AN APPROACH TO BIS(AMINO ACID)S UTILIZING DIMETHYL

2,4-BIS(DIAZO)-3-OXOGLUTARATE AND STUDIES OF

 TRIS(2,6-DIHYDROXYPHENYL)E, E = B, P.Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information.

Lirui Guan

Certificate of Approval:

Edward J. Parish
Professor
Chemistry

Thomas E. Albrecht-Schmitt
Associate Professor
Chemistry

Peter D. Livant, Chair
Associate Professor
Chemistry

Stephen L. McFarland
Dean
Graduate School

AN APPROACH TO BIS(AMINO ACID)S UTILIZING DIMETHYL

2,4-BIS(DIAZO)-3-OXOGLUTARATE AND STUDIES OF TRIS(2,6-DIHYDROXYPHENYL)E, E = B, P.

Lirui Guan

A Thesis

Submitted to the Graduate Faculty of

Auburn University in Partial Fulfillment of the Requirements for the

Degree of

Master of Science

Auburn, Alabama
December 16, 2005

AN APPROACH TO BIS(AMINO ACID)S UTILIZING DIMETHYL 2,4-BIS(DIAZO)-3-OXOGLUTARATE AND STUDIES OF TRIS(2,6-DIHYDROXYPHENYL)E, E = B, P.

Lirui Guan

Permission is granted to Auburn University to make copies of this thesis at its discretion, upon request of individuals or institutions and at their expense. The author reserves all publication rights.

Signature of Author

Date

THESIS ABSTRACT

AN APPROACH TO BIS(AMINO ACID)S UTILIZING DIMETHYL

2,4-BIS(DIAZO)-3-OXOGLUTARATE AND STUDIES OF TRIS(2,6-DIHYDROXYPHENYL)E, E = B, P.

Lirui Guan

Master of Science, December 16, 2005
(B.S., Hunan Univeristy, 2001)

84 typed pages
Directed by Peter D. Livant

When treated with a diazo transfer agent, dimethyl 3-oxoglutarate afforded a high yield of the bis(diazo) compound dimethyl 2,4-bis(diazo)-3-oxoglutarate, 33. The bis(diazo) compound, catalyzed by $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$, reacted with an excess of O-benzyl carbamate, $\left(\mathrm{CbzNH}_{2}\right)$, to give the product of double $\mathrm{N}-\mathrm{H}$ insertion, 36, $\left[\mathrm{MeO}_{2} \mathrm{C}-\mathrm{CH}(\mathrm{NHCbz})\right]_{2} \mathrm{C}=\mathrm{O}$. Thus in two steps one obtains a protected bis(amino acid). Compound 36 exhibits complex ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, which may be rationalized by assuming 36 is predominantly enolic.

Attempted removal of the Cbz protecting groups gave startling results. Hydrogenation of 36 over Pd/C led to dimethyl 2-carboxamidosuccinate, 44,
$\mathrm{MeO}_{2} \mathrm{CCH}_{2} \mathrm{CH}\left(\mathrm{CONH}_{2}\right)\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, the structure of which was proven by x-ray crystallography.

In other studies, tris(2,6-dimethoxyphenyl)boron was synthesized by literature procedures. Demethylation was attempted using $\mathrm{AlCl}_{3} /$ toluene, and $\mathrm{BBr}_{3} \cdot \mathrm{SMe}_{2}$. In both cases, resorcinol, the product of B-C bond cleavage was observed.

Tris(2,6-dihydroxyphenyl)phosphonium chloride 63 was synthesized and its x-ray crystal structure was determined. It binds ethyl ether via a hydrogen bond. The three aryl rings adopt propeller symmetry, with torsion angles relative to the P-H direction of 20.5°, 24.5°, and 30.8°. Compared to the average C-P-H angle of $\left[\mathrm{Ph}_{3} \mathrm{PH}\right]^{+}-108.2^{\circ}$, the average C-P-H angle of 63 is smaller, namely 104.9°.

ACKNOWLEDGMENT

I would like to thank Dr. Peter Livant who has been so helpful in my research here at Auburn University, Dr. Albrecht-Schmitt for assistance with X-ray crystallography and Dr. Parish for his help with the thesis. I also would like to give the thanks to my laboratory partners Mrs. Yuanping Jie, Mr. Hui Wang and Mr. Xiaoxun Li for their help in my research. Also thank to my wife for supporting my life.

Style manual or journal used: Journal of Organic Chemistry
Computer software used: Microsoft Word 2002 \& Chem. Draw Ultra 7.0

TABLE OF CONTENTS
LIST OF SCHEMES X
LIST OF FIGURES xii
LIST OF TABLES xiii

1. PART I. INTRODUCTION 1
1.1. Introduction to Diazocarbonyl Compounds 1
1.2. Diazo Transfer Reaction 2
1.3. Catalysts for Metal Carbene Transformations 5
1.3.1. Mechanism of catalytic diazo decomposition. Metal carbene generation and reactions 6
1.3.2. Rhodium catalysts for diazo decomposition 8
1.4. N-H insertion 9
1.4.1. Intermolecular N-H Reaction 11
1.4.2. Intramolecular N-H Reaction 13
1.5. Bisdiazo compounds 15
1.6. Diamino Dicarboxylic Acids. 16
1.7. Diaminoglutaric Acid and Its 3-substituted Derivatives 18
1.7.1. Diaminoglutaric Acid 19
1.7.2. 3-Substituted Diaminoglutaric Acids 21
2. PART I. RESULTS AND DISCUSSION. 25
2.1. Synthesis of Bisdiazocarbonyl Compounds. 25
2.2. N -H insertion of $\mathrm{Rh}(\mathrm{II})$-stabilized carbenoid from bis(diazo) compound into Cbz-NH2 28
2.3. N -H insertion of $\mathrm{Rh}(\mathrm{II})$-stabilized carbenoid from bis(diazo) compound into Boc- NH_{2} 36
2.4. Catalytic hydrogenolysis of $\mathrm{N}-\mathrm{H}$ insertion reaction products. 38
3. PART II. INTRODUCTION 43
3.1. Introduction to hypervalency 43
3.2. Hypervalent boron 10-B-5 species. 44
3.3. Hypervalent phosphorus 10-P-5 Species 46
4. PART II. RESULTS AND DISCUSSION 48
4.1. Synthesis of tris(2,6-dimethoxyphenyl)borane 48
4.2. Demethylation of tris(2,6-dimethoxyphenyl)borane, 56 48
4.2.1. Demethylation of 56 by aluminum trichloride 49
4.2.2. Demethylation by $\mathrm{BBr}_{3} . \mathrm{S}(\mathrm{Me})_{2}$ 49
4.3. Synthesis of tris(2,6-dihydroxyphenyl)phosphonium chloride 63. 50
5. EXPERIMENTAL 55
6. REFERENCES 61
7. APPENDICES 69

LIST OF SCHEMES

1. Mechanism of diazo transfer reaction 3
2. Mechanism for catalytic decomposition of diazo compounds 7
3. Mechanism for insertion reaction of metal carbenes 11
4. A summary of Intramolecular N-H Reaction. 14
5. Bacterial peptidoglycan 17
6. The interaction of peptide and peptide receptor 18
7. Reported Synthesis route I to diaminoglutaric acid (DAG) 20
8. Reported Synthesis route II to diaminoglutaric acid (DAG) 20
9. Minmin's synthesis route to diaminoglutaric acid (DAG) 21
10. Introduce fluorine by diethylaminosulfur trifluoride (DAST) 22
11. A proposal from compound 28 to 27 23
12. Mechanism of fluoroacylated amino acids as suicide inhibitors of enzymatic decarboxylation reactions. 24
13. A proposal synthesis to fluorine bis(amino acid) 24
14. Highly enolic compound 36 34
15. Highly enolic compound 42 37
16. Proposed mechanism for formation of 44 42
17. Some simple hypervalent molecules 43
18. Three-center four-electron (3c-4e), hypervalent bonding scheme 44
19. Some hypervalent compounds based on second row elements 45
20. A proposal to new 10-B-5 species 59 46
21. The progress of Hui Li of our laboratory in the synthesis of 61 47
22. Synthesis of tris(2,6-dihydroxyphenyl)phosphonium chloride 63 51
23. Several reports of structures of the type $\left(\mathrm{Ar}_{3} \mathrm{PH}\right)^{+}$ 53

LIST OF FIGURES

1. ${ }^{1} \mathrm{H}$ spectrum of compound 33 26
2. ${ }^{13} \mathrm{C}$ spectrum of compound 33 27
3. IR spectrum of compound 33 27
4. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 36 29~30
5. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 36 31~33
6. Model compound used to assign ${ }^{1} \mathrm{H}$ NMR chemical shifts in 36 35
7. Model compound used to assign ${ }^{13} \mathrm{C}$ NMR chemical shifts in 36 36
8. X-ray structure of compound 44 39
9. Crystal structure of compound 63 52

LIST OF TABLES

1. Crystal parameters of compound 63 ... 52
2. Geometrical parameters of some phosphonium ions compared to those of 63 54

1. PART I. INTRODUCTION

1.1 Introduction to Diazocarbonyl Compounds

The date of the first recorded synthesis of an α-diazocarbonyl compound is from the work of Curtius ${ }^{1,2}$ on diazotization of natural α-amino acids (ethyl diazoacetate was first synthesized in 1883 from glycine). The simple diazocarbonyl compounds became available only in the late 1920s with the work of Arndt and Eistert, ${ }^{3-5}$ and of Bradley and Robinson. ${ }^{6}$ Now, modern organic synthesis continues to benefit from the unique versatility of diazocarbonyl compounds in cyclopropanation, $\mathrm{X}-\mathrm{H}$ insertion ($\mathrm{X}=\mathrm{C}, \mathrm{N}, \mathrm{O}$, $\mathrm{S}, \mathrm{Se}, \mathrm{P}$, halogen), Wolff rearrangement, ylide formation with subsequent transformations, aromatic cycloaddition and substitution, and many other useful reactions.

There are perhaps four principal reasons for the high level of activity in the diazo compound area. First, the enormous number of transformations that can occur with diazocarbonyl compounds makes them extremely versatile reactants. Second, methodology for their synthesis has continued to develop on a broad front, and there are now available well-tested, reliable procedures for the preparation of all the main classes of diazocarbonyl compounds. Third, the introduction in the 1970s of dirhodium(II) catalysts for diazocarbonyl decomposition opened up numerous new opportunities for highly chemoselective transformations that were largely inaccessible with
conventionalcopper catalysts. Fourth, the ever-increasing demands for stereocontrol in the production of molecules of high enantiopurity have led to the introduction of chiral catalysts for asymmetric transformations of diazocarbonyl compounds. ${ }^{7}$

The synthesis of diazoketones involves addition of an acyl chloride to ethereal diazomethane ${ }^{3-5}$ at or below $0{ }^{\circ} \mathrm{C}$ (eq. 1). Numerous synthetic intermediates containing the diazoketone functional group have been obtained in this way.

1.2 Diazo Transfer Reaction

Diazo transfer is now the standard route which is widely used to transfer a complete diazo group from a donor to an acceptor. Since the middle of the last century, sulfonyl azide compounds have been developed to serve as excellent diazo donors. ${ }^{8}$ The diazo group transfers to the α-methylene position of a carbonyl compound by the simple diazo transfer procedure of direct exposure to tosyl azide in dry acetonitrile or ethanol using triethylamine as a base (eq. 2).

The mechanism of diazo transfer reaction has been developed by M. Regitz Saarbrücken (Scheme 1). ${ }^{9}$

Scheme 1

Although tosyl azide has been by far the most frequently employed diazo donor, and was used by Doering and DePuy in 1953 in their synthesis of diazocyclopentadiene,,${ }^{10}$ work in the Merck laboratories ${ }^{11}$ has raised doubts regarding the safety aspects of this reagent. With these worries, Merck chemists ${ }^{11,12}$ have examined sulfonyl azides $\mathbf{1}$ to $\mathbf{1 2}$ from the standpoint of utility, thermal stability, ease of handling, and safety. It was found that methanesulfonyl (mesyl) azide $\mathbf{1}$ was the most hazardous and dangerous diazo transfer reagent of the group. Compared to more dangerous transfer reagent, tosyl azide, p-acetamidobenzenesulfonyl azide (p-ABSA) 7 offers more safety, yield, and ease of manipulation in diazo transfer. This reagent is currently commercially available and has some advantage in safety and yield, and so it is used in our laboratory for the diazo transfer reactions. These diazo transfer reagents, $\mathbf{1}$ to $\mathbf{1 2}$, are very efficient, giving good yield ($>80 \%$) in various diazo transfer reactions.
$\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{~N}_{3}$

1

5

9

2

6

10

3

7

11

4

8

12

These diazo transfer reagents may be made from the corresponding sulfonyl chlorides (eq. 3).

With a diazo transfer reagent such as 7, the α-diazocarbonyl compound is readily formed. When the reaction site is activated by two flanking carbonyls, the diazo transfer reaction works even more successfully. For example, Hazen et al. ${ }^{11}$ employed the naphthalene-based diazo transfer reagent 4 in the high-yield synthesis of dimethyl diazomalonate, DDM (eq. 4).

1.3 Catalysts for Metal Carbene Transformations

Diazo compounds are inherently unstable to acid-promoted decomposition. Transition metals, which act as Lewis acids, are therefore effective catalysts for diazo decomposition. ${ }^{14}$ The reactivities of diazocarbonyl compounds and alkyl/aryl diazo compounds are different. This may be rationalized on the basis of the pK_{a} values of the corresponding diazonium ions. As an example, diazomethane is the conjugate base of the methanediazonium ion (eq. 5), whose $\mathrm{p} K_{a}$ value ${ }^{14}$ of 10 suggests the driving force for the
high reactivity of diazomethane towards Brønsted acids, and, by extension, Lewis acids.

In contrast, the $\mathrm{p} K_{a}$ values of diazonium ions derived from diazoesters (a) and diazoketones (b) have been estimated to be between -5 and -2 , respectively. ${ }^{15}$ This is

a

b
consistent with the much greater stability of diazoesters and diazoketones toward acid-promoted decomposition. So, various transition metals have been developed as diazo decomposition catalysts to afford more efficient reactivity in diazo decomposition reactions.

1.3.1 Mechanism of catalytic diazo decomposition. Metal carbene generation and

 reactionsTransition metal complexes that are effective catalysts for diazo decomposition are Lewis acids. ${ }^{13}$ Their catalytic activity depends on coordinative unsaturation at the
metal center, which allows them to react as electrophiles with diazo compounds. ${ }^{7}$ In the generally accepted mechanism for catalytic decomposition of diazo compounds (Scheme 2), ${ }^{13,16-19}$ electrophilic addition causes the loss of dinitrogen and production of a metal-stabilized carbene (14). Transfer of the electrophilic carbene entity to an electron-rich substrate (S :) regenerates the catalytically active $\mathrm{L}_{n} \mathrm{M}$ and completes the catalytic cycle.

Scheme 2

The activities of catalytically active transition metal compounds towards diazo decomposition are dependent on both the electrophilicity of the transition metal compound and on the stability of the diazo compound. ${ }^{15}$ Among diazocarbonyl compounds, those with two carbonyl groups flanking the diazo-bearing carbon are more stable toward transition metal-catalyzed decomposition than those with only one
carbonyl group. ${ }^{17}$ Diazoesters are generally more stable than diazoketones, and diazoamides are more stable than diazoesters. This profile is a useful guide to determining the reaction conditions required to generate a metal carbene. For example, diazoacetoacetates and diazomalonates require higher temperatures for reactions with transition metal catalysts than do diazoacetates, which can undergo catalytic nitrogen loss at or below room temperature. ${ }^{15}$

1.3.2 Rhodium catalysts for diazo decomposition

Dirhodium(II) catalysts are the most effective and versatile for diazo decomposition. ${ }^{7,16-20}$ Dirhodium(II) tetraacetate (15) was first introduced by Teyssié and

15

16

17
co-workers in 1973. Control of reactivity and selectivity in such catalysts can be provided by varying the catalysts' bridging carboxylate (e.g. $\mathbf{1 6}^{21}$) or carboxamide (e.g. 17^{22}) ligands (in the structures above, the ligand shown is repeated three more times). Rhodium acetate 15 was originally employed as a catalyst for diazo decomposition in the presence of aniline (eq. 6), namely, insertion of a metal-carbene into an $\mathrm{N}-\mathrm{H}$ bond. The reaction afforded the desired product 18 in 70% yield. ${ }^{23}$ Compared to copper catalyst with much lower yield ($<30 \%$ usually), ${ }^{24}$ the dirhodium catalyst offers the advantages of mild conditions and higher yield.

18, 70\%

1.4 N-H insertion

Metal carbenes derived from α-diazocarbonyl compounds, e.g. 19, are highly electrophilic. They readily react with an available Lewis base (B:) to form a zwitterionic adduct (Scheme 3, in which B : is PhNH_{2}). Catalytically generated electrophilic metal

19
carbenes add to Lewis bases, characteristically heteroatom-substituted organic compounds, to form zwitterionic adducts 20, which can either dissociate to form rearranged products (or form a "free" ylide) and the catalyst, or revert to the metal carbene and Lewis base. With catalytically generated metal carbenes, especially those of rhodium, the metal-carbon bond of the intermediate metal-stabilized ylide is generally weaker than the $\mathrm{R}_{2} \mathrm{C}$-base bond, and the preferred cleavage is that of the metal-carbon bond. The ease with which catalytically generated metal carbenes transfer the carbene entity to a heteroatom of an organic base is the basis for the synthetic utility to this diazo decomposition methodology. ${ }^{7}$

Scheme 3

1.4.1 Intermolecular N-H Reaction

Insertion into N-H bonds by diazocarbonyl compounds attracted little attention as a synthetic route to α-amino ketones or esters until 1978, when a bicyclic β-lactam synthesis was published from the Merck laboratories. ${ }^{25-27}$ Since then the power of this reaction has been demonstrated dramatically, especially the intramolecular reaction leading to nitrogen heterocycles. As mentioned, the introduction of rhodium(II) catalysts for $\mathrm{N}-\mathrm{H}$ insertion led to major improvements with reaction between EDA and aniline in the presence of rhodium(II) acetate furnishing in 70% yield the insertion product (eq. 6). ${ }^{28}$

Reactions are carried out either neat or in solution (benzene or ethylene glycol dimethyl ether). In a similar fashion, Landais and Planchenault ${ }^{29}$ used rhodium(II) acetate in benzene to bring about $\mathrm{N}-\mathrm{H}$ insertion of aniline in an allylic amino ester
synthesis (eq. 7).

$\mathrm{N}-\mathrm{H}$ insertion with diazocarbonyl compounds is not limited to amino functions.

Insertion reactions involving amides, β-lactams, and carbamates are also known. Some examples are shown in eqs. $8,{ }^{30} 9,{ }^{31}$ and $10 .{ }^{30}$ For the reaction in eq. 10 two different

$\mathrm{N}-\mathrm{H}$ sites are available, one in the form of an amide and the other a carbamate. The former is preferred.

1.4.2 Intramolecular \mathbf{N}-H Reaction

By far the most successful metal-catalyzed N-H insertion reactions have been intramolecular, leading to nitrogen heterocycles. Most recent studies, mainly by Rapoport and co-workers, ${ }^{32}$ have established that while five-membered formation is preferred kinetically in the intramolecular insertion, it is possible to construct four- to six-membered aza rings from simple, conformationally mobile acyclic diazoester precursors. Rhodium(II) acetate was used as catalyst throughout, and variations in solvent, temperature, and catalyst concentration were found to play a role in determining product distributions. A summary of the results is shown in Scheme 4. Cyclization to four- and five-membered rings containing N occurred efficiently and selectively (entries 1 and 2). With the diazo compound in entry 3, the opportunity exists for both intramolecular C-H and N-H insertion. Finally, the diazo compound in entry 4 presented the option of five- and six-membered ring formation from $\mathrm{C}-\mathrm{H}$ insertion and seven-membered heterocycle formation from N-H insertion. Thus the kinetic preference for five-membered ring formation completely overwhelms any tendency for $\mathrm{N}-\mathrm{H}$ insertion. However, four-membered rings are also directly accessible with rhodium(II) catalysts. ${ }^{33}$

Scheme 4

Seebach ${ }^{34}$ and McKervey ${ }^{35}$ and their collaborators have found that Boc- and Cbz-protected α-aminodiazoketones derived from L-alanine, L-valine, and L-phenylalanine cyclize very efficiently to the azetidin-3-one derivatives (eq. 11).

1.5 Bisdiazo compounds

The decomposition of bisdiazo compounds in rhodium(II) catalyst using in the synthesis is limited studied. Recently, the photochemistry of bisdiazo compounds was studied for the synthesis of highly strained compounds (eq. 12). ${ }^{36}$

Also, the intramolecular insertion reaction of bisdiazo compounds was established as a useful route to cyclic ethers, especially some medium-ring and large-ring compounds. Kulkowit and McKervey used $\mathrm{Cu}(\mathrm{II})(\mathrm{acac})_{2}$ in benzene to catalyze the intramolecular O-H insertion reaction of a bisdiazo ketone (eq. 13). ${ }^{37}$

1.6 Diamino Dicarboxylic Acids

Amino acid research is a large and important field. Diamino dicarboxylic acids or bis(amino acid)s are characterized by two glycine residues that are connected by a spacer via the α-carbons. They contain two asymmetric carbons, two chemically identical amino

a bis(amino acid)
and carboxylic groups. This character confers on bis(amino acid)s an important role in studying biosynthesis inhibitors, such as investigating the synergistic effect when bacterial infections result in an immune response. ${ }^{38}$ For example, bacterial peptidoglycan (Scheme 5) is a giant macromolecule consisting of linear heteroglycan chains cross-linked by short peptide chains. When studying the synergistic effect, pure muramyl peptides with different lengths of peptide chain are required. The bis(amino acid)s then
function as cross-linkers in the peptidoglycan network.

Scheme 5

Also, the use of diamino dicarboxylic acid derivatives for peptidomimetic drug design is becoming more commonplace. ${ }^{39}$ Recently, members of this class have been used as conformational constraints in order to mimic the secondary structures of peptides, such as β-turns, ${ }^{40}$ and to stabilize a helical conformation. ${ }^{41}$ As most peptides are flexible and have many conformations in solution which is difficult to determine the activity of the peptide. The conformational constraints may be helpful in elucidating these structures by restricting the peptide to a particular conformation or closely related family of conformations. ${ }^{42}$ After being bridged or linked by a bis(amino acid), the peptide will be restricted to a particular conformation which will be associated with a receptor and a desired biological effect can be obtained (Scheme 6). ${ }^{45(a)}$

Scheme 6

1.7 Diaminoglutaric Acid and Its 3-Substituted Derivatives

Recently, much interest has been focused on the synthesis of unnatural and
unusual α-amino acids, ${ }^{43}$ since this class of compounds has an intrinsic biological activity. Such compounds can also modify biological potency and improve metabolic stability in a useful way when incorporated into medicinally important peptides. ${ }^{44}$ Meanwhile, the synthesis of the modified peptides based on the substitution of α-amino acids by non-standard residues in order to control flexibility and to determine conformations or to change the bioavailability and the inhibitory activity of the peptide has attracted significant attention. ${ }^{43(b), 44,45}$ In particular, the incorporation of α-amino acids with a functional group that can act as a receptor ligand is of great interest.

1.7.1 Diaminoglutaric Acid

Glutaric acid is an important chemical messenger which is released in most of the excitatory synapses of mammalian central nervous systems. ${ }^{46}$ Several syntheses of differentially functionalized $(2 R, 4 S)$ - and $(2 R, 4 R)$-diaminoglutaric acids (DAG) 21 and 22 which was employed as a building block for peptidomimetics have been reported. ${ }^{47}$

21

22

Scheme $7^{47(\mathrm{~d})}$ and Scheme $8^{47(\mathrm{f})}$ summarize two reported routes to 21 and 22.

$+$

1. $\mathrm{CSA}, \mathrm{MeOH}, \mathrm{rt}$

CSA = camphorsulfonic acid

Scheme 7

Scheme 8

The full syntheses are moderately lengthy. In work leading to his Ph . D. degree, Dr. Minmin Yang of our laboratory discovered that the $\mathrm{N}-\mathrm{H}$ insertion reaction of diethyl 2-diazoglutaconate was accompanied by a shift of the double bond (Scheme 9). This
created the possibility for another diazotization/N-H insertion sequence. The net result was a concise high-yield synthesis of a bis(amino acid) derivative. When the final reduction was a hydrogenation over a chiral catalyst, partial control of stereochemistry was afforded. ${ }^{47(\mathrm{~g})}$

Scheme 9

1.7.2. 3-Substituted Diaminoglutaric Acids

The incorporation of α-amino acids with a functional group that can act as a receptor ligand, such as 3 -substituted diaminoglutaric acids, has attracted interest as possible peptidomimetics. Our target 27 here is to introduce fluorine into the β-position of diaminoglutaric acid.

27

It has been known for some time that fluorine can have profound and unexpected results on biological activity. ${ }^{48}$ Once introduced, the high carbon-fluorine bond energy renders the substituent relatively resistant to metabolic transformations. The electronegativity of fluorine can have pronounced effects on the electron distribution in the molecule, affecting the basicity or acidity of neighboring groups, dipole moments within the molecule and the overall reactivity and stability of neighboring functional groups. As a consequence of the available electron density, fluorine can function as a hydrogen bond acceptor. ${ }^{49}$ Introduction of fluorine can be carried out successfully in the presence of various functional groups using diethylaminosulfur trifluoride (DAST) as a fluorodehydroxylation reagent (Scheme 10). ${ }^{50}$

Scheme 10

We propose that the fluorine of 27 could be introduced this way (Scheme 11).

Scheme 11

The importance of enzymatic decarboxylations of amino acids in biosynthetic pathways suggested the utility of specific inhibitors of the decarboxylation enzymes in studying these pathways. ${ }^{49}$ Fluoroacylated amino acids have been recognized as potent suicide inhibitors of enzymatic decarboxylation reactions. ${ }^{51}$ The enzymatic inactivation is thought to be dependent upon loss of fluoride from the intermediate base 29 formed between pyridoxal phosphate and the fluoroacyl amino acid. Loss of fluoride generates a reactive acceptor $\mathbf{3 0}$ which can add an enzyme bound nucleophilic functional group. The covalently bound enzyme $\mathbf{3 1}$ is no longer free to bind additional substrate (Scheme 12). This character gives the fluoro-substituted amino acids high biological potential to serve as inhibitors to disrupt polyamine synthesis, with important implications for various anti-biological agents. ${ }^{49}$

A short and easy synthesis route to our target compound 27 starting from cheap and commercial available compound 32 was developed as briefly shown in Scheme 13. The novel aspect of this proposed route is the use of bisdiazo compound 33 to introduce both amino nitrogens simultaneously by double $\mathrm{N}-\mathrm{H}$ insertion.

Scheme 12

32

27
Scheme 13

2. PART I. RESULTS AND DISCUSSION

2.1. Synthesis of Bisdiazocarbonyl Compounds.

The bisdiazocarbonyl compound could be synthesized by diazo transfer from sulfonyl azide 7. . 52 Dropwise addition of aqueous sodium azide to a stirred solution of p-acetoamidobenzenesulfonyl chloride 13 in methylene chloride containing tetrabutylammonium bromide (TBAB) at $0{ }^{\circ} \mathrm{C}$, gave p-acetoamidobenzenesulfonyl azide (p-ABSA) 7, ${ }^{53}$ as colorless crystals in 91.3% yield.

Compound 7 in acetonitrile was added dropwise to an acetonitrile solution of dimethyl 3-oxoglutarate 32 and triethylamine at $0{ }^{\circ} \mathrm{C}$, in hopes of preparing 33 (eq. 14).

The resulting yellow oil showed only one methyl ester peak in its ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 1). The peak at 74.2 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 2), and the strong peak at $2133 \mathrm{~cm}^{-1}$ in the IR spectrum (Figure 3) indicated that the $\mathrm{C}=\mathrm{N}=\mathrm{N}$ moiety was present in 33 . Other peaks in the ${ }^{13} \mathrm{C}$ NMR spectrum can be reasonably assigned as follows: $52.8 \mathrm{ppm},-\mathrm{CH}_{3} ; 161.4 \mathrm{ppm}$, ester carbonyls; 174.5 ppm , ketone carbonyl.

镸

Figure 1. ${ }^{1} \mathrm{H}$ spectrum of compound 33
A possible reaction product, 34, is inconsistent with the IR results. It is also ruled out by the results of elemental analysis (calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{5}(33) \% \mathrm{C}, 37.18 ; \% \mathrm{H}, 2.67$; \%N 24.77: found $\% \mathrm{C}, 37.15 ; \% \mathrm{H}, 2.69 ; \% \mathrm{~N}, 24.53)$.

34

Thus the diazo transfer reaction afforded the hitherto unknown compound dimethyl 2,4-bis(diazo)-3-oxoglutarate 33 in excellent yield. (eq 15).

C13 $\operatorname{CDC} 13$

Figure 2. ${ }^{13} \mathrm{C}$ spectrum of compound 33

Figure 3. IR spectrum of compound 33

2.2. \mathbf{N}-H insertion of $\mathbf{R h}(\mathrm{II})$-stabilized carbenoid from bis(diazo) compound 33 into

Cbz-NH2.

Benzyl carbamate $\left(\mathrm{Cbz}-\mathrm{NH}_{2}\right)$ 35, which was required for the $\mathrm{N}-\mathrm{H}$ insertion reaction of dimethyl 2,4-bis(diazo)-3-oxoglutarate 33, was easily afforded by bubbling dry ammonia gas through a methylene chloride solution of benzyl chloroformate at $0{ }^{\circ} \mathrm{C}$ (eq 16).

35, 96\%

Dimethyl 2,4-bis(diazo)-3-oxoglutarate 33 reacted with excess benzyl carbamate 35 in refluxing methylene chloride, catalyzed by $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (eq 17). After the reaction solution had refluxed for 1 h , the TLC showed bis(diazo) compound 33 was consumed.

However, the purification of products was not smooth. The TLC exhibited a spot with a long tail when using 1:1 hexane:ethyl acetate as eluent. Trying various solvent systems,
such as methylene chloride with ethyl acetate, chloroform with methanol, and methylene chloride with toluene, did not solve the separation problem. Fortunately, when the reaction mixture was passed though a silica gel chromatography column eluted with $1: 1$ hexane:ethyl acetate, collecting all fractions before a yellow fraction on the column gave a mixture which could be separated by TLC using 5:1 hexane:ethyl acetate. Finally, a colorless oil was afforded by column chromatography in 63% yield. However, the ${ }^{1} \mathrm{H}$ NMR spectra (Figure 4) showed four single peaks from $3.67 \sim 3.75 \mathrm{ppm}$ which indicated four kinds of methyl groups of the methyl ester. Initially, we thought that the separated colorless oil was still a mixture. However the use of various solvent systems to attempt to separate this oil by TLC failed. The M+1 peak indicated on mass spectrum and elemental analysis of 36 were successful, which means the $\mathrm{N}-\mathrm{H}$ insertion reaction occurred and the desired product was formed. Why did the NMR spectra show a mixture?

E

Figure 4a. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of 36: OCH_{3} region.

Figure 4b. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of 36: $4.7 \sim 6.0 \mathrm{ppm}$ region.

Figure 4c. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of 36: $7.0 \sim 8.2 \mathrm{ppm}$ region.

It is reasonable to assume that compound 36 is highly enolic (Scheme 14). In Scheme 14, the carbons are numbered only to distinguish one end of the molecule from the other. That is, the enol double bond might be between C2 and C3, which we denote with a suffix "a", or it might be between C 3 and C 4 , which we denote with a suffix "b".

Furthermore，geometrical（i．e．cis－trans）isomerism is possible for these enols．Thus，as in $\operatorname{CDCl} 13$

镸
長

Figure 5a．Partial ${ }^{13} \mathrm{C}$ NMR spectrum of 36：52．5 $\sim 54.6 \mathrm{ppm}$ region．A DEPT－135
experiment showed all these peaks were from $\mathrm{CH}_{3} / \mathrm{CH}$ carbons．

Figure 5b．Partial ${ }^{13} \mathrm{C}$ NMR spectrum of 36： $67.1 \sim 68.4 \mathrm{ppm}$ region．A DEPT－135 experiment showed all these peaks were from CH_{2} carbons．

Figure 5c. Partial ${ }^{13} \mathrm{C}$ NMR spectrum of 36: $127.9 \sim 128.9 \mathrm{ppm}$ region. A DEPT-135 experiment showed all these peaks were from $\mathrm{CH}_{3} / \mathrm{CH}$ carbons.

Figure 5d. Partial ${ }^{13} \mathrm{C}$ NMR spectrum of 36: $134.3 \sim 136.2 \mathrm{ppm}$ region. A DEPT-135 experiment showed all these peaks were from quaternary carbons.

Figure 5e. Partial ${ }^{13} \mathrm{C}$ NMR spectrum of 36: $151.1 \sim 170.3 \mathrm{ppm}$ region. A DEPT-135 experiment showed all these peaks were from quaternary carbons. shown in Scheme 14, we have four possible forms of 36, namely $E-36 \mathbf{a}, E-\mathbf{3 6 b}, Z-36 \mathbf{a}$, and $Z-\mathbf{3 6 b}$. This explains the four methyl signals in the $3.67 \sim 3.75 \mathrm{ppm}$ region of the ${ }^{1} \mathrm{H}$ NMR. In Figure 4a, two methyl signals are marked with ${ }^{\circ}$ and two with ${ }^{*}$. The two ${ }^{\circ}$ peaks are equal in area, as are the two * peaks. Since "a" forms and "b" forms are equal in energy, $K_{\mathrm{eq}}=1$, i.e., there must be equal amounts of $E-\mathbf{3 6 a}$ and $E-\mathbf{3 6 b}$, and equal

Scheme 14
amounts of Z-36a and Z - $\mathbf{3 6 b}$. The $\mathbf{a} \leftrightarrows \mathbf{b}$ equilibrium in this solvent $\left(\mathrm{CDCl}_{3}\right)$ at ambient probe temperature is apparently slow on the 400 MHz NMR timescale, so separate signals for \mathbf{a} and \mathbf{b} forms are observed. However, there is no reason to expect E and Z isomers to be present in equal amounts. From integration of ${ }^{\circ}$ peaks versus * peaks we find a 60:40 ratio. It is reasonable to speculate that the more abundant form is the E form, because the internal hydrogen bond in the E isomer appears stronger than that in the Z form, making the E form slightly more stable.

To help assign the remainder of the peaks in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, model compound 37 was used. ${ }^{74}$ It is shown in Figures 6 and 7 with E-36.

E-36

Figure 6. Model compound used to assign ${ }^{1} \mathrm{H}$ NMR chemical shifts in 36.

From Figure 6, we may predict the chemical shifts of the protons in compound 36. The peaks can be reasonably assigned as follows (note: the peaks came out pairs indicate the two diastereoisomers, $E-36$ and $Z-36)$: 8.0 ppm (broad peaks), $\mathrm{CbzNHC}=\mathrm{C}(\mathrm{H} a) ; 5.8$ ppm and 5.9 ppm , four peaks also indicate four kind of $\mathrm{C}=\mathrm{CCH}(\mathrm{H} b)$ as the methyl ester groups; $5.1 \mathrm{ppm}, \mathrm{OCH}_{2} \mathrm{Ph}\left(\mathrm{Hc} / \mathrm{Hc} c^{\prime}\right) ; 4.8 \mathrm{ppm}$ and 4.9 ppm (broad peaks), CbzNHCH $(\mathrm{H} d) ; 7.2 \sim 7.5 \mathrm{ppm}$ (multiple peaks), phenyl protons $(\mathrm{He} / \mathrm{He}) ; 3.6 \sim 3.7 \mathrm{ppm}$ methyl groups $\left(\mathrm{H} f / \mathrm{H} f^{\prime}\right)$.

We may also assign the ${ }^{13} \mathrm{C}$ peaks of compound $\mathbf{3 6}$ regarding the model compound 37 (Figure 7) as follows: 54.5 and $54.7 \mathrm{ppm}, 53.3 \mathrm{ppm}$ and 53.2 ppm , methyl group (Ca and $\left.\mathrm{Ca}{ }^{\prime}\right)$; other peaks around $53 \mathrm{ppm}, \mathrm{HNCH}(\mathrm{Cb}) ; 67.3 \sim 68.7 \mathrm{ppm}, \mathrm{OCH}_{2} \mathrm{Ph}(\mathrm{Cc}$ and $\left.\mathrm{Cc}^{\prime}\right) ; 128 \sim 129 \mathrm{ppm}$, aromatic carbon (Cd and $\mathrm{Cd}{ }^{\prime}$); 134.5 ppm and 134.7 ppm , $\mathrm{NHC}=\mathrm{COH}(\mathrm{Ce}) ; 136.2 \mathrm{ppm}$ and $136.4 \mathrm{ppm}, \mathrm{NHC}=\mathrm{COH}(\mathrm{C} f$, due to the -OH , the
chemical shift is downfield); 151.6 ppm and $156.5 \mathrm{ppm}, \mathrm{COOCH}_{2} \mathrm{Ph}\left(\mathrm{Cg}\right.$ and $\left.\mathrm{Cg}^{\prime}\right)$; 167.6 ppm and $167.8 \mathrm{ppm}, \mathrm{CHCOOMe}(\mathrm{Ch}), 170.2 \mathrm{ppm}$ and $170.5 \mathrm{ppm}, \mathrm{C}=\mathrm{CCOOMe}$ (Ci).

37
${ }^{13} \mathrm{C}$ chemical shifts

E-36

Figure 7. Model compound used to assign ${ }^{13} \mathrm{C}$ NMR chemical shifts in $\mathbf{3 6}$.

2.3. \mathbf{N}-H insertion of $\mathbf{R h}($ II)-stablilized carbenoid from bis(diazo) compound 33 into

Boc- NH_{2}.

The t-butyl carbamate $\left(\mathrm{Boc}-\mathrm{NH}_{2}\right) \mathbf{4 0}$, which was required for the $\mathrm{N}-\mathrm{H}$ insertion reaction of dimethyl 2,4-bis(diazo)-3-oxoglutarate 33, was easily afforded by bubbling dry ammonia gas through an ethanol solution of t-butyl dicarbonate 40 at $0^{\circ} \mathrm{C}$. (eq 18)

$$
\begin{align*}
& \mathrm{Boc}_{2} \mathrm{O}+\mathrm{NH}_{3(\mathrm{~g})} \xrightarrow[0^{\circ} \mathrm{C}]{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \quad \text { Boc- } \mathrm{NH}_{2} \tag{18}\\
& 40 \\
& (\mathrm{Boc}=\underset{t-\mathrm{BuO}}{\stackrel{\mathrm{O}}{\mathrm{~s}} \mathrm{~s})} \\
& \text { 41, 96\% }
\end{align*}
$$

Dimethyl 2,4-bis(diazo)-3-oxoglutarate 33 reacted with excess t-butyl carbamate 41 in refluxing methylene chloride, catalyzed by $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$. After the reaction solution had refluxed for 1 h , the TLC showed bis(diazo) compound 33 was completely consumed. Further purification by silica gel chromatography provided a colorless oil in 46% yield. As discussed in section 2.2, the $\mathrm{N}-\mathrm{H}$ insertion reaction product 42 consists of two enol forms $E-42$ and $Z-42$. The NMR spectrum indicated the ratio of these two isomers was $E-42: Z-42=67: 33$.

Z-42a

Z-42b

42

E-42b

Scheme 15

Finally, we were able to get bisprotected diamino dicarboxylic acids 36 and 42. Stereocontrol of the insertion products was impossible because of extensive enolization. Nevertheless, the successful double $\mathrm{N}-\mathrm{H}$ insertion reaction of the new bisdiazo
compound 33 reflects a further synthesis value on $\mathrm{X}-\mathrm{H}(\mathrm{X}=\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{P}$, halogen $)$ insertion reactions.

2.4. Catalytic hydrogenolysis of $\mathbf{N}-\mathbf{H}$ insertion reaction products.

Reduction of the ketone functionality of $\mathbf{3 6}$ and $\mathbf{4 2}$ to an alcohol $\left(\right.$ or $\left.\mathrm{CH}_{2}\right)$ was the next goal. First we tried the reaction shown in eq. 19, hoping to reduce the central "ketone" while simultaneously deprotecting the amines by hydrogenolysis of the Cbz groups. We hoped that hydrogenation of these two enols 36 and 42 over Pd catalysts would achieve that goal. The reported hydrogenations of similar enolic substances caused us to be optimistic. (eq. 21). ${ }^{54}$ The reaction was run in either methanol or 1,4-dioxane solvent.

$\mathrm{R}=\mathrm{Me}, t-\mathrm{Bu}, \mathrm{Ph}$
$\mathrm{R}^{\prime}=\mathrm{Et}, \mathrm{H}$
modifier - HCd or HCn to improve the ee
HCd = 10,11-dihydrocinchonidine
HCn = 10,11-dihydrocinchonine

After hydrogenation under $40 \mathrm{psi}_{2}$, compound 36 yielded white crystals after purification. However, the ${ }^{1} \mathrm{H}$ NMR spectrum gave an unexpected result. A doublet signal at 3.0 ppm coupled with triplet signal at 3.7 ppm indicated that there is a $-\mathrm{CH}_{2}-\mathrm{CH}-$ group in the structure which did not match any groups of compound 28. Fortunately, we were able to obtain the x-ray structure of this strange product 44 (Figure 8). The crystal structure data are included in Appendix A.

Figure 8. X-ray structure of compound 44

A big question came to our mind. Why would we get compound 44 ? We examined a sample of $\mathbf{3 6}$ by NMR after establishing the structure of $\mathbf{4 4}$ to check whether 36 had decomposed or rearranged on storage. It had not.

44

After searching the literature, we found a few examples which seemed to be related to the mechanism by which 44 is produced. Equation 22 illustrates the unusual formation of N -benzylamines during Cbz group hydrogenolysis. ${ }^{67}$ Equation 23^{75} is an example which illustrates the formation of a nucleophilic intermediate (in this case an enolate) during catalytic hydrogenation. These precedents support us to propose a mechanism for the hydrogenolysis of compound $\mathbf{3 6}$ on Pd/C catalyst (Scheme 18).

We postulate that in several steps 49 is formed by routine deprotection of the "righthand" NHCbz group (as drawn in Scheme 16) and deprotection followed by C-N hydrogenolysis of the "lefthand" NHCbz group. The next step is similar to eq. 23 in which a nucleophilic species attacks a neighboring carbonyl carbon. Cyclopropane 50 opens to relieve ring strain, giving 51 and hydroxide. Hydroxide adds to 51 in Michael fashion to give 52, which loses hydride (perhaps to 49), giving 53. This tautomerizes to 44. This mechanism is highly speculative.

44
Scheme 16. Proposed mechanism for formation of 44

We also tried Pd / C catalyzed hydrogenation of Boc-protected compound 42 which won't undergo the hydrogenolysis of Boc group. However, we only found the starting compound 42 instead of expected alcohol 48.

3. PART II. INTRODUCTION

3.1 Introduction to hypervalency.

The concept of hypervalent molecules was established by J. I. Musher in 1969. ${ }^{55}$ Hypervalent compounds are ions or molecules of the elements bearing more electrons than the octet within a valence shell (Scheme 17). According to Musher, ${ }^{55}$ there are essentially two ways to hold electrons beyond the octet within a valence shell: (1) make up a set of dsp^{3} or $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybrid orbitals using higher-lying d orbitals or (2) make up highly ionic orbitals revising the basic idea of Lewis that a covalent bond is formed by a localized pair of two electrons.

10-S-4

$10-P-5$

12-Xe-4

Scheme 17. Some simple hypervalent molecules

Pimentel and Rundle, ${ }^{56}$ in 1951, laid the basis for new development in this area by proposing the idea of the three-center four-electron (3c-4e) bond, employing the molecular orbital theory. Owing to progress in computing and the efforts of many
scientists, the idea of the $3 \mathrm{c}-4 \mathrm{e}$ bond has become supported and is presently widely accepted.

The 3c-4e bond (Scheme 18) is an electron-rich, orbital-deficient bond and the nonbonding molecule orbital (NBMO) becomes HOMO while the antibonding orbital is the LUMO. Most hypervalent species will have a pseudo-trigonal bipyramidal geometry (TBP) that employs two types of bonding: hypervalent bonding to two apical ligands, and normal bonding to all equatorial ligands. ${ }^{57}$

Scheme 18. Three-center four-electron (3c-4e), hypervalent bonding scheme

3.2 Hypervalent boron 10-B-5 species.

During the period when the interest in hypervalent species grew, very few hypervalent compounds of second-row elements were isolated or even detected. Only boron, carbon and fluorine species have been made so far, and there are only a small number of examples of these compounds. Some examples are the first hypervalent 10-B-5 boron compound 54 reported by Lee and Martin in 1984, ${ }^{58}$ hypervalent 10-C-5
carbon compound 55 synthesized by Kin-Ya Akiba recently ${ }^{59}$ (Scheme 19) and first 10-F-2 hypervalent fluorine species observed by Ault and Andrews in 1976, ${ }^{60}$ which was the highly unstable trifluoride anion $\mathrm{F}_{3}{ }^{-}$generated by simultaneous deposition of an argon/fluorine mixture with $\mathrm{CsF}, \mathrm{RbF}$ or KF and detected at low temperature by Raman and infrared spectroscopy.

54
10-B-5

55
10-C-5

Scheme 19. Some hypervalent compounds based on second row elements.

Recently, Wada et al. ${ }^{61}$ reported a synthesis route to tris(2,6-dimethoxyphenyl)borane 56 which let us set a program leading to a new $10-\mathrm{B}-5$ species 59 (Scheme 20). In this thesis, we report on progress toward this goal.

57
58
56

Scheme 20

3.3 Hypervalent phosphorus 10-P-5 species.

Phosphorus species 61 also attracted our interest (Scheme 23). It is formally an 8-P-5 species that may exhibit a three-center two-electron (3c-2e) bond. An analogous compound, 65, was described recently. ${ }^{72}$ Compound 65 was found to be undergoing a

65a 3c-2e bond

equilibrating $8-\mathrm{N}-4$ species
dynamic equilibrium in solution. The x-ray crystal structure of 65 revealed an unsymmetrical B-N-B triad (i.e. 65b or 65c), with the "free" boron coordinated to a
solvent THF molecule. It was of interest to see whether 61, the phosphorus analogue of 65, would have a greater tendency than 65 to engage in three-center bonding.

Hui Li of our laboratory has made progress in the synthesis of $\mathbf{6 1}{ }^{73}$ We report herein our work directed at the completion of this synthesis.

Scheme 21

4. PART II. RESULTS AND DISCUSSION

4.1 Synthesis of tris(2,6-dimethoxyphenyl)borane

Compound 56, Φ_{3} B (the 2,6-dimethoxyphenyl group is sometimes denoted as $" \Phi ")$, was prepared by the reaction of $\Phi \operatorname{Li} 58$ and boron trifluoride diethyl etherate. ${ }^{61}$ To a solution of 1,3-dimethoxybenzene 57 and a catalytic amount of $N, N, N^{\prime}, N^{\prime}$ 'tetramethylethylenediamine (TMEDA) in diethyl ether was added a $2.5 \mathrm{M} n$-hexane solution of n-butyllithium at $0{ }^{\circ} \mathrm{C}$ under nitrogen. To the suspension of $\Phi \mathrm{Li} 58$ after precipitates formed was added boron trifluoride diethyl etherate in benzene. After reflux and recrystallization from THF, white crystals of $\Phi_{3} \mathrm{~B} 56$ were obtained in 41% yield for both steps (eq. 24).

4.2 Demethylation of tris(2,6-dimethoxyphenyl)borane, 56.

Many reagents have been utilized for demethylation of aryl methyl ethers as reported in the chemical literature. The most commonly used are hydrogen iodide (or
bromide), ${ }^{62}$ boron tribromide, ${ }^{63}$ trimethylsilyl iodide, ${ }^{64}$ aluminum chloride, ${ }^{65}$ pyridinium hydrochloride, ${ }^{65}$ and sodium amide. ${ }^{66}$ In our research here, we have tried aluminum trichloride and boron tribromide so far.

4.2.1 Demethylation of $\mathbf{5 6}$ by aluminum trichloride.

To the fine suspension of $\Phi_{3} \mathrm{~B} 56$ in toluene was added anhydrous AlCl_{3} under nitrogen. After reflux, water was added to hydrolyze the excess AlCl_{3}. However, the white solid obtained proved to be resorcinol 66 by NMR spectrum (eq. 25). The unexpected decomposition indicates that the carbon-boron bonds in 56 were cleaved, although the demethylation still occurred.

4.2.2 Demethylation by $\mathrm{BBr}_{3} \cdot \mathbf{S}(\mathrm{Me})_{2}$.

BBr_{3} is another commonly used demethylation reagent which came to mind after AlCl_{3} failed to afford desired tris(2,6-dihydroxyphenyl)borane. To the solution of $\Phi_{3} \mathrm{~B} 56$ in methylene chloride was added a solution of $\mathrm{BBr}_{3} \mathrm{~S}(\mathrm{Me})_{2}$ complex in methylene chloride at $0{ }^{\circ} \mathrm{C}$ under nitrogen. The afforded mixture indicated that the demethylation only partially occurred and we still detect resorcinol in the product by NMR spectrum (eq. 26).

56

The demethylation of 56 to target product could not be accomplished by either AlCl_{3} or BBr_{3}. Because of the time limit, further investigation of the demethylation of 56 has not been done yet. When choosing other demethylation reagents, the cleavage of the carbon-boron bond of $\Phi_{3} \mathrm{~B} 56$ might be avoided by avoiding acidic conditions, which seem to promote C-B cleavage.

4.3 Synthesis of tris(2,6-dihydroxyphenyl)phosphonium chloride 63.

The synthesis of compound $\mathbf{6 3}$ has been well developed by Hui Li in his previous work in our laboratory ${ }^{73}$ as shown in Scheme 21. Tris(2,6-dimethoxyphenyl)phosphine 64 can be prepared by adding the triphenyl phosphite to 58 which was the product of ortho-lithiation of 1,3-dimethoxybenzene 57 in THF. Further demethylation of $\operatorname{tris}\left(2,6\right.$-dimethoxyphenyl)phosphine $\mathbf{6 4}$ by anhydrous AlCl_{3} in toluene afforded a red solid.

Scheme 22

By recrystallization from $\mathrm{EtOEt} / \mathrm{MeOH}$, a single crystal suitable for x-ray diffraction was obtained. The crystal was found to be a co-crystal with the ethyl ether, which was revealed by proton NMR. This indicated the hydrogen bond between compound 63 and solvent is strong which also was found that compound 63 associated with ethyl acetate from Hui Li's research. ${ }^{73}$ A structure diagram is provided in Figure 9 and crystal structure data are included in Appendix B. We are interested in the bond lengths and bond angles of phosphorus to the neighboring atoms which are indicated in Table 1.

Figure 9. Crystal structure of compound 63

Parameters	Bond length (\AA)	Bond angle $\left({ }^{\circ}\right)$	Torsion angle $\left({ }^{\circ}\right)$
$\mathrm{P}(1)-\mathrm{C}(13)$	$1.770(3)$		
$\mathrm{P}(1)-\mathrm{C}(7)$	$1.770(3)$		
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.786(2)$		
$\mathrm{P}(1)-\mathrm{H}(1)$	$1.27(2)$		
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(7)$		$114.84(12)$	
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(1)$		$113.68(12)$	
$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(1)$		$112.37(12)$	
$\mathrm{H}(1)-\mathrm{P}(1)-\mathrm{C}(1)$		$104.7(11)$	
$\mathrm{H}(1)-\mathrm{P}(1)-\mathrm{C}(7)$		$104.0(10)$	
$\mathrm{H}(1)-\mathrm{P}(1)-\mathrm{C}(13)$		$106.0(11)$	
$\mathrm{H}(1)-\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$			$30.8(11)$
$\mathrm{H}(1)-\mathrm{P}(1)-\mathrm{C}(7)-\mathrm{C}(8)$			$20.5(11)$
$\mathrm{H}(1)-\mathrm{P}(1)-\mathrm{C}(13)-\mathrm{C}(14)$			$24.5(11)$

Table 1. Selected Structural Parameters of 63

67

69

68

70

Scheme 23

The $P(1), C(1), C(7)$ and $C(13)$ formed an asymmetric pyramid with the equal length of $\mathrm{P}(1)-\mathrm{C}(7)$ and $\mathrm{P}(1)-\mathrm{C}(13)$. A search of the crystallographic literature revealed several reports of structures of the type $\left(\mathrm{Ar}_{3} \mathrm{PH}\right)^{+}$. The majority of crystal structures which were found involved the triphenylphosphonium ion, $\mathrm{Ph}_{3} \mathrm{PH}^{+}, 67 .{ }^{70}$ Other more relevant examples were: $\operatorname{tris}(2,4,6-$ trimethoxyphenyl $)$ phosphonium tetrachloroiron(III) $\mathbf{6 8}^{68}$, bis $\left\{\operatorname{tris}(2,4,6-\right.$ trimethoxylphenyl)phosphonium $\} \operatorname{bis}\left[\left(\mu_{2}\right.\right.$-chloro)-dichloroiron] 69 ${ }^{69}$, (2-hydroxyphenyl)diphenylphosphonium bromide $\mathbf{7 0}^{71}$ (Scheme 25). Geometrical parameters of these phosphonium ions are compared to those of $\mathbf{6 3}$ in Table 2.

Parameters	$\mathbf{6 3}$	$\mathbf{6 7}{ }^{a}$	$\mathbf{6 8}$	$\mathbf{6 9}$	$\mathbf{7 0}$
$h(\AA)$	-	$0.525(16)$	0.481	0.541	0.542
average P-C bond length (\AA)	$1.771(8)$	$1.786(8)$	$1.783(6)$	$1.791(7)$	$1.786(2)$
P-H	$1.27(2)$	$1.351(6)$	1.438	1.612	1.413
bond length (\AA) average C-P-C bond angle $\left(^{\circ}\right)$ average C-P-H bond angle $\left({ }^{\circ}\right)$	$113.6(2)$	$110.7(5)$	$113.0(3)$	$111.3(2)$	$111.2(2)$

${ }^{a}$ values are averages of all reported triphenylphosphonium ion structures

Table 2.

We first thought that the parameters of compound $\mathbf{6 3}$ would be similar to those of compound 70 because compound 70 has -OH on its phenyl ring. However, from the Table above, the P-C bond length, C-P-C bond angle and C-P-H bond angle of compound 63 are most close to compound 68. The P-H bond length of compound 63 is much less than either the average $\mathrm{P}-\mathrm{H}$ bond length of triphenylphosphonium ion or the other triarylphosphonium ions.

We have been able to synthesis tris(2,6-dihydroxyphenyl)phosphonium chloride 63 and determine its structure. The next step is to deprotonate 63 by base (Scheme 21) which is a key step in the synthesis of compound $\mathbf{6 1}$ and the study of multicenter, perhaps hypervalent, bonding between the phosphorus and boron or other main group elements.

5. EXPERIMENTAL

General: Methylene chloride and acetonitrile were distilled over calcium hydride under nitrogen atmosphere. Reagents used in the syntheses were purchased from the Aldrich Chemical Company and were used without further treatment.

Melting points were recorded on a capillary melting point apparatus and are uncorrected. NMR spectra were obtained at room temperature from Bruker AV-400 spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$. TMS was used as internal standard. The results are presented as parts per million (ppm or δ) and coupling constants are reported in Hz .

Mass spectral (MS) data were obtained using either a Finnegan 3300 or a VG 7070E mass spectrometer using a solid probe. The results are presented in terms of intensity percentage relative to the base peak and probable fragmentation product.

Elemental analysis was performed by Atlantic Microanalytical lab, GA.

TLC was performed on Sorbent Technologies silica G TLC plates w/UV254. Preparative column chromatography employed Sorbent Technologies silica gel ($60 \AA$, $32-63 \mu \mathrm{~m})$.
p-Acetoamidobenzenesulfonyl azide, $7 .{ }^{52}$ To a suspension of p-acetamidobenzenesulfonyl chloride 13 ($50.0 \mathrm{~g}, 0.214 \mathrm{~mol}$) in 400 ml methylene chloride containing
tetrabutylammonium bromide $(0.200 \mathrm{~g}, 0.008 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of sodium azide $\left(16.0 \mathrm{~g}, 0.248 \mathrm{~mol}\right.$, in $\left.50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right)$. The reaction was allowed to warm up to rt and was kept stirring at rt for 16 h . The organic layer was separated and washed with water ($2 \times 75 \mathrm{~mL}$) and saturated aqueous sodium chloride ($2 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give $46.9 \mathrm{~g}(91.3 \%)$ pure white solid, mp 107-110 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $2.25(\mathrm{~s}, 3 \mathrm{H}), 7.80(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{br}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 25.0, 119.8, 129.2, 132.7, 144.2, 169.3.

Dimethyl 2,4-bis(diazo)-3-oxoglutarate, 33. To a stirred solution of dimethyl 3-oxoglutarate 34 ($2.41 \mathrm{~g}, 13.9 \mathrm{mmol}$) and triethylamine ($3.00 \mathrm{~g}, 29.7 \mathrm{mmol}$) in 45 mL acetonitrile at $0{ }^{\circ} \mathrm{C}$ was added dropwise p-acetamidobenzenesulfonyl azide $7(7.20 \mathrm{~g}$, $30.0 \mathrm{mmol})$ in 100 mL acetonitrile over 30 minutes. The reaction was allowed to warm to rt and stirred for 12 h . The reaction mixture was filtered and the filtrate was evaporated under reduced pressure. The residue was washed with ethyl acetate/hexanes (1:1), filtered, and the solvent was evaporated. Further purification by silica gel column chromatography (hexanes/ethyl acetate $=4: 1$) gave 2.86 g yellow oil $(92 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): 3.83 (s). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 52.8, 74.2, 161.4, 174.5. IR (neat): 3004.6, 2956.0, 2133.3, 1719.0, 1601.2, 1433.9, 1321.4, 1192.3, 1126.2, 996.1, 750.1, 763.1, 698.9. Anal. Calcd. for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{5} \mathrm{~N}_{4}$: C, 37.18; H, 2.67; N, 24.77. Found: C, 37.15; H, 2.69; N, 24.53.

Benzyl carbamate, 35. To a stirred solution of benzyl chloroformate (10.3 g ,
0.063 mol) in 200 mL methylene chloride was bubbled through dry ammonia gas at $0{ }^{\circ} \mathrm{C}$. Stopped bubbling while there was no more precipitation formed. Filtered the precipitation and the filtrate was evaporated under reduced pressure to give $9.10 \mathrm{~g}(99 \%)$ white crystals, mp $87-88{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4.89 (br, 2H), $5.10(\mathrm{~s}, 2 \mathrm{H})$, $7.36(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): 67.1,128.3,128.4,128.8,136.4,157.0$.

Compound 36. To a stirred solution of dimethyl 2,4-bis(diazo)-3-oxoglutarate 33 $(0.300 \mathrm{~g}, 1.33 \mathrm{mmol})$ in 15 mL methylene chloride was mixed with benzyl carbamate 35 $(0.401 \mathrm{~g}, 2.66 \mathrm{mmol})$. A catalytic amount of rhodium(II) acetate ($24 \mathrm{mg}, 0.05 \mathrm{mmol}$) was added. The reaction set up was then immediately moved to a pre-heated oil bath at $42^{\circ} \mathrm{C}$. After refluxing for 3 h , the bis(diazo) compound was completely consumed. The reaction mixture was purified by silica gel column chromatography (first using hexanes/ethyl acetate $=1: 1$ washing out the fractions before yellow band. The afforded fractions were separated by hexanes/ethyl acetate $=5: 1$) gave $0.430 \mathrm{~g}(68 \%)$ colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.96(\mathrm{br}, \mathrm{d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{br}, 1 \mathrm{H})$ for one isomer; $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.79(\mathrm{br}, 1 \mathrm{H}), 5.82$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{br}, \mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$ for the other isomer, $5.15(\mathrm{~m}, 5 \mathrm{H}$, two $\left.\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{OH}\right), 7.33(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 52. 8, 53.2, 53.2, 53.3, 53.3, $53.4,128.1,128.3,128.3,128.4,128.7,128.7,128.7,128.8,128.92,128.94,129.03$, $129.03,134.6,134.7,136.2,136.4,151.6,156.2,156.5,167.6,167.9,170.2,170.5$.
\boldsymbol{t}-Butyl carbamate, 41. To a 50 mL saturated $\mathrm{NH}_{3}-\mathrm{EtOH}$ solution was added
dropwise a solution of t-butyl dicarbonate $40(21.3 \mathrm{~g}, 97.8 \mathrm{mmol})$ in 50 mL ethanol at 0 ${ }^{\circ} \mathrm{C}$. While stirring, the solution was bubbled through dry ammonia gas. Stopped bubbling while there was no more precipitation formed. Filtered the precipitation and the filtrate was evaporated under reduced pressure. Added 50 mL hexane. Boiled at $65^{\circ} \mathrm{C}$ for 30 minutes. Cooled down to $0{ }^{\circ} \mathrm{C}$. Washed with hexane and dried to give $11.0 \mathrm{~g}(96 \%)$ white crystals, mp 106-108 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.45(\mathrm{~s}, 9 \mathrm{H}), 4.67(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 28.4, 79.8, 156.7.

Compound 42. To a stirred solution of dimethyl 2,4-bis(diazo)-3-oxoglutarate 33 $(1.94 \mathrm{~g}, 8.58 \mathrm{mmol})$ in 100 mL methylene chloride was mixed with t-butyl carbamate 41 $(2.10 \mathrm{~g}, 17.9 \mathrm{mmol})$. A catalytic amount of rhodium(II)acetate ($40 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added. The reaction set-up was then immediately moved to pre-heated oil bath at $42^{\circ} \mathrm{C}$. After refluxing for 3 h , the bisdiazo compound was completely consumed. The reaction mixture was purified by silica gel column chromatography (first using hexanes/ethyl acetate $=1: 1$ washing out the fractions before yellow band. The afforded fractions were separated by hexanes/ethyl acetate $=5: 1)$ gave $1.59 \mathrm{~g}(46 \%)$ colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.44 (s, 9H), $1.48(\mathrm{~s}, 9 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.90(\mathrm{br}, 1 \mathrm{H}), 5.06$ $\left(\mathrm{dd}, J_{\mathrm{A}}=10.4 \mathrm{~Hz}, J_{\mathrm{B}}=4.00 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.71(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{br}, 1 \mathrm{H})$ for one isomer; $1.45(\mathrm{~s}, 9 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{br}, 1 \mathrm{H}), 5.14\left(\mathrm{dd}, J_{\mathrm{A}}=\right.$ $\left.9.1 \mathrm{~Hz}, J_{\mathrm{B}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.55(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{br}, 1 \mathrm{H})$ for the other isomer. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 28.1, 28.1, 28.4, 28.4, 52.8, 53.0, 53.1, 53.2, 54.7, 54.8, 62.3,
$63.4,80.3,80.6,83.6,83.8,128.4,129.2,150.0,150.4,155.6,155.8,168.0,168.4,170.8$, 170.9.

Tris(2,6-dimethoxyphenyl)borane, 56. ${ }^{61}$ To a solution of 1,3-dimethoxybenzene $57(5.52 \mathrm{~g}, 40.0 \mathrm{mmol})$ and a catalytic amount of $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA, 0.2 mL) in diethyl ether (50 mL) was added a 2.5 M n-hexane solution of n-butyllithium $(16 \mathrm{~mL}, 40 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred for 3 h to afford the precipitate of $\Phi \mathrm{Li} 58$. To this suspension was added boron trifluoride diethyl etherate ($1.89 \mathrm{~g}, 13.2 \mathrm{mmol}$) in benzene $(50 \mathrm{~mL})$ and the mixture was refluxed for 4 h .15 mL methanol was added at rt and the insoluble materials were recrystallized from THF to give $2.27 \mathrm{~g}(41 \%)$ white crystals of Φ_{3} B 56. m.p.: 234-235 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.45(\mathrm{~s}, 18 \mathrm{H}), 6.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.18(\mathrm{t}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $56.8,105.3,130.3,162.7$.

Tris(2,6-dimethoxyphenyl)phosphine, 64. To a solution of 1,3-dimethoxybenzene $57(10.0 \mathrm{~g}, 72.5 \mathrm{mmol})$ in THF (40 mL) was added a $2.5 \mathrm{M} n$-hexane solution of n-butyllithium ($30.5 \mathrm{~mL}, 76.3 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under nitrogen. After stirring at $0^{\circ} \mathrm{C}$ for 45 minutes, a solution of triphenyl phosphite ($6.75 \mathrm{~g}, 21.8 \mathrm{mmol}$) in THF (20 mL) was added dropwise. Then the stirring was continued overnight at rt . The reaction was quenched by adding a few mL methanol. Filtered the solid, washed with ether, combined the filtrate and the ether. Evaporate the solvent and wash the solid by water. The solid was recrystallized from acetone/water to give $3.61 \mathrm{~g}(37.5 \%)$ white crystals. m.p.:
$149-151{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $3.48(\mathrm{~s}, 18 \mathrm{H}), 6.44\left(\mathrm{dd}, J_{\mathrm{A}}=8.2 \mathrm{~Hz}, J_{\mathrm{B}}=2.9\right.$ $\mathrm{Hz}, 6 \mathrm{H}), 7.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): 56.2,104.5,115.5,128.7$, 162.5, 162.6. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -66.6.

Tris(2,6-dihydroxyphenyl)phosphonium chloride 63. Anhydrous AlCl_{3} (810 $\mathrm{mg}, 6.07 \mathrm{mmol}$) was added to a fine suspension of tris(2,6-dimethoxyphenyl)phosphine $64(442 \mathrm{mg}, 1.00 \mathrm{mmol})$ in 15 mL dry toluene under nitrogen. The suspension was refluxed for 2 h and the stirred at rt overnight, which resulted in much gray-green precipitate. The reaction was quenched by slow addition of 15 mL 3 M HCl and the insoluble material changed color to pink. The stirring was continued until none of the precipitate stuck to the glass. The solid was collected by filtration and washed with diethyl ether, and dried on the vacuum line, which afforded $308 \mathrm{mg}(80 \%)$ almost pure compound 63. Further purification can be achieved by recrystallization from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}$, mp $234{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $6.36(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.22(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 8.37(\mathrm{~d}, J=534 \mathrm{~Hz}, 1 \mathrm{H}), 10.63(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $93.2(\mathrm{~d}, J=102 \mathrm{~Hz}), 107.0(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 136.3,162.3 .{ }^{31} \mathrm{P}$ NMR (162 MHz, DMSO- d_{6}): $-51.3(\mathrm{~d}, J=527 \mathrm{~Hz})$.

6. REFERENCES

1. Curtius,, T. Chem. Ber. 1883, 16, 2230-2231.
2. Curtius, T. J. Prakt. Chem. 1888, 38, 396-440.
3. Arndt, F.; Eistert, B.; Partale, W. Chem. Ber. 1927, 60B, 1364-1370.
4. Arndt, F.; Amende, J. Chem. Ber. 1928, 61B, 1122-1124.
5. Arndt, F.; Eistert, B.; Amende, J. Chem. Ber. 1928, 61B, 1949-1953.
6. Bradley, W.; Robinson, R. J. Chem. Soc. 1928, 1310-1318.
7. Doyle, M. P.; McKervey M. A.; Ye, Tao, "Catalysts for Metal Carbene Transformations," in Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley, New York, 1998; Chapter 2.
8. Regitz, M., "Transfer of Diazo Groups," in Newer Methods of Preparative Organic Chemistry; Vol. 6. Foerst, W., Ed.; Academic Press: New York, 1971, 81-126.
9. Saarbrücken, M. R. Angew. Chem. Int. Ed. Engl. 1966, 5, 681-682.
10. Doering, W von E.; DePuy, C. H. J. Am. Chem. Soc. 1953, 75, 5955-5957.
11. Hazen, G. G.; Weinstock, L. M.; Connell, R.; Bollinger, F. W. Synth. Commun. 1981, 11(12), 947-956.
12. Bollinger, F. W.; Tuma, L. D. Synlett. 1996, 407-413.
13. Doyle, M. P., "Catalytic Methods for Metal Carbene Transformations," Chem. Rev.

1986, 86, 919-939.
14. McGarrity, J. F.; Smyth, T. J. Am. Chem. Soc. 1980, 102, 7303-7308.
15. McGarrity, J. F., "Basicity, Acidity and Hydrogen Bonding," in The Chemistry of Diazonium and Diazo Groups; Patai, S., Ed.; Wiley, New York, 1978; Part 1, Chapter 6.
16. Padwa, A.; Krumpe, K. E. Tetrahedron 1992, 48, 5385-5453.
17. Doyle, M. P. "Metal Carbene Complexes in Organic Synthesis: Diazo Decomposition-Insertion and Ylide Chemistry," in Comprehensive Organometallic Chemistry II; Hegedus, L. S., Ed.; Pergamon Press, New York, 1995; Vol. 12, Chapter 5.2.
18. Davies, H. M. L. Tetrahedron 1993, 49, 5203-5223.
19. Padwa, A.; Austin, D. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1797-1815.
20. Maas, G., Top. Curr. Chem. 1987, 137, 76-253.
21. Kennedy, M.; McKervey, M. A.; Maguire, A. R.; Roos, G. H. P. J. Chem. Soc., Chem. Comтип. 1990, 361-362.
22. Doyle, M. P.; Winchester, W. R.; Hoorn, J. A. A.; Lynch, V.; Simonsen, S. H.; Ghosh, R. J. Am. Chem. Soc. 1993, 115, 9968-9978.
23. (a) Paulissen, R.; Reimlinger, H.; Hayez, E.; Hubert, A. J.; and Teyssié, P. Tetrahedron Lett. 1973, 2233-2236. (b) Paulissen, R.; Hubert, A. J.; Teyssié, P. Tetrahedron Lett. 1974, 607-608.
24. Moser, W. R. J. Am. Chem. Soc. 1969, 91, 1135-1140.
25. Cama, L. D.; Christensen, B. G. Tetrahedron Lett. 1978, 19, 4233-4236.
26. Salzmann, T. N.; Ratcliffe, R. W.; Christensen, B. H.; Bouffard, F. A. J. Am. Chem. Soc. 1980, 102, 6161-6163.
27. Melillo, D. G.; Shinkai, I.; Liu, T.; Ryan, K.; Sletzinger, M. Tetrahedron Lett. 1980, 21, 2783-2786.
28. Paulissen, R.; Hayez, E.; Hubert, A. J.; Teyssié, P. Tetrahedron Lett. 1974, 607-608.
29. Landais, Y.; Planchenault, D. Synlett 1995, 1191-93.
30. Bagley, M. C.; Buck, R. T.; Hind, S. L.; Moody, C. J.; Slawin, A. M. Z. Synlett 1996, 825-826.
31. Osipov, S. N.; Sewald, N.; Kolomiets, A. F.; Fokin, A. V.; Burger, K. Tetrahedron Lett. 1996, 37, 615-618.
32. Moyer, M. P.; Feldman, P. L.; Rapoport, H. J. Org. Chem. 1985, 50, 5223-5230.
33. Doyle, M. P.; McKervey M. A.; Ye, T., "Catalysts for Metal Carbene Transformations," in Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley, New York, 1998; Chapter 8.
34. Podlech, J.; Seebach, D. Helv. Chim. Acta. 1995, 78, 1238-1246.
35. McKervey, M. A.; Dilworth, B .M.; Collins, J. C., unpublished work (see Dilworth, B. M., Ph.D. Thesis, NUI, 1987; Collins, J. C., Ph.D. Thesis, NUI, 1990).
36. Hruby, V. J.; Bonner, G. G. in Methods in Molecular Biology, Vol. 35: Peptide

Synthesis Protocols Pennington, M. M.; Dunn, B. M. Eds, Humana Press, New Jersey, 1994, p 201.
37. Kulkowit, S.; McKervey, M. A. J. Chem. Soc., Chem. Commun. 1981, 14, 616-617.
38. Gelb, M. H.; Lin, Y.; Pickard, M. A.; Song, Y.; Vederas, J. C. J. Am. Chem. Soc. 1990, 112, 4932-4942.
39. Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D. Synth. Commun. 1987, 17, 1709-1714.
40. Hiebl, J.; Kollmann, H.; Rovenszky, F.; Winkler, K. J. Org. Chem. 1999, 64, 1947-1952.
41. Hanessian, S.; McNaughton-Smith, G.; Lombart, H. G.; Lubell, W. D. Tetrahedron 1997, 53, 12789-12854.
42. Kubasch, N.; Schmidt, R. R. Eur. J. Org. Chem. 2002, 16, 2710-2726.
43. (a) Williams, R. M. In Synthesis of Optically Active α-Amino Acids, Vol. 7 of Organic Chemistry Series; Baldwin, J. E.; Magnus, P. D., Eds.; Pergamon Prss: Oxford, 1989. (b) Duthaler, R. O. Tetrahedron 1994, 50, 1539-1650. (c) Cativiela, C.; Diaz-de-Villegas, M. D. Tetrahedron:Asymmetry 1998, 9, 3517-3599. (d) Cativiela, C.; Diaz-de-Villegas, M. D. Tetrahedron:Asymmetry 2000, 11, 645-732.
44. Gante, G. Angew. Chem., Int. Ed. Engl. 1994, 33, 1699-1730.
45. (a) Giannis, A.; Kolter, T. Angew. Chem. Int. Ed. Engl. 1993, 32, 1244. (b) Mendel, D.; Ellman, J.; Schultz, P. G. J. Am. Chem. Soc. 1993, 115, 4359-4360.
46. (a) Chamberlin, R.; Bridges, R. In Drug Design for Neuroscience; Lozikowski, A. P., Ed.; Raven Press: New York, 1993; p. 261; (b) Brown, P. New Scientist 1992, 136, 1.
47. (a) Belokon, Yu. N.; Chernoglazova, N. I.; Batsanov, A. S.; Garbalinskaya, N. S.; Bakhmutov, V. I.; Struchkov, Yu. T.; Belikov, V. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1987, 4, 852-857. (b) Mulzer, J.; Schroder, F.; Lobbia, A.; Buschmann, J.; Luger, P. Angew. Chem., Int. Ed. Engl. 1994, 33, 1737-1739. (c) Avenoza, A.; Cativiela, C.; Peregrina, J. M.; Zurbano, M. M. Tetrahedron: Asymmetry 1996, 7, 1555-1558. (d) Avenoza, A.; Cativiela, C.; Peregrina, J. M.; Zurbano, M. M. Tetrahedron: Asymmetry 1997, 8, 863-871. (e) Tanaka, K.; Sawanishi H. Tetrahedron: Asymmetry 2000, 11, 3837-3843. (f) Kabat, M. M. Tetrahedron Lett. 2001, 42, 7521-7524. (g) Yang, M. M. Unpublished work in our laboratory.
48. (a) Goldman, P. Science 1969, 164, 1123. (b) Smith, F. A. Chem. Tech. 1973, 422. (c) Filler, R. Chem. Tech. 1974, 752. (d) Ciba Foundation Symposium, Carbon-Fluorine Compounds, Chemistry, Biochemistry and Biological Activities. Elsevier, New York 1972. (e) Filler, R. in Organofluorine Chemicals and Their Industrial Applications (ed. R. F. Banks and E. Horwood). Halsted, New York, 1979. (f) Biomedical Aspects of Fluorine Chemistry (ed. R. Filler and Y. Kobayashi). Kodansha Ltd., Tokyo 1982. (g) Biochemistry Involving Carbon-Fluorine Bonds (ed. R. Filler). American Chemistry Society, Washington 1976. (h) Gerstenberger, M. R. C.; Haas, A. Angew. Chem. Int. Ed. 1981, 20, 647.
49. Welch, J. T. Tetrahedron 1987, 43, 3123-3197.
50. Andrews, M. J. I.; Tabor, A. B. Tetrahedron Lett. 1997, 38, 3063-3066.
51. Kollonitsch, J.; Perkins, L. M.; Patchett, A. A.; Doldouras, G. A.; Marburg, S.; Duggan, D. E.; Maycock, A. L.; Aster, S. D. Nature 1978, 274, 906.
52. (a) Regitz, M. Angew. Chem. Int. Ed. Engl. 1976, 6, 733-734. (b) Regitz, M. Synthesis 1972, 351-353. (c) Regitz, M.; Maas, G. Diazo Compounds: Properties and Synthesis; Academic Press, Orlando, 1986 Chapter 13.
53. Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D. Synth. Commun. 1987, 17, 1709-1714.
54. Studer, M.; Burkhardt, S.; Indolese, A. F.; Blaser H. U. J. Chem. Soc., Chem. Commun. 2000, 14, 1327-1328.
55. Musher, J. I. Angew. Chem. Intl. Ed. Engl. 1969, 8, 54.
56. (a) Pimentel, G. C. J. Chem. Phys. 1951, 19, 446. (b) Hach, R. J.; Rundle, R. E. J. Am. Chem. Soc. 1951, 73, 4321-4324.
57. Hayes, R. A.; Martin, J. C. "Studies in Organic Chemistry" Vol. 19, Organic Sulfur Chemistry, Chapter 8, Elsevier, 1985.
58. Lee, D.Y.; Martin, J. C. J. Am. Chem. Soc. 1984, 106, 5745-.
59. Yamashita, M.; Yamamoto, Y.; Akiba, K.; Hashizume, D.; Iwasaki, F.; Nagase, S. J. Am. Chem. Soc. 2005, 127, 4354-4371.
60. Ault, B. S.; Andrews, L. J. Am. Chem. Soc. 1976, 98, 1591.
61. Wada, M.; Kanzaki M.; Ogura H.; Hayase S.; Erabi T. J. Organomet. Chem. 1995,485, 127-133.
62. Senear, A. E.; Valient, W.; Wirth, J. J. Org. Chem. 1960, 25, 2001-2006.
63. McOmie, J. F. W.; Watts, M. L.; West, D. E. Tetrahedron 1968, 24, 2289-2292.
64. Olah, G. A.; Narang, S. C.; Balaram-Gupta, B. G.; Malhota, R. J. Am. Chem. Soc. 1979, 44, 1247.
65. Frye, C. L.; Vincent, G. A.; Hauschildt, G. L. J. Am. Chem. Soc. 1966, 88, 2727.
66. Mottier, M. Helv. Chim. Acta. 1935, 18, 840.
67. Cameron, M.; Wilson, R. D. Applied Catalysis A: General 2000, 203, 307-310.
68. Dunbar, K. R.; Quillevere, A. Polyhedron 1993, 12, 807.
69. Dunbar, K. R.; Quillevere, A. Angew. Chem., Int. Ed. 1993, 32, 293.
70. (a) Bricklebank, N.; Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1993, 49, 1017. (b) Hiemisch, O.; Henschel, D.; Jones, P. G.; Blaschette, A. Z. Anorg. Allg. Chem. 1996, 622, 829. (C) Burke, J. M.; Fox, M. A.; Goeta, A. E.; Hughes, A. K.; Marder, T. B. Chem. Commun. 2000, 2217. (d) Majeste, R. J.; Chriss, D.; Trefonas, L. M. Inorg. Chem. 1977, 16, 188. (e) Ershova, M. M.; Glushkova, M. A.; Chumaevskii, N. A.; Prai-Koshits, M. A.; Buslaev, Yu. A.; Butman, L. A.; Minaeva, N. A.; Sadikov, G. G. Koord. Khim. (Russ.) (Coord. Chem.) 1981, 7, 556. (f) McGrath, T. D.; Welch, A. J. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1997, 53, 229. (g) Baker, P.K.; Meehan, M. M.; Metcalfe,
T.; Drew, M. G. B. Gazz. Chim. Ital. 1997, 127, 217. (h) hasselgren, C.; Dean, P. A. W.; Scudder, M. L.; Craig, D. C.; Dance, I. G. J. Chem. Soc., Dalton Trans. 1997, 2019. (i) Junk, P. C.; Atwood, J. L. J. Coord. Chem. 1999, 46, 505. (j) Robinson, P. D.; Hinckley, C. C.; Matusz, M.; Kibala, P. A. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1988, 44, 619. (k) Khan, M. A.; Tuck, D. G.; Taylor, M. J.; Rogers, D. A. J. Crystallogr. Spectrosc. Res. 1986, 16, 895.
71. Schmutzler, R.; Schomburg, D.; Bartsch, R.; Stelzer, O. Z. Naturforsch., B: Chem. Sci. 1984, 39, 1177.
72. Livant, P. D.; Northcott, D. J. D.; Shen, Y.; Webb, T. R. J. Org. Chem. 2004, 69, 6564-6571.
73. Li, H. Syntheses of Possible Precursors to $10-P-5$ and $10-N-5$ Species, M. S. Thesis, Auburn University, 1999.
74. Inguimbert, N.; Dhôtel, H.; Coric, P.; Roques, B. P. Tetrahedron Lett. 2005, 46, 3517-3520.
75. (a) Koech, P. K.; Krische, M. J. Org. Lett. 2004, 6(5), 691-694. (b) Huddleston, R. R.; Krische, M. J. Org. Lett. 2003, 5(7), 1143-1146.

APPENDICES

Appendix A. Crystal structure data (CIF file) for compound 44.

```
data face
    _audit_creation_method
        SHELXL-97
    _chemical_name_systematic
;
    ?
;
    _chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
chemical formula sum
    -'C7 H11 N-1 O5'
    _chemical_formula_weight 756.67
loop
    _atom_type_symbol
    _atom_type_description
    _atom_type_scat_dispersion_real
    _atom_type_scat_dispersion_imag
    _atom_type_scat_source
    'C' 'C' 0.0033 0.0016
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'H' 'H' 0.0000 0.0000
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'N' 'N' 0.0061 0.0033
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'O' 'O' 0.0106 0.0060
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting 'orthorhombic'
_symmetry_space_group_name_H-M 'P2(1)2(1)2(1)'
loop_
    _symmetry_equiv_pos_as_xyz
'x, y, z'
'-x+1/2, -y, z+1/2'
```

```
    '-x, y+1/2, -z+1/2'
    'x+1/2,-y+1/2,-z
_cell_length_a 5.0678(5)
_cell_length_b 11.2996(10)
_cell_length_c 16.1160(15)
_cell_angle_alpha 90.00
_cell_angle_beta 90.00
cell_angle_gamma 90.00
_cell_volume 922.87(15)
_cell_formula_units_Z 4
_cell_measurement_temperature 193(2)
_cell_measurement_reflns_used 9416
_cell_measurement_theta_min 2.20
_cell_measurement_theta_max 28.36
_exptl_crystal_description 'prism'
_exptl_crystal_colour 'colorless'
_exptl_crystal_size_max . }70
_exptl_crystal_size_mid . }10
_exptl_crystal_size_min . }10
_exptl_crystal_density_meas 'not measured'
_exptl_crystal_density_diffrn 1.361
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000
400
_exptl_absorpt_coefficient_mu 0.117
_exptl_absorpt_correction_type 'numerical'
_exptl_absorpt_correction_T_min 0.95836
_exptl_absorpt_correction_T_max 0.98905
_exptl_absorpt_process_details 'SADABS'
_exptl_special_details
;
    ?
;
_diffrn_ambient_temperature
    193(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type
_diffrn_radiation_source
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device_type 'Bruker APEX'
_diffrn_measurement_method '0.3 wide w/ exposures'
_diffrn_detector_area_resol_mean 0
_diffrn_standards_number 'na'
_diffrn_standards_interval_count 'na'
_diffrn_standards_interval_time 'na'
```

```
_diffrn_standards_decay_% 0
_diffrn_reflns_number 9366
diffrn_reflns_av_R_equivalents 0.0321
    _diffrn_reflns_av_sigmaI/netI 0.0281
    _diffrn_reflns_limit_h_min -6
    _diffrn_reflns_limit_h_max 6
    _diffrn_reflns_limit_k_min -15
    _diffrn_reflns_limit_k_max 15
    _diffrn_reflns_limit_l_min -21
    _diffrn_reflns_limit_1_max 20
    _diffrn_reflns_theta_min 2.20
    _diffrn_reflns_theta_max 28.36
    _reflns_number_total 2297
    _reflns_number_gt 2042
_reflns_threshold_expression >2sigma(I)
_computing_data_collection 'SMART'
_computing_cell_refinement 'SMART, SAINT'
_computing_data_reduction 'SAINT'
_computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics 'SHELXP-97 (Sheldrick, 1997)'
_computing_publication_material 'SHELXCIF-97 (Sheldrick, 2000)'
_refine_special_details
;
Refinement of \(\mathrm{F}^{\wedge} 2^{\wedge}\) against ALL reflections. The weighted R -factor wR and goodness of fit \(S\) are based on \(\mathrm{F}^{\wedge} 2^{\wedge}\), conventional R-factors R are based on F , with F set to zero for negative \(\mathrm{F}^{\wedge} 2^{\wedge}\). The threshold expression of \(\mathrm{F}^{\wedge} 2^{\wedge}>2 \operatorname{sigma}\left(\mathrm{~F}^{\wedge} 2^{\wedge}\right)\) is used only for calculating R -factors \((\mathrm{gt})\) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(\mathrm{F}^{\wedge} 2^{\wedge}\) are statistically about twice as large as those based on F , and R factors based on ALL data will be even larger.
```

```
;
```

;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type - full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details

```

```

_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment mixed
_refine_ls_extinction_method none
_refine_ls_extinction_coef

```
_refine_ls_abs_structure_details
'Flack H D (1983), Acta Cryst. A39, 876-881'
_refine_ls_abs_structure_Flack \(0.3(12)\)
_refine_ls_number_reflns 2297
_refine_1s_number_parameters 118
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.0476
_refine_1s_R_factor_gt 0.0429
_refine_1s_wR_factor_ref 0.1136
_refine_1s_wR_factor_gt 0.1115
_refine_1s_goodness_of_fit_ref 1.049
_refine_1s_restrained_S_all 1.049
_refine_ls_shift/su_max 0.001
_refine_1s_shift/su_mean 0.000
```

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group

```
C4 C \(-0.0009(4) 0.59200(13) 0.81987(10) 0.0319(3)\) Uani \(11 \mathrm{~d} .\).
O1 O 0.0052(3) 0.59020(10) 1.11748(7) 0.0391(3) Uani \(11 \mathrm{~d} .\).
C1 C \(0.1480(3) 0.61401(12) 1.05091(10) 0.0269(3)\) Uani \(11 \mathrm{~d} \ldots\)
C3 C 0.1634(3) 0.60757(13) 0.89644(10) 0.0279(3) Uani \(11 \mathrm{~d} .\).
H3A H 0.20890 .69230 .90300 .033 Uiso 11 calc R . .
H3B H 0.32990 .56260 .89030 .033 Uiso 11 calc R . .
O2 O 0.1083(3) 0.64643(14) 0.75549(7) 0.0491(4) Uani \(11 \mathrm{~d} .\).
C5 C - \(0.0324(6) 0.6382(2) 0.67762(12) 0.0630(6)\) Uani \(11 \mathrm{~d} .\).
H5A H 0.06460 .68160 .63470 .094 Uiso 11 calc R . .
H5B H -0.2088 0.67260 .68400 .094 Uiso 11 calc R . .
H5C H -0.0484 0.5549 0.6614 0.094 Uiso 11 calc R . .
C6 C 0.1031(4) 0.63393(17) 1.19590(11) 0.0452(4) Uani 11 d...
H6A H -0.0179 0.61051 .24040 .068 Uiso 11 calc R . .
H6B H 0.11530 .72041 .19380 .068 Uiso 11 calc R . .
H6C H 0.27820 .60051 .20660 .068 Uiso 11 calc R . .
O4 O 0.3522(3) 0.66760(13) \(1.05216(8) 0.0478(4)\) Uani \(11 \mathrm{~d} .\).
C7 C 0.0245(3) 0.43010(11) 0.98115(9) 0.0224(3) Uani \(11 \mathrm{~d} .\).

O3 O -0.2041(3) 0.53906(16) 0.81592(8) 0.0559(4) Uani \(11 \mathrm{~d} .\).
C2 C 0.0179(3) 0.56488(11) 0.97361(8) 0.0227(3) Uani \(11 \mathrm{~d} .\).
H2A H -0.1696 0.5922 0.9713 0.027 Uiso 11 calc R . .
O5 O \(0.24075(19) 0.37986(9) 0.98167(9) 0.0345(3)\) Uani \(11 \mathrm{~d} \ldots\)
N1 N -0.2005(2) \(0.37440(11) 0.98872(9) 0.0295(3)\) Uani \(11 \mathrm{~d} .\). .
H1A H - 0.20280 .29700 .99460 .035 Uiso 11 calc R . .
H1B H -0.3495 0.4144 0.9880 0.035 Uiso 11 calc R . .
```

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12
C4 0.0338(8) 0.0317(7) 0.0301(7) 0.0003(5) 0.0030(7) 0.0076(7)
O1 0.0437(7) 0.0430(6) 0.0305(6) -0.0058(4) 0.0011(5) -0.0132(6)
C1 0.0281(7) 0.0195(6) 0.0330(7) 0.0015(5) -0.0038(6) -0.0002(5)
C3 0.0262(7) 0.0250(7) 0.0325(7) 0.0032(6) 0.0022(6) -0.0012(6)
O2 0.0593(9) 0.0562(8) 0.0319(6) 0.0092(6) 0.0019(6) -0.0044(7)
C5 0.0833(17) 0.0782(14) 0.0275(9) 0.0073(9) -0.0005(9) 0.0111(14)
C6 0.0591(12) 0.0450(10) 0.0316(8) -0.0056(7) -0.0023(8) -0.0069(9)
O4 0.0435(8) 0.0570(8) 0.0430(7) -0.0002(6) -0.0051(6) -0.0242(7)
C7 0.0199(6) 0.0199(5) 0.0275(6) 0.0005(5) -0.0005(6) 0.0006(5)
O3 0.0470(8) 0.0825(11) 0.0381(7) 0.0015(7) -0.0084(6) -0.0213(8)
C2 0.0187(6) 0.0199(5) 0.0294(7) 0.0005(5) -0.0006(6) 0.0003(5)
O5 0.0185(5) 0.0220(5) 0.0630(7) 0.0038(5) 0.0009(5) 0.0016(4)
N1 0.0196(6) 0.0207(6) 0.0481(8) 0.0020(5) -0.0001(5) 0.0001(4)
_geom_special_details
All esds (except the esd in the dihedral angle between two 1.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag

```
```

C4 O3 1.193(2).?
C4 O2 1.327(2).?
C4 C3 1.499(2).?
O1 C1 1.322(2).?
O1 C6 1.445(2).?
C1 O4 1.199(2).?
C1 C2 1.515(2).?
C3 C2 1.524(2).?
O2 C5 1.446(3).?
C7 O5 1.2344(16).?
C7 N1 1.3079(18).?
C7 C2 1.5281(17).?
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
geom_angle_publ_flag
O3 C4 O2 123.42(16) . . ?
O3 C4 C3 125.63(15) . . ?
O2 C4 C3 110.95(15) . . ?
C1 O1 C6 116.90(14) . . ?
O4 C1 O1 124.17(14) . . ?
O4 C1 C2 125.06(14) . . ?
O1 C1 C2 110.77(12) . . ?
C4 C3 C2 111.45(13) . . ?
C4 O2 C5 116.30(18) . . ?
O5 C7 N1 123.51(11) . . ?
O5 C7 C2 118.57(12) . . ?
N1 C7 C2 117.90(12) . . ?
C1 C2 C3 110.14(12) . . ?
C1 C2 C7 106.87(11). . ?
C3 C2 C7 111.70(12) . . ?
_diffrn_measured_fraction_theta_max 0.992
_diffrn_reflns_theta_full 28.36
_diffrn_measured_fraction_theta_full 0.992
_refine_diff_density_max 0.372
_refine_diff_density_min -0.159
_refine_diff_density_rms 0.049

```

Appendix B. Crystal structure data (CIF file) for compound 63.
```

data_p21n
_audit_creation_method
SHELXL-97
_chemical_name_systematic
;
?
;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
chemical formula sum
'C22 H26 Cl O7 P'
_chemical_formula_weight 468.85
loop
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'\mp@code{C' '\' }
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'P' 'P' 0.1023 0.0942
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'Cl' 'Cl' 0.1484 0.1585
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting ?

```
```

loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x+1/2, y+1/2,-z+1/2'
'-x, -y, -z'
'x-1/2, -y-1/2, z-1/2'
_cell_length_a 8.9250(10)
-cell_length_b 17.926(2)
_cell_length_c 14.692(2)
_cell_angle_alpha 90.000(2)
_cell_angle_beta 100.157(2)
_cell_angle_gamma 90.000(2)
_cell_volume 2313.7(5)
_cell_formula_units_Z 4
_cell_measurement_temperature 193(2)
_cell_measurement_reflns_used ?
_cell_measurement_theta_min ?
_cell_measurement_theta_max ?
_exptl_crystal_description ?
_exptl_crystal_colour ?
_exptl_crystal_size_max ?
_exptl_crystal_size_mid ?
_exptl_crystal_size_min ?
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.346
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 984
_exptl_absorpt_coefficient_mu 0.274
_exptl_absorpt_correction_type ?
_exptl_absorpt_correction_T_min ?
_exptl_absorpt_correction_T_max ?
_exptl_absorpt_process_details ?
_exptl_special_details
;
?
;
_diffrn_ambient_temperature
193(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK\a
_diffrn_radiation_source 'fine-focus sealed tube'

```
```

_diffrn_radiation_monochromator graphite
_diffrn_measurement_device_type ?
_diffrn_measurement_method ?
_diffrn_detector_area_resol_mean ?
diffrn-standards_number -
-_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% ?
-diffrn_reflns_number - }2344
_diffrn_reflns_av_R_equivalents 0.0844
_diffrn_reflns_av_sigmaI/netI 0.0826
_diffrn_reflns_limit_h_min -11
_diffrn_reflns_limit_h_max 11
_diffrn_reflns_limit_k_min -23
_diffrn_reflns_limit_k_max 23
_diffrn_reflns_limit_1_min -19
_diffrn_reflns_limit_1_max 19
_diffrn_reflns_theta_min 2.27
_diffrn_reflns_theta_max 28.35
_reflns_number_total 5738
_reflns_number_gt 3213
_reflns_threshold_expression >2sigma(I)
_computing_data_collection ?
_computing_cell_refinement ?
_computing_data_reduction ?
_computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics ?
_computing_publication_material ?
_refine_special_details
;
Refinement of $\mathrm{F}^{\wedge} 2^{\wedge}$ against ALL reflections. The weighted R -factor wR and goodness of fit S are based on $F^{\wedge} 2^{\wedge}$, conventional R-factors R are based on F , with F set to zero for negative $\mathrm{F}^{\wedge} 2^{\wedge}$. The threshold expression of $\mathrm{F}^{\wedge} 2^{\wedge}>2 \operatorname{sigma}\left(\mathrm{~F}^{\wedge} 2^{\wedge}\right)$ is used only for calculating R -factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $\mathrm{F}^{\wedge} 2^{\wedge}$ are statistically about twice as large as those based on F , and R factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details

```


O7 O 0.8237(3) 0.31142(13) 0.02966(16) 0.0811(8) Uani \(11 \mathrm{~d} .\). C1 C 0.4502(3) \(0.10155(14) 0.23108(17) 0.0336(6)\) Uani \(11 \mathrm{~d} .\).
C2 C \(0.3575(3) 0.04219(15) 0.24746(19) 0.0412(6)\) Uani \(11 \mathrm{~d} .\). C3 C 0.2019(3) 0.05056(16) 0.2328(2) 0.0530(8) Uani \(11 \mathrm{~d} .\).
H3B H 0.13870 .01020 .24420 .064 Uiso 11 calc R . .
C4 C 0.1383(3) 0.11798(17) 0.2014(2) 0.0538(8) Uani \(11 \mathrm{~d} .\). .
H4B H 0.03080 .12350 .19170 .065 Uiso 11 calc R . .
C5 C 0.2254(3) 0.17673(16) 0.1841(2) 0.0452(7) Uani \(11 \mathrm{~d} .\).
H5A H 0.17920 .22270 .16250 .054 Uiso 11 calc R . .
C6 C 0.3814(3) \(0.16895(14) 0.19835(18) 0.0366(6)\) Uani 11 d . . .
C7 C \(0.7235(3) 0.04039(14) 0.17002(17) 0.0350(6)\) Uani \(11 \mathrm{~d} .\).
C8 C 0.8257(3) -0.01864(14) 0.1955(2) 0.0408(6) Uani \(11 \mathrm{~d} .\).
C9 C 0.8724(4) -0.06228(17) 0.1298(2) 0.0564(8) Uani 11 d . . . H9A H \(0.9419-0.10200 .14740 .068\) Uiso 11 calc R . .
C10 C 0.8187(4) -0.0484(2) 0.0384(2) 0.0697(10) Uani 11 d . . .
H10A H 0.8494 -0.0801-0.0069 0.084 Uiso 11 calc R . .
C11 C 0.7212(4) 0.01013(19) 0.0097(2) 0.0590(9) Uani 11 d . . .
H11A H \(0.68700 .0195-0.05420 .071\) Uiso 11 calc R . .
C12 C \(0.6750(3) 0.05442(15) 0.07568(19) 0.0427(7)\) Uani \(11 \mathrm{~d} .\).
C13 C \(0.7529(3) 0.17063(14) 0.29833(17) 0.0372(6)\) Uani 11 d...
C14 C 0.8077(3) 0.22225(14) 0.24043(18) 0.0389(6) Uani 11 d. . .
C15 C \(0.8841(3) 0.28535(16) 0.2765(2) 0.0519(8)\) Uani \(11 d \ldots\)
H15A H 0.92130 .32020 .23710 .062 Uiso 11 calc R . .
C16 C \(0.9059(4) 0.29722(18) 0.3701(2) 0.0621(9)\) Uani \(11 \mathrm{~d} .\).
H16A H 0.95840 .34080 .39490 .075 Uiso 11 calc R . .
C17 C 0.8537(4) 0.24782(19) 0.4291(2) 0.0580(8) Uani \(11 \mathrm{~d} .\).
H17A H 0.87040 .25720 .49380 .070 Uiso 11 calc R . .
C18 C \(0.7772(3) 0.18478(17) 0.39356(19) 0.0460(7)\) Uani \(11 \mathrm{~d} .\).
C19 C \(0.8840(6) 0.2144(3)-0.0659(3) 0.123(2)\) Uani \(11 \mathrm{~d} .\).
H19A H 0.88430 .2013 -0.1306 0.185 Uiso 11 calc R . .
H19B H \(0.81860 .1796-0.03950 .185\) Uiso 11 calc R . .
H19C H \(0.98800 .2116-0.03080 .185\) Uiso 11 calc R . .
C20 C 0.8277(6) 0.2881(3) -0.0612(3) 0.1070(16) Uani \(11 \mathrm{~d} .\).
H20A H 0.8928 0.3228-0.0893 0.128 Uiso 11 calc R . .
H20B H 0.72360 .2908 -0.0979 0.128 Uiso 11 calc R . .
C21 C 0.7751(12) 0.3857(3) 0.0364(4) 0.207(5) Uani 11 d...
H21A H 0.72960 .38340 .09310 .248 Uiso 11 calc R . .
H21B H 0.87340 .41170 .0558 0.248 Uiso 11 calc R . .
C22 C 0.7079(16) 0.4288(4) -0.0020(5) 0.321(8) Uani 11 d . . .
H22A H 0.71020 .47360 .03640 .481 Uiso 11 calc R . .
H22B H \(0.60260 .4115-0.01970 .481\) Uiso 11 calc R . .
H22C H \(0.74950 .4405-0.05780 .481\) Uiso 11 calc R . .
H1 H 0.672(3) 0.0434(13) 0.3259(17) 0.038(7) Uiso \(11 \mathrm{~d} .\). .
H2A H 0.434(4) 0.268(2) 0.175(3) 0.087(12) Uiso \(11 \mathrm{~d} .\). .
```

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
atom_site_aniso_U_12
P1 0.0326(4) 0.0367(4) 0.0305(4) 0.0024(3) 0.0023(3) 0.0011(3)
Cl1 0.0556(5) 0.0414(4) 0.0453(4) 0.0057(3) 0.0012(3) -0.0025(3)
O1 0.0419(12) 0.0415(11) 0.0836(16) 0.0181(10) 0.0039(11) -0.0007(9)
O2 0.0418(12) 0.0408(11) 0.0712(15) 0.0148(10) 0.0051(10) 0.0027(10)
O3 0.0505(12) 0.0556(12) 0.0494(13) 0.0102(10) 0.0055(10) 0.0186(10)
O4 0.0531(12) 0.0578(12) 0.0397(11) 0.0020(9) -0.0097(9) 0.0029(10)
O5 0.0554(12) 0.0489(11) 0.0328(10) 0.0009(8) 0.0076(9) -0.0081(9)
O6 0.0867(17) 0.0733(15) 0.0305(11) -0.0037(10) 0.0079(11) -0.0179(13)
O7 0.143(2) 0.0575(14) 0.0476(14) 0.0038(11) 0.0293(15) -0.0024(15)
C1 0.0291(13) 0.0396(14) 0.0313(13) -0.0001(11) 0.0034(10) -0.0001(11)
C2 0.0372(15) 0.0430(15) 0.0425(16) 0.0030(12) 0.0049(12) 0.0039(12)
C3 0.0363(16) 0.0519(18) 0.070(2) 0.0124(16) 0.0070(15) -0.0065(14)
C4 0.0287(15) 0.065(2) 0.066(2) 0.0069(16) 0.0040(14) 0.0033(14)
C5 0.0382(16) 0.0448(16) 0.0507(17) 0.0026(13) 0.0023(13) 0.0085(13)
C6 0.0367(15) 0.0371(14) 0.0361(15) -0.0014(11) 0.0061(12) 0.0014(12)
C7 0.0323(14) 0.0380(14) 0.0339(14) -0.0025(11) 0.0036(11) -0.0038(11)
C8 0.0360(15) 0.0384(14) 0.0475(17) 0.0005(12) 0.0059(13) -0.0038(12)
C9 0.057(2) 0.0498(18) 0.062(2) -0.0105(16) 0.0090(16) 0.0122(15)
C10 0.080(2) 0.068(2) 0.062(2) -0.0288(19) 0.0163(19) 0.0061(19)
C11 0.068(2) 0.070(2) 0.0361(17) -0.0135(15) 0.0017(15) -0.0012(17)
C12 0.0402(16) 0.0461(16) 0.0398(16) -0.0035(13) 0.0015(12) -0.0048(13)
C13 0.0336(14) 0.0424(15) 0.0336(14) -0.0030(11) 0.0002(11) 0.0014(11)
C14 0.0337(14) 0.0454(15) 0.0361(15) -0.0017(12) 0.0019(12) 0.0021(12)
C15 0.0575(19) 0.0466(17) 0.0491(18) -0.0012(14) 0.0022(15) -0.0121(14)
C16 0.066(2) 0.0556(19) 0.057(2) -0.0094(16) -0.0087(17) -0.0156(17)
C17 0.066(2) 0.066(2) 0.0353(17) -0.0080(15) -0.0083(15) -0.0064(17)
C18 0.0445(17) 0.0567(18) 0.0346(16) -0.0012(13) 0.0006(13) -0.0006(14)
C19 0.190(6) 0.109(4) 0.087(3) 0.007(3) 0.069(4) 0.058(4)
C20 0.166(5) 0.103(4) 0.059(3) -0.002(2) 0.039(3) 0.012(3)
C21 0.435(14) 0.100(4) 0.089(4) 0.018(3) 0.058(6) 0.115(7)
C22 0.74(2) 0.151(7) 0.068(4) 0.010(4) 0.050(8) 0.196(11)

```
_geom_special_details
;

All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag
P1 C13 1.770(3).?
P1 C7 1.770(3).?
P1 C1 1.786(2).?
O1 C2 1.358(3).?
O2 C6 1.344(3).?
O3 C8 1.360(3).?
O4 C12 1.368(3).?
O5 C14 1.349(3).?
O6 C18 1.354(3) .?
O7 C21 1.409(6).?
O7 C20 1.405(4).?
C1 C2 1.395(4).?
C1 C6 1.401(3).?
C2 C3 1.376(4).?
C3 C4 1.379(4).?
C4 C5 1.359(4).?
C5 C6 1.379(4).?
C7 C8 1.404(4).?
C7 C12 1.400(4).?
C8 C9 1.364(4).?
C9 C10 1.367(5) .?
C10 C11 1.381(5).?
C11 C12 1.371(4).?
C13 C14 1.402(4).?
C13 C18 1.401(4).?
C14 C15 1.378(4).?
C15 C16 1.371(4).?
C16 C17 1.377(4) .?
C17 C18 1.375(4).?
C19 C20 1.420(5).?
C21 C22 1.075(8).?
loop
_geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3
```

 geom_angle
 _geom_angle_site_symmetry_1
 geom_angle_site_symmetry_3
 geom_angle_publ_flag
 C13 P1 C7 114.84(12) . . ?
C13 P1 C1 113.68(12) . . ?
C7 P1 C1 112.37(12) . . ?
C21 O7 C20 114.0(3) . . ?
C2 C1 C6 118.7(2) . . ?
C2 C1 P1 117.87(19) . . ?
C6 C1 P1 123.39(19) . . ?
O1 C2 C3 122.5(2) . . ?
O1 C2 C1 117.3(2) . . ?
C3 C2 C1 120.2(2)..?
C2 C3 C4 119.5(3) . . ?
C5 C4 C3 121.8(3) . . ?
C4 C5 C6 119.3(3) . . ?
O2 C6 C5 122.7(2) . . ?
O2 C6 C1 116.7(2) . . ?
C5 C6 C1 120.6(2) . . ?
C8 C7 C12 118.2(2) . . ?
C8 C7 P1 118.4(2) . . ?
C12 C7 P1 123.2(2) . .?
O3 C8 C9 123.2(3) . .?
O3 C8 C7 116.2(2) . . ?
C9 C8 C7 120.6(3) . . ?
C10 C9 C8 119.6(3) . . ?
C9 C10 C11 122.0(3) . . ?
C12 C11 C10 118.5(3) . .?
O4 C12 C11 118.2(3) . . ?
O4 C12 C7 120.7(2) . . ?
C11 C12 C7 121.1(3) . . ?
C14 C13 C18 118.5(2) . . ?
C14 C13 P1 123.9(2) . .?
C18 C13 P1 117.6(2) . . ?
O5 C14 C15 122.2(2) . . ?
O5 C14 C13 117.1(2) . . ?
C15 C14 C13 120.7(3) . .?
C16 C15 C14 119.1(3) . . ?
C15 C16 C17 121.9(3) . . ?
C18 C17 C16 119.3(3) . . ?
O6 C18 C17 123.6(3) . .?
O6 C18 C13 115.8(3) . . ?
C17 C18 C13 120.5(3) . .?
O7 C20 C19 113.1(4) . . ?
C22 C21 O7 142.4(8) . . ?

```
_diffrn_measured_fraction_theta_max 0.995
_diffrn_reflns_theta_full 28.35
_diffrn_measured_fraction_theta_full 0.995
_refine_diff_density_max 0.465
_refine_diff_density_min -0.400 _refine_diff_density_rms 0.057```

