt
= −α2

y(t)z(t)

θ2 + z(t)
+ β2y(t)(1− γ2y(t))− δ2x(t)y(t), (4.5)
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dz(t)

dt
= − x(t)z(t)

θ1 + z(t)
− y(t)z(t)

θ2 + z(t)
− z(t) + µ(t), (4.6)

where the parameters

αj =
V

F
Kmax
j , βj =

V

F
bj, γj =

khalfj F

V rjKmax
j κj

, θj =
khalfj

khalf1 + khalf2

, for j = 1, 2, (4.7)

δ1 =
d1k

half
2

r2Kmax
2

, δ2 =
d2k

half
1

r1Kmax
1

, µ(t) =
I(t)

khalf1 + khalf2

. (4.8)

are all dimensionless. Moreover, notice that C∗ has the unit of concentration, and both N∗1 and

N∗2 have the unit of (concentration · volume
time

)/(volume · 1
time

) = concentration. Thus the new

unknowns x(t), y(t), z(t) are all dimensionless.

4.1.3 Assumptions

By the physical meanings of parameters listed in Table 4.1, all dimensionless parameters de-

fined in 4.7 are positive. The parameters δ1 and δ2 defined in 4.8 are non-negative and in the

special case of no intra-specific competition they can take the value zero. In addition, by the

definitions of θ1 and θ2, θ1 + θ2 = 1. Moreover, the cancer cells are assumed to grow faster

than normal cells, i.e., b1 > b2 and thus β1 > β2. Furthermore, since the chemotherapy agent

should be more effective killing cancer cells than killing normal cells, Kmax
1 > Kmax

2 and

consequently, α1 > α2. In summary, it is assumed throughout this paper that

(A0) α1 > α2 > 0, β1 > β2 > 0, γ1, γ2 > 0, θ1, θ2 > 0 with θ1 + θ2 = 1, δ1, δ2 ≥ 0;

(A1) the input concentration is bounded and varies continuously with respect to time, i.e., µ(t)

is a continuous and bounded function with

0 < µm ≤ µ(t) ≤ µM for all t ∈ R.
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4.2 Properties of solutions

In this section, we first investigate basic properties of solutions to the system 4.4 – 4.6 including

existence, uniqueness, boundedness and non-negativeness of the solution. We then provide a

basic introduction on concept and theory of nonautonomous dynamical systems required in the

sequel.

4.2.1 Basic properties of solutions

In this subsection we prove that system 4.4 – 4.6 has a unique global solution under the initial

condition

x(t0) = x0 > 0, y(t0) = y0 > 0, z(t0) = z0 ≥ 0. (4.9)

Moreover, we will prove that the solution is non-negative and bounded for all time t ≥ t0. For

convenience, write u(t) := (x(t), y(t), z(t)) and u0 = (x0, y0, z0).

Lemma 4.1 The ODE system 4.4 – 4.6 with initial condition 4.9 has a unique bounded solution

u(t; t0,u0) ∈ C1([t0,∞],R3
+).

Proof: First it is straightforward to rewrite 4.4 – 4.6 as the following ODE on R3,

du(t)

dt
= Lu(t) + γ(u(t), t), (4.10)

with

L =


β1

β2

−1

 , γ =


−α1

x(t)z(t)
θ1+z(t)

− β1γ1x2(t)− δ1x(t)y(t)

−α2
y(t)z(t)
θ2+z(t)

− β2γ2y2(t)− δ2x(t)y(t)

−x(t)z(t)
θ1+z(t)

− y(t)z(t)
θ2+z(t)

+ µ(t)

 .

Since µ(t) is both continuous and bounded, function γ is continuous in t and locally Lipschitz

in u. It then follows immediately from the classical theory of ODEs (see, e.g., [13]), that

equation 4.10 has a unique local solution u(t; t0,u0) ∈ C1([t0, T ],R3).
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Notice that

dx

dt

∣∣∣
x=0

= 0,
dy

dt

∣∣∣
y=0

= 0,
dz

dt

∣∣∣
z=0

= µ(t) ≥ µm > 0,

i.e., the positive quadrant R3
+ is positively invariant for u. Therefore by continuity of solutions,

any solution trajectory that starts from u0 ∈ R3
+ at t0 will stay nonnegative for all t ≥ t0, i.e.,

u(t; t0,u0) ∈ C1([t0, T ],R3
+).

As a direct consequence, components of the solution u(t; t0,u0) satisfy

dx

dt
≤ β1x (1− γ1x) ,

dy

dt
≤ β2y (1− γ2y) ,

dz

dt
≤ µ(t)− z(t). (4.11)

It then follows immediately that

0 ≤ x(t) ≤ max {x0, 1/γ1} , 0 ≤ y(t) ≤ max {y0, 1/γ2} , ∀ t ≥ t0. (4.12)

Moreover, by using Assumption (A1) we have

dz

dt
≤ µM − z(t),

which implies that

0 ≤ z(t) ≤ max {z0, µM} , t ∈ [t0,∞). (4.13)

The inequalities 4.12 and 4.13 and the existence of local solutions, together imply that given

any initial condition u0 = (x0, y0, z0) ∈ R3
+ the equation 4.10 has a unique solution defined for

all t ≥ t0 and remains in the bounded region

Ω :=
{

(x, y, z) ∈ R3
+ : x≤max {x0, 1/γ1} , y ≤ max {y0, 1/γ2} , z ≤ max {z0, µM}

}
.

The proof is complete.
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4.2.2 Preliminaries on nonautonomous dynamical systems

In this subsection we provide introductory material of nonautonomous dynamical systems (see,

e.g., [4, 8, 18, 19]) required in the sequel. In particular, we will introduce the process formu-

lation of nonatuonomous dynamical systems and concepts and theory on pullback and forward

attractors. Denote by

R2
≥ :=

{
(t, t0) ∈ R2 : t ≥ t0

}
.

Definition 1 A process ϕ on space Rd is a family of mappings

ϕ(t, t0, ·) : Rd → Rd, (t, t0) ∈ R2
≥,

which satisfies

(i) initial value property: ϕ(t0, t0,u) = u for all u ∈ Rd and any t0 ∈ R;

(ii) two-parameter semigroup property: for all x ∈ Rd and (t2, t1), (t1, t0) ∈ R2
≥ it holds

ϕ(t2, t0,u) = ϕ (t2, t1, ϕ(t1, t0,u)) ,

(iii) continuity property: the mapping (t, t0,u) 7→ ϕ(t, t0,u) is continuous on R2
≥ × Rd.

Definition 2 Let ϕ be a process on Rd. A family D = {D(t) : t ∈ R} of nonempty subsets of

Rd is said to ϕ-positively invariant if ϕ (t, t0, D(t0)) ⊆ D(t) for all (t, t0) ∈ R2
≥.

Definition 3 Let ϕ be a process on Rd. A ϕ-invariant family A = {A(t) : t ∈ R} of nonempty

compact subsets of Rd is called a forward attractor of ϕ if it forward attracts all families B =

{B(t) : t ∈ R} of nonempty bounded subsets of Rd, i.e.,

dist (ϕ(t, t0, B(t0)), A(t))→ 0 as t→∞ (t0 fixed),
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and is called a pullback attractor of ϕ if it pullback attracts all families B = {B(t) : t ∈ R} of

nonempty bounded subsets of Rd, i.e.,

dist (ϕ(t, t0, B(t0)), A(t))→ 0 as t0 → −∞ (t fixed).

The existence of a pullback attractor follows from that of a pullback absorbing family,

which is usually more easily determined.

Definition 4 A family Λ = {Λ(t) : t ∈ R} of nonempty compact subsets of Rd is called a pull-

back absorbing family for a process ϕ if for each τ ∈ R and every family B = {B(t) : t ∈ R}

of nonempty bounded subsets of Rd there exists some T = T (τ,B) ∈ R+ such that

ϕ (τ, t0, B(t0)) ⊆ Λ(τ) for all t0 ∈ R with t0 ≤ τ − T.

The proof of the following proposition is well known, see e.g., [19].

Proposition 4.2 Suppose that a process ϕ on Rd has a ϕ-positively invariant pullback absorb-

ing family Λ = {Λ(t) : t ∈ R} of nonempty compact subsets of Rd. Then ϕ has a unique global

pullback attractor A = {A(t) : t ∈ R} with its component sets determined by

A(t) =
⋂
t0≤t

ϕ (t, t0,Λ(t0)) for each t ∈ R.

If Λ is not ϕ-positively invariant, then

A(t) =
⋂
s≥0

⋃
t0≤t−s

ϕ (t, t0,Λ(t0)) for each t ∈ R.

4.3 Dynamics of the nonautonomous chemotherapy model

First of all, due to the existence and uniqueness of a global solution to the system 4.4 – 4.6, we

can define a process {ϕ(t, t0)}(t,t0)∈R2
≥

by

ϕ(t, t0,u0) = u(t; t0,u0), ∀ u0 ∈ R3
+, (4.14)
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where u(t; t0,u0) is the solution of 4.4 – 4.6 with the initial condition u(t0) = u0. Moreover, it

is straightforward to check that the process defined above is continuous and hence all concepts

and theory introduced in the subsection 4.2.2 can be applied. In what follows, we first establish

the existence of a pullback attractor, and then investigate detailed structures of the attractor and

provide their biological insights.

4.3.1 Existence of pullback attractors

In this subsection we first construct a positive invariant absorbing set for the process {ϕ(t, t0)}(t,t0)∈R2
≥

defined in 4.14, stated in the Lemma below.

Lemma 4.3 The process {ϕ(t, t0)}t≥t0 has a positive invariant absorbing set

Λ =

{
(x, y, z) ∈ R3

+ : x ≤ 2

γ1
, y ≤ 2

γ2
,

θ1θ2γ1γ2µm
4(θ1γ1 + θ2γ2) + 2θ1θ2γ1γ2

≤ z ≤ 2µM

}
. (4.15)

Proof: First, solving the differential inequalities of x(t) and y(t) in 4.11 with x(t0) = x0 and

y(t0) = y0 gives

x(t) ≤ x0
x0γ1 + (1− γ1x0)e−β1(t−t0)

, ∀ t ≥ t0, (4.16)

y(t) ≤ y0
y0γ2 + (1− γ2y0)e−β2(t−t0)

, ∀ t ≥ t0. (4.17)

Therefore for any ε > 0 there exists T1(ε) > 0 such that

0 ≤ x(t) ≤ 1

γ1
+ ε, 0 ≤ y(t) ≤ 1

γ2
+ ε, for t− t0 > T1(ε). (4.18)

Next, solving the differential inequality of z(t) in 4.11 with z(t0) = z0 gives

z(t) ≤ z0e
−t +

∫ t

t0

µ(s)es−tds ≤ z0e
−(t−t0) + µM

(
1− e−(t−t0)

)
, ∀ t ≥ t0, (4.19)

which implies that for any ε > 0 there exists T2(ε) > 0 such that

z(t) ≤ µM + ε for t− t0 > T2(ε). (4.20)
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On the other side, using 4.18, equation 4.6 and 1
θj+z
≤ 1

θj
for j = 1, 2, we have for any ε > 0

dz

dt
≥ −

(
1

θ1
(

1

γ1
+ ε) +

1

θ2
(

1

γ2
+ ε) + 1

)
z(t) + µ(t), ∀ t− t0 > T1(ε)

and consequently there exists T3(ε) > T1(ε) such that

z(t) ≥ z0e
−
(

1
θ1

( 1
γ1

+ε)+ 1
θ2

( 1
γ2

+ε)+1
)
(t−t0) +

∫ t

t0

µ(s)e

(
1
θ1

( 1
γ1

+ε)+ 1
θ2

( 1
γ2

+ε)+1
)
(s−t)

ds

≥ µm
1
θ1

( 1
γ1

+ ε) + 1
θ2

( 1
γ2

+ ε) + 1
(1− ε), ∀ t− t0 > T3(ε). (4.21)

Summarizing the above, for any 0 < ε < 1 define

Λε =

{
(x, y, z) ∈ R3

+ : x ≤ 1

γ1
+ε, y ≤ 1

γ2
+ε,

µm(1−ε)
1
θ1

( 1
γ1

+ε)+ 1
θ2

( 1
γ2

+ε)+1
≤ z ≤ µM+ε

}
.

Then for any bounded family B = {B(t) : t :∈ R} there exists T (ε,B) > 0 such that

ϕ(t, t0, B(t0)) ⊂ Λε, ∀ t− t0 > T (ε),

i.e., Λε is an absorbing set for the process {ϕ(t, t0)}(t,t0)∈R2
≥

. In particular, picking ε =

min{1/γ1, 1/γ2, 1/2, µM}, then Λε can be simplified to the set Λ in 4.15.

It remains to show that Λ is positive invariant. In fact by using 4.16 we have

x(t; t0,u0) ≤


x0
x0γ1

= 1
γ1
, x0 ∈ (0, 1

γ1
]

x0
x0γ1+(1−γ1x0) = x0 ≤ 2

γ1
, x0 ∈ ( 1

γ1
, 2
γ1

]
∀ t ≥ t0.

Thus

x(t; t0,u0) ≤ 2/γ1 for allu0 ∈ Λ, ∀ t ≥ t0. (4.22)

Similarly it follows from 4.17 that

y(t; t0,u0) ≤ 2/γ2 for allu0 ∈ Λ, ∀ t ≥ t0. (4.23)
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Next, by using 4.19, for any z0 ≤ 2µM ,

z(t; t0,u0) ≤ µM + (z0 − µM)e−(t−t0) ≤ 2µM . (4.24)

Then using 4.22, 4.23 and the ODE 4.6 we obtain

dz(t)

dt
≥ − 2

γ1

z

θ1 + z
− 2

γ2

z

θ2 + z
− z(t) + µ(t)

≥ −
(

2

γ1θ1
+

2

γ2θ2
+ 1

)
z(t) + µm.

Then for any z0 ≥ θ1γ1θ2γ2µm
4(θ1γ1+θ2γ2)+2θ1θ2γ1γ2

,

z(t; t0,u0) ≥

(
z0 −

µm
2

γ1θ1
+ 2

γ2θ2
+ 1

)
e
−
(

2
γ1θ1

+ 2
γ2θ2

+1
)
(t−t0) +

µm
2

γ1θ1
+ 2

γ2θ2
+ 1

≥ −1

2

µm
2

γ1θ1
+ 2

γ2θ2
+ 1

+
µm

2
γ1θ1

+ 2
γ2θ2

+ 1

=
θ1γ1θ2γ2µm

4(θ1γ1 + θ2γ2) + 2θ1θ2γ1γ2
, for allu0 ∈ Λ, ∀ t ≥ t0. (4.25)

Summarizing 4.22–4.25, u(t; t0,u0) ∈ Λ for any u0 ∈ Λ, i.e., Λ is positively invariant. The

proof is complete.

The following theorem follows directly from Proposition 4.2.

Theorem 4.4 Assume that assumptions (A0) and (A1) hold. Then the process {ϕ(t, t0)}(t,t0)∈R2
≥

generated by the solution of system 4.4 – 4.6 has a pullback attractor A = {A(t) : t ∈ R}

inside the nonnegative quadrant R3
+.

Remark 3 Notice that the estimations 4.18 - 4.25 hold both forwardly and pullback, i.e., for t0

fixed with t→∞, as well as for t fixed with t0 → −∞. The set Λ is both a pullback absorbing

set and a forward absorbing set. Although this does not necessarily ensures the existence of

a forward attractor (see, e.g., [8]), it can still be used to investigate forward dynamics of the

system.
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4.3.2 Detailed dynamics within the attractor

Theorem 4.4 provides the existence of a pullback attractor for the process {ϕ(t, t0)}(t,t0)∈R2
≥

defined by the solution of system 4.4 – 4.6. In fact, since Λ is ϕ-positively invariant, the

component subsets of the attractor A are defined by

A(t) =
⋂
t0≤t

ϕ(t, t0,Λ), for each t ∈ R.

In this subsection we investigate detailed structure ofA, with both mathematical and biological

interpretations.

Theorem 4.5 Assume that

β1 < α1
zm

θ1 + zm
, (4.26)

β2 < α2
zm

θ2 + zm
. (4.27)

with

zm :=
µm

4
γ1θ1

+ 4
γ2θ2

+ 2
. (4.28)

Then the pullback attractor A has a singleton component subset

A(t) = {(0, 0, z∗(t))} for all t ∈ R, where

z∗(t) =

∫ t

−∞
µ(s)e−(t−s)ds.

Proof: First note that dx
dt

∣∣
x=0

= 0. Then for any x > 0, using the lower bound of z in 4.25, we

have
z

θ1 + z
≥ zm
θ1 + zm

.

It then follows immediately from the assumption 4.26 that

dx(t)

dt
< x(−α1

zm
θ1 + zm

+ β1) < 0,
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i.e., dx(t)
dt

is negative definite. Thus the x component of all trajectories in the nonnegative

quadrant R3
+ approaches 0 asymptotically. Similarly, the y component of all trajectories in

the nonnegative quadrant R3
+ all approaches 0 asymptotically provided α2zm > β2, which is

equivalent to the assumption 4.27.

With x(t) = 0 and y(t) = 0, the equation 4.6 becomes

dz(t)

dt
= −z(t) + µ(t),

which can be solved to get

z(t; t0,u0) = z0e
−(t−s) +

∫ t

t0

µ(s)e−(t−s)ds

−→
∫ t

−∞
µ(s)e−(t−s)ds as t0 → −∞.

The proof is complete.

Remark 4 The singleton trajectory z∗(t) is obtained by fixing z0 and letting t0 approach −∞.

Notice that the chemotherapy agent does not exists until the treatment starts, thus z0 = 0 for

t0 < 0 and µ(t) = 0 for t < t0. While it seems that z∗(t) then depends on the starting time t0,

it is in fact a function of t dependent on the definition of µ(t) which is given.

Theorem 4.6 Assume that 4.26 holds and

β2 > α2 +
2δ2
γ1
. (4.29)

Then the pullback attractor contains points inside the strictly positive subspace {(x, y, z) ∈

R3
+ : x = 0, y > 0, z > 0}.

Proof: We look at the derivative of y(t) at any ε < 1/γ2. Using Lemma 4.3

dy(t)

dt

∣∣∣∣
y=ε

= −α2ε
z

θ2 + z
+ β2ε(1− γ2ε)− δ2εx

> ε

(
−α2

2µM
θ2 + 2µM

+ β2 − β2εγ2 − δ2
2

γ1

)
.
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In particular picking ε ≤ α2θ2
β2γ2(θ2+2µM )

, then under the assumption 4.29,

β2(1− εγ2) ≥
2α2µM
θ2 + 2µM

+
2δ2
γ1
,

which implies that dy(t)
dt

∣∣∣
y=ε

> 0. Thus y(t) ∈ [ε, 2/γ2] for all t ≥ t0 and the attractor contains

points inside {(x, y, z) ∈ R3
+ : x = 0, y ≥ ε, z > 0}. The proof is complete.

Theorem 4.7 Assume that 4.27 holds and

β1 > α1 +
2δ1
γ2
. (4.30)

Then the pullback attractor contains points inside the strictly positive subspace {(x, y, z) ∈

R3
+ : x > 0, y = 0, z > 0}.

Proof: We look at the derivative of x(t) at any ε < 1/γ1. Using Lemma 4.3

dx(t)

dt

∣∣∣∣
x=ε

= −α1ε
z

θ1 + z
+ β1ε(1− γ1ε)− δ1εy

> ε

(
−α1

2µM
θ1 + 2µM

+ β1 − β1εγ1 − δ1
2

γ2

)
.

In particular picking ε ≤ α1θ1
β1γ1(θ1+2µM )

, then under the assumption 4.30,

β1(1− εγ1) ≥
2α1µM
θ1 + 2µM

+
2δ1
γ2
,

which implies that dx(t)
dt

∣∣∣
x=ε

> 0. Thus x(t) ∈ [ε, 2/γ1] for all t ≥ t0 and the attractor contains

points inside {(x, y, z) ∈ R3
+ : x ≥ ε, y = 0, z > 0}. The proof is complete.

4.3.3 Biological interpretations

Theorem 4.5 says that all cancer cells will die out if the assumption 4.26 is satisfied and all

normal cells will die out if the assumption 4.27 is satisfied. The assumption 4.26 is equivalent

to b1 < Kmax
1 r1, and the assumption 4.27 is equivalent to b2 < Kmax

2 r2 where r1 and r2 can be
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thought of as a portion of the maximal killing rate on the cancer and normal cells, respectively.

More importantly r1 and r2 depend on the minimum infusion concentration mint≥t0 I(t).

Theorem 4.6 provides sufficient conditions for a successful treatment, i.e., all cancer cells

are killed but normal cells still remain. The assumption 4.29 is equivalent to b2 > Kmax
2 +

2d2κ1, which means that the per capital birth rate of normal cells has to be large enough to

cover the maximal killing rate of the chemotherapy agent on the normal cells and twice the

intra-specific competition created by all cancer cells carried by the environment. In the special

case where d2 = 0, this reduces to b2 > Kmax
2 only.

Theorem 4.7 provides sufficient condition for a failed treatment, i.e., all normal cells are

killed but cancer cells are remaining. The assumption 4.30 is equivalent to b1 > Kmax
1 +2d1κ2,

which means that the per capital birth rate of cancer cells is even larger than the maximal killing

rate of the chemotherapy agent on the cancer cells and twice the intra-specific competition

created by all normal cells carried by the environment. In the special case where d1 = 0, this

reduces to b1 > Kmax
1 only.

It is implied by the theoretical results above that the success or failure of a chemotherapy

treatment is mostly determined by the relations between the per capita growth rate of cells,

the maximum killing rate, i.e., effectiveness of the chemotherapy agent on cells. The carrying

capacity of cells also affect the results, but according to the strength of intra-specific competi-

tions.

However, it is worth mentioning that after a closer look at the computations in the proof

of Theorem 4.6, the assumption 4.29 can be weakened to

β2 > α2
2µM

θ2 + 2µM
+

2δ2
γ1
,

which is equivalent to

b2 > Kmax
2 R2 + 2d2κ1 with R2 =

2 maxt≥t0 I(t)

khalf2 + 2 maxt≥t0 I(t)
.
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This means that for the normal cells to remain while all cancer cells are cleared, the per capita

growth rate of normal cells does not really need to be much larger than the maximum killing

rate of the agent on the normal cells. In fact, it only needs to be faster than a percentage R2 of

the maximum killing rate on the normal cells, which is determined by the relation between the

maximum input concentration of the chemotherapy agent and the half saturation concentration

of the consumption function of normal cells.

Similarly, for the cancer cells to remain while all normal cells die, the per capita growth

rate of cancer cells does not really need to be much larger than the maximum killing rate of

the agent on the cancer cells. In fact, it only needs to be faster than a percentage R1 of the

maximum killing rate on the cancer cells, which is determined by the relation between the

maximum input concentration of the chemotherapy agent and the half saturation concentration

of the consumption function of cancer cells.

These bring in the effect of control on the input concentration I(t), as well as a major

difference between nonautonomous and autonomous models.

4.3.4 Comparison to the autonomous counterpart

For comparison purpose, we analyze the autonomous counterpart of the system 4.4 – 4.6, in

which µ(t) ≡ µ̂. In particular, we exam the sufficient conditions for a successful treatment and

a failure treatment and compare to the nonautonomous results. For reader’s convenience, we

state the autonomous system below.

dx(t)

dt
= −α1

x(t)z(t)

θ1 + z(t)
+ β1x(t)(1− γ1x(t))− δ1x(t)y(t), (4.31)

dy(t)

dt
= −α2

y(t)z(t)

θ2 + z(t)
+ β2y(t)(1− γ2y(t))− δ2x(t)y(t), (4.32)

dz(t)

dt
= − x(t)z(t)

θ1 + z(t)
− y(t)z(t)

θ2 + z(t)
− z(t) + µ̂. (4.33)
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Note that all computations in Lemma 4.3 still hold for the above system, and hence we can also

focus our attention on the positive invariant set

Λ̃ =

{
(x, y, z) ∈ R3

+ : x ≤ 2

γ1
, y ≤ 2

γ2
,

θ1θ2γ1γ2µ̂

4(θ1γ1 + θ2γ2) + 2θ1θ2γ1γ2
≤ z ≤ 2µ̂

}
. (4.34)

Recall that a major difference between autonomous and nonautonomous systems is that

solutions of autonomous systems depend only on the time elapsed, t − t0, while solutions of

nonautonomous sytems depend on both t0 and t. In general, nonautonomous systems do not

possess constant equilibria as autonomous systems do. But there may exist entire trajectories of

nonautonomous systems which can be regarded as the time-dependent counterpart of equilibria

for autonomous systems. For example, (0, 0, µ̂) is one equilibrium for the autonomous system

4.31 – 4.33 that is asymptotically stable under the assumptions 4.26 and 4.27, while (0, 0, z∗(t))

is an entire trajectory of the nonautonomous system 4.4 – 4.6 that attracts all other solutions

under the assumptions 4.26 and 4.27.

Our main aim next is to investigate the situation that the nonautonomous system 4.4 – 4.6

approaches a successful treatment with µ(t), while the autonomous system 4.31 – 4.33 with

µ̂ = 1
T−t0

∫ T
t0
µ(t)dt approaches a fail treatment. To that end, consider a “failure” steady state

Ef := (x∗, 0, z∗) with x∗, z∗ > 0, satisfying

−α1
x∗z∗

θ1 + x∗
+ β1x

∗(1− γ1x∗) = 0, − x∗z∗

θ1 + z∗
− z∗ + µ̂ = 0. (4.35)

Setting x̃(t) = x(t)− x∗ and z̃(t) = z(t)− z∗, then x̃(t) and z̃(t) satisfy the ODEs

dx̃(t)

dt
= −α1

(x̃(t)+x∗)z(t)
θ1+z(t)

+ β1(x̃(t) + x∗)(1− γ1(x̃(t) + x∗)), (4.36)

dz̃(t)

dt
= −y(t)(z̃(t)+z∗)

θ2+z(t)
− (z̃(t) + z∗) + µ̂. (4.37)

Theorem 4.8 The “failure” steady state Ef for system 4.31 – 4.33 is asymptotically stable

provided

β2 < α2
zl

θ2 + zl
, (4.38)
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α1zl
θ1 + zl

− (α1x
∗ + z∗)2

4θ21
> β1 − β1γ1x∗ +

(δx∗)2(θ2 + zl)

4(α2zl − β2(θ2 + zl))
. (4.39)

where

zl :=
θ1θ2γ1γ2µ̂

4(θ1γ1 + θ2γ2) + 2θ1θ2γ1γ2
. (4.40)

Proof: First, by using 4.32 and the lower bound of z in 4.34 we have

y
dy

dt
= y2

(
−α2

z

θ2 + z
+ β2 − β2γ2y − δ2x

)
≤ y2

(
−α2

zl
θ2 + zl

+ β2

)
. (4.41)

Then by using 4.35 and 4.36 we have

x̃
dx̃

dt
= − α1z

θ1 + z

(
x̃2 + x̃x∗

)
+ β1x̃

2(1− γ1x) + β1x̃x
∗(1− γ1x∗)− β1γ1x∗x̃2 − δ1xyx̃

≤
(
β1 −

α1z

θ1 + z
− β1γ1x∗

)
x̃2 − α1x

∗x̃

(
z

θ1 + z
− z∗

θ1 + z∗

)
− δ1x∗yx̃. (4.42)

Next, by using 4.35 and 4.37 we have

z̃
dz̃

dt
= − x

θ1 + z
z̃2 − xz∗

θ1 + z
z̃ − z̃2 + (−z∗ + µ̂)z̃

= −
(

x

θ1 + z
+ 1

)
z̃2 −

(
x

θ1 + z
− x∗

θ1 + z∗

)
z∗z̃

≤ −z̃2 −
(

x

θ1 + z
− x∗

θ1 + z∗

)
z∗z̃. (4.43)

Now define V (x, x̃, z̃) = 1
2
y2 + 1

2
x̃2 + 1

2
z̃2. Then V (x̃, z̃) > 0 for all x, x̃, z̃ 6= 0 and

by 4.41 – 4.43, the derivative of V (x, x̃, z̃) along solutions of the system 4.31 – 4.36 – 4.37

satisfies

dV

dt
≤

(
−α2

zl
θ2+zl

+ β2

)
y2 +

(
β1 − α1zl

θ1+zl
− β1γ1x∗

)
x̃2 − z̃2 − δ1x∗yx̃

−α1x
∗x̃
(

z
θ1+z
− z∗

θ1+z∗

)
−
(

x
θ1+z
− x∗

θ1+z∗

)
z∗z̃. (4.44)
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Notice that

−α1x
∗x̃

(
z

θ1 + z
− z∗

θ1 + z∗

)
−
(

x

θ1 + z
− x∗

θ1 + z∗

)
z∗z̃ = − θ1(α1x

∗ + z∗)

(θ1 + z)(θ1 + z∗)
x̃z̃,

in which
θ1(α1y

∗ + z∗)

(θ1 + z)(θ1 + z∗)
≤ α1x

∗ + z∗

θ1
.

Hence there exist p, q > 0 such that

dV

dt
≤

(
−α2

zl
θ2 + zl

+ β2 + δ1x
∗p

2

)
y2 +

(
−1 +

α1x
∗ + z∗

θ1

q

2

)
z̃2

+

(
β1 −

α1zl
θ1 + zl

− β1γ1x∗ +
δ1x
∗

2p
+
α1x

∗ + z∗

2qθ1

)
x̃2.

In particular, pick p and q such that

δ1x
∗p

2
= α2

zl
θ2 + zl

− β2,
α1x

∗ + z∗

θ1

q

2
= 1.

Then it follows directly from assumptions 4.38 and 4.39 that

dV

dt
≤
(
β1 −

α1zl
θ1 + zl

− β1γ1x∗ +
(δx∗)2(θ2 + zl)

4(α2zl − β2(θ2 + zl))
+

(α1x
∗ + z∗)2

4θ21

)
x̃2 < 0.

The proof is complete.

Following similar computations, we have the following stability result for a “successful”

steady state Es := (0, y∗, z∗) with y∗, z∗ > 0.

Theorem 4.9 The “successful” steady state Es for system 4.31 – 4.33 is asymptotically stable

provided

β1 < α1
zl

θ1 + zl
, (4.45)

α2zl
θ2 + zl

− (α2y
∗ + z∗)2

4θ22
> β2 − β2γ2y∗ +

(δy∗)2(θ1 + zl)

4(α1zl − β1(θ1 + zl))
, (4.46)

where zl is defined as in 4.40.
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The assumption β2 < α2
zl

θ2+zl
in Theorem 4.8 basically ensures that all normal cells die out for

the autonomous system 4.31 – 4.33. Recall for the nonautnomous systems 4.4 – 4.6 that the

assumption for all normal cells to die out is β2 < α2
zm

θ2+zm
. It is important to note that zm ≤ zl

as defined in 4.28 and 4.40, respectively. Therefore intuitively when β2 belongs the interval

α2
zm

θ2 + zm
≤ β2 ≤ α2

zl
θ2 + zl

,

the normal cells may survive for the nonautonomous case while dying out for the autonomous

case. However, the sufficient condition for the cancer cells to die out in the nonautonomous

system, β1 < α1
zm

θ1+zm
automatically ensures the the assumption β1 < α1

zl
θ2+zl

for the cancer

cells to die out in the autonomous system. Nevertheless a successful treatment resulted from

the nonautonomous system 4.4 – 4.6 and an axial steady state for the autonomous system 4.31

– 4.33 can be easily constructed. Moreover, all assumptions constructed are sufficient but not

necessary conditions, so the scenarios of successful treatment in the nonautonomous case and

failed treatment in the autonomous case cannot be theoretically excluded. In fact, extensive

numerical simulations reveal that such cases do exist.

4.3.5 Numerical simulations

To illustrate the theoretical results above, we pick one set of parameters that satisfy assumptions

4.45 and 4.46 resulting a “failure” treatment in the autonomous system, and assumptions 4.26

and 4.29 resulting a “success” treatment in the nonautonomous system. In particular, we pick

µ̂ =
µm + µM

2
, µ(t) =

µm + µM
2

+
µM − µm

2
sin

2kπ

T
t, k ∈ Z,

with

µm = 2, µM = 6, k = 2, T = 100.

All parameters are chosen to be strictly positive and satisfy the assumptions (A0) and (A1),

shown in the table below.
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α1 α2 β1 β2 γ1 γ2 θ1 θ2 δ1 δ2

2 1.28 2.98 1.95 0.2 0.2 0.5 0.5 1 1

Figures 4.1 and 4.2 show the numerical simulations of chemotherapy with the same pa-

rameters shown in the above table, but with time-dependent and constant infusion, respectively.

The two simulations have the same amount of chemotherapy agent infused between the start-

ing time 0 and ending time 100. It is clearly observed that with the time-dependent infusion

the amount of cancer cells approaches zero near time 20, with the amount of normal cells re-

main positive until time 100. On the other hand with the constant infusion the normal cells

approaches zero slightly after time 30, whereas the amount of cancer cells approaches a pos-

itive constant close to 3 as time evolves. These demonstrate our conjecture that with the

Figure 4.1: Chemotherapy with time-dependent infusion µ(t) = 4 + 2 sin 0.04t, resulting a
successful treatment where all cancer cells are removed and normal cells remain.

same amount of chemotherapy agent, infused during the same period of time, a treatment with

time-dependent infusion can over perform a treatment with constant infusion.

4.4 Closing remarks

We have developed and studied a nonautonomous mathematical model of chemotherapy cancer

treatment with time-dependent infusion concentration of the chemotherapy agent. We have

discussed properties of solutions and detailed dynamics of the nonautonomous system, and
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conditions under which the treatment is successful or unsuccessful are established. We have

shown both theoretically and numerically that with the same amount of chemotherapy agent

infused during the same period of time, a treatment with variable infusion may over perform a

treatment with constant infusion.
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Figure 4.2: Chemotherapy with time-dependent infusion µ̂ = 4, resulting a failed treatment
where all normal cells are removed and cancer cells remain.
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